
Title A decentralized cloud management architecture based on
Application Autonomous Systems

Authors Dong, Dapeng;Xiong, Huanhuan;González-Castañé,
Gabriel;Morrison, John P.

Publication date 2018-07-14

Original Citation Dong, D., Xiong, H., Castañé, G. G. and Morrison, J. P. (2018)
'A decentralized cloud management architecture based on
Application Autonomous Systems', in Ferguson D., Muñoz V.,
Cardoso J., Helfert M., Pahl C. (eds) Cloud Computing and Service
Science: 7th International Conference, CLOSER 2017, Porto,
Portugal, April 24–26, 2017. Communications in Computer and
Information Science, vol 864. Cham: Springer International
Publishing, pp. 102-114. doi:10.1007/978-3-319-94959-8_6

Type of publication Conference item

Link to publisher's
version

10.1007/978-3-319-94959-8_6

Rights © 2018, Springer International Publishing AG, part of Springer
Nature. The final authenticated version is available online at
https://doi.org/10.1007/978-3-319-94959-8_6

Download date 2024-05-03 05:24:52

Item downloaded
from

https://hdl.handle.net/10468/6620

https://hdl.handle.net/10468/6620

A Decentralized Cloud Management
Architecture based on Application Autonomous

Systems

Dapeng Dong, Huanhuan Xiong, Gabriel G. Castañé, and John P. Morrison

Department of Computer Science, University College Cork
T12 YN60, Cork, Ireland,

{d.dong, h.xiong, g.castane, j.morrison}@cs.ucc.ie

Abstract. Driven by the successful business model, cloud computing is
evolving rapidly from a moderate size data center consisting of homoge-
neous resources to a hyper-scale heterogeneous computing environment.
The evolution has made the computing environment ever-increasingly
complex, thus, raises challenges for the traditional approaches for manag-
ing a cloud environment in an efficient and effective manner. In response,
a decentralized system architecture for cloud management is introduced.
In this architecture, the management responsibility and resource orga-
nization in a conventional cloud environment are re-considered. The re-
consideration results in composing a cloud environment into three en-
tities including the Infrastructure, the Cloud Utility and Information
Base, and Application Autonomous Systems. In this configuration, ser-
vice providers focus on providing connected physical resources and in-
troducing featured resources. Information related to the Infrastructure
is stored and periodically updated in the Information Base. A consumer
employs an Application Autonomous System for managing the life-cycle
of a cloud application. An Application Autonomous System in the con-
text of this paper is defined as a self-contained entity that encapsulates
a cloud application, the associated resources and the management func-
tions. An Application Autonomous System uses the Information Base
and Cloud Utilities to locate and acquire desired resources, subsequently
resources are deployed on the Infrastructure by invoking Cloud Utilities.
Thereafter, the Application Autonomous System manages the life-cycle
of both the application and the associated resources. Consumers are of-
fered opportunities to employ preferred algorithms and strategies for this
management. Thus, the responsibility of cloud application management
and partially the resource management has shifted from service providers
to the consumers in this decentralized system architecture.

Keywords: cloud architecture, decentralized management, resource man-
agement, service management

1 Introduction

The success of the business model and the service model of the utility com-
puting have motivated service providers to build and expend their data centers

2

to an unprecedented size. It has been estimated that Google data centers may
consist of one million servers in 2013 [8] and grew to ∼2.5 million servers in
2016 [4]; Facebook data centers consist of ∼60K servers in 2010 [6]; and a more
recent Microsoft data center has the capacity to host ∼224K servers on a sin-
gle site [5]. At the same time, modern data center servers are built with tens
of processing cores and hundreds of Gigabytes of system memory, the actual
number of virtual machines and/or containers deployed in a data center can be
several magnitude more than the the physical servers. Along with the emerg-
ing trends for supporting High-Performance Computing (HPC) applications, a
wide variety of heterogeneous hardware resources have been introduced to the
cloud environments. The management of such large scale and diverse resources
becomes increasingly challenging for cloud service providers.

