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Competition Between N and O:  Use of Diazine N-
Oxides as a Test Case for the Marcus Theory Rationale 
for Ambident Reactivity 
Kevin J. Sheehy,a Lorraine M. Bateman,a,b,d Niko T. Flosbach,c Martin Breugst,*c Peter A. Byrne,*a,d

The preferred site of alkylation of diazine N-oxides by representative hard and soft alkylating agents was established 
conclusively using the 1H-15N HMBC NMR technique in combination with other NMR spectroscopic methods.  Alkylation of 
pyrazine N-oxides (1 and 2) occurs preferentially on nitrogen regardless of the alkylating agent employed, while O-
methylation of pyrimidine N-oxide (3) is favoured in its reaction with MeOTf.  As these outcomes cannot be explained in the 
context of the hard/soft acid/base (HSAB) principle, we have instead turned to Marcus theory to rationalise these results.  
Marcus intrinsic barriers (∆G0

‡) and ∆rG° values were calculated at the DLPNO-CCSD(T)/def2-TZVPPD/SMD//M06-2X-D3/6-
311+G(d,p)/SMD level of theory for methylation reactions of 1 and 3 by MeI and MeOTf, and used to derive Gibbs energies 
of activation (∆G‡) for the processes of N- and O-methylation, respectively.  These values, as well as those derived directly 
from the DFT calculations, closely reproduce the observed experimental N vs O selectivities for methylation reactions of 1 
and 3, indicating that Marcus theory can be used in a semi-quantitative manner to understand how the activation barriers 
for these reactions are constructed.  It was found that N-alkylation of 1 is favoured due to the dominant contribution of ∆rG° 
to the activation barrier in this case, while O-alkylation of 3 is favoured due to the dominant contribution of the intrinsic 
barrier (∆G0

‡) for this process.  These results are of profound significance in understanding the outcomes of reactions of 
ambident reactants in general.

Introduction
Selectivity in Reactions of Ambident Nucleophiles 

A fundamental goal in organic chemistry is to be able to understand 
and rationalise why chemical processes occur as they do. Naturally, 
therefore, an understanding of the factors that govern 
regioselectivity in chemical reactions is of paramount importance – 
i.e. if a compound contains more than one reactive site, which one is
preferred, and why? Reliably accounting for the regioselectivity
observed in reactions of ambident nucleophiles and electrophiles is
a challenge laden with difficulties and potential pitfalls. By far the
most popular rationale for this purpose1 makes use of the principle
of hard and soft acids and bases (the HSAB principle),2 and the
related concept of charge vs. orbital control.3 The difficulty inherent
in accounting for the selectivities observed in reactions of ambident
nucleophiles is exemplified by the fact that the HSAB principle
predicts the incorrect product in a very large number of cases, as has
been reviewed in detail by Mayr and co-workers.4 The data in this
review call starkly into question whether the principle adequately
explains the observed selectivity in reactions of ambident
nucleophiles in which the expected outcome (based on HSAB theory)
does match the experimental outcome.5

Mayr and co-workers have suggested employing Marcus theory 
(described below) as an alternative method of accounting 
qualitatively for the selectivities of reactions of ambident reactants.4
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Scheme 1.  Approaches for rationalising selectivity in reactions of diazine N-
oxides as representative ambident nucleophiles.

Recently, Wang, Barnes, and co-workers conducted computational 
investigations to establish a theoretical basis for applying the HSAB 
principle in rationalising ambident reactivity, and used this, along 
with Marcus theory, to explain the results of their calculations on gas 
phase reactions of amide anions.6 However, so far, the Marcus 
theory-based approach has not been adopted by the wider research 
community, and in fact the HSAB rationale continues to be cited in 
cases in which the experimental results do align, perhaps arbitrarily, 
with expectations based on this principle.5 Furthermore, the 
elements of the intuitively alluring HSAB rationale pervade all 
discussions of ambident reactivity in undergraduate chemistry 
courses, and in the most comprehensive organic chemistry 
textbooks.1 Given the clear deficiencies of the HSAB rationale in the 
context of ambident reactivity, it now behoves organic chemists to 
test Mayr’s approach and other alternatives on their capacity to 
account for the outcomes of reactions of ambident reactants.

Herein, we focus on the notoriously difficult problem of competition 
between N and O nucleophilic sites (Scheme 1).4,5c,6,7–14 We chose 
diazine N-oxides 1, 2 and 3 (Fig. 1) as test substrates in reactions with 
various representative hard and soft electrophiles because, although
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procedures, characterisation data for products and reaction mixtures, details of
crossover experiments, copies of NMR spectra, and details on computational 
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Figure 1. Representative Diazine N-oxides

these reactions show very high site-selectivity (i.e. for N- or O-
alkylation),7 their outcomes are intractable to rationalisation using 
the HSAB principle (Scheme 1), as will be discussed in the next 
section.  An additional contributing factor that confounds any 
attempt to analyse the reactions of these species using the HSAB 
rationale is that it is not possible to unambiguously identify which 
nucleophilic site of a diazine N-oxide is the hard site, and which is the 
soft site (see later).15

In this work, we will show that the approach of Mayr and co-workers 
enables accurate prediction of the preferred site of alkylation of 
ambident nucleophiles 1–3. Furthermore, we will also show that it is 
even possible to calculate the ratio of the selectivities for the 
different nucleophilic sites in these compounds (N vs. O) with an 
impressive degree of accuracy (Scheme 1).16 Our results bolster the 
applicability of the Marcus theory-based approach and establish, for 
the first time, its capacity to semi-quantitatively account for the 
ratios of site-selectivities in reactions of ambident nucleophiles.

It should be noted that the limitations of the HSAB principle were 
highlighted by its developer (Pearson),2d,f and that in its original 
formulation,2a,b it was not derived with the intention of rationalising 
the selectivities of reactions of ambident reactants. However, 
thereafter, it has been2c and continues to be applied in this 
manner.1,5 In recent years, a theoretical grounding demonstrating 
the applicability of the “global” HSAB principle (which does not apply 
to ambident reactants) has been developed.17,18 Despite the authors’ 
inclusion in the articles on this topic of precise statements such as 
“The local HSAB principle, which makes predictions about ambident 
acids and bases, is on much shakier theoretical ground, so 
experimental evidence against it is not surprising”, 15a,17b  these 
papers are nonetheless cited in other articles in support of 
application of the HSAB principle to the analysis of reactions of 
ambident nucleophiles.5c This is illustrative of the continued 
application of the HSAB principle to rationalisation of ambident 
reactivity in the wider chemistry community despite the large body 
of evidence demonstrating that it does not apply in such instances.

Competition Between N and O Nucleophilic Sites

Numerous examples of reactions of ambident nucleophiles 
containing competing O and N nucleophilic sites exist in the 
literature.6,10–14,19–32 Compounds 1–3 are particularly suitable for the 
present investigation for the following reasons: (i) Unlike the 
reactions of many other ambident nucleophiles containing N and O 
nucleophilic sites,6,14,20–31  reactions of 1–3 are not influenced by the 
presence of a counter-cation,33 and (ii) their alkylation products do 
not undergo secondary reactions (cf. amide alkylations).19c,f

There exist several literature precedents of relevance to the 
ambident nucleophilicity of diazine N-oxides. Exclusive O-alkylation 
has been reported to occur in reactions of pyrazine N-oxide (1), 
quinoxaline N-oxide (2) and pyrimidine N-oxide (3) with hard 

alkylating agent dimethylsulfate,7 and predominant O-ethylation has 
been reported to occur in the reaction of compound 4 with hard 
electrophile [Et3O]BF4 (Scheme 2a).10 Reactions of 1, of 2 and of 5 
with soft electrophile methyl iodide have been reported to yield N-
alkylated adducts (Scheme 2b),11,12 as has the reaction of 5 with 
benzyl chloride.12c In contrast, compound 6 undergoes exclusive N-
ethylation on reaction with hard electrophile [Et3O]BF4 (Scheme 
2c).10 Notwithstanding the ambiguity inherent in assigning hard and 
soft sites in these diazine N-oxides, it is clear that these results 
cannot all simultaneously be consistent with the HSAB principle.

An additional fundamental difficulty exists in the context of reactions 
of diazine N-oxides: the act of establishing the structure of the 
product is itself fraught with ambiguity. The spectral features of the 
products of O-alkylation and N-alkylation of a particular diazine N-
oxide are not necessarily readily distinguishable.  Most instances in 
the literature in which product structures have been assigned have 
been based on the results of chemical derivatisations,12 prior to the 
development of modern spectroscopic methods. In only one instance 
(involving two compounds) have modern two-dimensional NMR 
spectroscopic techniques been used to establish the precise 

structures of alkylation products of diazine N-oxides.10,34 Hence, even 
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Scheme 2.  Alkylation of diazine N-oxides 1–6 using various hard and soft 
electrophiles. (a) O-alkylation using hard electrophiles,7,10 (b) N-alkylation 
using soft electrophiles,11,12 (c) N-alkylation using a hard electrophile.10  
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in instances in which structural assignments have been made, it is 
not certain that the correct product structures have been identified.

To unambiguously establish the ratios of N vs. O selectivity for the 
alkylation reactions of 1–3, we took advantage of the technique of 
indirect detection natural abundance 1H-15N HMBC NMR
spectroscopy.34–38 This is an extremely useful diagnostic tool but, is 
very notably under-exploited – to our knowledge, there are only a 
handful of examples of its use to establish the site of attachment of 
an alkyl electrophile to an ambident reactant.10,31,34,37 We have also 
conducted high level quantum chemical calculations to help us in 
understanding the outcomes of these experiments.

Background Data and Reference δN Values

In order to be able to employ 1H-15N HMBC NMR spectral data in a 
diagnostic manner to establish the site of alkylation of ambident 
nucleophiles 1–3, we have made use of a set of results described in 
our recent publication.39 In this preliminary study, we carried out 
various alkylations of representative diazines and azine N-oxides (see 
examples shown in Scheme 3, involving N-methylation of 7 and O- 
methylation of 8), and monitored the change in the 15N NMR 
chemical shifts (referred to as ∆(δN) values) of each nitrogen atom in 
the N-alkylated product relative to its δN value in the starting material 
using 1H-15N HMBC NMR spectroscopy.  We consistently observed 
that upon N-alkylation of diazines, a large upfield shift of the δN value 
of the alkylated nitrogen atom occurs (i.e. ∆(δN) << 0 ppm).40 In fact, 
across a total of 22 examples from the chemical literature and our 
own work, involving N-methylation or ethylation of pyridrines, 
diazines, diazine N-oxides, quinolines, and isoquinolines, the average 
upfield ∆(δN) value of the alkylated nitrogen atom is −115 ppm.10,41 
Similarly, the average upfield ∆(δN) value associated with N-
benzhydrylation was −91 ppm (3 examples).  In contrast, the shift 
upfield in the N-oxide nitrogen δN value upon O-alkylation is 
significantly smaller – across 7 examples involving N-methylation or 
ethylation, the average upfield ∆(δN) value was determined to be 
only −40 ppm, while for O-benzhydrylation the average ∆(δN) value 
was −45 ppm.  That the upfield signal in each case belongs to the 
alkylated nitrogen atom is shown by the existence of a correlation in 
the 1H-15N HMBC NMR spectrum of the product between the upfield 
15N signal and the proton(s) of the N- or O-alkyl group.

From the above, we can conclude that there is a characteristic ∆(δN) 
value associated with N-alkylation of an aromatic N-heterocycle, 
distinct from (and significantly larger than) the ∆(δN) value associated

X

MeCN (MeOTf)
or

Neat (MeI)

9a X = I (20%)
9b X = OTf (84%)

Me X
N

N

7

(a)

N

N

R

(b)

+

N
O

MeCN (MeOTf)
or

Neat (MeI)
Me X+

8

N
O

R
X

10a X = I (59%),
10b X = OTf (78%)

Scheme 3.  Examples of use of hard and soft methylating agents to effect (a) 
N-methylation of 7; (b) O-methylation of 8.  X = I or OTf throughout.  Isolated 
yields are shown in parentheses.

with O-alkylation of an aromatic N-oxide. Analogous observations 
have been made in an 15N NMR spectroscopic study of protonation 
of pyridine and 4-methylpyridine N-oxide, which induces ∆(δN) values 
of −113.3 ppm41a and −50.1 ppm,41b respectively. Furthermore, 
complexation of aromatic N-heterocycles to metals has been shown 
to result in upfield ∆(δN) values of  ca. −100 ppm).42

Our previous investigation also allowed us to determine that in the  
1H-13C HMBC NMR spectra  of N-alkylated products, three-bond 
correlations exist between the N-alkyl group carbons and hydrogens 
and the ortho carbons and hydrogens of the aromatic moiety.39 No 
correlations were observed in the 1H-13C HMBC NMR spectra  of O-
alkylated products between the O-alkyl group carbons and 
hydrogens and the ortho carbons and hydrogens. Furthermore, these 
unambiguous NMR spectroscopic correlation methods also allowed 
us to establish definitive diagnostic trends in the 13C NMR chemical 
shifts of the alkyl group carbons immediately bound to aromatic 
nitrogen or aromatic N-oxide oxygen.  For example, the N-methyl 
carbon of the adduct of N-methylation of an aromatic nitrogen 
nucleophile was shown to typically have a δC value in the range 36 – 
53 ppm, while the O-methyl carbon of the adduct of aromatic N-
oxide methylation typically exhibits a δC value in the range 62 – 75 
ppm.39 Consequently, it should be possible to employ a combination 
of ∆(δN) values (obtained from 1H-15N HMBC NMR spectra) in tandem 
with 1H-13C HMBC and 13C{1H} NMR spectroscopic data to distinguish 
between N- and O-alkylated diazine N-oxides.

Results
Site of Alkylation of Diazine N-Oxides

The data discussed above show that natural abundance 1H-15N HMBC 
is a highly useful diagnostic tool to determine whether or not the site 
of attachment of an alkyl electrophile is at a nitrogen atom.  We will 
now describe how we have employed the 1H-15N HMBC NMR 
technique, in tandem with information from 13C{1H} and 1H-13C HSQC 
and HMBC NMR spectra, to establish the site of alkylation of 
ambident nucleophiles 1–3 in reactions with representative hard and 
soft alkylating agents.

Reactions of ambident nucleophiles 1 and 2 with electrophiles MeI, 
MeOTf, and benzhydrylium triflates 11 and 12 were carried out using 
the conditions shown in Scheme 4 (pg. 5) and Table 1 (pg. 4).44–46 The 
reaction of 1 with MeI in CD3CN or CH3CN resulted in formation of a 
single product, albeit with low conversion and yield – i.e. the process 
of alkylation was completely selective for one site (N or O) – see Table 
1 entry (i).  We did not observe any product formation in our 1H NMR 
spectra of the reaction of 2 + MeI in CD3CN.  Product formation was 
only observed when the reagents were mixed together in the 
absence of solvent (neat); the data in Table 1 entry (v) refer to the 
reaction run under these conditions.  As in the case of 1 + MeI, only 
a single product was observed by 1H NMR spectroscopy.  Attempted 
reactions of 3 with MeI in CD3CN or MeCN did not yield any products, 
i.e. neither 21a nor 23a were observed (Scheme 4c).

The reaction of 1 with benzhydrylium triflate 11 in CH2Cl2 or CD3CN 
also result in formation of single products (Table 1 entry (iv)).43 The 
1H NMR spectrum of the reaction of 2 + 13 in CD2Cl2 (Scheme 4b)  
shows formation of two products in a 91:9 ratio (combined 
conversion = 93%; the remaining 7% was accounted for by hydrolysis 
product; see (Table 1 entry (viii)). Reaction of 3 with 11 gave 1H NMR
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Table 1. Alkylation reactions of diazine N-oxides 1, 2 and 3 (as per Scheme 4) resulting in formation of O- and N-alkylated products.a Note that the 1H NMR 
spectra of the reaction mixtures on their own do not show which product (O vs. N-alkylation) is favoured in each case, only the product ratio.  

+ +
Diazine
N-oxide
1, 2 or 3

N-alkylated
product

O-alkylated
productRX

ProductsDiazine 
N-Oxide # Reaction 

Solvent a R X
N-methyl O-methyl

Conversion 
(Isolated % Yield) b

N/O Product         
Ratio c

(i) CD3CN or No 
Solvent Me I 13a 15a Reaction in CD3CN: 24% 

(Solvent-free reaction 26%)        > 99:1

(ii) CD3CN Me OTf 13b 15b Quantitative 
(68% yield of 13b) a   95:5

(iii) (CD3)2SO Me OTf 13b 15b 87%        > 99:1

N

N

1

O

   (iv)  a CD3CN or     
CH2Cl2  

 a CH2Ph OTf 14 16 Quantitative a        > 99:1

(v) No solvent Me I 17a 19a (Yield = 16%) d        > 99:1

(vi) CD3CN Me OTf 17b 19b Quantitative 
(57% yield of 17b) a    89:11

(vii) (CD3)2SO Me OTf 17b 19b 78%        > 99:1

N

N

2

O

 (viii) CD2Cl2  CHPhAr e OTf 18 20 93%    91:9

(ix) CD3CN Me I 21a 23a No products formed -

      (x) CD3CN Me OTf 21b 23b Quantitative a    7:93

   (xi) (CD3)2SO Me OTf 21b 23b 76%   7:93

N

N

O

3
  (xii) CD2Cl2  CHPhAr e OTf 22 24 Spectra could not be 

interpreted -

a See Supporting Information for experimental conditions employed and details of conversion calculations and yields.44

b Conversions represent the combined amount of N- and O-alkylated product formed relative to the amount added of the alkylating agent (always the limiting 
reagent).  These were determined using integrations of appropriate signals in the 1H NMR spectra. For entry (viii), the deviation from quantitative conversion 
was due to hydrolysis of the alkylating agent.  Percentage yields (where applicable) of isolated products were determined from separate reactions run on 
larger scale using MeCN solvent, or with no solvent (neat reagents) for entries (i) and (v).  Products 14, 18, 20, 21b and 23b (entries (iv), (viii) and (x), 
respectively)) decompose upon attempted isolation, and hence no isolated yields could be obtained in these cases.
c The identities of the products cannot be determined directly from the 1H NMR spectra.  Information from other spectra is needed to establish which product 
is N-alkylated and which is O-alkylated, and hence to establish the N/O ratio.  See main text for full details.
d 2 + MeI were reacted together without solvent.  The product was purified prior to NMR spectral characterisation, so the conversion was not determined for 
this reaction.  However, the low isolated yield shown above is indicative of low conversion in this reaction.
e Ar = para-tolyl.

and 1H-15N HMBC spectra that we could not interpret,47 containing 
broad and unusually-shaped signals – i.e. we could not detect 
formation of 22 or 24 (Scheme 4).  We ascribe this to the very low 
Lewis basicity of 3, i.e. the reaction of 3 + 11 is reversible, and 
thermodynamically disfavoured.

The reactions of 1–3 with MeOTf in CD3CN yielded mixtures of O- and 
N-methylation products (Table 1 entries (ii), (vi), and (x)). Addition of 
MeOTf to (CD3)2SO solutions of 1 and 2 resulted in formation of a 
single product in each case (Table 1 entries (iii) and (vii)), while the 
corresponding reaction of 3 gave two products (Table 1 entry (xi)).  

The rates of these reactions differed greatly depending on the 
solvent used.  Product formation was rapid for reactions in CD3CN 
(i.e. complete within minutes), but was exceptionally slow in 
(CD3)2SO, requiring weeks for high conversions to be obtained.  It is 
highly likely that the active methylating agent in (CD3)2SO was the 
methoxysulfonium salt [(CD3)2S(OMe)]OTf,48–50 and that this 
electrophile is much less reactive than MeOTf in MeCN.

Many of the initial products of the reactions of Scheme 4 and Table 
1 do not survive attempts at isolation.  Hence, all reactions were 
conducted on small scale, and the entirety of each reaction mixture 
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Scheme 4.  N- and O-alkylation reactions of ambident nucleophiles 1–3.
Methylation reactions (using MeI or MeOTf) were conducted in (CD3)2SO, 
CD3CN, or CH3CN.  Upon completion of reactions in CD3CN or CH3CN, the 
solvent was removed, and (CD3)2SO was added.  Benzhydrylation reactions 
were conducted in CD2Cl2.43 See Table 1 for details of conversions and yields.

was transferred (under inert atmosphere) to a NMR tube for analysis 
by NMR spectroscopy.  In instances in which stable, isolable products 
were formed, the final (stable) products were isolated from separate 
reactions, conducted on larger scale.  The adducts of benzhydrylation 
of 1 and 2 are hydrolytically unstable and could not be isolated.  The 
adduct of 2 + MeI was formed in very low conversion,51 and the 
adduct of 3 + MeOTf became contaminated with multiple 
decomposition products;52 hence neither adduct could be isolated in 
pure form.  In addition, for the reactions of 1–3 with MeOTf in MeCN 
or CD3CN solvent, decomposition of the minor product (detected in 
1H NMR spectra in CD3CN) occurred upon removal of the 
MeCN/CD3CN solvent under vacuum, resulting in the observation of 
the signals of the major product only in the 1H NMR spectrum of the 
mixture upon dissolution in (CD3)2SO.53

In all cases shown in Table 1, it was impossible to distinguish the site 
of attachment of the alkyl group unambiguously using standard 1H- 
or 13C-based one or two-dimensional NMR techniques.  That is, the 
identity of the product(s) in each case could not be reliably assigned 
as O-alkylated or N-alkylated.  In the instances in which mixtures of 
O- and N-methylation products were obtained, product ratios could
be determined using the integrations of signals in 1H NMR spectra,
but which product was favoured was not clear.  The product ratios
determined in this way are shown in Table 1.

In order to determine which site (N or O) of each of the ambident 
nucleophiles 1–3 is favoured in the alkylation reactions shown in 

Scheme 4 and Table 1, we made use of the indirect detection natural 
abundance 1H-15N HMBC NMR spectroscopic technique described 
above. The 15N NMR chemical shifts of starting compounds 1–3 and 
of the observed alkylation adducts are shown in Table 2 (see pg. 6).  
The ∆(δN) values associated with these reactions (also shown in Table 
2) show the extent to which the chemical shifts of the 15N nuclei of
the alkylation product(s) differ from the chemical shifts of the
corresponding 15N nuclei in the starting materials 1–3.  As above, a
negative value of ∆(δN) indicates an upfield shift of the δN value of an
15N environment upon alkylation, while a positive value indicates a
downfield shift.  In several instances (all described above), only one
product was formed in the alkylation reactions of 1–3, while in
others, the minor product did not survive the process of removal of
the MeCN or CD3CN reaction solvent and replacement with
(CD3)2SO.53 Hence, in almost all cases, only one product could be
characterized using the 1H-15N HMBC NMR technique.  In the 1H-15N
HMBC spectrum of the reaction of 2 + 12, no correlations were
observed to the small signals of the minor product that was shown
to be present by the 1H NMR spectrum.  The only instance in which
it was possible to determine the δN values of both the major and
minor alkylation products involved methylation of 3 in (CD3)2SO using
MeOTf (Scheme 4c; through methoxysulfonium triflate).

Figure 2. (a) Section of the 1H-15N HMBC NMR spectrum of 13b in (CD3)2SO 
(from reaction of Table 2 entry (ii)) showing correlation of N-methyl 1H signal 
with upfield 15N signal, (b) Section of the 1H-13C HMBC NMR spectrum of 13b 
in CD3CN (from reaction of Table 2 entry (ii)) showing correlations between (i) 
N-methyl 1H signal and ortho-13C signals, and (ii) ortho-1H signals and N-
methyl group 13C signal.
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 Table 2. δN and Δ(δN) values associated with N- and O-alkylation reactions of diazine N-oxides 1–3 (as per Scheme 4).a 

+ +
Diazine
N-oxide
1, 2 or 3

N-alkylated
product

O-alkylated
productRX

Solvent

N-alkylation O-alkylation
Diazine 
N-oxide # Products R X

Reaction 
solvent/

NMR Solvent a

δN of starting 
compound 

(ppm) δN of product 
(ppm)

Δ(δN) 
(ppm) 

δN of 
product (ppm)

Δ(δN) 
(ppm) 

(i) 13a, 15a Me I
MeCN/

(CD3)2SO
309.3    

  303.9 b
322.3
187.1

  +13.0
−116.8

Product (15a) not 
formed

(ii) 13b, 15b Me OTf
MeCN/

(CD3)2SO
309.3     

  303.9 b
322.9
187.8

  +13.6
−116.1

Product (15b) decomposed 
during solvent exchange

(iii) 13b, 15b Me OTf (CD3)2SO
309.3     

  303.9 b
322.9
187.7

  +13.6
−116.2

Product (15b) not 
formed

N

N

O

1

(iv) 14, 16 CH2Ph OTf CD2Cl2
311.0
303.5

325.0 
201.6

  +14.0
−101.9

Product (16) not 
formed

(v) 17a, 19a Me I MeCN/
(CD3)2SO

303.2        
    299.3 c,d

314.4
178.0

  +11.2
−121.3

Product (19a) not 
formed

(vi) 17b, 19b Me OTf MeCN/
(CD3)2SO

303.2        
    299.3 c,d

314.4
177.6

  +11.2
−121.7

Product (19b) decomposed 
during solvent exchange

(vii) 17b, 19b Me OTf (CD3)2SO
303.2        

    299.3 c,d

314.4
177.9

  +11.2
−121.4

Product (19b) not 
formed

N

N

O

2

 (viii)  18, 20 CHPhAr e OTf CD2Cl2
302.0
300.3

317.6
190.5

  +14.4
−108.8

Signal of 20 not 
detected in 1H-15N HMBC 

(ix) 21b, 23b Me OTf CD3CN/ 
(CD3)2SO

301.3       
291.7

Product (21b) decomposed 
during solvent exchange

303.4
249.4

  +2.1
−42.3

N

N
O

3
(x) 21b, 23b Me OTf (CD3)2SO 301.3       

291.7
293.6
205.2

  −7.7
−86.5

303.1
249.0

  +1.8
−42.7

a See Supporting Information for experimental conditions employed.45

b Literature δN values: 309.33, 303.85 ((CD3)2SO, referenced to nitromethane at 380 ppm; equivalent to ammonia at 0 ppm).54

c These values were reported in reference 55 as δN −76.8 and −80.7 ppm (referenced to nitromethane at 0 ppm).
d The reported δN values for these signals was from a spectrum referenced to nitromethane at 0.0 ppm.  Since our 1H-15N HMBC spectra were referenced to 
ammonia at 0 ppm, the literature δN value has been re-calculated here relative to ammonia at 0 ppm.
e Ar = para-tolyl.

The 1H-15N HMBC NMR spectra of the major or exclusive products 
formed in the reactions of 1 or 2 with electrophiles MeI, MeOTf, and 
benzhydrylium 11 and 12 (Scheme 4a and 4b) all show that the δN 
values of the upfield nitrogen nuclei are shifted upfield by over 100 
ppm relative to the δN values of the corresponding nitrogen NMR 
environments in the starting materials, i.e. ∆(δN) > −100 ppm in each 
case (see Table 2 entries (i), (ii), (iii), (v), (vi) and (vii) for methylations 
and entries (iv) and (viii) for benzhydrylation reactions).56 That the 
upfield signal in the 15N dimension belongs the alkylated nitrogen is 
confirmed by the existence of a correlation in the 1H-15N HMBC NMR 
spectrum of this signal with the 1H signal of the N-alkyl proton(s) (see 
example spectrum from the reaction of 1 + MeOTf in Fig. 2a).

In the 1H-13C HMBC NMR spectra of each of the major products of 
the reactions of 1 and 2, a correlation is shown to exist between the 
alkyl group (aliphatic) proton(s) and the carbons ortho to the upfield 
nitrogen for all alkylation adducts (see example in Fig. 2b).  A 

correlation between the alkyl group aliphatic carbon and the protons 
ortho to the upfield nitrogen is also evident in these spectra. The 
large upfield ∆(δN) values and correlation data associated with the 
alkylation reactions of 1 and 2 are consistent with the preferential 
(and in some cases exclusive) occurrence of N-alkylation in these 
reactions.

In support of this conclusion, the 13C{1H} NMR chemical shifts of the 
methyl group carbon in the major products of the methylation 
reactions of 1 and 2 are, respectively, 44.1 and 46.6 ppm.57 These 
values lie in the middle of the range of δC values identified in our 
previous work as being characteristic of N-methylation of aromatic 
N-heterocycles (vide supra).39 The δC values of the minor products of 
these methylation reactions were, respectively, 68.9 and 70.2 ppm.  
These values appear in the middle of the δC range that is indicative 
of adducts of O-methylated aromatic N-oxides.39,57 The δC values of 
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the benzhydryl group aliphatic carbons (Ar2CH) in the products of the 
benzhydrylation reactions of 1 and 2 were, respectively, 77.2 and 
73.2 ppm.57 These values are characteristic of N-benzhydrylated 
products, based on our previous work.39 The above data are all 
consistent with the conclusion that the major products formed are 
N-alkylation adducts 13, 14, 17 and 18 (Scheme 4a and 4b). These are
formed in preference to O-alkylation adducts 15, 16, 19 and 20.

The 1H-15N HMBC NMR spectrum of the reaction mixture produced 
by adding MeOTf to a (CD3)2SO solution of 3 (Scheme 4c) showed 
signals for the major product at δN 303.1 and 249.0 ppm (Table 2, 
entry (x)).58 The upfield 15N NMR signal showed a correlation with the 
methyl group CH3 protons, indicating that this belongs to the 
alkylated nitrogen. However, no correlation existed in the 1H-13C 
HMBC NMR spectrum for the signal of the methyl protons with the 
signal of the carbons ortho to the upfield nitrogen, nor for the signal 
of the methyl carbon with the signal of the protons ortho to upfield 
nitrogen.  Based on the δN value of the upfield nitrogen signal, the δC 
value of the methyl group carbon of 70.2 ppm (characteristic of a 
N+—O—CH3 13C NMR signal of a N-methoxypyridinium ion),39 and the 
features of the 1H-13C HMBC NMR spectrum, the spectral 
characteristics of the major product are very similar to those of 
compound 10 (the O-methylated adduct of pyridine N-oxide (8); 
Scheme 3b), and other aromatic N-oxide O-methylation adducts.39

We therefore conclude that the major product of this reaction is O-
methylation adduct 23b (Scheme 4c).  The upfield signal (δN = 249.1 
ppm) is assigned to the N—OMe nitrogen atom, and hence has a 
∆(δN) value of −42.7 ppm relative to the signal of the N-oxide 
nitrogen atom of 3 (at δN = 291.7 ppm; see Table 2 entry (x)), while 
the downfield signal has ∆(δN) = +1.8 ppm relative to the 
corresponding signal of 3 (δN = 301.3 ppm).  The upfield ∆(δN) value 
of −42.7 ppm for this reaction is very similar to the ∆(δN) values 
observed in formation of methoxypyridinium salts during O-
methylation reactions of N-oxides (e.g. ∆(δN) = −43.6 ppm for 
formation of 10 from 8 + MeOTf; Scheme 3b).39 

The ∆(δN) value associated with formation of the minor product of 
the reaction of pyrimidine N-oxide (3) + [(CD3)2S(OMe)]OTf  in 
(CD3)2SO is considerably larger than the ∆(δN) value for O-alkylation 
(Table 2 entry (x); ∆(δN) = −86.5 vs −42.7 ppm).  In addition, the 1H-
13C HMBC NMR spectrum exhibits multiple bond correlations 
between the N-methyl group and ortho aromatic 1H and 13C signals.59 
The δC value of the methyl group carbon of the minor product was 
46.6 ppm,57 which is characteristic of an aromatic N+—CH3 carbon 
(vide supra).39 These data are consistent with the minor product 
being N-methylation adduct 21b (Scheme 4c). Our spectral data on 
the reaction of 3 + MeOTf in CD3CN (or MeCN) also show that 23b is 
the major product formed in this solvent.54 Although 21b is formed 
in the reaction (as shown by 1H NMR spectral analysis), it does not 
survive the process of solvent removal and dissolution in (CD3)2SO 
(vide supra).

Based on the above data, we can conclude that the N- vs O-
methylation ratios in the reactions of 3 with MeOTf (in CD3CN) and 
[(CD3)2S(OMe)]OTf  in (CD3)2SO are both 7:93 (in favour of O-
methylation; see Table 1 entries (x) and (xi)).

Crossover Experiments

The N- vs O-alkylation ratios observed in the reactions of 1–3 did not 
change over time in the absence of perturbation. In order to establish 
whether or not these reactions occurred under kinetic control, we 
carried out several crossover experiments involving reactions of 
MeOTf with 1–3 (and of MeI with 1) in CD3CN followed by addition 
of a second nucleophile.60 An internal standard (1,3,5-
trimethoxybenzene) was added to the reaction mixture to allow the 
amounts of the products present to be quantified (using integrations 
of  1H NMR spectral signals of the products) before and after addition 
of the second nucleophile, and to enable quantification of the 
amount of crossover product formed.  Nucleophiles 7 and 25 were 
selected as second nucleophiles because they have been shown in 
separate studies to be considerably stronger Lewis bases than 
compounds 1–3,61 and hence are expected to out-compete 1–3 for 
any free alkylating agent present due to (i) their stronger 
nucleophilicity and (ii) the fact that they are present in considerable 
excess over 1–3 under the conditions of the crossover experiment.

We observed that the amount of major product formed in the 
methylation reactions of each of 1 and 2 remained constant with 
respect to the internal standard during the crossover experiments, 
i.e. the formation of the major product in each case is irreversible
(i.e. 13a, 13b, and 17b respectively).  For example, the amount of 13b
formed in the reaction of 1 + MeOTf in CD3CN at 16 °C is invariant at
96% of methylation product throughout the experiment (Scheme 5).
In the reactions of 1 and 2 with MeOTf (using 25 or 7 as the second
nucleophile), crossover product formed at the expense of the minor
product (O-methylation adducts 15b and 19b) with commensurate
production of starting diazine N-oxide (1 or 2).  Although crossover
product (9b or 26) is formed from the minor products in these
experiments, we conclude in each case that this is a consequence of
the occurrence of an SN2 reaction between the second nucleophile (7
or 25) and the minor product.  If this were not the case, then
repeated observations of the N/O-methylation ratios over time in
alkylation reactions of 1 and 2 should show this ratio changing (to
favour the major product), since formation of the major product is
irreversible in each case.  Consequently, we conclude that O-

13b 15b
N

N

Me

O

N

N
O

1

+
N

N

TfO O
Me

(i) MeOTf
CD3CN, 16 °C

(ii) 1,3,5-C6H3(OMe)3

N

N
Me

OTf
+

N

N
O

Ratio 13b:15b =
96:4

25

26
(4% after 1 day)

+

13b
(96% of product)

N

N

Me

O

Additional
1 present

after 1 day

After 1 day,
no 15b
remains

CO2Me

CO2Me

TfO

TfO

Scheme 5. Crossover experiment investigating reversibility of reaction of 1 + 
MeOTf using 1,3,5-trimethoxybenzene as internal standard, and “crossover 
nucleophile” 25.  The crossover product is compound 26.62
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methylation of 1 and 2 are also irreversible processes in CD3CN 
solvent at ambient temperatures.  Thus, N-methylation of 1 and 2 are 
observed because they are the kinetically favoured reactions in their 
respective processes.

A similar crossover experiment involving the reaction of pyrimidine 
N-oxide (3) + MeOTf in CD3CN (with an internal standard added) and 
pyrazine (7) as 2nd nucleophile also showed formation of crossover 
product 9b.  In 1H NMR spectra of this reaction mixture recorded 
early in the reaction, the crossover product (9b) was observed to 
form primarily at the expense of N-methylation product 21b (minor 
product of this reaction), but some O-methylation product (23b) was 
also consumed.62 An amount of 3 formed that was commensurate 
with the amount of 9b produced. After several days, further 
crossover product was observed to form at the expense of major 
product 23b.62 It is not clear from these experiments whether 
formation of 21b and 23b from 3 + MeOTf is reversible, i.e. whether 
7 reacts with MeOTf formed by reversal of 21b and/or 23b to 3 + 
MeOTf, or whether crossover product 9b is formed by direct SN2 
reactions of 7 with 21b and/or 23b.

Computational Investigations

Our experimental investigations indicate that ambident nucleophiles 
pyrazine N-oxide (1) and quinoxaline N-oxide (2) (with competing N 
and O nucleophilic sites) undergo preferential alkylation on nitrogen 
regardless of the nature of the alkylating agent used, i.e. independent 
of whether the electrophile is hard or soft.  Ambident nucleophile 
pyrimidine N-oxide (3), by contrast, has been shown to undergo 
preferential O-methylation by MeOTf.  In order to be able to 
understand and rationalise the outcomes of the reactions described 
above, high level quantum chemical calculations at the DLPNO-
CCSD(T)/def2-TZVPPD/SMD(CH3CN)//M06-2X-D3/6-
311+G(d,p)/SMD(CH3CN) level of theory were carried out to 
determine the relative Gibbs energies of the reactants, transition 
states and products of the reactions of each of compounds 1, 3, 7 
(pyrazine),  and 8 (pyridine N-oxide) (structures shown in Chart 1 and 
Scheme 3) with MeI and MeOTf.63 The reactions of pyrimidine (27) 
and pyridine (28) with MeI and MeOTf were also investigated in the 
same manner.  The computational results can be used to estimate 
the Gibbs energy of activation (∆G‡) and standard enthalpy and Gibbs 
energy of reaction (∆rH° and ∆rG°, respectively) for each process. The 
accuracy and predictive capability of this computational method 
have been verified by the close agreement of the ∆G‡ values 
determined experimentally and computationally for the reaction of 
pyrazine N-oxide (1) with MeI (vide infra).  The results of the 
computational investigations of the methylation reactions of 7, 8, 27 
and 28 are presented in Table 3 (left side).  Compounds 7, 27 and 28 
undergo N-methylation, and compound 8 undergoes O-methylation.  
These results allow us to see representative values of ∆G‡, ∆rH° and 
∆rG° for N- and O-methylation reactions in which there is no 
ambiguity over the site of methylation.

Unsurprisingly, the reactions involving MeOTf have systematically 
smaller calculated ∆G‡ values and are more exergonic than the 
reactions involving MeI.  The values of ∆G‡ and ∆rG° for methylation 
of 7 by MeI are very similar to the corresponding values for 27 (Table 
3 entries (i) and (v)).  The ∆G‡ and ∆rG° values for the reactions of 7 
and 27 with MeOTf are also very similar (Table 3 entries (ii) and (vi)).  

This suggests that the nucleophilicities and Lewis basicities of 7 and 
27 are very similar.  The reactions involving pyridine (28; Table 3 
entries (vii) and (viii)) are both more kinetically and 
thermodynamically favourable than the corresponding reactions of 
7 and 27 with the two methylating agents.64 The O-methylation 
reactions of 8 are more kinetically favourable than the corresponding 
reactions of 7 and 27, despite being less thermodynamically 
favourable than those reactions (compare Table 3 entry (iii) with 
entries (i) and (v), and entry (iv) with entries (ii) and (vi)).

