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Abstract. This paper introduces the concept of power supply on chip (PwrSoC) which will enable the
development of next-generation, functionally integrated, power management platforms with applications
in dc-dc conversion, gate drives, isolated power transmission and ultimately, high granularity, on-chip,
power management for mixed-signal, SOC chips. PwrSoC will integrate power passives with the power
management IC, in a 3D stacked or monolithic form factor, thereby delivering the performance of a high-
efficiency dc-dc converter within the footprint of a low-efficiency linear regulator. A central element of
the PwrSoC concept is the fabrication of power micro-magnetics on silicon to deliver micro-inductors and
micro-transformers. The paper details the magnetics on silicon process which combines thin film magnetic
core technology with electroplated copper conductors. Measured data for micro-inductors show inductance
operation up to 20 MHz, footprints down to 0.5 mm2, efficiencies up to 93% and dc current carrying
capability up to 600 mA. Measurements on micro-transformers show voltage gain of approximately – 1 dB
at between 10 MHz and 30 MHz.

1 Introduction

The ongoing drive toward miniaturization of electronic
products, with ever-increasing functionality and perfor-
mance, from portable electronics to high-end computing,
is placing significant challenges on switched-mode, power
management platforms to deliver high-efficiency power at
an increasing level of miniaturization and granularity.
Semiconductor and microelectronics technologies have de-
livered significant progress through the functional integra-
tion of power switches with drivers and control electronics
and through advanced system-in-package and chip scale
packaging platforms. Currently, a major roadblock to fur-
ther miniaturization and integration is the use of conven-
tional, discrete magnetic and capacitor components for
energy storage, filtering and isolation [1].

As a result, there is currently a very strong push in
the power electronics industry to provide power supply
in package (PwrSiP) platforms which address some of the
above issues, with many companies having commercial of-
ferings, mainly in the 1–5 watt dc-dc space, in the
schematic form shown in Figure 1. The “holy grail” is the
development of power supply on chip (PwrSoC) platform
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technology which functionally integrates the passives with
the power management IC. Figure 2 presents a conceptual
roadmap for the evolution to PwrSoC.

For a typical dc-dc buck converter, the required
values of inductance and capacitance are inversely propor-
tional to the operating frequency. Increasing the switch-
ing frequency of converters into the 10–100 MHz range
offers the potential for the reduction of passive compo-
nent values to the point where, with the right technology,
their size becomes compatible with 3D stacking or mono-
lithic integration with the power management IC without
increasing the overall footprint significantly beyond that
of the power management IC. PwrSiP offers a short- to
medium-term solution with the discrete passives and the
active die packaged side by side on a single substrate or
lead frame. Typical examples of PwrSiP products are from
Enpirion, Texas Instruments, Micrel, etc. [2,4,5]. PwrSoC
traditionally would use low-profile integrated inductor on
silicon with active die either monolithically built or 3-D
stacked in a single chip scale package. The profile of the
discrete chip inductor could still be a disadvantage for a
PwrSiP solution. In contrast, the micro-inductor on sili-
con technology offers advantages of lower inductor profile
and also a stacked or monolithic PwrSoC solution with
minimum overall footprint.

As well as the above benefits of enhancing efficiency
and reducing parasitic noise, the PwrSoC concept also of-
fers the opportunity to enable semiconductor companies
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Fig. 1. Typical dc-dc switched mode power supply (buck con-
verter).

Fig. 2. Roadmap for evolution of power supply on chip tech-
nology.

to take full ownership of the power passives, thereby elimi-
nating issues with external source of high-quality, low-cost
bills of materials.

This paper presents an overview of work done by the
authors, over the last 10 years, on the development of
micro-magnetic power inductors and transformers on sil-
icon to deliver the PwrSoC concept. This work is also
complemented by ongoing work by a number of companies
and institutes in the development of high density, trench
capacitors on silicon.

2 Roadmap for dc-dc Power Converters

Increasingly, many companies, including Enpirion [2],
Fuji [3], Micrel [4], National Semiconductor [5] and TI [6],
have reported products using a PwrSiP platform, either
with one or more passives integrated into the same pack-
age as the power management IC, in either a planar or
stacked form-factor. In all the above cases, companies have
developed products with enhanced integration using cre-
ative engineering solutions to deliver on the requirements
of reduced footprint and reduced component count while
maintaining overall height profile in the range of 1 mm.

