
Title Studying secure coding in the laboratory: Why, what, where, how,
and who?

Authors Ryan, Ita;Stol, Klaas-Jan;Roedig, Utz

Publication date 2023-05-20

Original Citation Ryan, I., Stol, K.-J. and Roedig, U. (2023) ‘Studying secure
coding in the laboratory: why, what, where, how, and
who?’, 2023 IEEE/ACM 4th International Workshop on
Engineering and Cybersecurity of Critical Systems (EnCyCriS).
Melbourne, Australia, 15 May, pp. 23–30. doi: 10.1109/
EnCyCriS59249.2023.00008

Type of publication Conference item

Link to publisher's
version

https://doi.org/10.1109/EnCyCriS59249.2023.00008 - 10.1109/
EnCyCriS59249.2023.00008

Rights © 2023, the Authors. For the purpose of Open Access, the
authors have applied a CC-BY public copyright licence to
any Author Accepted Manuscript version arising from this
submission. Copyright published VOR © 2023 IEEE - https://
creativecommons.org/licenses/by/4.0/

Download date 2024-05-09 01:15:27

Item downloaded
from

https://hdl.handle.net/10468/14775

https://hdl.handle.net/10468/14775

Studying Secure Coding in the Laboratory:
Why, What, Where, How, and Who?

Ita Ryan
ADVANCE Centre for Research Training

School of Computer Science and IT
University College Cork

Cork, Ireland
ita.ryan@cs.ucc.ie

Klaas-Jan Stol
Lero, the SFI Research Centre for Software

School of Computer Science and IT
University College Cork

Cork, Ireland
k.stol@ucc.ie

Utz Roedig
Connect Research Centre

School of Computer Science and IT
University College Cork

Cork, Ireland
u.roedig@cs.ucc.ie

Abstract—Software security is an area of growing concern,
with over 192,000 known vulnerabilities in public software at the
time of writing. Many aids to secure coding exist. Assessing the
effectiveness of such aids in a laboratory environment is difficult.
There are a number of concerns to address, such as recruitment
issues and the level of instrumentation needed to perform an
accurate measurement. Based on an extensive literature review
of software development aids, we describe recent approaches
to running laboratory studies, their characteristics, and their
benefits and drawbacks. This paper should be of use to anyone
planning to undertake coding studies with software developers.

Index Terms—Software security, secure development tools,
secure development processes, secure development, software
programmer, software developer, application security, security
issue, secure programming, secure application development, secure
development lifecycle

I. WHY: INTRODUCTION

Amid a proliferation of ransomware and other cybercrime,
cyber patriotism, cyber espionage and even cyber warfare,
software security is an area of ever-growing concern [1]. There
are over 192,000 known vulnerabilities in public software at
time of writing in January 2023 [2], with 25,093 added in 2022
alone [3]. Critical systems are highly vulnerable [4]. Software
security is in trouble. Software is released without even cursory
security precautions [5].

Recent academic work on secure coding has attempted to
analyse how developers address security, and identify what
motivators and constraints exist. In an extensive secure software
development literature review, to be published elsewhere,
we queried 23 top software, usability and security venues
such as ICSE, CHI and CCS for papers describing secure
coding aids. The resulting studies took a wide range of
academic approaches to studying secure development, from
highly-controlled laboratory tests, through artefact analysis, to
ethnographic field studies allowing observations of developers
‘in the wild.’ In this paper we look specifically at those studies
in which recruited participants were invited to perform a coding-
related task, and at the study environment for the task. From
the total number of papers in our literature review (over 100
studies since 2016), we identified 16 such papers. This paper
examines the study settings of these 16 laboratory papers,

focusing particularly on the instrumentation and recruitment
options available, what choices were made, and the pros and
cons of those decisions. Our analysis should be of use to
anyone planning to undertake laboratory studies with software
developers. Table I presents an overview of the studies.

To the best of our knowledge, this paper represents the first
attempt to describe the choices available when constructing
laboratory settings for security-related development studies,
and their pros and cons. Huaman et al. evaluated the features
of existing secure development lab environments [6]. They
used the constraints and requirements identified to create a
prototype online lab environment called OLab. In their review
of developer centred security papers involving user studies,
Tahaei and Vaniea [7] explored characteristics such as how well
recruitment and data analysis were described. They assessed
adherence to good practices like defining research questions,
running pilot studies and obtaining ethics approval.

Naiakshina et al. gave a detailed and informative description
of their study design in the first of a series of studies on secure
password storage [8]. They included issues that arose during the
three pilot runs. Their second study used the same conditions
[9], allowing them to extract quantitative information from the
combined studies. This second paper discussed methodological
considerations such as deception effect, task length, laboratory
setting and qualitative v. quantitative study design, giving useful
and relevant advice to other researchers.

Acar et al. set up an online, highly-instrumented laboratory
environment to compare the security effect of different crypto-
graphic libraries, [10] reusing it to evaluate GitHub users as
potential subjects for secure development studies [11]. This
environment became known as the ‘Developer Observatory.’
Stransky et al. described lessons learned while developing and
using it [12].