Currently, the majority of existing cloud management platforms can be cate-
gorized by the cloud service models, namely Software-as-a-Service (SaaS), Platform-
as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS), defined by the Na-
tional Institute of Standards and Technology (NIST) [14]. The cloud platforms
for managing IaaS, for example OpenStack [16], provide tools and utility libraries
for managing physical and virtual resources. The main challenges for manag-
ing IaaS are on the resource allocation efficiency and infrastructure operational
efficiency from a technical perspective. The IaaS management platforms also
provide Application Programming Interfaces (APIs) and user interfaces to the
resource consumers. Consumers use these interfaces for provisioning resources in
a self-service mode. For instance, a consumer (either an user or a program) can
acquire resources through the interfaces provided by the management platform.
The resource scheduling and allocation components of the management plat-
form decide where the resources (e.g., virtual machines or containers) should
be allocated. This poses two concerns. First, resources are provisioned and allo-
cated before the deployment of the actual cloud services. This process does not
consider the characteristics of each individual service nor the inter-relationships
between services that all together constitute as a complete cloud application.
This can potentially be harmful to the overall performance of the cloud ap-
plication, due to that the underlying virtual infrastructure/resources were not
constructed/provisioned in an optimal configuration. Second, in response to the
quantity and diversity of the underlying resources to be managed, the increas-
ing complexity of resource acquisition requirements, the more restricted service
level agreement, the volume of requests for resources and the dynamicity of the
environment, novel management strategies for efficient and effective provisioning
and managing the life-cycle of resources (physical and virtual) are needed, which
determines a sustainable cloud environment.

The subscribers of IaaS services are responsible for configuring the leased
resources and the subsequent deployment of the services/applications on the
resources. Often, the configuration processes and the deployment of services/ap-
plications are time consuming and may require domain-specific knowledge and
skills. To ease these processes, management frameworks and platforms for PaaS
start gaining popularities, for example, OpenStack Solum [19] and Apache Brook-

3

lyn [1]. These PaaS management platforms provide facilities for consumers to
express their needs and requirements in a blueprint alike style, articulated in
domain-specific languages, for example, Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA) [20] and Cloud Application Management
for Platforms (CAMP) [3]. These languages are sufficiently flexible to express
the details of the entire service and resource life-cycle management, and surely
results in a blueprint that is complex and subject to error-prone.

Nevertheless, the service and resource deployment are still two separate pro-
cesses. Resources are provisioned and deployed by invoking IaaS management
functions, for example, in an OpenStack managed environment, an application
and resource orchestration framework, such as Heat [9], invokes OpenStack Nova
services (e.g., nova-api, nova-conductor, nova-scheduler and nova-compute) for
provisioning and deployment of virtual machines [15], and uses OpenStack Neu-
tron for creating virtual networking environment [17]. Given that the underly-
ing resources are ready to use, the Heat deploys services/applications on the
resources. This also implicitly allows cloud consumers to have full control over
the management of applications as well as the underlying resources and subse-
quently narrows down the opportunities for cloud service providers to improve
resource utilization, power efficiency and potentially the quality of services. Note
that SaaS is often built on top of PaaS and IaaS. SaaS has the main focus on
providing functions, utilities and services to consumers, directly. Thus, SaaS is
outside of the context of this paper.

Additionally, the IaaS/PaaS resource allocation components typically do not
take the characteristics of the services into account when provisioning resources.
The optimizations are generally carried out afterwards during the service/ap-
plication lifetime. Such optimizations are traditionally done through monitoring
various aspects of resource usages, such as processor utilization, memory uti-
lization, and network bandwidth consumption. But, this is often done for the
interests of service provides, for instance, virtual machine consolidations for im-
proving server utilizations. Certainly, more restrictions and requirements (for
both consumers and service providers) can be expressed in a blueprint, provided
that the service descriptionlanguages are capable of doing so. As the size of the
data center increases and the number of services/applications hosted by the data
center grows rapidly, the management overhead associated with such optimiza-
tion becomes non-negligible. Shifting such overheads to cloud consumers may
results in a more sustainable environment. In other words, shifting the man-
agement responsibility to consumers and splitting the centralized management
overheads into distributed management on a per application basis. In the con-
text of this paper, a cloud environment is virtually divided into Application
Autonomous Systems (AASs). Each AAS presents a self-contained management
domain and logically manages a cloud application. In this configuration, con-
sumers need to bear the cost for the management processes (the underlying
resources that are needed to host the management functions) and cloud service
provides only need to provide resources and a set of common utilities that are
essential for an AAS to function.

