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Wave power extraction from a hybrid oscillating water column-

oscillating buoy wave energy converter 

Abstract 

Oscillating water column (OWC) devices and oscillating buoys (OBs) are two of the main types of 

wave energy converters (WECs). In this paper a hybrid oscillating water column-oscillating buoy 

wave energy converter is proposed, which we have named OWCOB. The oscillating buoy is hinged 

at the outer wall of the oscillating water column. As waves propagate through the OWCOB, the 

water column within the OWC chamber moves up and down, producing air flow to propel a turbine. 

Meanwhile, the oscillation of the OB drives a separate hydraulic system. To solve the wave 

diffraction and radiation problems of the OWCOB and investigate its energy capture performance, 

an analytical model is developed based on linear potential flow theory and the eigenfunction 

matching method. Assuming that the PTOs of the OWC and OB are both linear, the wave power 

extraction of the OWCOB is evaluated in the frequency domain. Of the two configurations 

considered, the OWCOB with the OWC opening waveward and the OB hinged leeward is found to 

have a broader primary frequency band of wave power capture compared to the OWCOB with the 

OWC opening and the OB on the same side. Further, a thorough sensitivity analysis of power 

capture is carried out considering the main design parameters (size and submergence of the OWC 

opening, distance between the OWC and the OB, OB hinge elevation, OB radius), which can form 

the basis of an optimisation study for a particular wave climate. Importantly, we find that the 

OWCOB performs generally better than stand-alone OWCs and OBs, not least in terms of frequency 

bandwidth. 

Keywords 

Wave power; Wave energy; Wave radiation; Potential flow theory; Oscillating water column; 

Oscillating buoy 

 

1 Introduction 

To meet the rising demand for energy in coastal and offshore regions, and also converge 

towards a net zero-carbon economy, more and more attention is being paid to seeking renewable 

energy from the ocean. Ocean energy includes wave power, tidal power, and ocean thermal energy, 

of which wave power offers the highest energy density [1]. 

The global wave energy resource is estimated at 17 TW h/year [2], with the largest values of 

average wave power occurring in the mid-latitudes (between 30° and 60°) [3]. In order to exploit 

this vast resource, various wave energy conversion technologies have been developed [1, 4-7]. 

Among these, Oscillating Water Columns (OWC) and nodding devices are two of the main types. 

An OWC is composed of a partially submerged rigid chamber with an opening under the water 

level. As ocean waves propagate, the water column enclosed by the chamber oscillates up and down, 

driving air through a turbine installed on the chamber and, in the process, generating electricity with 

a generator [7, 8]. OWCs can be generally classified by location into shore-attached devices and 

offshore devices. 

Evans and Porter [9] proposed a 2D analytical model to solve the hydrodynamics of a 
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generalized shore-attached OWC, which consists of a thin vertical surface-piercing barrier next to 

a vertical wall. In order to deal with the singular behavior of the velocity field at the edge of the thin 

barrier, an integral equation for the horizontal velocity across the opening under the thin barrier was 

utilized. Rezanejad et al. [10] considered the effect of a stepped bottom topography on the efficiency 

of a shore-attached OWC. It was found that the existence of an artificial step at the sea bottom with 

proper tuning could result in a significantly increased capacity of wave power absorption. Ning et 

al. [11] developed a 2D fully nonlinear numerical wave tank (NWT) based on a time-domain higher-

order boundary element method (BEM) and investigated the performance of a shore-attached OWC 

device. The numerical results indicated that the maximum surface-elevation inside the OWC 

chamber occurred at a lower frequency compared to the resonant frequency of the chamber. The 

hydrodynamic efficiency increased with the wave amplitude for weaker wave nonlinearity. Zhang 

et al. [12] developed an immersed boundary method model based on a two-phase level set with the 

global mass correction to simulate wave interaction with a shore-attached OWC. The detailed flow 

field in the air and water, pressure distribution, surface elevation, and vorticity strength 

demonstrated in their study elucidated the complicated physical process related to OWC 

performance. Pereiras et al. [13] described a methodology to match a non-linear turbine to the 

characteristics of an OWC device for an optimal energy transfer. The non-linearity of the turbine 

was considered, and the performance of the OWC was obtained from experimental tests (or 

validated numerical model). In order to determine the optimum damping accounting for the wave 

climate variability, Lόpez et al. [14] evaluated the pneumatic power matrices corresponding to 

different values of turbine-induced damping by using a 2D RANS-VOF NWT model. With this 

optimization methodology, the annual energy output of the OWC could be improved significantly.  

In addition to the analytical and numerical work, experimental tests have also been widely 

adopted to study the performance of a 2D shore-attached OWC. Morris-Thomas et al. [15] utilized 

both numerical and experimental tests to examine energy efficiencies for power take-off of a shore-

attached OWC. They found the hydrodynamic performance of the OWC was marginally improved 

with rounded rather than rectangular aperture shape of the submerged front wall. Viviano et al. [16] 

carried out large scale experiments to study wave reflection and loading on an OWC caisson 

breakwater under random wave conditions. Recent experimental load tests of three breakwater-

based OWC chamber regimes, i.e., closed chamber, fully open condition, and operating condition, 

in both regular and irregular wave conditions, were reported by Pawitan et al. [17]. In laboratory 

tests of OWC devices, air compressibility is often neglected – which simplifies the model 

construction. The effects of this neglect on the performance as measured in laboratory tests were 

investigated in a recent work by Lόpez et al. [18]. The variation of the energy conversion 

performance of an OWC as a function of the site was also recently investigated [19].  

Apart from the traditional single-chamber coast or breakwater based OWC, an OWC with a 

dual chamber was also proposed to enhance power extraction [20-22]. Other researchers have 

investigated a U-OWC plant, which includes an additional vertical duct in front of a traditional 

OWC [23-26]. The resonance conditions of the U-OWC can be reached without phase control 

devices. Furthermore, the amplitude of the pressure oscillation in the air pocket was increased, 

which enhanced the performance of the plant. 

When the dimension of the OWC along the coast or breakwater is comparable to the 

wavelength, 3D wave diffraction and radiation problems should be considered. Martins-rivas and 

Mei [27] evaluated the wave power extraction of an OWC attached to the tip of a breakwater. The 
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wave power absorption was found to be independent of the incident wave direction. Martins-rivas 

and Mei [28] considered a coast integrated OWC, whose chamber is a vertical cylindrical shell half 

embedded in a vertical coast. The analysis showed that the power captured by the OWC was doubled 

due to the wave reflection at the vertical coast. Subsequently, Lovas et al. [29] generalized the model 

[28] to an OWC integrated into a coastal corner. More recently, their model was also extended by 

Zheng et al. [30] and Zheng et al. [31] to a general case without the thin-wall restriction, i.e., 

considering the thickness of the OWC chamber wall. For a given outer radius of the chamber, the 

thinner the chamber wall, the higher and broader the main peaks of the wave capture factor 

frequency response. A finite-element model (FEM)-based numerical simulation and experimental 

tests were carried out by Howe and Nader [32] to investigate the hydrodynamics of a Bent Duct 

OWC device implemented in a flat-faced breakwater. OWCs with both rectangular and circular 

cross sections were examined, and the variation in inlet geometry demonstrated low deviations in 

the results. 

