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Abstract 

Fungal pathogen Candida albicans causes serious nosocomial infections in patients, in part, 

due to formation of drug-resistant biofilms. Protein kinases (PK) and transcription factors 

(TF) mediate signal transduction and transcription of proteins involved in biofilm 

development. To discover biofilm-related PKs, a collection of 63 C. albicans PK mutants was 

screened twice independently with microtiter plate-based biofilm assay (XTT). Thirty-eight 

(60%) mutants showed different degrees of biofilm impairment with the poor biofilm 

formers additionally possessing filamentation defects. Most of these genes were already 

known to encode proteins associated with Candida morphology and biofilms but VPS15, 

PKH3, PGA43, IME2 and CEX1, were firstly associated with both processes in this study.  

Previous studies of Holcombe et al. (2010) had shown that bacterial pathogen, 

Pseudomonas aeruginosa can impair C. albicans filamentation and biofilm development. To 

investigate their interaction, the good biofilm former PK mutants of C. albicans were 

assessed for their response to P. aeruginosa supernatants derived from two strains, wild-

type PAO1 and homoserine lactone (HSL)-free mutant ΔQS, without finding any non-

responsive mutants. This suggested that none of the PKs in this study was implicated in 

Candida-Pseudomonas signaling. 

To screen promoter sequences for overrepresented TFs across C. albicans gene sets 

significantly up/downregulated in presence of bacterial supernatants from Holcombe et al. 

(2010) study, TFbsST database was created online. The TFbsST database integrates 

experimentally verified TFs of Candida to analyse promoter sequences for TF binding sites. 

In silico studies predicted that Efg1p was overrepresented in C. albicans and C. parapsilosis 

RBT family genes. 
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Summary 

C. albicans is a serious human pathogen partially due to its drug resistant biofilm 

development that depends on the environmental signals sensed by the cell receptors. The 

PKs and TFs regulate signal transduction and gene transcription process respectively.  

The primary aim of this research was to discover the most important PKs for C. albicans 

biofilm development. Indeed, we identified 38 PK mutants with different degrees of biofilm 

impairment but some of them were already linked with biofilms. Nearly half of these 

mutants were classified as ‘Poor’ biofilm formers possessing additional filamentation 

defects. The novel findings included 5 genes, VPS15, PKH3, PGA43, IME2 and CEX1, not 

previously associated with either filamentation or biofilm formation. All these 5 genes 

seem to participate in processes that are important for biofilm formation, validating our 

approach. For example, even though VPS15 encodes a kinase involved in vacuolar protein 

sorting, other members of the Vps protein family, Vps1p and Vps34p, were reported to 

significantly contribute in Candida biofilm formation. Vps15p and Vps34p form a complex 

on the vacuole/golgi membrane indicating that a proper fungal cell development requires 

correct protein sorting mechanisms. PKH3 encodes a kinase that may be involved in Protein 

Kinase C (PKC) activity, which is important for drug resistance of C. albicans. Additionally, 

the pkh3 mutant is reported to display significantly decreased cell-substrate adherence, 

what prevents biofilm formation. Interestingly, Pkh3p was clustered with the vacuolar 

proteins Vps15p and Vps34p in the network, probably indicating that the defect in this 

mutant is also related to vacuole protein sorting mechanisms. PGA43 encodes a Glycosyl-

Phosphatidyl-Inositol (GPI)-anchored protein with unknown function but other Gpi family 

proteins, Pga59p and Pga62p, are known to be required for cell wall integrity, which is 

mandatory for filamentation. Involvement of C. albicans Ime2p in morphological 

development is not surprising since its Saccharomyces cerevisiae orthologue is essential for 

pseudohyphal growth independent of the MAPK filamentation cascade. The function of C. 

albicans Cex1p is unknown but in S. cerevisiae it is exported from the nucleus via tRNA 

binding.  