In an attempt to understand the trends in this rapidly
evolving area, this paper presents an overview of the
progress of the performance of the typical dc-dc converter
platforms outlined above. The accompanying figures pro-
vide plots of data for a range of dc-dc converter plat-
forms ranging from commercial power modules [7–14] and
PwrSiP products [2–6] to PwrSiP and PwrSoC research
demonstrators which have been reported in the recent lit-
erature [15–31].

Figure 3 compares the power densities of the different
power converters including power modules, power supply

Fig. 3. Comparison of power densities of different power con-
verters.

in package (PwrSiP) and power supply on chip (PwrSoC).
The figure confirms that PwrSiP products have a higher
power density than conventional power modules. This is
mainly due to the higher operating frequency of PwrSiP
products which allows the use of smaller value inductors,
hence smaller size and lower profile. The PwrSoC con-
verters reported in [20,21] show relatively lower power
densities compared to the commercial PwrSiP products
in the same range of operating frequency. This is mainly
due to the fact that the commercial products use commer-
cial ferrite chip inductors with significantly thicker mag-
netic material. However, as switching frequency increases,
e.g., above 50 MHz, the required inductance becomes sig-
nificantly less; the research demonstrators start to show
comparable power density to commercial PwrSiP plat-
forms. To date, all the inductors applied in these research
demonstrators operating, at a frequency above 50 MHz,
are air-core inductors, either discrete chip air-core induc-
tors in [16,18] or on-chip, integrated, air-core inductors
in [17,22,23,25,26,29–31]. In [22,23,25,26,29–31], an ex-
tra step was taken by integrating the capacitor on the
same silicon as the on-chip, air-core inductor.

To complete the competitive landscape, commercial
linear regulators and silicon-integrated, switched-capacitor
research demonstrators of dc-dc converters have been
added to Figure 4. Linear regulators are widely used as
power converters due to their simplicity, low noise, good
regulation and low cost [32–36]. Switched capacitor, dc-dc
converters have been gaining considerable interest in re-
cent years due to their higher efficiency compared to linear
regulators but also because they don’t need an output in-
ductor, and therefore lend themselves to full integration
on silicon using conventional technology, presenting a very
attractive solution for PwrSoC [37–49].

As expected, Figure 4 shows that the efficiency of
switched mode dc-dc products is significantly higher than
those of linear regulator products and switched capac-
itor (SC) converters. The switched-capacitor regulators
can give moderate efficiency of between 60% and 80%
with high integration level, however, it has been reported
that the solution still requires large silicon area even for
100 mA (i.e., 1 mm2) [18]. So far, the demonstrated
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Fig. 4. Converter efficiency of POL products using commer-
cial, packaged, on-chip inductors and switched capacitors.

current handling for SC is about 0.7 A/mm2 [41].
Although, currently, there are no commercial SMPS prod-
ucts operating beyond 10 MHz, the research demonstra-
tors have shown promising performance at very high op-
erating frequencies, at 100 MHz or even higher. Converter
efficiencies of up to 87% have been reported at operating
frequencies between 100 and 233 MHz [16,18,22] using
advanced CMOS processing technology. However, achiev-
ing a higher efficiency, similar to that of the majority of
commercial products, operating at multi-MHz range (i.e.,
>93%), still remains a significant challenge.

PwrSoC is currently in research phase and is yet to
demonstrate the efficiency and footprint targets required
for commercial success. To realize the PwrSoC vision, the
key challenges to be addressed are increased converter op-
erating frequency, miniaturization and system integration
of passive components, while maintaining efficiency. In the
next section, we present the development of integrated

magnetics technology at Tyndall National Institute for re-
alizing an efficient PwrSoC solution.

3 Magnetics on silicon technology

The magnetics on silicon technology is based on a com-
bination of electroplated, thin film, magnetic materials
(NiFe permalloy core), used extensively in the magnetic
disk head industry, with wafer-level, back-end-of-line
(BEOL), electroplated copper conductors (windings) from
the power semiconductor industry. Figures 5 and 6 show
plan views and cross-sections of typical micro-inductor
and micro-transformer devices based on a single-layer
metal (SLM) and double-layer metal (DLM) proc-
ess [50,51]. Figure 7 shows the process flows for both the
SLM and DLM devices.

4 Device performance

Figures 8 and 9 present key performance data measured
for micro-inductors [52,53]. Figure 8 shows that, using a
NiFe core material, the micro-inductors operate at fre-
quencies beyond 20 MHz. Figure 9 shows that the micro-
inductors operate with a dc bias, with devices with a
2.5 mm2 footprint supporting up to 600 mA. Figure 9 also
shows a comparison of a micro-inductor with a commer-
cial chip inductor operating in an 8 MHz dc-dc converter
circuit. In this plot, the efficiency of the micro-inductor,
which has been extracted from the overall efficiency of the
converter, is shown to be only 4–6% lower than that for the
commercial ceramic chip inductor [54]. The reduced effi-
ciency can be accounted for in the resistance of the plated
copper windings and the eddy current losses in the mag-
netic core due to its very low resistivity when compared
with ferrite materials.