Unlike the shore-attached OWC as reviewed above, the offshore OWC allows water waves to 

pass around and/or underneath the device walls. There have been extensive analytical studies for a 

stand-alone offshore OWC. As early as 1978, Evans [33] considered the 2D problem of regular 

waves incident upon an offshore OWC, which was composed of a pair of thin vertical closely-

spaced plates, in the framework of linear potential flow theory. The water column enclosed by the 

plates was assumed to move like a rigid piston in the problem. It was shown that for the 2D offshore 

OWC consisting of two plates of equal length, the maximum analytical efficiency was 50%. Later, 

Evans [34] generalized the previous theory by taking into account the spatial variation of the water 

column surface. To analyze the performance of a heave-only offshore floating OWC, Luo et al. [35] 

developed a 2D fully nonlinear NWT with a dynamic mesh based on the commercial software 

FLUENT. In addition to the natural frequency of the OWC, another resonant frequency, i.e., the 

natural frequency of the chamber, was observed for the heave-free floating OWC device. Therefore, 

the frequency bandwidth of high efficiency can be expanded by adjusting the turbine damping 

coefficient and/or the stiffness of the mooring spring, and more energy could be harnessed from 

ocean waves with a broader banded spectrum. Elhanafi et al. [36] applied a fully nonlinear CFD 

model based on the 2D RANS equations with a VOF surface capturing scheme to study the effects 

of the underwater geometry on the power extraction of a fixed offshore OWC. For a given front lip 

draught, the overall power extraction efficiency can be significantly improved by increasing the 

submergence of the rear lip. More recently, He et al. [37] presented a multi-parameter analytical 

study of the hydrodynamic performance of a pile-supported offshore OWC working as a breakwater. 

The analytical results revealed that a satisfactory wave transmission can be obtained by an 

optimization towards maximum power extraction. If an optimization strategy towards minimum 

wave transmission was employed, a smaller wave transmission coefficient was achieved, but this 

was at the expense of a significant reduction in wave power absorption. Studies of an offshore 2D 

OWC with more complicated shapes, e.g., a dual-chamber OWC, can be found in [38-40]. 

In order to evaluate the power extraction from a 3D offshore OWC consisting of a thin-walled 

hollow cylinder, Evans and Porter [41] proposed a simple analytical model based on the theory of 

pressure distributions and the accurate Galerkin method, which had been previously adopted for 

solving the hydrodynamic problems of the 2D shore-attached OWC [9]. Sheng et al. [42] treated an 

offshore OWC as a two-body system, with the OWC chamber itself and an imaginary “piston” 

replacing part of the water at the free surface inside the chamber. A BEM-based numerical model 
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was applied to solve the hydrodynamics of this two-body system in the frequency domain. After 

implementing the time-domain analysis based on Cummins-Ogilvie’s equation, the effect of a 

nonlinear PTO system was considered. The numerical results for a bottom-fixed OWC were in 

excellent agreement with physical tests [43]. Nader [44] developed a fully numerical 3D FEM model 

based on the inviscid potential flow theory. Hydrodynamic and energetic properties were 

investigated for an offshore fixed/floating OWC, and an array of such offshore fixed OWCs. 

Analytical study of wave power extraction of free-floating OWCs was carried out by Konispoliatis 

and Mavrakos [45]. For an offshore OWC, especially a fixed one, a certain supporting structure 

where the OWC is installed is generally required. Deng et al. [46] considered an OWC supported 

by a coaxial tubular structure. In their model, there was an opening at the side wall below the (still) 

water level, extending from a given depth to the sea bed. The analytical investigation indicated that 

the optimal performance in terms of power absorption was achieved when incident waves 

propagated perpendicularly to the opening. The hydrodynamic performance of other types of 

offshore OWCs, e.g., backward-bent duct buoy (BBDB) and Spar-buoy, was reported in [47-51]. 

The nodding device is a WEC that consists of one or more floats hinged on either an offshore 

structure or coastline and utilizes the rotation of these floats to drive the hydraulic PTO system at 

the hinges to generate electricity. Compared to the extensive studies on the OWCs, there are 

relatively few studies dealing with nodding devices. The Salter's Duck [52], which was proposed by 

Stephen Salter, may well be one of the most famous nodding WECs. An experimental study in a 

narrow wave tank demonstrated that the power absorption efficiency of Salter's Duck could be more 

than 90% [53]. Cruz and Salter [54] utilized a commercial BEM package to examine the impact of 

the rotational axis position and the submergence ratio on the power extraction of a modified Salter 

Duck device. The axis position was found to significantly affect the performance of the device. The 

SDE device and the Wavestar are another two examples of nodding WECs [4, 55]. The SDE WEC 

is composed of a flat float articulated on the coast and a hydraulic system installed at the hinge to 

change the float mechanical motion into electricity. Haren [56] presented a numerical model of 2D 

potential flow theory of the hydrodynamics of a floating plate articulated on a vertical wall, which 

was similar to the concept of SDE. It was shown that all the incident wave power could be captured 

for some specified wave conditions if the plate and PTO system were well designed. In order to 

overcome the problem of an efficiency decline induced by the tidal range, a unique rotating device 

between the coast and the float was introduced by Yang et al. [57]. Wavestar [55] is mainly 

composed of a platform and multiple nodding cylindrical floats hinged around it. Jakobsen et al. 

[58] applied both experiments and inviscid BEM based numerical simulations to determine the 

hydrodynamic and dynamic loads on the Wavestar WEC. The results of the slamming pressures on 

the shell indicated that the asymptotic theory for cylinders may also be applicable to hemispheres. 

Ransley et al. [59] reproduced the pressure distribution and loading on the Wavestar device by 

running a fully nonlinear, coupled model developed with open-source CFD software, OpenFOAM. 

The comparison between the physical and numerical results for the freely pitching cases showed 

close agreement. The construction cost and system complexity of the Wavestar may be high due to 

the requirement of a large supporting platform. This problem may be overcome by integrating the 

nodding device with an offshore OWC. 

Zheng and Zhang [60] proposed a hybrid WEC, which is composed of a long fixed, inverted 

flume with a bottom hole acting as an OWC and a long floating cube hinged on the OWC working 

as an oscillating float. Both the OWC and the rotational motion of the float are utilized to capture 
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wave power. Analytical studies in the 2D Cartesian coordinate system demonstrated that a positive 

influence of the hydrodynamic interaction between the float and the OWC on wave power extraction 

of the hybrid WEC can be achieved for certain wave conditions. Meanwhile, another hybrid WEC 

that consists of a hollow cylinder working as an OWC and several oscillating floats hinged around 

it was proposed and studied by a 3D semi-analytical model [61]. The results indicated that the hybrid 

WEC could lead to a wider bandwidth of frequency response with a higher maximum power capture 

factor compared with the isolated OWC and hinged floats. 

In this paper, a hybrid WEC consisting of an OWC with an OB hinged at the outer wall of the 

OWC is considered, which is referred to as an OWCOB hereafter. The hinged OB may be considered 

as a nodding device. Unlike previously proposed hybrid WECs, the OWC in the present OWCOB 

is encased in a tubular structure, hence the device can be easily integrated into marine structures 

such as piles and offshore wind turbines. When water waves propagate through the OWCOB, the 

water column enclosed by the OWC chamber moves up and down, and a PTO device such as an air 

turbine installed at the top of the OWC is driven to extract wave power. Meanwhile, a second PTO 

such as a hydraulic system installed at the hinge can be driven by the rotation of the OB to capture 

power as well. In order to investigate the power extraction of such a device, a 3D analytical model 

is developed here based on linear potential flow theory and eigenfunction matching method.  

