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Virtual Network Embedding
for Wireless Sensor Networks

Time Efficient QoS/QoI Aware Approach
Roland Katona, Victor Cionca, Donna O’Shea, Dirk Pesch

Abstract—A recent trend in Wireless Sensor Networks (WSN)
is Network Virtualization to support on-demand sharing of
sensing functionality. The efficient allocation of WSN resources to
sensing requests is obtained using Virtual Network Embedding
(VNE). This must take into account Quality of Service - QoS
(e.g. reliability), Quality of Information - QoI (e.g sensing
accuracy), and deal with wireless interference. With increased
computational complexity due to the added constraints, finding
an optimal solution can be prohibitive at scale. We developed an
offline embedding algorithm that searches through all possible
embeddings, which allowed us to explore the trade-off between
solution quality and search time. We identify a defined set of initial
processing steps that lead to high quality solutions (within 10%
of best solution) in bounded time. We evaluated the algorithm
under high stress (large networks with long paths, high data rates,
beyond typical WSN configuration) to understand its limitations
and the limitations imposed by the underlying WSN substrate.

Index Terms—virtual network embedding, wireless sensor
networks, quality of service, quality of information, resource
allocation, resource management

I. INTRODUCTION

FOllowing its success in enterprise networks, Network
Virtualization (NV) [1] has become an attractive topic

of research in Wireless Sensor Networks (WSNs). Virtualised
Wireless Sensor Networks (VWSN) have been proposed to
overcome the inefficiencies and limitations of traditional,
proprietary, single purpose, single user WSNs. By virtualising
the physical node (e.g. sensing and processing) and link
(e.g. radio channel) resources of WSNs and by opening up
existing WSNs as shared, multi user sensing infrastructures,
these conventionally closed deployments can be employed
beyond the scope of their original function, allowing them
to evolve and support the on-demand provisioning of multiple
co-existing virtual networks, each with its own applications
and custom performance levels.

There are two challenges in NV: partitioning the physical
network to isolate virtual networks; and finding the optimal
mapping of physical resources to virtual networks. This paper
focuses on the second, known as Virtual Network Embedding
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(VNE), and proposes a solution for WSNs. In VWSN, users
submit Virtual Network Requests to deploy sensing applica-
tions over the shared WSN substrate. The VNE must identify
an allocation of physical node (e.g. sensing and processing)
and link (e.g. wireless channel) resources to Virtual Network
Requests (VNR) that optimizes an objective (e.g. cost or
profit), while respecting the substrate’s capacity limitations and
meeting the specific service and performance requirements of
the request.

The VNE problem in wireless sensor networks (and wireless
mesh networks in general) is a relatively new undertaking
compared to its counterpart in wired networks. There are many
exact [2] and heuristic [3] solutions for the latter. However
the VNE in WSN is significantly different from its wired
counterpart because of the characteristics of the applications
and of the physical substrate. Dealing with these differences
brings specific constraints into the VNE and increases the
complexity. First, WSN applications are data and location
driven so applications will request sensing at specific locations
with bounded measurement error (Quality of Information –
QoI) which constrains the mapping of virtual to physical
nodes. Second, the data must be reported reliably and within
a certain time bound (Quality of Service – QoS), which
constrains the allocation of communication resources (physical
paths). The allocation of wireless link resources is further
complicated by the broadcast nature of the wireless channel,
as an on-going transmission on one link interferes with other
neighboring links. Therefore, the embedding must take the
impact of link activation on the entire interference neighbour-
hood into account. Another difference is the reduced energy
levels available in WSN: the VNE must ensure uniform energy
consumption to maximize network lifetime.

The VNE problem is known to be NP-Hard [4]. Finding
an optimal solution for large networks with many VNRs
will require prohibitive processing time. In these situations
it is better to identify a heuristic that provides a ”quick &
good” solution. In this paper we explore the trade-off between
the processing time (quick) and solution quality (good). We
developed an algorithm that explores the entire space of
possible embedding solutions using greedy heuristics and com-
binatorial optimization. The algorithm is for offline embedding
(embeds batches of VNRs at once) and takes into account the
constraints on QoS (in terms of end-to-end reliability), QoI (in
terms of sensing accuracy), as well as fine-grained inter-link
interference. The algorithm can be interrupted at any point in
the search, returning the current best solution. By analysing

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on August 06,2020 at 08:41:31 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009834, IEEE Internet of
Things Journal

2

the variation of the solution quality versus the search time
we identified that a defined set of initial processing steps
is enough to achieve >90% of the best quality in 90% of
cases. Since this initial processing is bounded in time it can
be used as a heuristic for obtaining the desired quick & good
solutions. The performance of the algorithm was compared
with that of a Mixed Integer Linear Programming (MILP)
solver. We stressed the parameters of the problem (data rate,
network diameter) beyond the common configuration of WSNs
in order to obtain a general understanding of the behaviour and
limitations of VNE in WSN. Our contributions are:
• exploration of the trade-off between solution quality and

processing time
• identification of a heuristic that obtains high quality

solutions in bounded time
• analysis of the limitations of VNE in WSN at scale (large

networks, high data rate).
In the following we first provide a formal definition of the

VNE problem in WSN (II). The VNE algorithm is discussed in
great detail, explaining the heuristics and techniques employed
(III). An evaluation baseline, the experimental setup, as well
as the experiment results are presented in (IV). We further
discuss the results and other insights from the paper in (V).
Before concluding, related work is presented in (VI).