The reaction of pyrazine N-oxide (1) with MeOTf was found 
computationally to result in kinetically and thermodynamically 
preferred N-methylation (compare Table 3 entries (x) and (xii)).  This 
calculation indicates that methylation of 1 by MeOTf is an irreversible 
process at room temperature (regardless of the site of methylation), 
in agreement with the results of our crossover experiments (see 
above).  The relative magnitudes of ∆G‡(N) and ∆G‡(O) calculated for 
this reaction suggest that a small amount of O-methylated product 
(ca. 5 – 7%) should be produced, as is observed experimentally (N/O 
methylation ratio = 95:5 for reaction at 20 °C; see Table 2 entry (ii)).65

The reaction of 1 with MeI was also found to result in kinetically and 
thermodynamically preferred N-methylation (compare Table 3 
entries (ix) and (xi)), which is consistent with the results of our 
crossover experiments.  This reaction has been observed 
experimentally to be very slow.  Only a small amount of conversion 
had occurred after several days, consistent with the high activation 
barrier found computationally (shown in Table 3) and determined 
through a kinetic investigation (described below).  In contrast to the 
reaction of 1 with MeOTf (above), O-methylation of 1 by MeI was 
found computationally to be thermodynamically disfavoured and 
therefore reversible (Table 3 entry (xi)).  No O-methyl adduct (17a) 
was observed experimentally for this reaction, which is consistent 
with kinetically disfavoured and reversible O-methylation.

The ∆G‡(N) and ΔrG°(N) values for N-methylation of 1 (by MeOTf or 
MeI) are similar to the corresponding values for diazines 7 and 27 
(compare Table 3 entry (x) with entries (ii) and (vi), and entry (ix) with 
entries (i) and (v)).  In contrast, the ∆G‡(O) and ΔrG°(O) values for O-
methylation of 1 (by MeOTf or MeI) are significantly less favourable 
than the corresponding reactions of N-oxide 8 (compare Table 3 
entry (xii) with entry (iv), and entry (xi) with entry (iii)).  The 
implication of this is that the oxygen site of 1 is deactivated relative 
to the oxygen site of 8, both as a nucleophile and as a Lewis base.66 

Our calculations on the reaction of pyrimidine N-oxide (3) with 
MeOTf indicate that, despite the fact that N-methylation (formation 
of 21b) is   thermodynamically favoured over O-methylation 
(formation of 23b), the kinetically preferred process in this reaction 
is O-methylation (compare Table 3 entries (xiv) and (xvi)). The 
difference between the calculated values of ∆G‡(N) and ∆G‡(O) 
suggests that a small amount of N-methylation (ca. 1–3%) should 
occur.  These results are in quite close agreement with the 
experimental observations – O-methylation is indeed favoured, and 
approximately 7% of the product formed is N-methylation adduct 
21b (in CD3CN or (CD3)2SO; see Table 2 entries (ix) and (x))).67 These 
calculations indicate that both reactions are essentially irreversible 
(however, see the results of our crossover experiment involving 3 + 
MeOTf above).63 Our calculations on the reaction of 3 with MeI 
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Table 3. Calculated ∆G‡, ∆rH° and ∆rG° values for methylation of nucleophiles 1, 3, 7, 8, 27, and 28 by MeI and MeOTf in CH3CN.a,b 

Me X+Nu MeNu X

Nucleophiles with single alkylation site c Ambident Nucleophiles

# Nu X Product 
& number ∆G‡ ∆rG°    ∆rH° b # Nu X Product 

& number ∆G‡ ∆rG°   ∆rH° b

(i) 7 I 9a +131 −21 −37 (ix) 1 I 13a +133 −20 −37

(ii) 7 OTf
N

N

Me
X

9b +107 −90 −90 (x) 1 OTf

N

N
XMe

O

13b +108 −88 −90

(iii) 8 I 10a +123 −7 −24 (xi) 1 I 15a +140 +31 +14

(iv) 8 OTf
N
O

X
Me

10b +97 −75 −76 (xii) 1 OTf

N

N

X

O
Me

15b +115 −38 −38

(v) 27 I 29a +130 −23 −39 (xiii) 3 I 21a +138 +4 −13

(vi) 27 OTf
N

N

Me
X 29b +106 −91 −91 (xiv) 3 OTf

N

N

X

O

Me 21b +113 −64 −66

(vii) 28 I 30a +120 −48 −64 (xv) 3 I 23a +127 +38 +3

(viii) 28 OTf
N

Me
X 30b +96 −117 −117 (xvi) 3 OTf N

N
O

Me

X 23b +103 −48 −49

a Enthalpies and Gibbs energy values (in kJ mol−1) were calculated at the DLPNO-CCSD(T)/def2-TZVPPD/SMD(CH3CN)//M06-2X-D3/6-311+G(d,p)/SMD(CH3CN) 
level of theory, with a confidence interval of ±2 kJ mol−1.
b ∆rS° values calculated for these reactions were similar across all reactions of MeI (∆rS° = −55 ± 2 J K−1 mol−1), and across all reactions of MeOTf (∆rS° = −2 ± 2 J 
K−1 mol−1).  These data are included in Tables S1 – S3 in the Supporting Information, along with calculated ∆H‡ and ∆S‡ values for these reactions.68

c Pyrazine (7) and pyrimidine (27) clearly have two possible alkylation sites, but the sites are identical by symmetry.

indicate that both O- and N-methylation (formation of 23a and 21a, 
respectively) are reversible.   O-Methylation was found to be 
kinetically preferred, again despite the fact that this process is less 
thermodynamically favourable than N-methylation (compare Table 3 
entries (xiii) and (xv)).  As no product formation was observed 
experimentally when this reaction was attempted in CD3CN or MeCN, 
it is not possible to verify the applicability of these particular 
computational results.

The calculated Gibbs energies of activation for N- and O-methylation 
of pyrimidine N-oxide (3) by MeI or MeOTf, while higher than the ∆G‡ 

values for comparable reactions of similar compounds (e.g. pyrazine 
N-oxide (1), pyrazine (7), pyridine N-oxide (8) and pyridine (27)), are
not especially different to those ∆G‡ values (compare Table 3 entry

N

N
3

N

N
1

31 OMe

OTf

MeO

O

O

+
N

N
O

Ar Ar

OTf

32

+
N

N
O Ar

Ar

OTf

33

CD3CN

Not
formed

Ar = p-anisyl

Scheme 6. Competition experiment between reversible reactions of 1 and 3 
with benzhydrylium ion 31.44

(xiv) with entries (ii) and (vi), entry (xiii) with entries (i) and (v), entry
(xvi) with entry (iv), and entry (xv) with entry (iii)).  However,
comparison of the ΔrG° values for the same reactions indicates that
both O- and N-methylation reactions of pyrimidine N-oxide (3) are
far less thermodynamically favourable than the corresponding
reactions of 1, 7, 8 and 27.  This computational observation has been
verified experimentally through a thermodynamic competition
experiment in which product 32 (derived from pyrazine N-oxide (1)
in a reversible reaction) is formed to the complete exclusion of 33
(derived from pyrimidine N-oxide (3)) when 1, 3 and benzhydrylium
ion 31 are mixed in CD3CN (Scheme 6).  It seems that the O and N
nucleophilic/Lewis basic sites of 3 are deactivated in a similar manner
to the O site of 1.66

According to our computational data, N-methylation of both 1 and 3 
results in a minor shortening of the N-oxide N—O bond.  The 
calculated N—O bond lengths of diazine N-oxides 1 and 3 and N-
methyldiazinium cations 13 and 21 are, respectively, 1.27 Å, 1.29 Å, 
1.25 Å and 1.27 Å.63  O-methylation of 1 and 3 results in a lengthening 
of the N—O bond (to 1.36 Å for each of 15 and 23, the O-methylated 
cationic derivatives of 1 and 3).63 O-methylation of 1 or 3 removes 
the favourable electrostatic interaction between N and O, and also 
diminishes the partial resonance of the N-oxide with the aromatic 
system, thereby removing resonance stabilisation effects that may 
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help to stabilise the positive charge in the product.  This may 
contribute to making N-methylation of 1 and 3 more 
thermodynamically favourable than O-methylation.

Finally, for completeness, we will comment on the values of the 
other thermodynamic functions associated with the above reactions.  
Computationally determined values of ∆rS° do not differ greatly from 
each other across all reactions of MeI with 1, 3, 7, 8, 27 and 28, or 
across all reactions of MeOTf with the same nucleophiles, regardless 
of whether N- or O-methylation is occurring.68  Across all reactions of 
MeI in Table 3, ∆rS° remains constant around −55 ± 2 J K−1mol−1, while 
a value of −2 ± 2 J K−1mol−1 was observed across the reactions of 
MeOTf (using 99% confidence intervals).68 Therefore, the 
computational data suggest that enthalpy changes are primarily 
responsible for dictating the differences between the ∆rG° values in 
the various reactions in Table 3.  It is not possible to unambiguously 
ascribe the differences in ∆rH° to specific effects, and hence we 
refrain from doing so.

Activation Barrier Calculations Using Marcus Theory

Noting the deficiencies of the HSAB principle, Mayr and co-workers 
have advanced Marcus theory for rationalising the outcomes of 
reactions of ambident nucleophiles.4 The Marcus equation (equation 
1) allows ΔG‡ to be separated out into its contributions from ΔrG° 
(the standard Gibbs energy of reaction) and ΔG0

‡, the Marcus 
intrinsic barrier.69–71

 (1)𝛥𝐺 ‡ = 𝛥𝐺 ‡
0 +

𝛥𝑟𝐺°
2 +

(𝛥𝑟𝐺°)2

16𝛥𝐺 ‡
0

In reactions of ambident nucleophiles with competing sites of 
differing nucleophilicity, the different nucleophilic sites have 
different values of each of ΔG0

‡ and ΔrG°.  Mayr and co-workers have 
suggested that the selectivities in such reactions can be rationalised 
through an appraisal of the factors that influence the values of the 
two parameters in the Marcus equation (ΔG0

‡ and ΔrG°).4 They have 
employed this approach to qualitatively rationalise the outcomes of 
reactions of a variety of ambident nucleophiles.4,72 In order to build 
up a more comprehensive understanding of the factors that 
influence selectivity in reactions of 1–3, we have calculated values of 
ΔG0

‡ and ΔrG° for these reactions, and used them to construct values 
of the activation barriers (ΔG‡) using the Marcus equation.

Using the procedure described in detail in the Supporting 
Information,73 values of the intrinsic barrier (ΔG0

‡) were calculated 
for each of the reactions of compounds 1 and 3 with MeI and MeOTf.  
The ΔG0

‡ values for reactions of 1 and 3 are shown in Table 4.74 It is 
noteworthy that, for both ambident nucleophiles 1 and 3, the 
intrinsic barrier for methyl transfer to oxygen (ΔG0

‡(O)) is lower than 
that for methylation of nitrogen (ΔG0

‡(N)) – e.g. compare Table 4 
entries (iii) and (i), and entries (vii) and (v).  Hoz and co-workers 
previously established through computational investigations that the 
ΔG0

‡ values associated with reactions of nucleophiles centred on 2nd 
row elements depend on the identity of the element at the 
nucleophilic site, with ΔG0

‡ decreasing in the order C > N > O > F, i.e. 
from left to right across the periodic table.75 The lower intrinsic 
barriers (intrinsic preference) for O-alkylation over N-alkylation we 
observe for 1 and 3 are in line with this general trend.

Table 4.  Values of intrinsic barriers (ΔG0
‡) and derived values of ΔG‡ for 

methylation reactions of nucleophiles 1, 3, 7, 8, 27, and 28 in CH3CN, 
calculated using the Marcus equation (equation 1) using values of ΔrG° from 
Table 3 (reproduced here).a,b,c

Me X+Nu MeNu X

Nucleophile # X ∆G0
‡ ΔrG°

DFT  
ΔG‡

Marcus 
ΔG‡ 

(i) OTf +149.5 −88 +108.0 +108.7
N

N

O

1
(ii) I +144.0 −20 +133.0 +134.2

(iii) OTf +132.5 −38 +115.0 +114.3
N

N

O

1
(iv) I +127.0 +31 +140.0 +143.0

(v) OTf +145.0 −64  +113.0 +114.8

N

N

O 3 (vi) I +139.5 +4 +138.0 +141.5

(vii) OTf +124.0 −48 +103.0 +101.2
N

N

O
3

(viii) I +118.5 +21 +127.0 +129.2

a The site of methylation of each nucleophile is indicated by an arrow.  The 
Gibbs energy values have units of kJ mol−1 (confidence interval ±2 kJ mol−1).
b ΔrG° and ΔG‡ (DFT ΔG‡) values here are reproduced from Table 3.

Substitution of the calculated ΔG0
‡ values into equation 1 (the 

Marcus equation) along with the values of ΔrG° calculated as 
described above (Table 3 and associated discussion; these ΔrG° 
values are reproduced in Table 4 to aid the understanding of the 
reader) allows values of ΔG‡ to be calculated using the Marcus 
equation.  Comparison of the ΔG‡ values obtained using the Marcus 
equation (shown in Marcus ΔG‡ column in Table 4) with the ΔG‡ 
values directly calculated as described above (values from Table 3, 
labelled DFT ΔG‡, are reproduced in Table 4) shows a close 
correspondence between the two methods.  Importantly, the 
experimentally observed N vs. O selectivities for the reactions of the 
ambident nucleophiles 1 and 3 are reproduced quite closely by both 
methods of calculation.18 Analysing how the factors that contribute 
to the Gibbs energy of activation for a reaction influence its 
magnitude (i.e. how the interplay between ΔG0

‡ and ΔrG° influences 
ΔG‡) provides a very useful means of understanding the origins of the 
differences between the rates of different reactions.  Nowhere is this 
more apposite than in understanding which nucleophilic site of an 
ambident nucleophile is kinetically preferred.  A full analysis of this 
kind for the reactions of 1 and 3 will be described in detail below.

The applicability of Marcus theory has been challenged in recent 
years,76 and alternatives have been suggested.77,78 However, such 
alternatives also incorporate in some manner an intrinsic barrier or 
a proxy thereof.  In addition to using the Marcus equation, we have 
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also used an adaptation of the Zhu equation (see the Supporting 
Information)79 to calculate ΔG‡ values for the methylation reactions 
of nucleophiles 1 and 3.  The ΔG‡ values calculated using the adapted 
Zhu equation are very similar to the values calculated using equation 
1 (see Table S5 in the Supporting Information).73

The experimentally observed ratio of N- to O-methylation for the 
reaction of 1 + MeOTf was 95:5 (Table 2). Direct calculation of the 
ΔG‡

 values at the DLPNO-CCSD(T)/def2-TZVPPD/SMD(CH3CN)//M06-
2X-D3/6-311+G(d,p)/SMD (CH3CN)] level of theory indicated a N/O 
ratio of 94:6 for this reaction, while calculation of the N/O ratio using 
the Marcus equation gave a ratio of 90:10 (compare Table 4 entries 
(i) and (iii)). Use of the Zhu equation gave a N/O ratio of 96:4.73 The
experimentally observed ratio of N- to O-methylation for the
reaction of 3 + MeOTf was 7:93.  Our calculations indicated a ratio of
2:98 for this reaction, while calculation of the N/O ratio using the
Marcus equation gave a ratio of 0.4 : 99.6, (compare Table 4 entries
(v) and (vii)) and calculation using the Zhu equation gave a ratio of
0.5 : 99.5.73 That the experimental selectivities (in N- vs. O-
methylations of 1 and 3 by MeOTf) are reproduced quite closely
using the Marcus and Zhu equations73 and direct computation
indicates that these methods are highly useful in understanding the
factors that control Gibbs energies of activation in nucleophilic
substitution reactions.

Experimental Verification of Accuracy of Calculated ΔG‡

In order to verify the applicability of the computational methods 
discussed above to determine the magnitudes of activation barriers, 
we conducted a kinetic investigation on the reaction of pyrazine N-
oxide (1) with MeI in CD3CN at 25 °C using 1H NMR spectroscopy to 
determine the concentrations of the reactants and product (13a).  
The experiment was conducted under pseudo-first order conditions, 
with MeI present in ten-fold excess over 1.  Using the method 
described in detail in the Supporting Information,80 we determined 
an approximate ΔG‡ value for this reaction of 1.4 × 102 kJ mol−1.  This 
value is within 5% of the ΔG‡ values predicted for this reaction using 
the Marcus equation (134.2 kJ mol−1), and using direct application of 
the DLPNO-CCSD(T)/def2-TZVPPD/SMD(CH3CN)//M06-2X-D3/6-
311+G(d,p)/SMD] method (133 kJ mol−1).  This striking agreement 
between computational theory and experiment demonstrates that 
these computational methods are capable of modelling kinetic 
phenomena of this type rather accurately.

13a
N

N

Me

O

N

N
O

1

MeI
CD3CN+

I

25 °C(10 equivalents)

G‡ = 140 kJ mol1

Scheme 7. The reaction of 1 + MeI in CD3CN at 25 °C under pseudo-first order 
conditions (excess MeI) was monitored by 1H NMR spectroscopy to enable 
determination of an approximate ΔG‡ value for the reaction at 25 °C.

Discussion
Rationalisation of Experimental N vs O Selectivities

The kinetic preference of compound pyrazine N-oxide (1) for N-
methylation by soft electrophile MeI (forming compound 13a) and 
by hard electrophile MeOTf (forming compound 13b) has been 
demonstrated experimentally and computationally.  The alkylation 

reactions of quinoxaline N-oxide (2) by MeI, MeOTf and 
benzhydrylium triflates (11 or 12) and of 1 by 11 or 12 are all also 
almost certainly irreversible, and all yield N-alkylated products 
preferentially or exclusively.  The reaction of pyrimidine N-oxide (3) 
+ MeOTf gives O-methylated product (23b) predominantly, and our
computational investigations indicate that this is due to the kinetic
favourability of formation of 23b.  Although no product formation is
observed in the reaction of 3 + soft electrophile MeI (due to the
formation of products 21a and 23a being thermodynamically
disfavoured and hence reversible), our computational results
indicate that O-methylation (formation of 23a) is the kinetically
favoured process in this reaction (see Table 4 entries (vi) and (viii)).

It is evident from these results that each nucleophile exhibits a 
preferred site of alkylation which is independent of the nature of the 
electrophile used (N for 1 and 2, and O for 3), i.e. these outcomes 
cannot be dictated by hard/soft acid/base interactions.  A 
fundamentally different set of factors must dictate the observed 
selectivities in these reactions.   We discuss an alternative rationale 
to account for these observations later in this article.

Although the above evidence clearly shows that the HSAB principle 
does not apply in this set of reactions, and thereby renders 
unnecessary the identification of which nucleophilic site of each of 1 
– 3 is “harder” and which is “softer”, it is nonetheless appropriate at
this point to discuss the difficulty and ambiguity inherent in attempts
at such identifications.  The features that are employed to determine
whether a reactant is hard or soft are charge (charge density), size,
polarizability and electronegativity.2a,b,g,18b,c For hard bases, the
donor atom is typically negatively charged and/or has a local excess
of electron density, and is of small size, low polarizability and high
electronegativity.  For soft bases, the donor atom typically does not
bear a formal negative charge and exhibits low negative charge
density, and is of large size, high polarizability and low
electronegativity.  Derivation of functions that reliably indicate the
“local hardness” and “local softness” of sites in a molecule (such as
an ambident nucleophile) has proved a difficult endeavour.15 At
present, such approaches cannot be applied without ambiguity.

On the basis that oxygen is more electronegative than nitrogen, one 
could perhaps anticipate that the oxygen site of a diazine N-oxide 
such as 1 – 3 should be harder than the nitrogen site.  However, 
although there is a formal negative charge on the N-oxide oxygen 
atoms in these compounds, it is not clear which nucleophilic site in 
each ambident nucleophile should have the highest negative charge 
density, thereby potentially complicating the issue.  To probe this 
question, we calculated the charge distribution for the ambident N-
oxides with a variety of methods (ChelpG,  Merz−Singh−Kollman, 
natural bond order (NBO), and atoms in molecules (AIM)),81 but 
found that there was no uniform agreement between methods on 
which site bears the highest negative charge density in compounds 1 
and 3.  Full details of this are given in the Supporting Information.81

We now present an alternative rationale, based on Marcus theory, 
to explain these results (see equation 1 above). In the following 
discussion, the intrinsic barriers for alkylation at oxygen and nitrogen 
are referred to, respectively, as ΔG0

‡(O) and ΔG0
‡(N).  The standard 

Gibbs energies of reaction for O- and N-alkylation are referred to, 
respectively, as ΔrG°(O) and ΔrG°(N).  
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Although O-methylation is intrinsically preferred over N-methylation 
(for diazine N-oxides, and in general; vide supra),75 in reactions of 1 
and 2, the intrinsic preference for O-alkylation is modest.  ΔG0

‡(O) is 
calculated to be only 17 kJ mol−1 lower than ΔG0

‡(N) for the reactions 
of 1 with MeI or MeOTf (Table 4 entry (i) vs. (iii), and entry (ii) vs. (iv)). 
The ΔrG°(N) values for these reactions are substantially more 
favourable than the corresponding ΔrG°(O) values.  Consequently, 
the very favourable contribution of ΔrG°(N) to ΔG‡(N) supersedes the 
favourable contribution of ΔG0

‡(O) to ΔG‡(O), such that ΔG‡(N) is 
much lower than ΔG‡(O) for alkylations of 1 and 2.  That is, the 
intrinsic favourability of O-alkylation is outweighed by the 
thermodynamic favourability of N-alkylation, so in these irreversible 
reactions, N-alkylation is kinetically preferred.82

In the reaction of pyrimidine N-oxide (3) with MeOTf, the value of 
ΔrG°(N) is much less favourable with respect to ΔrG°(O) than is the 
case for the corresponding reaction of pyrazine N-oxide (1).  ΔG0

‡(O) 
is calculated to be 21 kJ mol−1 lower than ΔG0

‡(N) for both MeOTf and 
MeI (compare Table 4 entry (vii) with entry (v), and entry (viii) with 
entry (vi)), so O-methylation of 3 is intrinsically preferred. Since the 
thermodynamic favourability of N-methylation of 3 is diminished 
(relative to the corresponding reactions of 1), and O-methylation is 
intrinsically favoured, ΔG‡(O) is lower than ΔG‡(N), and hence O-
methylation of 3 is the kinetically dominant reaction.  Instances in 
which N-alkylation is likely to have been “deactivated” due to steric 
interactions, resulting in preferential O-alkylation, have been 
reported previously.4,22b,c,f,g,31 In this case, it seems likely that the free 
nitrogen Lewis basic site of 3 is deactivated due to an electronic 
effect.  This Lewis basic site is connected through a network of π-
bonds to an N-oxide group in a meta position relative to it, which may 
act as an electron withdrawing group, thereby diminishing the Lewis 
basicity (electron donor capacity) of the free nitrogen atom.  

The reaction of 3 with MeI was calculated to be thermodynamically 
unfavourable (ΔrG° > 0 for both O- and N-methylation by MeI), and 
therefore reversible.  This is consistent with our experimental 
observation that no product was formed in this reaction.  However, 
our calculations do indicate that O-methylation (formation of 23a) is 
kinetically favoured over N-methylation.  A similar rationale to that 
presented above for the reaction of 3 + MeOTf applies in this case – 
i.e. O-methylation is intrinsically preferred (ΔG0

‡(O) < ΔG0
‡(N)) and 

the thermodynamic advantage of N-methylation over O-methylation 
is small, and consequently O-methylation is the kinetically favoured 
process (see Table 4 entries (vi) and (viii)).

As discussed above, the ΔrG° values calculated for N- and O-
methylations of 3 by both MeI and MeOTf are much less favourable 
than the ΔrG° values of methylation reactions of other, similar 
compounds (e.g. 1, 7, 8 and 27; vide supra).  In the context of our 
analysis based on the Marcus equation, we can make use of this 
information to rationalise the relatively high ΔG‡(O) and ΔG‡(N) 
values calculated for the methylation reactions of 3.  The less 
favourable ΔrG° values for O- and N-methylations of 3 influence the 
magnitudes of the ΔG‡ values for these reactions, causing them to be 
higher than the ΔG‡ values of reactions of similar nucleophiles.

As is described in detail in the Supporting Information,73 
operationally, the value of the intrinsic barrier (ΔG0

‡) for a reaction is 
accessed as the average of two identity reactions.  Since there is no 

leaving group formed in the addition of a nucleophile to carbenium 
ions such as 11 and 12 (structures in Scheme 4 above), only one 
identity reaction of the required two can be identified to model such 
processes using Marcus theory.  Hence, the straightforward method 
described in the Supporting Information73 for accessing values of 
intrinsic barriers cannot be employed for reactions involving 
carbenium ions.  Alternative methods for estimating the magnitudes 
of the intrinsic barriers for such reactions or analogues thereof have 
been reported,83 but these do not allow quantitative determinations 
of the type performed above for reactions involving electrophiles 
from which leaving groups become cleaved.  Hence only a qualitative 
appraisal of the outcomes of the reactions of 1 and 2 with 
benzhydrylium ions is possible, which we give below.  

We consider that the observation of strongly preferred or exclusive 
N-benzhydrylation of nucleophiles pyrazine N-oxide (1) and 
quinoxaline N-oxide (2) in their reactions with benzhydrylium ions 
(11 or 12) arises as a consequence of the same factors that dictate 
the outcomes of the reactions of these nucleophiles with MeI or 
MeOTf.  That is, in each case, O-benzhydrylation is intrinsically 
favoured (ΔG0

‡(O) is smaller than ΔG0
‡(N)) but the influence of 

ΔrG°(N) on ΔG‡(N) outweighs the influence of ΔG0
‡(O) on ΔG‡(O), and 

consequently N-benzhydrylation is the kinetically preferred process.  
As discussed above, it was not possible to determine what occurred 
in the reaction of 3 + benzhydrylium ion 11, so further comment on 
this is not warranted.  

Literature Examples of N vs. O alkylation

We have noted in passing above that, due to the ambiguity that has 
up until now been inherent in determining which product is formed 
predominantly in reactions of ambident nucleophiles containing N 
and O nucleophilic sites, there exist notable cases in the literature in 
which the products of such reactions may have been 
misidentified.8,9,84

Comparison of the 1H NMR spectrum of N-methylated product 13b 
(from reactions of MeOTf with 1; Scheme 4a) with the 1H NMR 
spectra assigned to O-methylation adduct 15c (Scheme 8) in 
reference 10 shows that the spectra are essentially identical.  A 
similar observation can also be made on comparison of the 1H NMR 
spectrum of N-methylated product 17b (from 2 + MeOTf; Scheme 4b) 
and that assigned to O-methylated adduct 19c in reference 7.  We 
have identified a distinct set of signals belonging to the O-methylated 
adducts 15b and 19b that appear at different chemical shifts to the 

(MeO)SO3

N

N

17c

N

N

Me

+

OO

N

N
O(MeO)SO3

Me

19c

(MeO)SO3

N

N

13c

N

N

Me

+

OO

N

N
O(MeO)SO3

Me

15c 1

2

MeO
S

OMe

O O

MeO
S

OMe

O O

Scheme 8. Reactions of compounds 1 and 2 with dimethylsulfate have been 
reported to give O-methylated products 15c and 19c.7 Our data indicate that 
N-methylated adducts 13c and 17c are likely to be the major products.
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N-methylated adducts 13b and 17b (vide supra).  Furthermore, the 

13C NMR chemical shifts reported for the methyl group carbons 
(either N—CH3 or O—CH3) of the products are 47.2 and 44.5 ppm, 
respectively.7 These δC values are indicative of formation of N- 
methylation products 13c and 17c (vide supra).  Hence, our data 
indicate that it is highly unlikely that 1 and 2 undergo preferential O-
methylation in reactions with dimethylsulfate, a close analogue of 
MeOTf.  The methodology reported in reference 7 was predicated on 
the use of N-methoxypyridinium salts.  That this otherwise highly 
successful methodology did not work for these compounds can be 
explained by the fact that N-methylated compounds 13c and 17c 
were almost certainly employed rather than the intended O- 
methylated compounds 15c and 19c.  Problems of this type are 
illustrative of the need for a much more rigorous understanding of 
the factors that dictate the outcomes in reactions of ambident 
nucleophiles such as diazine N-oxides.

Conclusions
If one must verify on a case-by-case basis whether the predictive 
capabilities of a theory apply or not, then those predictive 
capabilities must be seriously called into question.  For this reason, 
the continued use of the HSAB principle in rationalising the 
selectivities of ambident reactants in research articles and 
undergraduate courses and textbooks should be ceased.  It appears 
to us that the approach of Mayr and co-workers, based around 
Marcus theory, is able to account for the behaviour of ambident 
reactants in a manner in which the HSAB principle cannot.  We hope 
through this study to have contributed to a more general 
understanding of ambident reactivity, to have developed upon the 
approach of Mayr and co-workers to show that it can be applied to 
semi-quantitatively rationalise product ratios in reactions of 
ambident nucleophiles, and to have demonstrated the utility of 1H-
15N HMBC NMR spectroscopy in establishing the site of attachment 
in reactions of nitrogen-containing compounds. 

In the cases we have investigated here, calculation of ΔG‡ values 
using the equations of Marcus or Zhu yields values that reproduce 
closely the experimental N/O methylation ratios for reactions of 
ambident nucleophiles pyrazine N-oxide (1) and pyrimidine N-oxide 
(3).  Based on this, it is reasonable to expect that calculations based 
on Marcus theory will allow semi-quantitative predictions of the 
nucleophilic site-selectivities in reactions of other ambident 
nucleophiles – not just those involving competition between N and 
O nucleophilic sites.  The close agreement between the reaction 
selectivities determined experimentally and those calculated using 
the Marcus and Zhu equations (see Table 4 and associated 
discussion) is demonstrative of the utility of the concept of the 
intrinsic barrier.  

The intrinsic barrier (ΔG0
‡) associated with an alkylation reaction of a 

nucleophile can be considered a property of the compounds involved 
in the reaction.  The interplay between this quantity and the 
thermodynamic favourability of the reaction (quantified through 
ΔrG°) dictates the magnitude of the activation barrier for the reaction 
(ΔG‡).  Having established herein a computational method that 
stands up to the stern test posed by modelling of the disparate 
behaviour of diazine N-oxides 1 and 3, we intend in future 

publications to determine the magnitudes of intrinsic barriers for 
reactions of a wide variety of other nucleophiles, and hence establish 
systematic trends in intrinsic barriers (developing upon the work of 
Hoz).75 This will allow the factors that control intrinsic barriers to be 
understood, and hence deepen our understanding of activation 
barriers in general.

Details on Computational Methodology
The conformational space for each structure was explored with the 
OPLS-2005 force field85 and a modified Monte Carlo search algorithm 
implemented in Macromodel.86 An energy cut-off of 84 kJ mol–1 was 
employed for the conformational analysis, and structures with 
heavy-atom root-mean-square deviations (RMSD) up to 0.5 Å after 
the force field optimizations where considered to be the same 
conformer. All remaining structures were subsequently optimized 
with the dispersion-corrected M06-2X functional87 with Grimme’s 
dispersion correction D3 (zero-damping),88 the triple- basis set 6-
311+G(d,p), and SMD solvation model89 for acetonitrile. An ultrafine 
grid was used throughout this study for the numerical integration of 
the density. Vibrational analysis verified that each structure was a 
minimum or a transition state and for the latter, following the 
intrinsic reaction coordinates (IRC) confirmed that all transition 
states connected the corresponding reactants and products on the 
potential energy surface. Thermal corrections were obtained from 
unscaled harmonic vibrational frequencies at the same level of 
theory for a standard state of 1 mol L–1 and 298.15 K. Entropic 
contributions to free energies were obtained from partition 
functions evaluated with Grimme’s quasi-harmonic approximation.90 
This method employs the free-rotor approximation for all 
frequencies below 100 cm–1, the rigid-rotor-harmonic-oscillator 
(RRHO) approximation for all frequencies above 100 cm–1, and a 
damping function to interpolate between the two expressions. 
Similar results were obtained from partition functions evaluated with 
Cramer’s and Truhlar’s quasiharmonic approximation.91 This method 
uses the same approximations as the usual harmonic oscillator 
approximation, except that all vibrational frequencies lower than 
100 cm−1 are set equal to 100 cm−1. Electronic energies were 
subsequently obtained from single point calculations of the M06-2X-
D3 geometries employing Neese’s domain-based local pair-natural 
orbital (DLPNO) approach to the CCSD(T) method [DLPNO-CCSD(T)] 
with the default normalPNO settings,92–94 the triple- def2-TZVPPD 
95,96 in combination with the corresponding auxiliary basis set97 and 
the SMD continuum model for acetonitrile.89 All density functional 
theory calculations were performed with Gaussian 16,98 while the 
DLPNO-CCSD(T) calculations were performed with ORCA 4.99 
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Competition Between N and O:  Use of Diazine N-
Oxides as a Test Case for the Marcus Theory Rationale 
for Ambident Reactivity 
Kevin J. Sheehy,a Lorraine M. Bateman,a,b,d Niko T. Flosbach,c Martin Breugst,*c Peter A. Byrne,*a,d

The preferred site of alkylation of diazine N-oxides by representative hard and soft alkylating agents was established 
conclusively using the 1H-15N HMBC NMR technique in combination with other NMR spectroscopic methods.  Alkylation of 
pyrazine N-oxides (1 and 2) occurs preferentially on nitrogen regardless of the alkylating agent employed, while O-
methylation of pyrimidine N-oxide (3) is favoured in its reaction with MeOTf.  As these outcomes cannot be explained in the 
context of the hard/soft acid/base (HSAB) principle, we have instead turned to Marcus theory to rationalise these results.  
Marcus intrinsic barriers (∆G0

‡) and ∆rG° values were calculated at the DLPNO-CCSD(T)/def2-TZVPPD/SMD//M06-2X-D3/6-
311+G(d,p)/SMD level of theory for methylation reactions of 1 and 3 by MeI and MeOTf, and used to derive Gibbs energies 
of activation (∆G‡) for the processes of N- and O-methylation, respectively.  These values, as well as those derived directly 
from the DFT calculations, closely reproduce the observed experimental N vs O selectivities for methylation reactions of 1 
and 3, indicating that Marcus theory can be used in a semi-quantitative manner to understand how the activation barriers 
for these reactions are constructed.  It was found that N-alkylation of 1 is favoured due to the dominant contribution of ∆rG° 
to the activation barrier in this case, while O-alkylation of 3 is favoured due to the dominant contribution of the intrinsic 
barrier (∆G0

‡) for this process.  These results are of profound significance in understanding the outcomes of reactions of 
ambident reactants in general.

Introduction
Selectivity in Reactions of Ambident Nucleophiles 

A fundamental goal in organic chemistry is to be able to understand 
and rationalise why chemical processes occur as they do. Naturally, 
therefore, an understanding of the factors that govern 
regioselectivity in chemical reactions is of paramount importance – 
i.e. if a compound contains more than one reactive site, which one is
preferred, and why? Reliably accounting for the regioselectivity
observed in reactions of ambident nucleophiles and electrophiles is
a challenge laden with difficulties and potential pitfalls. By far the
most popular rationale for this purpose1 makes use of the principle
of hard and soft acids and bases (the HSAB principle),2 and the
related concept of charge vs. orbital control.3 The difficulty inherent
in accounting for the selectivities observed in reactions of ambident
nucleophiles is exemplified by the fact that the HSAB principle
predicts the incorrect product in a very large number of cases, as has
been reviewed in detail by Mayr and co-workers.4 The data in this
review call starkly into question whether the principle adequately
explains the observed selectivity in reactions of ambident
nucleophiles in which the expected outcome (based on HSAB theory)
does match the experimental outcome.5

Mayr and co-workers have suggested employing Marcus theory 
(described below) as an alternative method of accounting 
qualitatively for the selectivities of reactions of ambident reactants.4

N

N
O

N

N
O

Which site is hard?
Which site is soft?

Impossible to
rationalise outcomes

N-alkylation with
hard and soft
electrophiles

N

N
O

R

N

N
O

RO-alkylation with
hard and soft
electrophiles

HSAB Principle

Mayr Approach
(MarcusTheory)

Explains observations

Ambident
Nucleophiles

Predicts product ratios
(N vs. O)

Scheme 1.  Approaches for rationalising selectivity in reactions of diazine N-
oxides as representative ambident nucleophiles.

Recently, Wang, Barnes, and co-workers conducted computational 
investigations to establish a theoretical basis for applying the HSAB 
principle in rationalising ambident reactivity, and used this, along 
with Marcus theory, to explain the results of their calculations on gas 
phase reactions of amide anions.6 However, so far, the Marcus 
theory-based approach has not been adopted by the wider research 
community, and in fact the HSAB rationale continues to be cited in 
cases in which the experimental results do align, perhaps arbitrarily, 
with expectations based on this principle.5 Furthermore, the 
elements of the intuitively alluring HSAB rationale pervade all 
discussions of ambident reactivity in undergraduate chemistry 
courses, and in the most comprehensive organic chemistry 
textbooks.1 Given the clear deficiencies of the HSAB rationale in the 
context of ambident reactivity, it now behoves organic chemists to 
test Mayr’s approach and other alternatives on their capacity to 
account for the outcomes of reactions of ambident reactants.

Herein, we focus on the notoriously difficult problem of competition 
between N and O nucleophilic sites (Scheme 1).4,5c,6,7–14 We chose 
diazine N-oxides 1, 2 and 3 (Fig. 1) as test substrates in reactions with 
various representative hard and soft electrophiles because, although

a.School of Chemistry, Analytical and Biological Chemistry Research Facility, 
University College Cork, College Road, Cork, Ireland.

b.School of Pharmacy, University College Cork, College Road, Ireland
c. Department für Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany.
d. SSPC (Synthesis and Solid State Pharmaceutical Centre), Cork, Ireland.
E-mail:  peter.byrne@ucc.ie, mbreugst@uni-koeln.de
Electronic Supplementary Information (ESI) available: contains experimental
procedures, characterisation data for products and reaction mixtures, details of
crossover experiments, copies of NMR spectra, and details on computational 
investigations.  See DOI: 10.1039/x0xx00000x.
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Figure 1. Representative Diazine N-oxides

these reactions show very high site-selectivity (i.e. for N- or O-
alkylation),7 their outcomes are intractable to rationalisation using 
the HSAB principle (Scheme 1), as will be discussed in the next 
section.  An additional contributing factor that confounds any 
attempt to analyse the reactions of these species using the HSAB 
rationale is that it is not possible to unambiguously identify which 
nucleophilic site of a diazine N-oxide is the hard site, and which is the 
soft site (see later).15

In this work, we will show that the approach of Mayr and co-workers 
enables accurate prediction of the preferred site of alkylation of 
ambident nucleophiles 1–3. Furthermore, we will also show that it is 
even possible to calculate the ratio of the selectivities for the 
different nucleophilic sites in these compounds (N vs. O) with an 
impressive degree of accuracy (Scheme 1).16 Our results bolster the 
applicability of the Marcus theory-based approach and establish, for 
the first time, its capacity to semi-quantitatively account for the 
ratios of site-selectivities in reactions of ambident nucleophiles.