In previous work it was shown that a tubular structure supported OWC with its opening 

deployed on the waveward side had optimal performance in wave power extraction [46]. For this 

reason, the investigation in this paper is concerned with an OWCOB with the OWC opening to 

waveward, unless otherwise stated.  

The rest of this paper is organized as follows. Section 2 describes the analytical model, 

including the solutions of wave diffraction and radiation problems, the expressions of wave 

excitation volume, forces and hydrodynamic coefficients, and the method to evaluate the wave 

power absorption. The model validation is presented in Section 3. In Section 4 the model is applied 

to examine the effect of the configuration of the OWCOB and the main design parameters (e.g., the 

opening size and position) on wave power absorption. Conclusions are drawn in Section 5. 

2 Mathematical model 

Figure 1 shows a sketch of an OWCOB in water of constant depth h. The OWCOB is composed 

of an OWC encased in a tubular structure and an OB hinged at the side of the OWC. The elevation 

of the hinge above the water level is denoted as d. The side wall of the tubular structure is partially 

open at depth d1 with an opening height of d0 and an opening angle α=υπ in the horizontal plane. If 

the starting side of the opening in the horizontal plane is denoted by θ1=γ, then the horizontal axis 

of symmetry of the opening (the dash-dot line in blue, Fig. 1b) is the polar line θ1=γ+α/2. R1 and Ri 

denote the outer and inner radii of the tubular cross-section, respectively. The radius and draught of 

the OB are denoted by R2 and d2, respectively. The horizontal distance between the centres of the 

OWC and the OB is represented by D. There are two PTO systems: a pneumatic PTO system 

consisting of an air turbine located at the top of the OWC, and a hydraulic PTO system consisting 

of a cylinder and a closed oil circuit at the hinge. As waves propagate through the OWCOB, the two 

PTO systems are driven by the motion of the water column enclosed by the OWC chamber and the 

rotation of the OB relative to the hinge, respectively, to capture power from the waves. 

In order to describe the problem mathematically, a Cartesian coordinate system Oxyz is defined 

with the mean water level being the z=0 plane, the Oz-axis pointing vertically upward along the 
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vertical axis of the tubular structure, and the Ox-axis pointing from the OWC towards the OB 

horizontally (see Fig.1b). Additionally, two local cylindrical coordinate systems O1r1θ1z and O2r2θ2z 

are introduced with the origins at the intersections between the vertical axes of the OWC and OB 

and the mean water level.  

 

 

Fig. 1.  Sketch of an OWCOB: (a) bird view; (b) top view. 

 

When the OWCOB is subjected to monochromatic waves of small amplitude A, angular wave 

frequency ω and direction β (Fig. 1b), a velocity potential Re[Φ(x,y,z)e-iωt] may be used to describe 

the flow field assuming that water is inviscid and incompressible. Here, Φ is the complex spatial 

velocity potential, i denotes the imaginary unit, and t represents time. Φ may be decomposed into 

an incident wave spatial potential, ΦI, a diffracted wave spatial potential, ΦD, and a radiated wave 

spatial potential: 

 

4

I D

1

n n

n

X   
=

= + + , (1) 

where nX  denotes the complex amplitude of the air pressure inside the OWC chamber for n=1 

( 1X =p) and the OB velocity oscillation in mode n for n = 2, 3, 4, which represent surge, heave and 

pitch relative to the mass centre of the OB, respectively. Here the mass centre of the OB is assumed 

to coincide with the centroid and its position in the local cylindrical coordinate system O2r2θ2z can 

be expressed as (r2=0, z =z0). Φn represents the radiated spatial potentials induced by unit air pressure 

oscillation inside the OWC chamber (n=1) and that due to unit amplitude velocity oscillation of the 

OB in mode n (n = 2, 3, 4). The Laplace equation in the water domain and a radiation condition at 

infinity are satisfied by both ΦD and Φn. 

For the sake of simplicity, the scattering velocity potential Φ0 is adopted to represent the sum 

of the incident and diffracted velocity potentials, i.e., Φ0=ΦI +ΦD. 

2.1 Boundary conditions 

The boundary conditions that Φχ (χ=0, 1, …, 4) should satisfy are as follows: 

 0
z


=


,  z=-h, (2) 
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 0
z


=


,  r1[Ri, R1], θ1[γ, γ+υπ], z=-h1 and -d1, (3) 

 
,3 ,4 2 2cosr

z



 


  


= −


,  r2[0, R2], θ2[0, 2π], z= -d2, (4) 

 

2

0
z g





 



− =


,  rn[Rn, ∞), θn[0, 2π], z=0, (5) 

 

2

,1

i

z g g



 

  
 




− =


,  r1[0, Ri], θ1[0, 2π], z=0, (6) 

 
1

0





=


,  r1[Ri, R1], θ1=γ and γ+υπ, z[-h1, -d1], (7) 

 
1

0
r


=


,  r1=Ri and R1, θ1[γ, γ+υπ], z[-h1, -d1], (8) 

 

1

0
r


=


,  r1=Ri and R1, θ1[0, 2π], z[-h, -h1], (9) 

 

1

0
r


=


,  r1=Ri and R1, θ1[0, 2π], z[-d1, 0], (10) 

 ( ),2 2 ,4 0 2

2

cos cosz z
r



 


   


= + −


,  r2= R2, θ2[0, 2π], z [-d2, 0], (11) 

where h1=d1+d0,  is the water density, g is the gravity acceleration, and δχ,n is the Kronecker delta. 

2.2 Expressions of wave scattering/radiated potentials 

The water domain can be divided into four regions: I, inner region enclosed by the tubular 

structure, i.e., r1[0, Ri], θ1[0, 2π], z[-h, 0]; II, opening region with a fan-shaped cross-section, 

i.e., r1[Ri, R1], θ1[γ, γ+υπ], z[-h1,-d1]; III, region under the OB, i.e., r2[0, R2], θ2[0, 2π], z[-

h, -d2]; and IV, outer region, i.e., the rest of the water domain. Φχ (χ=0, 1, …, 4) in these four regions 

are denoted as 
in

 , 
open

 ,
OB

  and 
out

 , respectively, and their expressions can be written as 

follows. 

 

I, inner region: 

 ( )
( )

( )
( ) ( ) 1 ,11 iin

1 1 ,

0 i

i
, , e

m l m

m l l

m l l m l

I k r
r z A Z z

k I k R

 




 



 

=− =

= −


  , (12) 

where 
( )

,m lA


 are the unknown coefficients to be determined, 



8 

 

 ( )
( )

( )

1

1

1

, 0

, 0

m l

m l

m l

J k r l
I k r

I k r l

=
= 



, (13) 

in which Jm and Im denote the Bessel function and the modified Bessel function of the first kind and 

order m, respectively. k0 is the wave number and lk (l>0) is the eigenvalue given by, 

 ( )2 tanl lgk k h = − ,     l = 1, 2, 3 … (14) 

 ( ) ( )0.5

0 0 0coshZ z N k z h−= +   ; ( ) ( )0.5 cosl l lZ z N k z h−= +   ; (15) 

where 

 
( )0

0

0

sinh 21
1

2 2

k h
N

k h

 
= + 

 
, 

( )sin 21
1

2 2

l

l

l

k h
N

k h

 
= + 

 
. (16) 

 

II, opening region with a fan-shaped cross section: 

