
Title Competition-based crowdsourcing software development: a
multi-method study from a customer perspective

Authors Stol, Klaas-Jan;Caglayan, Bora;Fitzgerald, Brian

Publication date 2018

Original Citation Stol, K.-J., Caglayan, B. and Fitzgerald, B. (2018) 'Competition-
Based Crowdsourcing Software Development: A Multi-Method
Study from a Customer Perspective', IEEE Transactions on
Software Engineering, In Press, doi: 10.1109/TSE.2017.2774297

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://ieeexplore.ieee.org/abstract/document/8119867 - 10.1109/
TSE.2017.2774297

Rights © 2017 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-25 14:18:31

Item downloaded
from

https://hdl.handle.net/10468/6977

https://hdl.handle.net/10468/6977

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Competition-Based Crowdsourcing Software
Development: A Multi-Method Study from a

Customer Perspective
Klaas-Jan Stol, Bora Caglayan, and Brian Fitzgerald

Abstract—Crowdsourcing is emerging as an alternative outsourcing strategy which is gaining increasing attention in the software
engineering community. However, crowdsourcing software development involves complex tasks which differ significantly from the
micro-tasks that can be found on crowdsourcing platforms such as Amazon Mechanical Turk which are much shorter in duration, are
typically very simple, and do not involve any task interdependencies. To achieve the potential benefits of crowdsourcing in the software
development context, companies need to understand how this strategy works, and what factors might affect crowd participation. We
present a multi-method qualitative and quantitative theory-building research study. Firstly, we derive a set of key concerns from the
crowdsourcing literature as an initial analytical framework for an exploratory case study in a Fortune 500 company. We complement the
case study findings with an analysis of 13,602 crowdsourcing competitions over a ten-year period on the very popular Topcoder
crowdsourcing platform. Drawing from our empirical findings and the crowdsourcing literature, we propose a theoretical model of crowd
interest and actual participation in crowdsourcing competitions. We evaluate this model using Structural Equation Modeling. Among the
findings are that the level of prize and duration of competitions do not significantly increase crowd interest in competitions.

Index Terms—Crowdsourcing, software engineering, multi-method study, case study, sample study

F

1 INTRODUCTION

SOFTWARE engineering no longer takes place in small,
isolated groups of developers, but increasingly takes

place in organizations and communities involving many
people [13], [137], [134]. There is an increasing trend to-
wards globalization with a focus on collaborative methods
and infrastructure [19], [59]. One emerging approach to
getting work done is crowdsourcing, a sourcing strategy
that emerged in the 1990s [57], but started to gain significant
attention when the term “crowdsourcing” was coined in 2005
[65]. Driven by Web 2.0 technologies [27], [120], organizations
can tap into a workforce consisting of potentially anyone
with an Internet connection. Customers, or requesters, can
advertise chunks of work, or tasks, on a crowdsourcing
platform, where suppliers (i.e., individual workers) perform
those tasks that match their interests and abilities [63].

Crowdsourcing has been adopted in a wide variety of
domains, such as design of T-shirts [66] and pharmaceutical
research and development [87], and there are numerous
crowdsourcing platforms through which customers and
suppliers can find each other [39], [97]. One of the best known
crowdsourcing platforms is Amazon Mechanical Turk (AMT)
[71]. On AMT, chunks of work are referred to as Human
Intelligence Tasks (HIT) or micro-tasks. Typical micro-tasks
are characterized as self-contained, simple, repetitive, short,
requiring little time, cognitive effort and specialized skills.
Crowdsourcing has worked particularly well for such tasks

• K. Stol is with Lero—the Irish Software Research Centre, Dept. Computer
Science, University College Cork, Ireland. B. Fitzgerald is with Lero–
the Irish Software Research Centre, University of Limerick, Ireland. B.
Caglayan is with IBM Ireland.
E-mail: klaas-jan.stol@lero.ie

Manuscript received December 1, 2016

[82], [81]. Examples include tagging images, and translating
fragments of text. As a result, remuneration of work is
typically in the order of a few cents to a few US dollars
[71].

In contrast to micro-tasks, software development tasks
are often interdependent, complex, heterogeneous, and can
require significant periods of time, cognitive effort and
various types of expertise [80]. However, there are examples
of crowdsourcing complex tasks; for example, InnoCentive
deals with problem solving and innovation projects, which
may yield payments of thousands of US dollars [66].

A number of potential benefits have been linked to the
use of crowdsourcing in general, and these would also be
applicable in the context of software development:

• Cost reduction [75], [82], [119] through lower develop-
ment costs for developers in certain regions, and also
through the avoidance of the extra cost overheads
typically incurred in hiring developers;

• Faster time-to-market [82], [86], [118], [116] through
accessing a critical mass of necessary technical talent
who can achieve follow-the-sun development across
time zones, as well as parallel development on decom-
posed tasks, and who are typically willing to work at
weekends, for example.

• Higher quality through broad participation [22], [119],
[23]: the ability to get access to a broad and deep pool
of development talent who self-select on the basis
that they have the necessary expertise, and who then
participate in competitions where the highest quality
‘winning’ solution is chosen;

• Creativity and open innovation [24], [42], [44], [86], [119],
[135]: there are many examples of “wisdom of the crowd”

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

creativity whereby the variety of expertise available
ensures that more creative solutions can be explored,
which often elude the fixed mindset that can exist
within individual companies. This application of skills
in a new domain is also referred to as “near-field
repurposing of knowledge” [23, pt. II].

Given that the first three benefits listed above (cost, time
and quality) directly address the three central problems
of the so-called “software crisis” [52], it is not surprising
that a number of authors have argued that crowdsourcing
may become a common approach to software development
[14], [76], [97], [132]. The fourth benefit, that of tapping
into the creative capacity of a crowd is captured well in a
quote attributed to Sun Microsystems co-founder Bill Joy,
namely that, “No matter who you are, most of the smartest
people work for someone else” [87]. As Lakhani and Panetta
[87] pointed out, completing knowledge-intensive tasks will
become increasingly challenging in traditional closed models
of proprietary innovation, if most of the knowledge exists
outside an organization.

Crowdsourcing has received considerable interest
from researchers in disciplines such as human-computer
interaction and information systems, and more recently in
software engineering (see Mao et al. [97] for an extensive
overview). Thus far, most studies have presented analyses of
developers and platforms including AMT and Topcoder [8],
[152], [151], [155]. However, very few studies have studied
crowdsourcing from a customer perspective, as a practical
alternative approach to outsourcing software development.
Studying crowdsourcing from this perspective is important
in order to better understand how organizations can engage
with this new and emerging type of “unknown workforce.”
Hence, our research goal was as follows:

Research goal: To develop a better understanding of
crowdsourcing as a software development strategy.

With this goal in mind, we first conducted an industry
case study at a company that used Topcoder to crowdsource
a large project, which we reported in our earlier paper
published at the 36th International Conference on Software
Engineering (ICSE’14) [130]. The case study helped us to
understand some of the tension points in crowdsourcing
software development. The case study represents a “rich,
empirical description of a particular instance” [43] of the phe-
nomenon of competition-based crowdsourcing in a software
development context. This article revises the ICSE’14 paper
and extends it in several ways:

• We extend the case study analysis with a large-scale
quantitative analysis of the Topcoder platform. As
case studies are inherently limited in scope, this
quantitative analysis helps to put the findings of the
case study in perspective.

• Based on the specific findings that arose in the case
study findings as well as the extant literature, we
developed a theoretical model that represents some
of the key factors that affect a crowd’s interest and
participation in crowdsourcing competitions.

• Using a data set of over 13,600 contests held on the
Topcoder platform, we evaluated the model using
structural equation modeling.

The remainder of this article is structured as follows.
Sec. 2 defines crowdsourcing for software development
as a distinct form of outsourcing that differs from peer
production (cf. [48]) and opensourcing (cf. [3]). We contrast
crowdsourcing with opensourcing and outsourcing and
derive a definition of crowdsourcing in the context of
software development. Sec. 3 outlines our multi-method
research approach. Sec. 4 presents the results of the case study
and complements the qualitative findings with analyses of
the Topcoder platform. In Sec. 5 we develop and evaluate
a theoretical model of crowd interest in participating and
actual participation in competitions. In Sec. 6 we discuss
implications and limitations of the study, and we conclude
with some suggestions for future work.

2 BACKGROUND

There are a number of crowdsourcing platforms specifically
targeting software development (and related tasks such as
testing [107], [142], [154]). The largest is Topcoder [141],
which has over 1.2 million members. Crowdsourcing is some-
times considered similar to open source, but we argue there
are a number of key differences between these strategies. To
clearly distinguish these models, we position crowdsourcing
software development in relation to outsourcing and open-
sourcing, and offer a definition in Sec. 2.1. Sec. 2.2 identifies
a set of key concerns in crowdsourcing that are specific to
software development, and which provide a framework for
the case study presented in Sec. 4.

2.1 Positioning and Defining Crowdsourcing Software
Development

In earlier work, we positioned crowdsourcing as a separate
strategy from outsourcing and open source [130], [4]; Table 1
extends this positioning, which clearly delineates crowd-
sourcing as a unique form of outsourcing. We conclude this
section with our own definition.

There are numerous definitions for the term ‘crowdsourc-
ing’ [46], [60]. Howe presented the following definition [65]:

“Crowdsourcing is the act of taking a job traditionally
performed by a designated agent (usually an employee)
and outsourcing it to an undefined, generally large group
of people in the form of an open call.”

A second definition offered by Howe, referred to as the
‘sound-bite’ version, defines crowdsourcing as the “application
of Open Source principles to fields outside of software” [67].
Both definitions are ambiguous in the context of software
development. The phrase “outsourcing [...] to an undefined,
generally large group of people” also applies to the concept of
opensourcing [3], and some authors consider this a form of
crowdsourcing [108], [89]. Others argue that crowdsourcing
differs from open source (and thus, opensourcing), in that
the latter is a public good, whereas the former is focused on
extracting economic value [8]. A more significant distinction
between open source and crowdsourcing, is that the locus
of control in the former is essentially with the crowd, and
there is no overarching entity that coordinates the overall
effort [27]. Open source projects tend to be self-organizing
[49], and while a core team can set out a roadmap, there is no
“control” in that roadmap tasks are assigned to the project’s

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 3

TABLE 1: Characterization of crowdsourcing

Competition-based Crowdsourcing Opensourcing Outsourcing

Locus of
control

Customer prescribes the work to be done.
Limited interaction between customer
and workforce.

Control over an open source project lies
with core team, or benevolent dictator
in some projects. Meritocracy.

Customer decides project strategy
and makes major decisions as to
the work that is performed.

Nature of
participation

Competitive, possibly collaborative
depending on the platform

Collaborative, possibly independent and
differing agendas and interests

Collaborative, all teams serve the
same goal (though not always
without conflicts)

Nature of the
workforce

Usually individual developers who are
unknown to the customer, but known
to intermediary

Mix of individual open source
contributors and potentially
organizations that contribute.
Unknown workforce, but
relationships can develop over time.

Customer and supplier may build up
relationship over time through
regular/daily interaction. Supplier
is typically an organization, not an
individual.

Duration of
engagement

Short, ad-hoc commitment for duration of
competition

Typically prolonged commitment by
community developers

Project-specific, contractual
commitment. Mid-to long-term
commitment

Customer /
Initiator
motivation

Overcoming short-term lack of resources;
opportunity to tap into creativity of the
crowd (innovation); cost reduction

Driven by trend of commodification of
technology, cost sharing of
maintenance effort

Resource saving by exploiting lower
wages (in case of offshoring);
strategic decision if software
development not a core activity.

Developer /
Supplier
motivation

Extrinsic motivation (e.g. payments) or
delayed extrinsic motivations (career
prospective), internalized extrinsic
motivations, e.g. learning [143]

Both intrinsic motivation (e.g. fun, sense
of achievement, creative satisfaction)
and extrinsic motivation (money,
career prospective); increasingly
developers employed by companies

Exclusively extrinsic; supplier
provides services as a commercial
activity.

community. Even though many open source projects are
moving more towards formal organization [51], [56], the
locus of control remains largely with the crowd/open source
community.

The nature of participation also differs from opensourcing
and outsourcing. While different participation models exist,
a typical feature of many crowsourcing platforms is the
competition-based nature of participation. Topcoder is the
largest platform for crowdsourcing software development
and uses competitions, whereby a customer advertises a
task that is then taken on by members of the crowd. The
crowd member with the highest-rated submission wins the
competition and receives payment. Thus, the competitive
element and monetary incentive tend to preclude collabora-
tion. Howe characterized crowdsourcing as “outsourcing on
steroids” [66, p.46], suggesting that crowdsourcing is merely
a form of outsourcing. However, the duplication of work
being performed in parallel does not apply to outsourcing.
The nature of the workforce also sets crowdsourcing apart
as an outsourcing strategy with the crowd typically not
known to the customer. A “traditional” outsourcing scenario
is characterized by a contractual agreement with a specific
(and thus known) supplier before the work is performed—
over time, a relationship may build up between these two
parties. In a crowdsourcing scenario, the crowd plays the
role of “supplier” but it is not known in advance who will
submit, and therefore which member of the crowd will be
paid.

Other dimensions that set crowdsourcing apart from
opensourcing and outsourcing include the duration of en-
gagement, and the motivations for both the customer and the
‘supplier’ (i.e. developers that perform the work) (see Table 1).
Based on the characteristics in the table, our definition of
crowdsourced software development is the following:

The accomplishment of specified software development

tasks on behalf of an organization by a potentially large
and typically undefined group of external people with the
requisite specialist knowledge through an open call with
an extrinsic reward.

A variety of platforms exist for crowdsourcing software
development [97], and the model of participation can vary.
Topcoder, the largest platform in terms of number of mem-
bers, organizes tasks as competitions, but others (e.g. oDesk)
act as online marketplaces rather than “competitive arenas.”
Another variant is ‘microtasking’ [89], for which tasks tend
to be independent. In this article, we focus on competition-
based crowdsourcing.

2.2 Key Concerns in Crowdsourcing Software Develop-
ment
In this section we derive a set of key concerns for crowdsourc-
ing software development. While a few research frameworks
have been proposed, these tend to focus on crowdsourcing
as a general topic [45], [125], and not specifically to software
development. A framework helps define the boundaries of a
research area [123]. Drawing on the literature, we synthesized
a set of six key concerns which have particular relevance in
a software development context: (1) Task Decomposition,
(2) Coordination and Communication, (3) Planning and
Scheduling, (4) Quality Assurance, (5) Knowledge and
Intellectual Property, and (6) Motivation and Remuneration.
The remainder of Sec. 2.2 discusses these themes in detail.

2.2.1 Task Decomposition
A key issue in crowdsourcing is that work is decomposed
into a set of smaller tasks [72], [81], [85]. This issue is highly
relevant in outsourcing scenarios, and Herbsleb and Grinter
[58] reminded us of Parnas’ definition of a module as “a
responsibility assignment rather than a subprogram” [109]. What
is of particular importance, given the interdependencies in

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

software, is that different developers working on a project
know how their code fits into the resulting software prod-
uct, in terms of understanding interfaces and assumptions
made. Whereas in general-purpose crowdsourcing markets,
such as AMT, tasks are typically small and independent
[71], software development tasks are more complex and
interdependent. Therefore, a key challenge is to find an
appropriate decomposition of the software product into tasks
that can be effectively crowdsourced [90]. Kulkarni et al. [85]
termed this challenge the “workflow design problem.” More
efficient decompositions can lead to an increased parallelism
[90]. LaToza et al. [91] proposed a platform (“CrowdCode”)
to support the decomposition of programming work into
microtasks. Furthermore, in decomposing a software project,
there is a fine balance between providing a sufficiently
detailed specification for the task being crowdsourced on
the one hand, and stifling innovation with overly detailed
specifications on the other hand [86]. Tajedin and Nevo
[136] suggested that projects which can be decomposed
into small modules with clear requirements and limited
interdependencies are more likely to succeed.

2.2.2 Coordination and Communication
When crowdsourcing complex tasks, as is the case in software
development, there is a need for coordination [80]. Malone
and Crowston [96] defined coordination as “the process of
managing dependencies among activities.” As such, coordination
is concerned with directing efforts of individuals toward a
common and explicitly recognized goal, and linking different
parts of an organization together to achieve a set of tasks [84].
Although related to task decomposition discussed above,
coordination is specifically concerned with communication,
interdependencies and integrating various parts into a whole
[84], [90], [30]. This characterization of coordination seems to
assume that activities are conducted within an organization.
Clearly, in crowdsourcing, participants who submit ‘solu-
tions’ are independent agents and not part of the customer
organization—in other words, members of the crowdsourc-
ing platform cannot be assigned tasks. Instead, developers
self-select tasks to work on; several researchers have focused
on assisting the crowd by making recommendations based
on their prior record [99], [151]. Because different tasks may
be performed by many different workers, incompatibilities
may arise among provided solutions [90].