Apart from vacuolar process, our data showed that the PKA pathway, ribosome biogenesis 

and some aspects of the cell cycle are also required for efficient filamentation and biofilm 

development. For example, mutants that were disrupted in C. albicans PKA genes, BCY1, 

TPK1 and TPK2, and the ribosome biogenesis genes, CKA2, CKB1 and CKB2, exhibited 

impaired biofilms under our assay conditions. Bcy1p is a regulatory subunit of PKA, which is 



xiv 
 

prominent for C. albicans morphogenesis and, Tpk1p and Tpk2p are well-documented to be 

involved in filamentation. The ribosome biogenesis genes were also reported to display 

elevated transcription in biofilm forming cells. Upon these findings, it was interesting to see 

which proteins were not absolutely required for biofilm formation.  Surprisingly, none of 

the individual PKs in MAPK (Mitogen-Activated Protein Kinase) cascades was essential, 

indicating that MAPK mutants are compensated by parallel MAPK pathways in the cell.  

The second goal of this project was to investigate the interaction between C. albicans and 

P. aeruginosa. Previous studies had shown that Pseudomonas supernatants could impair 

both the yeast-hyphal transition and biofilm development in Candida. Thus, the ‘Good’ 

biofilm former mutants of C. albicans were assessed for their response to P. aeruginosa 

supernatants without finding any non-responsive mutants . This result suggested that none 

of the PKs in this study was implicated in Candida signal transduction response to 

Pseudomonas signals. However, the comprehensive analysis of the mutants in presence of 

supernatants derived from N-acyl-L-Homoserine Lactone (HSL)-positive and HSL-negative 

strains of P. aeruginosa showed 2 distinct effects on Candida: HSL-dependent impairment 

of morphology and HSL-independent impairment of biofilms.  

To further investigate the TF regulation of Candida genes that were altered in presence of 

P. aeruginosa secreted chemicals, we created a TFbsST database (http://bioinfo.ucc.ie/ 

TFbsST/). Candida TF library with experimentally validated motifs and Python scripts were 

integrated to develop a user-friendly application for the analysis of gene promoter regions. 

The TFbsST database includes TFs of C. albicans and closely related Candida species such as 

C. parapsilosis, C. dubliniensis as well as evolutionary distinct C. glabrata. Initially, we 

annotated the differentially expressed genes of C. albicans that were up/downregulated in 

response to P. aeruginosa supernatants and shortlisted the genes coding for cell 

wall/surface proteins including members of RBT and ALS families. Using TFbsST database, 

we showed that several members of both gene families possessed Efg1p binding sites in 

their promoters enhancing the importance of Efg1p in the yeast to hyphae switch. The 

presence of Efg1p binding motifs in C. parapsilosis RBT family gene promoters further 

supported its regulatory role across the Candida spices.  

Conclusively, our approach, bioinformatics tools and data generated from this study seed 

into the existing models of C. albicans and increase our understanding of its cellular 

mechanisms. 
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A B C E 

1. General introduction  

1.1 Candida albicans virulence  

C. albicans lives in healthy human host as a commensal colonising the mucosal microflora 

of urogenital and gastrointestinal tracts as well as oral cavity.  However, C. albicans 

becomes pathogen after the overgrowth of the communities that can cause infectious 

diseases by bypassing the hosts defence system. C. albicans can overcome the macrophage 

innate immunity barrier with the metabolic changes mediated by the members of the Ato 

protein family (Danhof and Lorenz 2015) and the excretion of farnesol that stimulates 

macrophage chemokinesis (Hargarten et al. 2015). Candida infections range from life-

threatening invasive candidiasis (candidaemia) to superficial mucosal infections known as 

‘thrush’. Other conditions caused by Candida include oral, mucosal and dermatological 

candidiasis; lung, hepatic (liver) and renal (kidney) abscess; pyelonephritis, vulvovaginitis 

and candiduria; as well as osteomyelitis (bone marrow), nail and eye infections  (reviewed 

by Gulati and Nobile 2016) (Figure 1 and Table 1).  

 

 

 

 

 

 

Figure 1| Some examples of yeast infection. A| Oral infection in children, B| Nail infection, 

C| Skin infection, D| Plaque due to dental appliances and E| Biofilms on catheters causing 

bloodstream infections. The images were taken in this study with the patients’ consent 

under the confidentiality policy of the Irish Health Care Board. 