II. VNE PROBLEM DEFINITION AND SYSTEM MODEL

We assume a virtualized WSN with a single sink where,
for simplicity, all the nodes measure the same physical process
(e.g. temperature). Initially the WSN does not run any applica-
tions. Users submit requests for deploying sensing applications
on the WSN, specifying the sensing target locations, the
tolerated measurement error (QoI), the data rate, and minimum
reliability (QoS). This is a Virtual Network Request (VNR)
and it is processed by a WSN controller, that can be co-
located with the WSN gateway. The controller collects and
maintains the network state [5] and runs the VNE algorithm
on the current network state to embed batches of VNRs at
once. After embedding, the network state is updated to reflect
the new allocations, and the user applications are deployed
on the reserved resources (this step is not considered in
this paper). The network state consists of WSN topology
with node locations, logical connectivity and link quality
(i.e. reliability); and available node and link resources [6].
According to the taxonomy in [4], the VNE algorithm is static
(requests are known in advance) and centralized (solved on
WSN controller). It considers the following constraints:
• the QoS and QoI requirements of the VNRs
• the limited capacity of the wireless links
• capacity degradation caused by transmission collisions.
The substrate network is represented as a directed, weighted

and capacitated graph G = (N,E). For each node ni ∈ N
denote pi(x, y) its location on a geographical plane. On the
same plane define a uniform grid of locations S, the Sampling
Request Points (SRP). Users making requests (VNRs) for data
collection will refer to an si(x, y) ∈ S to indicate the location
where sampling is needed. Values measured at an SRP will
differ from sensors around it, with the differences assumed

known in the error matrix D, where Dij = Θ(pi)−Θ(sj), and
Θ(pi) represents the expected value of the physical process at
coordinate pi.

For each WSN link ei ∈ E that has exchanged at least one
packet, define packet success rate (reliability) eµi , load eϕi and
capacity eZi , all normalized to be within [0, 100]. The packet
success rate includes MAC retransmissions. The link load is
the proportion of link capacity currently being consumed and
the capacity is the maximum amount of data that can be sent
over the link for a given unit of time. Furthermore, we define
a link weight property that combines link load and reliability
as per Eq. 1, where cϕ and cµ are coefficients.

eψi = cϕ · eϕi + cµ · (100− eµi ) (1)

Virtual Network Requests are defined as R ∈ R, Ri =
{Rsi , Rδi , Rπi , R

γ
i }, where Rsi < |S| is the index of an SRP

where measurements are requested, Rδi is the QoI in terms of
tolerated measurement error, Rπi is the QoS (i.e. reliability),
and Rγi is the requested sampling rate (samples per second).
The requested sampling rate is converted to link capacity usage
quota using the known application payload size (σ) and the
maximum link data rate (ρ, obtained empirically), as (σRγi )/ρ.
Henceforth Rγi will denote the VNR requested quota.

The VNE algorithm must find, for each VNR, a source node
that satisfies the tolerated error Rδi . The destination for all
VNRs is the sink, so the VNE must find the path between
source and sink that satisfies the reliability Rπi and can support
the quota Rγi . The objective is to embed as many VNRs as
possible while consuming the least network resources.

Wireless interference that causes colliding transmissions
must be prevented, otherwise the reliability constraint will be
violated. To achieve this the VNE allocates link capacity (e.g.
transmission slots) such that when a link is active all the other
links in its Interference Neighborhood (IN) are inactive. This is
a sufficient condition for conflict-free communication [7]. The
IN of link ei is calculated using the protocol model [8] based
on node connectivity information available in the network
state. When calculating the existing load on a link (εϕ), in
addition to what was allocated on it directly, we will also take
into account the indirect quota on all the links in its IN. Even
though the link will not transmit during the indirect time quota,
it must remain silent to prevent collisions with its neighbors.
As such we denote by Ii = IN(ei)

⋃
{ei} the set of links

affected by quota allocation on link ei.
The mapping of a VNR to the WSN substrate is represented

formally with two binary variables: xij ∈ {0, 1} for mapping
of VNR Ri to WSN node nj ; and yij ∈ {0, 1} for allocating
link ej to Ri. The VNE problem can then be expressed
as the Mixed Integer Linear Program (MILP) represented in
equations 2-7. It is a bi-level objective problem, the primary
objective (Eq. 2) to maximize admission rate (number of
mapped VNRs) and the secondary to minimize cost (Eq. 3).
The cost is defined as the total load allocated on all network
links, including the impact of interference. Eq. 4 models the
link capacity constraint that takes into account the entire link
IN. Eq. 5 restricts VNR source nodes to WSN nodes with
acceptable measurement error from the SRP. Path reliability is
the product of the reliability of links where Ri was embedded,
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which can be represented as
∏

(eµj )yij 1, and this needs to be
≥ Rπi , the required reliability of the VNR. By applying the
logarithm on both sides of the constraint we obtain Eq. 6. Eq. 7
ensures that each VNR is only mapped to one source if it is
accepted. Eq. 8 represents flow conservation for regular nodes,
where the outbound data is equal to the sum of the inbound
data and the generated data. Eq 9 is flow conservation for the
network sink (NS); the sink does not generate data and there
is no outbound data either, so the total inbound data is equal
to the data generated by all mapped VNRs. Eq. 10 and Eq. 11
constrain the traffic from a VNR on a single path (no fractional
flows). In Eq. 8 to 11 ei → nk represents inbound links on
node nk, and ei ← nk outbound links.

max
∑

i≤|R|,j≤|N |
xij (2)

min
∑
ei∈E

∑
ej∈Ii

∑
Rk∈R

ykjR
γ
k (3)

s.t.∑
ek∈Ij

∑
Ri∈R

yikR
γ
i ≤ e

Z
j ,∀ej ∈ E (4)

xijDiRs
i
< Rδi ,∀i ≤ |R|, j ≤ |N | (5)∑

ej∈E
yij ln(eµj ) >= ln(Rπi ),∀Ri ∈ R (6)

∑
j≤|N |

xij <= 1,∀Ri ∈ R (7)

∑
ei→nk

∑
Ri∈R

yijR
γ
i +

∑
Ri∈R

xikR
γ
i

=
∑
ei←nk

∑
Ri∈R

yijR
γ
i ,∀nk ∈ N − {NS} (8)∑

ei→NS

∑
Ri∈R

yijR
γ
i =

∑
j≤|N |

xijR
γ
i (9)

∑
ej→n

yij ≤ 1,∀n ∈ N, ∀Ri ∈ R (10)∑
ej←n

yij ≤ 1,∀n ∈ N − {NS},∀Ri ∈ R (11)

III. VNE ALGORITHM FOR VWSN
We introduce a novel VNE algorithm that considers the

sensing accuracy of the nodes (i.e. QoI), the reliability of the
communication paths (i.e. QoS) and the impact of multi-access
link interference on the overall consumed communication
resources. The designed algorithm processes batches of input
VNRs. The batch is first sorted in non-decreasing order of
requested quota, then the VNRs are processed sequentially,
embedding each VNR and then updating the substrate state
to reflect the allocation of the VNR resources. Single VNRs
are embedded in a greedy fashion, always selecting the best
possible substrate resources. Given that the order of embed-
ding the VNRs in a list influences the quality of the result, the

1The representation works as follows. For a given VNR Ri, the physical
links allocated will have yij = 1 and therefore a factor equal to their
reliability, eµj . Links not used will have yij = 0 so a factor of 1 that does
not affect the product.

algorithm explores the entire set of permutations of the input
VNRs to find the embedding sequence that yields the highest
acceptance ratio with the lowest cost (further discussed in
Sec. III-D).