In a software engineering context, the need for different
developers to communicate is often related to Brooks’ Law
(“adding manpower to a late software project makes it later”),
in that the greater the number of people involved, the
greater the communication overhead [28]. Whether or not
this applies in a crowdsourcing context depends on whether
the work is done in a collaborative or competitive fashion
[156]. Several platforms including Topcoder organize tasks
as competitions; a winner (and runner-up) is selected based
on peer-review of the submissions by the community [13].

2.2.3 Planning and Scheduling
In the case of crowdsourcing, tasks are allocated to an
unknown workforce to complete, and as a result an orga-
nization relinquishes control of that particular work. This
may speed up development, as tasks can be completed in
parallel and independently of an organization’s in-house

workforce, particularly when payment is contingent on
timely delivery. One of the promises of crowdsourcing is to
shorten the product development cycle [25], [144]. In order
to achieve this, it is important that the desired schedule of a
crowdsourcing organization can be adhered to by the crowd.
For example, a core challenge is to ensure that sufficient
workers are available when needed [80]. While there may be
extensive expertise within the crowd, very specific domain
knowledge may not always be available at the moment it is
needed. Such circumstances introduce a level of uncertainty
as to whether or not the work will be completed on time
[156]. Furthermore, it is important to ensure that sufficient
time is given to developers, relating the issue of planning to
the size and scope of a task.

2.2.4 Quality Assurance
Another suggested benefit of crowdsourcing is the potential
for high quality submissions [22], [119], [23]. At the same
time, there is a risk of ‘noise’ if the majority of submissions
are of low quality [40], [72], making the task of assessing
submission quality more cumbersome. In a software devel-
opment context, the idea that input from a wide variety
of developers helps in finding and fixing defects is better
known as Linus’s Law, or, “given enough eyeballs, all bugs
are shallow” [111]. Linus’s Law refers specifically to testing
and debugging, which is only one type of activity that can
be crowdsourced on Topcoder, but development tasks also
benefit from having a wide variety of expertise within a
developer community. The challenge lies in attracting suffi-
cient contestants, under the assumption that given enough
contestants, the required expertise will be present. Whereas
AMT is non-transparent, in that contestants do not know
how many ‘competitors’ participate in a certain competition,
a platform such as Topcoder is fully transparent. Prior to
participating, contestants must register for a competition, and
registrants can see who else has registered. An experiment on
crowdsourcing microtasks suggests, however, that the greater
the number of competition participants, the lower the quality
of the work [78]. One characteristic sometimes ascribed to
the crowd is that it consists mostly of amateurs [120], thus
suggesting that the resulting quality of output may not be on
par with professional work. However, Brabham suggested
that this might be a myth [26].

Quality assurance is a key concern in software devel-
opment, whether the software is developed in-house or by
external parties. Of particular concern in crowdsourcing is
that a customer has almost no knowledge of the developers
that deliver the software, nor of the process that they might
follow, and therefore has no control over these aspects.
Crowd developers may “satisfice, minimizing the amount of
effort they expend” [80]. Also, there can be disagreement
about a solution; Kittur [82] distinguished ‘subjective’ tasks
for which there is no single right answer, and ‘objective’
tasks that can be easily verified. While software either
fulfills a set of requirements or not, disagreements may still
arise regarding certain functionality, the scope of a task, or
the (subjective) code quality of a submission. Furthermore,
quality attributes of submissions, such as performance and
maintainability of the code may still vary. One approach to
quality control is peer-review. At Topcoder, for example, ex-
perienced members of the community perform peer-reviews

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 5

of the submitted software. Similar to peer-reviews in open
source, such reviews are “truly independent” [49] given that
the peer-reviewers would usually not know the creator of the
work, and would therefore be unlikely to be either positively
or negatively biased. A certain level of ‘shepherding’ of the
crowd has also been suggested to improve quality [40], [85].
Kulkarni et al. [85] found that letting the crowd plan amongst
themselves without supervision by a requester was partially
successful, but that intervention by a requester during the
workflow could improve quality significantly. LaToza et al.
[88] experimented with two-phased design competitions,
allowing the crowd to “borrow” from initial submissions,
which resulted in improved design quality.

2.2.5 Knowledge and Intellectual Property
Software development is a knowledge-intensive activity, and
knowledge management is therefore an important topic
within the software engineering field [9], [17], [37]. A key
difference with traditional outsourcing is that there is no
single supplier that develops an in-depth understanding of
the problem domain of a crowdsourced project. Rather, the
continuous turnover of workers is an inherent characteristic
of crowdsourcing [35]. A high level of turnover may lead to
schedule and cost overruns [1], which in turn jeopardizes a
successful outcome of a competition.

One type of knowledge of particular concern in crowd-
sourcing software development tasks is intellectual property
(IP) [86], [149]. IP ‘leakage’ and the consequent loss of com-
petitive advantage is a challenge in adopting crowdsourcing
[44]. Organizations may be hesitant to provide too many
details on a certain task (i.e., module or component) that
is crowdsourced, yet sufficient detail in the specification is
necessary for developers in the crowd to understand what
the crowdsourcing organization is requesting. Another issue
that may arise is ownership of inventions [31], [73]. Tasks
on general purpose platforms such as AMT are arguably
relatively simple (requiring little human intelligence), and
thus IP concerns do not loom large. Software development,
however, is a highly creative process, and organizations will
want to ensure they can protect any potential inventions that
emerge with no confusion in relation to ownership. A third
issue can arise when workers submit solutions that are not
theirs [73], for example, if the solution contains open source
code with the restrictive GNU Public License (GPL) license.
These issues expose a customer to a variety of risks.

2.2.6 Motivation and Remuneration
A final consideration in crowdsourcing is that of motiva-
tion [32], [72], [157] and remuneration [38], [47], [64], [98],
[100], [110], [152]. Motivation is a topic that has received
considerable attention in the software engineering literature,
given that it is reported to be a major factor in project
success [12], [20]. Motivational factors can be external or
intrinsic. Extrinsic factors are conditions surrounding a
job [10], whereas intrinsic factors relate to the job itself
(e.g., having fun, gaining a sense of achievement). The
compensation of a certain crowdsourcing task should depend
on the expected duration and the complexity of a task.
Tasks can vary in complexity; as mentioned above, tasks
on Amazon Mechanical Turk are often called ‘micro-tasks,’
which can be as simple as tagging an image taking only a few

seconds. Clearly, software development tasks are complex
and time-consuming, and contestants will expect significant
remuneration, as opposed to the average cost of micro-tasks
on AMT, most of which are below one US dollar [71]. One
claimed benefit of crowdsourcing is that it can greatly reduce
cost [86]. Yet, determining an appropriate price is a key
challenge for crowdsourcing in general [47], [126], and also
for software development specifically [86], [98], [152].

3 RESEARCH DESIGN

The goal of our study is to develop an understanding of
crowdsourcing as an outsourcing strategy in the context of
software development. We adopted a multi-method research
approach in this study, consisting of two phases (see Fig. 1).
Using such a multi-method approach helps to ameliorate
the shortcomings of research strategies and is becoming
increasingly prevalent [54], [3], [2], [105], [33].

Phase I of our study is an exploratory qualitative industry
case study of a global company who used Topcoder to
crowdsource a software development project. Exploratory
case studies are appropriate to explore contemporary phe-
nomena that have not previously been researched [153],
[54]. Indeed, to the best of our knowledge, this is the
first qualitative case study that investigates crowdsourcing
from an enterprise customer perspective. (We note that
several published studies have investigated crowdsourcing
from different perspectives, or using quantitative methods—
these were discussed in Sec. 2.) The qualitative case study
helps “bring to life” the crowdsourcing phenomenon from
a customer’s perspective, something that is often missing
in purely quantitative analyses. While rich in context and
“thick narrative description,” case studies are limited in that
findings are not statistically generalizable to other settings.
However, the goal of “phenomenon-driven” exploratory case
studies is not to test theory—instead, such case studies are
highly appropriate for theoretical rather than statistical gen-
eralization and developing understanding of key concepts
[153], and benefit from exploiting “unusual research access”
[43]. Sec. 4 presents the results of this first phase.

Phase II complements the qualitative study of Phase I
through a theory development strategy combined with an
evaluative quantitative sample study. This phase builds on
some of the key findings of the case study as well as the
literature in a theory development approach, resulting in a
theoretical model consisting of a set of hypotheses, which
are evaluated on a large data set from the Topcoder platform
using Structural Equation Modeling (SEM). Sample studies
typically use cross-sectional data from a large number of
organizations, developers, or other units of analysis—often

Theory
Development

Sec. 5.1

Exploratory
Case Study

Sec. 4

Evaluation:
Sample Study

Sec. 5.2-5.3

Phase I:
Qualitative

Study

Phase II:
Quantitative

Study

Implications
Sec. 6

Fig. 1: Design of the two-phased study

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLE 2: Key strengths and weaknesses of employed re-
search strategies

Exploratory case
study

Sample study

Strengths Rich context to
facilitate
understanding

Findings are generalizable
(within certain boundaries
depending on the sample)

Facilitates study of
phenomena in a
natural setting

Suitable to evaluate
relationships between a
fixed number of variables

Weaknesses Findings not
statistically
generalizable

Not amenable for ‘discovery’
of concepts and
understanding

Inability to
manipulate
variables

Inflexible design; analyses
limited to available data;
once data is collected, the
research design does not
allow much change

these would be collected through a survey. In our study,
we collected data on 13,602 contests from the Topcoder
platform. Sample studies such as these facilitate the testing
of hypotheses on a limited number of variables. Such
fixed-design studies are useful to establish relationships,
which is not possible in exploratory qualitative case studies.
However, as Kaplan and Duchon pointed out, the “stripping
of context buys ‘objectivity’ and testability at the cost of a deeper
understanding of what actually is occurring” [74] (as cited by
Gable [54]). Sec. 5 reports the results of Phase II.

The strengths and weaknesses of the research strategies
employed in the two phases are summarized in Table 2
(please note this table is not exhaustive). The case study and
sample study are alternative and complementary strategies
rather than competing [36], [54]. The remainder of Sec. 3
presents the design of these two phases in more detail.

3.1 Phase I: Design of the Case Study
The goal of the case study was to investigate crowdsourcing
in a software development context from a crowdsourcing
customer perspective, to better understand this process and
the challenges associated with it. Case study research is
particularly well suited to study real-world phenomena that
cannot be studied separately from their context [153], and
has become increasingly popular as a method in software
engineering research [114] (cf. studies on distributed devel-
opment [58] and open source software development [106]).
This section outlines the setting (Sec. 3.1.1) and qualitative
methods (Sec. 3.1.2) that we employed in our industry case
study. To better understand and interpret the case study
findings, we include comparative quantitative analyses of
the Topcoder platform—Sec. 3.1.3 describes these analyses in
detail.

3.1.1 Setting
TechPlatform Inc. (TPI – a pseudonym) is a Fortune 500
company offering services and solutions in the cloud. The
company employs several tens of thousands of people
worldwide, with 400 sales offices, and partners in more
than 75 countries. In 2012, TPI sought to investigate the use
of crowdsourcing in its software development function at
the instigation of a senior executive.

The platform through which TPI crowdsourced its soft-
ware development is Topcoder, which is the largest software
development crowdsourcing platform and its community has
grown exponentially, from 50,000 to over 1.2 million members
between 2004 and 2017. Topcoder has an extremely impres-
sive customer list of blue chip companies. In promoting their
services, Topcoder suggests that customers can “Try more
often, Succeed more often, Spend Less” [138]. Topcoder offers
a platform which facilitates what is termed the three pillars
of Digital Creation: (1) front-end innovation; (2) software
development, and (3) algorithms and analytics [138]. For this
study, we focus on the software development pillar. Topcoder
accomplishes software development tasks for customers
through a series of competitions. The Topcoder community
breaks down customer projects into atomized units of work
that comprise the entire build, and these work units are
accomplished through competitive contests, whereby the
Topcoder community compete and submit solutions.

Initially, Topcoder employed Program Managers to over-
see customer projects and assist customers as a project
“liaison,” but several years ago the platform introduced a
“self-service” model to save costs [86]. This direct model
involves “co-pilots” within the Topcoder community to act
as an interface between customers and crowd developers,
and to help choose winners for the various competitions. Co-
pilots are experienced “elite” Topcoder community members
who have proven themselves in the past on the Topcoder
platform [23]. They manage the technical aspects of crafting
and running competitions through to successful delivery.
Topcoder suggests that the co-pilots can do the technical
heavy lifting and process management, allowing the cus-
tomer to be the “conductor of a world-wide talent pool” [139].

3.1.2 Qualitative Data Collection and Analysis
We conducted a number of face-to-face, semi-structured in-
terviews with key informants at TPI who were involved with
the Topcoder crowdsourcing initiative. These included the
Divisional CTO at the visited location, a software architect, a
software development manager, a program manager and a
project manager. Prior to the study, we developed a research
protocol [129]. The face-to-face interviews were conducted
during three half-day workshops on the premises of the
company. In addition, we conducted two teleconference
interviews each involving two TPI staff members who
played key roles in the crowdsourcing process. Interview
sessions lasted between one and two hours each. During
the research process, we sent several early drafts of this
paper to key participants of the study—a form of member
checking [114]. Member checking is a recommended tactic to
ensure that findings are indeed “experienced” or “felt by” the
participants of a study [94]. This also provided opportunities
to seek clarifications when necessary.

Data were analyzed using qualitative methods as de-
scribed by Seaman [124]. All interviews were transcribed,
resulting in 112 pages of text. The analysis consisted of
coding the transcripts using the six themes discussed in
Sec. 2.2 as seed categories or “analytical bins” [104]. The
derivation of these themes took place prior to data collection,
which represents a key difference with Grounded Theory
studies [133]. The transcripts were analyzed in parallel by
two authors and several analytical memos were written.

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 7

The memos established an audit trail of the analysis, and
facilitated a process of peer debriefing for the researchers. The
analysis of the interview transcripts from different interviews
represents triangulation among informants, which helps to
establish dependability of the findings. Besides drawing from
the interview data, we also drew from a number of internal
documents prepared by the company, which facilitated a
process of triangulation among data sources. These sources
included documentation on the crowdsourcing schedules,
project documentation that TPI stored on an internal wiki,
and contest information drawn from the Topcoder website.
Table 3 summarizes the data sources for the case study.

3.1.3 Quantitative Data Collection and Analysis

In order to contextualize the findings of the case study,
we analyzed data that we collected through Topcoder’s
public API. The goal of the quantitative analyses was to
contextualize the case study findings to better understand
whether the TPI contests were ‘atypical’ or exceptional in
terms of the technologies used, range of reward prizes, and
duration. Thus, the quantitative analyses provide compara-
tive background information. We collected all the publicly
available data in November 2016. All data were stored in
a SQLite database, and analyzed with Python and the R
statistical package.

We filtered the data based on a few criteria. First, we
removed the challenges with a first prize of less than 100
US dollars. The rationale for this is that we considered
these challenges as trivial, and not representative of the
competitions that companies normally post. We found that
these challenges usually had very low monetary rewards
(between US $0.00-1.00 prize). During our analysis, we
identified a user named “analysis.” This user made a total of
4,697 submissions, which is ten times as many as the second
most active user, and represents 7.3% of the total number
of submissions. Furthermore, whenever this user submitted,
no other submissions were made by anyone else. As these
competitions are not representative, we decided to remove
these. Finally, we only considered competitions that had
successfully finished, which led to a further reduction of the
data set. Our final Topcoder platform sample contained data
on 13,602 competitions. During our analysis, we encountered
a small inconsistency in the extracted data. Approximately
1.5% of the (distinct) registrants registered or participated in
a competition before registering as a member of the platform.
We adjusted the registration date as the date of first activity in

TABLE 3: Case study data sources

Interviews during three
site visits and two
teleconference calls

Divisional CTO
Software architect
Software development manager
Program manager
Project manager

Company
documentation

Contest schedule and status
documentation

Internal TPI Wiki documentation
Internal report on key challenges in the

crowdsourcing project

Data from
crowdsourcing platform

Contest information from Topcoder
platform

the system for these registrants. Given that this only affected
a very small percentage, we retained these entries in our data
set.