The next four sections focus on the key questions we seek
to address: What (Sec. II), Where (Sec. III), How (Sec. IV),
and Who (Sec. V). We conclude with recommendations for
researchers who wish to study developers in the context of
secure coding in the future.

TABLE I
STUDIES ON SECURITY-RELATED DEVELOPMENT IN LABORATORY SETTINGS

ID Year Lab used Research goal Developer Task Recruitment N Payment Ref

AL1 2016 Acar Lab Assess the impact on code
security of using differing
information sources such as
Stack Overflow or books.

Code 4 Android tasks with data
storage, HTTPS, ICC, permissions.
Different information resources
provided for each of 4 conditions.

Students,
developer
outreach

54 $30 (US),
C18 card
(DE)

[13]

AD1 2017 Developer
Observatory

Examine relationship between
cryptographic library design /
usability and security of code
produced.

Code a short set of tasks using
either symmetric- or asymmetric
key cryptography. Use one of 5
Python cryptographic libraries.

GitHub 256 No [10]

N1 2017 Naiakshina
Lab

Assess how developers deal
with password storage, and
whether library support or initial
priming make a difference.

Write code to store passwords and
authenticate users. (Four treatment
groups with varying library
support and security instructions.)

Computer
Science(CS)
Students

20 C100 [8]

GD1 2018 Developer
Observatory

Having integrated security
advice into a cryptographic API,
evaluate the effect on the
security of resulting code.

Code symmetric encryption,
symmetric key generation and
storage tasks. Subjects randomly
assigned to PyCrypto control
condition or PyCrypto (security
warning) patch condition.

GitHub,
developer
outreach

53 No [14]

N2 2018 Naiakshina
Lab

Evaluate the effect of using
deception in developer studies.
Compare password storage
security between developers
who are asked, and are not
asked, to code securely.

Same as Naiakshina 2017 (ID
N1).

CS Students 20 C100 [9]

N3 2019 None Assess code security when
developers believe that client is
a genuine organisation. Hire
online freelancers and compare
results to previous studies (IDs
N1 and N2).

Finish website by coding
password storage. For realism,
subjects told that previous
developer has left. Two different
conditions re security priming.

Freelancers
online

43 C100 or
C200

[15]

Sm1 2019 Smith Lab Examine strategies developers
use to find answers while using
the Find Security Bugs (FSB)
static analysis tool.

Assess code with the help of FSB,
and justify proposed changes.
Code contains vulnerabilities such
as potential path traversal and
predictable random number
generation.

North
Carolina
State
University
students,
ex-students

10 None [16]

W1 2019 Wijayarathna
Lab

Study the JSSE API’s usability. Secure a client-server connection
using the JSSE API.

GitHub 11 $15
voucher

[17]

B1 2021 Braz Lab Investigate whether developers
can detect improper input
invalidation, and if not, why not.

Do a code review. Code has
obvious SQLI or IVQI flaw.
Developers not primed, but asked
to review for security afterwards.

Developer
outreach

146 $5 charity [18]

F1 2021 Developer
Observatory

Does ranking secure answers
more highly in Google search
impact on security/functionality?

Write small Java programs to
solve AES encryption tasks, using
the provided instance of Google.

GitHub 218 Draw for
$50
vouchers

[19]

GL1 2021 Gorski Lab Examine the effect of placing
security information at different
locations in API documentation
for non-security APIs.

Solve four web development tasks
using the documentation provided.

Students 49 Project
partial
waiver

[20]

L1 2021 Luo Lab Investigate whether developers
work well with IDE-integrated
cloud-based SAST tools.

Fix issues in a prepared Java
application, using either the IDE
prototype or AWS Console.

AWS
mailing lists

32 None [21]

H1 2021 Online tasks,
questions

Evaluate whether writing a
specification before writing code
affects the security of the code.

Write a snippet of code or
pseudocode to store a password.
Half of subjects were prompted to
write a specification first.

Prolific
Academic

138 £5 [22]

B2 2022 Braz Lab Investigate whether asking
developers to focus on security
during code review increases the
detection of vulnerabilities.

Perform a code review. Four
treatment groups include a
control, a request for security, and
two types of security checklist.

Developer
outreach

150 $5 charity [23]

2

TABLE I
STUDIES ON SECURITY-RELATED DEVELOPMENT IN LABORATORY SETTINGS (continued)

ID Year Lab used Research goal Developer Task Recruitment N Payment Ref

G1 2022 Developer
Observatory

Evaluate a security tool called
Let’s Hash, geared towards
helping developers to code
securely.

Complete three short
authentication-related tasks. Three
treatment effects, using normal
resources or one of two versions
of Let’s Hash.

Freelancer.com 179 C40 [24]

Sa1 2022 Enterprise
Capture the
Flag (CTF)

Assess developers’
understanding of website attack
and defense.

Launch as many attacks as
possible on a designated website,
in a CTF contest.

Internal
software
company
challenge

82 None [25]

II. WHAT: STUDY TOPICS

We found that the laboratory studies in our review could be
divided into three topic groups, which we describe here.