The node mapping and link mapping are decoupled: first
the source nodes are mapped for all VNRs at once (further
discussed in Sec. III-A); then, the link mapping is performed
per VNR (further discussed in Sec. III-C), given the mapped
sources and following the order of the input batch. The search
space and the processing time are reduced using pruning
and memoization techniques, and also by taking advantage
of the parallelizable nature of the combinatorial search which
allows multiple concurrent processes to perform computations
independently.

A. Node mapping

The algorithm starts by identifying the source nodes that
will be allocated for the requests in the batch of VNRs (Alg. 1.
line 1.). Each VNR contains an SRP (Sampling Request Point)
that specifies the location where sensing is requested. The
VNR further constrains the location by specifying a tolerated
measurement error (Eq. 5). The search for feasible source
nodes for a VNR is limited to the 2-hop neighborhood of
the substrate node closest to the SRP. This threshold was
chosen empirically following test results that showed that
as the distance from the SRP increases the probability of
satisfying the tolerated measurement error decreases, and is
also supported by the literature [9]. VNRs that don’t have
suitable candidates are rejected at this point and not included
in the link mapping step.

When several VNRs share the same physical node, they
will have a higher probability of contending with each other
for link resources. This is mitigated by distributing the VNRs
over as many candidate substrate nodes as possible, in order to
reduce the inter-flow interference among VNRs. The distance
(in terms of hop count) of candidate source nodes to the sink
is also taken into account, giving preference to those closer to
the sink, which tends to result in shorter substrate paths and
better end-to-end reliability.

B. Determining bounds on the acceptance ratio

In this paper the WSN is assumed to have a single sink,
and all the VNR traffic is assumed to be extracted through the
sink. As such, the sink becomes a known bottleneck in the
network. Hence, if the total VNR demanded quota is greater
than the capacity of the sink then some VNRs will not be
accepted. In this step, the algorithm determines the maximum
acceptance ratio of the input VNRs that can be supported at
the sink (Alg. 1. line 4.).

When calculating the total quota demanded by VNRs at
the sink one must take into account the impact of Intra-Flow
Interference (IFI). Due to IFI, links that are adjacent to an
active link must be silenced to avoid collision which increases
the overall required quota to be allocated. Depending on the
length of a VNRs mapped path, a link might suffer from IFI
multiple consecutive time slots, according to [7]. Therefore, to
prevent the interference and ensure conflict-free transmission,
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the total quota allocated on the link must be multiplied by the
number of slots with IFI.

Based on the shortest hop path between a VNR’s mapped
source node and the sink, the lowest IFI multiplier can be
determined as per [7]. Applying the IFI multiplier to the
requested quota, the actual required quota at the sink can
be determined for each VNR. Then using this to calculate
the total quota required for a set of VNRs at the sink, the
algorithm will identify the largest combinations of VNRs that
do not exceed the available capacity of the sink. These are
obtained by solving a 0-1 Knapsack problem [10] where the
element weights are the lowest required quotas at the sink.
The length of the Knapsack solution represents the highest
number of VNRs that can be accepted and an upper bound
on the acceptance ratio. The upper bound is then used by
the algorithm to filter out embedding solutions that yield a
lower acceptance ratio, thus avoiding unnecessary computation
(further discussed in Sec. III-D).

C. Link mapping

Once the source nodes are identified in the node mapping
step, the link mapping will find a path between the source
node and the WSN sink for each VNR (Alg. 1. line 11.). The
path must have the lowest cost, must satisfy the reliability
constraint (Eq. 6), and the links on the path as well as in their
Interference Neighborhood (IN) must have sufficient capacity
available to accommodate the additional quota requested by
the VNR. This is a lowest cost path problem with additional
constraints, known to be NP-Complete [11]. An extension to
Dijkstra’s path finding algorithm was developed as follows. It
starts by identifying the least cost path using the link metric
eψ (Sec. II). Then, based on the definition of eψ the least cost
path will be the one that has the most available capacity and
that is most reliable (compared to paths with similar capacity
and length). The path selection does not enforce constraints,
so after finding the least cost path its feasibility is validated
against the reliability and capacity constraints (Alg. 1. line
16.). In case there is a violation of the above constraints, the
links that caused the violation are penalized by increasing their
weight with a penalty value that is larger than the sum of all
network link weights. If the reliability check fails, the worst
link is penalized; if the capacity check fails, the link with
highest capacity overflow is penalized. Then, considering the
updated link weights, a new path is sought which will avoid
penalized links if possible. The process repeats until either a
feasible path is found or the obtained path cost is higher than
the penalization value, which indicates that the only way to
the sink is through already penalized, i.e. non-feasible links,
so the VNR is rejected.

D. Combinatorial search

As discussed previously, the link mapping is performed in a
greedy fashion for each request. This causes the quality of the
embedding (i.e. acceptance ratio and cost) to depend on the
embedding sequence. To find the best embedding sequence,
the algorithm analyzes the different permutations of the set
of input VNRs (Alg. 1. line 7.). First, the list of feasible

VNRs (i.e. the ones that were successfully mapped in the
node mapping step) is sorted in non-decreasing order based
on their requested quota. By starting with the lower quota
VNRs we can embed more VNRs than if we started with
the higher quota ones. Then, the permutations are generated
in lexicographic order, divided into p contiguous blocks and
each block is allocated to a different process 2.

Searching through all the permutations of the input VNRs
has a factorial time complexity, however this can be greatly
reduced by exploiting the following characteristics: i) the
embedding of permutations of VNR sequences consists of
dependent overlapping sub-problems, as permutations share
sub-sequences (e.g. ABC is a sub-sequence to ABCED); ii)
it also has an optimal substructure, since solutions to longer
sequences can be constructed by using the solutions of sub-
problems (i.e. sub-sequences). These characteristics allow the
use of Dynamic Programming (DP) techniques such as mem-
oization to reduce the processing time.