3.2 Phase II: A Theoretical Model of Crowdsourcing
Software Development

In the second phase, we drew from the extant literature
on crowdsourcing, and the findings from the first phase
to develop a set of hypotheses which are integrated into
a single theoretical model to increase our understanding
of crowdsourcing software development. The model is
evaluated using Structural Equation Modeling (SEM) [69]
(discussed in detail below). SEM is a powerful statistical
approach but has been rarely used in software engineering
studies to date. Notable exceptions are a study on quality,
effort, and governance in open source [29], and a study
of teamwork quality and project success [95]. Therefore,
one of this article’s contributions is to illustrate the SEM
approach in developing and evaluating a theoretical model
on a phenomenon within the software engineering domain.

SEM is a second-generation statistical approach. In so-
called first-generation statistical methods including multiple
regression and ANOVA, parameters are typically estimated
using Ordinary Least Squares (OLS). The goal of OLS is to
find coefficients that minimize the average squared distance
between the data points and a regression line [69]. While the
overall goal of SEM is similar, namely to identify coefficients
that represent a best-fit with the observed data, what is used
as “observed data” are the observed covariances between
variables and their variances [69]. For this reason, this type
of SEM is sometimes referred to as CBSEM (covariance-
based SEM), to distinguish it from Partial Least Squares (PLS)
SEM. Instead of OLS, the default algorithm for estimating
coefficients in SEM is Maximum Likelihood (ML); in our
study we use a robust variant of ML (Sec. 5.2 provides
further details).

In SEM, the researcher specifies a theoretical (hypothe-
sized) model by defining a number of interrelated hypothe-
ses; based on this, a variance–covariance matrix is generated.
A second variance–covariance matrix is generated based
on a set of sample data. The goal of SEM, then, is to test
whether the two matrices are different: if they are, then
the sample data do not support the researcher’s theoretical
model. Consequently, a non-statistically significant difference
(using χ2) between the two matrices indicates that the
theoretical model fits the empirical observations. Further
details on the mechanisms of SEM are beyond the scope of
this article, but we refer interested readers to several excellent
reference works that are available [121], [69], [83].

All coefficients in the structural equation model are
estimated simultaneously. Thus, the significance and strength
of relationships in the structural equation model should be
assessed in the context of the model as a whole. Evaluating
the hypothesized relationships is only valid when the model
itself represents a good fit, that is, the theoretical model is
not significantly different from the observed model.

The structural equation model was developed by defining
a set of constructs and relationships that comprise our theory
[131]. Specifically, we focused on a number of salient concepts
identified in the case study, including contest reward, contest

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

duration, and the degree of “parallelization” of contests. We
operationalized our constructs using singular metrics. In that
sense, our model is a path model [121, p. 5], which is one type
of structural equation model. A path model is essentially a
regression model; however, regression is limited to a single
dependent variable that is predicted or explained by one or
more independent variables. A path model does not have
this constraint and thus allows for more complex models.

The structural equation model was implemented using
the lavaan library for the statistical package R, version 0.5-23
[113]. The structural equation model was then evaluated
using a set of fit criteria. In particular, the theoretical model
is evaluated using three types of criteria [121]:

• Measures of model fit, such as the Root Mean Square
Error of Approximation (RMSEA);

• Statistical significance of individual parameter esti-
mates for the model’s paths;

• Direction and magnitude of parameter estimates; in
particular, evaluating whether or not the direction
(indicated by the parameter’s sign) makes sense.

A more detailed presentation and discussion of the
structural equation model follows in Sec. 5, but first we
present our exploratory case study in Sec. 4.

4 FINDINGS FROM THE CASE STUDY

The application which TPI selected for crowdsourcing was
Titan (a pseudonym), a web application to be used by
TPI field engineers when migrating from one platform to
another as part of a customer engagement. Titan is used to
support IT departments during the migration of machine
contents from one machine to another and consists of
several components, including legacy components that were
not replaced. The latter implement the core functionality
for migration operations. The part that was crowdsourced
is therefore best characterized as a front-end information
system which would have to be integrated with the legacy
components. Within TPI a technical decision was taken that
future development should use HTML5, and this was the
technology chosen for the front end, which was replacing
the current desktop application. TPI did not have extensive
experience of HTML5 in-house and were therefore very
keen to innovate by leveraging HTML5 expertise from the
large global Topcoder community. Table 4 lists the Top 10
most used technologies on the Topcoder platform, which
lists HTML5 as the seventh most-used. The table shows
several other languages and libraries primarily used for the
web such as JavaScript, CSS and Angular.js. TPI’s decision
to use crowdsourcing for front-end development and to
seek HTML5 expertise is therefore quite justifiable given the
characteristics of the Topcoder platform.

Sections 4.1 to 4.6 draw on the themes presented in Sec. 2
to discuss the key findings of the TPI case study. For each
theme, we provide information from the Topcoder platform
sample data set to put the case study findings in context.
Sec. 4.7 summarizes the case study findings.

4.1 Task Decomposition
The choice as to what parts of the product were appropriate
for crowdsourcing was not entirely trivial for TPI. Firstly, the

TABLE 4: Top 10 most popular technologies on the Topcoder
platform

Rank Technology Frequency

1 Java 4,019
2 JavaScript 3,371
3 HTML 2,333
4 CSS 2,181
5 Node.js 1,234
6 Angular.js 1,047
7 HTML5 1,031
8 iOS 772
9 J2EE 653
10 C# 479

decision as to what work to crowdsource was primarily
based on internal resources (or lack thereof). Secondly,
code and executables which were self-contained (without
interdependencies) would be easier to merge and hence more
suitable for crowdsourcing. If code from Topcoder had to
be directly merged with code being developed in-house,
this would be more problematic. The final factor taken into
account was the amount of domain knowledge required for a
certain task. Tasks that required the least amount of domain
knowledge were deemed most suitable for crowdsourcing.

In order to minimize the modifications that would
need to be made to the Topcoder code after delivery, TPI
made the header and footer browser code available to
crowd developers. This was to ensure this standard format
would be maintained by all crowd developers. For the
Titan application, TPI’s policy was to only use HTML5
where a feature was supported by all browser platforms
to increase portability. Initially, there was an expectation that
the Topcoder community would deliver some innovative
HTML5 code. However, the TPI requirement that HTML5
features would have to be supported by all browser platforms
resulted in a very small proportion of all potential HTML5
features being available for use by crowd developers. The
expected innovation from the “crowd” was thus precluded
by the TPI specification.

The TPI project consisted of 44 successful competitions
which fell into different categories. Table 5 lists the numbers
of competitions per category, as well as how the competitions
in our overall Topcoder platform sample were distributed.

TABLE 5: Competition types and frequency

Competition type Case study Topcoder sample

Architecture 6 791
Assembly Competition 23 3,426
Bug Hunt – 536
Code – 1,581
Conceptualization – 246
Content creation – 104
Copilot posting 1 514
Design – 1,010
Development – 1,042
First2Finish – 2,477
Specification – 237
Test Scenarios – 207
Test suites 7 124
UI Prototype 7 1,212
Other – 95

Total 44 13,602

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 9

For example, the most prevalent category in the sample is
“Assembly Competition” with 3,426 competitions, represent-
ing just over 25%.

In order to minimize integration effort later on, TPI
sought to have crowd developers work with a real back-
end core as opposed to stub services. However, by the time
development with Topcoder started, the core was not ready
and stubs were used during most development competitions.
Consequently, this integration effort was pushed back to a
later stage in the development process, which was not ideal.

For traditional in-house development, TPI developers
had internalized a great deal of information in relation to
coding standards and templates, and technical specifications.
However, many of the coding standards and templates were
documented informally and not stored centrally on the
internal wiki installation. This scattering of information and
URLs prevented it from being packaged as a deliverable for
crowd developers. A great deal of extra work was necessary
to ensure that this information was made explicit in the
requirements specification for the external crowd developers.
A total of 1,061 pages of specification were written by TPI
for their 44 Topcoder competitions. This contrasted with
the belief that almost no extra documentation would have
needed to be written if the development was done in-house.
The architect liaising with Topcoder described the situation
as follows:

“It feels like we’ve produced a million specification
documents, but obviously we haven’t. The way we do
specifications for Topcoder is entirely different to how we
do them internally.”

4.2 Coordination and Communication
Table 6 lists the distinct number of registrants and submitters
for both the case study and our overall Topcoder platform
sample. The table shows that the “crowd” registered for all
TPI competitions consists of 182 distinct registrants, though
there were only 37 distinct submitters. We observe that this
low percentage of registrants who eventually submit is fairly
consistent with the overall platform level. The number of
distinct submitters at 4,516 represents a relatively small
portion of the number of developers who registered for
at least one of the 13,602 competitions in our data set. Our
data set includes only the 20,747 Topcoder members who
were involved in the 13,602 competitions in our data set. We
cannot draw conclusions about the other registered members
on Topcoder as we found no activity to report in our data
set.

The Topcoder competition-based approach effectively
represents a waterfall approach to software development.
TPI, however, were using an agile development process
based on Scrum. Combining these different waterfall and
agile development processes was problematic. Development
contributions from Topcoder had to be assigned to a Scrum
team within TPI, and crowd contributions had to be subse-
quently injected into the appropriate sprints. A TPI architect
summarized the central problem as follows:

“We are an agile shop and we are used to changing our
minds. This can be a problem with Topcoder when we
tell them one thing in one competition, but have changed
our mind in the next competition.”

There were also quite a number of layers in the engagement
model between Topcoder and TPI. Firstly at the Topcoder
end, a co-pilot liaised between the crowd developer com-
munity on the one hand and TPI personnel on the other
hand. Furthermore, a Topcoder platform specialist was
involved in liaising with TPI and overseeing the co-pilot
and recommending changes at that level.

Within TPI, the choice of personnel to interact with
the Topcoder co-pilot was a difficult decision. While Top-
coder would prefer a single point of contact within the
customer organization, there were significant management
and technical issues involved, thus requiring a great deal
of dedicated resources from TPI on both the management
and technical end, some at a very senior (and thus costly)
level. A senior Topcoder Program Manager was appointed
within TPI specifically for all programs being developed with
Topcoder. This program manager ensured that management
were aware of any scheduling issues that could arise, for
example, and also ensured that training was provided. A
specific Titan Program Manager was also appointed in TPI,
and inevitably there was some overlap between this role and
the previous one.

On the technical side, a Senior Architect was allocated at
TPI to coordinate the Topcoder development for the Titan
project. This role of Topcoder liaison who had daily contact
with the Topcoder community was considered to be problem-
atic within TPI, given the considerable pressure to answer
questions in a timely fashion. There was some concern within
TPI about allocating such a senior resource to this liaison
role given the significant cost. The Software Development
Manager described the situation from a resource allocation
perspective:

“To have a single point of contact for the project on
our side, the contact needs to have both technical skills
and project management skills to be able to manage the
requirements, competitions and questions from Topcoder
technical community members. It used a very valuable
resource and in this project they had to use up some time
from other developers to address all the questions coming
back from Topcoder.”

At the initial stage, the liaison role involved answering
questions on the Topcoder Forums. There was significant
time pressure involved since a time penalty applied if forum
questions were not answered in a timely fashion by TPI,
which would mean that the original committed delivery
date for crowd development would be pushed out. Also,
it was quite tedious to answer questions using the narrow
communication channel of the chat forum. The architect
estimated the time answering questions on the Topcoder
Forums to be at least twice as long as would be the case with
internal development:

“There are a lot more questions than with internal devel-
opment. However, there is no informal communication

TABLE 6: Distinct registrants and submitters

Case study Topcoder sample

Distinct registrants 182 20,747
Distinct submitters 37 4,516
Submission rate 20.3% 16.3%

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

mechanism. You cannot yell at the person in the next
cubicle and get the answer very quickly.”

Another structural coordination issue arose in that TPI
allocate architects to products, and the desire to get the
Topcoder project completed resulted in two additional
architects working on the project. This was seen as a sub-
optimal resource allocation, given that the architect role was
a somewhat scarce and extremely valuable resource.

TPI also had a so-called “tactical” Scrum team that could
be assigned to different tasks more flexibly in that they were
not formally assigned to projects on a long-term basis, as
was the case with the normal Scrum teams at TPI. This
tactical team could deal with crowd contributions when
they arrived. However, in some cases a normal Scrum team
would also be assigned to the project, and in these cases
involvement of the tactical Scrum team would not then be
necessary. Overall, there was significant extra coordination
overhead and duplication of work on the project in that two
teams had to become familiar with the project context and
content, and related deliverables. These two teams also had
to communicate with each other. To address this issue, TPI
dropped the use of the tactical team, and instead scheduled
time in the project sprints to integrate the deliveries from the
crowd.

In contrast to distributed development which involves
other developers from the same organization, the only
relationship which tended to build over time was that with
the Topcoder co-pilot. There was no real opportunity to
build up a relationship with any of the crowd developers, as
interaction was filtered through a number of layers.

4.3 Planning and Scheduling

The Titan project comprised more than fifty Topcoder com-
petitions, of which 44 were successfully completed. From
the customer’s perspective, these competitions involved a
total of 695 calendar days during a period of approximately
eight months (for each competition, we counted the number
of days for all competitions, some of which were run in
parallel, yielding a grand total of 695). The competitions had
an average duration of just over 13 days, which includes
the time needed for review of the submissions. The shortest
completion time for a competition was four days while the
longest competition took 32 days to complete. The actual
competition duration from the developer’s perspective was
considerably shorter, as this would be the difference between
the registration deadline and the submission deadline. Fig. 2
presents the distribution of competition duration in days for
the Topcoder platform sample, with a major peak around a
week, and a smaller peak around one month. The average
duration for just the TPI competitions was 5 days and 17
hours (σ = 21h), which is very close to the mode of the
duration (see Fig. 2). This is not significantly shorter than
the average of 9 days and 7 hours for the whole sample
(Mann-Whitney U, p = 0.106).

Some of the specific timings and the granularity of
possible decisions for crowd development were somewhat
problematic for TPI. For example, Topcoder allows a cus-
tomer five days to accept or reject a deliverable. According
to the architect, this was often not long enough to analyze
and fully test the deliverable, and it was difficult to get these

reviews done on time internally. A further difficulty arose
in that deliverables must be accepted as a whole, or rejected
as a whole, with no middle ground, even for submissions
with minor defects. It would be better from TPI’s point
of view if more flexible granularity was possible in that
certain parts of deliverables could be accepted and partial
payment made for these acceptable parts. Because TPI did
not want to deter crowd developers from bidding on future
competitions, there was a tendency to accept all submissions,
even those with some defects. There was an additional
warranty period of 30 days, but integrating fixes under this
warranty would pose considerable overhead in receiving,
checking and integrating new code with an active code base
which would more than likely have undergone significant
further modification internally within TPI in the interim.
Furthermore, when issues were escalated within the 30-day
warranty, the resolutions were generally not satisfactory to
TPI. Overall, a single longer initial acceptance period of 15
days would probably be more beneficial to TPI than the two
current periods of five and 30 days, respectively.

Another issue related to planning and scheduling arose
when TPI had to wait for a competition to finish, while the
main application was evolving, causing possible integration
issues. TPI’s schedule was also jeopardized as two of its
competitions failed due to a lack of submissions.1 These
competitions had to be rescheduled thus causing a delay in
TPI’s schedule. When rescheduled, there was only a single
submission in one case, despite more than 30 registrants
indicating an interest. As can be seen from Table 6 above, this
seeming discrepancy between registering for a competition
and actually submitting is not uncommon. Fig. 3 presents a
scatter-plot of the number of registrants versus the number
of submissions for the competitions in our sample.

As already discussed, TPI perceived the need to run
multiple competitions in parallel so as to shorten the de-
velopment time. However, this clearly had implications for
managing and coordinating the handling of submissions by
TPI. For example, there were interdependencies between the
deliverables produced in the various competitions. This also
led to duplication of functionality in some of the code.

Fig. 4 presents the number of active challenges for TPI as
well as the total number of active challenges on the Topcoder
platform. TPI held several competitions in parallel, up to
five competitions during August 2013. The total number
of active challenges on Topcoder varied between 20 and
approximately 75 during the same time period. Running

1. The reasons are unknown, which was in fact one of the motiva-
tions for conducting the quantitative comparison with other Topcoder
competitions in the first place.