 

( ) ( ) ( )

( )

( )
( )

( )

( )
( )

( )1, 1 1, 1

1open

1 1 ,0 1 , , 1, 1

0 1 1, 1 1, 1

, , cos cos

m l m l

m m l m l l

m l m l m l

I r K r
m

r z F r C D z h
I R K R

   


 

 
 

  
 

 

= =

  
−   

 = + + +      
   

  

 

, (17) 

where 

 
( ) ( )

( ) ( )

( ) ( )

1
,0 ,0

1

,0 1

1 1
,0 ,0

1 1

1 ln , 0

, 0

m m

m m m

m m

r
C D m

R
F r

r r
C D m

R R

 



 
 

−

   
+ + =   

   
= 
    

+     
    

, (18) 

in which 
( )

,m lC


 and 
( )

,m lD


 are the unknown coefficients to be solved; Km is the modified Bessel 

function of the second kind and order m; β1,l is the l-th eigenvalue which is given by 

 1,

1 1

π
l

l

h d
 =

−
, l = 0, 1, 2, 3 … (19) 

 

III, region under the OB: 

 ( ) ( ) ( ) ( )
( )

( ) 2
2, 2 iOB OB2

2 2 ,0 , 2, 2 ,p

12 2, 2

, , cos e

m

m l m

m m l l

m l m l

I rr
r z B B z h

R I R

  

 


   



 

=− =

  
  = + + +   
   

  ,

 (20) 

where 
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( )

( )

( )
( )

I

2 2OB
2,p

2

232
2 2

2

, 0

0, 1,2

1
2 , 3

4

cos
4 , 4

8

z h r
h d

r r z h
h d



 








− =


=

  + − ==   −



 − + =  −

, (21) 

in which 
( )

,m lB


 are the unknown coefficients to be solved; Km is the modified Bessel function of 

the second kind; h2=h; β2,l is the l-th eigenvalue, which is given by 

 2,

2

π
l

l

h d
 =

−
, l = 0, 1, 2, 3… (22) 

 

IV, outer region: 

 

( )
( )

( )
( )

( )

( )
( ) ( ) ( )

iout ,

,0 I ,

0

,2
i, i

1 0

, , e

e e

n

jn nj n

mm l nn

n n m l l

m l m l n

j
m mm l l m

m m l m l n

j m l mm l j
j n

K k r
r z E Z z

K k R

E Z z
K k D I k r

K k R



 


  

   
 

=− =

  
− 

 − −
= =− = =−



= +

+

 

   
, rn<D (23) 

in which 
,

,

j

m lE
 are the unknown coefficients to be determined, α1,2=0, and α2,1=π. Following Zheng 

et al. [62], ՓI in different local cylindrical coordinate systems can be expressed as 

 ( )
( )

( )
( )2,i cos i0 i

I 0

0

i
, , e i e e

0

n n
k D mm m

n n m n

m

Z zgA
r z J k r

Z

   



−

=−

= −  . (24) 

 ( )
( )

( )

, 0

, 0

m l n

m l n

m l n

H k r l
K k r

K k r l

=
= 



, (25) 

where Hm denotes the Hankel function of the first kind and order m. 

 

2.3 Method of computation for unknown coefficients 

The scattering/radiated potentials should satisfy the continuity of normal velocity and pressure 

at the boundaries r1=Ri and R1 and r2=R2, which are given in terms of continuity equations as follows: 

 

1) Continuity of normal velocity at the boundary r1=Ri: 

 

1 1 1 i 1in

1 1 1 i 1

1 open

1 1 1 i 1

1

0, [ ,0] [ , ], , [0,2π]; 

and [ , ], , [ , π] 

, [ , ], , [ , π]

z d h h r R

z h d r R
r

z h d r R
r








   


   




 − − − =  
=  − − =  +

 
  − − =  +

 

, (26) 
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2) Continuity of normal velocity at the boundary r1=R1: 

 

1 1 1 1 1out

1 1 1 1 1

1 open

1 1 1 1 1

1

0, [ ,0] [ , ], , [0,2π]; 

and [ , ], , [ , π] 

, [ , ], , [ , π]

z d h h r R

z h d r R
r

z h d r R
r








   


   




 − − − =  
=  − − =  +

 
  − − =  +

 

,  (27) 

3) Continuity of normal velocity at the boundary r2=R2: 

 

( ),2 2 ,4 0 2 2 2 2 2out

OB

2 2 2 2 2

2

cos cos , [ ,0], , [0,2π]; 

, [ , ], , [0,2π]

z z z d r R

r z h d r R
r

 





    





 + −  − = 
 

= 
  − − = 



,  (28) 

4) Continuity of pressure at the boundary r1=Ri: 

 
open in

1 1 1 i 1, [ , ], , [ , π]z h d r R      =  − − =  + ,  (29)  

5) Continuity of pressure at the boundary r1=R1: 

 
out open

1 1 1 1 1, [ , ], , [ , π]z h d r R      =  − − =  + ,  (30) 

6) Continuity of pressure at the boundary r2=R2: 

 
out OB

2 2 2 2, [ , ], , [0,2π]z h d r R   =  − − =  .  (31) 

After inserting the expressions of the scattering/radiated potentials in different regions as given 

in Section 2.2 into these continuity equations and using the orthogonal properties of the Zl(z) and 

trigonometric functions, the unknown coefficients of the scattering/radiated potentials can be 

determined. A detailed derivation is given in Appendix A. 

2.4 Wave excitation volume flux/forces 

The wave excitation volume flux, i.e., the upward flux at the water surface inside the OWC 

chamber when the dynamic air pressure is zero, can be written as ( )1 i

eRe e tF − 
 

. Considering the 

undisturbed incident wave and the diffracted wave, and using Eq. (12), 
( )1

eF  can be expressed by 

 

( )

( )

( )
( )

( )

i i

2
2π 2π1 0

e 1 1 1 0 1 1 100 0 0 0
0

0 02
0,0 0,i

02 2
10

d d d d

2π
0 0

R R

z
z

l

l

l l

F r r r r
z g

A AR
Z Z

g k k

 
  



=
=



=


= =



 
= − + 

 
 

   



. (32) 

The excitation force/moment acting on the OB in the mode of j (j=2,3,4) is 
( ) i

eRe e
j tF − 

  , 

where 

 
( )

e 0i d
j

j
S

F n s = −  , (33) 

in which S is the wetted surface of the OB; n2=nx, n3=nz, n4=(z-z0)nx-xnz, where 

x y zn n i n j n k= + +  is the unit normal vector pointing into the fluid domain at the wetted surface 

of the OB. After inserting the analytical expressions for the scattering potential as derived in Section 

2.2 into Eq. (33), the wave excitation force acting on the OB in different modes can be calculated 

directly. 
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2.5 Hydrodynamic coefficients 

When the water column inside the OWC chamber or the OB oscillates in the absence of an 

incident wave, the radiated wave reacts with an upward flux at the water surface inside the OWC 

chamber (the so-called radiation volume flux) and force/moment on the OB (the so-called radiation 

force/moment). The complex amplitudes of the radiation volume flux due to a unit dynamic air 

pressure inside the OWC chamber (j=1) or a unit amplitude velocity oscillation of the OB oscillating 

in Mode j (j=2,3,4) can be written into imaginary and real parts as: 

 

( )

( )

( )
( )

( )

i2π1

R, 1 1 1
0 0

0

2
0,0 0,i

0 1, 1,2 2
10

d d

2π
0 0 i

R j

j

z

j j

l

l j j

l l

F r r
z

A AR
Z Z a c

g k k







=



=


=



 
= − + = − 

 
 

 



. (34) 

Similarly, the complex amplitudes of the radiation force/moment acting on the OB in Mode j’ 

due to a unit dynamic air pressure inside the OWC chamber (j=1) or a unit amplitude velocity 

oscillation of OB oscillating in Mode j (j=2,3,4) can be written in terms of hydrodynamic 

coefficients aj’,j and cj’,j as: 

 
( ) ( )

R, , ,i d i
j j

j j j j j j
S

F n s a c  


  = − = − . (35) 

The hydrodynamic coefficients aj’,j and cj’,j (j, j’=1, 2, 3, 4) as obtained from Eqs. (34) and (35) 

are real and dependent on frequency ω, and represent the hydrodynamic coupling between the OWC 

and the motion of the OB. 