Memoization refers to caching the results of computation-
ally intensive tasks so that they are readily available upon
re-execution of the tasks, achieving a significant reduction in
the amount of redundant calculations at the expense of storage
space. In the VNE case, memoization was employed by our
algorithm to store the embedding outcome (success or failure)
of sub-sequences of one or more VNRs as well as the state of
the substrate after the embedding. The state of the substrate is
represented as the sub-sequence of VNRs already embedded
on the substrate. For example, consider the sequence ABCD,
where AB were accepted, C rejected, and D accepted. The
algorithm will memoize the failure of C over the substrate
state AB as well as the success of D over the substrate state
AB (since C failed, the substrate state did not change). The
following types of search pruning can be accomplished thanks
to the memoization of intermediate embedding results:
• Once a permutation sub-sequence is processed, its result-

ing network state can be reused in any other permutation
where the same sub-sequence occurs as a prefix. For
example, with the batch ABCDEF , once ABCD is
evaluated AB can be reused for ABDC, ABDE, ABF ,
ABEF , etc.

• if a VNR fails on a substrate state it will also fail if
more successful embeddings are added to the substrate;
e.g. if C fails in ABCD it will also fail in ABDC.
Furthermore, if both C and D fail in ABCD they will
also fail in ABDC, because the substrate state for D in
ABCD is still AB due to the failure of C.

Since permutations are processed in an ordered manner,
the memoized results are stored only as long as they serve
as a dependency for later sequences. For example, using
the above representation of the requests, sub-sequence AB
shares a prefix with ABCD and ABDC but it does not with
DBCA, and so cannot be re-used anymore. Therefore, it can
be discarded to reduce the space complexity associated with
caching.

To further reduce the processing time additional pruning is
performed during the search for the highest quality embedding

2For brevity, this is not shown in Alg. 1.
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sequence. Together with the upper bound (i.e. maximum
acceptance ratio) previously determined in Sec. III-B, the al-
gorithm also maintains the lower bound which corresponds to
the highest acceptance ratio so far and is adjusted whenever a
better solution is found. Using the upper and lower bounds the
algorithm then filters out sub-optimal embedding candidates,
hence avoiding unnecessary computation if the solution quality
cannot be improved. Moreover, the exploration can be stopped
at anytime and the best solution thus far (the current lower
bound) will be returned.

Without memoization, the algorithm would explore all n!
permutations of the VNR batch for a total of n!n VNR pro-
cessed. Considering the two bullet points above, memoization
reduces the exploration to all distinct permutations of all
non-empty subsets of the VNR batch. The number of such
sequences can be calculated 3 as ben!− 1c. This is the upper
bound to the number of VNRs that will be processed, the
actual number is lower due to the additional pruning described
above.

E. VNE algorithm Pseudocode
The pseudocode of the VNE algorithm is shown in Al-

gorithm 1. In addition to the existing symbols, we used
Nk(n) to denote the k-hop neighborhood of node n; H(n)
to denote the shortest-hop path from node n to sink; Ci to
denote the candidate source nodes for VNR Ri; W denotes
the weight of a link or path, or the weight of an element in
the Knapsack problem; A represents the most VNRs that can
be accepted, considering the limitation of the sink. For the
Knapsack problem, the elements are the VNRs (Ri ∈ R), the
weight of each element set to the VNR requested quota (Rγi )
multiplied by the Intra-Flow Interference factor at the sink
(IFI), which depends on the length of the path. The best
solution is represented as the mapped nodes X∗ = {xij} and
links Y ∗ = {yij}.

F. Solution quality vs. processing time
The exploration of all the permutations of the input VNRs

leads to finding the best embedding sequence and it is also
a means to investigate the trade-off between processing time
and solution quality. As explained above, as the search space is
analyzed the algorithm keeps track of the current best solution
and of the points in the search space where that is improved.
The quality of the solutions is quantified using the acceptance
ratio (ratio of input VNRs that are successfully embedded)
and the embedding cost (sum of the link weights for the
substrate state after the embedding is completed, as per Eq. 3).
A solution is improved if i) the acceptance ratio is increased
or ii) the acceptance ratio is the same but the cost is lower.

The following types of solutions are defined:
• Best solution, HBest, The solution resulting in the highest

acceptance with the lowest embedding cost. Finding this
solution requires processing the entire search space.

• Good solution Any solution which has as high accep-
tance ratio as the best solution and requires at most 10%
greater embedding cost.

3https://oeis.org/A007526, see Joseph K. Horn’s formula

Algorithm 1 VNE for WSN
Input: G = (N,E), S,D,R
Output: X∗ = xij , Y

∗ = yik, i < |R|, j ∈ N, k ∈ E
1: // Node mapping
2: ∀Ri ∈ R, Ci = {n ∈ N2(Rsi )|DnRs

i
≤ Rδi andH(n)min}

3: xij = 1 s.t. arg maxi<R,j∈Ci | ∪ {j}|
4: // Determining bounds
5: 0-1-K (Ri ∈ R,Wi ← IFI(

∣∣H(j|xij = 1)
∣∣)×Rγi )

6: A ← length of knapsack solution
7: // Combinatorial search
8: for all P ∈ perm(R)
9: X = {xij}, Y = {yij = 0}

10: for all Ri ∈ P
11: // Link mapping for Ri
12: while true
13: p← Dijkstra(src = j|xij = 1, dst=sink,W = eψi )
14: if W(p) ≥ penalty
15: found = false; break
16: // Reliability and capacity constraints
17: if (

∏
(eµi )yij<Rπi )||(eϕk>eZk )∀ei∈p, ek∈IN(p)

18: penalize worst link; continue
19: found = true; break
20: if found: yij = 1∀j ∈ p;update eϕi , e

ψ
i ∀ei ∈ E

21: else : xij = 0 // Ri is not mapped
22: // Pruning
23: if

∑
X = A: break // Sink bottleneck

24: if
∑
X +(|P | − i) ≤

∑
X∗ : break

25: if
∑
X >

∑
X∗

or (
∑
X =

∑
X∗ and

∑
Y e

ψ
i <

∑
Y ∗ e

ψ
i ):

26: X∗ ← X and Y ∗ ← Y // Update current best

• Initial solution The solution representing the lower
bound acceptance ratio. Obtaining this solution requires
embedding only a single VNR sequence. It may or
may not qualify as a good solution (might have lower
acceptance ratio than the best).