0 10 20 30 40

0
20

00
40

00

Fig. 2: Distribution of competition duration in days for the Top-
coder platform sample (x-axis trimmed to improve readability)

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 11

0 10 20 30 40 50
Number of Registrants

0

5

10

15

20

25

30

35
N

um
be

r o
f S

ub
m

is
si

on
s

Fig. 3: Correlation between registrants and submissions for
the Topcoder platform sample

Mar 2013 Apr 2013 May 2013 Jun 2013 Jul 2013 Aug 2013 Sep 2013
Time

0
1
2
3
4
5

N
o.

 a
ct

iv
e

co
nt

es
ts

(a) TPI Project

Mar 2013 Apr 2013 May 2013 Jun 2013 Jul 2013 Aug 2013 Sep 2013
Time

0

10

20

30

40

50

60

70

80

N
o.

 a
ct

iv
e

co
nt

es
ts

(b) All Projects

Fig. 4: Number of active (parallel) TPI challenges during TPI’s
project and all challenges during the same period

competitions in parallel should allow a customer to get work
done more quickly, but may ‘dilute’ the available workforce
for a specific competition as developers may have to choose
which competition to work on at any given time.

4.4 Quality Assurance
Much research in software engineering has focused on
identifying and eliminating errors as early as possible in
the development process, on the well established basis that
errors cost exponentially more to rectify the later they are
found in the development cycle [20]. However, the structure
of the Topcoder development process made it difficult to
preserve this, as it shifted QA issues towards the back-end of
the development process, after coding had been completed.
As the Development Manager expressed it:

“Crowdsourcing focuses on requirements and relaxes
the quality process at the onset of the project, so now
all the emphasis on managing the quality comes at the
QA cycles later in the project, and that tends to be more
expensive.”

There was also a problem with lack of continuity. Crowd
developers do not remain idle at the end of competitions, and
may thus not be available for subsequent TPI competitions.
In fact, TPI experienced problems with bugs which had previ-
ously been identified and fixed, but were re-introduced after
the code went back for further development with the crowd,
as inevitably different developers would work on the code
and no organizational learning in the usual sense was taking
place. This added to the critical perception expressed by TPI’s
Divisional CTO, when he characterized the interaction with
crowd developers as “a fleeting relationship”:

“there is a limited amount of carry-over knowledge. We
will get a few contestants that will participate in multiple
contests, but they won’t build up domain knowledge in
the way that an internal person would.”

Given that the combination of technical and specific
domain expertise was considered by TPI to be quite rare
(based on experience in recruiting developers), TPI took
some initiatives to improve the quality of crowdsourced
contributions. For example, a virtual machine with a sample
core application was made available as an image that could
easily be downloaded and run. This was used by the crowd
development community both in development and as a final
test or demonstrator for code they developed. Prior to this,
code testing was done with stubbed-out service calls to the
back-end, but there was a concern within TPI that code
delivered by crowd developers would not necessarily run
smoothly when connected fully to the back-end. When the
code for the initial HTML5 high-level panel applications
was produced by the crowd, there were some quality issues,
for example, the same header was repeated in every file.
TPI took this code and further developed it to a “Gold
Standard,” at the level required by TPI. This was delivered
back to the Topcoder community as a template for future
development. This tactic was extended to prepare sample
code for a web application that could act as a template for the
Topcoder community. This included a parent Project Object
Model (build script), source code compliant with all TPI code
standards, unit and integration tests, automation tests, and
instructions for deployment and setup.

Once a competition’s submission deadline has passed, all
submissions are reviewed and given a rating between zero
and 100. Fig. 5 shows the distributions of the mean score
(of all submissions) and the maximum score for (a) all TPI
competitions, and (b) all competitions in our overall sample.
Fig. 5a shows that the maximum score of most competitions
is 100, with a limited tail down to approximately scores of 75.
Only three of TPI’s 44 competitions resulted in submissions
that scored 100, with the remaining competitions resulting
in submissions with scores between 78 and 100. When
comparing the mean scores, TPI’s competitions do not differ
significantly from our overall sample (Mann-Whitney U test,
p = .2335), though they do in terms of maximum score
(Mann-Whitney U test, p = .0005), with the scores of TPI’s
competitions varying to a higher degree.

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

0 20 40 60 80 100
Mean score

0

1

2

3

4

60 65 70 75 80 85 90 95 100
Max. score

0

1

2

3

4

(a) TPI competitions (N=44)

0 20 40 60 80 100
Mean score

0
200
400
600
800

1000
1200

60 65 70 75 80 85 90 95 100
Max. score

0
1000
2000
3000
4000
5000

(b) All competitions (N=13,602)

Fig. 5: Comparison of mean (left) and maximum (right) scores
for TPI challenges and all challenges. The scale of figures on
the right are trimmed to improve readability.

4.5 Knowledge and Intellectual Property
The “fleeting relationship” mentioned earlier also has con-
sequences for knowledge management and IP. Given that
there is no single supplier as would be the case in a
traditional outsourcing scenario, any intellectual property
relating to specifications and product knowledge is more
widely exposed simply by virtue of its being viewed by the
‘crowd’ of potential developers. Specifications are typically
not available to Topcoder members unless they register for a
competition. Table 7 shows the total number of registrants,
and the total number of submissions per competition type.
The table shows that there were considerable numbers of
potential participants (each of whom would have access
to the competition specifications), but that the number of
submissions was significantly lower—almost 90% of those
registered for a competition did not actually submit anything
to that competition. In other words, making detailed product
and specification information available, which is necessary
to achieve the benefit of tapping into the crowd’s wisdom
and creativity, seems (in this case) not to be as fruitful as one
would hope given the limited numbers of submissions.

TPI chose a pseudonym to disguise their participation on
the Topcoder platform. This was to obfuscate the fact that
the work was for TPI, who are a major global player in the
ICT sector. TPI suspected that developers from competing
organizations might be working as crowd developers in their
spare time. TPI took advantage of the standard Competition

TABLE 7: Total number of competitions per type, registrations,
submissions, unique registrations and unique developers, and
average submission rates for TPI contests

Type No.
comp.

Total
reg.

Total
subm.

Unique
registr.

Unique
devel.

Subm.
rate

Co-pilot 1 13 6 13 6 46%
UI
prototype

7 99 22 40 9 22.2%

Architecture 6 90 12 35 5 13.3%
Assembly 23 610 51 119 12 8.4%
Test Suite 7 92 15 44 5 16.3%

Total 44 904 106 182 37 11.7%

Confidentiality Agreement (CCA) which Topcoder use with
their development community. TPI will not do business
with certain countries, for example, and this can be policed
through the CCA which identifies the home location of crowd
developers. However, TPI were still concerned about the
extent to which proprietary information may be exposed in
competitions.

Fig. 6 lists the Top 10 countries based on Topcoder
membership and submissions, that is, which countries
host crowd developers that make most submissions. Most
Topcoder members originate from India, China, and the
USA, with most submissions coming from the same three
countries, though in a different order with most submissions
originating in China. These findings correspond to a study
by Dubey et al. [41], though based on a smaller sample
of competitions, they found that most crowd developers
originate from India, with China in second place. Clearly,
a ban on developers from some of these countries would
limit the potential contribution that can be gained from the
Topcoder platform.

4.6 Motivation and Remuneration

Given a potential development community of well over one
million members, Topcoder would claim to have broad and
deep enough expertise to ensure a healthy competition rate.
However, TPI had to cancel some competitions due to a
lack of submissions. Furthermore, 10 of the 44 competitions
attracted only a single submission. The fact that TPI used a
pseudonym may have been significant in that well known
companies seem to attract crowd developers more readily
and TPI would certainly be a very well known company
globally. One motivation for crowd developers to participate
is to learn new skills, but also to improve their track record—
the ability to list working with blue chip companies is likely
perceived to be more attractive than anonymous companies
that use pseudonyms.

To investigate a potential cause of the lack of submissions,
we also analyzed the number of active members in the crowd.
Defining what an ‘active’ member is, is not straightforward.
Fig. 7 presents data using a number of threshold values.
First, we defined it as all members that have registered
for a competition at a given time. Using this definition
the size of the active crowd varies between 150 and 700
members. A different definition is to count those members
who have submitted in a given past period—we calculated
this using two different time frames: 30 and 60 days. Using
the most stringent definition, counting only those members
who submitted in the last month, the size of the (active)
crowd varies between approximately 20 and just over 1,000.

Fig. 8 plots the cumulative proportion of submissions
against the most active developers (in decreasing order).
This analysis only considers members that have submitted
at least once—our data set includes 4,516 such members.
The figure shows that approximately 80% of the submissions
were submitted by the Top 15% most active developers,
while 50% made approximately 95% of the submissions.
These numbers are somewhat reminiscent of the results of a
study of the open source Apache webserver by Mockus et al.
[106]. Mockus et al. hypothesized that approximately 80% of
development in open source projects was done by the Top 15

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 13

0 200 400 600 800 1000
Members per country

India
China

USA
Canada
Russia

Ukraine
Poland

Indonesia
Egypt

UK
0 2000 4000 6000 8000 10000 12000 14000

Submissions per country

China
India
USA

Canada
Russia

Indonesia
Ukraine

Romania
Philippines

Sri Lanka

Fig. 6: Top 10 Countries based on number of TC members and origin of submissions

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Time

10
2

10
3

Ac
tiv

e
U

se
rs

 (l
og

(1
0)

)

Users with active challenge registrations
Submitted in last 60 days
Submitted in last 30 days

Fig. 7: Size of the active crowd based on competition registrations, or submitted in the last 30 and 60 days

contributors. Those findings pertained to one specific open
source project, which differs from our study as our data set
comprises over 13,600 competitions. Thus, while Topcoder
has over one million registered developers who potentially
could perform work, our study suggests that many of them
do actively participate.

The Topcoder pricing structure was quite elaborate. At
the top level, there was a monthly platform fee to Topcoder.

0 20 40 60 80 100
Percentage of developers

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 s

ub
m

is
si

on
s

Fig. 8: Cumulative distribution of submissions by developers.
Approximately 80% of submissions are made by the Top 15%
most active developers

For TPI this was a monthly fee of $30,000. This allowed
access to the Topcoder component catalog containing more
than 1,500 software solutions. Topcoder estimates that ap-
proximately 60% of client projects can be solved through
reusing components from this catalog. However, TPI were
not in a position to leverage this catalog, since a lot of their
IT product stack has already been developed, as the software
development manager explained:

“We have our technology stack built and a lot of our
software is already written for that. So the Topcoder
catalog is not much use to us. There’s no real bang for
the buck for us there.”

The co-pilot who was the principal liaison between Topcoder
and TPI typically cost $600 per competition. There was an
initial specification review before the competition began, and
this cost $50. The individual competition pricing was also
quite complex. In the case of TPI, first prizes for competitions
ranged from $200 up to $2,400, depending on the size and
complexity of a competition. A second prize of 50% of the
first prize was paid to the runner up in each competition,
but this prize would only be paid if the quality rating of the
submission was at least 75 out of 100. If this score were less
than 75, the runner-up would only receive Digital Run points
(discussed below). There was also a Reliability Bonus which
was paid to the winning submission. The calculation of this
bonus is quite detailed, but basically it can be up to 20% of
the first prize, depending on the past successful track record
of the winning contestant (i.e., his/her reliability—in terms
of whether a contestant actually submits to a competition
having registered for it). In addition, there was a cost of 45%
of the first prize to support the Topcoder Digital Run, an

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

First Prize distribution (TPI)
0 1000 2000 3000 4000

0
5

10
15

First Prize distribution (all)
0 1000 2000 3000 4000

0
10

00
25

00

Fig. 9: Distribution of First Prize amount (bin size $300; x-axes
trimmed to improve readability)

initiative whereby Topcoder share money with the Topcoder
development community based on the monthly competition
revenue and proportional to the number of points that crowd
developers have amassed in competitions. The Digital Run
is an additional mechanism to motivate potential contestants
to participate even if they assess their chance of winning
to be low. Following the competitions, reviewers from the
crowd community evaluated submissions at an average cost
of approximately $800. Finally, Topcoder charged a 100%
commission equal to the total development costs above.
Overall, the total average cost per competition for TPI was
approximately $7,200 (excluding the monthly platform fee).

Fig. 9 presents a distribution of the First Prize reward
(to improve readability, we set the histogram’s bin size to
$300). (As indicated above, many other costs are derived as a
percentage of the First Prize amount, e.g. the prize money for
the Second Prize runner-up is 50% of the First Prize amount).

The remuneration offered does not follow a continu-
ous distribution, but tends to be concentrated in “round”
numbers. For example, we found peaks at the $500, $750,
and $1,000 marks, with $1,000 being the most common
amount being offered. The sum of First Prizes of all TPI’s
competitions was US $51,425. When including the additional
expenses (to cover Second Prize, Digital Run, Reliability
Bonus, etc.), the total cost to run these competitions was quite
significant. A further significant additional cost arises in the
extra senior development personnel that were allocated to the
project. We conducted a χ2 test to evaluate the similarity of
the distribution of the First Prizes of TPI contests versus the
Topcoder sample; in this case, we found that the distribution
of the first prizes is not similar to the distribution of the
larger Topcoder sample (p < 0.001).

4.7 Summary of the Case Study Findings

The goal of the case study was to gain greater insight
into a customer’s perspective on crowdsourcing software
development, as this aspect had not featured in previous
research. Table 8 summarizes the key findings.

TABLE 8: Summary of key findings of the case study

Theme Key Findings

Task
Decomposition

44 successful competitions primarily for
front-end development, using HTML5
which is the 7th most popular technology in
our sample of competitions.

Coordination &
Communication

Several layers of communication, making
communication very cumbersome.
Answering questions was found to be very
time-consuming and required senior (and
thus costly) staff members. TPI’s
competitions attracted over 900 registrants
in total.

Planning &
Scheduling

Challenging to finish internal reviews of
submissions in time. Tendency to accept
submissions so as not to deter developers in
future competitions. Up to 5 TPI
competitions running in parallel, and 20-75
projects competitions in parallel in our
sample during the same period.

Quality
Assurance

Development process focuses strongly on
requirements, leaving QA activities until
later. Lack of continuity (fleeting
relationship) prevents crowd developers
from building up domain knowledge and
experience in the project.

Knowledge &
Intellectual
Property

Competitions may attract considerable interest
from the crowd, but this does not
automatically lead to many submissions.
However, 1,061 pages of detailed
specification were available to all registrants.

Motivation &
Remuneration

Rewards offered in TPI competitions are
representative of platform sample. Despite
considerable interest (number of
registrations), the actual participation rate is
limited. The size of the active crowd is very
small in practice (37 unique developers).

In comparison with traditional development in-house,
the TPI Program Manager was of the opinion that crowd
development was less effective due to the lack of domain
knowledge of the crowd and the indirect nature of the
communication with developers. The primary reason for
working with Topcoder was the need to get development
done more rapidly than would be possible with the existing
level of internal resources. However, given the planning and
schedule statistics above, it is clear that the expectations
in relation to a more rapid development time-frame were
not fully realized. While it is not possible to quantify the
mismatch between expectations and realization, overall, the
TPI staff members involved in the Titan project were not
convinced that crowdsourcing the project had been effective
in terms of their initial goal, namely to speed up development
and leverage external expertise.

In our presentation above, we included analyses of a
large set of 13,602 competitions from the Topcoder platform
in order to contextualize the case study findings. Based
on this comparison, we conclude that the case study can
be considered a typical and representative case—that is, it
used a very popular technology (HTML5, ranking 7th most
popular technology—see Fig. 4), offered rewards that seem
inline with other competitions, and did not stand out in
terms of the size of the crowd involved in TPI’s project
when compared to projects in general. It is important to

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 15

understand these contextual factors, as perhaps they could
help explain why TPI’s experiences were disappointing. For
example, if TPI offered rewards that were systematically
lower than other competitions, one could suggest that as a
potential explanation for the limited crowd participation in
TPI’s competitions. However, the TPI competitions did not
seem to differ in significant ways from other competitions.
In order to gain a better understanding of crowdsourcing
software, we developed a theoretical model, drawing on
the key insights generated through the case study. This is
presented next.

5 THEORY DEVELOPMENT AND EVALUATION

Based on the case study findings and the extant literature
on crowdsourcing, in this section we present our theory
development and evaluation approach using Structural
Equation Modeling (SEM) [69]. The main steps of SEM are
shown in Fig. 10. The first step is specification, referring to the
derivation of a set of hypotheses, implemented as a structural
equation model—together they form our theory, and this is
presented in Sec. 5.1. The second step is estimation of the
model parameters using an estimation algorithm, detailed in
Sec. 5.2. That section also reports on the third step: evaluation
of fit of the model. The structural equation model is tested
on a large quantitative data set from Topcoder. The last step
is to interpret and report the findings (Sec. 5.3).