A. Status Quo

Papers on the status quo looked at how developers interact
with security, other things being equal. Are they any good at
detecting security issues during code review, and can we tell
why [18]? What (if anything) do they know about attack and
defence for websites [25]? What problems do they encounter
when they’re trying to write code with a security API [17]?
Do they even try to code securely? What characteristics of
five different cryptography APIs help developers to use them
securely [10]? What strategies do developers adopt when using
well-known static analysis tool FSB [16]?

B. Impact: Resources

These papers considered the impact of the resources available
to developers. What difference does the choice of information
resource make when people are coding [13]? Does ranking
secure resources higher in Google Search help developers to
find more secure answers [19]? Do developers code more
securely if a helpful tool is provided at coding time [24]? Does
it help if the API pops up useful warnings when the developer
makes a security mistake [14]? If the documentation for an
API is modified to include security advice, will developers
code more securely [20]? If they have access to a cloud-based
Static Application Security Testing (SAST) tool in their IDE,
will they code more securely or will they be confused by the
delays in these long-running tools [21]? Does using a more
security-focused library result in more secure code [8], [9]?

C. Impact: Instructions

These papers examined the effect of specifically instructing
developers to code securely. Is it better for code security to
leave developers to their own devices, or to ask them to code
securely [8], [9]? If developers believe that their code will be
used in real software, will they be more likely to code securely
[15]? Do priming or security checklists help developers to find
vulnerabilities during code review [23]? If developers are asked
to write a specification before writing code, will the code they
write be more secure [22]?

III. WHERE: STUDY SETTINGS

Studies were conducted in laboratory environments with
widely differing characteristics, both on site and online.
Some environments were used for several different studies.
Table II presents these environments and summarises their
characteristics. In most papers the study environment was not
named by its creators. For convenience, we have assigned
names to those study environments based on the lead author’s
name in the paper where the environment was first used, and
the abbreviation ‘Lab’.

Four of our studies took place on site. The benefits of running
on-site studies include the ability to prevent interruptions
and ensure that any outside help obtained is documented
[8]. Complete control of the environment allows for close
observation [13], and the use of extensive [8] and/or tailored
[20] instrumentation. In some cases, the availability of local
expertise makes an on-site study the obvious choice [16].

Nevertheless, on-site laboratory studies have limitations,
including issues for distributed research teams and practical
recruitment concerns (see Section V). An obvious alternative
is to move the laboratory online, using surveys or web pages.
Braz et al. developed a website where study participants could
undertake a code review, entering their review on a web page
[18], [23]. Hallett et al. used online tasks and questions to
study the impact that writing a specification has on the security
of subsequent pseudocode [22].

These studies on code reviews, specifications and pseudo-
code did not involve writing and running code. When re-
searching the actual act of coding, moving online implies
a dramatic loss of potential instrumentation. This issue was
resolved in two different ways by our researchers. Wijayarathna
and Arachchilage asked developers to code on their own
devices, recording screen and voice [17]. The audio and visual
recordings were sent to the research team once the coding tasks
were concluded. Developers worked in a familiar environment
in which they were comfortable; for example, three different
IDEs were used. Access to the recordings of all activities
undertaken by the developers during coding solved the issue
of having no instrumentation data.

The second approach was taken by Acar et al., who instru-
mented the online environment itself [10]. This introduced the
option of online, scalable coding studies. They deployed Jupyter
Notebooks online for Python lab studies, developing a study

3

TABLE II
THE CHARACTERISTICS OF THE LABORATORIES WE ENCOUNTERED IN OUR REVIEW, INDICATING WHAT WAS TRACKED BY EACH ONE

Lab Online Programming
environment

Language Instrumentation Copy/Paste Screen
recording

Think
Aloud

Info Used by

Acar Lab No Android Studio Java Browser records
websites visited

No No Yes [13] [13]

Gorski Lab No VS Code Golang Eye-tracking Yes Recorded Yes [20] [20]

Naiakshina Lab No Eclipse Java Instrumented Ubuntu
distribution

Yes Recorded,
snapshot

No [9] [8], [9]

Smith Lab No Eclipse and FSB Java No From
screen

Recorded Yes [16] [16]

Luo Lab ?1 VS Code / AWS
Console

Java No No Some2 Some2 [21] [21]

Braz Lab Yes Website Java NA NA NA No [18] [18],
[23]

Developer
Observatory3

Yes Jupyter
notebooks

Python Yes Yes Snapshot No [12] [10],
[14],
[19],
[24]

Enterprise
Capture The
Flag

Yes Website NA Different attack
attempts recorded

NA NA NA [25] [25]

Wijayarathna
Lab

Yes Any Java No No Recorded Yes [17] [17]

1 It is unclear whether the study was administered online or in person
2 Three participants from each treatment group were randomly chosen for monitoring
3 https://developer-observatory.com

framework which was later named ‘Developer Observatory.’
The Developer Observatory is flexible, and was also used by
Gorski et al. to evaluate API warnings [14], by Fischer et
al. to assess the effect of ranking Google results by security
[19], and by Geierhaas et al. to assess a password hashing tool
[24]. The development and use of Developer Observatory were
described in detail in an interesting paper by Stransky et al. [12].
Coordination tasks such as calibrating email invitations and
managing virtual machine instances were the most challenging
aspects of running the Developer Observatory.