 

The main groups of patients vulnerable to Candida infections include immunocompromised 

populations, due to cancer treatment (with chemotherapy), organ transplant (with 

immunosuppressants) and HIV (with immunodeficiency virus). Candida profits from the 

dysfunction of the immune system to dominate and infect the patients with immune 

D 
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disorders. Another group involves the cystic fibrosis (CF) patients with depleted defence 

bacteria due to the widespread use of antibiotics that promotes growth of C. albicans 

communities. Along with the pathogens (usually Pseudomonas aeruginosa), the antibiotics 

also eradicate the commensal bacteria that activate hypoxia-inducible factor-1α (HIF-1α) 

and the antimicrobial peptide LL-37 of a host preventing host response to C. albicans 

infections (Fan et al. 2015). Additionally, enhanced growth of Candida colonies was 

observed in the cortisone administered patient groups (Seligmann 1953).  

C. albicans is the 4th common pathogen that causes infections in nosocomial patients and 

accounts for 30% mortality rate mainly because of invasive bloodstream infections. C. 

albicans pathogenesis is enhanced with its virulence factors such as adhesins (biomolecules 

that facilitate host recognition and cell adhearance), aspartyl proteases and phospholipases 

(secreted molecules), morphogenesis (reversible transition forms between unicellular yeast 

and filamentous hyphae) and biofilms (complex community structures protected with 

extracellular matrix). The bloodstream infections are seeded by the C. albicans biofilms that 

are developed on implanted medical devices and catheters. Drug resistant biofilms covered 

by the extracellular matrix (ECM), protect Candida communities from antifungals and 

antibodies of the immune system making Candida infections practically untreatable.  

Table 1| Candida infection manifestations at different body sites. 

Organs Superficial Bloodstream 

Eye infection Dermatological candidiasis Candidaemia  
Cerebral candidiasis Mucosal candidiasis Osteomyelitis  
Lung abscess Oral candidiasis Medical implants 
Hepatic abscess (liver) Nail infection Catheters 
Renal abscess (kidney)   
Pyelonephritis (kidney)   
Vulvovaginitis (vagina)   
Candiduria (bladder)   

 

 

1.2 Drug resistance strategies of Candida albicans 

C. albicans biofilms are widely investigated due to their connection with drug tolerance and 

high mortality rates. In addition to the switching ability, the virulence of Candida is 

increased by its extracellular matrix (ECM) that contains proteins, polysaccharides and 

extracellular DNA. ECM covers the biofilms and prevents the action of the antifungals. 

Candida drug resistance genes (CDR and MDR) that are upregulated during biofilm 



4 
 

formation, encode for 2 types of efflux pumps, ABC transporters (CDR) and MFS (major) 

facilitators (MDR) further increasing drug tolerance of Candida (Ramage et al. 2002). C. 

albicans communities in the biofilms (only) also contain persister cells, variants of normal 

cells that are usually in a dormant state, surviving the high doses of antifungals (LaFleur et 

al. 2006; Lewis 2012). Due to the latter, the commercially available antifungals (azoles, 

polyenes and echinocandins) are often ineffective against Candida biofilms. Azoles inhibit 

lanosterol, polyenes target ergosterol of cell membrane and weaken it, and echinocandins 

inhibit the synthesis of glucans in the fungal cell wall. Ineffectiveness of these drugs directs 

research towards alternative therapeutic strategies. These strategies were reviewed by 

Nett (2014) and include targeting extracellular matrix (ECM) and quorum sensing (QS) (Nett 

2014). The recent insights in the field of biofilms and drug resistance have also highlighted 

the role of combination therapy that includes the use of the antifungals and the natural 

compounds derived from the plants (e.g. menthol, nerol), fungi (e.g. penicillin) and bacteria 

(e.g. Pseudomonas phenazines and QS molecules) (Kerr et al. 1999; Hogan and Kolter 2002; 

Hogan et al. 2004; McAlester et al. 2008; Deveau and Hogan 2011). This approach reduces 

the probability for resistance development which is the main issue for the fungal infection 

treatments. 

1.3 Candida albicans morphology and morphogenesis 

The human pathogen, C. albicans, is a polymorphic fungus with a complex life cycle. In 

order to adapt to new environments it develops a full repertoire of distinct morphological 

forms including budding yeast (blastospore), intermediate pseudohyphae (Sudbery et al. 