5.1 Theory Development and Model Specification
The first step in SEM is to specify a theoretical model,
that is, to define a set of hypotheses. Drawing from both
previous literature on crowdsourcing and our exploratory
case study reported in Sec. 4, we formulate a number of
interrelated hypotheses (see Fig. 11). Following SEM notation
conventions, rectangular boxes represent observed variables,
and arrows represent relations between variables [61]. In
particular, we aim to develop a better understanding of
some of the factors that might affect a crowd’s interest and
participation in competitions. Attracting sufficient people to
register their interest and submit solutions in a competition is
key to the success of crowdsourcing software development.

When customers advertise competitions on the Topcoder
platform, a competition is part of an overall project that is
owned by that customer. For example, all of TPI’s competi-
tions belonged to the same project which is indicated by a
project identifier in the data set. Customers may choose to
run several competitions in parallel—for example, the case
study company, TPI, ran several competitions in parallel (see
Fig. 4). Decomposition of a project into many smaller tasks
may reduce its complexity [115]. However, when doing so,
the available workforce may be limited, as crowd workers
may not be able to take on several competitions at the same

Estimation
Sec. 5.2

Specification
Sec. 5.1

Evaluation of fit
Sec. 5.2

Interpretation
and reporting

Sec. 5.3

Fig. 10: Steps in implementing SEM (adapted from Hoyle [69,
pp. 7])

Competition
Duration

Competition
Reward

Competition
Parallelism

Crowd
Interest

Crowd
Participation

Crowd Killer
Registrations

H4 (+)

H3 (+)

H2 (+)

H5 (-) H1 (-)

Number of
technologies

Demand for
workforce

Supply of
workforce

control variables

Member
workload

Fig. 11: Proposed theoretical model

time. This is exacerbated by the fact that the majority of
competitions have a relatively short duration (see Fig. 2):
with a short deadline for a competition, a developer already
working on one competition may not have time to work on
another competition in parallel. Therefore, when a customer
runs several competitions in parallel, we expect a reduction
in the crowd’s interest. Thus, we hypothesize the following:

HYPOTHESIS 1 (H1). Running competitions in parallel within a
project is negatively associated with the interest from the crowd
for that competition.

In open source contexts, financial incentives have been
found to “crowd out” intrinsic motivations [112]. Although
crowdsourcing shares some similarities with open source,
it is quite different in that the fundamental premise of
crowdsourcing is that an incentive or prize can elicit potential
solutions to specific problems. This can range from micro-
payments for performing fairly mundane and trivial tasks
to millions of dollars for solving intractable problems in the
bio-medical and pharmaceutical sector [66]. Not surprisingly,
a significant amount of research has been conducted on
setting optimal prize levels, and their relationship to the
effort required [7], [85], [93]. Brabham [25] reports the desire
to make money as one of the strongest motivators in the
iStockphoto community. Lakhani and Panetta [87] also report
the significant extrinsic motivator that the cash prize repre-
sents in software development contexts, which is confirmed
in the specific case of Topcoder [8]. This relationship was
also borne out in our case study as one of the key tasks of
the co-pilots was to estimate the prize level necessary to
attract submissions to a particular challenge. This leads to
the following hypothesis:

HYPOTHESIS 2 (H2). The reward for a competition is positively
associated with an increase in the interest from the crowd for the
competition.

The literature on software development project manage-
ment generally suggests that a longer duration can lead to
greater software development productivity [18]. A number
of research studies have identified competition duration
as an important factor in crowdsourcing [93], [115], [146],
[150], [55]. The allotted duration for a competition on
Topcoder defines the maximum possible time for software
development. Clearly, a competition which has a very short
duration may not attract developers as they will not have

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

time to complete the task. Developers may also work in
weekends. Thus, they will need a certain amount of time to
become aware of competitions and to assess whether they
have the required skills to accomplish the task. This leads to
the following hypothesis:

HYPOTHESIS 3 (H3). Competition duration is positively associ-
ated with crowd interest in the competition

In numerous situations, intention to act has been found
to precede actual behavior, an issue that has been thoroughly
investigated in the social psychology and behavior science
literature [127]. The Theory of Reasoned Action [5], [6] suggests
intention as a mediating construct between attitude on the
one hand and performance on the other.

We therefore suggest that registering for a competition
indicates an intention. Therefore, we posit that registering is
a good predictor of submitting to a competition. Previous
research into the volunteering process in crowdsourcing
also suggests a series of commitment stages which include
registering interest prior to submitting [92]. This is also borne
out in our case study, as co-pilots would suggest an estimate
of the number of potential submissions based on the number
of registrants. This leads to the following hypothesis:

HYPOTHESIS 4 (H4). Interest from the crowd is positively
associated with participation in the competition.

Clearly, there will not be a one-to-one correspondence
between the number of registrants and the number of
submissions. Some registrants may be unable to accomplish
the given task, for example. However, the literature suggests
that the reputation of certain competitors, those who have
achieved a high ranking on Topcoder due to their previous
successes, can deter other registrants who do not actually
submit for competitions in which they have registered
because they believe they have no chance of winning [8].
We label the former as “crowd killers” in our model as
they deter other competitors in the crowd from registering.
This phenomenon is also evident in our case study. We
see that runners-up receive 50% of the first prize, but even
more tellingly, the Topcoder Reliability Bonus is designed to
reward registrants who have a past history of submitting an
entry that passes the minimum quality review threshold
for competitions in which they have initially registered.
This serves to act as an incentive to actually submit in
competitions where contestants have registered, even if they
think they have no chance of winning the overall prize. This
leads to the following hypothesis:

HYPOTHESIS 5 (H5). “Crowd killers” will be negatively associ-
ated with participation in the competition.

We also include a number of control variables in Fig. 11.
We include a demand type factor (“demand for developers”)
as the number of other active competitions in parallel during
a competition, as this will dilute the developer pool—if
there are more competitions to join, this has the potential to
reduce the overall number of registrations and submissions
in individual competitions. Developers who initially had
intended to participate in a given competition might be
distracted by other active competitions.

The growth of the pool of available developers appears
to have dramatically increased over the history of Topcoder,

from 50,000 members in 2004 to over one million members in
2016. We model this as “supply of workforce” as it represents
the available developer pool, which can have an impact on
the number of registrations and submissions. A larger pool
of potential developers may lead to a significant increase in
registrations and participation in competitions. While most
members of the community have never registered for any
contest, these members have been referred to as the “ ‘latent
pool’: people who were interested enough in the Topcoder platform
to register and had the potential to provide Topcoder with increased
development under the right conditions” [86, p. 4]. Including this
as a control variable ensures that this effect is considered.

The “number of technologies” might be a factor which
would influence the number of registrants and submissions.
While it is clear that we cannot state anything about the
complexity of competitions without inspection of the spec-
ifications of each competition, the number of technologies
that is involved is a crude indicator of the knowledge that is
required from developers.

Finally, we considered the “workload” of members, which
is the number of contests that registrants are already working
on.2 When a new contest is advertised (i.e. its registration
is opened), members may already be submitting in other
contests, which is to say, they already have a certain work-
load. This may reduce their interest in the newly advertised
contest, but it might also shift their attention from a current
contest to the new contest, for example when the new contest
is more attractive.

Table 9 lists the definitions of the variables that are used
to operationalize the constructs in our hypotheses. In the
remainder of this section, we evaluate the fit of our model to
the data (Sec. 5.2), after which we evaluate the hypotheses
(Sec. 5.3).

5.2 Estimation and Evaluating the Model Fit
After specifying the structural equation model, the next step
is to estimate the model and evaluate its fit; that is, the param-
eters of the model are estimated by a SEM software program,
and the generated model fit indexes can be evaluated (see
Fig. 10). Estimation is done using an estimation algorithm,
with Maximum Likelihood (ML) being the most common
estimator by far. However, ML assumes multivariate normal-
ity of the data [50], [83]. Violating this assumption may lead
to incorrect results [122, p. 68]. Therefore, it is important to
examine the distribution of the data. Kitchenham et al. [79]
recommend the use of kernel density plots instead of box
plots—we included kernel density plots for all variables used
in our model in Appendix B. As the density plots show, none
of the variables have a normal distribution, which can lead
to an inflated Chi-square (χ2) statistic, from which many
other fit indexes are derived. There are several alternative
techniques to work with non-normally distributed data in
SEM—in our study we have used two such techniques.
First, we used Robust ML estimation [16] which leads to the
same parameter estimates as ML, but the χ2 estimates and
standard errors are robust to non-normality [68]. We used
the Satorra-Bentler correction [117] which adjusts the value
of χ2 (see Appendix C for details). The data set we used was
complete, hence we did not have to consider this in selecting

2. We thank an anonymous reviewer for this suggestion.

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 17

TABLE 9: Variable definitions

Construct variables Description
Competition parallelism The number of competitions that are

run simultaneously within the same
project (where all competitions within
a given project belong to the same
customer).

Competition reward First Prize money offered for a
competition.

Competition duration Number of days between the
registration deadline and the
submission deadline (included).

Crowd Killer
registrations

Developers whose previous win count is
> (Mean no. of wins + 3 SD).

Crowd interest Number of registrations for a
competition.

Crowd participation Number of submissions. Only registered
members are able to submit

Control variables Description
Demand for workforce At a given time, the number of

competitions that are running at the
time of a competition being
advertised.

Supply of workforce The number of platform members at the
time of a competition’s advertisement;
most members are not active (the
“latent pool”).

Number of technologies The number of technologies that are
specified for a competition.

Member workload For a given contest c, the average
number of submissions that
developers registered for c make to
other contests.

an appropriate estimator. In addition to using the Robust
ML estimator, we also used an alternative technique to deal
with non-normally distributed data. We used the default ML
estimator, but rather than relying on the default generated
standard errors (which would be incorrect given the non-
normality of the data), we used the Bollen-Stine bootstrap
procedure to calculate standard error values [21]. Instead
of the Satorra-Bentler correction, an alternative p value is
calculated, based on the Bollen-Stine bootstrap procedure.
This p value was 0.911, which is well over the cut-off value
of 0.05, and thus the results of this approach also supported
our model. (Appendix C provides further details.)

Numerous indexes of fit have been proposed to evaluate
structural equation models. One critique of many studies
is that they report only a single fit index [121]. Following
guidelines on reporting SEM [121], [11], [83], we discuss sev-
eral fit indexes that are commonly reported, and also discuss
how our model scores on these indexes. It is important to
note that there is no general consensus regarding the cut-off
points for most of these indexes, a point we address in more
detail below. Table 10 summarizes the fit indexes.

A common method of evaluating goodness-of-fit is χ2,
with low values suggesting a good fit. Alternatively, the ratio
of the χ2 and the degrees of freedom (df) was suggested by
Wheaton [148], with a ratio of smaller than 2 suggesting a
good fit. For our model, this ratio is 1.480.

There is growing consensus that one of the most useful
indexes is the Root Mean Square Error of Approximation

(RMSEA) [101], proposed by Steiger and Lind [128]. An
RMSEA value of 0.05 indicates a “close fit” [70], a value
between 0.05 and 0.08 an “acceptable” [62][70] fit, and a value
of over 0.10 indicates a poor fit. The RMSEA of our model
is 0.048, which suggests a good fit, with a 90% confidence
interval (CI) between 0.041 and 0.056. The robust RMSEA
scores better at 0.028; while its 90% confidence interval is
slightly wider, the upper limit is still acceptable as it is
below the cut-off of 0.10 beyond which a model would be
considered a poor fit.

A major issue with the χ2 measure is its sensitivity to the
size of the sample [147]. The Comparative Fit Index (CFI) was
developed by Bentler to overcome such limitations [62], [15].
Recommended cut-off values vary from 0.90 to 0.95 [70], [62].
The CFI for our model is over 0.99 indicating a very good fit.

The Nonnormed Fit Index (NNFI), also known as the
Tucker-Lewis Index (TLI) is another fit index. Hoe [62, p. 77]
recommends a cut-off value of 0.90—our model has an NNFI
of 0.98 suggesting a close fit. The Standardized Root Mean
Square Residual (SRMR) is another recommended index of
fit to report [102]. The SRMR for our model is 0.007, which
indicates a good model fit.

Hu and Bentler suggest the use of combinations of
indexes [70] because no single index can represent all fit
dimensions of a model. In particular, they suggest that a
CFI of 0.96 (or higher) combined with an SRMR of 0.09 (or
smaller) indicates a good fit. Another combination is a TLI
of close to 0.95 in combination with an SRMR cut-off close to
0.09. Our model complies with both combinations.

As recommended in the technical literature on structural
equation modeling, we reported multiple indexes of fit [83].
West et al. suggest that the theoretical model is supported
by the data when “a majority of the fit indices” indicate
an acceptable model [102]. Thus, based on the fit indexes
reported above, we conclude that our theoretical model is
supported by the data. However, it is important to note that
our model is not the only viable model, and that alternative
models may exist; this is a point often overlooked in literature
presenting SEM studies. Also, we wish to remind the reader
that although a good model fit is important, a prerequisite
theoretical grounding of the model is equally important.

5.3 Hypothesis Testing and Interpretation

On the basis of the various model fit indexes, we have consid-
erable confidence that our proposed model is a plausible one.
It is important to note that such support does not imply our
model is optimal—it is simply a model. The theoretical model
is a good fit with the data, which is a prerequisite for being
able to interpret the parameter estimates. Following reporting
guidelines for SEM [103], [83], we list the constructs of our
model, correlations, means, and standard deviations in Ta-
ble 11 (as the data were not normally distributed, we used the
non-parametric Spearman’s ρ correlation coefficient). Fig. 12
presents the research model with the estimated coefficients
and standard errors, and Table 12 provides the full set of
parameters, including those for the control variables, as well
as confidence intervals. Ideally, modeling variables would
be uncorrelated, yet the table shows that several of them
exhibit statistically significant correlation (e.g. parallelism
and reward). This is normal in real domains because many

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLE 10: Model fit indexes

Model fit index Value Interpretation

χ2 131.063 n/a
χ2 Satorra-Bentler corrected 5.918 The Satorra-Bentler correction adjusts the χ2 test

statistic to account for non-normally distributed data
p value χ2 0.205 Non-significant when p > 0.05, indicating the

theoretical model supports the data
Degrees of freedom (df) 4 n/a

Corrected χ2 / df 1.480 Ratio of ≤ 2 suggests a good fit

Root Mean Square Error of Approximation (RMSEA) (90% CI) 0.048 Values ≤ 0.05 suggests close fit; ≤ 0.08
indicates acceptable fit; ≥ 0.10 suggests
poor fit

(0.041, 0.056)

Robust RMSEA (90% CI) 0.028
(NA, 0.072)

p value RMSEA ≤ .05 0.635 Probability that RMSEA ≤ .05; higher is better

Comparative Fit Index (CFI) 0.996 Values over 0.90 or 0.95 indicate a good model fit

Nonnormed Fit Index (NNFI) a.k.a. Tucker-Lewis 0.983 Values ≥ 0.90 indicate a good model fit

Standardized Root Mean Square Residual (SRMR) 0.007 Values ≤ 0.05 indicate a good model fit

TABLE 11: Means, Standard Deviations, and Correlations (Spearman)

Mean SD 1 2 3 4 5

1. Parallelism 4.06 16.50

2. Reward 886.30 1,794.34 −0.283*

3. Duration 9.29 9.70 0.246* −0.005

4. Interest 18.37 31.36 −0.258* 0.374* −0.003

5. Participation 2.99 14.66 −0.076* −0.187* −0.109* 0.240*

6. Crowd killer 1.54 1.47 −0.195* 0.220* −0.177* 0.230* 0.002

* p < .001

TABLE 12: Parameter estimations, confidence intervals, standard errors, and standardized coefficients

Paths Unstandardized 95% CI SE p Standardized

H1: Project parallelism→ less interest −0.042* (-0.076, -0.008) 0.017 0.016 −0.022

H2: Reward→ interest 0.009 (n.s.) (-0.005, 0.023) 0.007 0.225 0.509

H3: Duration→ interest 0.096 (n.s.) (-0.224, 0.416) 0.163 0.557 0.030

H4: Interest→ participation 0.442** (0.353, 0.531) 0.045 0.000 0.944

H5: Crowd killers→ less participation −0.666** (-0.758, -0.574) 0.047 0.000 −0.067

Control variables

Demand for workforce→ interest −0.026* (-0.052, -0.001) 0.013 0.041 −0.051

Supply of workforce→ interest 0.001** (0.000, 0.001) 0.000 0.000 0.135

No. technologies→ interest −0.193 (n.s.) (-1.070, 0.684) 0.448 0.666 −0.011

Member workload→ interest −0.219** (-0.317, -0.120) 0.050 0.000 −0.043

Demand for workforce→ participation 0.018** (0.014, 0.023) 0.002 0.000 0.075

Supply of workforce→ participation 0.000** (0.000, 0.000) 0.000 0.000 −0.106

No. technologies→ participation −0.348** (-0.415, -0.282) 0.000 0.000 −0.042

Member workload→ participation 0.104** (0.073, 0.136) 0.016 0.000 0.044

* p < 0.05, ** p < 0.001, n.s: not significant; statistically significant hypotheses are set in boldface.

domain phenomena influence several variables at once.
Kenny pointed out such relationships “can vanish” after
controlling for other causal variables, and the belief that

“if X does not cause Y, they should be uncorrelated” is naive [77, p.
80]. A summary of the results of the hypotheses is presented
in Table 12.