Not included in this review, because as yet no published
study uses it, is new online lab prototype OLab [6]. Its creators
are not ready to release their work generally, but invite contact
from interested researchers.

IV. HOW: INSTRUMENTATION

The studies in our review used varying degrees of instrumen-
tation depending on the study location and requirements. Gorski
et al.’s study was concerned with the placement of security
information in documentation, with different placements in
different treatments. They used an on-site lab setting. This
allowed them to use eye tracking as well as screen and audio
recordings to closely monitor participants’ activities [20].

Naiakshina et al. [8] evaluated password storage code
against a list of known password storage security requirements.

Submissions were marked based on whether they followed best
practices such as hashing, salting and iterating the passwords.
This pragmatic approach allowed the researchers to assess and
compare the effects on password security of varying libraries
and instructions. The Naiakshina lab at the University of Bonn
used an instrumented Ubuntu Linux distribution with code-
specific tracking features [9]. Every compiled snippet was
stored to a history folder. The authors had access to web
history, both video recordings and snapshots of the desktop,
and time-stamped records of clipboard use. In the first of their
series of papers, Naiakshina et al. discussed the value of using
instrumentation to obtain data that was not strictly necessary
for the study results [8]. They found that it increased the
researchers’ ability to interpret their findings.

The screen and voice recordings requested by Wijayarathna
and Arachchilage were a rich source of data [17], enabling
painstaking but complete reconstructions of the study partici-
pants’ work. However, there were only 11 developers in the
study. This approach was not scalable due to a limitation also
encountered by Naiakshina et al. [8] when evaluating think
aloud: it was very labour intensive.

The Developer Observatory researchers instrumented the
Jupyter notebooks to record details of the coding process, thus
replicating a laboratory environment. They stored the state of
the code each time the ‘Run’ button was clicked, and also stored

4

run results including stack traces. As well as task runs and
completions, they took snapshots of the screen. Paste events
were captured and it was possible to prompt the subject to enter
the source URL from which code was copied. The Developer
Observatory does not have instrumented browsing. It does not
record the screen or do audio recordings, which precludes the
use of think aloud unless recordings are arranged separately by
the researcher. It does, however, allow researchers to configure
the observatory by using JavaScript events as triggers. This
makes it a flexible option for future studies [12].

A. Copy and Paste

Copy and paste behaviour is key to the understanding of
some research questions. Acar et al. [13] did a detailed study
on use of information sources during coding, and found that
use of Stack Overflow (SO) resulted in the least secure code.
Naiakshina et al.’s series of studies used a security metric to
compare the security of code written by different treatment
groups with different characteristics. Copy and paste behaviour
was not relevant to the metric. However, by qualitative analysis
of the coding process, including copy and paste, Naiakshina
et al. were able to contribute to the ongoing debate about
the impact of copy and paste on code security [9]. They
demonstrated that while use of copy and paste did result in
some insecure code, it was also an essential component in all
the secure code they observed. None of their subjects produced
secure code without using copy and paste. Copy and paste
events had a statistically significant positive effect on code
security. In a later study with freelancers which took place
outside the lab environment, Naiakshina et al. [15] did not
have the ability to monitor copy and paste events. However,
when analysing the code received they identified 16 instances
where code was obviously copied and pasted from the Internet.
Since they could not say for certain what the situation for other
instances was they could not analyse this further, but a perusal
of Table 2 in their paper indicates that, again, copy and paste
may have been beneficial for security. (This loss of vital data
when working outside the lab environment, though inevitable
for the freelancer study, shows the importance of instrumenting
the study environment where possible.)

Naiakshina’s finding that copy and paste is important for
secure coding was interpreted by some as contradicting the
findings of Acar et al. [7] on the subject of copy and paste.
However, Acar et al.’s results were specific to copy and pasting
from SO. In our larger literature review, papers that found
that copying and pasting from SO can result in insecure code
did not also assess whether it can result in secure code [26],
[27]. Apart from some sympathetic analysis by Lopez et al.
from the ‘Motivating Jenny’ group [28], this has led to a
perception that leveraging resources such as SO via copy and
paste has a negative impact on developer security. Naiakshina
et al. were able to show that this is not always the case. Their
detailed qualitative analysis, to which we direct the reader [9],
encourages a nuanced view of the value of copy and paste,
and by extension of SO and associated web forums.

From what we have observed in our study, copy and paste
records are used in two ways by researchers:

1) As an automatically observed event, instances of copy
and paste during code generation can be easily included in
quantitative statistical analysis [10].

2) During qualitative analysis, a record of copy and paste
and all other events is essential to understanding [17].