2.6 Motion response and wave power extraction in regular waves 

Assuming that both the pneumatic and hydraulic PTO systems are linear, the response of the 

OWCOB in the frequency domain can be evaluated by solving the following motion response matrix 

equation: 

 
( ) ( ) T

ea PTO d PTO s J

J J

i i   − + + + + +   
=    

     

M M M C C K A

0A 0

FX

F
, (36) 

where M and Ks represent the mass and hydrostatic restoring matrices, respectively; Ma and Cd are 

the hydrodynamic coefficient matrices that are composed of aj’,j and cj’,j, respectively; MPTO is the 

matrix accounting for the influence of air compressibility; CPTO is the damping matrix induced by 

the pneumatic and hydraulic PTO systems; AJ denotes a constraint matrix due to the hinge restriction; 

X =[ 1X , 2X , 3X , 4X ]T is the velocity response vector of the OWCOB to be determined; FJ is the 

hinge force vector; and Fe is the wave excitation volume flux/forces vector. The elements of Fe, Ma 

and Cd can be obtained from Sections 2.4 and 2.5. Expressions of MPTO, CPTO and AJ are as follows: 

 

2

1

2

a 0

PTO

π

0

0

0

R h

c 

 
 
 
 =
 
 
 
 

M , 

1

PTO

2

0

0

c

c

 
 
 =
 
 
 

C , J

1

0 1 0

0 0 1

d

D R

 
=  

− 
A , (37) 

where ca is the sound velocity in the air; ρ0 denotes the static air density. In this study, ρ/ρ0 = 1000 

and ca = 340 m/s are adopted. c1 and c2 are the PTO damping coefficients of the pneumatic and 
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hydraulic PTO systems selected to maximize power absorption of the OWCOB, which can be 

obtained by using an analytical model derived by Zheng and Zhang [60]. 

After solving the response of the OWCOB, the time-averaged power that is captured from 

regular waves can be evaluated by 

 ( )2 2

1 1 2 4

1

2
P c X c X= + , (38) 

which can be further expressed by a nondimensionalized parameter, i.e., the power capture factor, 

 2

2

g

Pk

gA c



= , (39) 

where k is employed hereinafter to represent k0 for simplicity, and cg is the group velocity. 

2.7 Wave power extraction in irregular waves 

The JONSWAP spectrum was used to describe the incident wave field, and from this the wave 

power absorption of the OWCOB in irregular waves was evaluated. The JONSWAP spectrum can 

be expressed as [63] 

 ( ) ( ) ( ) ( )
2 24

42
exp / 1 / 21.25 /

, = e
p

pps

p

H
S

   

 


  

 

 − −−   
 
 
 

, (40) 

where Hs is the significant wave height, ωp is the peak frequency, and 

 
( )

( )
1

0.0624 1.094 0.01915ln
=

0.23 0.0336 0.185 1.9





 




 
−

−

+ − +
, 

0.07,
=

0.09,

p

p

 


 






, =3.3 . (41) 

The time-averaged wave power absorption in irregular waves may be calculated by 

 ( ) ( ) ( ) ( )( )2 2

1 1 2 4
0

= , dirr p pP S c X c X


     


   + , (42) 

where 
1c

 and 
2c

 are two frequency-independent PTO damping coefficients different from c1 

and c2, the frequency-dependent optimized PTO damping coefficients; and 
1X 

 and 
4X 

 are the 

modified 
1X  and 

4X , which can be calculated with Eq. (36) if c1 and c2 are replaced by 
1c

 and 

2c
, respectively, based on a regular wave with an amplitude of 1 m (A = 1.0 m). 

The total incident wave power of the irregular waves per unit crest width is 

 ( ) ( ) ( ),
0

= , din irr p g pP gc S     


 . (43) 

The power capture factor in irregular waves irr
 can then be written as 

 

,

irr
irr

in irr

k P

P



 = , (44) 

in which k* satisfies ( )2 tanhp gk k h  = . 

Similarly, the power capture factor in regular waves is rewritten as: 
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2

2

g

kP

gA c





 = , (45) 

where P* is a modified P, which can be calculated with the employment of Eqs. (36) and (38) as 

well but with c1 and c2 replaced by 
1c

 and 
2c

, respectively. 

3 Validation 

For the device with α=2π, i.e., υ=2, and subjected to incident waves with either β=0 or π, the wave 

diffraction and radiation problems become the same as those for a hollow cylinder and a solid 

cylinder, which can be solved with the analytical model of Zheng et al. [62]. When D→∞, the device 

transforms itself into an isolated OWC and an isolated buoy [64], with negligible hydrodynamic 

interaction between the two. For Ri→R1 and h1=h, i.e., d1+d0=h, the isolated OWC behaviour is 

described by Deng et al. [46]. These two extreme cases – Case I, a hollow cylinder and a solid 

cylinder [62], and Case II, an isolated OWC [46] and an isolated buoy [64] – may be used to validate 

the present analytical model. 

The dimensionless wave diffraction and radiation-related parameters are chosen as follows unless 

defined otherwise: 

 
( ) ( )1 1

e e

g h
F F

Ahg
= , ( ) ( )( ) ( ) ( )( )1 1 1 1

1,1 1,1 PTO PTO 1,1 1,1 PTO PTO, , , , , ,
g h

c a c a c a c a
h


 =  (46a) 

 
( ) ( )4 4

e e3

1
F F

gh A
= , 

( ) ( )( ) ( ) ( )( )2 2 2 2

4,4 4,4 PTO PTO 4,4 4,4 PTO PTO4

1
, , , , , ,c a c a c a c a

h gh
 


=  (46b) 

 
( ) ( )

e e2

1j j
F F

gh A
= , ( ) ( ), , , ,2

1
, ,j j j j j j j jc a c a

h gh



   = , for j, j’=2,3 (46c) 

 ( ) ( ), , , ,2

1
, ,j j j j j j j jc a c a

h
   = , for j=1, j’=2,3; or j=2,3, j’=1 (46d) 

 ( ) ( ), , , ,3

1
, ,j j j j j j j jc a c a

h
   = , for j=1, j’=4; or j=4, j’=1 (46e) 

 ( ) ( ), , , ,3

1
, ,j j j j j j j jc a c a

h gh



   = , for j=2,3, j’=4; or j=4, j’=2,3 (46f) 

Figures 2 and 3 present the comparison of the dimensionless wave excitation flux/forces and 

hydrodynamic coefficients calculated with the present and previous models [46, 62, 64] for Cases I 

and II, respectively. In Case II, (R1-Ri)/h=0.01 and D/h=100 are adopted to approximately match 

the thin-walled assumption as employed by Deng et al. [46] and to minimize the hydrodynamic 

interaction between the OWC and the OB, respectively. 
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Fig. 2.  Comparison using dimensionless hydrodynamic parameters between the present 

analytical model and the model by Zheng et al. [62] for Case I, i.e., a hollow cylinder and a solid 
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cylinder [R1/h=0.5, Ri/h=0.4, α=2.0π, γ=0, d0/h=0.5, d1/h=0.5, R2/h=0.4, d2/h=0.2, D/h=2.0, β=0]. 