• Early solution, HEarly, The first good solution (same
acceptance ratio as the best) found during the exploration
of the permutations.

These quantified solutions are used as milestones in the
search for the best solution and they can be provided to the
user as solutions of a bounded lower quality that can be
obtained in known, bounded, time.

IV. EXPERIMENTS AND RESULTS

We start by evaluating the performance of the algorithm
compared to the MILP baseline and analysing the limitations
imposed by the structure of the WSN. We then explore the
trade-off between the solution quality and the processing time
to identify the quick & good heuristic.

A. Evaluation baseline

The existing proposed solutions for VNE in WSN or wire-
less mesh consider only a subset of the constraints covered
by our algorithm (i.e. either QoS or QoI, not both). Extending
these solutions to make them equivalent to ours is not trivial
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and would require significant changes that could alter their
performance so that it is not comparable with the original. We
decided to compare the performance of the algorithm with an
exact solution obtained by the Mixed Integer Linear Program
shown in equations 1-6. To this extent, we modelled the MILP
using the Pyomo framework 4 and used the Cbc (Coin-or
branch and cut) solver 5.

As indicated by Rost et al [12] the common objective in
VNE is either to maximize acceptance ratio or to minimize the
resources required when accepting a subset of the VNRs (of a
predefined minimum size). In comparison, the goal used in this
paper is a combination of the two: maximizing the acceptance
ratio while minimizing the cost (or the amount of substrate
resources used). In accordance with the state of the art, the
MILP in equations 1-6 was split into two separate problems.
The first one, MILP-acc, maximizes the acceptance ratio given
the input VNRs. The second one, MILP-cost, minimizes the
cost. Both problems use the same set of constraints (equations
3-6).

The algorithm is compared to the baseline as follows. First,
the MILP-acc is solved with Cbc to identify the maximum
acceptance ratio for the input VNRs. To ensure fair com-
parison, only those configurations of input VNRs where the
algorithm obtains the same acceptance ratio as MILP-acc
(optimal acceptance ratio) are considered. For those input
VNRs, the MILP-cost is solved, restricting the input VNRs
to all the distinct subsets that are of the same size as the
maximum acceptance value obtained by MILP-acc for that
particular input.

B. Experimental setup

Our VNE algorithm takes as input a substrate topology
G(N,E) with the associated node and link properties, the
measurement error matrix D and a set of VNRs. The algorithm
evaluation was designed considering the following: i) the
algorithm’s computational complexity depends primarily on
the network size (number of nodes) as well as the number of
VNRs, ii) the outcome of embedding a given set of VNRs
depends on the network topology as well as the Sensing
Request Points (SRPs) requested in the VNRs; namely, some
topologies or sink positions, or source locations can lead
to better or poorer quality result. The VNE algorithm was
evaluated with the network size varied over the set 50, 100, 150
nodes and with 1-8 VNRs 6. For each configuration of network
size and number of VNRs, one thousand iterations were tested.
To eliminate the bias noted in the second item above we
randomized parameters in each iteration. The network topol-
ogy and error matrix were randomly generated as explained
below. The VNR parameters were uniformly sampled: i) SRP
from the grid of SRPs of the corresponding topology; ii) re-
quired accuracy ∈ (0,mean + std dev of error matrix values];

4http://www.pyomo.org
5https://projects.coin-or.org/Cbc
6For higher values the processing time of the baseline became prohibitive.

iii) quota ∈ [1, 20] 7. The minimum reliability for a VNR
was set to 50%. The coefficients of the link weight (Eq. 1)
were set empirically to cϕ = 40 for the link load and cµ = 2
for the packet loss. The chosen coefficient values prioritize
valid solutions with balanced link load over valid solutions
with reliability higher than requested. The former will lead to
higher acceptance ratio, increasing profits; the latter will not.

The network topologies generated were designed to match
organized WSN deployments, where groups of nodes are
monitoring various rooms in a building or city blocks, and
the groups are inter-connected to form a network without
partitions. The reliability (packet success rate) of the link in
the generated topologies was calculated based on the distance
between nodes. As indicated in Section II, in a real setup the
network topology and link qualities are obtained periodically
from the network and are available to the algorithm in the
network information databases.

For simplicity, it was assumed that all the nodes in the
network have temperature sensors only. To generate the mea-
surement error matrix D for each generated network topology
a spatial distribution of temperature was simulated by adding
sources of heat and cooling to the deployment area. Then,
for each SRP and each node, the experienced temperature
was calculated as the cumulative effect of all the temperature
sources. That was then used to calculate the error matrix.
This model ignores the variation of temperature in time. For
increased accuracy a model based on covariance such as [13]
can be used instead, however the choice of model does not
affect the performance of the algorithm.

The algorithm and baseline implementation, as well as the
input data for the experiments are available in our repository 8.

C. Performance evaluation

The quality of the embeddings obtained using the proposed
VNE algorithm, in terms of acceptance ratio, embedding cost
and processing time, was evaluated and compared to the
baseline described in section IV-A. The performance of the
algorithm was also evaluated in terms of overall network uti-
lization and sink resource utilization. The evaluation considers
the three types of solutions generated by the algorithm: best
(HBest), early (HEarly), and initial.

A quick glance over figures 1, 2, 3 shows that the proposed
algorithm generates solutions (HBest) that are similar in ac-
ceptance ratio and cost to the optimum (obtained by MILP-acc
and MILP-cost). The heuristic is considerably faster than the
MILP, with the early solution (HEarly) obtained in seconds.

Figure 1 shows the acceptance ratio obtained with the
heuristic, compared to that obtained with the MILP-acc solver.
The HBest acceptance ratio is represented with the boxes,
three for each number of VNRs, corresponding to the results
for 50, 100, and 150 node networks. The distance from the
optimum (represented with lines and markers) is calculated as

7A 20% quota is the maximum that can be allocated due to a maximum IFI
multiplier of five [7]. Considering an empirically determined link data rate
of 624Bytes/s, the quota interval corresponds to application data rate ∈
[6.24, 124.8]Bytes/s. This can be determined based on application payload
size and sampling rate as explained in section II.