It should be noted that the limitations of the HSAB principle were 
highlighted by its developer (Pearson),2d,f and that in its original 
formulation,2a,b it was not derived with the intention of rationalising 
the selectivities of reactions of ambident reactants. However, 
thereafter, it has been2c and continues to be applied in this 
manner.1,5 In recent years, a theoretical grounding demonstrating 
the applicability of the “global” HSAB principle (which does not apply 
to ambident reactants) has been developed.17,18 Despite the authors’ 
inclusion in the articles on this topic of precise statements such as 
“The local HSAB principle, which makes predictions about ambident 
acids and bases, is on much shakier theoretical ground, so 
experimental evidence against it is not surprising”, 15a,17b  these 
papers are nonetheless cited in other articles in support of 
application of the HSAB principle to the analysis of reactions of 
ambident nucleophiles.5c This is illustrative of the continued 
application of the HSAB principle to rationalisation of ambident 
reactivity in the wider chemistry community despite the large body 
of evidence demonstrating that it does not apply in such instances.

Competition Between N and O Nucleophilic Sites

Numerous examples of reactions of ambident nucleophiles 
containing competing O and N nucleophilic sites exist in the 
literature.6,10–14,19–32 Compounds 1–3 are particularly suitable for the 
present investigation for the following reasons: (i) Unlike the 
reactions of many other ambident nucleophiles containing N and O 
nucleophilic sites,6,14,20–31  reactions of 1–3 are not influenced by the 
presence of a counter-cation,33 and (ii) their alkylation products do 
not undergo secondary reactions (cf. amide alkylations).19c,f

There exist several literature precedents of relevance to the 
ambident nucleophilicity of diazine N-oxides. Exclusive O-alkylation 
has been reported to occur in reactions of pyrazine N-oxide (1), 
quinoxaline N-oxide (2) and pyrimidine N-oxide (3) with hard 

alkylating agent dimethylsulfate,7 and predominant O-ethylation has 
been reported to occur in the reaction of compound 4 with hard 
electrophile [Et3O]BF4 (Scheme 2a).10 Reactions of 1, of 2 and of 5 
with soft electrophile methyl iodide have been reported to yield N-
alkylated adducts (Scheme 2b),11,12 as has the reaction of 5 with 
benzyl chloride.12c In contrast, compound 6 undergoes exclusive N-
ethylation on reaction with hard electrophile [Et3O]BF4 (Scheme 
2c).10 Notwithstanding the ambiguity inherent in assigning hard and 
soft sites in these diazine N-oxides, it is clear that these results 
cannot all simultaneously be consistent with the HSAB principle.

An additional fundamental difficulty exists in the context of reactions 
of diazine N-oxides: the act of establishing the structure of the 
product is itself fraught with ambiguity. The spectral features of the 
products of O-alkylation and N-alkylation of a particular diazine N-
oxide are not necessarily readily distinguishable.  Most instances in 
the literature in which product structures have been assigned have 
been based on the results of chemical derivatisations,12 prior to the 
development of modern spectroscopic methods. In only one instance 
(involving two compounds) have modern two-dimensional NMR 
spectroscopic techniques been used to establish the precise 

structures of alkylation products of diazine N-oxides.10,34 Hence, even 
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Scheme 2.  Alkylation of diazine N-oxides 1–6 using various hard and soft 
electrophiles. (a) O-alkylation using hard electrophiles,7,10 (b) N-alkylation 
using soft electrophiles,11,12 (c) N-alkylation using a hard electrophile.10  
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in instances in which structural assignments have been made, it is 
not certain that the correct product structures have been identified.

To unambiguously establish the ratios of N vs. O selectivity for the 
alkylation reactions of 1–3, we took advantage of the technique of 
indirect detection natural abundance 1H-15N HMBC NMR
spectroscopy.34–38 This is an extremely useful diagnostic tool but, is 
very notably under-exploited – to our knowledge, there are only a 
handful of examples of its use to establish the site of attachment of 
an alkyl electrophile to an ambident reactant.10,31,34,37 We have also 
conducted high level quantum chemical calculations to help us in 
understanding the outcomes of these experiments.

Background Data and Reference δN Values

In order to be able to employ 1H-15N HMBC NMR spectral data in a 
diagnostic manner to establish the site of alkylation of ambident 
nucleophiles 1–3, we have made use of a set of results described in 
our recent publication.39 In this preliminary study, we carried out 
various alkylations of representative diazines and azine N-oxides (see 
examples shown in Scheme 3, involving N-methylation of 7 and O- 
methylation of 8), and monitored the change in the 15N NMR 
chemical shifts (referred to as ∆(δN) values) of each nitrogen atom in 
the N-alkylated product relative to its δN value in the starting material 
using 1H-15N HMBC NMR spectroscopy.  We consistently observed 
that upon N-alkylation of diazines, a large upfield shift of the δN value 
of the alkylated nitrogen atom occurs (i.e. ∆(δN) << 0 ppm).40 In fact, 
across a total of 22 examples from the chemical literature and our 
own work, involving N-methylation or ethylation of pyridrines, 
diazines, diazine N-oxides, quinolines, and isoquinolines, the average 
upfield ∆(δN) value of the alkylated nitrogen atom is −115 ppm.10,41 
Similarly, the average upfield ∆(δN) value associated with N-
benzhydrylation was −91 ppm (3 examples).  In contrast, the shift 
upfield in the N-oxide nitrogen δN value upon O-alkylation is 
significantly smaller – across 7 examples involving N-methylation or 
ethylation, the average upfield ∆(δN) value was determined to be 
only −40 ppm, while for O-benzhydrylation the average ∆(δN) value 
was −45 ppm.  That the upfield signal in each case belongs to the 
alkylated nitrogen atom is shown by the existence of a correlation in 
the 1H-15N HMBC NMR spectrum of the product between the upfield 
15N signal and the proton(s) of the N- or O-alkyl group.

From the above, we can conclude that there is a characteristic ∆(δN) 
value associated with N-alkylation of an aromatic N-heterocycle, 
distinct from (and significantly larger than) the ∆(δN) value associated

X

MeCN (MeOTf)
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9a X = I (20%)
9b X = OTf (84%)

Me X
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N

N
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+
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Me X+
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N
O
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10a X = I (59%),
10b X = OTf (78%)

Scheme 3.  Examples of use of hard and soft methylating agents to effect (a) 
N-methylation of 7; (b) O-methylation of 8.  X = I or OTf throughout.  Isolated 
yields are shown in parentheses.

with O-alkylation of an aromatic N-oxide. Analogous observations 
have been made in an 15N NMR spectroscopic study of protonation 
of pyridine and 4-methylpyridine N-oxide, which induces ∆(δN) values 
of −113.3 ppm41a and −50.1 ppm,41b respectively. Furthermore, 
complexation of aromatic N-heterocycles to metals has been shown 
to result in upfield ∆(δN) values of  ca. −100 ppm).42

Our previous investigation also allowed us to determine that in the  
1H-13C HMBC NMR spectra  of N-alkylated products, three-bond 
correlations exist between the N-alkyl group carbons and hydrogens 
and the ortho carbons and hydrogens of the aromatic moiety.39 No 
correlations were observed in the 1H-13C HMBC NMR spectra  of O-
alkylated products between the O-alkyl group carbons and 
hydrogens and the ortho carbons and hydrogens. Furthermore, these 
unambiguous NMR spectroscopic correlation methods also allowed 
us to establish definitive diagnostic trends in the 13C NMR chemical 
shifts of the alkyl group carbons immediately bound to aromatic 
nitrogen or aromatic N-oxide oxygen.  For example, the N-methyl 
carbon of the adduct of N-methylation of an aromatic nitrogen 
nucleophile was shown to typically have a δC value in the range 36 – 
53 ppm, while the O-methyl carbon of the adduct of aromatic N-
oxide methylation typically exhibits a δC value in the range 62 – 75 
ppm.39 Consequently, it should be possible to employ a combination 
of ∆(δN) values (obtained from 1H-15N HMBC NMR spectra) in tandem 
with 1H-13C HMBC and 13C{1H} NMR spectroscopic data to distinguish 
between N- and O-alkylated diazine N-oxides.

Results
Site of Alkylation of Diazine N-Oxides

The data discussed above show that natural abundance 1H-15N HMBC 
is a highly useful diagnostic tool to determine whether or not the site 
of attachment of an alkyl electrophile is at a nitrogen atom.  We will 
now describe how we have employed the 1H-15N HMBC NMR 
technique, in tandem with information from 13C{1H} and 1H-13C HSQC 
and HMBC NMR spectra, to establish the site of alkylation of 
ambident nucleophiles 1–3 in reactions with representative hard and 
soft alkylating agents.

Reactions of ambident nucleophiles 1 and 2 with electrophiles MeI, 
MeOTf, and benzhydrylium triflates 11 and 12 were carried out using 
the conditions shown in Scheme 4 (pg. 5) and Table 1 (pg. 4).44–46 The 
reaction of 1 with MeI in CD3CN or CH3CN resulted in formation of a 
single product, albeit with low conversion and yield – i.e. the process 
of alkylation was completely selective for one site (N or O) – see Table 
1 entry (i).  We did not observe any product formation in our 1H NMR 
spectra of the reaction of 2 + MeI in CD3CN.  Product formation was 
only observed when the reagents were mixed together in the 
absence of solvent (neat); the data in Table 1 entry (v) refer to the 
reaction run under these conditions.  As in the case of 1 + MeI, only 
a single product was observed by 1H NMR spectroscopy.  Attempted 
reactions of 3 with MeI in CD3CN or MeCN did not yield any products, 
i.e. neither 21a nor 23a were observed (Scheme 4c).

The reaction of 1 with benzhydrylium triflate 11 in CH2Cl2 or CD3CN 
also result in formation of single products (Table 1 entry (iv)).43 The 
1H NMR spectrum of the reaction of 2 + 13 in CD2Cl2 (Scheme 4b)  
shows formation of two products in a 91:9 ratio (combined 
conversion = 93%; the remaining 7% was accounted for by hydrolysis 
product; see (Table 1 entry (viii)). Reaction of 3 with 11 gave 1H NMR
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Table 1. Alkylation reactions of diazine N-oxides 1, 2 and 3 (as per Scheme 4) resulting in formation of O- and N-alkylated products.a Note that the 1H NMR 
spectra of the reaction mixtures on their own do not show which product (O vs. N-alkylation) is favoured in each case, only the product ratio.  

+ +
Diazine
N-oxide
1, 2 or 3

N-alkylated
product

O-alkylated
productRX

ProductsDiazine 
N-Oxide # Reaction 

Solvent a R X
N-methyl O-methyl

Conversion 
(Isolated % Yield) b

N/O Product      
Ratio c

(i) CD3CN or No 
Solvent Me I 13a 15a Reaction in CD3CN: 24% 

(Solvent-free reaction 26%) > 99:1

(ii) CD3CN Me OTf 13b 15b Quantitative 
(68% yield of 13b) a   95:5

(iii) (CD3)2SO Me OTf 13b 15b 87% > 99:1

N

N

1

O

(iv) a CD3CN or     
CH2Cl2  

 a CH2Ph OTf 14 16 Quantitative a > 99:1

(v) No solvent Me I 17a 19a (Yield = 16%) d > 99:1

(vi) CD3CN Me OTf 17b 19b Quantitative 
(57% yield of 17b) a    89:11

(vii) (CD3)2SO Me OTf 17b 19b 78% > 99:1

N

N

2

O

 (viii) CD2Cl2  CHPhAr e OTf 18 20 93%    91:9

(ix) CD3CN Me I 21a 23a No products formed -

      (x) CD3CN Me OTf 21b 23b Quantitative a    7:93

   (xi) (CD3)2SO Me OTf 21b 23b 76%   7:93

N

N

O

3
  (xii) CD2Cl2  CHPhAr e OTf 22 24 Spectra could not be 

interpreted -

a See Supporting Information for experimental conditions employed and details of conversion calculations and yields.44

b Conversions represent the combined amount of N- and O-alkylated product formed relative to the amount added of the alkylating agent (always the limiting 
reagent).  These were determined using integrations of appropriate signals in the 1H NMR spectra. For entry (viii), the deviation from quantitative conversion 
was due to hydrolysis of the alkylating agent.  Percentage yields (where applicable) of isolated products were determined from separate reactions run on 
larger scale using MeCN solvent, or with no solvent (neat reagents) for entries (i) and (v).  Products 14, 18, 20, 21b and 23b (entries (iv), (viii) and (x), 
respectively)) decompose upon attempted isolation, and hence no isolated yields could be obtained in these cases.
c The identities of the products cannot be determined directly from the 1H NMR spectra.  Information from other spectra is needed to establish which product 
is N-alkylated and which is O-alkylated, and hence to establish the N/O ratio.  See main text for full details.
d 2 + MeI were reacted together without solvent.  The product was purified prior to NMR spectral characterisation, so the conversion was not determined for 
this reaction.  However, the low isolated yield shown above is indicative of low conversion in this reaction.
e Ar = para-tolyl.

and 1H-15N HMBC spectra that we could not interpret,47 containing 
broad and unusually-shaped signals – i.e. we could not detect 
formation of 22 or 24 (Scheme 4).  We ascribe this to the very low 
Lewis basicity of 3, i.e. the reaction of 3 + 11 is reversible, and 
thermodynamically disfavoured.

The reactions of 1–3 with MeOTf in CD3CN yielded mixtures of O- and 
N-methylation products (Table 1 entries (ii), (vi), and (x)). Addition of
MeOTf to (CD3)2SO solutions of 1 and 2 resulted in formation of a
single product in each case (Table 1 entries (iii) and (vii)), while the
corresponding reaction of 3 gave two products (Table 1 entry (xi)).

The rates of these reactions differed greatly depending on the 
solvent used.  Product formation was rapid for reactions in CD3CN 
(i.e. complete within minutes), but was exceptionally slow in 
(CD3)2SO, requiring weeks for high conversions to be obtained.  It is 
highly likely that the active methylating agent in (CD3)2SO was the 
methoxysulfonium salt [(CD3)2S(OMe)]OTf,48–50 and that this 
electrophile is much less reactive than MeOTf in MeCN.

Many of the initial products of the reactions of Scheme 4 and Table 
1 do not survive attempts at isolation.  Hence, all reactions were 
conducted on small scale, and the entirety of each reaction mixture 
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Scheme 4.  N- and O-alkylation reactions of ambident nucleophiles 1–3.
Methylation reactions (using MeI or MeOTf) were conducted in (CD3)2SO, 
CD3CN, or CH3CN.  Upon completion of reactions in CD3CN or CH3CN, the 
solvent was removed, and (CD3)2SO was added.  Benzhydrylation reactions 
were conducted in CD2Cl2.43 See Table 1 for details of conversions and yields.

was transferred (under inert atmosphere) to a NMR tube for analysis 
by NMR spectroscopy.  In instances in which stable, isolable products 
were formed, the final (stable) products were isolated from separate 
reactions, conducted on larger scale.  The adducts of benzhydrylation 
of 1 and 2 are hydrolytically unstable and could not be isolated.  The 
adduct of 2 + MeI was formed in very low conversion,51 and the 
adduct of 3 + MeOTf became contaminated with multiple 
decomposition products;52 hence neither adduct could be isolated in 
pure form.  In addition, for the reactions of 1–3 with MeOTf in MeCN 
or CD3CN solvent, decomposition of the minor product (detected in 
1H NMR spectra in CD3CN) occurred upon removal of the 
MeCN/CD3CN solvent under vacuum, resulting in the observation of 
the signals of the major product only in the 1H NMR spectrum of the 
mixture upon dissolution in (CD3)2SO.53

In all cases shown in Table 1, it was impossible to distinguish the site 
of attachment of the alkyl group unambiguously using standard 1H- 
or 13C-based one or two-dimensional NMR techniques.  That is, the 
identity of the product(s) in each case could not be reliably assigned 
as O-alkylated or N-alkylated.  In the instances in which mixtures of 
O- and N-methylation products were obtained, product ratios could
be determined using the integrations of signals in 1H NMR spectra,
but which product was favoured was not clear.  The product ratios
determined in this way are shown in Table 1.

In order to determine which site (N or O) of each of the ambident 
nucleophiles 1–3 is favoured in the alkylation reactions shown in 

Scheme 4 and Table 1, we made use of the indirect detection natural 
abundance 1H-15N HMBC NMR spectroscopic technique described 
above. The 15N NMR chemical shifts of starting compounds 1–3 and 
of the observed alkylation adducts are shown in Table 2 (see pg. 6).  
The ∆(δN) values associated with these reactions (also shown in Table 
2) show the extent to which the chemical shifts of the 15N nuclei of
the alkylation product(s) differ from the chemical shifts of the
corresponding 15N nuclei in the starting materials 1–3.  As above, a
negative value of ∆(δN) indicates an upfield shift of the δN value of an
15N environment upon alkylation, while a positive value indicates a
downfield shift.  In several instances (all described above), only one
product was formed in the alkylation reactions of 1–3, while in
others, the minor product did not survive the process of removal of
the MeCN or CD3CN reaction solvent and replacement with
(CD3)2SO.53 Hence, in almost all cases, only one product could be
characterized using the 1H-15N HMBC NMR technique.  In the 1H-15N
HMBC spectrum of the reaction of 2 + 12, no correlations were
observed to the small signals of the minor product that was shown
to be present by the 1H NMR spectrum.  The only instance in which
it was possible to determine the δN values of both the major and
minor alkylation products involved methylation of 3 in (CD3)2SO using
MeOTf (Scheme 4c; through methoxysulfonium triflate).

Figure 2. (a) Section of the 1H-15N HMBC NMR spectrum of 13b in (CD3)2SO 
(from reaction of Table 2 entry (ii)) showing correlation of N-methyl 1H signal 
with upfield 15N signal, (b) Section of the 1H-13C HMBC NMR spectrum of 13b 
in CD3CN (from reaction of Table 2 entry (ii)) showing correlations between (i) 
N-methyl 1H signal and ortho-13C signals, and (ii) ortho-1H signals and N-
methyl group 13C signal.
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 Table 2. δN and Δ(δN) values associated with N- and O-alkylation reactions of diazine N-oxides 1–3 (as per Scheme 4).a 

+ +
Diazine
N-oxide
1, 2 or 3

N-alkylated
product

O-alkylated
productRX

Solvent

N-alkylation O-alkylation
Diazine 
N-oxide # Products R X

Reaction 
solvent/

NMR Solvent a

δN of starting 
compound 

(ppm) δN of product 
(ppm)

Δ(δN) 
(ppm) 

δN of 
product (ppm)

Δ(δN) 
(ppm) 

(i) 13a, 15a Me I
MeCN/

(CD3)2SO
309.3    

  303.9 b
322.3
187.1

+13.0
−116.8

Product (15a) not 
formed

(ii) 13b, 15b Me OTf
MeCN/

(CD3)2SO
309.3     

  303.9 b
322.9
187.8

+13.6
−116.1

Product (15b) decomposed 
during solvent exchange

(iii) 13b, 15b Me OTf (CD3)2SO
309.3     

  303.9 b
322.9
187.7

+13.6
−116.2

Product (15b) not 
formed

N

N

O

1

(iv) 14, 16 CH2Ph OTf CD2Cl2
311.0
303.5

325.0 
201.6

+14.0
−101.9

Product (16) not 
formed

(v) 17a, 19a Me I MeCN/
(CD3)2SO

303.2        
    299.3 c,d

314.4
178.0

+11.2
−121.3

Product (19a) not 
formed

(vi) 17b, 19b Me OTf MeCN/
(CD3)2SO

303.2        
    299.3 c,d

314.4
177.6

+11.2
−121.7

Product (19b) decomposed 
during solvent exchange

(vii) 17b, 19b Me OTf (CD3)2SO
303.2        

    299.3 c,d

314.4
177.9

+11.2
−121.4

Product (19b) not 
formed

N

N

O

2

 (viii)  18, 20 CHPhAr e OTf CD2Cl2
302.0
300.3

317.6
190.5

+14.4
−108.8

Signal of 20 not 
detected in 1H-15N HMBC 

(ix) 21b, 23b Me OTf CD3CN/ 
(CD3)2SO

301.3       
291.7

Product (21b) decomposed 
during solvent exchange

303.4
249.4

+2.1
−42.3

N

N
O

3
(x) 21b, 23b Me OTf (CD3)2SO 301.3       

291.7
293.6
205.2

−7.7
−86.5

303.1
249.0

+1.8
−42.7

a See Supporting Information for experimental conditions employed.45

b Literature δN values: 309.33, 303.85 ((CD3)2SO, referenced to nitromethane at 380 ppm; equivalent to ammonia at 0 ppm).54

c These values were reported in reference 55 as δN −76.8 and −80.7 ppm (referenced to nitromethane at 0 ppm).
d The reported δN values for these signals was from a spectrum referenced to nitromethane at 0.0 ppm.  Since our 1H-15N HMBC spectra were referenced to 
ammonia at 0 ppm, the literature δN value has been re-calculated here relative to ammonia at 0 ppm.
e Ar = para-tolyl.

The 1H-15N HMBC NMR spectra of the major or exclusive products 
formed in the reactions of 1 or 2 with electrophiles MeI, MeOTf, and 
benzhydrylium 11 and 12 (Scheme 4a and 4b) all show that the δN 
values of the upfield nitrogen nuclei are shifted upfield by over 100 
ppm relative to the δN values of the corresponding nitrogen NMR 
environments in the starting materials, i.e. ∆(δN) > −100 ppm in each 
case (see Table 2 entries (i), (ii), (iii), (v), (vi) and (vii) for methylations 
and entries (iv) and (viii) for benzhydrylation reactions).56 That the 
upfield signal in the 15N dimension belongs the alkylated nitrogen is 
confirmed by the existence of a correlation in the 1H-15N HMBC NMR 
spectrum of this signal with the 1H signal of the N-alkyl proton(s) (see 
example spectrum from the reaction of 1 + MeOTf in Fig. 2a).

In the 1H-13C HMBC NMR spectra of each of the major products of 
the reactions of 1 and 2, a correlation is shown to exist between the 
alkyl group (aliphatic) proton(s) and the carbons ortho to the upfield 
nitrogen for all alkylation adducts (see example in Fig. 2b).  A 

correlation between the alkyl group aliphatic carbon and the protons 
ortho to the upfield nitrogen is also evident in these spectra. The 
large upfield ∆(δN) values and correlation data associated with the 
alkylation reactions of 1 and 2 are consistent with the preferential 
(and in some cases exclusive) occurrence of N-alkylation in these 
reactions.

In support of this conclusion, the 13C{1H} NMR chemical shifts of the 
methyl group carbon in the major products of the methylation 
reactions of 1 and 2 are, respectively, 44.1 and 46.6 ppm.57 These 
values lie in the middle of the range of δC values identified in our 
previous work as being characteristic of N-methylation of aromatic 
N-heterocycles (vide supra).39 The δC values of the minor products of
these methylation reactions were, respectively, 68.9 and 70.2 ppm.
These values appear in the middle of the δC range that is indicative
of adducts of O-methylated aromatic N-oxides.39,57 The δC values of
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the benzhydryl group aliphatic carbons (Ar2CH) in the products of the 
benzhydrylation reactions of 1 and 2 were, respectively, 77.2 and 
73.2 ppm.57 These values are characteristic of N-benzhydrylated 
products, based on our previous work.39 The above data are all 
consistent with the conclusion that the major products formed are 
N-alkylation adducts 13, 14, 17 and 18 (Scheme 4a and 4b). These are
formed in preference to O-alkylation adducts 15, 16, 19 and 20.

The 1H-15N HMBC NMR spectrum of the reaction mixture produced 
by adding MeOTf to a (CD3)2SO solution of 3 (Scheme 4c) showed 
signals for the major product at δN 303.1 and 249.0 ppm (Table 2, 
entry (x)).58 The upfield 15N NMR signal showed a correlation with the 
methyl group CH3 protons, indicating that this belongs to the 
alkylated nitrogen. However, no correlation existed in the 1H-13C 
HMBC NMR spectrum for the signal of the methyl protons with the 
signal of the carbons ortho to the upfield nitrogen, nor for the signal 
of the methyl carbon with the signal of the protons ortho to upfield 
nitrogen.  Based on the δN value of the upfield nitrogen signal, the δC 
value of the methyl group carbon of 70.2 ppm (characteristic of a 
N+—O—CH3 13C NMR signal of a N-methoxypyridinium ion),39 and the 
features of the 1H-13C HMBC NMR spectrum, the spectral 
characteristics of the major product are very similar to those of 
compound 10 (the O-methylated adduct of pyridine N-oxide (8); 
Scheme 3b), and other aromatic N-oxide O-methylation adducts.39

We therefore conclude that the major product of this reaction is O-
methylation adduct 23b (Scheme 4c).  The upfield signal (δN = 249.1 
ppm) is assigned to the N—OMe nitrogen atom, and hence has a 
∆(δN) value of −42.7 ppm relative to the signal of the N-oxide 
nitrogen atom of 3 (at δN = 291.7 ppm; see Table 2 entry (x)), while 
the downfield signal has ∆(δN) = +1.8 ppm relative to the 
corresponding signal of 3 (δN = 301.3 ppm).  The upfield ∆(δN) value 
of −42.7 ppm for this reaction is very similar to the ∆(δN) values 
observed in formation of methoxypyridinium salts during O-
methylation reactions of N-oxides (e.g. ∆(δN) = −43.6 ppm for 
formation of 10 from 8 + MeOTf; Scheme 3b).39 

The ∆(δN) value associated with formation of the minor product of 
the reaction of pyrimidine N-oxide (3) + [(CD3)2S(OMe)]OTf  in 
(CD3)2SO is considerably larger than the ∆(δN) value for O-alkylation 
(Table 2 entry (x); ∆(δN) = −86.5 vs −42.7 ppm).  In addition, the 1H-
13C HMBC NMR spectrum exhibits multiple bond correlations 
between the N-methyl group and ortho aromatic 1H and 13C signals.59 
The δC value of the methyl group carbon of the minor product was 
46.6 ppm,57 which is characteristic of an aromatic N+—CH3 carbon 
(vide supra).39 These data are consistent with the minor product 
being N-methylation adduct 21b (Scheme 4c). Our spectral data on 
the reaction of 3 + MeOTf in CD3CN (or MeCN) also show that 23b is 
the major product formed in this solvent.54 Although 21b is formed 
in the reaction (as shown by 1H NMR spectral analysis), it does not 
survive the process of solvent removal and dissolution in (CD3)2SO 
(vide supra).

Based on the above data, we can conclude that the N- vs O-
methylation ratios in the reactions of 3 with MeOTf (in CD3CN) and 
[(CD3)2S(OMe)]OTf  in (CD3)2SO are both 7:93 (in favour of O-
methylation; see Table 1 entries (x) and (xi)).

Crossover Experiments

The N- vs O-alkylation ratios observed in the reactions of 1–3 did not 
change over time in the absence of perturbation. In order to establish 
whether or not these reactions occurred under kinetic control, we 
carried out several crossover experiments involving reactions of 
MeOTf with 1–3 (and of MeI with 1) in CD3CN followed by addition 
of a second nucleophile.60 An internal standard (1,3,5-
trimethoxybenzene) was added to the reaction mixture to allow the 
amounts of the products present to be quantified (using integrations 
of  1H NMR spectral signals of the products) before and after addition 
of the second nucleophile, and to enable quantification of the 
amount of crossover product formed.  Nucleophiles 7 and 25 were 
selected as second nucleophiles because they have been shown in 
separate studies to be considerably stronger Lewis bases than 
compounds 1–3,61 and hence are expected to out-compete 1–3 for 
any free alkylating agent present due to (i) their stronger 
nucleophilicity and (ii) the fact that they are present in considerable 
excess over 1–3 under the conditions of the crossover experiment.

We observed that the amount of major product formed in the 
methylation reactions of each of 1 and 2 remained constant with 
respect to the internal standard during the crossover experiments, 
i.e. the formation of the major product in each case is irreversible
(i.e. 13a, 13b, and 17b respectively).  For example, the amount of 13b
formed in the reaction of 1 + MeOTf in CD3CN at 16 °C is invariant at
96% of methylation product throughout the experiment (Scheme 5).
In the reactions of 1 and 2 with MeOTf (using 25 or 7 as the second
nucleophile), crossover product formed at the expense of the minor
product (O-methylation adducts 15b and 19b) with commensurate
production of starting diazine N-oxide (1 or 2).  Although crossover
product (9b or 26) is formed from the minor products in these
experiments, we conclude in each case that this is a consequence of
the occurrence of an SN2 reaction between the second nucleophile (7
or 25) and the minor product.  If this were not the case, then
repeated observations of the N/O-methylation ratios over time in
alkylation reactions of 1 and 2 should show this ratio changing (to
favour the major product), since formation of the major product is
irreversible in each case.  Consequently, we conclude that O-

13b 15b
N

N

Me

O

N

N
O

1

+
N

N

TfO O
Me

(i) MeOTf
CD3CN, 16 °C

(ii) 1,3,5-C6H3(OMe)3

N

N
Me

OTf
+

N

N
O

Ratio 13b:15b =
96:4

25

26
(4% after 1 day)

+

13b
(96% of product)

N

N

Me

O

Additional
1 present

after 1 day

After 1 day,
no 15b
remains

CO2Me

CO2Me

TfO

TfO

Scheme 5. Crossover experiment investigating reversibility of reaction of 1 + 
MeOTf using 1,3,5-trimethoxybenzene as internal standard, and “crossover 
nucleophile” 25.  The crossover product is compound 26.62
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methylation of 1 and 2 are also irreversible processes in CD3CN 
solvent at ambient temperatures.  Thus, N-methylation of 1 and 2 are 
observed because they are the kinetically favoured reactions in their 
respective processes.

A similar crossover experiment involving the reaction of pyrimidine 
N-oxide (3) + MeOTf in CD3CN (with an internal standard added) and
pyrazine (7) as 2nd nucleophile also showed formation of crossover
product 9b.  In 1H NMR spectra of this reaction mixture recorded
early in the reaction, the crossover product (9b) was observed to
form primarily at the expense of N-methylation product 21b (minor
product of this reaction), but some O-methylation product (23b) was
also consumed.62 An amount of 3 formed that was commensurate
with the amount of 9b produced. After several days, further
crossover product was observed to form at the expense of major
product 23b.62 It is not clear from these experiments whether
formation of 21b and 23b from 3 + MeOTf is reversible, i.e. whether
7 reacts with MeOTf formed by reversal of 21b and/or 23b to 3 +
MeOTf, or whether crossover product 9b is formed by direct SN2
reactions of 7 with 21b and/or 23b.

Computational Investigations

Our experimental investigations indicate that ambident nucleophiles 
pyrazine N-oxide (1) and quinoxaline N-oxide (2) (with competing N 
and O nucleophilic sites) undergo preferential alkylation on nitrogen 
regardless of the nature of the alkylating agent used, i.e. independent 
of whether the electrophile is hard or soft.  Ambident nucleophile 
pyrimidine N-oxide (3), by contrast, has been shown to undergo 
preferential O-methylation by MeOTf.  In order to be able to 
understand and rationalise the outcomes of the reactions described 
above, high level quantum chemical calculations at the DLPNO-
CCSD(T)/def2-TZVPPD/SMD(CH3CN)//M06-2X-D3/6-
311+G(d,p)/SMD(CH3CN) level of theory were carried out to 
determine the relative Gibbs energies of the reactants, transition 
states and products of the reactions of each of compounds 1, 3, 7 
(pyrazine),  and 8 (pyridine N-oxide) (structures shown in Chart 1 and 
Scheme 3) with MeI and MeOTf.63 The reactions of pyrimidine (27) 
and pyridine (28) with MeI and MeOTf were also investigated in the 
same manner.  The computational results can be used to estimate 
the Gibbs energy of activation (∆G‡) and standard enthalpy and Gibbs 
energy of reaction (∆rH° and ∆rG°, respectively) for each process. The 
accuracy and predictive capability of this computational method 
have been verified by the close agreement of the ∆G‡ values 
determined experimentally and computationally for the reaction of 
pyrazine N-oxide (1) with MeI (vide infra).  The results of the 
computational investigations of the methylation reactions of 7, 8, 27 
and 28 are presented in Table 3 (left side).  Compounds 7, 27 and 28 
undergo N-methylation, and compound 8 undergoes O-methylation.  
These results allow us to see representative values of ∆G‡, ∆rH° and 
∆rG° for N- and O-methylation reactions in which there is no 
ambiguity over the site of methylation.

Unsurprisingly, the reactions involving MeOTf have systematically 
smaller calculated ∆G‡ values and are more exergonic than the 
reactions involving MeI.  The values of ∆G‡ and ∆rG° for methylation 
of 7 by MeI are very similar to the corresponding values for 27 (Table 
3 entries (i) and (v)).  The ∆G‡ and ∆rG° values for the reactions of 7 
and 27 with MeOTf are also very similar (Table 3 entries (ii) and (vi)).  

This suggests that the nucleophilicities and Lewis basicities of 7 and 
27 are very similar.  The reactions involving pyridine (28; Table 3 
entries (vii) and (viii)) are both more kinetically and 
thermodynamically favourable than the corresponding reactions of 
7 and 27 with the two methylating agents.64 The O-methylation 
reactions of 8 are more kinetically favourable than the corresponding 
reactions of 7 and 27, despite being less thermodynamically 
favourable than those reactions (compare Table 3 entry (iii) with 
entries (i) and (v), and entry (iv) with entries (ii) and (vi)).

The reaction of pyrazine N-oxide (1) with MeOTf was found 
computationally to result in kinetically and thermodynamically 
preferred N-methylation (compare Table 3 entries (x) and (xii)).  This 
calculation indicates that methylation of 1 by MeOTf is an irreversible 
process at room temperature (regardless of the site of methylation), 
in agreement with the results of our crossover experiments (see 
above).  The relative magnitudes of ∆G‡(N) and ∆G‡(O) calculated for 
this reaction suggest that a small amount of O-methylated product 
(ca. 5 – 7%) should be produced, as is observed experimentally (N/O 
methylation ratio = 95:5 for reaction at 20 °C; see Table 2 entry (ii)).65

The reaction of 1 with MeI was also found to result in kinetically and 
thermodynamically preferred N-methylation (compare Table 3 
entries (ix) and (xi)), which is consistent with the results of our 
crossover experiments.  This reaction has been observed 
experimentally to be very slow.  Only a small amount of conversion 
had occurred after several days, consistent with the high activation 
barrier found computationally (shown in Table 3) and determined 
through a kinetic investigation (described below).  In contrast to the 
reaction of 1 with MeOTf (above), O-methylation of 1 by MeI was 
found computationally to be thermodynamically disfavoured and 
therefore reversible (Table 3 entry (xi)).  No O-methyl adduct (17a) 
was observed experimentally for this reaction, which is consistent 
with kinetically disfavoured and reversible O-methylation.

The ∆G‡(N) and ΔrG°(N) values for N-methylation of 1 (by MeOTf or 
MeI) are similar to the corresponding values for diazines 7 and 27 
(compare Table 3 entry (x) with entries (ii) and (vi), and entry (ix) with 
entries (i) and (v)).  In contrast, the ∆G‡(O) and ΔrG°(O) values for O-
methylation of 1 (by MeOTf or MeI) are significantly less favourable 
than the corresponding reactions of N-oxide 8 (compare Table 3 
entry (xii) with entry (iv), and entry (xi) with entry (iii)).  The 
implication of this is that the oxygen site of 1 is deactivated relative 
to the oxygen site of 8, both as a nucleophile and as a Lewis base.66 

Our calculations on the reaction of pyrimidine N-oxide (3) with 
MeOTf indicate that, despite the fact that N-methylation (formation 
of 21b) is   thermodynamically favoured over O-methylation 
(formation of 23b), the kinetically preferred process in this reaction 
is O-methylation (compare Table 3 entries (xiv) and (xvi)). The 
difference between the calculated values of ∆G‡(N) and ∆G‡(O) 
suggests that a small amount of N-methylation (ca. 1–3%) should 
occur.  These results are in quite close agreement with the 
experimental observations – O-methylation is indeed favoured, and 
approximately 7% of the product formed is N-methylation adduct 
21b (in CD3CN or (CD3)2SO; see Table 2 entries (ix) and (x))).67 These 
calculations indicate that both reactions are essentially irreversible 
(however, see the results of our crossover experiment involving 3 + 
MeOTf above).63 Our calculations on the reaction of 3 with MeI 
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Table 3. Calculated ∆G‡, ∆rH° and ∆rG° values for methylation of nucleophiles 1, 3, 7, 8, 27, and 28 by MeI and MeOTf in CH3CN.a,b 

Me X+Nu MeNu X

Nucleophiles with single alkylation site c Ambident Nucleophiles

# Nu X Product 
& number ∆G‡ ∆rG°    ∆rH° b # Nu X Product 

& number ∆G‡ ∆rG°   ∆rH° b

(i) 7 I 9a +131 −21 −37 (ix) 1 I 13a +133 −20 −37

(ii) 7 OTf
N

N

Me
X

9b +107 −90 −90 (x) 1 OTf

N

N
XMe

O

13b +108 −88 −90

(iii) 8 I 10a +123 −7 −24 (xi) 1 I 15a +140 +31 +14

(iv) 8 OTf
N
O

X
Me

10b  +97 −75 −76 (xii) 1 OTf

N

N

X

O
Me

15b +115 −38 −38

(v) 27 I 29a +130 −23 −39 (xiii) 3 I 21a +138 +4 −13

(vi) 27 OTf
N

N

Me
X 29b +106 −91 −91 (xiv) 3 OTf

N

N

X

O

Me 21b +113 −64 −66

(vii) 28 I 30a +120 −48 −64 (xv) 3 I 23a +127 +38 +3

(viii) 28 OTf
N

Me
X 30b  +96   −117 −117 (xvi) 3 OTf N

N
O

Me

X 23b +103 −48 −49

a Enthalpies and Gibbs energy values (in kJ mol−1) were calculated at the DLPNO-CCSD(T)/def2-TZVPPD/SMD(CH3CN)//M06-2X-D3/6-311+G(d,p)/SMD(CH3CN) 
level of theory, with a confidence interval of ±2 kJ mol−1.
b ∆rS° values calculated for these reactions were similar across all reactions of MeI (∆rS° = −55 ± 2 J K−1 mol−1), and across all reactions of MeOTf (∆rS° = −2 ± 2 J 
K−1 mol−1).  These data are included in Tables S1 – S3 in the Supporting Information, along with calculated ∆H‡ and ∆S‡ values for these reactions.68

c Pyrazine (7) and pyrimidine (27) clearly have two possible alkylation sites, but the sites are identical by symmetry.

indicate that both O- and N-methylation (formation of 23a and 21a, 
respectively) are reversible.   O-Methylation was found to be 
kinetically preferred, again despite the fact that this process is less 
thermodynamically favourable than N-methylation (compare Table 3 
entries (xiii) and (xv)).  As no product formation was observed 
experimentally when this reaction was attempted in CD3CN or MeCN, 
it is not possible to verify the applicability of these particular 
computational results.