We found statistically significant evidence to support
three out of five hypotheses—we discuss the statistical and
practical significance below. The level of parallelism within
a project is statistically significantly negatively correlated
with the crowd’s interest (H1). The standardized coefficient
is –0.022, which suggests a very limited effect. There is

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 19

Competition
Duration

Competition
Reward

Competition
Parallelism

Crowd
Interest

Crowd
Participation

Number of
technologies

Demand for
workforce

Supply of
workforce

Crowd Killer
Registrations

.442** (.045)
.944

.096 (.163)
.030

.009 (.007)
.509

-.666** (.047)
-.067

control variables

-.042* (.017)
-.022

Member
workload

Coefficients for control variables are listed in Table 12

Fig. 12: Results of the research model, with unstandardized
parameter estimates, standard errors (in parentheses), and
standardized estimates (*p < 0.05, **p < 0.001; dotted lines
indicate not statistically significant relationships)

no statistically significant correlation between the offered
reward and the crowd’s interest in a competition (H2). The
confidence interval is quite wide and includes zero, which is
why no statistical significance was found. This is surprising,
but we note that the standardized coefficient is 0.509, rep-
resenting a medium effect size. We observe that the sign of
the coefficient is as we hypothesized. Furthermore, we found
no evidence that a competition’s duration is significantly
positively correlated with the crowd’s interest (H3). In this
case, we found that the standardized coefficient is only 0.030
which is very modest. Again, we observe that the sign is
positive as we hypothesized. The data do support H4: a
crowd’s interest in a competition is significantly positively
correlated with the level of participation (i.e. number of
submissions). The standardized coefficient is very large at
0.944. Finally, we also found evidence for the crowd killer
concept (H5): there is a significantly negative correlation
between the top-winning members’ interest in a competition
and the level of participation as a whole in that competition.
While statistically significant, the effect size is quite limited,
with a standardized coefficient of –0.067.

Table 12 also shows the standardized path coefficients
of the correlations of the control variables. In terms of
crowd interest (as reflected by number of registrations)
and workforce demand, we found a significant negative
correlation, that is, the number of other active, “competing”
competitions was likely to decrease registrations. However,
the effect size was quite small at –0.051. In relation to
workforce supply, we found a significant positive correlation
between the number of platform members and registrations,
with a moderate effect size at 0.135. However, we found no
significant correlation between the number of technologies
specified in a competition and the crowd’s interest in
that competition; the effect size was also very limited at
–0.011. We also observed a significant correlation between
member workload and crowd interest; that is, as members
were already working on other submissions, this may have

reduced their interest in other competitions, although this
effect was very small at –0.043.

In terms of crowd participation (that is, actual sub-
missions), we investigated the same control variables. The
demand for workforce (i.e. the number of concurrent active
challenges that “compete” for the available workforce) has
a significant positive correlation with participation in a
competition, though the effect size was very small at 0.075.
The data suggest a significant negative correlation between
the supply of workforce and actual participation (with a
small effect size, –0.106). Likewise, we found a significant
negative correlation between the number of technologies
and participation, though with a very small effect size
(–0.042). Finally, we also found a significant correlation
between member workload and submissions (though with a
very small effect size, 0.044). This, in combination with the
negative correlation between member workload and interest,
could suggest that some developers are very good at fast
delivery or perhaps multitasking (these are highly productive
developers), whereas others might focus on whatever contest
they have registered for (these developers might be less
productive). However, no further conclusions can be drawn
about these correlations without further research.

Some of these findings are surprising, as one would
expect that a larger available workforce leads to a higher
level of participation. However, this only seems to lead
to a greater number of registrations which do not follow
through to actual submissions. Likewise, the ‘dilution’ of the
available workforce as there are other challenges concurrently
active would suggest a lower level of participation. Thus,
it is not altogether intuitive to see this associated with a
greater degree of participation. We discuss the results of our
hypotheses as well as the limitations of our study in Sec. 6.

6 DISCUSSION AND CONCLUSION

6.1 Implications for Practice and Research

This article sheds more light on our understanding of
participation in crowdsourcing software development from
a customer’s perspective, drawing on both qualitative and
quantitative data.

The first finding is that the number of competitions run
in parallel within a project has a significant negative effect
on the crowd’s interest in a competition (H1). This is not
surprising as developers may simply not be able to work on
different competitions in parallel, all the more telling since
the size of the participating crowd of active developers is
lower than possibly anticipated. However, this issue does
have implications for customers who are seeking increased
speed of software development through crowdsourcing. Due
to the perception that the crowd with the requisite expertise
is very large, companies will invariably choose to run several
competitions in parallel. This was the case in our case study.
However, this strategy will not be effective if the crowd
cannot scale for parallel competitions. There is also the
downside that the coordination of parallel competitions
through the very narrow chat communication forum is quite
frustrating and time-consuming, all the more problematic
given that this communication tends to require a senior
resource within participating companies.

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

The second finding is the reward offered for a competition
did not have a statistically significant positive effect on the
interest of the crowd in a competition (not supporting H2).
This is particularly interesting as it seems to fly counter to
the fundamental premise of crowdsourcing, namely that the
crowd does it for a reward. The amount of reward is not
a significant motivator, in so much as developers are not
waiting for the reward to increase before they participate.
Also, the reward amount is suggested by the co-pilot, who is
an experienced member of the crowd community, and who
therefore has a good intuition for the amount the reward
should be set at, so as to be perceived as equitable and
attractive to the crowd.

We found that a competition’s duration did not appear
to significantly affect the crowd’s interest in a competition
(counter to H3). Again, we can argue that this is somewhat
similar to the case for H2. The average duration for competi-
tions on Topcoder is 9 days and 7 hours, with peaks around 5
days and 30 days. In our data set, we found a fairly uniform
distribution of submissions across all seven days of the week.
The competition duration is decided by the experienced
Topcoder co-pilot and given that Topcoder developers can
also be in full-time employment, the average competition
duration (9 days and 7 hours) allows for weekend work to be
a possibility. One lesson for customers would be to partition
work so as to fit these duration trends as they appear to be
natural to the crowd community.

The crowd’s indication of interest has a significant posi-
tive effect on the crowd’s participation (H4). Obviously this
is in keeping with what one would intuitively expect, and
is also supported by the Theory of Reasoned Action—the
higher the number of registrations, the higher the number of
submissions. However, there is some attrition between the
two. This could be explained by the fact that the developer
only sees the full specification for the competition after
registering, and that may surface some required capability
that the developer does not actually possess. Also, after
registration, developers may become aware of competition
in the form of crowd killers, discussed next.

H5 suggested that what we have termed crowd killers
reduce the participation in a competition. A number of high
performing individuals earn a very good livelihood from
Topcoder—the highest paid crowd developer has received
more than $1m [140]. However, this is not necessarily a bad
thing for customers as they are likely to receive high quality
contributions from such developers. Furthermore, experi-
mental research on microtasks (not software development)
suggests that a high number of participants in a competition
might lead to lower quality. Whether or not this applies to a
software development context remains to be seen and is an
opportunity for further research.

6.2 Limitations

We are aware of a number of limitations of our study which
we discuss below. Phase I of our study comprised an ex-
ploratory qualitative case study, which are inherently limited
in the generalization of the findings, when considering the
traditional, positivist meaning of the term generalization
because this usually refers to statistical generalization [53],
[34]. Our case study considered one specific project from a

single customer organization, using a specific crowdsourcing
platform—as such, the findings are not statistically gener-
alizable. Walsham suggests a set of alternative forms of
generalization that are more applicable to naturalistic case
studies that are more appropriate to our case study [145]:

• Development of concepts: For example, our study iden-
tified the concept of “fleeting relationship,” which is
a characterization of the nature of the relationship
between crowd developers and a customer organiza-
tion.

• Generation of theory: Our study develops six key
concerns for crowdsourcing software development,
which together form a theoretical framework to study
crowdsourcing.

• Drawing of specific implications: Our study identified
a number of specific implications for TPI; for exam-
ple, TPI’s in-house development approach is agile,
whereas the Topcoder process resembles a waterfall
model. For TPI, this led to considerable rework, both
in-house and in contests. Also, given TPI’s specific
existing technology stack, the company has been un-
able to benefit Topcoder’s catalog of existing software
components. Both findings have direct implications
for TPI as discussed in Sec. 4.

• Contribution of rich insight: The case study presented
in Sec. 4 presents a detailed account through “thick
description” [153] of a customer organization engag-
ing in crowdsourcing, which helps to brings to life a
real-world phenomenon in a contemporary software
development context.

Phase II of our study adopted a theory development
approach. We derived a set of interrelated hypotheses, which
we evaluated using structural equation modeling (SEM). The
structural equation model was implemented in R using the
open source SEM package “lavaan,” which performs the
estimation of the model parameters and generates indexes
of model fit. We used a data set from Topcoder. SEM is a
technique that helps in establishing relationships between
constructs, but not necessarily causal relationships [83].

For our analysis, our data set only includes successful
competitions because the success and failure of competitions
was not the focus of our study. We suggest that future work
can focus on the relation between parallelism, rewards, and
duration on the success (or fail) rate of competitions.

In discussing the external validity or generalizability of
our study results, we distinguish between the theoretical
model and the data set. The theoretical model was developed
by drawing from the crowdsourcing literature and the case
study findings. While the case study was conducted by two
of the authors [130], all three authors were closely involved
in all stages of Phase II of the study. The theoretical model
was discussed in great detail by all three authors. Two of the
authors discussed which data to collect and store from the
Topcoder platform. The data analysis and evaluation of the
structural equation model was also conducted by all three
authors and discussed in several meetings.

The generalizability of our findings is limited to the
Topcoder platform, because our theory has not been tested
using data from other crowdsourcing platforms. However,
the theoretical model could also be evaluated with data

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 21

from other competition-based crowdsourcing platforms that
require registration prior to participation. We have focused
specifically on competition-based crowdsourcing, as indi-
cated by the “crowd killers” concept. Crowd killers are highly
successful members of the crowd in terms of their win rate.
These members may have established a reputation for their
high success rate within the crowdsourcing community [140].
Crowd killers’ interest in a given contest may discourage
others from participating if they believe they no longer have a
reasonable chance of winning. This construct only applies to
competition-based crowdsourcing, and not, for example, to
other platforms that act as open marketplaces such as oDesk
(whose participation model is not based on competitions).

As reported, many indexes of fit have been proposed for
structural equation models. While the fit indexes suggest that
the model fits well with the data, it is important to note that
these fit indexes should not be seen as absolute indicators of
a good model as each fit index has limitations. Fit indexes
may identify issues with a model, but they should not be
seen as evidence of an optimal model. SEM is what Kline has
called a “disconfirmatory procedure that can help us to reject false
models”; we can only conclude that the model is consistent
with the data [83, p. 21]. From this, it follows that our model
is simply a model, and there may be many equivalent or
better models that we have not identified.

6.3 Conclusion and Future Research
Crowdsourcing is an emerging alternative strategy to out-
sourcing software development, which has attracted consid-
erable attention in recent years. Most studies thus far have
focused on analyses of the “crowd” (i.e., developers) and
crowdsourcing platforms (e.g. [152], [155]), but very little
attention has been paid to the customer’s perspective. To
address this gap, this article presents a multi-method study
on competition-based crowdsourcing software development
from a customer perspective.

The first phase of our study comprised an exploratory
industry case study with one company (TPI) that used the
Topcoder platform for a non-trivial software development
project. In this case study, TPI faced a number of significant
challenges with the crowdsourcing process. First, the com-
pany had to deal with several layers of communication. The
company felt the process of answering the many questions
about their competitions quite cumbersome, and the high
level of involvement of senior staff made this quite costly.
Another key issue related to planning and scheduling; the
company found it quite challenging to deal with internal
reviews in a timely manner. Furthermore, in order not to
deter developers from future participation, the company
tended to accept submissions even if their quality was less
than acceptable. Although TPI used agile methods internally,
from the company’s perspective the crowdsourcing process
reflected a waterfall process because there was a very strong
focus on establishing and documenting requirements at the
front-end of the process, while leaving QA activities until
much later in the process. Finally, while Topcoder reports
a very large number of registered developers, the active
participation in TPI’s set of competitions was quite limited,
with only 37 unique developers participating. Thus, TPI’s
experience was that the potential of engaging a “crowd” was
not achieved.

In Phase II of our study, we developed and evaluated
a theoretical model of competition-based crowdsourcing
which consists of a set of five hypotheses that link a number
of factors to crowd developers’ interest (i.e., registration
for a competition that signals an intention to participate
in that competition) and participation in crowdsourcing
competitions. We evaluated these hypotheses using structural
equation modeling with a large sample of competitions that
we retrieved from Topcoder’s public API. In this study, we
found that the level of parallelism within a given project
(representing a customer) has a significantly negative corre-
lation with the level of interest in competitions. Furthermore,
we found a statistically significant correlation between the
interest in a competition and actual participation. We also
found statistical support for the concept of “crowd killers”:
these are top-performing developers in the Topcoder commu-
nity who, when they have registered for a competition, tend
to deter other potential developers (hence the term “crowd
killer”). In our study we did not find a statistical support for
the relationship between the reward offered and the level of
interest for a given competition. Nor did we find support
for the relationship between a competition’s duration and
the level of interest for a given competition. While these
findings suggest a number of actionable implications (see
Sec. 6.1) for other companies engaging with competition-
based crowdsourcing, we cautiously remind the reader that
more studies are needed to confirm these findings before we
could make clear recommendations with confidence.

In this article we position competition-based crowd-
sourcing as a distinct alternative form of outsourcing to
an unknown workforce. We believe crowdsourcing has great
potential, although as we demonstrated in this article there
are considerable challenges that crowdsourcing customers
may need to overcome. We suggest a number of avenues for
future research:

• With “fleeting relationships” characterizing the inter-
action between crowdsourcing customers and crowd
developers, what and how can customers effectively
crowdsource in a software development context?

• Given the widespread adoption of agile approaches
to software development (in particular Scrum) that
emphasize regular face-to-face communication, how
can the crowdsourcing approach (which resembles
a waterfall-style approach to software development
with an emphasis on documented requirements) be
effectively combined and coordinated?

• How effective is the competition-based approach to
crowdsourcing compared to alternative approaches
to crowdsourcing software development?

• What factors make competitions attractive to the
crowd? A clear understanding of this can prevent
organizations from advertising competitions that are
not attractive and thus may fail due to a lack of
submissions.

• How can the “long tail” of the crowd be mobilized
to participate in crowdsourcing approaches (either
competition-based or otherwise)? That is, while Top-
coder boasts more than 1.2 million members, only a
fraction of its members seem to be actively participat-
ing. How can the “democratization of participation”

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[89] in crowd-based software development be truly
achieved?

Answering these questions will require further research
from all three key perspectives in crowdsourcing systems,
namely crowdsourcing platforms, the crowds, and crowd-
sourcing customers. We believe the answers will imply new
ways to work with unknown workforces such as the crowd.

ACKNOWLEDGMENTS

We thank Lutz Prechelt and the anonymous reviewers for
very thorough feedback which has led to a better article.
We thank TPI for granting us access to the case study data.
This work was supported, in part, by Science Foundation
Ireland grant 15/SIRG/3293 and 13/RC/2094 and co-funded
under the European Regional Development Fund through
the Southern & Eastern Regional Operational Programme to
Lero—the Irish Software Research Centre (www.lero.ie).