4

An AAS interprets and executes an application Blueprints consisting of many
services and taking into account of the entire collection of services to determine
an optimal set of resources, and subsequently controls the application and re-
source life-cycle management. It is also possible for an AAS to be reused for
the similar type of applications. In this respect, it is imperative to maintain
a separation between application life-cycle management and resource manage-
ment. Thus, an AAS can address the potential conflicts between cloud service
management and cloud resource management while maximizing user experience
and cloud efficiency on each side, as well as making it is possible to implement
continuous improvement on resource utilization and service delivery.

The remainder of this paper is organized as follows. Backgrounds and discus-
sions on several related works are given in Section 2. The proposed solution is
introduced in Section 3, Important concepts and detailed architecture are given
in Sections 4. Future directions and conclusions are drawn in Section 5.

2 Background and Related Work

Existing IaaS/PaaS management platforms manage the life-cycle of cloud appli-
cations together with their associated underlying resources. Three representative
platforms are used in this section to highlight the mainstream approaches for
managing a PaaS/IaaS cloud environment. Fig. 1 shows the application/resource
life-cycle management schemes employed by the OpenStack Solum [19], Apache
Brooklyn [1], and OpenStack Heat [9]. These platforms provide tools for deploy-
ing and managing services/resources, and provide APIs to interface with cloud
consumers and/or applications. Solum and Brooklyn are usually considered to
be PaaS management platforms, while Heat is an service/resource orchestration
framework for IaaS.

Application Lifecycle Management (CAMP Compatible)

Application Lifecycle Management (TOSCA Compatible)

IaaS Management (TOSCA Compatible)

Solum
Blueprint

Solum
Blueprint

Brooklyn
Blueprint
Brooklyn
Blueprint

HOT
Template

HOT
Template

N
o

va
-A

P
I

N
o

va
-A

P
I Nova-SchedulerNova-Scheduler

Nova-computeNova-compute

DB

Solum Heat Engine

Brooklyn jCloud APIs

Heat Engine Cloud Infrastructure
(E.g., managed by OpenStack)

Nova-ConductorNova-Conductor

Fig. 1. An overview of cloud application/resource life-cycle management in OpenStack
Solum, Apache Brooklyn and OpenStack Heat.

The Solum and Brooklyn frameworks allow cloud consumers to deploy and
execute blueprints written in a service description language, particularly, TOSCA

5

and CAMP. These languages are used to describe the characteristics of applica-
tion components, deployment scripts, dependencies, locations, logging, policies,
and so on. The Solum engine takes a blueprint as an input and converts it to a
Heat Orchestration Template (HOT), this template can be understood by the
application and resource management engine (Heat). The Heat engine, there-
after, carries out the application and resource deployment by invoking the corre-
sponding service APIs that are provided by the underlying cloud infrastructure
framework, for example, Nova and Neutron APIs.

In contrast, Brooklyn engine converts a blueprint into a series of jCloud [11]
API calls that can be used to interact with the underlying cloud infrastructure
management components. For example, a jCloud API call for creating an vir-
tual machine in OpenStack is sent to the nova-api component. The nova-api
component notifies the nova-scheduler component to determine where the re-
quested virtual machine should be created. Once an suitable server is identified,
the request is forwarded to the nova-compute component to carry our the actual
deployment on the selected server. This ”Request and Response” approach is
simple, robust, and efficient. However, it should be noted that each request is
processed independently, making it impossible to consider relative placement of
virtual machines associated with multiple requests. Additionally, this ”Request
and Response” approach does not support the optimal deployment for a group
of services that all together are considered as a complete cloud application. This
limitation is not specific to virtual machine placement, but also applies to the
deployment of containers, for example in a Kubernets [2] [18] or Mesos [10]
managed containerized environments.