The calculated Gibbs energies of activation for N- and O-methylation 
of pyrimidine N-oxide (3) by MeI or MeOTf, while higher than the ∆G‡ 

values for comparable reactions of similar compounds (e.g. pyrazine 
N-oxide (1), pyrazine (7), pyridine N-oxide (8) and pyridine (27)), are 
not especially different to those ∆G‡ values (compare Table 3 entry 

N

N
3

N

N
1

31 OMe

OTf

MeO

O

O

+
N

N
O

Ar Ar

OTf

32

+
N

N
O Ar

Ar

OTf

33

CD3CN

Not
formed

Ar = p-anisyl

Scheme 6. Competition experiment between reversible reactions of 1 and 3 
with benzhydrylium ion 31.44

(xiv) with entries (ii) and (vi), entry (xiii) with entries (i) and (v), entry 
(xvi) with entry (iv), and entry (xv) with entry (iii)).  However, 
comparison of the ΔrG° values for the same reactions indicates that 
both O- and N-methylation reactions of pyrimidine N-oxide (3) are 
far less thermodynamically favourable than the corresponding 
reactions of 1, 7, 8 and 27.  This computational observation has been 
verified experimentally through a thermodynamic competition 
experiment in which product 32 (derived from pyrazine N-oxide (1) 
in a reversible reaction) is formed to the complete exclusion of 33 
(derived from pyrimidine N-oxide (3)) when 1, 3 and benzhydrylium 
ion 31 are mixed in CD3CN (Scheme 6).  It seems that the O and N 
nucleophilic/Lewis basic sites of 3 are deactivated in a similar manner 
to the O site of 1.66

According to our computational data, N-methylation of both 1 and 3 
results in a minor shortening of the N-oxide N—O bond.  The 
calculated N—O bond lengths of diazine N-oxides 1 and 3 and N-
methyldiazinium cations 13 and 21 are, respectively, 1.27 Å, 1.29 Å, 
1.25 Å and 1.27 Å.63  O-methylation of 1 and 3 results in a lengthening 
of the N—O bond (to 1.36 Å for each of 15 and 23, the O-methylated 
cationic derivatives of 1 and 3).63 O-methylation of 1 or 3 removes 
the favourable electrostatic interaction between N and O, and also 
diminishes the partial resonance of the N-oxide with the aromatic 
system, thereby removing resonance stabilisation effects that may 
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help to stabilise the positive charge in the product.  This may 
contribute to making N-methylation of 1 and 3 more 
thermodynamically favourable than O-methylation.

Finally, for completeness, we will comment on the values of the 
other thermodynamic functions associated with the above reactions.  
Computationally determined values of ∆rS° do not differ greatly from 
each other across all reactions of MeI with 1, 3, 7, 8, 27 and 28, or 
across all reactions of MeOTf with the same nucleophiles, regardless 
of whether N- or O-methylation is occurring.68  Across all reactions of 
MeI in Table 3, ∆rS° remains constant around −55 ± 2 J K−1mol−1, while 
a value of −2 ± 2 J K−1mol−1 was observed across the reactions of 
MeOTf (using 99% confidence intervals).68 Therefore, the 
computational data suggest that enthalpy changes are primarily 
responsible for dictating the differences between the ∆rG° values in 
the various reactions in Table 3.  It is not possible to unambiguously 
ascribe the differences in ∆rH° to specific effects, and hence we 
refrain from doing so.

Activation Barrier Calculations Using Marcus Theory

Noting the deficiencies of the HSAB principle, Mayr and co-workers 
have advanced Marcus theory for rationalising the outcomes of 
reactions of ambident nucleophiles.4 The Marcus equation (equation 
1) allows ΔG‡ to be separated out into its contributions from ΔrG° 
(the standard Gibbs energy of reaction) and ΔG0

‡, the Marcus 
intrinsic barrier.69–71

 (1)𝛥𝐺 ‡ = 𝛥𝐺 ‡
0 +

𝛥𝑟𝐺°
2 +

(𝛥𝑟𝐺°)2

16𝛥𝐺 ‡
0

In reactions of ambident nucleophiles with competing sites of 
differing nucleophilicity, the different nucleophilic sites have 
different values of each of ΔG0

‡ and ΔrG°.  Mayr and co-workers have 
suggested that the selectivities in such reactions can be rationalised 
through an appraisal of the factors that influence the values of the 
two parameters in the Marcus equation (ΔG0

‡ and ΔrG°).4 They have 
employed this approach to qualitatively rationalise the outcomes of 
reactions of a variety of ambident nucleophiles.4,72 In order to build 
up a more comprehensive understanding of the factors that 
influence selectivity in reactions of 1–3, we have calculated values of 
ΔG0

‡ and ΔrG° for these reactions, and used them to construct values 
of the activation barriers (ΔG‡) using the Marcus equation.

Using the procedure described in detail in the Supporting 
Information,73 values of the intrinsic barrier (ΔG0

‡) were calculated 
for each of the reactions of compounds 1 and 3 with MeI and MeOTf.  
The ΔG0

‡ values for reactions of 1 and 3 are shown in Table 4.74 It is 
noteworthy that, for both ambident nucleophiles 1 and 3, the 
intrinsic barrier for methyl transfer to oxygen (ΔG0

‡(O)) is lower than 
that for methylation of nitrogen (ΔG0

‡(N)) – e.g. compare Table 4 
entries (iii) and (i), and entries (vii) and (v).  Hoz and co-workers 
previously established through computational investigations that the 
ΔG0

‡ values associated with reactions of nucleophiles centred on 2nd 
row elements depend on the identity of the element at the 
nucleophilic site, with ΔG0

‡ decreasing in the order C > N > O > F, i.e. 
from left to right across the periodic table.75 The lower intrinsic 
barriers (intrinsic preference) for O-alkylation over N-alkylation we 
observe for 1 and 3 are in line with this general trend.

Table 4.  Values of intrinsic barriers (ΔG0
‡) and derived values of ΔG‡ for 

methylation reactions of nucleophiles 1, 3, 7, 8, 27, and 28 in CH3CN, 
calculated using the Marcus equation (equation 1) using values of ΔrG° from 
Table 3 (reproduced here).a,b,c

Me X+Nu MeNu X

Nucleophile # X ∆G0
‡ ΔrG°

DFT  
ΔG‡

Marcus 
ΔG‡ 

(i) OTf +149.5 −88 +108.0 +108.7
N

N

O

1
(ii) I +144.0 −20 +133.0 +134.2

(iii) OTf +132.5 −38 +115.0 +114.3
N

N

O

1
(iv) I +127.0 +31 +140.0 +143.0

(v) OTf +145.0 −64  +113.0 +114.8

N

N

O 3 (vi) I +139.5 +4 +138.0 +141.5

(vii) OTf +124.0 −48 +103.0 +101.2
N

N

O
3

(viii) I +118.5 +21 +127.0 +129.2

a The site of methylation of each nucleophile is indicated by an arrow.  The 
Gibbs energy values have units of kJ mol−1 (confidence interval ±2 kJ mol−1).
b ΔrG° and ΔG‡ (DFT ΔG‡) values here are reproduced from Table 3.

Substitution of the calculated ΔG0
‡ values into equation 1 (the 

Marcus equation) along with the values of ΔrG° calculated as 
described above (Table 3 and associated discussion; these ΔrG° 
values are reproduced in Table 4 to aid the understanding of the 
reader) allows values of ΔG‡ to be calculated using the Marcus 
equation.  Comparison of the ΔG‡ values obtained using the Marcus 
equation (shown in Marcus ΔG‡ column in Table 4) with the ΔG‡ 
values directly calculated as described above (values from Table 3, 
labelled DFT ΔG‡, are reproduced in Table 4) shows a close 
correspondence between the two methods.  Importantly, the 
experimentally observed N vs. O selectivities for the reactions of the 
ambident nucleophiles 1 and 3 are reproduced quite closely by both 
methods of calculation.18 Analysing how the factors that contribute 
to the Gibbs energy of activation for a reaction influence its 
magnitude (i.e. how the interplay between ΔG0

‡ and ΔrG° influences 
ΔG‡) provides a very useful means of understanding the origins of the 
differences between the rates of different reactions.  Nowhere is this 
more apposite than in understanding which nucleophilic site of an 
ambident nucleophile is kinetically preferred.  A full analysis of this 
kind for the reactions of 1 and 3 will be described in detail below.

The applicability of Marcus theory has been challenged in recent 
years,76 and alternatives have been suggested.77,78 However, such 
alternatives also incorporate in some manner an intrinsic barrier or 
a proxy thereof.  In addition to using the Marcus equation, we have 
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also used an adaptation of the Zhu equation (see the Supporting 
Information)79 to calculate ΔG‡ values for the methylation reactions 
of nucleophiles 1 and 3.  The ΔG‡ values calculated using the adapted 
Zhu equation are very similar to the values calculated using equation 
1 (see Table S5 in the Supporting Information).73

The experimentally observed ratio of N- to O-methylation for the 
reaction of 1 + MeOTf was 95:5 (Table 2). Direct calculation of the 
ΔG‡

 values at the DLPNO-CCSD(T)/def2-TZVPPD/SMD(CH3CN)//M06-
2X-D3/6-311+G(d,p)/SMD (CH3CN)] level of theory indicated a N/O 
ratio of 94:6 for this reaction, while calculation of the N/O ratio using 
the Marcus equation gave a ratio of 90:10 (compare Table 4 entries 
(i) and (iii)). Use of the Zhu equation gave a N/O ratio of 96:4.73 The
experimentally observed ratio of N- to O-methylation for the
reaction of 3 + MeOTf was 7:93.  Our calculations indicated a ratio of
2:98 for this reaction, while calculation of the N/O ratio using the
Marcus equation gave a ratio of 0.4 : 99.6, (compare Table 4 entries
(v) and (vii)) and calculation using the Zhu equation gave a ratio of
0.5 : 99.5.73 That the experimental selectivities (in N- vs. O-
methylations of 1 and 3 by MeOTf) are reproduced quite closely
using the Marcus and Zhu equations73 and direct computation
indicates that these methods are highly useful in understanding the
factors that control Gibbs energies of activation in nucleophilic
substitution reactions.

Experimental Verification of Accuracy of Calculated ΔG‡

In order to verify the applicability of the computational methods 
discussed above to determine the magnitudes of activation barriers, 
we conducted a kinetic investigation on the reaction of pyrazine N-
oxide (1) with MeI in CD3CN at 25 °C using 1H NMR spectroscopy to 
determine the concentrations of the reactants and product (13a).  
The experiment was conducted under pseudo-first order conditions, 
with MeI present in ten-fold excess over 1.  Using the method 
described in detail in the Supporting Information,80 we determined 
an approximate ΔG‡ value for this reaction of 1.4 × 102 kJ mol−1.  This 
value is within 5% of the ΔG‡ values predicted for this reaction using 
the Marcus equation (134.2 kJ mol−1), and using direct application of 
the DLPNO-CCSD(T)/def2-TZVPPD/SMD(CH3CN)//M06-2X-D3/6-
311+G(d,p)/SMD] method (133 kJ mol−1).  This striking agreement 
between computational theory and experiment demonstrates that 
these computational methods are capable of modelling kinetic 
phenomena of this type rather accurately.

13a
N

N

Me

O

N

N
O

1

MeI
CD3CN+

I

25 °C(10 equivalents)

G‡ = 140 kJ mol1

Scheme 7. The reaction of 1 + MeI in CD3CN at 25 °C under pseudo-first order 
conditions (excess MeI) was monitored by 1H NMR spectroscopy to enable 
determination of an approximate ΔG‡ value for the reaction at 25 °C.

Discussion
Rationalisation of Experimental N vs O Selectivities

The kinetic preference of compound pyrazine N-oxide (1) for N-
methylation by soft electrophile MeI (forming compound 13a) and 
by hard electrophile MeOTf (forming compound 13b) has been 
demonstrated experimentally and computationally.  The alkylation 

reactions of quinoxaline N-oxide (2) by MeI, MeOTf and 
benzhydrylium triflates (11 or 12) and of 1 by 11 or 12 are all also 
almost certainly irreversible, and all yield N-alkylated products 
preferentially or exclusively.  The reaction of pyrimidine N-oxide (3) 
+ MeOTf gives O-methylated product (23b) predominantly, and our
computational investigations indicate that this is due to the kinetic
favourability of formation of 23b.  Although no product formation is
observed in the reaction of 3 + soft electrophile MeI (due to the
formation of products 21a and 23a being thermodynamically
disfavoured and hence reversible), our computational results
indicate that O-methylation (formation of 23a) is the kinetically
favoured process in this reaction (see Table 4 entries (vi) and (viii)).

It is evident from these results that each nucleophile exhibits a 
preferred site of alkylation which is independent of the nature of the 
electrophile used (N for 1 and 2, and O for 3), i.e. these outcomes 
cannot be dictated by hard/soft acid/base interactions.  A 
fundamentally different set of factors must dictate the observed 
selectivities in these reactions.   We discuss an alternative rationale 
to account for these observations later in this article.

Although the above evidence clearly shows that the HSAB principle 
does not apply in this set of reactions, and thereby renders 
unnecessary the identification of which nucleophilic site of each of 1 
– 3 is “harder” and which is “softer”, it is nonetheless appropriate at
this point to discuss the difficulty and ambiguity inherent in attempts
at such identifications.  The features that are employed to determine
whether a reactant is hard or soft are charge (charge density), size,
polarizability and electronegativity.2a,b,g,18b,c For hard bases, the
donor atom is typically negatively charged and/or has a local excess
of electron density, and is of small size, low polarizability and high
electronegativity.  For soft bases, the donor atom typically does not
bear a formal negative charge and exhibits low negative charge
density, and is of large size, high polarizability and low
electronegativity.  Derivation of functions that reliably indicate the
“local hardness” and “local softness” of sites in a molecule (such as
an ambident nucleophile) has proved a difficult endeavour.15 At
present, such approaches cannot be applied without ambiguity.

On the basis that oxygen is more electronegative than nitrogen, one 
could perhaps anticipate that the oxygen site of a diazine N-oxide 
such as 1 – 3 should be harder than the nitrogen site.  However, 
although there is a formal negative charge on the N-oxide oxygen 
atoms in these compounds, it is not clear which nucleophilic site in 
each ambident nucleophile should have the highest negative charge 
density, thereby potentially complicating the issue.  To probe this 
question, we calculated the charge distribution for the ambident N-
oxides with a variety of methods (ChelpG,  Merz−Singh−Kollman, 
natural bond order (NBO), and atoms in molecules (AIM)),81 but 
found that there was no uniform agreement between methods on 
which site bears the highest negative charge density in compounds 1 
and 3.  Full details of this are given in the Supporting Information.81

We now present an alternative rationale, based on Marcus theory, 
to explain these results (see equation 1 above). In the following 
discussion, the intrinsic barriers for alkylation at oxygen and nitrogen 
are referred to, respectively, as ΔG0

‡(O) and ΔG0
‡(N).  The standard 

Gibbs energies of reaction for O- and N-alkylation are referred to, 
respectively, as ΔrG°(O) and ΔrG°(N).  
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Although O-methylation is intrinsically preferred over N-methylation 
(for diazine N-oxides, and in general; vide supra),75 in reactions of 1 
and 2, the intrinsic preference for O-alkylation is modest.  ΔG0

‡(O) is 
calculated to be only 17 kJ mol−1 lower than ΔG0

‡(N) for the reactions 
of 1 with MeI or MeOTf (Table 4 entry (i) vs. (iii), and entry (ii) vs. (iv)). 
The ΔrG°(N) values for these reactions are substantially more 
favourable than the corresponding ΔrG°(O) values.  Consequently, 
the very favourable contribution of ΔrG°(N) to ΔG‡(N) supersedes the 
favourable contribution of ΔG0

‡(O) to ΔG‡(O), such that ΔG‡(N) is 
much lower than ΔG‡(O) for alkylations of 1 and 2.  That is, the 
intrinsic favourability of O-alkylation is outweighed by the 
thermodynamic favourability of N-alkylation, so in these irreversible 
reactions, N-alkylation is kinetically preferred.82

In the reaction of pyrimidine N-oxide (3) with MeOTf, the value of 
ΔrG°(N) is much less favourable with respect to ΔrG°(O) than is the 
case for the corresponding reaction of pyrazine N-oxide (1).  ΔG0

‡(O) 
is calculated to be 21 kJ mol−1 lower than ΔG0

‡(N) for both MeOTf and 
MeI (compare Table 4 entry (vii) with entry (v), and entry (viii) with 
entry (vi)), so O-methylation of 3 is intrinsically preferred. Since the 
thermodynamic favourability of N-methylation of 3 is diminished 
(relative to the corresponding reactions of 1), and O-methylation is 
intrinsically favoured, ΔG‡(O) is lower than ΔG‡(N), and hence O-
methylation of 3 is the kinetically dominant reaction.  Instances in 
which N-alkylation is likely to have been “deactivated” due to steric 
interactions, resulting in preferential O-alkylation, have been 
reported previously.4,22b,c,f,g,31 In this case, it seems likely that the free 
nitrogen Lewis basic site of 3 is deactivated due to an electronic 
effect.  This Lewis basic site is connected through a network of π-
bonds to an N-oxide group in a meta position relative to it, which may 
act as an electron withdrawing group, thereby diminishing the Lewis 
basicity (electron donor capacity) of the free nitrogen atom.  

The reaction of 3 with MeI was calculated to be thermodynamically 
unfavourable (ΔrG° > 0 for both O- and N-methylation by MeI), and 
therefore reversible.  This is consistent with our experimental 
observation that no product was formed in this reaction.  However, 
our calculations do indicate that O-methylation (formation of 23a) is 
kinetically favoured over N-methylation.  A similar rationale to that 
presented above for the reaction of 3 + MeOTf applies in this case – 
i.e. O-methylation is intrinsically preferred (ΔG0

‡(O) < ΔG0
‡(N)) and 

the thermodynamic advantage of N-methylation over O-methylation 
is small, and consequently O-methylation is the kinetically favoured 
process (see Table 4 entries (vi) and (viii)).

As discussed above, the ΔrG° values calculated for N- and O-
methylations of 3 by both MeI and MeOTf are much less favourable 
than the ΔrG° values of methylation reactions of other, similar 
compounds (e.g. 1, 7, 8 and 27; vide supra).  In the context of our 
analysis based on the Marcus equation, we can make use of this 
information to rationalise the relatively high ΔG‡(O) and ΔG‡(N) 
values calculated for the methylation reactions of 3.  The less 
favourable ΔrG° values for O- and N-methylations of 3 influence the 
magnitudes of the ΔG‡ values for these reactions, causing them to be 
higher than the ΔG‡ values of reactions of similar nucleophiles.

As is described in detail in the Supporting Information,73 
operationally, the value of the intrinsic barrier (ΔG0

‡) for a reaction is 
accessed as the average of two identity reactions.  Since there is no 

leaving group formed in the addition of a nucleophile to carbenium 
ions such as 11 and 12 (structures in Scheme 4 above), only one 
identity reaction of the required two can be identified to model such 
processes using Marcus theory.  Hence, the straightforward method 
described in the Supporting Information73 for accessing values of 
intrinsic barriers cannot be employed for reactions involving 
carbenium ions.  Alternative methods for estimating the magnitudes 
of the intrinsic barriers for such reactions or analogues thereof have 
been reported,83 but these do not allow quantitative determinations 
of the type performed above for reactions involving electrophiles 
from which leaving groups become cleaved.  Hence only a qualitative 
appraisal of the outcomes of the reactions of 1 and 2 with 
benzhydrylium ions is possible, which we give below.  

We consider that the observation of strongly preferred or exclusive 
N-benzhydrylation of nucleophiles pyrazine N-oxide (1) and 
quinoxaline N-oxide (2) in their reactions with benzhydrylium ions 
(11 or 12) arises as a consequence of the same factors that dictate 
the outcomes of the reactions of these nucleophiles with MeI or 
MeOTf.  That is, in each case, O-benzhydrylation is intrinsically 
favoured (ΔG0

‡(O) is smaller than ΔG0
‡(N)) but the influence of 

ΔrG°(N) on ΔG‡(N) outweighs the influence of ΔG0
‡(O) on ΔG‡(O), and 

consequently N-benzhydrylation is the kinetically preferred process.  
As discussed above, it was not possible to determine what occurred 
in the reaction of 3 + benzhydrylium ion 11, so further comment on 
this is not warranted.  

Literature Examples of N vs. O alkylation

We have noted in passing above that, due to the ambiguity that has 
up until now been inherent in determining which product is formed 
predominantly in reactions of ambident nucleophiles containing N 
and O nucleophilic sites, there exist notable cases in the literature in 
which the products of such reactions may have been 
misidentified.8,9,84

Comparison of the 1H NMR spectrum of N-methylated product 13b 
(from reactions of MeOTf with 1; Scheme 4a) with the 1H NMR 
spectra assigned to O-methylation adduct 15c (Scheme 8) in 
reference 10 shows that the spectra are essentially identical.  A 
similar observation can also be made on comparison of the 1H NMR 
spectrum of N-methylated product 17b (from 2 + MeOTf; Scheme 4b) 
and that assigned to O-methylated adduct 19c in reference 7.  We 
have identified a distinct set of signals belonging to the O-methylated 
adducts 15b and 19b that appear at different chemical shifts to the 
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Scheme 8. Reactions of compounds 1 and 2 with dimethylsulfate have been 
reported to give O-methylated products 15c and 19c.7 Our data indicate that 
N-methylated adducts 13c and 17c are likely to be the major products.
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N-methylated adducts 13b and 17b (vide supra).  Furthermore, the
13C NMR chemical shifts reported for the methyl group carbons
(either N—CH3 or O—CH3) of the products are 47.2 and 44.5 ppm,
respectively.7 These δC values are indicative of formation of N- 
methylation products 13c and 17c (vide supra).  Hence, our data
indicate that it is highly unlikely that 1 and 2 undergo preferential O-
methylation in reactions with dimethylsulfate, a close analogue of
MeOTf.  The methodology reported in reference 7 was predicated on
the use of N-methoxypyridinium salts.  That this otherwise highly
successful methodology did not work for these compounds can be
explained by the fact that N-methylated compounds 13c and 17c
were almost certainly employed rather than the intended O- 
methylated compounds 15c and 19c.  Problems of this type are
illustrative of the need for a much more rigorous understanding of
the factors that dictate the outcomes in reactions of ambident
nucleophiles such as diazine N-oxides.

Conclusions
If one must verify on a case-by-case basis whether the predictive 
capabilities of a theory apply or not, then those predictive 
capabilities must be seriously called into question.  For this reason, 
the continued use of the HSAB principle in rationalising the 
selectivities of ambident reactants in research articles and 
undergraduate courses and textbooks should be ceased.  It appears 
to us that the approach of Mayr and co-workers, based around 
Marcus theory, is able to account for the behaviour of ambident 
reactants in a manner in which the HSAB principle cannot.  We hope 
through this study to have contributed to a more general 
understanding of ambident reactivity, to have developed upon the 
approach of Mayr and co-workers to show that it can be applied to 
semi-quantitatively rationalise product ratios in reactions of 
ambident nucleophiles, and to have demonstrated the utility of 1H-
15N HMBC NMR spectroscopy in establishing the site of attachment 
in reactions of nitrogen-containing compounds. 

In the cases we have investigated here, calculation of ΔG‡ values 
using the equations of Marcus or Zhu yields values that reproduce 
closely the experimental N/O methylation ratios for reactions of 
ambident nucleophiles pyrazine N-oxide (1) and pyrimidine N-oxide 
(3).  Based on this, it is reasonable to expect that calculations based 
on Marcus theory will allow semi-quantitative predictions of the 
nucleophilic site-selectivities in reactions of other ambident 
nucleophiles – not just those involving competition between N and 
O nucleophilic sites.  The close agreement between the reaction 
selectivities determined experimentally and those calculated using 
the Marcus and Zhu equations (see Table 4 and associated 
discussion) is demonstrative of the utility of the concept of the 
intrinsic barrier.  

The intrinsic barrier (ΔG0
‡) associated with an alkylation reaction of a 

nucleophile can be considered a property of the compounds involved 
in the reaction.  The interplay between this quantity and the 
thermodynamic favourability of the reaction (quantified through 
ΔrG°) dictates the magnitude of the activation barrier for the reaction 
(ΔG‡).  Having established herein a computational method that 
stands up to the stern test posed by modelling of the disparate 
behaviour of diazine N-oxides 1 and 3, we intend in future 

publications to determine the magnitudes of intrinsic barriers for 
reactions of a wide variety of other nucleophiles, and hence establish 
systematic trends in intrinsic barriers (developing upon the work of 
Hoz).75 This will allow the factors that control intrinsic barriers to be 
understood, and hence deepen our understanding of activation 
barriers in general.

Details on Computational Methodology
The conformational space for each structure was explored with the 
OPLS-2005 force field85 and a modified Monte Carlo search algorithm 
implemented in Macromodel.86 An energy cut-off of 84 kJ mol–1 was 
employed for the conformational analysis, and structures with 
heavy-atom root-mean-square deviations (RMSD) up to 0.5 Å after 
the force field optimizations where considered to be the same 
conformer. All remaining structures were subsequently optimized 
with the dispersion-corrected M06-2X functional87 with Grimme’s 
dispersion correction D3 (zero-damping),88 the triple- basis set 6-
311+G(d,p), and SMD solvation model89 for acetonitrile. An ultrafine 
grid was used throughout this study for the numerical integration of 
the density. Vibrational analysis verified that each structure was a 
minimum or a transition state and for the latter, following the 
intrinsic reaction coordinates (IRC) confirmed that all transition 
states connected the corresponding reactants and products on the 
potential energy surface. Thermal corrections were obtained from 
unscaled harmonic vibrational frequencies at the same level of 
theory for a standard state of 1 mol L–1 and 298.15 K. Entropic 
contributions to free energies were obtained from partition 
functions evaluated with Grimme’s quasi-harmonic approximation.90 
This method employs the free-rotor approximation for all 
frequencies below 100 cm–1, the rigid-rotor-harmonic-oscillator 
(RRHO) approximation for all frequencies above 100 cm–1, and a 
damping function to interpolate between the two expressions. 
Similar results were obtained from partition functions evaluated with 
Cramer’s and Truhlar’s quasiharmonic approximation.91 This method 
uses the same approximations as the usual harmonic oscillator 
approximation, except that all vibrational frequencies lower than 
100 cm−1 are set equal to 100 cm−1. Electronic energies were 
subsequently obtained from single point calculations of the M06-2X-
D3 geometries employing Neese’s domain-based local pair-natural 
orbital (DLPNO) approach to the CCSD(T) method [DLPNO-CCSD(T)] 
with the default normalPNO settings,92–94 the triple- def2-TZVPPD 
95,96 in combination with the corresponding auxiliary basis set97 and 
the SMD continuum model for acetonitrile.89 All density functional 
theory calculations were performed with Gaussian 16,98 while the 
DLPNO-CCSD(T) calculations were performed with ORCA 4.99 
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1. General Experimental 

Commercial diazines and alkylating agents were obtained from Fluorochem, Sigma-Aldrich and Alfa 

Aesar.  

CH2Cl2, CH3CN, CD3CN, (CD3)2SO and (CH3)2SO were dried over activated 3 Å molecular sieves and 

stored under an atmosphere of nitrogen in flasks with grease-free J. Young’s valves (this is a modification 

of the method of Williams and Lawton).1 Molecular sieves (10 weight percent per unit volume of 

compound to be dried) were activated by flame drying in the storage flask(s) for 5 – 10 minutes 

(depending on quantity of sieves to be dried).  After flame-drying, the storage flask was immediately 

connected to a Schlenk line, subjected to vacuum (between 2 and 5 × 10−3 mbar), and allowed to stand 

until the sieves had cooled.  The flask was then subjected to several vacuum/refill cycles to establish a 

nitrogen atmosphere inside, and the solvent/compound to be dried was then added against a flow of 

nitrogen.   

Solvents that were used in relative bulk (CH3CN, CH2Cl2) were stored in a specialised flask with two J. 

Young’s valves, one of which was modified to facilitate easy access of a needle to the body of the flask 

through the side-arm of the valve.  When accessing the dry solvent, the angled side-arm was sealed with 

a rubber septum, and the small volume contained between the septum and the sealed tap of the J. Young’s 

valve was flushed with a stream of nitrogen gas for a minimum of five minutes prior to opening the valve.  

The solvent required several days after commencing drying to reach maximal dryness (according to 

analysis by Karl Fischer titration), but was dry enough for most purposes after one day.  CH3CN and 

THF stored in this manner was found to retain water contents of less than 10 ppm for more than one year. 

For all reactions conducted using Schlenk glassware, the Schlenk flask was dried in an oven, then 

attached to vacuum via Schlenk manifold and placed under vacuum (≤ 5 × 10−3 mbar). The flask was 

then filled with nitrogen gas by the pump and fill technique (three repeats of the following cycle: 

evacuation to ≤ 5 × 10−3 mbar, re-fill with nitrogen gas).2 Solids and reagents were then introduced to 

the flasks under fast nitrogen flow. 

NMR spectra were recorded on Bruker Avance III 600, Bruker Avance III 500, Bruker Avance I 400 and 

Bruker Avance III 300 NMR spectrometers.  1H and 13C NMR chemical shifts were referenced to 

tetramethylsilane (TMS). 1H NMR spectra (proton coupled mode, 600 MHz, 400 MHz and 300 MHz 

respectively) 13C{1H} NMR spectra (proton decoupled mode; 150 MHz,100 MHz and 75 MHz, 

respectively), HSQC NMR spectra, HMBC NMR spectra and COSY NMR spectra were acquired at 300 

K on the 300 and 600 MHz instruments and 293 K on the 400 MHz instrument.  1H NMR spectra on the 

500 MHz instrument (equipped with a 5 mm QNP probe) were recorded at 298 K.  1H NMR spectra were 

acquired using a 30° pulse (Bruker zg pulse programme), an acquisition time of 2.65 seconds, and a time 

domain data size of 32768 or 65536 points.  A relaxation delay of 5 seconds was used in most instances; 

exceptions to this are noted where applicable below.  Signal assignments in the 1H and 13C NMR spectra 

were made with reference to information contained in the two-dimensional NMR spectra. 1H-15N HMBC 

spectra were recorded at 300 K on a Bruker Avance III 600 NMR spectrometer [600 MHz (1H), 60.8 

MHz (15N)], equipped with Bruker BBFO cryoprobe (coil temperature 16 K) and referenced externally 

to ammonia, the value of which was uncorrected. 1H-15N HMBC spectra were acquired using the Bruker 
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hmbcqpndqf pulse program (2D H-1/X correlation via heteronuclear zero and double quantum coherence 

optimised on long range couplings), with 4 scans and spectral width of 600–650 ppm.  All 1H-15N HMBC 

NMR spectra shown below were processed (post-acquisition) by application of t1 noise reduction.  All 

spectra were run at University College Cork.  Spectra recorded in non-deuterated solvents were acquired 

using the Bruker NOESY presat (noesygppr) solvent suppression pulse sequence, using presaturation 

during the mixing time and relaxation delay.  Chemical shifts (δ) are expressed as parts per million (ppm), 

positive shift being downfield from TMS; coupling constants (J) are expressed in Hertz (Hz). Splitting 

patterns in 1H-NMR spectra are designated as: s (singlet), bs (broad singlet), d (doublet), dd (doublet of 

doublets), ddd (doublet of doublets of doublets), t (triplet), td (triplet of doublets), q (quartet), quin 

(quintet) and m (multiplet). Infrared spectra were measured using a FTIR UATR2 spectrometer as thin 

films in acetonitrile. Data are represented as follows: frequency of absorption (cm–1), intensity of 

absorption (s = strong, m = medium, w = weak, br = broad). High resolution (precise) mass spectra 

(HRMS) were recorded on a Waters LCT Premier TOF LC–MS instrument using electrospray ionization 

in positive ionization mode (ESI+) using 50 % acetonitrile/water containing 0.1 % formic acid as eluent. 

Samples were made up at a concentration of approximately 1 mg ml–1. 

 

 

2. Preparation and 1H-15N HMBC NMR spectra of diazine N-

oxides 1 – 3 

Preparations of diazine N-oxides were achieved with modifications of established literature procedures.3,4 

We recommend the use of a slight excess of diazine (relative to the amount of 3-chloroperbenzoic acid) 

in order to remove the need to use quenching agents (e.g. Ph3P, Na2SO3) in these reactions. 

(i) Pyrazine N-oxide (1) 4 

 

Pyrazine (7) (1.12 g, 14.0 mmol) was dissolved in CH2Cl2 (70 ml). 3-Chloroperbenzoic acid (3.08 g, 13.8 

mmol) was added in one portion, and the solution was stirred for 18 hrs, turning a cloudy white colour 

(due to precipitated 3-chlorobenzoic acid).  The reaction mixture was washed twice with saturated 

sodium sulfite solution (ca. 40 ml each) and once with a solution of brine (ca. 40 ml).  The recovered 

organic phase was dried over Na2SO4, and the drying agent was removed by filtration.  The solvent was 

then removed under reduced pressure.  The residue was purified by column chromatography using 100% 

EtOAc, yielding a colourless, needle-like solid. (0.56 g, 5.8 mmol, 42%).  This material was immediately 

transferred to a glove box upon isolation. 

1H NMR (300 MHz, CDCl3) δ 8.52 – 8.44 (m, 2H), 8.15 – 8.08 (m, 2H). 5 
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A further sample of 1 (0.080 g) was dissolved in CH2Cl2 (0.65 ml) and placed in an NMR tube by syringe 

under nitrogen, which was then sealed by a rubber septum cap and wrapped with PTFE tape. 1H NMR 

and 1H-15N HMBC NMR spectra were recorded on this sample.  The 15N NMR chemical shift values 

reported below were attained from the 1H-15N HMBC NMR experiment.  See the General Experimental 

for details on the solvent suppression protocol used during acquisition. 

1H NMR (600 MHz, CH2Cl2) δ 8.40 (app d, app J = 4.3 Hz, 2H), 8.08 – 8.03 (m, 2H).  

15N NMR (60.8 MHz, CH2Cl2): δ 311, 303.5 

 

(ii) Quinoxaline N-oxide (2) 

 

Quinoxaline (1.70 g, 13.1 mmol) was dissolved in 100 ml CH2Cl2. 3-Chloroperbenzoic acid (2.39 g, 13.8 

mmol) was added in one portion, and the solution was stirred for 4 days.  Precipitated 3-chlorobenzoic 

acid appeared in the reaction mixture after a few hours.  The reaction mixture was washed twice with 

saturated sodium sulfite solution (ca. 40 ml each) and once with a solution of brine (ca. 40 ml).  The 

recovered organic phase was dried over Na2SO4, and the drying agent was removed by filtration.  The 

solvent was then removed under reduced pressure.  The residue was purified by column chromatography 

in silica using 70:30 ethyl acetate/cyclohexane, yielding light tan-coloured solid (2). (1.27 g, 8.68 mmol, 

66% yield).  This material was immediately transferred to a glove box upon isolation. 

1H NMR (300 MHz, CDCl3) δ 8.68 (d, J = 3.6 Hz, 1H), 8.59 (dd, J = 8.6, 1.4 Hz, 1H), 8.35 (d, J = 3.6 

Hz, 1H), 8.19 – 8.11 (m, 1H), 7.88 – 7.72 (m, 2H). 6  

A sample of the product (0.055 g) was dissolved in CH2Cl2 (0.65 ml) and placed in an NMR tube by 

syringe under nitrogen, which was then sealed by a rubber septum cap and wrapped with PTFE tape. 1H 

NMR and 1H-15N HMBC NMR spectra were recorded on this sample. The 15N NMR chemical shift 

values reported below were attained from the 1H-15N HMBC NMR experiment.  See the General 

Experimental for details on the solvent suppression protocol used during acquisition. 

1H NMR (600 MHz, CH2Cl2) δ 8.62 (d, J = 3.5 Hz, 1H), 8.50 (app d, app J = 8.6 Hz, 1H), 8.31 (d, J = 

3.5 Hz, 1H), 8.09 (app d, app J = 8.4 Hz, 1H), 7.82 – 7.77 (m, 1H), 7.74 – 7.69 (m, 1H).  

15N NMR (60.8 MHz, CH2Cl2): δ 302, 300.3.  
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(iii) Preparation of Pyrimidine N-oxide  

 

Pyrimidine (9) (1.74 g, 21.7 mmol) was dissolved in CH2Cl2 (110 ml). 3-Chloroperbenzoic acid (5.62 g, 

32.6 mmol) was added in one portion, and the solution was stirred for 48 hrs, turning a cloudy white 

colour (due to precipitated 3-chlorobenzoic acid).  PPh3 (3.90 g, 14.9 mmol) was added, and the solution 

was stirred for 3 hours.  The solvent was removed under reduced pressure.  The residue was purified by 

column chromatography using 90 : 10 EtOAc/Cyclohexane, yielding a white crystalline solid (3). (0.993 

g, 10.3 mmol, 48 %). The product is very hygroscopic and hence was transferred to a glove box 

immediately after isolation.  

1H NMR (300 MHz, CDCl3) δ 9.01 (m (fine splitting not resolved), 1H), 8.42 – 8.35 (m, 1H), 8.25 (dd, 

J = 4.7, 1.4 Hz, 1H), 7.35 – 7.28 (m, 1H). 7 

Authors’ Note:  We recommend that PPh3 should NOT be used for quenching purposes, as it was 

difficult to find chromatographic conditions allowing the product to be separated from 

triphenylphosphine oxide, and significant loss of product occurred due to co-elution with Ph3PO. 

A sample of the product (0.047 g) was dissolved in DMSO (0.65 ml) and placed in an NMR tube by 

syringe under nitrogen, which was then sealed by a rubber septum cap and wrapped with PTFE tape. 1H 

NMR and 1H-15N HMBC NMR spectra were recorded on this sample. The 15N NMR chemical shift 

values reported below were attained from the 1H-15N HMBC NMR experiment.  See the General 

Experimental for details on the solvent suppression protocol used during acquisition. 

1H NMR (600 MHz, DMSO) δ 9.04 (s, 1H), 8.58–8.52 (m, 1H), 8.25 (dd, J = 4.7, 1.0 Hz, 1H), 7.55 –  

7.49 (m, 1H). 

15N NMR (60.8 MHz, DMSO): δ 301.3, 291.7.   

A further sample of 3 (0.047 g) was dissolved in CH2Cl2 (0.65 ml) and placed in an NMR tube by syringe 

under nitrogen, which was then sealed by a rubber septum cap and wrapped with PTFE tape. The product 

was analysed by 1H-15N HMBC NMR. See the General Experimental for details on the solvent 

suppression protocol used during acquisition. 

1H NMR (600 MHz, CH2Cl2) δ 8.90 (s, 1H), 8.32 (app d, app J = 6.6 Hz, 1H), 8.16 (app d, app J = 4.6 

Hz, 1H), 7.30 – 7.24 (m, 1H).  