An example of the first approach can be found in Acar et
al.’s study of the security of code generated by developers using
five different cryptographic APIs [10]. The study environment
automatically logged copy and paste events. In their subsequent
analysis the researchers used ‘copy-paste’ to indicate whether a
participant pasted code during a task. They found a statistically
significant ‘copy-paste’ correlation for functionally correct
tasks but not for secure tasks. Only functionally correct tasks
were analysed for security. Since the absence of a correlation
would indicate that copy and paste was used for both secure
and insecure code, their finding was in line with Naiakshina’s
finding that copy and paste is used not only in insecure but
also in secure code. The second approach is exemplified by
Wijayarathna and Arachchilage [17], who noted copy and paste
events during their detailed analysis of the screen recordings
for their 11 participants. Thus, for example, they observed
participants triggering exceptions by copying code with preset
(and therefore incorrect) passwords, and code with ‘hostname’
as the server address. Although labour intensive, their in-depth
analysis provided deep understanding of the effect of copy and
paste at a qualitative level.

Noting that developers are always likely to copy and paste
when coding, Acar et al. [13] suggested multiple improvements
to the coding environment, including improving the security of
sites such as SO and creating tools and resources that proffer
simple and correct copy and paste options. The latter approach
was used by Geierhaas et al. in the Let’s Hash tool [24]. The
researchers understood that developers using the tool would
tend to use copy and paste, and therefore made secure code
snippets easily available via the tool.

B. Think Aloud

Asking participants to verbalise their thoughts during a study
is a way to capture useful qualitative data. Tahaei and Vaniea
discussed the risk that interrupting participants, asking them
to think aloud, can affect study results [7]. In the studies we
analysed it seemed that this risk was not realised. Developers
were asked to think aloud at the beginning of the study, but
did not appear to be interrupted mid-task.

Wijayarathna and Arachchilage’s subjects were asked to
think aloud while developing [17]. They were also asked to
complete a tailored cognitive dimensions-based questionnaire at
the end of the study. In a comparison of the results from think
aloud and the questionnaire, the authors felt that they got more
useful results from the questionnaire. However, clarity and
richness was added to these results by the think aloud video in
which participants discussed their thinking as they undertook
tasks. It took two to three times the duration of each recording
to analyse it, but with only 11 participants and an average

5

time to task completion of about an hour, it was practical to
review the audio and video. In their analysis of Developer
Observatory, Stranksy et al. noted that they had not been able
to ask participants to think aloud [12]. The Wijayarathna and
Arachchilage approach shows that this can be done in online
studies by asking participants for screen and voice recordings,
at the cost of adding complexity to participant instructions.

Wijayarathna and Arachchilage found that participants
continued to think aloud throughout the programming tasks. By
contrast, Naiakshina et al. [8] found in the pilot phase of their
study that when asked to think aloud their participants tended
not to talk much. When they did talk it was usually about
routine activities such as search. As a result of this observation,
Naiakshina et al. removed the think aloud element from their
study. The low level of think aloud they observed may reflect
a difference in task type, the relatively lengthy duration of up
to eight hours, or the unfamiliarity of the lab environment.

Studying ten developers’ use of a static analysis tool in
the lab, Smith et al. used think aloud with screen recordings
[16]. Although think aloud worked well in the other three
categories, they noted that developers’ reflections on their
own understanding and relationship to the task were sparsely
reflected in the think aloud recordings. They posited that these
reflections may take place internally.

Because think aloud is very labour-intensive, it would
normally be impractical in a larger study. Luo et al., assessing
the viability of introducing IDE support for cloud-based static
analysis, had a useful solution to this [21]. They randomly
selected three participants from each of their four conditions
and asked them to record their screens and think aloud. This
approach is a good way of obtaining a manageable amount of
qualitative data to add richness and context to study results.

C. Screen Recordings

Screen recordings can be used for detailed qualitative
analysis, as is illustrated above by their use in both think
aloud and copy paste analysis. Analysis of screen recordings
is slow, taking 2-3 times the duration of the recordings [29].

If the laboratory environment is on site, screen recordings
should be taken. They allow for the elimination of any doubt
as to how a solution was achieved. However, if a study takes
place online, the overhead of screen recordings is higher. The
researcher must ask the participant to record the screen. The
participant must be able to record it and remember to do so,
and must also send the recording to the researcher. These extra
activities require a high level of commitment compared to use,
for example, of Developer Observatory where instrumentation
happens behind the scenes. There are privacy implications and
potential technical issues. Subjects may be resistant to recording
their screen, or may find it difficult to do, and these issues
may limit the number of participants in a study. Therefore, the
researcher should give careful consideration to the need for
screen recordings in online studies. An instrumented online
laboratory environment such as Developer Observatory may
provide sufficient detail without them, depending on the study
subject.

D. Deception

Is deception necessary in secure development studies? The
series of Naiakshina papers showed that it is. In these studies the
deception element involved telling subjects during recruitment
that the study concerned API use, without mentioning security.
Half of the subjects were not asked to code securely when the
study began either, and most of these subjects did not make
any attempt to secure passwords. The other half were asked to
code securely when they began the study. Most of this group
did try to store passwords securely, and often succeeded.