3 Architecture Overview

Conventional clouds provide interfaces to consumers for consuming resources
in a self-service manner. Either in an IaaS or a PaaS model, beneath the user
interfaces, the underlying resource management typically take a centralized man-
agement approach. Recall from the discussions given in Section 1 and 2 that due
to the ever-increasing size of the data center and resource heterogeneity, the
centralized resource management systems are continuously being challenged. In
response, a decentralized management architecture is introduced, as shown in
Fig. 3. The main design principle is to divide a cloud environment into three
entities including the Infrastructure, Cloud Utilities and Information Base, and
Application Autonomous Systems. The Infrastructure provides interconnected
physical resources. Information related to resources, such as server status and
computational resource availabilities, are stored and periodically updated in the
Information Base. An AAS is a self-contained entity that encapsulates a cloud
application, the associated resources and the management functions. AASs use
the Information Base and Cloud Utilities to locate and acquire resources, and
resources are deployed on the Infrastructure by invoking the Cloud Utilities.
Thereafter, the AAS manages the life-cycle of both the application and the as-
sociated resources.

6

C
lo

u
d

 U
ti

lit
ie

s
an

d
 I

n
fo

rm
at

io
n

 B
a

se

Infrastructure View (Heterogeneous Resources)

A
p

pl
ic

at
io

n

Deploy

R
es

o
ur

ce
Application
Telemetry

Application
Management

Resource
Telemetry

Resource
Management

Manage

Application Autonomous System

A
p

pl
ic

at
io

n

Deploy

R
es

o
ur

ce
Application
Telemetry

Application
Management

Resource
Telemetry

Resource
Management

Manage

Application Autonomous System

AASAAS AASAAS

AASAAS

AASAAS

AASAAS

AASAAS

AASAAS

Use

Deploy

AASAAS

Fig. 2. Decentralized system architecture based on Application Autonomous Systems.

In this design, the centralized resource management is divided by the num-
ber of AASs. Each AAS makes its own decisions on what resources to be used
and where to provision the resources. This gives an opportunity to the con-
sumers to employ preferred strategies for the management of their applications
and resources. In addition, since each AAS manages a relatively small number
of services, more sophisticated management strategies and optimization meth-
ods can be employed. All AASs indirectly compete with each others for the
best of resources. This implicitly shifted the management costs and responsibili-
ties from service providers to consumers. As all information about the resources
are logged into the Information Base, an AAS can query the Information Base
with desired features to locate appropriate resources. This also allows service
providers to focus on providing better quality resources and makes the Infras-
tructure more static. When the number of AAS increases, it only makes AASs
harder to compete with each others for resources. This has no effects on the
underlying resources, the Cloud Utilities, and the Information Base that are or-
ganized by the service provider. At the same time, when adding more resources
and/or introducing different types of resources to the Infrastructure, AASs are
not affected. New features, such as computation accelerators, are advertised to
AASs. It is the AASs’ responsibility to locate the featured resources. Thus, a
cloud environment that employs the decentralized management becomes more
sustainable.

Since a cloud environment is logically divided into a number of Application
Autonomous Systems, the answers to what defines a management domain for
an AAS, how a management domain can be constructed, and how an AAS
evolves internally and externally with the environment to achieve the designated

7

goals, ensures the proposed decentralized management approach to function in
an efficient and effective manner.