15N NMR (60.8 MHz, CH2Cl2): δ 299.6, 291.4.   
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3. Synthesis of 4-methylbenzhydryl chloride 

 

4-methylbenzhydrol (1.00 g, 5.04 mmol) was dissolved in dichloromethane (16 ml), and the resulting 

solution was cooled in an ice bath for 10 minutes.  Over approximately 20 minutes, concentrated aqueous 

HCl (37%; 5 ml) was added dropwise from a Pasteur pipette into the solution of 4-methylbenzhydrol at 

0 °C.  The reaction was stirred at 0 °C for 1.5 hours, and then placed in a refrigerator overnight.  The 

reaction was then transferred into a pre-chilled separating funnel (cooled in freezer in advance), and the 

dichloromethane phase was separated from the aqueous phase.  The aqueous phase was extracted twice 

with cold dichloromethane (pre-chilled in an ice bath; ca. 5 ml per extraction), and the dichloromethane 

phases were combined and then dried over anhydrous CaCl2.  The CaCl2 was removed by filtration. The 

dichloromethane phases were kept cold at all points by immersing the vessel(s) containing them in an 

ice bath. 

Next, the solvent was removed from the filtrate under vacuum, giving a colourless oil (1.05 g, 4.85 mmol, 

96%).  The flask containing the product was maintained at room temperature during solvent removal, 

and a relatively high vacuum was used to remove the solvent as quickly as possible.  A sample was 

removed and dissolved in CDCl3, and a 1H NMR spectrum was obtained. 

1H NMR (300 MHz, CDCl3) δ 7.46 – 7.26 (m, overlaps with CHCl3 signal, contains 7H of tolyl and 

phenyl groups), 7.15 (app d, app J = 7.9 Hz, 2H), 6.11 (s, 1H, Ar2CH), 2.34 (s, 3H, CH3). 
8 

An attempt was made to crystallise the product by triturating with n-pentane, and hence small signals of 

this solvent are present in the 1H NMR spectrum recorded of the product. 

The product was stored in a freezer, and remains stable at −18 °C for at least one year. 
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4. Reactions of Diazine N-oxides with MeI, MeOTf and 

benzhydrylium ions 

4.1 General Procedures 

General Procedure A:  Removal of solvent without compromising inert atmosphere 

The following procedure was used to remove the solvent (MeCN, CD3CN or Et2O) and volatile reagents 

(MeI or MeOTf) from a Schlenk flask containing a completed reaction mixture without exposing the 

product(s) to the ambient atmosphere, allowing the inert atmosphere in a reaction flask to be re-

established after completion of removal of volatile materials.  A second vacuum trap was attached to the 

Schlenk manifold on one arm and to the sealed reaction flask by the other.  An inert atmosphere was 

established in the second trap and connective tubing by three pump and re-fill cycles.2 The trap was then 

again placed under vacuum (≤ 5 × 10−3 mbar) and then immersed in liquid N2 in a Dewar flask. At this 

point, the tap on the Schlenk flask is carefully opened and volatile reagents are removed and collected in 

the second trap. After approximately 30 minutes, the entirety of the trap and the Schlenk flask are re-

filled with nitrogen gas through the Schlenk manifold, and the tap of the Schlenk flask is closed. The trap 

is removed and the Schlenk flask is re-attached directly to the Schlenk manifold. 

General Procedure B:  Preparation of NMR samples under inert atmosphere 

The following procedure was used to place the products of the alkylation reactions (dissolved in an 

appropriate solvent) into NMR tubes while maintaining an inert atmosphere. The products were formed 

in an N2-filled Schlenk flask using inert atmosphere techniques. The appropriate solvent was introduced 

to the Schlenk flask by syringe and ca. 10 mg of the product was dissolved. An empty NMR tube was 

placed in a long, tube shaped Schlenk flask, which was evacuated and re-filled with nitrogen ≥ 3 times 

by the pump and refill technique,2 creating an inert atmosphere inside the flask. The solution to be 

examined (in DMSO or CH2Cl2) was added to the NMR tube by syringe under nitrogen.  The NMR tube 

was then sealed by a rubber septum cap.  The seal made by the rubber septum on the outside of the NMR 

tube was secured by wrapping it with PTFE tape and then a layer of Parafilm.  The sealed NMR tube 

was then transferred to the appropriate spectrometer for analysis. 

General Procedure C:  Preparation of benzhydryl adducts of heterocycles and N-oxides 

The appropriate benzhydryl chloride (1 equivalent) was weighed into a reaction vessel and transferred 

into a glove box containing a nitrogen atmosphere.  Dry CD2Cl2,CH2Cl2 or CD3CN (usually 0.85 ml) 

was added, followed by the heterocycle or N-oxide (1 equivalent).  AgOTf (1.1 – 1.2 equivalents) was 

then added, causing the immediate precipitation of AgCl.  The reaction vessel was sealed, and agitated 

(15 minutes for 4-methylbenzhydryl chloride, 60 minutes for benzhydryl chloride), and then filtered 

(removing AgCl) through a syringe filter into an NMR tube.  The NMR tube was sealed using a rubber 

septum.  The seal was then wrapped with PTFE tape and Parafilm.  Finally, the NMR tube was placed in 

a long Schlenk flask and removed from the glove box and brought to the NMR spectrometer. All products 

underwent relatively rapid decomposition (hydrolysis) on exposure to moisture, and hence were only 

characterized by inert atmosphere NMR spectroscopy. 
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4.2  Reactions of Pyrazine N-Oxide (1) 

Preparation of N-methylpyrazinium N’-oxide iodide (13a) 

(a) Experiment Showing Isolated Yield of 13a (Solvent-Free Reaction) – Contains 15N NMR data 

Pyrazine N-oxide (1) (0.041 g, 0.43 mmol) was placed in a N2-filled Schlenk flask. Methyl iodide (0.53 

ml, 1.2 g, 8.5 mmol) was added by syringe to the flask. The flask was wrapped in foil and left in the dark 

for 48 hours, after which time the methyl iodide was removed under vacuum using General Procedure 

A.  The resulting yellow solid (13a) was washed by addition of dry Et2O, which was removed by cannula 

filtration (under inert atmosphere). Three aliquots of dry Et2O (0.5 ml each) were used in this manner to 

wash the product, (yield = 0.026 g, 0.11 mmol, 26%) A sample of 13a in dry (CD3)2SO was then prepared 

for 1H and 1H-15N HMBC NMR spectroscopic characterization by Procedure B 

 
1H NMR (600 MHz, (CD3)2SO) δ 9.05 – 9.01 (m, 2H), 9.00 – 8.97 (m, 2H), 4.18 (s, 3H, CH3). 

9 

15N NMR (60.8 MHz, (CD3)2SO): δ 322.3 (N—O), 187.1 (N+—Me). 

 

 
Figure S1: 1H NMR spectrum in (CD3)2SO of 13a, showing no 15a.  The full spectrum is shown in Section 7. 
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(b) Experiment in CD3CN Showing Low Conversion to 13a 

In a glove box, pyrazine N-oxide (1) (0.019 g, 0.20 mmol) was dissolved in CD3CN (0.65 ml). Methyl 

iodide (0.033 g, 0.23 mmol) was added dropwise by syringe to the solution of 1.  The reaction vessel was 

agitated throughout addition of MeI.  After completion of addition of MeI, the entire reaction mixture 

was transferred to an NMR tube.  The NMR tube was sealed with a rubber septum, and the seal was 

secured by wrapping with PTFE tape and then Parafilm.  The NMR tube was take to the NMR 

spectrometer.  A 1H NMR spectrum recorded approximately 20 minutes after mixing of the reactants 

showed no conversion to 13a (i.e. only signals of 1 and MeI were observed).  After four days, a second 
1H NMR spectrum was obtained.  This showed low conversion to 13a.  No signals of 15a were observed. 

 
1H NMR (300 MHz, CD3CN) 

Assigned to 13a:  δ 8.74 – 8.66 (m, 2H), 8.61 – 8.51 (m, 2H), 4.20 (s, 3H, NCH3).
 9 

Assigned to 1: δ 8.46 – 8.38 (m, 2H), 8.13 – 8.06 (m, 2H).   

Relative to 1H of 13a, 1H of 1 integrates for 3.1H.  Therefore, the conversion to 13a was 24%. A signal 

of H2O is present in the second spectrum since due to ingress of into the NMR tube. 

 

Figure S2: 1H NMR spectrum of reaction of 1 + MeI in CD3CN, forming 13a in low conversion after 4 days, and 

showing that no 15a is formed.  The full spectrum is shown in Section 7. 
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Preparations of 13b and 15b 

(a) Experiment Showing Isolated Yield of 13b 

Pyrazine N-oxide (1) (0.166 g, 1.73 mmol) was dissolved in CH3CN (5.0 ml) in a N2-filled Schlenk flask. 

Methyl triflate (0.318 g, 1.94 mmol) was then added dropwise. After 96 hours, the CH3CN was removed 

under vacuum using General Procedure A.  The solid product (13b) was washed by addition of dry Et2O, 

which was removed by cannula filtration (under inert atmosphere).  Three aliquots of dry Et2O (3 ml 

each) were used in this manner to wash the product (yield = 0.305 g, 1.17 mmol, 68%) A sample of 13b 

in dry (CD3)2SO was prepared using General Procedure B for 1H NMR spectroscopic characterization. 

 
1H NMR (300 MHz, (CD3)2SO) δ 9.03 – 8.96 (m, 4H), 4.16 (s, 3H, CH3). 

9 

 

Figure S3: 1H NMR spectrum of 13b in (CD3)2SO.  The full spectrum is shown in Section 7. 

(b) Experiment Showing N- vs O-Alkylation Product Ratio (13b vs 15b) – Contains 15N NMR Data 

Pyrazine N-oxide (1) (0.031 g, 0.32 mmol) was dissolved in CD3CN (0.65 ml) in a N2-filled Schlenk 

flask. Methyl triflate (0.050 g, 0.030 mmol) was subsequently added dropwise. The reaction mixture was 

transferred to an NMR tube and analyzed by NMR spectroscopy using General Procedure B.  
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Note: Insufficient concentrations of 1 and 15b in the spectra below meant that unambiguous assignments 

of 1H and 13C NMR signals to specific sites in the structures of these compounds was not possible.  

 
1H NMR (300 MHz, CD3CN)  

Signals assigned to 13b: δ 8.64 – 8.50 (m, 4H, H-2 and H-3), 4.19 (s, 3H, NCH3).  

Signals assigned to 15b: δ 9.48 (dd, J = 3.3, 1.6 Hz, 2H), 9.13 (dd, J = 3.3, 1.6 Hz, 2H), 4.54 (s, 3H, 

OCH3). Relative to 1H of 13b, 1H of 15b integrates for 0.05H. 

Signals assigned to the starting material 1: δ 8.48 (d, J = 4.8 Hz, 1H), 8.16 (dd, J = 3.6, 1.5 Hz, 1H). 

Relative to 1H of 13b, 1H of 1 integrates for ca. 0.15H. 

The signal at δ 8.64 – 8.50 ppm contains 4H of 13b and 2H of the starting material 1.  The integration of 

this signal is slightly low with respect to the other signals of 1 and 13b; this is likely to be due to a slow 

relaxation rate of one of the contributing protons. 

13C{1H} NMR (75 MHz, CD3CN)  

Assigned to 13b: δ 143.1 (C-2), 139.9 (C-3), 48.1 (NCH3) 

Assigned to 15b: δ 153.1, 132.2, 69.1 (OCH3) 

Assigned to 1: δ 148.1, 135.6. 

Quantitative product formation can be concluded in this experiment on the basis of complete 

consumption of MeOTf (no signal of MeOTf present in the 1H NMR spectrum). Ratio of N-alkylation 

and O-alkylation Products (from 1H NMR spectrum):  

4H of Compound 13b = 4.00 – Therefore 1H = 1.00 

2H of compound 15b = 0.10 – Therefore 1H = 0.05 

Ratio =
1.00

1.00 + 0.05
 ×   100 = 95% N alkylation 

The CD3CN was removed using General Procedure A and the product mixture was re-dissolved in (CD3)-

2SO to record a 1H-15N HMBC NMR spectrum. Product 15b did not survive the solvent removal process.  

1H NMR (600 MHz, (CD3)2SO) 

Signals assigned to 13b: δ 9.02 – 8.99 (m, 2H), 8.99 – 8.96 (m, 2H), 4.17 (s, 3H, CH3). 

Signals assigned to 1: δ 8.55 – 8.53 (m, 2H), 8.33 – 8.31 (m, 2H). Relative to 1H of 13b, 1H of 1 integrates 

for 0.15H. 

15N NMR of 13b (60.8 MHz, (CD3)2SO): δ 322.9 (N—O), 187.8 (N+—Me). 
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Figure S4: 1H NMR spectrum of reaction mixture in CD3CN, showing signals of 13b (major product), some 15b 

and starting material.  The full spectrum is shown in Section 7. 

 

 
Figure S5: 1H NMR spectrum of reaction mixture after removal of CD3CN and addition of (CD3)2SO, showing 

signals of 13b (major product) and starting material, but no 15b.  The full spectrum is shown in Section 7. 
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(c) Experiment Showing Exclusive Formation of 13b in (CD3)2SO – Contains 15N and 13C NMR 

Data 

Pyrazine N-oxide (1) (0.050 g, 0.52 mmol) was dissolved in (CD3)2SO (0.65 ml) in a vial inside an inert 

atmosphere glove box. Methyl triflate (0.084 g, 0.51 mmol) was subsequently added dropwise. The 

reaction mixture was transferred to a NMR tube by syringe.  The NMR tube was then sealed by a rubber 

septum cap and wrapped with PTFE tape. The septum was then covered with Parafilm and the tube 

transferred outside the glove box. The methoxydimethylsulfonium salt derived from (CD3)2SO is likely 

to be the primary methylating agent in the reaction of 1 + MeOTf in (CD3)2SO.10 As a consequence, the 

methylation of 1 is relatively slow. After 4 weeks the reaction mixture was subjected to 1H and 1H-15N 

HMBC NMR spectroscopic characterization. 

 
1H NMR (600 MHz, (CD3)2SO)  

Signals assigned to 13b: δ 9.02 – 8.98 (m, 2H), 8.98 – 8.93 (m, 2H), 4.17 (s, 3H, CH3). 

Signals assigned to 1: δ 8.55 – 8.51 (m, 2H), 8.34 – 8.30 (m, 2H). Relative to 1H of 13b, 1H of 1 

integrates for 0.23H. 

A signal assigned to the methoxydimethylsulfonium salt of (CD3)2SO is present at 3.98 ppm. Relative to 

1H of 13b, 1H of the salt integrates for 0.15H. 

 

13C{1H} NMR (150 MHz, (CD3)2SO)  

Signals assigned to 13b: 142.7 (C-2) , 138.7 (C-3), 120.7 (q, J = 322 Hz, triflate CF3), 46.8. 

Signals assigned to 1:  δ 148.2, 134.2. 

Signals assigned to methoxydimethylsulfonium salt of (CD3)2SO:  62.2. 

 

15N NMR of 13b (60.8 MHz, (CD3)2SO) 

Signals assigned to 13b: δ 322.9 (N—O), 187.7 (N+—Me). 

Signals assigned to 1:  δ 310.8, 303.7. 
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Conversion Calculation (based on consumption of the methoxydimethylsulfonium salt as the limiting 

reagent):   

4H of Compound 13b corresponds to 4.00, therefore 1H = 1.00 

For the methoxydimethylsulfonium salt at 3.98 ppm, 3H = 0.46, therefore 1H = 0.15. 

 

Conversion =
1.00

1.00 + 0.15
 ×   100 = 87% 

 

 
Figure S6: 1H NMR spectrum showing product 13b and 1 in (CD3)2SO.  The full spectrum is shown in Section 7. 
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Preparation of 14  

(a) Experiment in CD3CN – Quantitative Conversion to 14 – Contains 13C NMR data 

The products of this reaction decompose upon exposure to moisture, and could not be isolated.  The 

products were characterized by recording NMR spectra of the reaction mixture under inert atmosphere. 

Pyrazine N-oxide (1) (0.016 g, 0.17 mmol), benzhydryl chloride (0.035 g, 0.17 mmol) and silver triflate 

(0.054 g, 0.21 mmol) were combined by the process described in General Procedure C to produce 14 in 

CD3CN.  NMR spectroscopic characterization of the product in CD3CN was carried out.  Quantitative 

conversion to 14 (based on consumption of the benzhydrylium ion) was observed. 

 

1H NMR (600 MHz, CD3CN) δ 8.50 (app s,* 4H, H-2, H-3), 7.54 – 7.49 (m, 6H, Phenyl H-3, H-4 & H-

5), 7.36 – 7.31 (m, 4H, Phenyl H-2 & H-6), 7.24 (s, 1H, CHPh2). Apparent singlet (app s) in 1H NMR 

spectrum was appeared as two barely separated multiplets in other spectra of this compound. 

13C{1H} NMR (150 MHz, CD3CN) δ 141.31 (C-3), 140.77 (C-2), 135.30 (Phenyl C-1), 131.05 (Phenyl 

C-4), 130.54 (Phenyl C-3 & C-5), 129.94 (Phenyl C-2 & C-6), 77.21 (CHPh2). 

 
Figure S7: 1H NMR spectrum in CD2Cl2 of 14.  The full spectrum is shown in Section 7. 
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(b) Experiment Showing Exclusive Formation of 14 in CH2Cl2 – Contains 15N NMR Data 

The products of this reaction decompose upon exposure to moisture, and could not be isolated.  The 

products were characterized by recording NMR spectra of the reaction mixture under inert atmosphere. 

Pyrazine N-oxide (1) (0.037 g, 0.39 mmol), benzhydryl chloride (0.077 g, 0.38 mmol) and silver triflate 

(0.113 g, 0.440 mmol) were combined by the process described in General Procedure C to produce 14 in 

CH2Cl2. The reaction mixture in CH2Cl2 was subjected to 1H and 1H-15N HMBC NMR spectroscopic 

characterization using the solvent suppression protocol referred to in the General Experimental.  No 

hydrolysis product can be definitively identified from the 1H NMR spectrum, although a small amount 

of material not attributable to 14 is present.  Conversion to 14 is estimated to be a minimum of 94% 

(based on integration of excess 1 relative to 14). 

 

1H NMR (600 MHz, CH2Cl2)  

Assigned to 14: δ 8.56 – 8.49 (m, 4H, H-2, H-3), 7.52 – 7.48 (m, 6H), 7.35 – 7.31 (m, 4H), 7.29 (s, 1H, 

Ph2CH). 

Assigned to 1: δ 8.68 (app d, app J = 5.4 Hz, 2H), 8.48 (app d, app J = 5.5 Hz, 2H).  Integration relative 

to 1H of 14 is 0.13H. 

15N NMR (60.8 MHz, CH2Cl2): δ 325.0 (N—O of 14), 201.6 (N+—Me of 14). 

The 1H and 1H-15N HMBC NMR spectra are shown in Section 7. 
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4.3  Reactions of Quinoxaline N-Oxide (2) 

Preparations of N-Methylquinoxalinium N’-oxide iodide (17a)  

(a) Experiment Showing Formation of 17a in Low Yield 

Quinoxaline N-oxide (2) (0.023 g, 0.16 mmol) was placed in a N2-filled Schlenk flask. Methyl iodide 

(0.684 g, 4.82 mmol) was subsequently added dropwise via syringe. The flask was wrapped in foil and 

left in the dark for 48 hours, before the methyl iodide was removed under vacuum using General 

Procedure A. The flask was then opened and the red solid product (17a) was washed by addition of Et2O, 

which was removed by cannula filtration.  Three aliquots of dry Et2O (3 ml each) were used in this 

manner to wash the product in very low yield (2 mg, 0.007 mmol, 4% yield). The recovered product 

(17a) was dissolved in (CD3)2SO for 1H NMR spectroscopic characterization. Some signals from residual 

Et2O are present in the 1H NMR spectrum. 

 

1H NMR (600 MHz, (CD3)2SO) δ 9.46 (d, J = 5.2 Hz, 1H, H-2), 9.28 (d, J = 5.2 Hz, 1H, H-3), 8.61 (dd, 

J = 8.7, 1.2 Hz, 1H, H-8), 8.55 – 8.51 (m (app dd, signal resolution renders J values ambiguous), 1H, H-

5), 8.34 (m, 1H, H-6), 8.21 – 8.15 (m, 1H, H-7), 4.49 (s, 3H, NCH3). 

 
Figure S8: 1H NMR spectrum of 17a in (CD3)2SO.  The full spectrum is shown in Section 7. 
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(b) Experiment Showing Formation of 17a in Low Yield – Contains 15N NMR data 

Quinoxaline N-oxide (2) (0.044 g, 0.30 mmol) was placed in a N2-filled Schlenk flask. Methyl iodide 

(0.129 g, 0.91 mmol) was subsequently added dropwise via syringe. The MeI was removed under vacuum 

using General Procedure A after 18 hours and the solid product (17a) was washed by addition of dry 

Et2O, which was removed by cannula filtration (under inert atmosphere).  Three aliquots of dry Et2O (0.4 

ml each) were used in this manner to wash the product (yield = 0.014 g, 0.049 mmol, 16%). A sample of 

17a in dry (CH3)2SO was then prepared for 1H and 1H-15N HMBC NMR spectroscopic characterization 

using General Procedure B. Note: An initial attempt to dissolve the product in CH2Cl2 was unsuccessful, 

and a residual amount of this solvent can be seen in the spectrum. 

 

1H NMR (600 MHz, (CH3)2SO) δ 9.42 (d, J = 5.2 Hz, 1H, H-2), 9.25 (d, J = 5.2 Hz, 1H, H-3), 8.59 – 

8.56 (m (app dd, J values ambiguous), 1H, H-8), 8.51 – 8.48 (m (app dd, J values ambiguous), 1H, H-

5), 8.34 – 8.29 (m, 1H, H-6), 8.16 – 8.12 (m, 1H, H-7), 4.46 (s, 3H, NCH3).   

15N NMR (60.8 MHz, (CH3)2SO): δ 314.7 (N—O), 178.3 (N+—Me). 

 

Figure S9: 1H NMR spectrum of 17a in (CH3)2SO.  The full spectrum is shown in Section 7.   

Note:  This spectrum was recorded in non-deuterated solvent (using the solvent suppression protocol 

specified in the General Experimental above). Due to a combination of this and the low conversion to 

product that occurred in this reaction, the product signals are very small.  However, the spectral details 

match well to the 1H NMR spectrum obtained from another repetition of the same experiment, described 

in part (a), immediately above. 
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Preparations of 17b and 19b 

(a) Experiment Showing Isolated Yield of 17b 

Quinoxaline N-oxide (2) (0.323 g, 2.21 mmol) was dissolved in CH3CN (10 ml) in a N2-filled Schlenk 

flask. Methyl triflate (0.399 g, 2.43 mmol) was subsequently added dropwise. After 5 hours, the CH3CN 

was removed under vacuum using General Procedure A, giving black crystals. The solid product (17b) 

was washed by addition of dry Et2O, which was removed by cannula filtration (under inert atmosphere).  

Three aliquots of dry Et2O (3 ml each) were used in this manner to wash the product (yield = 0.389 g, 

1.25 mmol, 57%). A sample of 17b in dry (CD3)2SO was then prepared for 1H and 1H-13C HMBC NMR 

spectroscopic characterization using General Procedure B. 

 
1H NMR (300 MHz, (CD3)2SO) δ 9.45 (d, J = 5.2 Hz, 1H, H-2), 9.27 (d, J = 5.2 Hz, 1H, H-3), 8.61 (dd, 

J = 8.7, 1.2 Hz, 1H, H-8), 8.55 – 8.49 (m (app dd, signal resolution renders J values ambiguous), 1H, H-

5), 8.39 – 8.30 (m, 1H, H-6), 8.17 (m, 1H, H-7), 4.49 (s, 3H, CH3).  

13C{1H} NMR (75 MHz, (CD3)2SO) δ 144.5 (C-2), 140.0 (C-4a), 136.5 (C-6), 135.9 (C-8a), 133.2 (C-

7), 133.0 (C-3), 121.1 (C-5), 120.0 (C-8), 44.2 (CH3) 

IR (ATR-FTIR), cm–1: 3115 (w), 3092 (w), 1629 (m), 1536 (m), 1408 (m), 1256 (s), 1029 (s), 638 (m). 

HRMS-ESI+ (m/z): calculated for [M]+ = C9H9N2O 161.0709; found 161.07069. 

 
Figure S10: 1H NMR spectrum in (CD3)2SO of 17b.  The full spectrum is shown in Section 7. 

Page 61 of 161 Chemical Science



 S21 

(b) Experiment Showing N- vs O-Alkylation Product Ratio (17b vs 19b) – Contains 13C & 15N NMR 

Data 

Quinoxaline N-oxide (2) (0.047 g, 0.32 mmol) was dissolved in CD3CN (0.65 ml) in a N2-filled Schlenk 

flask. Methyl triflate (0.045 g, 0.27 mmol) was subsequently added dropwise. The reaction mixture was 

transferred to an NMR tube and analyzed by NMR spectroscopy using General Procedure B.  

Note: Insufficient concentrations of 2 and minor product 19b in the following spectra meant that 

unambiguous assignment of hydrogen and carbon NMR signals to specific sites in the structures of these 

compounds was not possible. 

 

1H NMR (400 MHz, CD3CN)  

Assigned to 17b: δ 8.98 (d, J = 5.1 Hz, 1H, H-2), 8.79 (d, J = 5.2 Hz, 1H, H-3), 8.62 – 8.55 (m, 1H, H-

5), 8.48 – 8.23 (m, 2H, H-5 and H-7), 8.16 – 8.06 (m, 1H, H-8), 4.47 (s, 3H, NCH3). 

Assigned to 19b: δ 9.63 (d, J = 3.4 Hz, 1H), 9.56 (d, J = 3.2 Hz, 1H), 8.62 – 8.55 (m, 1H), 8.48 – 8.23 

(m, 2H), 8.16 – 8.06 (m, 1H), 4.69 (s, 3H, OCH3). Relative to 1H of 17b, 1H of 19b integrates for 0.12H. 

Assigned to 2: δ 8.69 (d, J = 3.6 Hz, 1H), 8.48 – 8.23 (m, 2H), 8.16 – 8.06 (m, 1H), 7.94 – 7.87 (m, 1H), 

7.84 – 7.78 (m, 1H). Relative to 1H of 17b, 1H of 2 integrates for approximately 0.33H. 

The signal between 8.62 and 8.55 ppm contains a 1H signal from 17b and a 1H signal from 19b. 

The signal between 8.48 and 8.23 ppm contains a 2H signal from 17b, a 2H signal from 19b and a 2H 

signal from 2. 

The signal between 8.16 and 8.06 ppm contains a 1H signal from 17b, a 1H signal from 19b and a 1H 

signal from 2. 

 

13C{1H} NMR (100 MHz, CD3CN)  

Assigned to 17b: δ 143.2 (C-2), 140.2 (C-4a), 136.3 (C-6), 135.5 (C-8a), 132.9 (C-7), 132.1 (C-3), 120.1 

(C-5), 119.7 (C-8), 44.1 (CH3) 

Assigned to 19b: δ 147.2, 144.7, 140.2, 136.8, 134.7, 131.7, 129.4, 119.1, 116.3, 68.9. 
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Ratio of N-alkylation and O-alkylation Products (from integrations in 1H NMR spectrum):  

3H of Compound 17b = 3.00 – Therefore 1H = 1.00 

3H of compound 19b = 0.36 – Therefore 1H = 0.12 

Ratio =
1.00

1.00 + 0.12
 ×   100 = 89% N alkylation 

 

 

Figure S11: 1H NMR Spectrum of 17b, 19b and 2 in CD3CN.  The full spectrum is shown in Section 7. 

 

The CD3CN was removed using General Procedure A and the product mixture was re-dissolved in (CD3)-

2SO to allow a 1H-15N HMBC NMR spectrum to be recorded. Product 19b did not survive the solvent 

removal process. 

1H NMR (600 MHz, (CD3)2SO)  

Assigned to 17b: δ 9.46 (d, J = 5.1 Hz, 1H, H-2), 9.29 (d, J = 5.1 Hz, 1H, H-3), 8.60 (app d,* app J = 8.6 

Hz, 1H, overlaps partially with signal of 2, H-8), 8.53 (app d,* app J = 8.8 Hz, 1H, H-5), 8.37 – 8.32 (m, 

1H, H-6), 8.20–8.16 (m, overlaps with signal of 2, 1H, H-7), 4.50 (s, 3H, NCH3).  See NMR spectra in 

experiments described above – these signals are not doublets; signal resolution in this particular spectrum 

is too low to observe the fine structure of these signals. 

Assigned to 2: δ 8.78 (d, J = 3.5 Hz, 1H), 8.63 (d, J = 3.5 Hz, 1H, overlaps partially with signal of 17b), 

8.46 – 8.42 (m (app d, app J = 8.5 Hz), 1H), 8.16 – 8.11 (m, overlaps with signal of 17b, 1H), 7.96 – 

7.92 (m, 1H), 7.88 – 7.84 (m, 1H).  Relative to 1H of 17b, 1H of 2 integrates for 0.26H. 
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The region between 8.64 and 8.45 ppm contains two 1H signals from 17b and a 1H signal from 2. 

The region between 8.20 and 8.11 ppm contains a 1H signal from 17b and a 1H signal from 2. 

 

15N NMR (60.8 MHz, (CD3)2SO): δ 314.4 (N—O), 178.0 (N+—Me). 

 

 

Figure S12: 1H NMR Spectrum of 17b and 2 in (CD3)2SO. Note the absence of signals assigned to 19b.  The full 

spectrum is shown in Section 7.  
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(c) Experiment Showing Exclusive Formation of 17b in (CD3)2SO – Contains 15N NMR Data 

Quinoxaline N-oxide (2) (0.057 g, 0.39 mmol) was dissolved in (CD3)2SO (0.8 ml) in a vial inside an 

inert atmosphere glove box. Methyl triflate (0.050 g, 0.31 mmol) was subsequently added dropwise. The 

reaction mixture was transferred to a NMR tube by syringe.  The NMR tube was then sealed by a rubber 

septum cap and wrapped with PTFE tape. The septum was then covered with Parafilm and the tube 

transferred outside the glove box. (CH3)2SO is known to react with methylating agents (e.g. dimethyl 

sulfate) to give methoxydimethylsulfonium salt.10 The resulting methoxysulfonium salt acts as the 

primary methylating agent in the reaction of 2 + MeOTf in (CD3)2SO. As a consequence, the methylation 

of 2 is relatively slow. After 4 weeks the reaction mixture was subjected to 1H and 1H-15N HMBC NMR 

spectroscopic characterization. 

 
1H NMR (600 MHz, (CD3)2SO)  

Assigned to 17b: δ 9.46 (d, J = 5.1 Hz, 1H, H-2), 9.27 (d, J = 5.1 Hz, 1H, H-3), 8.58 (dd, J = 8.7, 1.1 Hz, 

1H, H-8), 8.54 – 8.50 (m (app dd, signal resolution renders J values ambiguous), 1H, H-5), 8.34 – 8.30 

(m, 1H, H-6), 8.18 – 8.14 (m, 1H, overlaps partially with signal of 2, H-7), 4.51 (s, 3H, CH3). 

Assigned to 2: δ 8.78 (d, J = 3.6 Hz, 1H), 8.62 (d, J = 3.6 Hz, 1H), 8.42 (dd, J = 8.6, 1.2 Hz, 1H), 8.14 – 

8.10 (1H, overlaps partially with signal of 17b), 7.95 – 7.89 (m, 1H), 7.87 – 7.81 (m, 1H). Relative to 

1H of 17b, 1H of 2 integrates for approximately 0.78H. 

The region between 8.17 and 8.10 ppm contains a 1H signal from 17b and a 1H signal from 2. 

A signal assigned to the methoxydimethylsulfonium salt of (CD3)2SO is present at 3.99 ppm. Relative to 

1H of 17b, 1H of the salt integrates for 0.28H. 

 

15N NMR (60.8 MHz, (CD3)2SO) 

Assigned to 17b:  δ 314.4 (N—O), 177.9 (N+—Me). 

Assigned to 2: δ 302.3, 299.7. 

 

Conversion Calculation (based on consumption of the methoxydimethylsulfonium salt as the limiting 

reagent):  

For the methoxydimethylsulfonium salt at 3.99 ppm, 3H = 0.84 relative to 1H of 17b, therefore 1H = 

0.28. 

 

Conversion =
1.00

1.00 + 0.28
 ×   100 = 78% 
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Figure S13: 1H NMR Spectrum in (CD3)2SO of 17b and 2 in (CD3)2SO.  The full spectrum is shown in Section 

7. 
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Preparation of 18  

The products of this reaction decompose upon exposure to moisture, and could not be isolated.  

Consequently, the products were characterized by recording NMR spectra of the reaction mixture under 

inert atmosphere. 

Quinoxaline N-oxide (2) (0.026 g, 0.18 mmol), 4-methylbenzhydryl chloride (0.038 g, 0.18 mmol) and 

silver triflate (0.044 g, 0.17 mmol) were combined by the process described in Procedure C to produce 

18 (major product) + 20 (minor product) in CD2Cl2. The reaction mixture in CD2Cl2 was then prepared 

for 1H and 1H-15N HMBC NMR spectroscopic characterization using General Procedure B.  

   

1H NMR (600 MHz, CD2Cl2)  

Signals assigned to 18:  δ 8.75 (d, J = 5.5 Hz, 1H, H-3), 8.60 (dd, J = 8.7, 1.1 Hz, 1H, H-8), 8.53 (d, J = 

5.5 Hz, 1H, H-2), 8.42 (app d, app J = 8.9 Hz, 1H, H-5), 8.10 (m, 1H, H-7), 8.02 – 7.97 (m, 1H, H-6), 

7.81 (s, 1H, CHPhTol), 7.51 – 7.46 (m, 3H, Phenyl H-3, H-4 & H-5), 7.39 – 7.22 (m, 6H, Phenyl H-2 & 

H-6, Tolyl H-2, H-3, H-5 & H-6), 2.37 (s, 3H, CH3). 

Signals assigned to 20: δ 8.83 (d, J = 3.6 Hz, 1H), 8.28 (d, J = 8.4 Hz, 1H) and 7.87 (m, 1H). Relative to 

1H of 18, 1H of 20 integrates for 0.10H. 

A peak assigned to a hydrolysis product is present at 5.38 ppm. The signals of the aromatic protons of 

this product also contribute to the integration of the multiplet at 7.39 – 7.22 ppm. Relative to 1H of 18, 

2H of the hydrolysis product integrates for 0.08H. 

 

13C{1H} NMR (150 MHz, CD2Cl2)  

Signals assigned to 18: δ 141.4 (Tolyl C-4), 141.2 (C-4a), 140.7 (C-2), 137.5 (C-7), 135.6 (C-8a), 134.8 

(Phenyl C-1), 133.5 (C-6), 133.1 (C-3), 130.8 (Tolyl C-3 & C-5), 130.2 (Phenyl C-4), 130.1 (Phenyl C-

3 & C-5), 129.5 (Tolyl C-2 & C-6), 129.2 (Phenyl C-2 & C-6), 121.4 (C-5), 121.1 (C-8), 73.2 (CHPhTol), 

21.3 (CH3). 

A 13C NMR signal assigned to the CF3SO3
− ion is present at δ 120.72 (q, J = 320 Hz). 

Note: Low concentration of minor product 20 in the 13C{1H} NMR spectrum meant that assignment of 

the very small signals present in the spectrum to this compound could not be done unambiguously. 

 

15N NMR (60.8 MHz, CD2Cl2)  

Signals assigned to 18:  δ 317.6 (N—O), 190.5 (N+—Me). 

No correlations were observed to the 1H NMR signals of the minor product, 20. 
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Ratio of N-alkylation and O-alkylation Products:  

1H of compound 18 = 1.00  

1H of compound 20 = 0.10  

Ratio =
1.00

1.00 + 0.10
 ×   100 = 91% N alkylation 

 

Conversion Calculation (based on consumption of the benzhydrylium ion as the limiting reagent):  

1H of Compound 18 corresponds to 1.00. 

For the hydrolysis product at 5.38ppm, 2H = 0.08.  Therefore, since two equivalents of benzhydrylium 

ion are consumed in hydrolysis (formation of bis(benzhydryl) ether), the conversion was: 

 

Conversion =
1.00

1.00 + 0.08
 ×   100 = 93% 

 

 
Figure S14: 1H NMR spectrum in CD2Cl2 of 18.  The full spectrum is shown in Section 7. 
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4.4  Reactions of Pyrimidine N-Oxide (3) 

Preparations of 21b and 23b  

Removing the solvent from reaction mixtures containing 21b and/or 23b causes decomposition of 21b.  

Formation of some quantity of degradation products was observed in all instances of reactions of 3 with 

MeOTf (see below), regardless of whether CD3CN, MeCN or (CD3)2SO were used as solvent even if the 

solvent was not removed.  Taking steps to protect the reaction mixture from light also did not prevent the 

formation of these degradation products.  It is not clear whether the degradation products observed 

directly in reaction mixtures by 1H NMR spectroscopy (reactions in CD3CN or (CD3)2SO – see below) 

are derived from decomposition of 21b or 23b or both, or if some separate process leads to the formation 

of the decomposition products observed in the reaction mixtures.  Although 23b survives solvent 

removal, attempts to isolate it from the decomposition products through crystallization under inert 

atmosphere (in a Schlenk flask) were unsuccessful, resulting only in formation of further decomposition 

product(s).  Since neither 21b nor 23b could be isolated, it was necessary to characterize these products 

in the reaction mixtures in which they formed by NMR spectroscopy under inert atmosphere.  A high 

resolution mass spectrum of 23b (sample maintained under inert atmosphere) was also obtained by 

subjecting a reaction mixture known (from NMR spectroscopic analysis) to contain only a small amount 

of decomposition product to electrosptray ionization mass spectrometric analysis (see below).  This 

compound (with dimethylsulfate counter-ion rather than triflate) has been characterized previously.11 

 

(a) Experiment Showing Approximate Isolated Yield of 23b 

Pure samples of compounds 23b and/or 21b could not be obtained from this reaction for the reasons 

given at the start of section 4.4 (just above). 

Pyrimidine N-oxide (3) (0.195 g, 2.03 mmol) was dispensed into a Schenk flask and sealed in a glove 

box. The flask was removed from the glove box and attached to a Schlenk line, and the solid was then 

dissolved in dry CH3CN (3 ml). Methyl triflate (0.342 g, 2.08 mmol) was subsequently added dropwise. 

The flask was wrapped with aluminium foil and the reaction mixture was stirred for 24 hours. 