8https://github.com/RKatonaAtNimbus/VNE for WSN
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Fig. 1. Algorithm acceptance ratio (boxes, three for each number of VNRs,
corresponding to 50, 100, and 150 nodes) and distance from optimum (lines).

(milp − heur)/milp × 100 (heur is the heuristic solution).
The plot shows that the acceptance ratio obtained by the
algorithm decreases with the number of VNRs to less than
60% at 8 VNRs 9. The same behavior is obtained by MILP-
acc, although it is not shown in the figure. The primary cause
is the use of a single sink, and it is analyzed in detail later in
this section. The acceptance ratio also drops with increasing
network size. This is due to larger networks having longer (and
less reliable) paths, as well as higher probability of bottlenecks
within the network.

The distance from optimum shown with lines and markers
in Figure 1 increases with the size of the network due to the
larger search space and greedy path finding algorithm. The
values at eight VNRs are: 2.8% in 50 nodes, 5.5% in 100
nodes and 10.1% in 150 nodes. The figure also shows that the
optimality gap decreases with the number of VNRs, however
this is believed to be due to the averaging of the acceptance
ratios: if HBest accepts one less VNR than MILP-acc the result
can be an acceptance ratio of 0 for one VNR, or 0.875 for
eight VNRs. To verify, Figure 4 shows the percentage of cases
where HBest obtains optimal acceptance ratio. Intuitively, this
value is proportional to the optimality gap. The trend observed
here is indeed different (actually inverted) from what is shown
in Figure 1, with the values decreasing (so optimality gap
increasing) as the input size increases. The interpretation of
the two figures 1 and 4 is that (at worst, for 150 node networks)
the heuristic achieves optimal acceptance ratio in 60-65% of
cases (Fig. 4). Where the result is suboptimal the optimality
gap is of less than 15% (Fig. 1). The causes for the optimality
gap are discussed in more detail in Section V.

In Figure 2, the embedding costs obtained by HBest as well
as HEarly are compared with the optimum as obtained with
MILP-cost. For fair comparison, the results are only from the
cases where the acceptance ratio of the heuristic is optimal. As
explained above, for each case, given the number of accepted
VNRs (obtained by MILP-acc), MILP-cost was run over all
the combinations of subsets of the entire input of length equal
to the number of accepted VNRs to obtain the optimal (lowest)

9The reasons for obtaining less <100% acceptance for one VNR are
rejections due to requested measurement accuracy not finding a valid candidate
node, or a combination of measurement accuracy and reliability.
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Fig. 2. Algorithm embedding cost relative to optimum.

0
4
8

12 50 nodes
HEarly HBest MILP

0
10
20
30

T
im

e
(s

) 100 nodes

1 2 3 4 5 6 7 8
Number of VNRs

0
25
50
75

150 nodes

Fig. 3. Processing time (note the different y-axis scales).

cost. The cost obtained by HBest is at most 6.4% greater than
the optimum (for 150 nodes and eight VNRs). HEarly, which
is defined to have the same acceptance ratio as HBest and
at most 10% higher cost is at most 7.9% greater than the
optimum.

The processing time of the heuristic HBest and HEarly
solutions is compared to that of MILP-acc in Figure 3. The
MILP representation of the VNE is known to be NP-Hard.
The HBest solution has factorial time complexity because it
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Fig. 4. Percentage of cases where the heuristic achieves optimal acceptance
ratio.
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Fig. 5. Utilization of resources with regards to average quota.

embeds all the permutations of the input VNRs. Embedding
a single sequence of VNRs has a worst case complexity of
O(|R|(|E|(|N |log|N |+ |E|))), where N are the nodes, E the
links, and R the VNRs, as per Section II 10. Even with the
gains obtained by memoization the HBest quickly becomes
intractable. Nevertheless, the HEarly solution can generate
results of the same acceptance ratio as HBest and within 10%
of the HBest cost, but in much less time. All solutions increase
in processing time with the size of the network and the number
of VNRs, as expected. Although HBest and MILP-acc are
close in processing time for the 50 and 100 node networks, at
150 nodes the MILP takes more than double the time. While
the HBest could still be a viable alternative even in the 150
nodes at eight VNRs, the HEarly solution takes only a few
seconds (<6s). Still faster is the initial solution that only
embeds one sequence of VNRs, with a worst case of 0.2s
(not shown in the figure). The quality of the initial solution is
analyzed in the next subsection.

Improving the utilization of network resources is one of
the main incentives of network virtualization, and the same
goal is adopted for shared WSNs [6]. Figure 5 presents the
network utilization. Starting in the top plot with the average
quota requested by the VNRs (whisker lines) and average
quota accepted into the network (bars), the results show that
less than half of the requested quota is actually accepted, even
though the amount requested is less than the full capacity of
a link (<100% of the link’s capacity). The figure presents
communication quota rather than acceptance ratio because it
is a more accurate measure of network utilization, however the
results support those in Figure 1, where the acceptance ratio
also decreases below 60%.

The middle plot of Figure 5 shows the percentage of
network links that have been mapped to VNRs or affected
by VNR traffic. Two trends are clearly identifiable. First, the
percentage of mapped links decreases significantly as the net-
work size is increased: at 50 nodes, 60%, at 100, 45%, and at

10Embedding consists of running Dijkstra lowest cost path (O(|N |log|N |+
|E|)) and repeating after penalizing links (must try all links in the worst case),
until success or all links are penalized. This must be repeated for all the VNRs
in the sequence.

150, 31%. This is primarily because larger networks have more
links, so the utilization will be relatively lower. Also, larger
networks will have on average longer paths; these have lower
end-to-end reliability (which decreases exponentially with path
length), therefore lower likelihood of VNR acceptance.

The second insight is that the utilization, while increas-
ing with the number of VNRs (and, consequently, with the
demanded quota) has an asymptotic trend. The same trend
can be observed in the load at the sink, in the bottom
plot 11, and it is caused, as discussed in Section III-B, by the
extraction of all the data through the sink. The sink becomes a
bottleneck, limiting accepted quota and admission ratio. This
is an important result that shows that using a single sink
for a shared WSN is not effective and will not be able to
maximize the utilization of the network. Multiple sinks should
be used instead and they must be deployed strategically in the
substrate; we are currently developing a solution to this.