 

 

Fig. 3.  Comparison using dimensionless hydrodynamic parameters between the present 

analytical model and the models by Deng et al. [46] and Yeung [64] for Case II, i.e., an isolated 

OWC and an isolated buoy [R1/h=0.5, Ri/h=0.49, α=0.75π, γ=π, d0/h=0.8, d1/h=0.2, R2/h=1.0, 

d2/h=0.25, D/h=100, β=0.5α] 

 

The excellent agreement between the results of the present and previous model is apparent in 

Figs. 2 and 3, and the model output is analysed further on this basis. It is worth noting that the model 

presented here was developed using linear potential flow theory, and therefore did not capture 

viscous effects. While these may be important in extreme wave conditions, the linear model is useful 
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in quantifying OWCOB performance in the more usual range of non-extreme sea states. 

4 Results and discussion 

The model was run in a variety of scenarios. The OWCOB was initially compared to the 

isolated OWC and OB cases. The model was then applied to investigate the effects of: incident wave 

direction; OWC opening size; OWC opening submergence; distance between OWC and OB; hinge 

position; and OB radius. Finally the power absorption in regular and irregular waves was 

investigated. 

 

4.1 Comparison between OWCOB and isolated OWC and OB 

In this subsection, wave power extraction by the OWCOB is compared with stand-alone OWC 

[65] and OB working in isolation (Fig. 4), i.e., an OWC and an OB hinged on a leg standing on the 

seabed, respectively, working in the open sea. 

 

 

Fig. 4.  Sketch of the individual (a) OWC and (b) OB working in isolation 

 

Two cases are considered (Fig. 5): in case 1, the OB is articulated on the same side of the OWC 

opening (i.e., γ+α/2=0); in case 2, the OB is articulated on the opposite side of the OWC (i.e., γ+α/2= 

π). 
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Fig. 5.  Two configurations of OWCOB: (a) case 1, OB on the side of the OWC opening, 

γ+α/2=0; (b) case 2, OB on the opposite side of the OWC, γ+α/2=π. [R1/h=0.5, Ri/h=0.4, α=0.75π, 

d0/h=0.3, d1/h=0.2, R2/h=0.4, d2/h=0.2, D/h=1.5, d/h=0.5] 

 

Figure 6 presents the performance comparison between the OWCOB and the isolated OWC 

and OB for cases 1 and 2, in which ηOWC and ηOB denote the power capture factor of the isolated 

OWC and OB with the corresponding PTO damping optimized, respectively. Importantly, the 

OWCOB is advantageous in terms of frequency bandwidth (see Fig. 6a) and incident wave direction 

bandwidth (see Fig. 6b) relative to stand-alone OWCs or OBs. This holds for both configurations, 

case 1 and 2. 

As expected, the ηOWC-kh curves for cases 1 and 2 overlap each other (Fig. 6a). The isolated 

OB with incident waves from the hinge side (i.e., the isolated OB for case 2) performs much better 

than in case 1 in terms of both peak power absorption and frequency bandwidth of high efficiency 

(large power capture), indicating the considerable influence of the hinge position (or incident wave 

direction) on wave power extraction. Indeed, the coupling between the surge, heave and pitch modes 

of the OB motion is strongly influenced by the hinge position.The peak value of η occurring around 

kh=2.0 in case 1 (η=3.98) is larger than in case 2 (η=3.26), which may be induced by a constructive 

hydrodynamic interaction between the OWC and the OB. However, the overall performance of 

OWCOB in case 2 is drastically better than in case 1, especially for higher frequencies, kh>2.1. The 

main bandwidths of η>2.0 for cases 1 and 2 are 0.98 and 1.54, respectively. A sharp peak of the η-

kh curve for both cases at kh≈4.8 results from the strong response of the OWC – a sharp peak is 

also apparent on the ηOWC-kh curve at the same frequency, but not on the ηOB-kh curve. The sharp 

peak of η for case 2 is slightly higher and broader than that of ηOWC, whereas for case 1 the sharp 

peak of η is slightly lower and narrower compared with that of ηOWC. 

The variation of η, ηOWC, and ηOB versus the incident wave direction, β, for kh=2.0 is plotted 

in Fig. 6b. The largest value of ηOWC is observed when the OWC opening is on the waveward side 

with its axis of symmetry exactly perpendicular to the wavefront, which agrees well with the results 

of Deng et al. [46]. The ηOB-β curves for cases 1 and 2 overlap each other as expected. The main 

peak value of η and the corresponding β are (3.9, π) and (3.3, 0) for cases 1 and 2, respectively. By 

contrast, when the incident wave direction is 0.2π away from its optimum, the η-value reduces to 

2.2 in case 1, but remains above 2.4 in case 2. From a practical point of view this is an important 

result – it means that the configuration of case 2 can capture significant power from a larger range 

of incident wave directions. 

 



18 

 

 
Fig. 6. (a) Variation of η, ηOWC, ηOB with kh for case 1 with β=π and case 2 with β=0; (b) Variation 

of η, ηOWC, ηOB with β for cases 1 and 2, kh=2.0. 

 

Notice that in Fig. 6b, as β varies from 0 to π for kh=2.0, η basically oscillates around 2.0. In fact, 

for any given wave frequency, there is a general identity that the integral of the optimum wave 

capture factor (ηMAX) over all incidence angles must satisfy regardless of the dimensions of the 

OWCOB: 

 ( )
2π

MAX
0

1
d 2

2π
   = . (47) 

This can be theoretically confirmed by invoking the ideal optimization criteria and the Haskind 

relation. A detailed derivation is given in Appendix B. 

As may be readily seen in Fig. 6, the OWCOB in case 2 works better than in case 1 from the 

point of view of the bandwidth of high wave power capture factor, both in terms of frequency 

response and incident wave direction response for kh=2.0. For this reason, the following multi-

parameter sensitivity analysis is focused on the case 2 configuration, i.e., with the OWC opening 

and the OB on the waveward and leeward sides of the OWC, respectively (Fig. 6b). 