 

All operations and manipulations of the product were carried out under inert atmosphere – i.e. the product 

was kept in a Schlenk flask under an atmosphere of N2 throughout.  Dry Et2O (3 ml) was then added to 

the reaction mixture, which caused the separation of a yellow oil from the reaction mixture.  The 

supernatant (CH3CN/Et2O) was carefully removed by cannula.  Two further aliquots of dry Et2O (3 ml 

each) were then used to wash the yellow oil.  In each case, the Et2O supernatant was removed by cannula, 

as above.  The product was dried by passing a stream of N2 gas over the oil to avoid exposing the product 

to vacuum (for the reasons given at the beginning of section 4.4).  The oil obtained contained small 

amounts of decomposition products seen in all experiments involving reaction of 3 with MeOTf (see 

Page 69 of 161 Chemical Science



 S29 

below).  The amount of decomposition product present (based on 1H NMR spectroscopic analysis of 

theis material) is sufficiently small to quote an approximate isolated yield for 23b of 404 mg (1.55 mmol, 

77% yield) from this experiment.  All attempts to purify this material further (to obtain completely pure 

23b) resulted in decomposition of the product.  A small sample of the product was dissolved in dry 

CD3CN and analyzed by NMR spectroscopy using General Procedure B.  A separate sample of 23b was 

prepared in dry MeCN (approximately 1 mg ml−1) and transferred to a mass spectrometry vial contained 

in a Schlenk flask under an atmosphere of nitrogen.  The sample was maintained under inert atmosphere 

until directly prior to recording the mass spectrum. 

1H NMR (300 MHz, CD3CN) Signals assigned to 23b: δ 9.77 (dd, J = 2.3, 0.8 Hz, 1H), 9.43 – 9.34 (m, 

2H), 8.23 (ddd, J = 6.8, 4.9, 0.9 Hz, 1H), 4.47 (s, 3H). 

HRMS-ESI+ (m/z): Calculated for [M]+ = C5H7N2O 111.0553; found 111.0550 (44%).  Calculated for 

[M + H + OTf]+ = C6H8N2O4SF3 261.0157; found 261.0150 (100%).  We assign the second peak to the 

dicationic N-protonated adduct of 23b associated with triflate to give an entity with a single net positive 

charge. 

Note: The 1H signal at δ 9.77 in compound 23b has an extremely long relaxation time.  A 30° pulse and 

a relaxation delay of 60 seconds were used during acquisition of the spectrum shown in Fig. S14, leading 

to a set of internally consistent integrations for the 1H NMR signals of 23b. 

 
Figure S15: 1H NMR spectrum in CD3CN of 23b. Small signals of decomposition products are present between 

4.5 and 2.0 ppm. 
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(b) Reaction in MeCN – after solvent removal only 23b is observed – Contains 15N NMR Data 

Pure samples of compounds 23b and/or 21b could not be obtained from this reaction for the reasons 

given at the start of section 4.4. 

Pyrimidine N-oxide (3) (0.046 g, 0.48 mmol) was dissolved in CH3CN (5 ml) in a N2-filled Schlenk 

flask. Methyl triflate (0.057 g, 0.35 mmol) was subsequently added dropwise. After ca. 20 minutes, the 

CH3CN was removed under vacuum using General Procedure A and the solid product (23b) was washed 

by addition of dry Et2O, which was removed by cannula filtration (under inert atmosphere). Three 

aliquots of dry Et2O (2 ml each) were used in this manner to wash the product. A sample of 23b in dry 

(CH3)2SO was then prepared for 1H and 1H-15N HMBC NMR spectroscopic characterization using 

General Procedure B. 

 

1H NMR (600 MHz, (CH3)2SO)  

Signals assigned to 23b: δ 10.21 (app d, app J = 1.8 Hz, 1H), 9.90 – 9.83 (m, 1H), 9.44 (dd, J = 4.8, 1.5 

Hz, 1H), 8.40 – 8.36 (m, 1H), 4.45 (s, 3H).11 

Signals assigned to 3: δ 9.07 (s, 1H, H-2), 8.61 – 8.56 (m, 1H, H-6), 8.33 – 8.29 (m, 1H, H-4), 7.58 – 

7.52 (m, 1H, H-5).11 Relative to 1H of 23b, 1H of 3 integrates for approximately 0.71H. 

 
Figure S16: 1H NMR spectrum in (CH3)2SO of 23b, containing signals assigned to 3.  The full spectrum is shown 

in Section 7

Page 71 of 161 Chemical Science



 S31 

(c) Experiment Showing N- vs O-Alkylation Product Ratio (21b vs 23b) in CD3CN – Contains 15N 

and 13C NMR Data 

Pure samples of compounds 23b and/or 21b could not be obtained from this reaction for the reasons 

given at the start of section 4.4. 

Pyrimidine N-oxide (3) (0.045 g, 0.47 mmol) was dissolved in CD3CN (0.65 ml) in a N2-filled Schlenk 

flask. Methyl triflate (0.067 g, 0.41 mmol) was then added dropwise. The reaction mixture was 

transferred to an NMR tube and analyzed by NMR spectroscopy using General Procedure B. 

 

1H NMR (400 MHz, CD3CN) 

Signals assigned to 23b: δ 9.81 (app d, app J = 1.5 Hz, 1H, H-2), 9.47 – 9.37 (m, 2H, H-4 and H-6), 8.31 

– 8.24 (m, 1H, H-5), 4.51 (s, 3H, OCH3). 

Signals assigned to 21b: δ 9.56 (s, 1H, H-2), 8.90 (app d, app J = 6.8 Hz, 1H), 8.58 (app d, app J = 6.0 

Hz, 1H), 8.01 (app t, app J = 6.0 Hz, 1H), 4.32 (s, 3H, NCH3). Relative to 1H of 23b, 1H of 21b integrates 

for 0.08H. 

Signals assigned to starting material 3: δ 8.98 (s, 1H, H-2), 8.50 – 8.42 (m, 1H, H-6), 8.39 – 8.33 (m, 1H, 

H-4), 7.55 – 7.46 (m, 1H, H-5).11 Relative to 1H of 23b, 1H of 3 integrates for 0.30H. 

13C{1H} NMR (100 MHz, CD3CN) 

Signals assigned to 23b: δ 163.6 (C-6), 150.0 (C-2), 148.1 (C-4), 125.0 (C-5), 70.2 (OCH3). 

Signals assigned to 21b: δ 151.8, 149.1, 140.2, 124.0, 46.6 (NCH3). 

Signals assigned to starting material 3: δ 149.1 (C-2), 145.8 (C-4), 144.5 (C-6), 121.9 (C-5). 

A quartet from CF3SO3
−

 is present at δ 120.6 (partially overlaps with other signals; J = ca. 320 Hz). 

Ratio of N-alkylation and O-alkylation Products (from integrations in 1H NMR spectrum):  

2H of Compound 23b = 2.00 – Therefore 1H = 1.00 

1H of Compound 21b = 0.08 – Therefore 1H = 0.08 

Ratio =
1.00

1.00 + 0.08
 ×   100 = 93% O alkylation 
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Figure S17: 1H NMR spectrum in CD3CN, containing signals assigned to 23b, 21b and 3.  The full spectrum is 

shown in Section 7. 

 

The CD3CN was removed and the product mixture was re-dissolved in (CD3)2SO to allow a 1H-15N 

HMBC NMR spectrum to be measured. Product 21b did not survive the solvent removal process. 

1H NMR (600 MHz, (CD3)2SO) 

Signals assigned to 23b δ 10.24 (dd, J = 2.2, 0.8 Hz, 1H, H-2), 9.89 (ddd, J = 6.8, 2.2, 1.6 Hz, 1H, H-6), 

9.46 (dd, J = 4.8, 1.6 Hz, 1H, H-4), 8.40 (app. ddd, J = 6.8, 4.8, 0.8 Hz, 1H, H-5), 4.48 (s, 3H). 

Signals assigned to starting material 3 δ 9.15 – 9.11 (m, 1H, H-2), 8.64 (ddd, J = 6.6, 2.0, 1.5 Hz, 1H, H-

6), 8.38 (dd, J = 4.8, 1.5 Hz, 1H, H-4), 7.61 (ddd, J = 6.6, 4.8, 0.9 Hz, 1H, H-5).11 Relative to 1H of 23b, 

1H of 3 integrates for approximately 1.80H. 

15N NMR (60.8 MHz, (CD3)2SO) 

Signals assigned to 23b δ 303.4 (free N), 249.4 (N+—OMe)  

Signals assigned to 3: δ 300.9, 285.8. 
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Figure S18: 1H NMR spectrum in (CD3)2SO, containing signals assigned to 23b and 3. Signals assigned to 21b 

are no longer present after solvent removal. Signals of a large amount of decomposition products are also present.  

The full spectrum is shown in Section 7. 

 

 

(d) Experiment Showing N- vs O-Alkylation Product Ratio (21b vs 23b) in (CD3)2SO – Contains 
15N and 13C NMR Data  

Pyrimidine N-oxide (3) (0.050 g, 0.52 mmol) was dissolved in (CD3)2SO (0.8 ml) in a vial inside an inert 

atmosphere glove box. Methyl triflate (0.087 g, 0.53 mmol) was subsequently added dropwise. The 

reaction mixture was transferred to a NMR tube by syringe.  The NMR tube was then sealed by a rubber 

septum cap and wrapped with PTFE tape. The septum was then covered with Parafilm and the tube 

transferred outside the glove box.  1H NMR spectra were run periodically over the course of four weeks.  

Very slow consumption of 3 and growth of 21b and 23b was observed from these spectra.  The 

integration of the 1H NMR signal of the methylating agent (likely to be (methoxy)sulfonium triflate)10 at 

δ 3.98 ppm also diminished during this time.  After four weeks, 1H, 13C{1H}, COSY, 1H-13C HSQC, 1H-
13C HMBC and 1H-15N HMBC NMR spectra of the reaction mixture were recorded. 
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1H NMR (600 MHz, (CD3)2SO)  

Signals assigned to 23b: δ 10.24 (dd, J = 2.2, 0.8 Hz, 1H, H-2, overlaps with signal of 21b), 9.90 (ddd, 

J = 6.8, 2.2, 1.6 Hz, 1H, H-6), 9.47 (dd, J = 4.9, 1.6 Hz, 1H, H-4), 8.41 (ddd, J = 6.8, 4.9, 0.8 Hz, 1H, H-

5, partially overlaps with signal of 3), 4.48 (s, 3H, OCH3).   

Signals assigned to 21b: δ 10.18 (s, 1H, overlaps with signal of 23b), 9.21 – 9.17 (m, 1H), 8.89 (app d, 

app J = 6.1 Hz, 1H), 8.17 (app t, app J = 6.5 Hz, 1H), 4.26 (s, 3H, NCH3).  Relative to 1H of 23b, 1H of 

21b integrates for 0.07H. 

Signals assigned to 3: δ 9.09 (m, 1H, H-2), 8.60 (ddd, J = 6.6, 2.0, 1.5 Hz, 1H, H-6), 8.33 (dd, J = 4.8, 

1.5 Hz, 1H, H-4, partially overlaps with signal of 23b), 7.58 (ddd, J = 6.6, 4.8, 1.0 Hz, 1H, H-5).11 

Relative to 1H of 23b, 1H of 3 integrates for 0.61H. 

A signal assigned to the methoxydimethylsulfonium salt of (CD3)2SO is present at 3.98 ppm. Relative to 

1H of 23b, 1H of the salt integrates for approximately 0.33H. 

Note: The singlet at δ 10.24 ppm has an extremely slow relaxation rate. A 30° pulse and a relaxation 

delay of 60 seconds were used during acquisition of the spectra above, leading to a set of internally 

consistent integrations for the 1H NMR signals of 23b.  Use of a 90° pulse and a 60 second relaxation 

delay gave an integration of the signal at 10.24 ppm of 84% relative to the other 1H signals of 23b. 

 

13C{1H} NMR (151 MHz, (CD3)2SO) 

Signals assigned to 23b: δ 163.7 (C-6), 151.2 (C-2), 149.0 (C-4), 125.1 (C-5), 70.4 (OCH3). 

No signals in this 13C NMR spectrum could be assigned to the small amount of 21b present. 

Signals assigned to 3: δ 149.8 (C-2), 145.3 (C-4 or C-6), 145.2 (C-4 or C-6), 122.6 (C-5). 

A signal at δ 121.1 (q, J = 322 Hz) is assigned to triflate ion (−OSO2CF3).  Small signal derived from 

decomposition products are also present (see spectra in section 7 and comment at start of section 4.4). 

 
15N NMR (60.8 MHz, (CD3)2SO) 

Signals assigned to 23b: δ 303.1 (free N), 249.0 (N +—OMe) 

Signals assigned to 21b: δ 293.6 (N—O), 205.2 (N +—Me) 

Signals assigned to 3: 300.7, 288.4. 

 
 

Conversion Calculation (based on consumption of the methoxydimethylsulfonium salt as the limiting 

reagent):  

3H of Compound 23b corresponds to 3.00, therefore 1H = 1.00. 3H of compound 21b corresponds to 

0.21, therefore 1H = 0.07. 

For the methoxydimethylsulfonium salt at 3.98 ppm, 3H = 1.00, therefore 1H = 0.33. 
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Conversion =
1.00 + 0.07

1.00 + 0.07 + 0.33
 ×   100 = 76% 

 

Ratio of N-alkylation and O-alkylation Products (using integrations from 1H NMR spectrum):  

1H of Compound 23b = 1.00  

1H of Compound 21b = 0.07  

Ratio =
1.00

1.00 + 0.07
 ×   100 = 93% O alkylation 

 

 
Figure S19: 1H NMR spectrum in (CD3)2SO of 23b, containing signals assigned to 21b and 3.  The full spectrum 

is shown in Section 7. 
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Attempted Preparation of 22 and 24  

Pyrimidine N-oxide (3) (0.044 g, 0.46 mmol), benzhydryl chloride (0.093 g, 0.46 mmol) and silver triflate 

(0.132 g, 0.514 mmol) were combined by the process described in Procedure C in an attempt to produce 

22 or 24 in CH2Cl2. The reaction mixture was analyzed by NMR spectroscopy using General Procedure 

B. As can be seen in the spectra shown below, the appearances of the signals are highly unusual, and 

none of these signals could be definitively assigned to any particular species.  The identities of the entities 

formed in this process are not clear. 

 

 

Figure S20: 1H NMR spectrum in CH2Cl2 of the crude reaction mixture from the reaction above. Signals could not 

be definitively assigned to product 22 or 24.  The full spectrum is shown in Section 7. 
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Figure S21: Expansion of the 1H NMR spectrum of the crude reaction mixture from the reaction above in CH2Cl2, 

showing the broadness of the observed signals. Signals could not be definitively assigned to product 22 or 24 
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5. Crossover Experiments  

General Procedure D:  Crossover experiments 

The following procedure was used to establish whether reactions of diazine N-oxides occurred under 

kinetic control. In a glove box containing a nitrogen atmosphere, the appropriate diazine N-oxide (1 

equivalent) was weighed into a vial. Dry CD3CN (usually 0.65 ml) was added. An internal standard, 

1,3,5-trimethoxybenzene was subsequently added (approx. 15 mol%). The mixture was then transferred 

into an NMR tube, which was sealed with a rubber septum. The seal was then wrapped with PTFE tape 

and Parafilm.  Finally, the NMR tube was placed in a long Schlenk flask and removed from the glove 

box and brought to the NMR spectrometer. A 1H NMR spectrum was measured and the tube was removed 

from the spectrometer. A solution of the crossover nucleophile in CD3CN (amounts specified below) was 

then injected through the septum cap.  A second 1H NMR spectrum was recorded immediately, and an 

additional spectrum was obtained after allowing the reaction mixture to stand (in the NMR tube) for two 

days or more. 

5.1   Crossover experiment – pyrazine N-oxide (1) with MeOTf and methyl nicotinate (25) 

The following reagents were combined in the process described in General Procedure D. Pyrazine N-

oxide (1) (0.018 g, 0.19 mmol) was dissolved in CD3CN (0.65 ml) in a vial in a glove box. Methyl triflate 

(0.024 g, 0.15 mmol) was subsequently added dropwise. To this mixture was added 1,3,5-

trimethoxybenzene (0.003 g, 0.02 mmol). The reaction mixture was transferred to an NMR tube and 

analyzed by NMR spectroscopy in CD3CN (Spectrum A). The tube was removed from the spectrometer 

and methyl nicotinate (25) (0.032 g, 0.23 mmol) in CD3CN (0.15 ml) was injected into the tube through 

the septum by syringe. The mixture was agitated and a second 1H NMR spectrum was recorded.  No 

change was observed in the ratio of 13b and 15b in this spectrum.  An additional 1H NMR spectrum was 

recorded after 1 day (Spectrum B). 
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1H NMR (300 MHz, CD3CN, 15 second relaxation delay) Spectrum A:  

Signals assigned to 13b: δ 8.55 – 8.49 (m, 4H), 4.15 (s, 3H). 

Signals assigned to 15b: δ 9.45 (dd, J = 3.3, 1.6 Hz, 2H), 9.08 (dd, J = 3.3, 1.6 Hz, 2H), 4.51 (s, 3H). 

Relative to 1H of 13b, 1H of 15b integrates for 0.04H. 

Signals assigned to starting material 1: δ 8.47 – 8.40 (m, 2H), 8.13 (app dd, app J = 3.6, 1.5 Hz, 2H). 

Relative to 1H of 13b, 1H of 1 integrates for approximately 0.28H. 

Signals assigned to internal standard trimethoxybenzene: δ 6.09 (s, 3H), 3.74 (s, 9H). Relative to 1H of 

23b, 1H of trimethoxybenzene integrates for 0.14H. 

 
Ratio of N-alkylation and O-alkylation Products:  

3H of Compound 13b = 3.00 – Therefore 1H = 1.00 

2H of Compound 15b = 0.08 – Therefore 1H = 0.04 

Ratio =
1.00

1.00 + 0.04
 ×   100 = 96% N alkylation 

 

Ratio of major product to internal standard:  

3H of Compound 13b = 3.00 – Therefore 1H = 1.00 

3H of internal standard = 0.43 – Therefore 1H = 0.143 

Ratio =
1.00

1.00 + 0.143
 ×   100 = 87 ∶ 13 

 
Figure S22: Spectrum A: 1H NMR spectrum in CD3CN containing signals assigned to 13b, 15b and 1. Signals of 

the internal standard 1,3,5-trimethoxybenzene are also present.  The full spectrum is shown in Section 7. 
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1H NMR (300 MHz, CD3CN, 15 second relaxation delay) Spectrum B:  

Signals assigned to 13b: δ 8.57 – 8.49 (m, 4H), 4.16 (s, 3H). 

No signals assigned to 15b 

Signals assigned to starting material 1: δ 8.46 – 8.38 (m, 2H), 8.08 (app dd, app J = 3.5, 1.5 Hz, 2H). 

Relative to 1H of 13b, 1H of 1 integrates for approximately 0.39H. 

Signals assigned to internal standard trimethoxybenzene: δ 6.08 (s, 1H), 3.73 (s, 1H). Relative to 1H of 

13b, 1H of trimethoxybenzene integrates for approximately 0.15H. 

Signals assigned to 25: δ 9.14 – 9.10 (m, 1H), 8.76 (dd, J = 4.9, 1.7 Hz, 1H), 8.30 – 8.25 (m, 1H), 7.47 

(ddd, J = 8.0, 4.9, 0.9 Hz, 1H), 3.90 (s, 3H). Relative to 1H of 13b, 1H of 3 integrates for 1.57H. 

Signals assigned to crossover product 26: δ 9.22 (s, 1H), 8.92 (d, J = 8.1 Hz, 1H), 4.39 (s, 3H), 4.00 (s, 

3H). Relative to 1H of 13b, 1H of 26 integrates for 0.04H. 12 

Note: The singlets at 4.39 ppm and 4.16 ppm are overlapping with a minor side product, altering their 

integration values. 

Ratio of 13b to crossover product 26:  

4H of Compound 13b = 4.00 – Therefore 1H = 1.00 

1H of 26 = 0.04 – Therefore 1H = 0.04 

Ratio =
1.00

1.00 + 0.04
 ×   100 = 96 ∶ 4 

Ratio of major product to internal standard:  

4H of Compound 13b = 4.00 – Therefore 1H = 1.00 

3H of internal standard = 0.45 – Therefore 1H = 0.15 

Ratio =
1.00

1.00 + 0.15
 ×   100 = 87 ∶ 13 
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Figure S23: Spectrum B: 1H NMR spectrum in CD3CN containing signals assigned to 13b, 25, crossover product 

26 and 1. Signals of the internal standard 1,3,5-trimethoxybenzene are also present.  No signals assigned to 15b 

are observed.  The full spectrum is shown in Section 7. 

 

 

That the relative ratio of N-methylation product (13b) and the internal standard (1,3,5-

trimethoxybenzene) remains constant after addition of 2nd nucleophile (25) demonstrates that the 

formation of 13b from 1 + MeOTf is irreversible under the reaction conditions employed. 

We conclude that formation of crossover product (26) derived from O-methylation product 15b occurs 

by SN2 reaction of 15b + 2nd nucleophile 25, and that 15b does not undergo reversal to 1 + MeOTf in 

CD3CN at ca. 20 °C (i.e. 15b is formed irreversibly).  If this were not the case, then a mixture of 13b + 

15b should eventually convert entirely to 13b, since 13b is formed irreversibly.  The ratio of 13b to 15b 

remains invariant with time unless a second nucleophile is added to the reaction mixture. 
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5.2  Crossover experiment – quinoxaline N-oxide (2) with MeOTf and pyrazine (7) 

The following reagents were combined in the process described in General Procedure D. Quinoxaline N-

oxide (2) (0.018 g, 0.12 mmol) was dissolved in CD3CN (0.65 ml) in a vial in a glove box. Methyl triflate 

(0.019 g, 0.12 mmol) was subsequently added dropwise. To this mixture was added 1,3,5-

trimethoxybenzene (5 mg, 0.03 mmol). The reaction mixture was transferred to an NMR tube and 

analyzed by NMR spectroscopy in CD3CN (Spectrum A). The tube was removed from the spectrometer 

and a solution of 7 (8 mg, 0.010 mmol) in CD3CN (0.20 ml) was injected into the tube through the rubber 

septum by syringe.  The mixture was agitated and a second 1H NMR spectrum was recorded.  No change 

was observed in the ratio of 17b and 19b in this spectrum.  After 1 day, and additional 1H NMR spectrum 

was recorded (Spectrum B).  

 

1H NMR (300 MHz, CD3CN, 15 second relaxation delay) Spectrum A:  

Signals assigned to 17b: δ 8.92 (d, J = 5.3 Hz, 1H), 8.75 (d, J = 5.3 Hz, 1H), 8.62 – 8.55 (m, overlaps 

with 1H of 19b, contains 1H of 17b), 4.43 (s, 3H). 

Signals assigned to 19b: δ 9.60 (d, J = 3.4 Hz, 1H), 9.49 (d, J = 3.4 Hz, 1H), 8.56 – 8.52 (overlaps with 

1H of 17b, contains 1H of 19b), 4.65 (s, 3H). Relative to 1H of 17b, 1H of 19b integrates for 0.13H. 

Signals assigned to starting material 2: δ 8.67 (d, J = 3.6 Hz, 1H), 8.46 (dd, J = 8.6, 1.4 Hz, 1H), 8.38 – 

8.23 (m, 1H), 7.92–7.84 (m, 1H), 7.83 – 7.75 (m, 1H). Relative to 1H of 17b, 1H of 2 integrates for 

approximately 0.38H. 

Signals assigned to internal standard trimethoxybenzene: δ 6.06 (s, 3H), 3.73 (s, 9H). Relative to 1H of 

23b, 1H of trimethoxybenzene integrates for 0.33H. 
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The section of the spectrum at 8.62 – 8.53 ppm contains 1H each of 17b and 19b.  The section at 8.38 – 

8.23 ppm contains a 2H signal from 17b, a 2H signal from 19b and a 1H signal from 2.  The section at 

8.15 – 8.07 ppm contains a 1H signal from 17b, a 1H signal from 19b and a 1H signal from 2. 

Ratio of N-alkylation and O-alkylation Products:  

1H of Compound 17b = 1.00  

1H of Compound 19b = 0.13  

Ratio =
1.00

1.00 + 0.13
 ×   100 = 88% N alkylation 

 

 

Ratio of major product to internal standard:  

1H of Compound 17b = 1.00 

3H of internal standard = 1.00 – Therefore 1H = 0.33 

Ratio =
1.00

1.00 + 0.33
 ×   100 = 75 ∶ 25 

 

 
Figure S24: Spectrum A: 1H NMR spectrum in CD3CN containing signals assigned to 17b, 19b and 2. Signals of 

the internal standard 1,3,5-trimethoxybenzene are also present.  The full spectrum is shown in Section 7. 
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1H NMR (300 MHz, CD3CN, 15 second relaxation delay) Spectrum B:  

Signals assigned to 17b: δ 8.91 (d, J = 5.3 Hz, 1H), 8.76 (d, J = 5.3 Hz, overlaps with signal of 9b, 

contains 1H of 17b), 4.43 (s, 3H).  

Signals assigned to 19b: δ 9.61 (d, J = 3.4 Hz, 1H), 9.49 (d, J = 3.4 Hz, 1H), 8.58 (app d, app J = 7.3 Hz, 

1H), 4.65 (s, 3H). Relative to 1H of 17b, 1H of 19b integrates for 0.05H. 

Signals assigned to starting material 2: δ 8.66 (d, J = 3.6 Hz, 1H), 8.46 (dd, J = 8.6, 1.4 Hz, 1H), 7.91–

7.83 (m, 1H), 7.82 – 7.74 (m, 1H). Relative to 1H of 17b, 1H of 2 integrates for approximately 0.55H. 

Signals assigned to internal standard trimethoxybenzene: δ 6.06 (s, 3H), 3.73 (s, 9H). Relative to 1H of 

17b, 1H of trimethoxybenzene integrates for approximately 0.33H. 

Signals assigned to 7: δ 8.57 (s, overlaps with 1H signal of 17b, contains 4H of 7 (relative integration = 

4.05 – 1.00 = 3.05)). Relative to 1H of 17b, 1H of 7 integrates for (3.05/4) = 0.76H. 

Signals assigned to crossover product 9b: δ 9.41 – 9.35 (m, 2H), 8.77 – 8.73 (m, 2H, overlaps with 

signal of 17b), 4.39 (s, 3H). Relative to 1H of 17b, 1H of 9b integrates for approximately 0.07H. 

The section of the spectrum between 8.38 and 8.23 ppm contains a 2H signal from 17b, a 2H signal from 

19b and a 1H signal from 2. The section at 8.15 – 8.07 ppm contains a 1H signal from 17b, a 1H signal 

from 19b and a 1H signal from 2. The signal between 8.77 and 8.71 ppm contains a 1H signal from 17b 

and a 1H signal from 19b. 

 

Ratio of 17b to crossover product 9b:  

1H of Compound 17b = 1.00 

2H of crossover product = 0.14 – Therefore 1H = 0.07 

Ratio =
1.00

1.00 + 0.07
 ×   100 = 93 ∶ 7 

 

Ratio of major product to internal standard:  

1H of Compound 17b = 1.02 

3H of internal standard = 1.00 – Therefore 1H = 0.33 

Ratio =
1.02

1.02 + 0.33
 ×   100 = 76 ∶ 24 

 

That the relative ratio of N-methylation product (17b) and the internal standard (1,3,5-

trimethoxybenzene) remains constant after addition of 2nd nucleophile (7) demonstrates that the 

formation of 17b from 2 + MeOTf is irreversible under the reaction conditions employed. 

 

Page 85 of 161 Chemical Science



 S45 

 

 

We conclude that formation of crossover product (9b) derived from O-methylation product 19b occurs 

by SN2 reaction of 19b + 2nd nucleophile 7, and that 19b does not undergo reversal to 2 + MeOTf in 

CD3CN at ca. 20 °C (i.e. 19b is formed irreversibly).  If this were not the case, then a mixture of 17b + 

19b should eventually convert entirely to 17b, since 17b is formed irreversibly.  The ratio of 17b to 19b 

remains invariant with time unless a second nucleophile is added to the reaction mixture. 

 
Figure S25: Spectrum B: 1H NMR spectrum in CD3CN containing signals assigned to 17b, 7, crossover product 

9b and 2. Signals of the internal standard 1,3,5-trimethoxybenzene are also present.  A lower proportion of signals 

assigned to 19b are observed.  The full spectrum is shown in Section 7. 
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5.3   Crossover experiment – pyrimidine N-oxide (3) with MeOTf and pyrazine (7) 

The following reagents were combined in the process described in General Procedure D. Pyrimidine N-

oxide (3) (0.014 g, 0.15 mmol) was dissolved in CD3CN (0.65 ml) in a vial in a glove box. Methyl triflate 

(0.021 g, 0.13 mmol) was subsequently added dropwise. To this mixture was added 1,3,5-

trimethoxybenzene (4 mg, 0.02 mmol). The reaction mixture was transferred to an NMR tube and 

analyzed by NMR spectroscopy in CD3CN (Spectrum A). The tube was removed from the spectrometer 

and a 1.33 mol L−1 solution of 7 in CD3CN (0.25 ml, 0.33 mmol) was injected into the tube through the 

rubber septum by syringe. The mixture was agitated and a second 1H NMR spectrum was recorded – no 

change was observed in the ratio of 21b and 23b in this spectrum. After 1 day, the mixture was re-

analyzed by 1H NMR spectroscopy (Spectrum B).  In spectrum B, only signals of starting material 3, 

crossover product 9b, 7 and trimethoxybenzene were observed.  After two weeks, the mixture was 

analyzed again by 1H NMR spectroscopy (Spectrum C).  This showed that no 21b or 23b remained, and 

substantial formation of crossover product 9b along with starting material 3 and a variety of 

decomposition products (the latter of which have been observed in all other experiments involving 

formation of 21b and 23b – see above). 

 

1H NMR (300 MHz, CD3CN, 20 second relaxation delay) Spectrum A:  

Signals assigned to 21b: δ 9.50 – 9.36 (m, 1H), 8.98 – 8.85 (m, 1H), 8.53 (d, J = 6.0 Hz, 1H), 8.13 (s, 

1H), 4.30 (s, 3H). 

Signals assigned to 23b: δ 9.78 – 9.77 (m, 1H), 9.43 – 9.36 (m, 2H), 8.33 – 8.17 (m, 1H), 4.51 (s, 3H). 

Relative to 1H of 23b, 1H of 21b integrates for 0.03H. 

Signals assigned to starting material 3: δ 8.95 (s, 1H), 8.41 (m, 1H), 8.34 – 8.23 (m, 1H), 7.51 – 7.43 (m, 

1H). Relative to 1H of 23b, 1H of 3 integrates for 0.31H. 

Signals assigned to internal standard trimethoxybenzene: δ 6.11 (s, 3H), 3.76 (s, 9H). Relative to 1H of 

23b, 1H of trimethoxybenzene integrates for 0.18H. 
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The section of the spectrum between 9.50 and 9.36 ppm contains a 1H signal from 23b and a 2H signal 

from 21b. The section between 8.98 and 8.85 ppm contains a 1H signal from 21b and a 1H signal from 

3.  The section between 8.41 and 8.23 ppm contains a 1H signal from 23b and two 1H signals from 3. 

Ratio of N-alkylation and O-alkylation Products:  

3H of Compound 23b = 3.00 – Therefore 1H = 1.00 

1H of Compound 21b = 0.03  

Ratio =
1.00

1.00 + 0.03
 ×   100 = 97% O alkylation 

Ratio of major product to internal standard:  

3H of Compound 23b = 3.00 – Therefore 1H = 1.00 

3H of internal standard = 0.54 – Therefore 1H = 0.18 

Ratio =
1.00

1.00 + 0.18
 ×   100 = 85 ∶ 15 

 

 
Figure S26: Spectrum A: 1H NMR spectrum in CD3CN containing signals assigned to 21b, 23b and 3. Signals of 

the internal standard 1,3,5-trimethoxybenzene are also present.  The full spectrum is shown in Section 7. 
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1H NMR (300 MHz, CD3CN, 20 second relaxation delay) Spectrum B:  

No signals assigned to 21b. 

Signals assigned to 23b: δ 9.78 (app dd, app J = 2.2, 0.7 Hz, 1H), 9.43 – 9.37 (m, 2H), 8.31 – 8.25 (m, 

1H), 4.51 (s, 3H). 

Signals assigned to starting material 3: δ 8.93 (s, 1H), 8.42 – 8.36 (m, 1H), 8.31 – 8.25 (m, 1H), 7.48 – 

7.40 (m, 1H). Relative to 1H of 23b, 1H of 3 integrates for 0.43H. 

Signals assigned to internal standard trimethoxybenzene: δ 6.11 (s, 3H), 3.76 (s, 9H). Relative to 1H of 

23b, 1H of trimethoxybenzene integrates for 0.18H. 

Signals assigned to 7: δ 8.60 (s, 4H). Relative to 1H of 23b, 1H of 7 integrates for (11.32/4) = 2.83H. 

Signals assigned to crossover product 9b: δ 9.43 – 9.37 (m, 2H), 8.76 (d, J = 3.1 Hz, 2H), 4.42 (s, 3H). 

Relative to 1H of 23b, 1H of 9b integrates for 0.10H. 

The signal between 9.50 and 9.36 ppm contains a 1H signal from 21b and a 2H signal from 23b.  The 

signal between 8.98 and 8.85 ppm contains a 1H signal from 21b and a 1H signal from 3.  The signal 

between 8.31 and 8.25 ppm contains a 1H signal from 23b and a 1H signals from 3. 

 
Figure S27: Spectrum B: 1H NMR spectrum in CD3CN containing signals assigned to 23b, 7, crossover product 

9b and 3. Signals of the internal standard 1,3,5-trimethoxybenzene are also present.  No signals of 21b can be 

observed.  The full spectrum is shown in Section 7. 

Ratio of 23b to crossover product 9b:  

1H of Compound 23b = 1.00 

2H of crossover product = 0.20 – Therefore 1H = 0.10 
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Ratio =
1.00

1.00 + 0.10
 ×   100 = 91 ∶ 9 

 

Ratio of major product to internal standard:  

1H of Compound 23b = 1.00 

3H of internal standard = 0.54 – Therefore 1H = 0.18 

Ratio =
1.00

1.00 + 0.18
 ×   100 = 85 ∶ 15 

 

 

1H NMR (400 MHz, CD3CN, 20 second relaxation delay) Spectrum C:  Relative integrations are given 

relative to 1H of crossover product 9b since no baseline-separated signals of the internal standard are 

available. 

No signals characteristic of 23b are present. 

Signals assigned to starting material 3: δ 9.02 (s, 1H), 8.52 – 8.46 (m, 1H), 8.44 – 8.36 (m, 1H), 7.57 – 

7.49 (m, 1H).  Relative to 1H of 9b, 1H of 3 integrates for 1.45H. 

Signals assigned to 7: δ 8.61 (s, 4H). Relative to 1H of 9b, 1H of 7 integrates for 3.02H. 

Signals assigned to crossover product 9b:  δ 9.43 – 9.35 (m, 2H), 8.75 – 8.70 (m, 2H), 4.38 (s, 3H). 

 
Figure S28: Spectrum C: 1H NMR spectrum in CD3CN containing signals assigned to 7, crossover product 9b and 

starting material 3. Signals of the internal standard, 1,3,5-trimethoxybenzene, are also present, but are obscured 

by signals of decomposition products. No signals assigned to 23b are observed.  The full spectrum is shown in 

Section 7. 

Page 90 of 161Chemical Science



 S50 

 

The signals of the internal standard (1,3,5-trimethoxybenzene) are obscured by signals of decomposition 

products (see 1H NMR spectrum below).  The relative proportion of (7 + 9b) to 3 is similar to the relative 

proportion of (7 + 9b) to (3 + 23b) in spectrum B (above), but reflects the occurrence of some 

decomposition of 23b that was independent of the process of formation of crossover product 9b by 

methylation of 7. 

Formation of crossover product (9b) derived from both N-methylation and O-methylation products (21b 

and 23b) may indicate that 21b and 23b form reversibly from 3 + MeOTf, or instead that 21b and 23b 

each undergo SN2 reactions with 2nd nucleophile 7. 

 

 

5.4 Crossover experiment – 4-methylpyrazinium-N-oxide iodide (13a) with MeOTf and methyl 

nicotinate (25) 

The following reagents were combined in the process described in General Procedure D.  13a (0.031 g, 

0.13 mmol) was dissolved in (CD3)2SO (0.7 ml) in a vial. To this solution was added 1,3,5-

trimethoxybenzene (3 mg, 0.02 mmol). The mixture was transferred to an NMR tube and analyzed by 

NMR spectroscopy in (CD3)2SO (Spectrum A). The tube was removed from the spectrometer and a 

solution of methyl nicotinate (25) (0.026 g, 0.19 mmol) in (CD3)2SO (0.15 ml) was injected into the tube 

through the septum by syringe. The mixture was agitated and re-analyzed by NMR spectroscopy 

immediately, and again after one day (Spectrum B). 
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1H NMR (300 MHz, (CD3)2SO, 10 second relaxation delay) Spectrum A:  

Signals assigned to 13a: δ 8.92 (dd, J = 13.3, 5.7 Hz, 4H), 4.16 (s, 3H). 

Signals assigned to internal standard trimethoxybenzene: δ 6.06 (s, 3H), 3.68 (s, 9H). Relative to 1H 

of 13a, 1H of trimethoxybenzene integrates for 0.18H. 

Note: A singlet belonging to a small amount of an unknown contaminant is present at 8.22 ppm. 

The singlet at 3.68 ppm could not be accurately integrated due to its proximity to the H2O signal.  

Ratio of major product to internal standard:  

4H of Compound 13a = 4.00 – Therefore 1H = 1.00 

3H of internal standard = 0.55 – Therefore 1H = 0.18 

Ratio =
1.00

1.00 + 0.18
 ×   100 = 85 ∶ 15 

 

 
Figure S29: Spectrum A: 1H NMR spectrum in (CD3)2SO containing signals assigned to 13a. Signals of the internal 

standard 1,3,5-trimethoxybenzene are also present.  The full spectrum is shown in Section 7. 
 

1H NMR (300 MHz, (CD3)2SO, 10 second relaxation delay) Spectrum B:  

Signals assigned to 13a: δ 8.98 – 8.90 (m, 4H), 4.17 (s, 3H). 
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Signals assigned to internal standard trimethoxybenzene: δ 6.04 (s, 3H). Relative to 1H of 13a, 1H of 

trimethoxybenzene integrates for 0.18H. 

Signals assigned to 25: δ 9.04 (d, J = 1.7 Hz, 1H), 8.78 (dd, J = 4.8, 1.6 Hz, 1H), 8.27 (app dt, app J = 

8.0, 1.9 Hz, 1H), 7.56 (ddd, J = 8.0, 4.9 Hz (signal resolution not sufficient to determine smallest J 

value – it is of the order of < 1 Hz), 1H), 3.86 (s, 3H). Relative to 1H of 23b, 1H of 25 integrates for 

1.59H. 

Note: The 9H singlet of 1,3,5-trimethoxybenzene is obscured by the signal of residual H2O. 

Ratio of major product to internal standard:  

4H of Compound 13a = 4.00 – Therefore 1H = 1.00 

3H of internal standard = 0.54 – Therefore 1H = 0.18 

Ratio =
1.00

1.00 + 0.18
 ×   100 = 85 ∶ 15 

This experiment shows that 13a is formed irreversibly from 1 + MeI. 