4 Application Autonomous System

A
p

p
lic

at
io

n
V

ie
w

SVM SC

SH

SC

Deploy Deploy Deploy Deploy

Cloud UtilitiesCloud Utilities

Infrastructure View (Heterogeneous Resources)

VM Container Container
Bare

Metal

R
es

o
u

rc
e

V

ie
w

Server

Application
Telemetry

Application
Management

Resource
Telemetry

Resource
Management

Manage

Use

ManageAccelerator Accelerator Server Accelerator

Provision Provision Provision Provision

Networking
Mgmt

Storage
Mgmt

VM
Mgmt

Container
Mgmt

Security

Bare-Metal
Mgmt

Fig. 3. The internal structures of an Application Autonomous System and its relation-
ships to the cloud environment.

An Application Autonomous System is an independent entity. An AAS man-
ages a group of services that can be logically grouped together to form a complete
cloud application. An AAS also manages the resources that are associated with
the managed cloud application. AASs do not have direct intercommunications
with each others. Each AAS reacts upon the changes in the cloud application
and the environment. Conceptually, the environment is the Infrastructure. The
changes in the environment is the changes of the status of the infrastructure, for
example, the changes of the status on the computational resource availability
of each server and/or the average networking traffic load on a particular link.
The Resource Management component interacts with both the Application Man-
agement and the Infrastructure. Thus, the Resource Management must employ
algorithms/strategies that can satisfy both the consumers’ and service providers’
interests. In contrast, the Application Management is an optional component for
managing applications at various levels. In the absence of the application-specific
interfaces, the Application Management manages the life-cycle of the application
(e.g., deploy and decommission). With provided application-specific interfaces,
more advanced optimizations can be carried out (e.g., load-balancing).

The AAS-based management approach provides PaaS services. It must be
noted that the definition of the platform is a broad term. It can be a manage-
ment framework, such as Apache Brooklyn, an application server, such as Google

8

App Engine, or an analytic platform, such as Hadoop/Spark. The AAS-based
management approach can be considered as an management framework, such
as Apache Brooklyn. Application servers or analytic platforms can be seen as
cloud applications in this context. However, the differences between AAS and
the Brooklyn alike frameworks lie on the cloud application and resource manage-
ment styles. More specifically, the cloud application and resource management
in Brooklyn alike frameworks are tightly coupled. In other words, cloud applica-
tions and the associated resources coexist. Decommission of a cloud applications
implies freeing the underlying resources. In contrast, AAS is designed based on
the concept of Separation of Concerns [7], i.e., cloud applications and the asso-
ciated resources are manged independently, but they are also complementary to
each other.

4.1 The Concept of Separation of Concerns

The main idea of the Separation of Concerns is to decouple the cloud application
management from the associated resource management, while the desires (e.g.,
needing for more resources) from cloud application management actions can be
forwarded asynchronously to the resource management functions, meaning that
the resource management functions can decide whether to react upon receiv-
ing a desire based on the feasibility of doing so. Inversely, the outcomes from a
resource management action (e.g., virtual machine migration to avoid resource
contentions or server consolidation for improving power efficiency) can be fed
back to the cloud application management functions in the same asynchronous
manner. The separation yields several unique features. First, resources do not
have to rely on the existences of cloud applications. When a cloud applications
is at the end of its lifetime, the underlying resources can be kept by the AAS, so
that the AAS can be reused as a pre-provisioned template for incoming cloud ap-
plications that have similar characteristics and requirements on resources, thus,
it can accelerate the service delivery processes and improves user experiences.
Second, the separation allows the cloud application and resource management
functions to focus on their respective optimizations. Third, cloud application
optimization and management generally require application-specific interfaces
to interact with. More often, these interfaces are not available for many existing
cloud deployable applications. In such a case, the absence of the application-
specific interfaces does not affect the deployment and execution of the cloud
application.

4.2 Resource Management in Application Autonomous Systems

A striking characteristic of traditional cloud management platforms is apparent,
that global optimizations between multiple services are not generally available
due to the way in which resource requests are individually processed. The Sepa-
ration of Concerns provides direct architectural support for considering optimal
resource requests from multiple interacting services simultaneously.