Many of the students in the first two studies by Naiakshina et
al. [8], [9] stated that they would have coded passwords securely
‘in real life’, but did not because the code was only written for a
study and would not be used in a real environment. Naiakshina
et al. tested this statement in a third study undertaken with
freelancers [15]. The researchers exercised an extra level of
deception, posing as a real company and asking the freelancers
to help finish the authentication code for their website. The
results were similar to those of the previous two studies; the
freelancers did not tend to implement secure solutions unless
prompted. In a later replication study, Danilova et al. established
that the added element of deception, hiding the fact that the
task was for an academic study, was unnecessary, at least in
this case [30]. In the replication study freelancers were told
that the work was for an academic project. This study obtained
similar effect sizes and other results to Naiakshina et al. [15].

Braz et al. studied the effect of security priming on detection
of vulnerabilities during code review. They exercised deception
during recruitment, not stating that security was the focus of
the study [23]. Security was not mentioned at any time to
their control group. Their findings echoed Naiakshina et al.’s;
participants asked to focus on security were eight times more
likely to detect vulnerabilities than the control group.

There are ethical implications to deceiving study participants.
It should only be done when absolutely necessary [9]. The
results from Naiakshina et al. and Braz et al. show that
deception is genuinely important for obtaining useful results in
secure development studies. Care should be taken to ensure that
study participants are not negatively affected by the deception.

V. WHO: RECRUITMENT CHOICES

A. Using Students for Developer Studies

It is difficult to recruit developers for laboratory studies.
Professional developers are normally well paid, making it hard
to provide commensurate payment. There may be few suitable
candidates in the study locale [17]. Academics are frequently
forced to rely either on students or on developers with goodwill,
who are self-selecting. Industry researchers, for example at
Microsoft Research, can invite colleagues more easily.

CS students are the subjects of many laboratory studies,
but whether they are an appropriate proxy for professional
developers remains a topic of debate [31]. An online study
with GitHub users found no difference in the functionality or
security of code based on participants’ self-reported status as
students or professional developers; however, the authors noted

6

that few participants identified as being students exclusively
[11]. Tahaei and Vaniea concluded in 2019 that the literature
was not yet decisive on this question [7].

Intuitively, there are two main reasons why CS students may
not share important characteristics of professional developers.
One is education level. Only 62% of professional software
developers in SO’s 2022 survey stated that they learned to
code at a school, university, or college [32]. The other is that
students usually lack real-world coding experience.

Acar et al. recruited both students and professional de-
velopers to study the impact of information sources during
development. They found that while developers were slightly
more likely to produce a functional solution, developer and
student groups produced equally (in)secure code [13].

This finding was echoed by Naiakshina et al. [15] and
Danilova et al. [30], who found that non-primed freelancers
were almost as bad as non-primed students [8] in their
level of secure coding, which was very low. A study with
professional developers recruited in Germany [33] showed
more secure development but a similar response to treatment
effects, with security priming having a large effect on both
groups. Naiakshina et al. concluded that although their code
is less secure in absolute terms, students can reasonably be
used instead of professional developers for studies comparing
treatment effects. Gorski et al.’s use of a physical laboratory
to compare different ways of embedding security information
in documentation for non-security APIs [20], using students
from their own university, is such a study.

Apart from cost and availability, there can be other specific
reasons to use students. Smith et al., looking at developers’
strategies while using a static analysis tool, wished to ensure
that their study participants were already familiar with their
university’s iTrust software [16]. They added vulnerabilities to
iTrust, and recruited only students or ex-students who were
familiar with the iTrust codebase.

B. Online Studies

As discussed, on-site laboratory studies are limited by
geography and the proximity of competent and willing study
subjects. Finding enough participants to reach the required
statistical power is difficult.

Recruitment can also be hard for online studies. Luo et
al. [21] and Sahin et al. [25] ran studies within organisations,
recruiting internally. Four online studies in our review recruited
by extracting email addresses from GitHub [10], [14], [17], [19].
Scraping GitHub facilitates the targeting of developers who
use a specific language or security feature, but GitHub users
receive many academic recruitment emails and may consider
them spam [34]. Most authors of our online studies also used
extensive developer outreach; contacting personal networks,
messaging online forums and posting on social media. This
is a slow process requiring considerable imagination and hard
work, and often results in disappointingly low numbers [35].

Two of our review papers recruited via paid online services.
Using payment entails a well-documented risk that the recruits
will be profit-driven and may not be genuine developers [36].

Studies requiring participants to write code [24] or pseudo-code
[22] should be able to detect unqualified applicants. Danilova
et al. suggested and tested coding questions that can be used
for filtering purposes, especially useful for paid surveys where
imposters are difficult to detect [36].

VI. CONCLUSION

The 16 papers in our review illustrate a range of approaches
to running security lab studies with software developers. We
discussed reasons to run labs on site or online, approaches to
instrumentation and recruitment, and potential for reuse. Based
on our analysis, we have some advice for researchers.

Why and What? These are interlinked. Consider the moti-
vation of your study. Have you thought through your design
carefully? Would it improve the study to add an additional
treatment? How would that affect the study environment?