2004), filamentous hyphae, mycelium with secondary blastospores and biofilms with 

extracellular matrix (ECM) (recently reviewed in detail by Nobile and Johnson 2015). The 

ploidy plasticity of C. albicans allows rapid adaptation to the stressful conditions (Berman 

2016). Different cell types vary in terms of polarization degree, septum position and 

nucleus movement. However, yeast, pseudohyphae and hyphae possess a single nucleus in 

each cell before mitosis. Uhl et al. (2003) identified 146 genes that are involved in switch 

between yeast and filamentous growth. The morphological switch between these forms 

represents a crucial factor for C. albicans virulence (Calderone and Fonzi 2001) (Figure 2). 

Apart from yeast to hyphae switch, the white round yeast cells can also be transformed 

into the elongated opaque cells reversibly and proliferate by mating projection (Slutsky et 

al. 1987; Rikkerink et al. 1988; Magee and Magee 1997; Molero et al. 1998). Ssn6p plays an 

important role in white-opaque switching (Hernday et al. 2016). C. albicans gray phenotype 

https://en.wikipedia.org/wiki/Ergosterol
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was recently described by Tao et al. 2014. Additionally, C. albicans has the ability to form 

chlamydospores with thicker cell wall in response to the nutrient or environmental stress 

(Fabry et al. 2003). Chlamydospores are larger than blastospores and possess thicker cell 

wall. In order to develop the chlamydospores, C. albicans mainly requires 6 genes (ISW2, 

MDS3, RIM13, RIM101, SCH9 and SUV3) (Nobile et al. 2003) and a MAPK Hog1 (Alonso-

Monge et al. 2003). However, C. albicans biofilms represent the most intriguing topic that 

has received enhanced scientific focus because they are responsible for virulence and drug 

resistance that lead to increased morbidity and enormous economic expenditure (Brajtburg 

et al. 1981; Lamfon et al. 2004). 

 

 

 

 

 

 

Figure 2| Schematic of C. albicans biofilm development. To develop drug resistant 

biofilms, yeast cells of C. albicans attach on the surface and adhere to the neighbouring 

cells. After filamentous growth of hyphae the matrix, that covers and protects the cells 

from the antifungals and antibodies, is produced extracellularly. Adapted from Fox and 

Nobile (2012). Konstantinidou (2014).  

 

Morphogenesis of C. albicans is initiated by external signals that are sensed by the cell 

receptors. The basic environmental factors which are known to induce fungal filamentaion 

in vitro include body temperature (37oC), neutral pH (7.0) and low cellular density (~106 

blastospores/ml) as well as presence of compounds such as blood serum, proline (amino 

acid), glucose (carbon source) and N-acetyl-glucosamine (Mattia et al. 1982; reviewed by 

Whiteway and Oberholzer 2004). In order to control its morphogenesis C. albicans 

integrates the environmental stimuli with different signalling pathways. For example, 

cellular morphogenesis is regulated by calcium signalling pathways (Sanglard et al. 2003; Xu 

et al. 2015), yeast to hyphae transition is governed by Ras/cAMP/PKA pathways (reviewed 
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by Hogan and Sundstrom 2009), hyphal development is coordinated by adenylyl cyclase 

(cAMP) pathways (Rocha et al. 2001) and pseudohyphal induction is orchestrated by MAPK 

pathways (reviewed by Srinivasa et al. 2012). These pathways involve some key 

transcriptional factors such as Efg1p, Tup1p, Ssn6p, Nrg1p, Brg1p and Cph1p that play an 

important role in the signal transduction. For instance, inactivation of the transcription 

factors Cph1p (MAPK pathway) or Efg1p (Ras/cAMP/PKA pathway) can inhibit hyphal 

growth (Lo et al. 1997). These transcription factors collaborate with the histone 

deacetylases for the morphological transition of C. albicans (reviewed by Kim et al. 2015). 

Deacetylases are the enzymes that can remove acetyl groups from the amino acids of a 

histone allowing DNA to wrap tighter around the histone.  

1.4 Biology of yeast, pseudohyphae and hyphae 

Early publications have broadly noted the pleiotropic pathogenicity of C. albicans. Candida 

causes denture stomatitis (Lilienthal 1955), asthma (Huguenin-Dumittan and Girard 1972), 

vaginitis (Banner 1974), endocarditis (Calderone et al. 1978), septicaemia (Rosin 1974) and 

infects burn wounds (Albano and Schmitt 1973). The different morphological forms of 

C. albicans induce distinct T helper (Th) cell responses during adaptive immunity providing 

tissue-specific protection (Kashem et al. 2015). The Th17 and Th1 cell responses provide 

protection against cutaneous and systemic infections respectively. For instance, the yeast 

form of Candida drives Th17 cell response while a filamentous Candida induces Th1 cell 

response (Kashem et al. 2015). C. albicans morphological forms including yeast, 

pseudohyphae and hyphae, play a determinant role in fungal virulence (Figure 3).   