D. Embedding quality vs processing time

As proposed previously, a sub-optimal but quickly obtain-
able good solution may be used instead of the best in order to
reduce the required computation time. The advantage of the
anytime algorithm defined in this paper is being able to explore
the evolution of the solution quality with the processing time.
Section III-F defined best (HBest), early (HEarly), and initial
solutions, and the quality and processing time of the best
and early solutions were analyzed in the previous subsection.
The initial solution is the most attractive because it only
embeds a single VNR sequence, and the longest processing
time experienced in the experiments conducted was 0.2s. It
is therefore important to quantify the quality of the initial
solution, and this is analyzed in Figure 6 (worst case results
obtained are shown). The stacked bars show a breakdown of
the quality of the embedding results of the initial solution. It
can be seen that in >90% of the cases, the initial solution
qualifies as a good solution (which makes it equivalent to
the early solution). Furthermore, in >60% of cases the initial
solution is the best one. The important conclusion is that
in 90% of the cases the algorithm can provide a solution
with optimal acceptance ratio and within 10% of the optimal
cost by only processing the input VNRs once, sorted in non-
decreasing order of their requested communication quota. This
result stands for batch sizes ≤ 8 VNRs, as tested, however the
shape of the ”Equals good solution” curve indicates asymptotic
behaviour, which is a promising result for larger batch sizes.

For the cases when a good solution cannot be obtained
immediately we analyze how much of the search-space needs
to be processed in order to find one (i.e. HEarly). Figure 7
shows the distribution of the occurrence in the search space of
the HEarly solution. The whiskers represent the 95th percentile
and the y-axis is in log-scale. The results show that, for up to 8
VNRs, the HEarly solution will be found, with 95% certainty,
if only the first several hundred permutations are explored.

11A sink’s load can reach 100% if its direct neighbors send continuously.
In a multi-hop network, those neighbors need to release the channel to receive
data from upstream, which reduces the maximum sink load to <100%.
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The behavior observed in the results above is explained by
the objective function used. This maximizes VNR acceptance
(primary) and minimizes embedding cost (secondary), so it
favors requests that demand fewer communication resources
(i.e. quota) and are closer to the sink. The initial solution will
often be the best because it embeds the input VNRs in non-
decreasing order of their quota. However, when the requested
quotas are similar the cost or acceptance ratio can be improved
in subsequent permutations of the input, due to the resulting
total resource consumption or to violations of the reliability
constraint.

V. DISCUSSION

A. Assumptions and their limitations

Some of the assumptions that were made in the design of the
experiments affect the results. Here we discuss the potential
limitations imposed by our assumptions.
The networks generated have long paths. Long paths have
lower reliability, so this can be seen as reducing the acceptance
ratio. As indicated in Section IV-B the generated networks
mimic large-scale clustered WSNs. The existence of long paths
is not due to the network topology but primarily to the use of
a single sink. Nevertheless, by randomizing the position of the
SRPs we get both short and long paths, and capture a more
general behaviour of VNE in WSNs.

One VNR is equivalent to one source node. While traditional
network virtualization deals with embedding network topolo-
gies (e.g. in data centers), WSN applications are commonly
source-sink, with potentially multiple sources. Therefore, we
believe the assumption makes sense; to simulate multiple
source networks we use multiple VNRs.
Eliminating bias. We carefully designed the experiments and
the parameter value range to cover a wide range of WSN VNE
scenarios and eliminate bias. The network topology is probably
the most important, and by randomizing the topology, the
location of the sink, and the location of the SRPs we eliminate
any bias related to path length, in-network bottlenecks, or
clustering of requests. We also covered a wide range of VNR
requested accuracy and sampling rate values. By randomizing
over 1000 cases, we obtained a result that represents the VNE
performance over both common as well as more demanding
(e.g. in terms of sampling rate) or relaxed (e.g. in terms of
reliability) scenarios, which are uncommon but may still occur.
Scale. The goal of this work was to examine the trade-off
between solution quality and processing time, due to the NP-
Hardness of the problem. This resulted in the important result
that with the initial solution we can obtain >90% best result in
>90% of cases, for batch sizes of 8 VNRs or less. However,
this required exhaustively exploring the search space, which
imposed limits on the scale, in terms of network size and
number of VNRs. Nevertheless, comparing with the state of
the art, Yun et al. [14] consider networks of up to 50 nodes
and the embedding is online, which means that VNRs are
embedded one at a time (compared to batch embedding done
in our algorithm). Delgado et al. [15] consider a network of
36 or 72 nodes, with up to 32 VNRs embedded. Finally, Afifi
et al. [16] consider small networks of 18 nodes. While we
consider a lower number of VNRs, we have a much higher
(>2x) network size than the state of the art. This increases
the search space, and considering that we also have more
constraints, the resulting search time is considerably higher.

B. Distance from optimum
The algorithm presented in this paper obtains embeddings

of within 10-15% of the optimal acceptance ratio and 8% of
the optimal cost, as presented in the previous section. The
optimality gap is caused by the node and link mapping pro-
cedures. Although the algorithm goes through all the feasible
permutations of the input VNRs, the node and link mapping
are greedy. Dealing with the suboptimality at these steps opens
up interesting avenues for further exploration and improvement
of the algorithm.

The node mapping is disconnected from the link mapping
and always considers the entire set of input VNRs, regardless
of the possible acceptance ratio. Since nodes are mapped
trying to minimize the overlap (two virtual nodes on the same
physical node), it is possible that some valid candidate nodes
are avoided due to possible contention between two VNRs,
even when one of those VNRs will not be accepted. Therefore,
performing the node mapping for each VNR in tandem with
the link mapping could provide better results.

Primarily the optimality gap comes from the path selection
during link mapping. This can be seen in the single VNR
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cases where the heuristic underperforms in acceptance ratio,
so there is a viable path but the algorithm does not find it. It
must be said here that the constrained shortest path problem
is NP-Complete [11], and in our case it is further complicated
by the link capacity constraint, which must take into account
neighboring links. The approach used in this paper applies
Dijsktra and then validates the path against the capacity and
reliability constraints, penalizing the worst performing links.
It is the penalization which can lead to sub-optimal solutions
because a penalized link can actually belong to another valid
path. We are currently exploring an extension of Dijsktra that
checks the capacity and reliability constraints as the path is
being built.