Where? The research may be concerned with a specific piece
of hardware. This is quite likely when dealing with critical
infrastructure. In this case it is probably best to use an on-site
laboratory. Additionally, it is difficult to assess details like eye
movement unless the research is on site. If you do not have
these constraints, conducting the study online will improve the
reach and allow you to recruit more participants.

How? Do you need to understand how developers think or
feel about a tool? Use think aloud. If you have a large number
of participants, use think aloud for a random subset of them.
Are you interested in how developers complete a piece of code?
Monitor browser history and copy-and-paste.

Who? If the research is designed to test the effectiveness
of a new technique or tool, you should not recruit students
unless you have a control group. However, if the research
measures relative treatment effects, students can be used. If
participants are paid they should be screened to ensure that
they have development experience.

What Else? Laboratories are necessarily contrived settings,
and cannot emulate realistic software development environ-
ments [37]. However, they allow the researcher to isolate and
study specific easily-controlled phenomena. In our reading we
have frequently observed the assertion that time constraints
contribute to the neglect of software security by developers.
Proof that this is true can be glimpsed in the side-effects of
pilots by Naiakshina [8] and Huaman [6]. We would like to
see the security effect of restricting available time isolated, and
studied in a controlled environment. We are also keen to see
further clarification on the security effects of copy and paste.
Replication studies are needed in many areas; for example, the
use of coding resources [13]. We echo Tahaei and Vaniea’s
[7] surprise at the paucity of studies comparing the security
effects of different programming languages.

Conclusion Considerable research has been done on con-
structing secure software development studies. New researchers
do not need to reinvent the wheel. If working on site, the
instrumented version of Ubuntu used by the Naiakshina Lab
may be available on application to the research team. If working
online, consider using the Developer Observatory or the new
OLab tool. We recommend reading the papers in our review.

7

Identify researchers in your area of interest, and reach out to
them for advice.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback. This
publication was financially supported by Science Foundation
Ireland under Grant numbers 18/CRT/6222, 13/RC/2077 P2,
13/RC/2094 P2, and 15/SIRG/3293. For the purpose of Open
Access, the authors have applied a CC-BY public copyright
licence to any Author Accepted Manuscript version arising
from this submission.

REFERENCES

[1] I. Ryan, U. Roedig, and K.-J. Stol, “Insecure software on a fragmenting
Internet,” in 2022 Cyber Research Conference - Ireland (Cyber-RCI),
2022, pp. 1–9.

[2] Mitre, “CVE Program Mission ,” https://www.cve.org/, 2022, [Online;
accessed 21 December 2022].

[3] J. Gamblin, “2022 CVE Data Review ,” https://jerrygamblin.com/2023/
01/01/2022-cve-data-review/, 2023, [Online; accessed 9 January 2023].

[4] D. Jones, “High risk, critical vulnerabilities found in 25% of all
software applications and systems,” https://www.cybersecuritydive.com/
news/high-risk-critical-vulnerabilities-software/636592/, 2022, [Online;
accessed 19 January 2023].

[5] L. Vaas, “BillQuick Billing App Rigged to Inflict
Ransomware,” https://vulners.com/threatpost/THREATPOST:
94E54481AD472743701D499DC7677008, [Online; accessed 21
March 2023].

[6] N. Huaman, A. Krause, D. Wermke, J. H. Klemmer, C. Stransky, Y. Acar,
and S. Fahl, “If you Can’t get them to the lab: Evaluating a virtual study
environment with security information workers,” 2022, p. 313–330.

[7] M. Tahaei and K. Vaniea, “A survey on developer-centred security,” in
2019 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE, 2019, pp. 129–138.

[8] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand, and
M. Smith, “Why do developers get password storage wrong? A qualitative
usability study,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2017, p. 311–328.

[9] A. Naiakshina, A. Danilova, C. Tiefenau, and M. Smith, “Deception
task design in developer password studies: Exploring a student sample,”
in Fourteenth Symposium on Usable Privacy and Security. USENIX
Association, 2018, pp. 297–313.

[10] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky, “Comparing the usability of cryptographic APIs,” in 2017
IEEE Symposium on Security and Privacy (SP), May 2017, p. 154–171.

[11] Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl, “Security
developer studies with GitHub users: Exploring a convenience sample,” in
Thirteenth Symposium on Usable Privacy and Security, 2017, p. 81–95.

[12] C. Stransky, Y. Acar, D. C. Nguyen, D. Wermke, E. M. Redmiles, D. Kim,
M. Backes, S. Garfinkel, M. L. Mazurek, and S. Fahl, “Lessons learned
from using an online platform to conduct large-scale, online controlled
security experiments with software developers,” in CSET ’17 (USENIX
Workshop on Cyber Security Experimentation and Test), 2017.

[13] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information sources
on code security,” in 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, May 2016, p. 289–305.

[14] P. L. Gorski, L. L. Iacono, D. Wermke, C. Stransky, S. Moeller, Y. Acar,
and S. Fahl, “Developers deserve security warnings, too: On the effect of
integrated security advice on cryptographic API misuse,” in Fourteenth
Symposium on Usable Privacy and Security, 2018, p. 265–281.