9

Resource Handlers

Resource
Blueprint

Resource
Blueprint

Resource
Blueprint

Resource
Blueprint

Application
Blueprint

Application
Blueprint

Application
 Blueprint

Application
 Blueprint

Blueprint

Alien4Cloud
or other UI
frameworks

Resources

Solum
Other PaaS
Mgmt Tools

Mistral Brooklyn

Resource
Discovery

Resource
Selection

Resource
Orchestration

Deployment
(Cloud Utilities)

Deploy

R
es

o
ur

ce
H

an
d

le
rs

Resource
Management

Fig. 4. Resource management in an Application Autonomous System.

In order to separate the concerns of cloud application life-cycle management
and resource life-cycle management, a cloud application, especially when a cloud
application consists of several dependent services, need to be expressed in a ser-
vice description language, for example, TOSCA and CAMP, in a blueprint style.
In the context of AAS, a cloud application blueprint deployment starts by decom-
posing a blueprint into two parts: Resource Blueprint and Application Blueprint
which can be used by the AAS resource/application management, respectively,
as shown in Fig. 4 (label 1). The Resource Blueprint is first sent to the Resource
Discovery and Resource Selection components to locate and acquire the most
appropriate (defined by constrains, parameters, and preferences of both users
and systems) resources for the cloud application, as indicated in Fig. 4 (label 2
& 3). The returned location information and the Resource Blueprint are then
sent to the Resource Orchestration engine (e.g., a customized Heat Engine) to
carry out the actual resource deployment on the infrastructure. The deployment
processes are essentially invoking the Cloud Utilities, for example, in a Kernel-
based Virtual Machine (KVM) [12] managed virtual environment, provisioning
virtual machines on a designated server requires to invoke a series of libvirt API
calls. These libvirt APIs thus must be included as a part of the Cloud Utilities.
The resource deployment process results in the return of a number of resource
handlers (A resource handler can be a login account includes, for example, user
name, access key, and IP address to a virtual machine). These resource handlers
are sent back to the Resource Orchestration engine, which, in turn, will use
them to finalize the Application Blueprint. The Application Blueprint is then
forwarded to the corresponding application life-cycle management component
to carry out the application deployment on the pre-provisioned resources. This
process is shown in Fig. 4 (label 6, 7, 8 and 9).

10

In contrast to existing frameworks, the proposed service delivery model will
facilitate blueprint developers to specify comprehensive constraints and quality
of service parameters for both services and resources. Based on the specified
constraints and parameters, in contrast to existing solutions, can provide an ini-
tial optimal deployment of the resources. For example, creating and identifying
resources on adjacent physical servers to minimize communication delay or provi-
sioning containers with attached GPUs to balance performance and cost. During
the life-cycle of the resources, optimizations (e.g., load-balance and elasticity)
are done by the Resource Management functions, as shown in Fig. 4 (label 2, 3
and 4), in-conjunction with the resource telemetry services, as shown in Fig. 3,
in a closed feedback-react loop.

4.3 Cloud Application Management in Application Autonomous
Systems

AAS Application
Management

Service
Deployment

Blueprint
Decomposition

Blueprint
Application
Blueprint

• Constrains
• Metrics
• Parameters
• Target Cloud

• Service_Element_1
• Service_Element_2
•
• Service_Element_n

Service Catalogue

• Service_Element_1
• Service_Element_2
•
• Service_Element_n

Service Catalogue

• Service_Element_1
• Service_Element_2
•
• Service_Element_n

Service Catalogue

• Service Info
• Name
• Constrains
• Metrics
• Parameters

• Deployment Info
• Libraries
• Environment

• Resource Spec
• Virtual Machine
• Container
• Bare Metal

Service
Orchestration

Template

Service
Orchestration

Engine

Cloud Utilities

C
o

n
ti

n
u

o
u

s
Im

p
ro

ve
m

e
n

t

• Service_Element_1
• Service_Element_2
•

Service_Element_n

Optimization

Submit

Construct

Te
le

m
e

tr
y

Fig. 5. Application management in an Application Autonomous System.