REFERENCES

[1] T. K. Abdel-Hamid, “A study of staff turnover, acquisition, and
assimilation and their impact on software development cost and
schedule,” Journal of Management Information Systems, vol. 6, no. 1,
pp. 21–40, 1989.

[2] P. Ågerfalk, “Embracing diversity through mixed methods re-
search,” Eur J Inf Systs, vol. 22, no. 3, pp. 251–256, 2013.

[3] P. Ågerfalk and B. Fitzgerald, “Outsourcing to an unknown
worforce: Exploring opensourcing as a global sourcing strategy,”
MIS Quart, vol. 32, no. 2, 2008.

[4] P. Ågerfalk, B. Fitzgerald, and K. Stol, Software Sourcing in the Age
of Open: Leveraging the Unknown Workforce. Springer, 2015.

[5] I. Ajzen and M. Fishbein, “Factors influencing intentions and the
intention-behavior relation,” Human Relations, vol. 27, no. 1, p. 115,
1974.

[6] ——, Understanding Attitudes and Predicting Social Behavior.
Prentice-Hall, Inc., 1980.

[7] N. Archak and A. Sundararajan, “Optimal design of crowdsourc-
ing contests,” in Proc. 30th International Conference on Information
Systems (ICIS), 2009.

[8] N. Archak, “Money, glory and cheap talk: Analyzing strategic
behavior of contestants in simultaneous crowdsourcing contests
on TopCoder.com,” in Proc. 19th International Conference on World
Wide Web (WWW), 2010.

[9] A. Aurum, R. Jeffery, C. Wohlin, and M. Handzic, Managing
Software Engineering Knowledge. Springer, 2003.

[10] N. Baddoo and T. Hall, “Motivators of software process improve-
ment: an analysis of practitioners’ views,” J Syst Softw, vol. 62,
no. 2, pp. 85–96, 2002.

[11] R. P. Bagozzi and Y. Yi, “Specification, evaluation, and interpre-
tation of structural equation models,” J. of the Acad. Mark. Sci.,
vol. 40, no. 1, pp. 8–34, 2012.

[12] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Motivation in software engineering: A systematic literature
review,” Inform Software Tech, vol. 50, no. 9-10, 2008.

[13] A. Begel, J. Bosch, and M. A. Storey, “Social networking meets
software development: Perspectives from GitHub, MSDN, Stack-
Exchange, and TopCoder,” IEEE Software, vol. 30, no. 1, pp. 52–66,
2013.

[14] A. Begel, J. Herbsleb, and M.-A. Storey, “The future of collabo-
rative software development,” in Proc. ACM 2012 conference on
Computer Supported Cooperative Work Companion, 2012, pp. 17–18.

[15] P. Bentler, “Comparative fit indexes in structural models,” Psycho-
logical Bulletin, vol. 107, no. 2, pp. 238–246, 1990.

[16] O. V. Berkout, A. M. Gross, and J. Young, “Why so many arrows?
introduction to structural equation modeling for the novitiate
user,” Clin Child Fam Psychol Rev, vol. 17, pp. 217–229, 2014.

[17] F. Bjørnson and T. Dingsøyr, “Knowledge management in software
engineering: A systematic review of studied concepts, findings
and research methods used,” Inform Software Tech, vol. 50, no. 11,
2008.

[18] B. Boehm, C. Abst, and S. Chulani, “Software development cost
estimation approaches—a survey,” Annals of Software Engineering,
vol. 10, no. 1-4, pp. 177–205, 2005.

[19] B. Boehm, “A view of 20th and 21st century software engineering,”
in Proc. International Conference on Software Engineering. ACM,
2006, pp. 12–29.

[20] B. W. Boehm, Software Engineering Economics. Pearson Education,
1981.

[21] K. Bollen and R. Stine, “Bootstrapping goodness-of-fit measures in
structural equation models,” in Testing Structural Equation Models,
K. Bollen and J. Long, Eds. Sage Publications, 1993, pp. 111–135.

[22] E. Bonabeau, “Decisions 2.0: The power of collective intelligence,”
MIT Sloan Manage Rev, vol. 50, no. 2, pp. 45–52, 2009.

[23] C. Bonner, 10 Burning Questions on Crowdsourcing: Your starting
guide to open innovation and crowdsourcing success, I. Heffan, Ed.
TopCoder Inc., 2013.

[24] K. J. Boudreau, N. Lacetera, and K. R. Lakhani, “Incentives and
problem uncertainty in innovation contests: An empirical analysis,”
Manage Sci, vol. 57, no. 5, 2011.

[25] D. C. Brabham, “Crowdsourcing as a model for problem solving:
An introduction and cases,” Convergence, vol. 14, no. 1, 2008.

[26] ——, “The myth of amateur crowds: A critical discourse analysis
of crowdsourcing coverage,” Information, Communication & Society,
vol. 15, no. 3, 2012.

[27] ——, Crowdsourcing. MIT Press, 2013.
[28] F. P. Brooks, The mythical man-month: essays on software engineering.

Addison-Wesley, 1995.
[29] E. Capra, C. Francalanci, and F. Merlo, “An empirical study on the

relationship among software design quality, development effort,
and governance in open source projects,” IEEE Trans Softw Eng,
vol. 34, no. 6, 2008.

[30] M. Cataldo and J. Herbsleb, “Coordination breakdowns and their
impact on development productivity and software failures,” IEEE
Trans Softw Eng, vol. 39, no. 3, pp. 343–360, 2013.

[31] V. Chanal and M. L. Caron-Fasan, “The difficulties involved in
developing business models open to innovation communities: the
case of a crowdsourcing platform,” M@n@gement, vol. 13, no. 4,
2010.

[32] D. Chandler and A. Kapelner, “Breaking monotony with meaning:
Motivation in crowdsourcing markets,” J Econ Behav Organ, vol. 90,
pp. 123–133, 2013.

[33] P. Clarke, R. O’Connor, B. Leavy, and M. Yilmaz, “Exploring the
relationship between software process adaptive capability and
organisational performance,” IEEE Trans Softw Eng, vol. 41, no. 12,
pp. 1169–1183, 2015.

[34] J. W. Creswell and D. L. Miller, “Determining validity in qual-
itative inquiry,” Theory into Practice, vol. 39, no. 3, pp. 124–130,
2000.

[35] L. Dabbish, R. Farzan, R. Kraut, and T. Postmes, “Fresh faces in
the crowd: Turnover, identity, and commitment in online groups,”
in Proc. ACM 2012 Conference on Computer Supported Cooperative
Work (CSCW). ACM, 2012, pp. 245–248.

[36] J. Danziger and K. Kraemer, Survey research and multiple opera-
tionism: the URBIS project methodology. Harvard Business School
Press, 1991, pp. 351–371.

[37] K. C. Desouza and J. R. Evaristo, “Managing knowledge in
distributed projects,” Commun ACM, vol. 47, no. 4, pp. 87–91,
2004.

[38] D. DiPalantino and M. Vojnovic, “Crowdsourcing and all-pay
auctions,” in Proc. 10th ACM Conference on Electronic Commerce,
2009, pp. 119–128.

[39] A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing
systems on the world-wide web,” Commun ACM, vol. 54, no. 4,
pp. 86–96, 2011.

[40] S. P. Dow, A. Kulkarni, S. R. Klemmer, and B. Hartmann,
“Shepherding the crowd yields better work,” in Proc. ACM 2012
Conference on Computer Supported Cooperative Work (CSCW), 2012.

[41] A. Dubey, K. Abhinav, S. Taneja, G. Virdi, A. Dwarakanath,
A. Kass, and M. S. Kuriakose, “Dynamics of software development
crowdsourcing,” in Proc. IEEE 11th International Conference on
Global Software Engineering, 2016.

[42] W. Ebner, M. Leimeister, U. Bretschneider, and H. Krcmar, “Lever-
aging the wisdom of crowds: Designing an IT-supported ideas
competition for an ERP software company,” in Proc. 41st Hawaii
International Conference System Sciences, 2008.

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 23

[43] K. Eisenhardt and M. Graebner, “Theory building from cases:
opportunities and challenges,” Academy of Management Journal,
vol. 50, no. 4, pp. 25–32, 2007.

[44] L. B. Erickson, “Leveraging the crowd as a source of innovation:
Does crowdsourcing represent a new model for product and
service innovation?” in Proc. SIGMIS Computers and People Research.
ACM, 2012.

[45] L. B. Erickson, I. Petrick, and E. M. Trauth, “Organizational
uses of the crowd: Developing a framework for the study of
crowdsourcing,” in Proc. SIGMIS-CPR, 2012.

[46] E. Estellés-Arolas and F. González-Ladrón-de Guevara, “Towards
an integrated crowdsourcing definition,” Journal of Information
Science, vol. 38, no. 2, 2012.

[47] S. Faridani, B. Hartmann, and P. G. Ipeirotis, “What’s the right
price? pricing tasks for finishing on time,” in Proc. AAAI Workshop
on Human Computation, 2011.

[48] J. Feller, P. Finnegan, B. Fitzgerald, and J. Hayes, “From peer
production to productization: A study of socially enabled business
exchanges in open source service networks,” Inform Syst Res,
vol. 19, no. 4, 2008.

[49] J. Feller and B. Fitzgerald, Understanding Open Source Software
Development. Pearson Education Ltd., 2002.

[50] S. Finney and C. DiStefano, Non-Normal and Categorical Data in
Structural Equation Modeling. Information Age Publishing, 2006.

[51] B. Fitzgerald, “The transformation of open source software,” MIS
Quarterly, vol. 30, no. 3, 2006.

[52] ——, “Software crisis 2.0,” IEEE Comput., vol. 45, 2012.
[53] B. Fitzgerald and D. Howcroft, “Towards dissolution of the

is research debate: from polarization to polarity,” Journal of
Information Technology, vol. 13, pp. 313–326, 1998.

[54] G. G. Gable, “Integrating case study and survey research methods:
an example in information systems,” Eur J Inf Systs, vol. 3, no. 2,
pp. 112–126, 1994.

[55] D. Gefen, G. Gefen, and E. Carmel, “How project description
length and expected duration affect bidding and project success
in crowdsourcing software development,” J Syst Softw, vol. 116,
pp. 75–84, 2016.

[56] M. Germonprez, J. Kendall, K. Kendall, L. Mathiassen, B. Young,
and B. Warner, “A theory of responsive design: A field study of
corporate engagement with open source communities,” Informa-
tion Systems Research, vol. in press, 2016.

[57] S. Greengard, “Following the crowd,” Commun. ACM, vol. 54,
no. 2, pp. 20–22, 2011.

[58] J. D. Herbsleb and R. E. Grinter, “Splitting the organization
and integrating the code: Conway’s Law revisited,” in Proc. 21st
International Conference on Software Engineering (ICSE), 1999, pp.
85–95.

[59] J. D. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,”
IEEE Trans Softw Eng, vol. 29, no. 6, pp. 481–494, 2003.

[60] L. Hetmank, “Components and functions of crowdsourcing
systemsa systematic literature review,” in Proc. 11th International
Conference Wirtschaftsinformatik, 2013.

[61] M.-h. R. Ho, S. Stark, and O. Chernyshenko, “Graphical repre-
sentation of structural equation models using path diagrams,”
in Handbook of structural equation modeling, R. H. Hoyle, Ed.
Guildford Press, 2012.

[62] S. L. Hoe, “Issues and procedures in adopting structural equation
modeling technique,” J Appl Quant Methods, vol. 3, no. 1, 2008.

[63] L. Hoffmann, “Crowd control,” Commun. ACM, vol. 52, no. 3, pp.
16–17, 2009.

[64] J. J. Horton and L. B. Chilton, “The labor economics of paid crowd-
sourcing,” in Proc. ACM 11th Conference on Electronic Commerce,
2010, pp. 209–218.

[65] J. Howe, “The rise of crowdsourcing,” Wired, vol. 14, 2006.
[66] ——, Crowdsourcing: Why the Power of the Crowd Is Driving the

Future of Business. Crown Business, 2008.
[67] ——, “http://www.crowdsourcing.com.”
[68] J. J. Hox, C. J. Maas, and M. J. Brinkhuis, “The effect of estima-

tion method and sample size in multilevel structural equation
modeling,” Statistica Neerlandica, vol. 64, no. 2, pp. 157–170, 2010.

[69] R. Hoyle, Ed., Handbook of structural equation modeling. The
Guildford Press, 2012.

[70] L. Hu and P. M. Bentler, “Cutoff criteria for fit indexes in
covariance structure analysis: Conventional criteria versus new
alternatives,” Structural Equation Modeling: A Multidisciplinary
Journal, vol. 6, no. 1, pp. 1–55, 1999.

[71] P. G. Ipeirotis, “Analyzing the Amazon Mechanical Turk market-
place,” XRDS, vol. 17, no. 2, pp. 16–21, 2010.

[72] P. G. Ipeirotis and P. K. Paritosh, “Managing crowdsourced human
computation,” in Proc. 20th International Conference on World Wide
Web (WWW), 2011, pp. 287–288.

[73] G. Jouret, “Inside Cisco’s search for the next big idea,” Harvard
Business Review, vol. 87, no. 9, pp. 43–45, 2009.

[74] B. Kaplan and D. Duchon, “Combining qualitative and quantita-
tive methods in information systems research: a case study,” MIS
Quart., vol. 12, no. 4, pp. 571–586, 1988.

[75] N. Kaufmann, T. Schulze, and D. Veit, “More than fun and money.
worker motivation in crowdsourcing—a study on Mechanical
Turk,” in Proc. 17th Americas Conference on Information Systems
(AMCIS), 2011.

[76] R. Kazman and H.-M. Chen, “The metropolis model: A new
logic for development of crowdsourced systems,” Commun ACM,
vol. 52, no. 7, pp. 76–84, 2009.

[77] D. A. Kenny, Correlation and Causality, revised ed., 2004.
[78] P. Kinnaird, L. Dabbish, S. Kiesler, and H. Faste, “Co-worker

transparency in a microtask marketplace,” in Proc. ACM Computer
Supported Coordination Work (CSCW), 2013, pp. 1285–1290.

[79] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton,
S. Charters, S. Gibbs, and A. Pohthong, “Robust statistical methods
for empirical software engineering,” Empirical Software Engineering,
vol. 22, no. 2, pp. 579–630, 2017.

[80] A. Kittur, J. V. Nickerson, M. S. Bernstein, E. M. Gerber, A. Shaw,
J. Zimmerman, M. Lease, and J. J. Horton, “The future of crowd
work,” in Proc. ACM Computer-Supported Cooperative Work (CSCW),
2013, pp. 1301–1318.

[81] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut, “Crowdforge:
Crowdsourcing complex work,” in Proc. ACM Symposium on User
Interface Software and Technology (UIST), 2011, pp. 43–52.

[82] A. Kittur, “Crowdsourcing, collaboration and creativity,” XRDS,
vol. 17, no. 2, pp. 22–26, 2010.

[83] R. Kline, Principles and Practice of Structural Equation Modeling,
4th ed. The Guilford Press, 2016.

[84] R. E. Kraut and L. A. Streeter, “Coordination in software develop-
ment,” Commun ACM, vol. 38, no. 3, 1995.

[85] A. Kulkarni, M. Can, and B. Hartmann, “Collaboratively crowd-
sourcing workflows with Turkomatic,” in Proc. ACM Computer-
Supported Cooperative Work (CSCW), 2012.

[86] K. R. Lakhani, D. A. Garvin, and E. Lonstein, “TopCoder (A):
Developing software through crowdsourcing,” Harvard Business
School 610-032, 2010.

[87] K. R. Lakhani and J. A. Panetta, “The principles of distributed
innovation,” Innovations: Technology, Governance, Globalization,
vol. 2, no. 3, 2007.

[88] T. LaToza, M. Chen, L. Jiang, M. Zhao, and A. van der Hoek,
“Borrowing from the crowd: A study of recombination in software
design competitions,” in Proc. 37th International Conference on
Software Engineering (ICSE), 2015, pp. 551–562.

[89] T. LaToza and van der Hoek A., “Crowdsourcing in software
engineering: Models, motivations, and challenges,” IEEE Softw,
vol. 33, no. 1, 2016.

[90] T. D. LaToza, W. B. Towne, A. van der Hoek, and J. D. Herbsleb,
“Crowd development,” in Proc. 6th CHASE Workshop. IEEE, 2013.

[91] T. D. LaToza, W. Towne, C. Adriano, and A. van der Hoek,
“Microtask programming: building software with a crowd,” in
Proc. 27th ACM Symposium on User Interface Software and Technology
(UIST), 2014, pp. 43–54.