 

4.2 Effect of incident wave direction 

Figure 7 presents the frequency responses of η when a monochromatic plane wave is incoming 

from different directions, i.e., β=0, 0.25π, 0.5π, 0.75π, 1.0π. For 1.0<kh<4.0, the power captured by 

the OWCOB with β=0 is the largest among the five cases. What is more, the corresponding 

bandwidth of high wave power capture factor is the largest as well. Specifically, the peak value of 

η and the η>2.0 bandwidth for β=0, 0.25π, 0.5π are (3.26, 1.51), (2.22, 0.63) and (2.93, 0.70), 

respectively. For short waves, e.g., kh>5.0, the OWCOB with β=0.25π is observed to absorb more 

power than the other four cases. When the incident waves propagate perpendicular to the axis of 

symmetry of the OWCOB, i.e., β= 0.5π, a sharp peak of η around kh=2.2 is obtained, whereas the 

overall wave power absorption for 4.0<kh<7.0 is the worst. When β increases to 0.5π and 0.75π, the 

main peak of η shifts towards low wave frequencies (kh≈1.2) with the peak value dropping 

drastically to 1.21~1.28. 
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Fig. 7.  Variation of η with kh for β=0, 0.25π, 0.5π, 0.75π, 1.0π. [R1/h=0.5, Ri/h=0.4, α=0.75π, 

γ+α/2=π, d0/h=0.3, d1/h=0.2, R2/h=0.4, d2/h=0.2, D/h=1.5, d/h=0.5] 

 

4.3 Effect of OWC opening size 

The opening size of the OWC is a key factor affecting the power extraction of OWCOB. The 

frequency responses of η for the device with opening sizes α=0.5π, 0.625π, 0.75π, 0.875π, 1.0 are 

plotted in Fig. 8. As α increases from 0.5π to 1.0π, the main peak of η rises linearly, broadens, and 

shifts towards higher frequencies. This can be explained by resonance in the OWC chamber: when 

the opening grows in size, the mass of the water column restricted by the OWC chamber decreases, 

leading to higher resonant frequencies, which in turn results in the peak of η shifting towards higher 

incident wave frequencies. 

 

Fig. 8.  Variation of η with kh for α=0.5π, 0.625π, 0.75π, 0.875π, 1.0π. [R1/h=0.5, Ri/h=0.4, 

γ+α/2=π, d0/h=0.3, d1/h=0.2, R2/h=0.4, d2/h=0.2, D/h=1.5, d/h=0.5, β=0] 

 

4.4 Effect of OWC opening submergence  

In this subsection the wave power extraction of the OWCOB with different values of the 

opening submergence, i.e., d1/h=0.1, 0.15, 0.2, 0.25, 0.3, is examined (Fig. 9). It will be seen that 

the OWCOB with a smaller submergence of the opening performs better in terms of both the main 

peak and the frequency bandwidth of wave energy capture. This is reasonable because most wave 

power (approximately 95%) is concentrated at no more than a quarter of a wavelength below the 

sea water level [1], and the lower the position below the water level, the weaker the wave power 
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density. A similar effect of the opening submergence also applies to the sharp peak of η around 

kh=5.0. 

In practice, the submergence of the opening should be large enough to keep the opening 

continuously submerged, so that air does not escape through it. Needless to say, the tidal range and 

wave climate at the site of deployment must be taken into account in determining the submergence. 

 

 

Fig. 9.  Variation of η with kh for d1/h=0.1, 0.15, 0.2, 0.25, 0.3. [R1/h=0.5, Ri/h=0.4, α=0.75π, 

γ+α/2=π, d0/h=0.3, R2/h=0.4, d2/h=0.2, D/h=1.5, d/h=0.5, β=0] 

 

4.5 Effect of distance between OWC and OB 

The hydrodynamic interaction between the OWC and OB may be expected to vary with the 

distance D between them. To ascertain this point the performance of the OWCOB for five cases, 

with D/h=1.2, 1.35, 1.5, 1.65, 1.8, is compared (Fig. 10). Wave power extraction for long waves, 

e.g., kh<1.2, and around kh=4.8, where the sharp peak occurs, is almost independent of D/h. For the 

rest of the computed range of kh, η varies to some extent with D/h, reflecting the hydrodynamic 

interaction between the two subsystems. 

 

Fig. 10.  Variation of η with kh for D/h=1.2, 1.35, 1.5, 1.65, 1.8. [R1/h=0.5, Ri/h=0.4, α=0.75π, 

γ+α/2=π, d0/h=0.3, d1/h=0.2, R2/h=0.4, d2/h=0.2, d/h=0.5, β=0] 

 

4.6 Effect of hinge position 

Although the elevation of the hinge (d/h) does not affect the basic wave excitation moment and 
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hydrodynamic coefficients of the OB relative to its mass centre as calculated in the analytical model, 

it has a significant influence on the rotary stiffness and inertia of the OB, the wave excitation 

moment and the rotary hydrodynamic coefficients relative to the hinge point. 

In order to study the effect of the vertical position of the hinge on power absorption of the 

OWCOB, the frequency responses of η for the device with d/h=-0.5, -0.25, 0, 0.25, 0.5 are examined 

in this subsection (Fig. 11). For relatively long waves, e.g., kh<1.2, the performance of the OWCOB 

is not significantly influenced by the vertical hinge position. For shorter waves, the wave power 

absorption of the device becomes more dependent on the value of d/h. Although the largest value 

of the main peak (η=3.3) is obtained for the device with the lowest hinge position (d/h=-0.5), a 

significant improvement in η can be achieved for 2.3<kh<7.0 by raising the hinge position. In other 

words, the highest hinge position of the five considered led to the best results. 

 

Fig. 11.  Variation of η with kh for d/h=-0.5, -0.25, 0, 0.25, 0.5. [R1/h=0.5, Ri/h=0.4, α=0.75π, 

γ+α/2=π, d0/h=0.3, d1/h=0.2, R2/h=0.4, d2/h=0.2, D/h=1.5, β=0] 

 

4.7 Effect of OB radius 

The OB radius also affects the behaviour of the OWCOB. Wave power absorption of the device 

with different values of the OB radius, i.e., R2/h=0.3, 0.35, 0.4, 0.45 and 0.5, was examined (Fig. 

12). 

In the computed range of wave conditions, as R2/h increases η is found to increase and decrease, 

respectively, for kh<2.4 and 3.0<kh<6.0. This may be explained from the point of view of the natural 

frequency of the OB. As R2/h becomes large, the OB mass grows, leading to a smaller natural 

frequency of the OB. Therefore, a larger value of R2/h is generally advantageous for small wave 

frequencies, e.g., kh<2.4, and in contrast, disadvantageous for large wave frequencies, e.g., 

3.0<kh<6.0. 
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Fig. 12 Variation of η with kh for R2/h =0.3, 0.35, 0.4, 0.45, 0.5. [R1/h=0.5, Ri/h=0.4, α=0.75π, 

γ+α/2=π, d0/h=0.3, d1/h =0.2, d2/h=0.2, D/h=1.5, d/h=0.5, β=0] 

 

4.8 Wave power absorption in regular and irregular waves 

Let us fix the values of 
1c

  and 
2c

  that maximise power extraction for specific wave 

conditions, kh = 2.0. Fixing the optimal values of PTO coefficients that maximise power extraction 

for a fixed wave condition can be of practical interest due to the difficulty in tuning the pneumatic 

and hydraulic PTO systems with a wide range of wave frequencies. 

Fig. 13 presents the behaviour of η* and 
irr 

, where the abscissa for 
irr 

 refers to k*h, which 

is associated with the peak frequency ωp of the JONSWAP spectrum, while the abscissa for η* refers 

to kh, which is associated with the frequency of the monochromatic incident waves. Unlike the 

bimodal η*-kh curve, the 
irr 

- k*h curve is found to be unimodal in the computed range of wave 

conditions. Both curves peak around kh(k*h)=2.0. The corresponding peak value of 
irr 

 is found 

to be smaller than that of η*. The narrow peak of the η*-kh curve occurs around kh=5.0. Although 

irr 
 < η* is observed around the two resonant frequencies (kh≈2.0 and 5.0), the OWCOB in 

irregular wave conditions becomes more efficient outside the resonant frequencies. Similar results 

were reported in the context of OWCs [66] and flap-type oscillating wave surge converters [67]. 