The cloud application deployment is an incremental process. Depending on
the different types of resources and the resource availabilities, each individual
resource provisioning process may take different time to complete. For instance,
given a blueprint that requires a virtual machine and a container resources,

11

provisioning a virtual machine may take several tens of seconds, where as pro-
visioning a container may only take several seconds. In order to improve the
service delivery experiences, the resource handlers are returned asynchronously.
Upon receiving a resource hander or a group of resource handlers, a temporary
Application Blueprint is constructed, as shown in Fig. 4 (label 7 & 8). The tem-
porary Application Blueprint is then sent to the Service Orchestration engine for
deployment, as shown in Fig. 5. Subsequently, the Service Orchestration engine
invokes the Cloud Utilities for the actual cloud application deployment. It must
be noted that all deployment related information is embedded in the Application
Blueprint, as shown in Fig. 5.

The Optimization component together with the Application Telemetry ser-
vices (as shown in Fig. 3) attempt to perform continuous improvement over
the life-time of the deployed blueprint. This is achieved by periodically recon-
structing an Application Blueprint based on the information received from the
Application Telemetry service, and re-submit the updated Application Blueprint
to the Service Orchestration engine for the execution of the optimization actions,
such as, load-balancing.

The concept of the Separation of Concerns has been realized in the Cloud-
Lightning project [13]. In the service provider-consumer context, CloudLightning
defines three actors including End-users (application/service consumers), En-
terprise Application Operator/Enterprise Application Developer, and Resource
Provider. These actors represent three distinct domains of concerns.

– For the end-users, the concerns are cloud application continuity, availability,
performance, security, and business logic correctness.

– For the Enterprise Application Operators/Enterprise Application Develop-
ers, the concerns are cloud application configuration management, perfor-
mance, load balancing, security, availability, and deployment environment.

– For the Resource Providers, the concerns are resource availability, operation
costs such as power consumption, resource provisioning, resource organiza-
tion and partitioning.

CloudLightning is built on the premise that there are significant advantages
in separating these domains and the use of service description languages has been
designed to facilitate this separation. Inevitability, there will always be concerns
that overlap the interests of two or more actors. This may require a number
of actors to act together, for example, an Enterprise Application Operator may
need to configure a load-balancer and a Resource Provider may need to im-
plement a complementary host-affinity policy to realize high-availability. These
overlapping concerns are managed by each individual Application Autonomous
Systems by providing vertical communications between the application life-cycle
management and the resource life-cycle management.

Enterprise Application Operators/Enterprise Application Developers are re-
sponsible for managing the life-cycle of Application Blueprints. At the same time,
the underlying resources are managed independently by the Resource Provider.
As a result, the following advantages accrue:

12

– continuous improvement on the quality of the Blueprint services delivery;
– reducing the time to start a service and hence improve the user experience

by reusing resources that have already been provisioned;
– resource optimizations and energy optimization;
– creating a flexible and extensible integration with other management frame-

works such as the OpenStack Solum or Apache Brooklyn management sys-
tem.

The first step in the CloudLightning is to establish a clear services interface
between the service consumer and the service provider. The essence of this in-
terface is the establishment of a separation of concerns between cloud service
consumers and cloud service providers. In this view, various service implementa-
tion options can be assumed to already exist and consumers no longer have to be
an expert creator of those service implementations. Consumers should not have
to be aware of the actual physical resources being used to deliver their desired
service, however, given the fact that multiple diverse implementations may exist
for each service (each on a different hardware type, and each characterized by
different price/performance attributes) consumers should be able to distinguish
and choose between these options based on service delivery attributes alone. Ser-
vice creation, in the approach proposed here, remains a highly specialized task
that is undertaken by an expert.