Fig. 5. Plan view and cross-section of single-layer metal (SML) micro-magnetic process – overall device footprint 3 × 2 mm.

Fig. 6. Plan view and cross-section of double-layer metal (DML) micro-magnetic process – overall device footprint – 3× 2 mm.
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Fig. 7. Fabrication process flow for SLM and DLM micro-inductors.
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Fig. 8. Micro-inductors – measured inductance versus fre-
quency.

Figures 10–12 plot measured and modeled data for
SLM and DLM micro-transformers [55]. A plot of the mea-
sured open circuit inductance, Loc, and open circuit resis-
tance, Roc, for both SLM and DLM micro-transformers
is shown in Figure 10. The Loc values are approximately
85 nH and 210 nH at 20 MHz, for SLM and DLM, re-
spectively. For both cases, the inductance holds up to at

least 20 MHz with less than 15% drop of inductance, al-
though inductance drop is larger than expected. The DC
resistance was tested using Kelvin 4-probe method. The
measured primary and secondary DC resistances for SLM
device are both 0.367 Ω. Similarly, the primary and sec-
ondary DC resistances for DLM device are 1.096 Ω and
0.962 Ω, respectively. The measured resistances match well
with the design values.

The measured voltage gain of the devices under a
50 Ω resistive load condition is plotted in Figure 11. Both
the SLM and DLM micro-transformers exhibit the highest
reported voltage gain for micro-transformers of approxi-
mately –1 dB at between 10 MHz and 30 MHz. The low
voltage gain at low frequencies is due to the low magne-
tizing inductance. The voltage gain starts to fall off at
high frequencies because the eddy current loss increases
significantly. Based on validated model data, Figure 12
compares the efficiencies of different SLM and DLM
micro-transformer designs with various footprint areas.
DLM devices achieve higher efficiencies than SLM devices
for the same footprint with DLM devices estimated for
achieving efficiencies greater than 70% for a footprint of
2 mm2.
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Fig. 9. Micro-inductors – measured inductance versus bias current and extracted inductor efficiency for 8 MHz buck converter
circuit. Comparison with commercial wire-wound chip inductor.
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5 Applications

There are a very broad range of applications which can be
targeted with technology. These include:

– Micro-inductors in non-isolated dc-dc converters and
in gate drives. This also includes multiconverter power
management ICs (PMICs) as are used extensively in

Fig. 12. Modeled efficiency of transformers using single and
double layers of Cu windings.

smart phones, but currently relying on many discrete
passives. The technology also presents an opportunity
to develop a high-efficiency dc-dc converter with the
footprint of low-efficiency, linear regulators.

– Micro-transformers for use in isolated converters
and in isolated gate drives. This would also include
instrumentation applications requiring energy
transfer across an isolation barrier, currently being
served by low-efficiency, integrated air-core micro-
transformers [56].

– As the technology is suited to operating above 20 MHz,
it may be particularly suited to operating with GaN
semiconductors.

– In the case of complex SoC platforms, such as
embedded microcontrollers and multicore processors,
magnetics on silicon can facilitate the delivery of high
granularity power management embedded on the SOC
platform [27].

6 Conclusions

The paper has described a microsystems technology which
combines the electroplating of thin film magnetic cores
with electroplated copper conductors to fabricate micro-
magnetic power inductors and transformers on silicon.
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This technology platform will enable the development of
next generation, functionally integrated, power manage-
ment platforms with applications in dc-dc conversion, gate
drives, isolated power transmission and ultimately, high
granularity, on-chip, power management for mixed-signal
SOC chips. While miniaturization is a key driver, other
important benefits of the technology include:

– Increased efficiency and reduced noise due to mini-
mization/elimination of interconnect parasitics.

– Reduce EMI issues due to short current loops, and
system co-design optimization.

– Reduced cost through reduced BOM, PCB area and
application assembly costs.

This work has been supported with funding from Enterprise
Ireland and Ireland’s EU Structural Funds Programme 2007–
2013 which is co-funded by the Irish Government and the Eu-
ropean Union. The support of colleagues in the Central Fab-
rication Facility, The Plating Laboratory and the Packaging
Laboratory is gratefully acknowledged.
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