 

Fig. 13 Variation of η* (
irr 

) with kh (k*h) for (
1c

,
2c

)=(c1, c2)|kh=2.0. [R1/h=0.5, Ri/h=0.4, 

α=0.75π, γ+α/2=π, d0/h=0.3, d1/h =0.2, R2/h=0.4, d2/h=0.2, D/h=1.5, d/h=0.5, β=0] 
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5 Conclusions 

A new, hybrid concept of wave energy converter, referred to as OWCOB, was proposed, which 

combines an Oscillating Water Column (OWC) and an Oscillating Buoy (OB) hinged on its side. In 

order to solve the problems of wave diffraction and radiation from the OWCOB, an analytical model 

based on linear potential flow theory and an eigenfunction matching method was developed. The 

wave power extraction of the OWCOB was then evaluated considering linear PTOs for both the 

OWC and OB. The model gave similar output to previous numerical models of OWCs and OBs. 

The model was then applied to investigate the performance of the hybrid WEC. It was found that 

the OWCOB performs generally better than stand-alone OWCs or OBs in terms of both frequency 

bandwidth and incident wave angle bandwidth.  

In addition, a multi-parameter sensitivity analysis on the power extraction of the OWCOB was 

carried out, including the effect of its general configuration (the positions of the OWC opening and 

the OB relative to the incident wave direction), the incident wave direction, the size and 

submergence of the OWC opening, the distance between the OWC and the OB, the OB hinge height 

and the OB radius. 

The configuration with the OWC opening waveward and the OB hinge leeward (case 2) was 

found to be advantageous in terms of wave power absorption; more specifically, it was found to 

have a broader primary band of power capture factor response compared to the configuration with 

the OB on the same side as the OWC opening (case 1). The main bandwidths of η>2.0 for cases 1 

and 2 are 0.98 and 1.54, respectively. The rest of the multi-parameter study was carried out based 

on the configuration of case 2. For different incident wave directions with 1.0<kh<4.0, the power 

captured by the OWCOB is greatest when the OWC and OB are in line with the wave direction. As 

the angle of the OWC opening, α, increases from 0.5π to 1.0π, the value of the main peak of the 

wave power capture factor increases linearly. Meanwhile, the main peak broadens (in terms of 

frequency response) and its position shifts towards larger wave frequencies. The frequency band of 

the power capture factor response can be further broadened by decreasing the submergence of the 

opening and/or increasing the elevation of the hinge. These results indicate the variations in 

geometry and configuration that can be explored in optimizing the OWCOB design for a specific 

site, i.e., a specific wave climate. 

The findings in this paper are expected to encourage OWC developers to consider the 

possibility of adding an additional OB to an OWC in order to improve the overall wave power 

absorption. The OWC in the present OWCOB is placed on a tubular structure, which facilitates its 

installation on many marine structures – including offshore wind turbines. 

It should be noted that combining two separate technologies on the same WEC may increase 

both building costs (CAPEX) and O&M costs (OPEX) due to the increased overall complexity of 

the device. In addition to the hydrodynamics and wave power extraction performance of the 

OWCOB, which are the focus of this work, the Levelised Cost of Energy (LCoE) of the device 

(including its CAPEX and OPEX) should be carefully evaluated. This evaluation is beyond the 

scope of this paper and, therefore, left for future work. 
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Appendix A. Integral equations of the scattering and radiation problems 

1) After inserting Eqs. (12) and (17) into Eq. (26), multiplying both sides by Zζ(z) 1i
e

−   and 

integrating for z[-h,0] and θ1[0,2π], for any pair of integer (τ, ζ), it can be shown that 
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2) After inserting Eqs. (17) and (23) into Eq. (27), multiplying both sides by Zζ(z) 1i
e

−   and 

integrating for z[-h,0] and θ1[0,2π], for any pair of integer (τ, ζ), we have  
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3) After inserting Eqs. (20) and (23) into Eq.(28), multiplying both sides by Zζ(z) 2i
e

−   and 

integrating for z[-h,0] and θn[0,2π], for any pair of integer (τ, ζ), we have 
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4) After inserting Eqs. (12) and (17) into Eq. (29), multiplying both sides by 

cos[β1,ζ(z+h1)]cos[τ(θ1-γ)/ν] and integrating for z[-h1,-d1] and θ1[γ, γ+νπ], for any pair of integer 

(τ, ζ), it can be obtained that 
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5) After inserting Eqs. (17) and (23) into Eq. (30), multiplying both sides by 
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cos[β1,ζ(z+h1)]cos[τ(θ1-γ)/ν] and integrating for z[-h1,-d1] and θ1[γ, γ+νπ], for any pair of integer 

(τ, ζ), we have 
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6) After inserting Eqs. (20) and (23) into Eq. (31), multiplying both sides by cos[β2,ζ(z+h)] 2i
e

−  

and integrating for z[-h,0] and θ2[0,2π], for any pair of integer (τ, ζ), we have 
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Eqs.(A.1), (A.4), (A.8) and (A.11) form a linear algebraic system, which can be used to solve 
,

,

n

m lA
, 

,

,

n

m lC
, 

,

,

n

m lD
 and 

,

,

n

m lE
 numerically after truncation. In the present model, the infinite terms of 

i
e nm−  /cos(mθ1/ν), and Zl(z)/cos[βn,l(z+hn)] are truncated at m=M and l=L, respectively. Accurate 

results can be obtained by choosing M=12, L=20. 

Appendix B. Identity of the optimum wave capture factor over all incidence angles 

The total hydrodynamic moment on OB (Ft) relative to the hinge and the total volume flow on 

OWC (Qt) can be expressed in matrix notation as [68] 
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, (B.1) 

where the first term represents the excitation quantities and the last term the radiation problem. u 

and p denote the rotation velocity of OB and the air pressure of OWC, respectively. Z, H and Y are 

hydrodynamic coefficients, which can be decomposed into their real and imaginary parts: 

 iZ R X= − , (B.2a) 

 iY G B= − , (B.2b) 

 iH C J= − . (B.2c) 

Following Falnes [68], Zheng et al. [69], the theoretical maximum power that may be extracted 

by the OWCOB can be expressed as 
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The theoretical maximum absorbed power as shown in Eq. (B.3) is obtained when an ideal 

PTO system is applied, such that 

 
1

e

1

2

u

p

− 
= 

− 
S Q . (B.5) 

Note S is a complex Hermitian matrix, which can be written as the product of an upper real 

triangular matrix H and its transpose with the employment of the Cholesky decomposition, 

 T=S H H , (B.6) 

hence, 

 ( )
1

1 1 T
−

− −=S H H . (B.7) 



30 

 

For the sake of convenience, a column vector is defined as 

 ( ) ( ) ( )
1
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−

= HW Q , (B.8) 

from which Eq. (B.3) can be rewritten as 

 ( ) ( ) ( )†
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8
P   = W W . (B.9) 

Using the Haskind relation, S can be rewritten with the integral of Qe over all incidence angles as 

[61] 
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Multiplying two H related inverse matrices results in 
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leading to the integral 
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Integrating Eq. (B.9) over β[0,2π] and adopting Eq. (B.12) gives 
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