5 Conclusion

The Application Autonomous System based on the decentralized cloud manage-
ment tries to re-align the evolving cloud environment with the services-oriented
architecture of conventional clouds. Application Autonomous Systems manage-
ment uses a vertical management approach that implements the concept of Sepa-
ration of Concerns. It is a more sophisticated management approach than current
self-service models. The implementation allows the application management and
the resource management to operate independently, consequently, it separates
consumer concerns with optimizing cloud applications and service provider con-
cerns with the efficient use of resources and the reduction of operational costs.
Application Autonomous Systems virtually and logically divide a cloud environ-
ment in to a number of self-contained management domains, hence, it represents
a decentralized system architecture. The application and resource decentraliza-
tion shift the management responsibility from cloud service providers to con-
sumers. This makes a cloud service provider focusing on providing resources,
and consumers on taking responsibility for managing applications, thus, it re-
sults in a more sustainable computing environment.

Acknowledgment

This work is funded by the European Unions Horizon 2020 Research and Inno-
vation Programme through the CloudLightning project under Grant Agreement
Number 643946.

13

References

1. Apache Brooklyn: https://brooklyn.apache.org/ (2017)
2. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and

kubernetes. Commun. ACM 59(5), 50–57 (2016)
3. Carlson, M., Chapman, M., Heneveld, A., Hinkelman, S., Johnston-Watt, D., Kar-

markar, A., Kunze, T., Malhotra, A., Mischkinsky, J., Otto, A., et al.: Cloud appli-
cation management for platforms. OASIS, http://cloudspecs. org/camp/CAMP-
v1. 0. pdf, Tech. Rep (2012)

4. Data Center Knowledge: Google Data Center FAQ.
http://www.datacenterknowledge.com/archives/2017/03/16/google-data-center-
faq/ (2017)

5. Data Center Knowledge: Special Report: The Worlds Largest Data Cen-
ters. http://www.datacenterknowledge.com/special-report-the-worlds-largest-
data-centers/ (2017)

6. Data Center Knowledge: The Facebook Data Center FAQ.
http://www.datacenterknowledge.com/the-facebook-data-center-faq/ (2017)

7. Dong, D., Xiong, H., Morrison, J.: Separation of concerns in heterogeneous cloud
environments. In: Proceedings of the 7th International Conference on Cloud Com-
puting and Services Science - Volume 1: CLOSER, pp. 775–780 (2017)

8. Ghiasi, A., Baca, R., Quantum, G., Commscope, L.: Overview of largest data
centers. In: Proc. 802.3 bs Task Force Interim meeting (2014)

9. Heat: https://github.com/openstack/heat (2017)
10. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.,

Shenker, S., Stoica, I.: Mesos: A platform for fine-grained resource sharing in the
data center. In: Proceedings of the 8th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’11, pp. 295–308. USENIX Association,
Berkeley, CA, USA (2011)

11. jCloud: https://jclouds.apache.org (2017)
12. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the linux virtual

machine monitor. In: Proceedings of the Linux symposium, vol. 1, pp. 225–230
(2007)

13. Lynn, T., Xiong, H., Dong, D., Momani, B., Gravvanis, G.A., Filelis-Papadopoulos,
C.K., Elster, A.C., Khan, M.M.Z.M., Tzovaras, D., Giannoutakis, K.M., et al.:
Cloudlightning: A framework for a self-organising and self-managing heterogeneous
cloud. In: CLOSER (1), pp. 333–338 (2016)

14. Mell, P., Grance, T., et al.: The nist definition of cloud computing (2011)
15. Nova, O.: http://docs.openstack.org/developer/nova/ (2017)
16. OpenStack: The openstack project. https://www.openstack.org (2011)
17. OpenStack Neutron: https://github.com/openstack/neutron (2017)
18. Rensin, D.K.: Kubernetes - Scheduling the Future at Cloud Scale. 1005 Gravenstein

Highway North Sebastopol, CA 95472 (2015)
19. Solum: https://github.com/openstack/solum (2017)
20. TOSCA, O.: Topology and orchestration specification for cloud applications (tosca)

primer version 1.0 (2013)