 

 
Figure S30: Spectrum B: 1H NMR spectrum in (CD3)2SO containing signals assigned to 13a and 25. The internal 

standard 1,3,5-trimethoxybenzene is also present. No signals of crossover product 26 are observed.  The full 

spectrum is shown in Section 7. 

 

As no change in the amount of 13a present was observed, and no crossover product was formed, we 

conclude that 13a is formed irreversibly. 
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6. Competition experiment:  Pyrazine N-oxide (1) vs Pyrimidine 

N-oxide (3) 

Under an atmosphere of nitrogen in a glove box, bis(methoxy)benzhydryl chloride (0.009 g, 0.03 mmol) 

was dissolved in dry CD3CN (0.85 ml).  Pyrazine N-oxide 1 (6 mg, 0.06 mmol) was then added, followed 

by pyrimidine N-oxide 3 (0.005 g, 0.05 mmol), and then AgOTf (0.013 g, 0.05 mmol), causing the 

immediate precipitation of AgCl.  The reaction vessel was sealed, agitated for 1 – 2 minutes, and filtered 

(removing AgCl) through a syringe filter into an NMR tube.  The NMR tube was then sealed using a 

rubber septum.  The seal was then wrapped with PTFE tape and Parafilm.  Finally, the NMR tube was 

placed in a long Schlenk flask, which was sealed and then removed from the glove box.  The sample was 

brought to the NMR spectrometer inside the long NMR Schlenk flask to protect it from potential ingress 

of moisture.  The sample was removed from this Schlenk flask directly before loading it into the NMR 

spectrometer. 

 

1H NMR (400 MHz, CD3CN) – Integrations are given relative to 1H of 32. 

Signals assigned to 32: δ 8.52–8.46 (m, overlaps with signal of 1 at δ 8.46–8.41, contains 4H of 32 (4 × 

pyrazinium H)), 7.30–7.20 (m, contains 4H of 32 (anisyl protons), overlaps with signal of hydrolysis 

product), 7.11 – 7.00 (m, 5H, contains Ar2CH and anisyl protons), 3.84(s, 6H, OCH3). 

Signals assigned to 1: δ 8.46–8.41 (m, 2H), 8.15–8.08 (m, 2H).  1H of 1 integrates for 0.70 relative to 

1H of 32. 

Signals assigned to 3: δ 8.92 (s, 1H), 8.41–8.32 (app d, app J = 6.3 Hz, 1H), 8.29 – 8.21 (m, 1H), 7.46 – 

7.39 (m, 1H).  1H of 3 integrates for 1.58 relative to 1H of 32. 

Small signals arising from the presence of hydrolysis product (bis(4-methoxy)benzhydryl ether) are also 

present in the 1H NMR spectrum (see Fig. S30 below). 

No signals attributable to compound 33 are present, i.e. 32 is the only product formed. 
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Figure S31: 1H NMR spectrum in CD3CN containing signals assigned to 1, 3, and 32. No signals assigned to 33 

were observed. 
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7. Full Spectra for compounds produced in Sections 4 – 6 

13a in (CD3)2SO (From Pyrazine N-oxide (1) + MeI) 

 
Figure S32 Full 1H NMR spectrum of 13a in (CD3)2SO (600 MHz). 

 

 

Figure S33: 1H-15N HMBC NMR spectrum of 27a in (CD3)2SO. 

13a 

13a 
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13a in CD3CN (From Pyrazine N-oxide (1) + MeI) 

 
Figure S34 Full 1H NMR spectrum of the reaction of 1 + MeI to give low conversion to 13a in CD3CN 

13b in (CD3)2SO (From Pyrazine N-oxide (1) + MeOTf in CH3CN) 

 

Figure S35: Full 1H spectrum of 13b in (CD3)2SO (300 MHz). 

13b 
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13b and 15b in CD3CN (From Pyrazine N-oxide (1) + MeOTf in CD3CN) 

 

Figure S36: Full 1H NMR spectrum of 13b, showing some 15b and starting material (1) in CD3CN (600 MHz). 

 

 

 

Figure S37: 13C{1H} NMR spectrum of 13b, showing some 15b and starting material (1) in CD3CN (150 MHz). 

13b 15b 

13b 15b 
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Figure S38: Section of 1H-13C HMBC NMR spectrum of 13b in CD3CN. 

13b in (CD3)2SO (From 1 + MeOTf in CD3CN, after solvent removal) 

 
Figure S39: Full 1H NMR spectrum of 13b and 1 in (CD3)2SO after removal of the CD3CN reaction solvent (600 MHz). 

13b 

13b 
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Figure S40: 1H-15N HMBC NMR spectrum of 13b and 1 in (CD3)2SO. Removal of the CD3CN caused the decomposition of 15b. 

13b in (CD3)2SO (From Pyrazine N-oxide (1) + MeOTf in (CD3)2SO) 

 

Figure S41: Full 1H NMR spectrum of 13b, showing some 1 in (CD3)2SO (600 MHz). A signal assigned to the methoxydimethylsulfonium 

salt of (CD3)2SO is present at 3.98 ppm. 

13b 

13b 
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Figure S42: 1H-15N HMBC NMR spectrum of 13b and 1 in (CD3)2SO. 

 

 

Figure S43: 13C{1H} NMR spectrum of 13b, showing some 1 in (CD3)2SO (600 MHz). A signal assigned to the methoxydimethylsulfonium 

salt of (CD3)2SO is present at 62.2 ppm. 

13b 
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14 in CD3CN (From Pyrazine N-oxide (1) + benzhydrylium ion 11 in CD3CN) 

 
Figure S44: Full 1H NMR spectrum of 14 in CD3CN (400 MHz) 

 

 

 

Figure S45: 13C{1H} NMR spectrum of 14 in CD3CN (75 MHz) 

14 

14 
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14 in CH2Cl2 (From Pyrazine N-oxide (1) + benzhydrylium ion 11 in CH2Cl2) 

 

 
Figure S46: Full 1H NMR spectrum of 14 in CH2Cl2 (600 MHz) acquired with solvent signal suppression. 

 

 
 

Figure S47: 1H-15N HMBC NMR spectrum of 14 in CH2Cl2 acquired with solvent signal suppression. 

14 
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17a in (CD3)2SO (From Quinoxaline N-oxide (2) + MeI) 

 

Figure S48: Full 1H NMR spectrum of 17a in (CD3)2SO (600 MHz). 

 

17a in (CH3)2SO (From Quinoxaline N-oxide (2) + MeI) 

 

Figure S49: Full 1H NMR spectrum of 17a in (CH3)2SO (600 MHz) acquired with solvent signal suppression. 

17a 

17a 
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Figure S50: 1H-15N HMBC NMR spectrum of 17a in (CH3)2SO (150 MHz) acquired with solvent signal suppression. 

 

17b in (CD3)2SO (From Quinoxaline N-oxide (2) + MeOTf in CH3CN) 

 
Figure S51 Full 1H NMR spectrum of 17b in (CD3)2SO (300 MHz). 

17a 

17b 
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Figure S52: 13C{1H} NMR spectrum of 17b in (CD3)2SO (75 MHz). 

17b and 19b in CD3CN (From Quinoxaline N-oxide (2) + MeOTf in CD3CN) 

 

Figure S53: Full 1H NMR Spectrum of 17b, 19b and 2 in CD3CN (400MHz). 

17b 

17b 19b 
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Figure S54: 13C{1H} NMR Spectrum of 17b, 19b and 2 in CD3CN (100 MHz) 

 

 

Figure S55: Section of 1H-13C HMBC NMR spectrum of 17b in CD3CN. 

17b 19b 

17b 
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17b in (CD3)2SO (From reaction of 2 + MeOTf in CD3CN after solvent removal) 

 
Figure S56: Full 1H spectrum of 17b and 2 in (CD3)2SO (600 MHz). Removal of the CD3CN caused the decomposition of 19b. 

 

 

Figure S57: 1H-15N HMBC NMR spectrum of 17b and 2 in (CD3)2SO. Removal of the CD3CN caused the decomposition of 19b. 

 

17b 

17b 
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17b in (CD3)2SO (From Quinoxaline N-oxide (2) + MeOTf in (CD3)2SO) 

 
Figure S58: Full 1H NMR spectrum of 17b + starting material 2 in (CD3)2SO (600 MHz). A signal assigned to the 

methoxydimethylsulfonium salt of (CD3)2SO is present at 3.99 ppm. 

 

 

Figure S59: 1H-15N HMBC NMR spectrum of 17b in (CD3)2SO, showing some 2. 

17b 

17b 
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18 and 20 in CD2Cl2 (From reaction of 2 + 12 in CD2Cl2) 

 
Figure S60: Full 1H NMR spectrum of 18 in CD2Cl2 (600 MHz). Small signals assigned to 20 are also present. 

 

 
Figure S61: 13C{1H} NMR spectrum of 18 in CD2Cl2 (150 MHz). Small signals assigned to 20 are also present. A 13C NMR signal 

assigned to the CF3SO3
− ion is present at δ 120.7 ppm. 

18 

18 
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Figure S62: 1H-15N HMBC NMR spectrum of 18 in CD2Cl2.  

 

23b in CD3CN (From Pyrimidine N-oxide (3) + MeOTf in CD3CN) 

 

Figure S63: Full 1H spectrum of 23b in CD3CN (300 MHz). 

18 

23b 
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23b in (CH3)2SO (From Pyrimidine N-oxide (3) + MeOTf in CH3CN) 

 

Figure S64: Full 1H spectrum of 23b, containing signals assigned to 3 in (CH3)2SO (600 MHz) acquired with solvent signal suppression. 

 

 

Figure S65: 1H-15N HMBC NMR spectrum of 23b, containing signals assigned to 3 in (CH3)2SO acquired with solvent signal suppression. 

23b 

23b 
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21b and 23b in CD3CN (From Pyrimidine N-oxide (3) + MeOTf in CD3CN) 

 

Figure S66: Full 1H NMR spectrum containing signals assigned to 23b, 21b and 3 in CD3CN (400 MHz).  

 

 

Figure S67: 13C{1H} NMR Spectrum of 23b, 21b and 3 in CD3CN (100 MHz). 

23b 21b 

21b 23b 
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Figure S68: Section of 1H-13C HMBC NMR spectrum of 21b and 23b in CD3CN. 

 

23b in (CD3)2SO (From 3 + MeOTf in CD3CN, after solvent removal) 

 
Figure S69: Full 1H spectrum of 23b and 3 in (CD3)2SO (600 MHz). Removal of the CD3CN caused the decomposition of 21b. A large 

amount of decomposition product signals are present on the baseline. 

23b 

21b 

23b 
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Figure S70: 1H-15N HMBC NMR spectrum of 23b, containing signals assigned to 3 in (CD3)2SO. 

 

21b and 23b in (CD3)2SO (From Pyrimidine N-oxide (3) + MeOTf in (CD3)2SO) 

  

Figure S71: Full 1H spectrum of containing signals assigned to 23b, 21b and 3 in (CD3)2SO (600 MHz). 

23b 

23b 21b 
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Figure S72: Full 13C{1H} NMR spectrum containing signals assigned to 23b and 3 in (CD3)2SO (600 MHz).  No signals could be 

unambiguously assigned to the very small amount of 23b shown to be present by the 1H and 1H-15N HMBC NMR spectra. 

 

 

Figure S73: 1H-15N HMBC NMR spectrum containing signals assigned to 23b, 21b and 3 in (CD3)2SO. The two 15N NMR corelations 

assigned to 21b indicate 15N resonances at 293.6 and 205.2 ppm.  

23b 21b 
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Attempted Synthesis of 22 and/or 24 in CH2Cl2 (From 3 + 26 in CH2Cl2) 

 
Figure S74: Full 1H NMR spectrum of the crude reaction mixture from the reaction of 3 with 11 in CH2Cl2. Signals could not be definitively 

assigned to product 22 or 24 

 

 
Figure S75: Expanded 1H NMR spectrum of the crude reaction mixture from the reaction of 3 with 11 in CH2Cl2 (600 MHz). These unusually 

broad signals could not be definitively assigned to product 36 or 38 

24 22 
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Crossover experiment: 1 + MeOTf + 25 (reversibility of formation of 13b and 15b) 

 

 
Figure S76: Spectrum A: Full 1H NMR spectrum in CD3CN (300 MHz) containing signals of 13b, 15b, 1 and 1,3,5-trimethoxybenzene. 

 
Figure S77: Spectrum B: Full 1H NMR spectrum in CD3CN (300 MHz) containing signals of 13b, 25, 26 (crossover product), 1 and 1,3,5-

trimethoxybenzene. 
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Crossover experiment: 2 + MeOTf + 7 (reversibility of formation of 17b and 19b) 

 

 
Figure S78: Spectrum A: Full 1H NMR spectrum in CD3CN (300 MHz) containing signals of 17b, 19b, 2 and 1,3,5-trimethoxybenzene.  

 

Figure S79: Spectrum B: Full 1H NMR spectrum in CD3CN (300 MHz) containing signals of 17b, 7, 9b (crossover product), 2 and 1,3,5-

trimethoxybenzene. 
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Crossover experiment: 3 + MeOTf + 25 (reversibility of formation of 21b and 23b) 

 

 
Figure S80: Spectrum A – Full 1H NMR spectrum in CD3CN (300 MHz) containing signals of 23b, 21b, 3 and 1,3,5-trimethoxybenzene.   

 

 
Figure S81: Spectrum B – Full 1H NMR spectrum in CD3CN (300 MHz) containing signals of 23b, 3, 9b (crossover product) and 1,3,5-

trimethoxybenzene
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Figure S82: Spectrum C: Full 1H NMR spectrum in CD3CN (400 MHz) containing signals of 7, 9b (crossover product), 3 and 1,3,5-

trimethoxybenzene. 
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Crossover experiment: 13a (From 1 + MeI) + 25 (reversibility of formation of 13a) 

 

 
Figure S83: Spectrum A: Full 1H NMR spectrum in (CD3)2SO (300 MHz) containing signals of 13a and 1,3,5-trimethoxybenzene. 

 

 
Figure S84: Spectrum B: Full 1H NMR spectrum in (CD3)2SO (300 MHz) containing signals of 13a, 25.and 1,3,5-trimethoxybenzene. 
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Competition experiment:  1 + 3 + benzhydrylium ion 31 

 

 

 
 

Figure S85: 1H NMR spectrum in CD3CN (400 MHz) containing signals of 1, 3, and 32.  
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8. Calculations of Thermodynamic and Activation Parameter 

Values 

Table S1: Activation Enthalpies (∆H‡, in kJ mol–1), Activation Entropies (∆S‡, in J K–1 mol–1), and Gibbs Energies of 

Activation (∆G‡, in kJ mol–1) for Identity Methyl Transfer Reactions.  

 

Reaction 

 

∆H‡ 

 

∆S‡ 

 

∆G‡ 

 

+127 –161 +175 

 

+123 –171 +175 

 

+121 –168 +171 

 

+87 –179 +141 

 

+73 –175 +125 

 

+117 –169 +167 

 

+88 –181 +142 

 

+125 –171 +176 
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Table S2: Values of Activation Parameters (H‡ (kJ mol–1), S‡ (J K–1 mol–1)), G‡ (kJ mol–1)), and Thermodynamic 

Parameters (rH° (kJ mol–1), rS° (J K–1 mol–1)), rG° (kJ mol–1)) for Methylation Reactions Using MeI.  

 

Reaction 



H‡ 



S‡ 



G‡ 



rH° 



rS° 



rG° 

 

+75 –150 +120 –64 –53 –48 

 

+84 –154 +130 –39 –52 –23 

 

+84 –156 +131 –37 –53 –21 

 

+75 –161 +123 –24 –56 –7 

 

+92 –154 +138 –13 –58 +4 

 

+80 –158 +127 +3 –59 +21 

 

+86 –158 +133 –37 –58 –20 

 

+92 –161 +140 +14 –55 +31 
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Table S3: Values of Activation Parameters (H‡ (kJ mol–1), S‡ (J K–1 mol–1)), G‡ (kJ mol–1)), and Thermodynamic 

Parameters (rH° (kJ mol–1), rS° (J K–1 mol–1)), rG° (kJ mol–1)) for Methylation Reactions Using MeOTf.  

 

Reaction 



H‡ 



S‡ 



G‡ 



rH° 



rS° 



rG° 

 

+47 –164 +96 –117 +1 –117 

 

+56 –171 +107 –91 +1 –91 

 

+55 –174 +107 –90 0 –90 

 

+44 –181 +97 –76 –3 –75 

 

+62 –173 +113 –66 –5 –64 

 

+51 –172 +103 –49 –6 –48 

 

+56 –174 +108 –90 –5 –88 

 

+61 –180 +115 –38 –2 –38 
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9. Calculation of Marcus Intrinsic Barriers 

Let us consider an SN2 reaction of a nucleophile (Nu) with an alkyl electrophile such as MeX (e.g. X = 

I, OTf, etc.), with a Gibbs energy of activation ΔG‡ and a standard Gibbs energy of reaction ΔrG°.  Such 

a reaction can be thought of as a methyl group transfer from X− to the nucleophile (Scheme S1a).  We 

wish to calculate ΔG‡ using the Marcus equation (equation 1 in the main article), reproduced here: 

 
‡
0

2
‡
0

‡

162 G

GG
GG rr







    (1) 

In order to access the value of the Marcus intrinsic barrier (ΔG0
‡) for the SN2 reaction of Nu + MeX, one 

must first determine the Gibbs energies of activation for the reactions shown in Scheme S1b and S1c.  

These methyl group transfer reactions are identity reactions since the products and the reactants are the 

same.  They are thermoneutral, i.e. ΔrG° = 0 for each one. The Gibbs energy of activation for methyl 

transfer from Me—X to X− is ΔG‡
B, and the Gibbs energy of activation for methyl transfer from Nu+—

Me to Nu is ΔG‡
C. 

 

Scheme S1.  (a) Methyl transfer reaction from MeX to Nu, with Gibbs energy of activation = ΔG‡ and ΔrG° ≠ 0; (b) Methyl 

transfer identity reaction from MeX to X−, with Gibbs energy of activation = ΔG‡
B and ΔrG° = 0; (c) Methyl transfer identity 

reaction from Nu+—Me to Nu, with Gibbs energy of activation = ΔG‡
C and ΔrG° = 0. 

Using the Gibbs energies of activation of the identity reactions shown in Scheme S1b and S1c, the 

intrinsic barrier (ΔG0
‡) for the reaction of the nucleophile (Nu) with MeX (Scheme S1a) can be calculated 

using equation 2: 

 ‡
C

‡
B

‡
0   

2

1
  GGG        (2) 

i.e. ΔG0
‡ for the methylation of the nucleophile is taken to be the average of the Gibbs energies of 

activation of the identity reactions shown in Scheme S1b and S1c. 

In this study, we have calculated values of Gibbs energies of activation for methyl group transfer identity 

reactions of the type shown in Scheme S1b and S1c for nucleophiles 1 and 3 and also iodide and triflate 

(see Table S1).  These calculations were done at the DLPNO-CCSD(T)/def2-TZVPPD/SMD//M06-2X-

D3/6-311+G(d,p)/SMD level of theory. 
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Table S4.  ΔG‡ values for methyl transfer identity reactions of 1 and 3 at both the N and O nucleophilic sites, and of iodide 

and triflate. a 

Reaction  
Compound 

Number 

Site of 

Methylation 

∆G‡ of 

Identity 

Reaction 

 

1 N 176 

 

1 O 142 

 

3 N 167 

 

3 O 125 

 
Iodide I 112 

 
Triflate O 123 

a  Gibbs energy values were calculated at the DLPNO-CCSD(T)/def2-TZVPPD/SMD(CH3CN)//M06-2X-D3/6-

311+G(d,p)/SMD(CH3CN) level of theory. 
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Calculation of ΔG‡ using ΔG0
‡ values in the Marcus Equation 

Using the ΔG‡ values calculated for the methyl transfer identity reactions (Table S4), values of the 

intrinsic barrier (ΔG0
‡) were calculated for each of the reactions of compounds 1 and 3 with MeI and 

MeOTf using equation 2.  These ΔG0
‡ values are shown in Table S5 on pg. S90 (these values are also 

shown in Table 4 of the main article). 

The value calculated for ΔG0
‡ for each reaction was substituted into the Marcus equation (equation 1) 

along with the ΔrG° value calculated for the reaction in question (these values are shown in Table 3 in 

the main article, and reproduced here in Table S5), enabling calculation of a value for ΔG‡ according to 

the Marcus equation for the reaction of Nu + MeX. For ambident nucleophiles 1 and 3, there are two 

ΔG‡ values – one for reaction at each of the nucleophilic sites of the ambident nucleophile.  For these 

nucleophiles, the product ratio predicted by the Marcus calculations just described was obtained using 

equation 3  













 














 



RT

GG

RT

G

ee
k

k
)O()N(

O

N

‡‡‡

 (3) 

where  

kN and ΔG‡(N) are the rate constant (L mol−1 s−1) and Gibbs energy of activation (kJ mol−1), respectively, 

for N-methylation, 

kO and ΔG‡(O) are the rate constant (L mol−1 s−1) and Gibbs energy of activation (kJ mol−1), respectively, 

for O-methylation, 

R is the universal gas constant, and the temperature, T, was set to 298 K. 

The product ratio calculated in this manner for methylation of 1 by MeOTf was 90:10 ± 2 (in favour of 

N-methylation), and for 1 + MeI the ratio was 97:3 ± 2 (O-methylation was also calculated to be 

reversible, i.e. ΔrG° > 0; experimentally no O-methylation is observed).  The product ratio calculated for 

methylation of 3 by MeOTf was 0.4 : 99.6 ± 2 (in favour of O-methylation), and for 3 + MeI the ratio 

was calculated to be 1:99 ± 2 (both O and N-methylation were calculated to be reversible, i.e. ΔrG° > 0, 

and no product formation was observed experimentally).  Further detail on these calculations is given 

below, in Tables S6 and S7. 

Much of the information contained in Table S5 is reproduced from Table 4 in the main article.  This was 

done by design to allow straightforward comparison of the extra results included there (from calculations 

done using the Zhu equation – see below) with results derived from the Marcus equation, and direct DFT 

calculations. 
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Calculation of ΔG‡ using the Zhu Equation 

Zhu and co-workers have developed an alternative to the Marcus equation to rationalize the outcomes of 

hydride transfer reactions.28 Here, we have adapted the Zhu equation to apply to methyl group transfer 

reactions.  Our adaptation of the Zhu equation is shown in equation 4: 

 
2

  
2

1
  ‡

NuMe/Nu
‡
XMe/X

‡ 


G
GGG r   (4) 

where  ‡
XMe/XG = ΔG‡

B from Scheme S1b on pg. S86,  ‡
NuMe/NuG = ΔG‡

C from Scheme S1c on pg. S86 

(i.e.  ‡
XMe/XG and  ‡

NuMe/NuG are the Gibbs energies of activation for the methyl group transfer identity 

reactions shown in Scheme S1b and S1c, for which ΔrG° = 0), and ΔG‡ and ΔrG° are, respectively, the 

Gibbs energy of activation and standard Gibbs energy of reaction for the methyl group transfer reaction 

shown in Scheme S1a on pg. S86. 

The first term in equation 4 (involving the activation barriers for the identity reactions) is identical to the 

expression for the Marcus intrinsic barrier shown in equation 2, and the second term is identical to the 

second term of the Marcus equation (equation 1 in the main article).  So the Marcus equation and Zhu 

equation differ only in the exclusion of the quadratic term of the Marcus equation from the latter equation.  

We have calculated ΔG‡ values using the adapted Zhu equation (equation 4) using our computational 

data from the methyl transfer identity reactions (values from Table S4) along with our directly calculated 

ΔrG° values for the methylation reactions of 1 and 3 (shown in Table S5).  These ΔG‡ values, calculated 

according to the adapted Zhu equation (shown in Table S5), are essentially identical to the values 

calculated using equation 1.  This is because the quadratic term of equation 1 is very small in all reactions 

investigated here due to the relatively small ΔrG° values of these reactions.  Consequently, there is close 

agreement between the ΔG‡ values calculated using equation 4 (Zhu equation) and equation 1 (Marcus 

equation) and those calculated directly at the DLPNO-CCSD(T)/def2-TZVPPD/SMD//M06-2X-D3/6-

311+G(d,p)/SMD level of theory.  Naturally, therefore, the product ratios determined using these three 

different methods of calculation agree quite closely.  All of these methods of determining the product 

ratios are close to the true values observed experimentally, as discussed in the main article. 
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Table S5.  Values of intrinsic barriers (ΔG0
‡) for methylation reactions of nucleophiles 1 and 3, and derived values of ΔG‡ 

for methylation reactions of these nucleophiles (Scheme S1a with Nu = N or O nucleophilic site of 1 or 3) calculated using 

Marcus equation (equation 1) and Zhu equation (equation 4) by employing values of ΔrG° from Table 4 of the main article 

(and reproduced here).  The site of methylation of each nucleophile is indicated by an arrow.  The Gibbs energy values have 

units of kJ mol−1. 

 

 

  

Nucleophile 
(Nu) 

# 
Product

. No. 
X 

ΔG‡ Me 
transfer 

MeX + X− 

ΔG‡ Me 
transfer 

MeNu+ + Nu 
∆G0

‡ ΔrG°  
Marcus 

ΔG‡  
Zhu  
ΔG‡ 

DFT  
ΔG‡   

 

(i) 13b OTf 123 176 +149.5 −88 +108.7 +105.5 +108 

(ii) 13a I 112 176 +144 −20 +134.2 +134 +133 

 

(iii) 15b OTf 123 142 +132.5 −38 +114.3 +113.5 +115 

(iv) 15a I 112 142 +127.0 +31 +143.0 +142.5 +140 

 

(v) 21b OTf 123 167 +145.0 −64 +114.8 +113 +113 

(vi) 21a I 112 167 +139.5 +4 +141.5 +141.5 +138 

 

(vii) 23b OTf 123 125 +124.0 −48 +101.2 +100 +103 

(viii) 23a I 112 125 +118.5 +21 +129.2 +129 +127 
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Example calculation to obtain the product ratio predicted by the Marcus calculations 

Table S6.  Values of activation barriers (ΔG‡) for methylation reactions of nucleophiles 1 and 3 with MeOTf, with calculations 

of the terms used in equation 3. The Gibbs energy values have units of kJ mol−1. 

 

 

 

 

 

  

 

In the case of 1 + MeOTf: 

𝑘N

𝑘O
= 𝑒−(−2.20) = 9.03 

𝑘N

𝑘O
=  

9.03

1 + 9.03
 = 90.0%  N-methylation 

Table S7.  Calculated ratios of N vs O methylation for reactions of nucleophiles 1 and 3 with MeOTf and MeI. The Gibbs 

energy values have units of kJ mol−1. 

 

 

 

 

 

 

 

 

 

 

 

 

Nucleophile (Nu) 

and Product 

Number 

Entry 
Site of 

Methylation 
Marcus ∆G‡  

 

∆∆G‡ 
(

𝛥𝛥𝐺‡

𝑅𝑇
) 

 

1 

(i) N +108.7 
 

 

−5.44 

 

 

−2.20 
(ii) O +114.3 

 

3 

(iii) N +114.8 
 

 

+13.6 

 

 

+5.49 
(iv) O +101.2 

Nucleophile (Nu) 

and Product 

Number 

Entry 

 

Method 

 

Electrophile 

 

∆∆G‡ 
(

𝛥𝛥𝐺‡

𝑅𝑇
) 

 

N/O Ratio 

 

 

(i) Marcus MeOTf −5.4 −2.2 90 : 10 

(ii) Marcus MeI −8.8 −3.6 97 : 3 

(iii) Zhu MeOTf −8.0 −3.2 96 : 4 

(iv) Zhu MeI −8.5 −3.4 97 : 3 

(v) DFT MeOTf −7.0 −2.8 94 : 6 

(vi) DFT MeI −7.0 −2.8 94 : 6 

 

(vii) Marcus MeOTf +13.6 +5.5    0.4 : 99.6 

(viii) Marcus MeI +12.3 +5.0    0.7 : 99.3 

(ix) Zhu MeOTf +13.0 +5.3    0.5 : 99.5 

(ix) Zhu MeI +12.5 +5.0    0.6 : 99.4 

(x) DFT MeOTf +10.0 +4.0    1.7 : 98.3 

(xi) DFT MeI +11.0 +4.4    1.2 : 98.8 
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10. Charge Density Calculations 

Table S8.  Charge density calculations using different computational methods (NBO,13 Merz-Singh-Kollman,14 ChelpG,15 

AIM16) at the M06-2X-D3/6-311+G(d,p)/SMD(CH3CN) level of theory. 

 

 

 

 

 

 

 

 

 

 

Nucleophile 

  
 

   

Nucleophilic 

Site 
N N N O N  O N O 

NBO −0.514 −0.460 −0.528 −0.656 −0.490 −0.589 −0.484 −0.648 

Merz-Singh-

Kollman 
−0.842 −0.564 −0.917 −0.719 −0.732 −0.679 −0.704 −0.300 

ChelpG −0.719 −0.558 −0.921 −0.710 −0.745 −0.700 −0.706 −0.665 

AIM −1.245 −1.215 −1.238 −0.669 −1.205 −0.616 −1.228 −1.215 
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11. Calculation of Activation Barriers for Methyl Transfer 

Identity Reactions 
 

11.1 Methyl Transfer Involving Iodide 

11.1.1 Methyl iodide  

SCF energy:  –336.980594 hartree 

Zero-point correction:  +0.036760 hartree 

Enthalpy correction:  +0.040854 hartree 

Free energy correction:  +0.011036 hartree 

Truhlar's Delta G correction:  +0.011036 hartree 

Grimme's Delta G correction:  +0.011036 hartree 

 

Cartesian Coordinates 
C          0.00000       -1.81320        0.00000 

H         -1.03708       -2.13422        0.00000 

H          0.51854       -2.13422        0.89813 

H          0.51854       -2.13422       -0.89813 

I          0.00000        0.32607        0.00000 

11.1.2 Iodide  

SCF energy:  –297.318803 hartree 

Zero-point correction:  +0.000000 hartree 

Enthalpy correction:  +0.002360 hartree 

Free energy correction:  –0.016848 hartree 

Truhlar's Delta G correction:  –0.016848 hartree 

Grimme's Delta G correction:  –0.016848 hartree 

 

Cartesian Coordinates 
I          0.00000        0.00000        0.00000 

 

11.1.3 Transition State Identity Reaction 

SCF energy:  –634.267049 hartree  

Zero-point correction:  +0.036306 hartree  

Enthalpy correction:  +0.042259 hartree  

Free energy correction:  +0.004451 hartree  

Truhlar's Delta G correction:  +0.004451 hartree  

Grimme's Delta G correction:  +0.004620 hartree  

Imaginary Frequency:  509.4 icm–1 

 

Cartesian Coordinates 
C         -0.00002       -0.00726       -0.00073 

H          0.00014        0.55232       -0.92086 

H         -0.00002       -1.08424       -0.02511 

H         -0.00018        0.51002        0.94379 

I         -2.64394        0.00062        0.00006 

I          2.64394        0.00062        0.00006 
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11.2 Methyl Transfer Involving Pyrimidine N-Oxide (3) 

11.2.1 Pyrimidine N-Oxide (3) 

SCF energy:  –338.948361 hartree  

Zero-point correction:  +0.081611 hartree  

Enthalpy correction:  +0.087483 hartree  

Free energy correction:  +0.052978 hartree  

Truhlar's Delta G correction:  +0.052978 hartree  

Grimme's Delta G correction:  +0.052974 hartree 

 

Cartesian Coordinates 
C          0.26487       -1.15272        0.00000 

N          0.94851        0.02630       -0.00000 

C          0.23736        1.17892       -0.00000 

N         -1.04443       -1.23702       -0.00000 

C         -1.14071        1.13449        0.00000 

C         -1.75816       -0.10771       -0.00000 

H          0.89179       -2.03487        0.00000 

H          0.82933        2.08392        0.00000 

H         -1.70979        2.05411        0.00000 

O          2.23462        0.03240        0.00000 

H         -2.83702       -0.20519        0.00000 

 

 

11.2.2 N-Methyl Pyrimidinium N-Oxide Ion (21+) 

SCF energy:  –378.619925 hartree  

Zero-point correction:  +0.123063 hartree  

Enthalpy correction:  +0.130750 hartree  

Free energy correction:  +0.091756 hartree  

Truhlar's Delta G correction:  +0.092170 hartree  

Grimme's Delta G correction:  +0.092167 hartree 

 

Cartesian Coordinates 
C         -0.01615       -0.94658       -0.00865 

N          1.22271       -0.41278        0.00011 

C          1.35312        0.94382        0.00578 

N         -1.09916       -0.17328       -0.01202 

C          0.23842        1.74862        0.00269 

C         -1.01290        1.16655       -0.00731 

H         -0.10598       -2.02271       -0.01230 

H          2.37320        1.30223        0.01158 

H          0.34526        2.82390        0.00599 

O          2.24047       -1.17740        0.00201 

H         -1.94320        1.71722       -0.01098 

C         -2.43513       -0.81592        0.01102 

H         -2.31843       -1.86849       -0.22917 

H         -2.84743       -0.69125        1.01057 

H         -3.05610       -0.31825       -0.72955 
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11.2.3 O-Methyl Pyrimidinium N-Oxide Ion (23+) 

SCF energy:  –378.613655 hartree  

Zero-point correction:  +0.123086 hartree  

Enthalpy correction:  +0.130726 hartree  

Free energy correction:  +0.091645 hartree  

Truhlar's Delta G correction:  +0.092374 hartree  

Grimme's Delta G correction:  +0.092257 hartree 

 

Cartesian Coordinates 
C          0.50632       -1.25048       -0.00002 

N         -0.39237       -0.23937       -0.00001 

C         -0.01000        1.04487       -0.00002 

N          1.79283       -1.03301        0.00000 

C          1.34576        1.30953       -0.00000 

C          2.22073        0.23658        0.00002 

H          0.08592       -2.24882       -0.00001 

H         -0.76781        1.81597       -0.00004 

H          1.69061        2.33361        0.00000 

O         -1.68674       -0.66793        0.00001 

H          3.29330        0.38890        0.00003 

C         -2.68892        0.36351        0.00001 

H         -2.61912        0.96986       -0.90453 

H         -3.61660       -0.20344        0.00019 

H         -2.61892        0.97003        0.90443 

 

11.2.4 Transition State Identity Reaction N → N 

SCF energy:  –717.523828 hartree  

Zero-point correction:  +0.204107 hartree  

Enthalpy correction:  +0.218130 hartree  

Free energy correction:  +0.161539 hartree  

Truhlar's Delta G correction:  +0.164702 hartree  

Grimme's Delta G correction:  +0.164263 hartree  

Imaginary Frequency:  621.4 icm–1 

 

Cartesian Coordinates 
C          0.00368       -0.25554        0.01894 

N         -1.95733       -0.26162       -0.11354 

C         -2.67025        0.70881        0.41227 

C         -2.54612       -1.27727       -0.74632 

N         -4.02639        0.73300        0.34367 

H         -2.20240        1.53757        0.92773 

C         -3.92668       -1.31416       -0.85191 

H         -1.89987       -2.04368       -1.15736 

C         -4.65680       -0.28782       -0.29314 

H         -4.43332       -2.12393       -1.35828 

N          1.96541       -0.29454        0.14773 

C          2.59356       -1.30528        0.74728 

C          2.64293        0.70089       -0.38143 

C          3.97821       -1.31126        0.81527 

H          1.98085       -2.09523        1.16444 

N          3.99821        0.75617       -0.34892 

H          2.13911        1.52524       -0.86963 

C          4.66918       -0.26052        0.25464 
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H          4.51601       -2.11735        1.29468 

H         -0.01922        0.65635        0.59685 

H          0.07119       -0.21079       -1.05734 

H         -0.04091       -1.21209        0.51782 

H         -5.73542       -0.21415       -0.31586 

H          5.74603       -0.16196        0.24923 

O          4.61778        1.74416       -0.87646 

O         -4.68124        1.69857        0.8704 

 

11.2.5 Transition State Identity Reaction O → O 

SCF energy:  –717.534306 hartree  

Zero-point correction:  +0.204429 hartree  

Enthalpy correction:  +0.218231 hartree  

Free energy correction:  +0.162267 hartree  

Truhlar's Delta G correction:  +0.165731 hartree  

Grimme's Delta G correction:  +0.165175 hartree  

Imaginary Frequency:  669.6 icm–1 

 

Cartesian Coordinates 
C          0.00001        1.11739       -0.00005 

O          1.51505        1.13662       -1.14294 

O         -1.51504        1.13663        1.14291 

N          2.48404        0.41906       -0.60057 

C          2.61022       -0.88536       -0.93581 

C          3.33311        0.97778        0.28306 

N          3.54349       -1.66117       -0.43794 

H          1.88437       -1.24885       -1.65249 

C          4.32902        0.19885        0.83146 

H          3.16906        2.02583        0.49681 

C          4.40055       -1.13104        0.44012 

H          5.02521        0.62421        1.54066 

N         -2.48406        0.41908        0.60061 

C         -3.33314        0.97779       -0.28303 

C         -2.61027       -0.88532        0.93589 

C         -4.32900        0.19883       -0.83149 

H         -3.16911        2.02584       -0.49676 

N         -3.54349       -1.66116        0.43796 

H         -1.88447       -1.24880        1.65263 

C         -4.40049       -1.13107       -0.44017 

H         -5.02518        0.62418       -1.54070 

H         -0.00013        0.03614       -0.00021 

H          0.53455        1.65965        0.76593 

H         -0.53444        1.66001       -0.76584 

H         -5.16228       -1.79106       -0.83793 

H          5.16241       -1.79099        0.83781 
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11.3 Methyl Transfer Involving Pyrazine N-Oxide (1) 

11.3.1 Pyrazine N-Oxide (1) 

SCF energy:  –338.948037 hartree  

Zero-point correction:  +0.081835 hartree  

Enthalpy correction:  +0.087670 hartree  

Free energy correction:  +0.053220 hartree  

Truhlar's Delta G correction:  +0.053220 hartree  

Grimme's Delta G correction:  +0.053215 hartree 

 

Cartesian Coordinates 
C          0.26352        1.16424        0.00000 

N          0.96464       -0.00000        0.00000 

C          0.26352       -1.16424        0.00000 

C         -1.11658        1.12880        0.00000 

C         -1.11658       -1.12879       -0.00000 

N         -1.82670       -0.00000        0.00000 

H         -1.65916        2.06716       -0.00000 

H          0.85431        2.06847       -0.00000 

H          0.85431       -2.06847        0.00000 

H         -1.65916       -2.06716       -0.00000 

O          2.23512        0.00000       -0.00000 

 

11.3.2 N-Methyl Pyrazinium N-Oxide (13+) 

SCF energy:  –378.628807 hartree  

Zero-point correction:  +0.123428 hartree  

Enthalpy correction:  +0.131048 hartree  

Free energy correction:  +0.092405 hartree  

Truhlar's Delta G correction:  +0.092411 hartree  

Grimme's Delta G correction:  +0.092584 hartree 

 