[92] W. Lei, M. Huhns, T. W, and W. Wu, Eds., Crowdsourcing: Cloud-
based Software Development. Springer, 2015.

[93] J. Leimeister, M. Huber, U. Bretschneider, and H. Krcmar, “Lever-
aging crowdsourcing: Activation-supporting components for it-
based ideas competition,” J Manage Inform Syst, vol. 26, no. 1, pp.
197–224, 2009.

[94] M. Leininger, Criteria and Critique. Sage Publications, 1994.
[95] Y. Lindsjørn, D. I. Sjøberg, T. Dingsøyr, G. Bergersen, and T. Dybå,

“Teamwork quality and project success in software development:
A survey of agile development teams,” J Syst Softw, vol. 122, pp.
274–286, 2016.

[96] T. W. Malone and K. Crowston, “The interdisciplinary study of
coordination,” ACM Comput Surv, vol. 26, no. 1, 1994.

[97] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of
crowdsourcing in software engineering,” J Syst Softw, vol. 126, pp.
57–84, 2016.

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[98] K. Mao, Y. Yang, M. Li, and M. Harman, “Pricing crowdsourcing-
based software development tasks,” in Proc. 35th International
Conference on Software Engineering (ICSE), 2013.

[99] K. Mao, Y. Yang, Q. Wang, Y. Jia, and M. Harman, “Developer
recommendation for crowdsourced software development tasks,”
in Proc. IEEE Symposium on Service-Oriented System Engineering
(SOSE), 2015, pp. 347–356.

[100] W. Mason and D. J. Watts, “Financial incentives and the ‘perfor-
mance of crowds’,” in Proc. KDD-HCOMP. ACM, 2009.

[101] R. L. Matsueda, Key Advances in the History of Structural Equation
Modeling. The Guilford Press, 2012.

[102] ——, “Model fit and model selection in structural equation
modeling,” in Handbook of Structural Equation Modeling, R. H.
Hoyle, Ed. The Guilford Press, 2012.

[103] R. McDonald and R. Moon-Ho, “Principles and practice in
reporting structural equation analyses,” Psychological Methods,
vol. 7, no. 1, pp. 64–82, 2002.

[104] M. Miles and A. Huberman, Qualitative Data Analysis: An Expanded
Sourcebook, 2nd ed. Sage Publications, 1994.

[105] J. Mingers, “Combining is research methods: towards a pluralist
methodology,” Information Systems Research, vol. 12, no. 3, pp.
240–259, 2001.

[106] A. Mockus, R. Fielding, and J. D. Herbsleb, “A case study of
open source software development: The Apache server,” in Proc.
International Conference on Software Engineering (ICSE), 2000, pp.
263–272.

[107] R. Musson, J. Richards, D. Fisher, C. Bird, B. Bussone, and
S. Ganguly, “Leveraging the crowd: How 48,000 users helped
improve Lync performance,” IEEE Softw, vol. 30, no. 4, pp. 38–45,
2013.

[108] D. Naparat and P. Finnegan, “Crowdsourcing software require-
ments and development: A mechanism-based exploration of
‘opensourcing’,” in Proc. 19th Americas Conference on Information
Systems (AMCIS), 2013.

[109] D. L. Parnas, “On the criteria to be used in decomposing systems
into modules,” Commmun ACM, vol. 15, no. 12, pp. 1053–1058,
1972.

[110] D. Pilz and H. Gewald, “Does money matter? motivational factors
for participation in paid- and non-profit-crowdsourcing commu-
nities,” in Proc. 11th International Conference Wirtschaftsinformatik,
2013.

[111] E. S. Raymond, The Cathedral & the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly Media, 2001.

[112] J. Roberts, I.-H. Hann, and S. Slaughter, “Understanding the
motivations, participation, and performance of open source
software developers: A longitudinal study of the Apache projects,”
Manage Sci, vol. 52, no. 7, pp. 984–999, 2006.

[113] Y. Rosseel, “lavaan: An R package for structural equation model-
ing,” Journal of Statistical Software, vol. 48, no. 2, pp. 1–36, 2012.

[114] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples. Wiley, 2012.

[115] R. Saremi and Y. Yang, “Empirical analysis on parallel tasks
in crowdsourcing software development,” in 30th IEEE/ACM
International Conference on Automated Software Engineering Workshop,
2015, pp. 28–34.

[116] R. L. Saremi, Y. Yang, G. Ruhe, and D. Messinger, “Leveraging
crowdsourcing for team elasticity: An empirical evaluation at
TopCoder,” in Proc. 39th International Conference on Software
Engineering (Software Engineering in Practice), 2017, pp. 103–112.

[117] A. Satorra and P. Bentler, “Corrections to test statistics and stan-
dard errors in covariance structure analysis,” in Latent Variables
Analysis: Applications for Developmental Research, A. von Eye and
C. Clogg, Eds. Sage, 1994, pp. 399–419.

[118] N. Savage, “Gaining wisdom from crowds,” Commun ACM, vol. 55,
no. 3, pp. 13–15, 2012.

[119] E. Schenk and C. Guittard, “Crowdsourcing: What can be out-
sourced to the crowd, and why?” 2009.

[120] ——, “Towards a characterization of crowdsourcing practices,” J
Innov Econ, vol. 1, no. 7, pp. 93–107, 2011.

[121] R. E. Schumacker and R. Lomax, A Beginner’s Guide to Structural
Equation Modeling, 4th ed. Routledge, 2016.

[122] R. E. Schumacker and R. G. Lomax, A Beginner’s Guide to Structural
Equation Modeling, 2nd ed. Lawrence Erlbaum Associates, 2004.

[123] A. Schwarz, M. Mehta, N. Johnson, and W. Chin, “Understanding
frameworks and reviews: A commentary to assist us in moving
our field forward by analyzing our past,” Database Adv Inform
Syst, vol. 38, no. 3, pp. 29–50, 2007.

[124] C. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Trans Softw Eng, vol. 24, no. 4, pp. 557–572,
1999.

[125] H. Simula, “The rise and fall of crowdsourcing?” in Proc. 46th
Hawaii International Conference on System Sciences (HICSS), 2013.

[126] Y. Singer and M. Mittal, “Pricing mechanisms for crowdsourcing
markets,” in Proc 22nd International conference on World Wide Web
(WWW), 2013, pp. 1157–1166.

[127] R. Sorrentino and E. Higgins., Handbook of Motivation and Cognition:
vol. 1: Foundations of Social Behaviour. John Wiley & Sons Ltd.,
1986.

[128] J. H. Steiger and J. C. Lind, “Statistically-based tests for the number
of common factors,” in Handout for a talk at the annual meetings of
the Psychometric Society, 1980.

[129] K. Stol and B. Fitzgerald, “Research protocol for a case study of
crowdsourcing software development,” Lero Technical Report,
University of Limerick.

[130] ——, “Two’s company, three’s a crowd: A case study of crowd-
sourcing software development,” in Proc. 36th International Confer-
ence on Software Engineering (ICSE), 2014.

[131] ——, “Theory-oriented software engineering,” Science of Computer
Programming, vol. 101, pp. 79–98, 2015.

[132] K. Stol, T. LaToza, and C. Bird, “Crowdsourcing for software
engineering,” IEEE Softw, vol. 34, no. 2, 2017.

[133] K. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: A critical review and guidelines,” in Proc.
38th International Conference on Software Engineering (ICSE). ACM,
2016.

[134] M.-A. Storey, A. Zagalsky, F. Filho, L. Singer, and D. German,
“How social and communication channels shape and challenge a
participatory culture in software development,” IEEE Trans Softw
Eng, vol. 43, no. 2, 2017.

[135] J. Surowiecki, The Wisdom of Crowds: Why the Many Are Smarter
Than the Few. Abacus, 2005.

[136] H. Tajedin and D. Nevo, “Determinants of success in crowdsourc-
ing software development,” in Proc. SIGMIS Computer and People
Research, 2013, pp. 173–178.

[137] D. Tamburri, P. Lago, and H. van Vliet, “Organizational social
structures for software engineering,” ACM Comput Surv, vol. 46,
no. 1, 2013.

[138] Topcoder, “The 3 pillars of digital creation at Topcoder - en-
terprise open innovation, https://www.youtube.com/watch?v=
4QVVQdaXnYo,” accessed 25 May. 2017.

[139] ——, “How it works: Community driven design, develop-
ment, & data science, https://www.topcoder.com/community/
how-it-works/.”

[140] ——, “Interview with first TC millionaire argolite,
https://community.topcoder.com/tco11/2011/07/25/
interview-with-first-tc-millionaire-argolite/,” accessed 25
May. 2017.

[141] ——, “Topcoder website,” http://www.topcoder.com.
[142] Y.-H. Tung and S.-S. Tsenga, “A novel aproach to collaborative

testing in a crowdsourcing environment,” J Syst Softw, vol. 86,
no. 8, p. 21432153, 2013.

[143] G. von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin, “Carrots
and rainbows: Motivation and social practice in open source
software development,” MIS Quart, vol. 36, no. 2, pp. 649–676,
2012.

[144] M. Vukovic, “Crowdsourcing for enterprises,” in SERVICES, 2009.
[145] G. Walsham, “Interpretive case studies in IS research: nature and

method,” Eur J Inform Syst, vol. 4, pp. 74–81, 1995.
[146] T. Walter and A. Back, “Towards measuring crowdsourcing

success: an empirical study on effects of external factors in online
idea contest,” in Mediterranean Conference on Information Systems
(MCIS), 2011.

[147] B. Wheaton, “Assessment of fit in overidentified models with
latent variables,” Sociological Methods & Research, vol. 16, no. 1, pp.
118–154, 1987.

[148] B. Wheaton, B. Muthen, D. Alwin, and G. Summers, “Assessment
reliability and stability in panel models,” in Sociological Methodol-
ogy, D. Heise, Ed. Jossey-Bass, 1977, pp. 84–136.

[149] S. Wolfson and M. Lease, “Look before you leap: Legal pitfalls of
crowdsourcing,” in ASIST Annual Meeting, 2011.

[150] Y. Yang, P.-Y. Chen, and P. Pavlou, “Open innovation: An empirical
study of online contests,” in Proc. International Conference on
Information Systems (ICIS), 2009.

https://www.youtube.com/watch?v=4QVVQdaXnYo
https://www.youtube.com/watch?v=4QVVQdaXnYo
https://www.topcoder.com/community/how-it-works/
https://www.topcoder.com/community/how-it-works/
https://community.topcoder.com/tco11/2011/07/25/interview-with-first-tc-millionaire-argolite/
https://community.topcoder.com/tco11/2011/07/25/interview-with-first-tc-millionaire-argolite/
http://www.topcoder.com

0098-5589 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2774297, IEEE
Transactions on Software Engineering

STOL et al.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT 25

[151] Y. Yang, M. Karim, R. Saremi, and G. Ruhe, “Who should take
this task? – dynamic decision support for crowd workers,” in
Proc. ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2016.

[152] Y. Yang and R. Saremi, “Award vs. worker behaviors in com-
petitive crowdsourcing tasks,” in Proc. ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM), 2015.

[153] R. Yin, Case Study Research, 3rd ed. SAGE, 2003.
[154] A. L. Zanatta, L. S. Machado, G. B. Pereira, R. Prikladnicki,

and E. Carmel, “Software crowdsourcing platforms,” IEEE Softw,
vol. 33, no. 6, pp. 112–116, 2016.

[155] H. Zhang, Y. Wu, and W. Wu, “Analyzing developer behavior and
community structure in software crowdsourcing,” in Information
Science and Applications. Lecture Notes in Electrical Engineering, vol
339, K. Kim, Ed., 2015.

[156] Y. Zhao and Q. Zhu, “Evaluation on crowdsourcing research:
Current status and future direction,” Inf Syst Front, vol. April,
2012.

[157] Y. C. Zhao and Q. Zhu, “Effects of extrinsic and intrinsic moti-
vation on participation in crowdsourcing contest: A perspective
of self-determination theory,” Online Information Review, vol. 38,
no. 7, pp. 896–917, 2014.

Klaas-Jan Stol is a Lecturer with the Department
of Computer Science at University College Cork,
and a Science Foundation Ireland Principal Inves-
tigator with Lero—the Irish Software Research
Centre. His research interests include research
methodology, and contemporary software devel-
opment approaches, specifically open source
software, inner source, and crowdsourcing. Con-
tact him at klaas-jan.stol@lero.ie.

 SEPTEMBER/OCTOBER 2013 | IEEE SOFTWARE 59

improvements. Some of these chal-
lenges resemble the key principles
proposed elsewhere10 to build similar
failure- prediction tools. Jacek Czer-
wonka and his colleagues argued that
information collected from metrics
should be insightful, that users need to
understand how to act based on met-
rics and model outputs, and that hav-
ing statistical experts on development
teams improves model development
and interpretation.10

Senior-level management support
is essential to initiating such projects,
aligning model outputs with business
objectives, integrating them into exist-
ing systems, and measuring their ben-
efits. Similarly, the absence of this sup-
port or changes in business priorities is
a major obstacle for model deployment.
In dynamic environments, these mod-
els are often the first to be abandoned
because they’re too complex, manage-
ment requires statistics knowledge to
interpret them, or the organization
has lengthy deployment and feedback
cycles. To avoid this, researchers must
provide convincing evidence on the
benefits of using these models to lower
levels in the organizational hierarchy
so that they become closely attached to
development processes.

The critical success factors in de-
ploying prediction models include
having mature development processes,
policies on measurement and analy-
sis, and highly qualified profession-
als to calibrate models and analyze
their outputs. Organizations must be
aware that software analytics is data
dependent, so as a first step, they must
build a measurement culture. In our
own experience, the more mature the
organization in terms of its measure-
ment process, the less prone it is to or-
ganizational volatility. Organizations
should also employ highly qualified
personnel (as in TechCo’s case) who
perform software analytics. These
people, known as data scientists, can

TA
B

L
E

 1 Common themes from our in-depth interviews.

Challenge Possible solutions

Model output Increase the model output’s information content with, for example,
defect-severity/defect-type prediction, defect location, and phase- or
requirement-level effort estimation

Data collection Provide tool support to collect accurate and complete data

Lack of
actionable
outputs

Integrate prediction models into existing systems, for example, by
combining the results of defect prediction (defect-prone files) with test
interfaces to decide which interfaces to test first, or creating a plug-in
that seamlessly works in development and testing environments

AYSE TOSUN MISIRLI is a postdoctoral research fellow in the
Department of Information Processing Science at the University of Oulu.
Her research interests include empirical software engineering, specifi-
cally on mining software data repositories, software measurement,
software process improvement, software quality prediction models,
and applications of AI in software recommendation systems. Misirli
received a PhD in computer engineering from Bogazici University. She’s
a member of IEEE, ACM, and AAAI. Contact her at ayse.tosunmisirli@
oulu.fi.

BORA CAGLAYAN is a PhD candidate in the Department of Computer
Engineering at Bogazici University. His research interests include
empirical software engineering, data mining and recommendation sys-
tems. Caglayan received an MS in software engineering from Bogazici
University. He is a student member of the IEEE Computer Society, ACM,
and ACM SIGSOFT. Contact him at bora.caglayan@boun.edu.tr.

AYSE BENER is the director of the Data Science Lab and a professor
in the Department of Mechanical and Industrial Engineering at Ryerson
University, Canada. Her research interests include intelligent models for
decision making under uncertainty, machine-learning methods to build
predictive models, cognitive science to model human behavior, and
game theoretic models to determine strategies in empirical software
engineering, health sciences, and green IT. She’s a member of IEEE and
ACM. Contact her at ayse.bener@ryerson.ca.

BURAK TURHAN is a researcher and adjunct professor in the Depart-
ment of Information Processing Science at the University of Oulu. His
research interests include empirical studies of software engineering on
software quality, defect prediction, cost estimation, and data mining
for software engineering. He’s a member of IEEE and the ACM. Contact
him at burak.turhan@oulu.fi.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S
Bora Caglayan is a researcher with IBM Ireland.
Previously he was a post-doctoral researcher
with Lero—the Irish Software Research Centre
at the University of Limerick. His research inter-
ests include empirical software engineering and
recommender systems in software engineering.
Contact him at bora.caglayan@ibm.com

Brian Fitzgerald is Director of Lero—the Irish
Software Research Centre. He holds an endowed
chair, the Frederick Krehbiel II Chair in Innovation
in Business and Technology at the University
of Limerick. His research interests include open
source software, inner source, crowdsourcing,
and lean and agile methods. Contact him at
bf@lero.ie.