C. The VNE algorithm with a dynamic substrate

With few exceptions (e.g. [17]), most VNE algorithms
assume a static substrate. In the real world this is rarely the
case, especially in WSN. The VNE algorithm needs to provide
a solution and enforce it into the network (configure nodes,
deploy code, etc) before the substrate changes. The algorithm
presented is an anytime algorithm so can handle this problem
by returning the current best solution when preempted. The
algorithm can continue searching for the optimal solution in
the background and reconfigure the network (if needed) on
completion.

D. Considering energy

Energy consumption is the primary constraint for WSN
applications and the common solution is reducing the duty
cycle. By definition the goal of VNE is somewhat opposed to
that as the desire is to maximize the utility of the network.
In allocating VNRs over the energy constrained substrate it
is important to evenly distribute the load between nodes and
prevent energy bottlenecks from forming that would deplete
their energy faster and potentially partition the network. The
algorithm presented distributes load both at the node mapping
(minimizes overlap) and link mapping (minimizing link weight
minimizes load as well) stages. Nevertheless, in this work
controlling the energy consumption and network lifetime are
only side-effects of the presented algorithms; in the future we
plan to introduce energy consumption as an explicit constraint.

E. Impact of interference on network capacity

A valid embedding must ensure conflict-free transmission.
This requires silencing all links within an active link’s interfer-
ence neighborhood [14]. For the VNE those link resources are
consumed and cannot be allocated to requests. This results in
network capacity degradation and ultimately limits how well
the WSN substrate can be utilized.

The most visible impact of interference on link capacity
is at the sink. As seen in Figure 5, the sink acts as a
bottleneck, reducing the maximum accepted quota to <100%
of a link’s capacity. Nevertheless there may be other regions in
the network suffering from congestion. For example, on longer
paths, multi-access link interference can cause certain links on
the path to be affected (i.e. their capacity consumed) up to

5 times the quota that is required for a single transmission,
hence causing a bottleneck effect. In future work, we plan to
experiment with varying network densities and multiple sink
nodes to assess their effect on the embedding result.

VI. RELATED WORK

The virtualization of WSNs has been discussed as a means
to better utilize WSN deployments [18], [19], [20]. In addition
to existing VNE constraints, VNE in WSN must ensure
reliable and correct data extraction. Node allocation must
be constrained by physical location and measurement errors
(QoI), and link allocation by end-to-end communication relia-
bility (QoS). Delgado et al [15], [21] and Bousnina et al [22]
first explored heuristic and exact approaches to VNE in WSN
with QoI, but without QoS. Bousnina et al [22] uses the
same greedy link mapping as our algorithm, however, in their
case, they only consider the least cost path. Our algorithm
will explore higher cost paths, in case the least cost is not
feasible, therefore it achieves higher acceptance ratio. Li et
al [23] address VNE in industrial WSN with QoS, but without
radio interference. Another resource allocation problem that is
somewhat similar to VNE is that of mapping applications to
nodes to maximize the quality of sensing [24]; this does not
consider communication.

Research in VNE for wired networks has produced far more
solutions [4]. According to [12] VNE algorithms either max-
imize the acceptance ratio or maximize the profit, given a set
of acceptable requests [25]. Exact solutions defined as Mixed
Integer Linear Programs (MILP) have been proposed [2] and
shown to handle substrates of up to 50 nodes with VNs of up
to 8 nodes in acceptable time. The problem can be simplified
by reducing the MILP (known to be NP-Hard) to a Linear
Program (LP) using randomized rounding. This has produced
good solutions in polynomial time in [25], [26]. Finally, the
problem can be simplified using heuristics [3], or by restricting
the search space to subsets of the parameter space [27]. The
existing breadth of VNE solutions for wired networks cannot
be translated into the wireless domain, due to the way wireless
interference impacts the constraints.

There are several ways for handling wireless interference
and ensuring conflict-free communication. We took a similar
approach to that of [15], ensuring that conflicting links are
not active at the same time. This is a sufficient condition for
conflict-free scheduling. Yun et al [14] show that a tighter
bound can be obtained if the traffic patterns, that is the packet
arrival times, are considered [14], [16]. However, this cannot
be represented as a linear constraint but requires iterative
analysis, which greatly increases the problem complexity.
Cross-link interference can be evaluated using a protocol
model [8], based on binary connectivity between nodes [14],
or a physical model [8], based on SINR (Signal to Interference
plus Noise Ratio) [28]. Another concern in wireless networks
is the dynamic substrate that can change either due to node
mobility or link variation. This was discussed by Abdelwahab
et al [17].
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VII. CONCLUSIONS

Based on our review of the state of the art, the algorithm we
presented is the first Virtual Network Embedding algorithm for
multihop wireless sensor networks that guarantees collision-
free communication under QoS (end-to-end reliability) and
QoI (measurement error) constraints. The algorithm provides
solutions that are within 10-15% of the optimal acceptance
ratio and within 8% of the optimal embedding cost.

The algorithm can be interrupted at any time and will return
the best solution up to that point. While the time required to
obtain the best solution is comparable to that for obtaining
an exact solution with a Mixed Integer Programming solver,
solutions of lower but still quantifiable quality can be found in
bounded time. By exploring the improvement of the solution
quality with the processing time it was found that in 90% of
the tested cases a solution of equal acceptance ratio to the best,
and within 10% of the best cost, can be obtained in bounded
time (worst case 0.2s) by embedding the input VNRs sorted in
non-decreasing order of their requested resources. The results
show asymptotic behaviour indicating that the conclusion is
likely to stand for larger batches as well.

The impact of the algorithm on the utilization of network re-
sources was investigated. Probably the most important conclu-
sion of the paper is that the improvement in resource utilization
that network virtualization can provide for a single sink WSN
and data collection queries is greatly limited. First, because all
data needs to be extracted through the sink (no aggregation
or in-network processing), which acts as a bottleneck, and
second because ensuring conflict free communication on a link
requires silencing neighboring (interfering) links. The possible
solutions are using multiple sinks, data aggregation and in-
network processing, and they will be explored in the future.
Acknowledgements. We thank Dr. Ramona Marfievici and the
anonymous reviewers for their valuable comments.
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