[15] A. Naiakshina, A. Danilova, E. Gerlitz, E. von Zezschwitz, and M. Smith,
““If you want, I can store the encrypted password”: A password-storage
field study with freelance developers,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. ACM, 2019.

[16] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford, “How
developers diagnose potential security vulnerabilities with a static analysis
tool,” IEEE Trans Softw Engineer, vol. 45, no. 9, p. 877–897, 2019.

[17] C. Wijayarathna and N. A. G. Arachchilage, “Why Johnny can’t develop a
secure application? A usability analysis of Java Secure Socket Extension
API,” Computers and Security, vol. 80, p. 54–73, 2019.

[18] L. Braz, E. Fregnan, G. Çalikli, and A. Bacchelli, “Why don’t developers
detect improper input validation?’: DROP TABLE Papers,” in Proceedings
of the 43rd International Conference on Software Engineering. Madrid,
Spain: IEEE Press, 2021, p. 499–511.

[19] F. Fischer, Y. Stachelscheid, and J. Grossklags, “The effect of Google
Search on software security: Unobtrusive security interventions via
content re-ranking,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2021, p. 3070–3084.

[20] P. L. Gorski, S. Moller, S. Wiefling, and L. Lo Iacono, ““I just looked
for the solution!” - On integrating security-relevant information in non-
security API documentation to support secure coding practices,” IEEE
Transactions on Software Engineering, 2021.

[21] L. Luo, M. Schäf, D. Sanchez, and E. Bodden, “IDE support for cloud-
based static analyses,” in Proc. 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM, 2021, p. 1178–1189.

[22] J. Hallett, N. Patnaik, B. Shreeve, and A. Rashid, ““Do this! Do that!,
And nothing will happen”: Do specifications lead to securely stored
passwords?” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, p. 486–498.

[23] L. Braz, C. Aeberhard, G. Çalikli, and A. Bacchelli, “Less is more:
Supporting developers in vulnerability detection during code review,” in
2022 IEEE/ACM 44th International Conference on Software Engineering
(ICSE). ACM, 2022, p. 1317–1329.

[24] L. Geierhaas, A.-M. Ortloff, M. Smith, and A. Naiakshina, “Let’s hash:
Helping developers with password security,” in Proceedings of the
Eighteenth Symposium on Usable Privacy and Security, 2022, p. 503–522.

[25] M. Sahin, T. Ünlü, C. Hébert, L. A. Shepherd, N. Coull, and C. M. Lean,
“Measuring developers’ web security awareness from attack and defense
perspectives,” in IEEE Security and Privacy Workshops, 2022, p. 31–43.

[26] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack Overflow considered harmful? The impact of copy paste
on Android application security,” in 2017 IEEE Symposium on Security
and Privacy (SP), 2017, p. 121–136.

[27] W. Bai, O. Akgul, and M. L. Mazurek, “A qualitative investigation
of insecure code propagation from online forums,” in 2019 IEEE
Cybersecurity Development (SecDev). IEEE, 2019, p. 34–48.

[28] T. Lopez, T. Tun, A. Bandara, M. Levine, B. Nuseibeh, and H. Sharp,
“An anatomy of security conversations in Stack Overflow,” in Proceedings
of the 41st International Conference on Software Engineering: Software
Engineering in Society. IEEE Press, 2019, p. 31–40.

[29] C. Wijayarathna, N. A. G. Arachchilage, and J. Slay, A Generic Cognitive
Dimensions Questionnaire to Evaluate the Usability of Security APIs.
Cham: Springer International Publishing, 2017, vol. 10292, p. 160–173.

[30] A. Danilova, A. Naiakshina, J. Deuter, and M. Smith, “Replication: On
the ecological validity of online security developer studies: Exploring
deception in a password-storage study with freelancers,” 2020.

[31] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka, and
M. Oivo, “Empirical software engineering experts on the use of students
and professionals in experiments,” Empirical Software Engineering,
vol. 23, no. 1, pp. 452–489, 2018.

[32] SO, “Stack Overflow Developer Survey - Education,” https://survey.
stackoverflow.com/2022/#developer-profile-education, 2022, [Online;
accessed 21 December 2022].

[33] A. Naiakshina, A. Danilova, E. Gerlitz, and M. Smith, “On conducting
security developer studies with CS students: Examining a password-
storage study with CS students, freelancers, and company developers,” in
Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. ACM, 2020, p. 1–13.

[34] S. Baltes and S. Diehl, “Worse than spam: Issues in sampling software
developers,” in Proceedings of the 10th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement. Association
for Computing Machinery, 2016.

[35] N. Patnaik, J. Hallett, M. Tahaei, and A. Rashid, “If you build it, will
they come? Developer recruitment for security studies,” ROPES - ICSE
202, 2022.

[36] A. Danilova, A. Naiakshina, S. Horstmann, and M. Smith, “Do you really
code? Designing and evaluating screening questions for online surveys
with programmers,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), 2021, p. 537–548.

[37] K.-J. Stol and B. Fitzgerald, “The ABC of software engineering research,”
ACM Transactions on Software Engineering and Methodology, vol. 27,
no. 3, 2018.

8