Cartesian Coordinates 
C         -0.77370       -1.17472       -0.00042 

N         -1.47508        0.00000        0.00347 

C         -0.77370        1.17472       -0.00042 

C          0.59252       -1.15896       -0.00910 

C          0.59253        1.15896       -0.00910 

N          1.27293        0.00001       -0.01579 

H          1.16492       -2.07690       -0.01408 

H         -1.36003       -2.08123        0.00032 

H         -1.36004        2.08123        0.00033 

H          1.16492        2.07690       -0.01410 

O         -2.72232       -0.00000        0.00797 

C          2.74757       -0.00001        0.01595 

H          3.10059        0.89266       -0.49342 

H          3.10059       -0.89237       -0.49397 

H          3.07136       -0.00030        1.05594 

 

 

 

Page 138 of 161Chemical Science



 S98 

11.3.3 O-Methyl Pyrazinium N-Oxide (15+) 

SCF energy:  –378.608535 hartree  

Zero-point correction:  +0.122591 hartree  

Enthalpy correction:  +0.130352 hartree  

Free energy correction:  +0.091208 hartree  

Truhlar's Delta G correction:  +0.091495 hartree  

Grimme's Delta G correction:  +0.091554 hartree 

 

 

 

Cartesian Coordinates 
C          0.20982       -1.17502       -0.16268 

N         -0.41529       -0.00005       -0.28265 

C          0.20974        1.17497       -0.16274 

C          1.57163       -1.14105        0.10083 

C          1.57154        1.14112        0.10078 

N          2.24151        0.00006        0.23065 

H          2.11521       -2.07185        0.20156 

H         -0.38356       -2.07150       -0.28497 

H         -0.38365        2.07144       -0.28511 

H          2.11506        2.07196        0.20145 

O         -1.74032       -0.00013       -0.60425 

C         -2.56366        0.00008        0.59187 

H         -3.58194       -0.00005        0.21160 

H         -2.36828        0.90208        1.17241 

H         -2.36820       -0.90170        1.17276 

 

11.3.4 Transition State Identity Reaction N → N 

SCF energy:  –717.529061 hartree  

Zero-point correction:  +0.204595 hartree  

Enthalpy correction:  +0.218532 hartree  

Free energy correction:  +0.162293 hartree  

Truhlar's Delta G correction:  +0.165360 hartree  

Grimme's Delta G correction:  +0.164983 hartree  

Imaginary Frequency:  639.2 icm–1 

 

 

Cartesian Coordinates 
C          0.00011       -0.03639        0.00449 

N          1.95349       -0.04288        0.02048 

C          2.66242       -1.12875       -0.28129 

C          2.61320        1.07790        0.31038 

C          4.03868       -1.12143       -0.29861 

H          2.12139       -2.03818       -0.51788 

C          3.98708        1.13968        0.30656 

H          4.65047       -1.97873       -0.53676 

N         -1.95319       -0.02845       -0.02524 

C         -2.65434       -1.11935        0.27794 

C         -2.62110        1.08765       -0.31327 

C         -4.03020       -1.12198        0.29846 

H         -2.10530       -2.02458        0.51231 

C         -3.99573        1.13956       -0.30644 
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N         -4.71089        0.02127        0.00376 

H         -4.63564       -1.98357        0.53744 

N          4.71073        0.02621       -0.00250 

O          5.97214        0.05826       -0.01388 

O         -5.97246        0.04420        0.01740 

H         -4.57519        2.02164       -0.53508 

H         -2.04500        1.97273       -0.55904 

H         -0.00415       -1.10596       -0.14965 

H         -0.00963        0.36396        1.00679 

H          4.55998        2.02585        0.53605 

H          2.02962        1.95869        0.55432 

H          0.01426        0.63397       -0.84151 

 

11.3.5 Transition State Identity Reaction O → O 

SCF energy:  –717.523094 hartree  

Zero-point correction:  +0.204513 hartree  

Enthalpy correction:  +0.218210 hartree  

Free energy correction:  +0.163041 hartree  

Truhlar's Delta G correction:  +0.165687 hartree  

Grimme's Delta G correction:  +0.165467 hartree  

Imaginary Frequency:  687.0 icm–1 

 

Cartesian Coordinates 
C         -0.00003       -0.84277        0.00000 

O         -1.47072       -0.86673       -1.20899 

O          1.47061       -0.86638        1.20908 

N         -2.51771       -0.31668       -0.63878 

C         -3.36095       -1.07469        0.08617 

C         -2.73834        1.00375       -0.77540 

C         -4.45426       -0.46528        0.67827 

H         -3.12677       -2.12779        0.15422 

C         -3.84944        1.55524       -0.16018 

H         -2.02415        1.55335       -1.37202 

N         -4.70554        0.83662        0.56246 

H         -5.14050       -1.06730        1.26128 

H         -4.03781        2.61661       -0.26710 

N          2.51766       -0.31651        0.63881 

C          2.73841        1.00391        0.77524 

C          3.36085       -1.07471       -0.08600 

C          3.84958        1.55522        0.15998 

H          2.02424        1.55367        1.37175 

C          4.45425       -0.46549       -0.67814 

H          3.12658       -2.12780       -0.15391 

N          4.70565        0.83640       -0.56251 

H          4.03805        2.61658        0.26675 

H          5.14045       -1.06766       -1.26104 

H         -0.56412       -1.38609        0.74425 

H          0.56382       -1.38696       -0.74379 

H          0.00021        0.23837       -0.00047 
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12 Calculations on Reactions with Methyl Iodide and 

Methyl Triflate 

12.1 Methylation of Pyridine (28) 

12.1.1 Methyl Triflate 

SCF energy:  –1000.213262 hartree  

Zero-point correction:  +0.068039 hartree  

Enthalpy correction:  +0.078169 hartree  

Free energy correction:  +0.032986 hartree  

Truhlar's Delta G correction:  +0.033685 hartree  

Grimme's Delta G correction:  +0.033748 hartree 

 

Cartesian Coordinates 
O          0.14961        1.83242       -0.76112 

S          0.41956        0.67876        0.04845 

O          0.80716        0.78320        1.43023 

O          1.40565       -0.24861       -0.75382 

C         -1.11715       -0.36119       -0.00014 

F         -2.07844        0.27303        0.64814 

F         -0.88290       -1.52575        0.58292 

F         -1.48201       -0.56039       -1.25300 

C          2.27344       -1.18381       -0.03564 

H          1.67126       -1.89244        0.52961 

H          2.82132       -1.68966       -0.82497 

H          2.94757       -0.62619        0.61004 

 

12.1.2 Triflate Ion 

SCF energy:  –960.567597 hartree  

Zero-point correction:  +0.027777 hartree  

Enthalpy correction:  +0.035760 hartree  

Free energy correction:  –0.004526 hartree  

Truhlar's Delta G correction:  –0.004057 hartree  

Grimme's Delta G correction:  –0.004078 hartree 

 

Cartesian Coordinates 
O         -1.23298       -1.37549        0.38099 

S         -0.90907       -0.00016        0.00006 

O         -1.23319        1.01766        1.00037 

O         -1.23278        0.35740       -1.38158 

C          0.94417       -0.00001        0.00010 

F          1.42517       -0.31444        1.20518 

F          1.42405        1.20128       -0.33017 

F          1.42541       -0.88617       -0.87498 

 

12.1.3 Transition State for Methyl Iodide 

SCF energy:  –584.799693 hartree  

Zero-point correction:  +0.127449 hartree  

Page 141 of 161 Chemical Science



S101 
 
 

Enthalpy correction:  +0.136820 hartree  

Free energy correction:  +0.090730 hartree  

Truhlar's Delta G correction:  +0.092049 hartree  

Grimme's Delta G correction:  +0.092055 hartree  

Imaginary Frequency:  547.9 icm–1 

 

Cartesian Coordinates 
C          0.13742        0.01418       -0.01218 

H          0.08277       -0.38754        0.98579 

H          0.10008        1.08084       -0.16385 

H          0.09180       -0.64956       -0.85970 

I          2.65999       -0.00134        0.00346 

C         -2.68248        1.16435       -0.01176 

C         -2.64062       -1.14048       -0.01245 

C         -4.07140        1.18497        0.00838 

H         -2.10187        2.08151       -0.01960 

C         -4.02730       -1.21263        0.00760 

H         -2.02535       -2.03503       -0.02039 

C         -4.75335       -0.02655        0.01809 

H         -4.59847        2.13048        0.01633 

H         -4.51914       -2.17695        0.01491 

N         -1.99232        0.02433       -0.02238 

H         -5.83684       -0.04637        0.03393 

 

12.1.4 Transition State for Methyl Triflate 

SCF energy:  –1248.041686 hartree  

Zero-point correction:  +0.157223 hartree  

Enthalpy correction:  +0.172913 hartree  

Free energy correction:  +0.111304 hartree  

Truhlar's Delta G correction:  +0.116184 hartree  

Grimme's Delta G correction:  +0.115162 hartree  

Imaginary Frequency:  609.9 icm–1 

 

Cartesian Coordinates 
C          0.59052       -0.78365       -0.36165 

H          0.51364       -0.57423        0.69468 

H          0.93741       -1.75400       -0.68029 

H          0.55833        0.02389       -1.07479 

C          3.62842       -1.12267       -0.40148 

C          2.93930        0.96797        0.27716 

C          4.96680       -0.77889       -0.25811 

H          3.33192       -2.11203       -0.73594 

C          4.24872        1.39693        0.44785 

H          2.09699        1.62401        0.47701 

C          5.27992        0.50463        0.17450 

H          5.73871       -1.50409       -0.48179 

H          4.44833        2.40552        0.78666 

N          2.64291       -0.26449       -0.13796 

H          6.31374        0.80598        0.29692 

O         -1.13569       -1.25271       -0.61487 

S         -2.22823       -0.80612        0.32915 

C         -2.53909        0.92263       -0.25376 
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F         -3.48071        1.49202        0.48845 

F         -1.42293        1.63989       -0.15361 

F         -2.93294        0.92494       -1.52092 

O         -1.76545       -0.64845        1.69541 

O         -3.46712       -1.51371        0.08754 

 

 

12.2 Methylation of Pyrimidine (27) 

12.2.1 Transition State for Methyl Iodide 

SCF energy:  –600.829663 hartree  

Zero-point correction:  +0.115790 hartree  

Enthalpy correction:  +0.125116 hartree  

Free energy correction:  +0.078790 hartree  

Truhlar's Delta G correction:  +0.080442 hartree  

Grimme's Delta G correction:  +0.080332 hartree  

Imaginary Frequency:  558.2 icm–1 

 

Cartesian Coordinates 
C          0.09976       -0.02447        0.00012 

H          0.06600        0.51333        0.93315 

H          0.06581        0.51364       -0.93272 

H          0.08339       -1.10271       -0.00007 

I          2.65135        0.00453       -0.00004 

C         -2.65071        1.13772        0.00018 

C         -2.71138       -1.14956        0.00014 

C         -4.03480        1.17525       -0.00011 

H         -2.04400        2.03794        0.00030 

H         -2.15390       -2.08039        0.00022 

C         -4.69108       -0.04865       -0.00023 

H         -4.57612        2.11133       -0.00026 

N         -2.00001       -0.02603        0.00030 

H         -5.77483       -0.09958       -0.00043 

N         -4.03694       -1.21327       -0.00011 

 

12.2.2 Transition State for Methyl Triflate 

SCF energy:  –1264.071957 hartree  

Zero-point correction:  +0.145638 hartree  

Enthalpy correction:  +0.161203 hartree  

Free energy correction:  +0.099993 hartree  

Truhlar's Delta G correction:  +0.104642 hartree  

Grimme's Delta G correction:  +0.103700 hartree  

Imaginary Frequency:  616.2 icm–1 

 

Cartesian Coordinates 
C          0.62496       -0.79366       -0.32206 

H          0.52486       -0.53283        0.72097 

H          0.95324       -1.78601       -0.58826 

H          0.58922       -0.02748       -1.07930 

C          3.65098       -1.05993       -0.48735 

Page 143 of 161 Chemical Science



S103 
 
 

C          2.95555        0.92367        0.41197 

N          4.94119       -0.76058       -0.40261 

H          3.37769       -2.02434       -0.90305 

C          4.27311        1.32816        0.54271 

H          2.12261        1.55008        0.71715 

C          5.24457        0.43380        0.11268 

H          4.53098        2.29262        0.95826 

N          2.65286       -0.26954       -0.10208 

H          6.29888        0.68027        0.18237 

O         -1.12680       -1.26806       -0.56905 

S         -2.21693       -0.78914        0.35780 

C         -2.54166        0.91038       -0.29835 

F         -3.47808        1.50995        0.42692 

F         -1.42727        1.63570       -0.24172 

F         -2.94815        0.85545       -1.56053 

O         -1.74946       -0.56714        1.71426 

O         -3.45480       -1.51226        0.15734 

 

 

12.3 Methylation of Pyrazine (7) 

12.3.1 Transition State for Methyl Iodide 

SCF energy:  –600.820701 hartree  

Zero-point correction:  +0.115661 hartree  

Enthalpy correction:  +0.124908 hartree  

Free energy correction:  +0.078918 hartree  

Truhlar's Delta G correction:  +0.080343 hartree  

Grimme's Delta G correction:  +0.080317 hartree  

Imaginary Frequency:  541.4 icm–1 

 

Cartesian Coordinates 
C         -0.08206        0.00012        0.02625 

H         -0.07076       -0.85202        0.68612 

H         -0.04869       -0.14657       -1.04064 

H         -0.07307        0.99806        0.43311 

I         -2.65195        0.00003       -0.00728 

C          2.65978       -1.14071        0.02674 

C          2.67047        1.14733        0.02659 

C          4.05031       -1.13956       -0.01914 

H          2.08575       -2.06060        0.04421 

C          4.06124        1.13264       -0.01973 

H          2.10600        2.07302        0.04453 

N          4.74994       -0.00664       -0.04263 

H          4.60005       -2.07349       -0.03718 

H          4.61974        2.06136       -0.03862 

N          1.98945        0.00662        0.04976 

 

12.3.2 Transition State for Methyl Triflate 

SCF energy:  –1264.063294 hartree  

Zero-point correction:  +0.145460 hartree  

Enthalpy correction:  +0.160955 hartree  

Page 144 of 161Chemical Science



S104 
 
 

Free energy correction:  +0.100467 hartree  

Truhlar's Delta G correction:  +0.104420 hartree  

Grimme's Delta G correction:  +0.103812 hartree  

Imaginary Frequency:  614.4 icm–1 

 

Cartesian Coordinates 
C          0.61921       -0.76025       -0.38232 

H          0.95470       -1.72286       -0.73525 

H          0.56766        0.06813       -1.07047 

H          0.52987       -0.58925        0.68022 

N          2.64423       -0.24920       -0.15028 

C          3.63093       -1.10860       -0.38282 

C          2.95439        0.98036        0.25055 

C          4.95709       -0.72367       -0.20805 

H          3.36448       -2.10784       -0.70941 

C          4.28366        1.35266        0.42094 

H          2.13734        1.66941        0.43673 

N          5.28392        0.50305        0.19283 

H          5.76187       -1.42461       -0.39743 

H          4.53646        2.35476        0.74769 

O         -1.12747       -1.23221       -0.64981 

S         -2.21756       -0.81761        0.30817 

O         -3.45560       -1.52410        0.05663 

O         -1.75048       -0.69121        1.67689 

C         -2.54033        0.92389       -0.22795 

F         -3.47594        1.47269        0.53731 

F         -2.94687        0.95748       -1.49084 

F         -1.42496        1.64216       -0.12119 

 

 

12.4 Methylation of Pyridine N-Oxide (8) 

12.4.1 Transition State for Methyl Iodide 

SCF energy:  –659.875011 hartree  

Zero-point correction:  +0.131927 hartree  

Enthalpy correction:  +0.141913 hartree  

Free energy correction:  +0.094439 hartree  

Truhlar's Delta G correction:  +0.095943 hartree  

Grimme's Delta G correction:  +0.095738 hartree  

Imaginary Frequency:  582.5 icm–1 

 

Cartesian Coordinates 
C         -0.40236        0.85146        0.00027 

H         -0.16830        0.36790        0.93520 

H         -0.16825        0.36817       -0.93478 

H         -0.84408        1.83395        0.00041 

I         -2.73001       -0.24897       -0.00007 

O          1.38142        1.73258        0.00038 

C          2.76647        0.31523       -1.17623 

C          2.76634        0.31459        1.17637 

C          3.72902       -0.67432       -1.19761 

H          2.32958        0.76767       -2.05561 
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C          3.72889       -0.67497        1.19732 

H          2.32934        0.76653        2.05596 

H          4.08128       -1.03616       -2.15436 

H          4.08104       -1.03734        2.15391 

N          2.30844        0.79269        0.00018 

C          4.22201       -1.18012       -0.00026 

H          4.97738       -1.95578       -0.00042 

 

12.4.2 Transition State for Methyl Triflate 

SCF energy:  –1323.118407 hartree  

Zero-point correction:  +0.161735 hartree  

Enthalpy correction:  +0.178020 hartree  

Free energy correction:  +0.115592 hartree  

Truhlar's Delta G correction:  +0.120598 hartree  

Grimme's Delta G correction:  +0.119490 hartree  

Imaginary Frequency:  662.1 icm–1 

 

Cartesian Coordinates 
C         -0.12073        1.75711        0.53653 

H         -0.20297        1.49019       -0.50658 

H         -0.32510        1.03808        1.31362 

H          0.00019        2.79504        0.80178 

O          1.68877        1.45706        0.63364 

S          2.36265        0.52759       -0.34536 

O          1.80479        0.60930       -1.68340 

O          3.80189        0.53118       -0.18948 

C          1.81545       -1.13163        0.26899 

F          2.33970       -2.09203       -0.48271 

F          0.48791       -1.22192        0.21151 

F          2.19794       -1.31569        1.52652 

O         -2.11379        2.07976        0.47804 

N         -2.65313        0.91379        0.17329 

C         -3.01567        0.07175        1.16395 

C         -2.80624        0.57298       -1.12377 

C         -3.56114       -1.16130        0.86552 

H         -2.84807        0.44348        2.16546 

C         -3.34631       -0.65161       -1.46389 

H         -2.48256        1.32005       -1.83534 

H         -3.84499       -1.81442        1.67995 

H         -3.45808       -0.89702       -2.51165 

C         -3.73124       -1.53506       -0.46237 

H         -4.15676       -2.49859       -0.71245 

 

12.5 Methylation of Pyrimidine N-Oxide (3) 

12.5.1 Transition State for N-Alkylation by Methyl Iodide 

SCF energy:  –675.895370 hartree  

Zero-point correction:  +0.119727 hartree  

Enthalpy correction:  +0.129865 hartree  

Free energy correction:  +0.081050 hartree  
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Truhlar's Delta G correction:  +0.083450 hartree  

Grimme's Delta G correction:  +0.083041 hartree  

Imaginary Frequency:  565.7 icm–1 

 

Cartesian Coordinates 
C         -0.40825        0.10800       -0.02109 

H         -0.40752        0.39037        1.01899 

H         -0.32897       -0.93107       -0.29811 

H         -0.45853        0.86632       -0.78588 

I         -2.98134       -0.07450        0.00577 

C          2.40596       -0.79600       -0.02549 

C          2.19303        1.49356       -0.01549 

N          3.76323       -0.73092        0.00429 

H          1.97784       -1.78985       -0.03990 

C          3.57155        1.63338        0.01505 

H          1.51523        2.33888       -0.02387 

C          4.34738        0.49444        0.02449 

O          4.46222       -1.80463        0.01305 

H          4.04147        2.60702        0.03113 

N          1.64921        0.27670       -0.03649 

H          5.42839        0.48323        0.04787 

12.5.2 Transition State for O-Alkylation by Methyl Iodide 

SCF energy:  –675.900119 hartree  

Zero-point correction:  +0.119877 hartree  

Enthalpy correction:  +0.129857 hartree  

Free energy correction:  +0.081965 hartree  

Truhlar's Delta G correction:  +0.083777 hartree  

Grimme's Delta G correction:  +0.083499 hartree  

Imaginary Frequency:  610.2 icm–1 

 

Cartesian Coordinates 
C          0.40228       -0.79009       -0.21577 

H          0.82738       -1.71587       -0.56671 

H          0.21074       -0.65241        0.83628 

H          0.14842       -0.01449       -0.92109 

I          2.75010        0.22783        0.06714 

O         -1.39251       -1.62034       -0.45066 

C         -2.75801        0.08714       -1.20203 

C         -2.85350       -0.61665        1.02717 

C         -3.74083        1.01247       -0.92382 

H         -2.29081       -0.05872       -2.16708 

N         -3.79011        0.24908        1.33322 

H         -2.44728       -1.30387        1.75852 

C         -4.23782        1.06189        0.37117 

H         -4.10359        1.67118       -1.70046 

N         -2.32712       -0.72535       -0.21624 

H         -5.01213        1.76712        0.64826 

 

12.5.3 Transition State for N-Alkylation by Methyl Triflate 

SCF energy:  –1339.138179 hartree  

Zero-point correction:  +0.149359 hartree  
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Enthalpy correction:  +0.165756 hartree  

Free energy correction:  +0.102444 hartree  

Truhlar's Delta G correction:  +0.107541 hartree  

Grimme's Delta G correction:  +0.106444 hartree  

Imaginary Frequency:  622.1 icm–1 

 

Cartesian Coordinates 
C          0.33838       -0.66903       -0.32745 

H          0.20728       -0.46948        0.72565 

H          0.71008       -1.63130       -0.64280 

H          0.23950        0.12443       -1.05066 

N          2.29943       -0.02935       -0.08249 

C          2.49918        1.24284        0.26531 

C          3.31812       -0.83822       -0.26393 

C          3.78824        1.72127        0.43622 

H          1.61951        1.86116        0.40203 

N          4.60763       -0.43539       -0.11383 

H          3.17463       -1.87332       -0.54573 

C          4.84120        0.85450        0.23873 

H          3.97885        2.74784        0.71718 

O          5.56922       -1.26093       -0.30344 

O         -1.40587       -1.24438       -0.60205 

S         -2.52061       -0.85126        0.33208 

O         -3.71958       -1.63282        0.11235 

O         -2.06836       -0.63926        1.69596 

C         -2.93609        0.84563       -0.27822 

F         -3.89925        1.37799        0.46460 

F         -3.34427        0.80391       -1.54059 

F         -1.86005        1.62640       -0.20554 

H          5.88510        1.11670        0.34255 

 

12.5.4 Transition State for O-Alkylation by Methyl Triflate 

SCF energy:  –1339.142371 hartree  

Zero-point correction:  +0.149567 hartree  

Enthalpy correction:  +0.165930 hartree  

Free energy correction:  +0.102106 hartree  

Truhlar's Delta G correction:  +0.108124 hartree  

Grimme's Delta G correction:  +0.106580 hartree  

Imaginary Frequency:  664.2 icm–1 

 

 

Cartesian Coordinates 
C         -0.32305        1.33268        0.90702 

H         -0.27637        0.28348        1.15519 

H         -0.18415        2.06606        1.68491 

H         -0.64349        1.64980       -0.07254 

O          1.47546        1.45085        0.47348 

S          2.03963        0.60603       -0.64029 

O          1.01250        0.06432       -1.51268 

O          3.21778        1.19752       -1.24002 

C          2.67411       -0.85871        0.29682 

F          3.17649       -1.75688       -0.54281 
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F          1.68364       -1.42429        0.98235 

F          3.62401       -0.49345        1.14906 

O         -2.25055        1.29688        1.44770 

N         -2.89420        0.46662        0.65536 

C         -2.95011       -0.84906        0.94215 

C         -3.50009        0.94036       -0.45921 

C         -3.63428       -1.69072        0.09135 

H         -2.44333       -1.15365        1.84845 

N         -4.16218        0.17483       -1.29396 

H         -3.40225        2.00735       -0.61530 

C         -4.23478       -1.13301       -1.02858 

H         -3.69320       -2.74900        0.30419 

H         -4.78618       -1.74485       -1.73256 

 

 

12.6 Methylation of Pyrazine N-Oxide (1) 

12.6.1 Transition State for N-Alkylation by Methyl Iodide 

SCF energy:  –675.897471 hartree  

Zero-point correction:  +0.119953 hartree  

Enthalpy correction:  +0.129995 hartree  

Free energy correction:  +0.082008 hartree  

Truhlar's Delta G correction:  +0.083784 hartree  

Grimme's Delta G correction:  +0.083620 hartree  

Imaginary Frequency:  549.1 icm–1 

 

Cartesian Coordinates 
C         -0.50833       -0.00072        0.03533 

H         -0.50406       -0.85522        0.69210 

H         -0.47253       -0.14285       -1.03195 

H         -0.50476        0.99535        0.44667 

I         -3.08243       -0.00037       -0.01323 

C          2.23958       -1.13643        0.04718 

C          2.24724        1.14517        0.04675 

C          3.61517       -1.17019       -0.00135 

H          1.67630       -2.06259        0.06556 

C          3.62328        1.16932       -0.00205 

H          1.69097        2.07550        0.06518 

N          4.31689       -0.00271       -0.02645 

H          4.20437       -2.07497       -0.02153 

H          4.21845        2.07017       -0.02301 

N          1.55719        0.00682        0.07269 

O          5.57998       -0.00718       -0.07132 

 

12.6.2 Transition State for O-Alkylation by Methyl Iodide 

SCF energy:  –675.894942 hartree  

Zero-point correction:  +0.120147 hartree  

Enthalpy correction:  +0.129989 hartree  

Free energy correction:  +0.082700 hartree  

Truhlar's Delta G correction:  +0.084231 hartree  

Grimme's Delta G correction:  +0.084004 hartree  

Imaginary Frequency:  594.7 icm–1 
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Cartesian Coordinates 
C         -0.35380        0.85037        0.00167 

H         -0.80973        1.82663        0.00415 

H         -0.15547        0.34868        0.93598 

H         -0.15619        0.35307       -0.93512 

I         -2.74387       -0.23868       -0.00047 

O          1.39219        1.69632        0.00276 

C          2.78722        0.29184       -1.16689 

C          2.78646        0.28734        1.16789 

C          3.75896       -0.69342       -1.13546 

H          2.36934        0.72085       -2.06650 

C          3.75821       -0.69782        1.13329 

H          2.36805        0.71293        2.06887 

N          4.24835       -1.19156       -0.00188 

H          4.14400       -1.08163       -2.07051 

H          4.14260       -1.08966        2.06709 

N          2.31773        0.77140        0.00128 

 

12.6.3 Transition State for N-Alkylation by Methyl Triflate 

SCF energy:  –1339.140028 hartree  

Zero-point correction:  +0.149547 hartree  

Enthalpy correction:  +0.165943 hartree  

Free energy correction:  +0.102870 hartree  

Truhlar's Delta G correction:  +0.107578 hartree  

Grimme's Delta G correction:  +0.106785 hartree  

Imaginary Frequency:  620.5 icm–1 

 

Cartesian Coordinates 
C          0.20351       -0.81501       -0.38943 

H          0.50154       -1.80197       -0.70652 

H          0.16978       -0.01446       -1.11055 

H          0.12513       -0.59961        0.66591 

N          2.24238       -0.36825       -0.19261 

C          3.20559       -1.25890       -0.42067 

C          2.60972        0.85591        0.18396 

C          4.54176       -0.95391       -0.27999 

H          2.91214       -2.25650       -0.72741 

C          3.92936        1.21582        0.34059 

H          1.82668        1.58275        0.37025 

N          4.90913        0.29889        0.10627 

H          5.34886       -1.64935       -0.45594 

H          4.26459        2.19639        0.64411 

O         -1.56481       -1.24069       -0.62872 

S         -2.63073       -0.78173        0.33512 

O         -3.88826       -1.46515        0.11813 

O         -2.14053       -0.63612        1.69393 

C         -2.92393        0.95451       -0.23387 

F         -3.83921        1.53833        0.53017 

F         -3.34452        0.97021       -1.49261 

F         -1.79324        1.65221       -0.15511 

O          6.12848        0.60429        0.24378 
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12.6.4 Transition State for O-Alkylation by Methyl Triflate 

SCF energy:  –1339.138211 hartree  

Zero-point correction:  +0.149981 hartree  

Enthalpy correction:  +0.166123 hartree  

Free energy correction:  +0.103765 hartree  

Truhlar's Delta G correction:  +0.108854 hartree  

Grimme's Delta G correction:  +0.107708 hartree  

Imaginary Frequency:  671.4 icm–1 

 

Cartesian Coordinates 
C         -0.18773       -1.71515       -0.53991 

H         -0.22393       -1.46338        0.50982 

H         -0.36654       -0.97053       -1.29960 

H         -0.06562       -2.74630       -0.82978 

O          1.66585       -1.43996       -0.66131 

S          2.37448       -0.56119        0.33403 

O          1.80100       -0.63282        1.66724 

O          3.81481       -0.62645        0.19573 

C          1.91235        1.13006       -0.25997 

F          2.45343        2.05583        0.52314 

F          0.58784        1.27242       -0.23473 

F          2.33401        1.32326       -1.50375 

O         -2.14571       -2.02655       -0.46694 

N         -2.70306       -0.88259       -0.16687 

C         -3.11544       -0.05651       -1.14803 

C         -2.84328       -0.51818        1.12268 

C         -3.68350        1.15682       -0.79955 

H         -2.97456       -0.40513       -2.16137 

C         -3.41655        0.70924        1.40769 

H         -2.49474       -1.22395        1.86347 

N         -3.83642        1.54851        0.46362 

H         -4.01907        1.82419       -1.58406 

H         -3.53110        1.00753        2.44279 
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13 Determination of 2nd Order Rate Constant  

Pyrazine N-oxide (1) (0.010 g, 0.10 mmol) was dissolved in dry CD3CN (0.20 ml) in a glove box 

under nitrogen atmosphere. This solution was taken up in a syringe and the syringe was placed in 

a long Schlenk flask inside the glove box, and the Schlenk flask was sealed. Methyl iodide (0.147 

g, 1.04 mmol, 10 equivalents) was dissolved in 0.65 ml dry CD3CN in the glove box. This solution 

was placed in an NMR tube, which was sealed using a rubber septum.  The seal was then wrapped 

with PTFE tape and Parafilm.  Finally, the NMR tube was placed in a long Schlenk flask, which 

was then sealed inside the glove box.  Both Schlenk flasks were removed from the glove box and 

brought to the NMR spectrometer (500 MHz instrument). 

The Schlenk tubes were placed in the NMR spectrometer room for 20 minutes to allow them to 

equilibrate to the controlled room temperature of 25 °C. The NMR tube containing the MeI 

solution was removed from the Schlenk flask and placed in the NMR spectrometer. The probe of 

the spectrometer was also kept at 25 °C. After obtaining the first 1H NMR spectrum and the correct 

shim for this sample, the NMR tube was ejected. The pyrazine N-oxide solution (0.18 ml, 

containing 0.090 mmol pyrazine N-oxide) in its syringe was removed from its Schlenk flask and 

added to the NMR tube by injection through the rubber septum.  The septum was re-wrapped with 

parafilm after removal of the syringe.  The NMR tube was inverted and then rapidly returned to 

the spectrometer to obtain NMR spectra of the ongoing reaction at certain intervals.   

 

Each spectrum was obtained using 4 scans, a 5 second relaxation delay and a 30° pulse. The time 

ascribed to each spectrum was when the spectrum measurement ended. In the obtained spectra, the 

CHD2CN signal at δ 1.968 was set at a constant integral value throughout and the other signals are 

given relative to this value. 

The following signals were observed in the spectra after addition.   

1H NMR (500 MHz, CD3CN, 298K)  

Assigned to 1: δ 8.49 – 8.38 (m, 2H), 8.14 – 8.06 (m, 2H). 

Assigned to MeI: δ 2.20 (s, 3H). 

Assigned to 13a: δ δ 8.65 – 8.59 (m, 2H), 8.57 – 8.52 (m, 2H), 4.19 (s, 3H, NCH3). 

Note: 13C satellite peaks of the 2H signal of 1 at δ 8.10 appear at δ 8.30 – 8.28 and 7.92 – 7.90. 

These signals were included in the integration value for that signal.  The aromatic signals of 13a 

showed a variable chemical shift, moving downfield as the reaction progressed. The signal also 

initially appeared as a singlet, before splitting into two doublets as it moved downfield. 
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Figure S86: 1H NMR spectrum in CD3CN of the reaction of 1 and MeI.  The MeI signal is disproportionately 

large compared to the signals of 1 and 13a as there are 10 equivalents of MeI relative to 1. 

 
Figure S87: Stacked 1H NMR spectra in CD3CN of the reaction of 1 and MeI. The signals of 13a appear as 

the reaction progresses. The aromatic signals associated with 13a showed a variable chemical shift, in 

addition to being observed as both a singlet in earlier spectra, and a multiplet in later spectra. 
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The consumption of pyrazine N-oxide (1) was monitored by observing the decrease in the 

integration value at 8.10 ppm relative to the signal of CHD2CN. The integration value was assigned 

a concentration value ([1]t) relative to the concentration of (1) at t = 0.  

At t = 0,  

[𝟏]𝑡=0 =
(

0.090 g
96.089 g mol−1) 

0.83 ml
 = 0.113 mmol/ml 

At t = 713 seconds, the integration value of the signal at 8.10 ppm was 99.7% of its value at t = 0, 

giving:  

[𝟏]𝑡=713 s = (0.113 mmol/ml) ×  0.997 = 0.1127 mmol/ml 

This procedure was continued at various time points in order to monitor the consumption of 

pyrazine N-oxide. After 25 hours, conversion was approximately 28%.  An approximate value of 

the 2nd order rate constant was derived based on data recorded for the reaction up to this level of 

conversion. 

For each 1H NMR spectrum (time t), the integrations of 1 and 13a at time t (I1 and I13a, respectively) 

relative to the integration of the residual CHD2CN were established (the integration of CHD2CN 

in each spectrum was set equal to an arbitrary value of 15.2).  The integration of 13a (I13a) was 

scaled (multiplied by 2/3) to take account of the additional protons contributing to the signal used 

for the integration. 

The total amount of 1 and 13a present always equals the initial amount of 1 added, i.e. 

𝑛𝟏 + 𝑛𝟏𝟑𝐚 = 𝑛𝟏,𝑡=0 

where:   

𝑛𝟏 = amount of 𝟏 (mmol) at time t 

𝑛𝟏𝟑𝐚 = amount of 𝟏𝟑𝐚 (mmol) at time t 

𝑛𝟏,𝑡=0 = inital amount of 𝟏 added (mmol) 

Hence, the quantity (I1 + I13a) – the sum of the integrations of the signals of 1 and 13a (scaled 

appropriately) – was used to represent the initial amount of 1 added.  The consumption of 1 at time 

t was then established as follows: 

Consumption of 𝟏 at time 𝑡 =  
𝐼𝟏

(𝐼𝟏  + 𝐼𝟏𝟑𝐚)
=  

[𝟏]𝑡

[𝟏]0
 

See column 4 of Table S9 below for the quantities calculated in this manner.  
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Table S9.  Recorded integration values (I) and calculated concentrations of 1 and 13a at various time points, with 

derived values of ln ([1]t / [1]0). Note that the integration value of 13a shown here was scaled to take into account the 

additional protons contributing to the signal used for the integration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time  
(seconds) 

I1 I13a [1]t / [1]0 ln ([1]t / [1]0) 

0 25.00 0 1 0 

713 24.89 0.07 0.997 −2.7 × 10−3 

1080 24.87 0.09 0.996 −3.8 × 10−3 

1248 24.81 0.13 0.995 −5.1 × 10−3 

1620 24.77 0.15 0.994 −5.9 × 10−3 

1740 24.76 0.17 0.993 −6.7 × 10−3 

2160 24.74 0.19 0.992 −7.8 × 10−3 

2460 24.68 0.21 0.991 −8.6 × 10−3 

3060 24.63 0.25 0.990 −1.0 × 10−2 

3720 24.53 0.31 0.987 −1.3 × 10−2 

5460 24.32 0.45 0.982 −1.9 × 10−2 

7500 24.03 0.64 0.974 −2.6 × 10−2 

8100 23.97 0.69 0.972 −2.9 × 10−2 

11760 23.51 0.99 0.959 −4.1 × 10−2 

22560 22.48 1.68 0.930 −7.2 × 10−2 

29760 21.58 2.29 0.904 −1.0 × 10−1 

36960 20.83 2.79 0.882 −1.3 × 10−1 

54960 19.00 4.00 0.826 −1.9 × 10−1 

72960 16.96 5.36 0.760 −2.8 × 10−1 

90960 15.71 6.17 0.718 −3.3 × 10−1 
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For the 2nd order reaction of 1 with MeI (and rate constant k): 

Rate = −𝑘[𝟏][MeI]  

 

By including 10 equivalents of MeI, it can be assumed that:  

[MeI]𝑡 = [MeI]0 

Thus, for this pseudo-1st order reaction: 

Rate = −𝑘′[𝟏] 

where k′ = k[MeI]0 

 

The integrated rate equation for this reaction (under pseudo first-order conditions) is: 

ln
[𝟏]𝑡

[𝟏]0
= −𝑘′𝑡 

where t is the time since the start of the reaction (s). 

 

A plot of ln([1]t/[1]0) vs t (using the values shown in Table S9) is linear, as shown below.  The 

slope of the line is −k′. 

 

The slope of the plot is −3.6 × 10−6, so k′ = −3.6 × 10−6 s−1.  Hence, since [MeI]0 = 1.25 mol L−1,  

𝑘 = (3.6 ×  10−6) s−1 × (1.25 mol L−1)  

= 2.9 × 10−6  mol L−1s−1 

An identical value of the second order rate constant is also determined by monitoring the growth 

in the concentration of product 13a. 

ln([1]t /[1]0) = -(3.6 × 10−6)t + 1.5 × 10−3

R² = 0.9979
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This value of k may be related to ΔG‡ by the Eyring equation:  

 

𝑘 = 𝛋
𝑘𝐵𝑇

ℎ
×

𝑅𝑇

𝑝°
 𝑒− 

∆𝐺‡

𝑅𝑇   

as seen in Atkins’ Physical Chemistry, 9th ed. Section 22.4 pg. 848.[17] The transmission coefficient 

κ is taken to equal 1. 

This equation can be rearranged to:  

𝑅𝑇 ln ((
1

𝑘
) (

𝑘𝐵𝑇

ℎ
) (

𝑅𝑇

𝑝°
)) =  ∆𝐺‡ 

giving:  

∆𝐺‡ = 1.4 × 102 kJ mol−1 

where:  

𝑅 = 3.14 J K−1mol−1      𝑇 = 298 K        

𝑝° = 105 N m−2    𝑘𝐵 = 1.38 × 10−23 J K−1    ℎ = 6.63 × 10−34 J s 
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Marcus theory enables rationalisation and quantification of selectivities in reactions of ambident 

nucleophiles for which the HSAB Principle cannot operate.
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