1.4.1 Yeast 

The simplest form of C. albicans is a round unicellular yeast (blastospore) formed 

vegetatively (asexual cell division) via the budding process. Budding cell selection is a 

temperature dependent phenomenon. Under propitious conditions septin rings signal 

nuclei to divide across the mother bud neck by asymmetric budding (Sudbery 2001). Fungal 

isotropic growth is characterised by actin polarization. After cytokinesis, the smaller 

daughter cell disassociates from the mother cell and enters the next cell cycle once it 

reaches the threshold size (Figure 3A). A sexual mating and a white-opaque switching can 

be regulated through the pH of the environment (Sun et al. 2015). 

1.4.2 Pseudohyphae 

The defining characteristic of C. albicans pseudohyphal cells is their ellipsoid shape. They 

bud in an unipolar manner although septin rings appear before the budding process like in 
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the yeast cells (Sudbery 2001). However, pseudohyphal cells stay in G2 phase longer than 

the yeast cells. During the polarized pseudohyphal growth, each cell remains attached to 

another but they are separated by the septa, forming the pseudofilamentous pattern. The 

new cells enter the next cell cycle in a more synchronized manner than the yeast cells. The 

elongated pseudohyphal cells form chains and rough colonies after cytokinesis (Figure 3B). 

The pseudohyphae-associated genes are expressed at low levels and represent a small 

subset of the hypha-related genes (Carlisle and Kadosh 2013). 

1.4.3 Hyphae 

C. albicans filamentous growth is regulated independently from its cell cycle (Hazan et al. 

2002). The yeast-hyphal transition is driven by the extended duration of filament-specific 

gene expression (Carlisle and Kadosh 2013). C. albicans true hyphal cells possess 

considerable elongation, parallel walls and extreme degrees of polarity (Figure 3C). 

Polarized growth mode implicates polarisome elements as well as septins, tag/bud site 

components, Cdc42 module (cell division control protein) and actin-myosin system 

(Whiteway and Oberholzer 2004). The hyphal cell nucleus divides in the elongated germ 

tube. Expansion of the filaments is initiated with the asynchronous cell cycle since solely 

the apical cells start dividing whereas the subapical cells remain in the primary cell phase 

G1 (Barelle et al. 2003). Transcriptional regulator Ash1, which controls filamentous growth, 

is widely associated with the asymmetric cell division as it is found in the nucleus of apical 

but not of subapical cells (Inglis and Johnson 2002). Asymmetric vacuolar inheritance also 

appears to be vital in the hyphae formation (Barelle et al. 2003).  The true filaments 

develop via germ tube elongation process and filamentous cells display no distinct 

constrictions (Berman and Sudbery 2002). Hyphal formation is correlated with the 

bioactivity of small GTPases (Cdc42/Cdc24 (Ushinsky et al. 2002; Bassilana et al. 2003)), 

myosins (molecular motors Myo3/5 (Oberholzer et al. 2002)) and PKs (Hsl1p (Umeyama et 

al. 2005) and Cek1p (Csank et al. 1998)) that are likely to interact with the actin network.  
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Figure 3| Morphological forms of the wild-type C. albicans DAY286 grown in filament-

inducing medium at 37oC. A| Yeast (0 h), B| Pseudohyphae (6 h), C| True hyphae (6 h), D| 

Biofilm (10 h). The images were prepared in this study via a Zeiss Laser Scanning 

Microscope (LSM) 510 using Zen 2008 software with EX405 BP, DICII and Channel D at a 

magnification x 400. Scale bars in the first three panels and the last panel represent 5 μm 

and 50 μm respectively.  

 

In order to form true hyphae, C. albicans requires physiological biosynthesis of the cell wall. 

Due to the latter, mutations in the cell wall synthesis regulatory genes, SSK1 (Chauhan et al. 

2003) and PIR32 (Bahnan et al. 2012), may demonstrate various impacts on the hyphal 

growth. The ability of C. albicans to switch from yeast to hyphae is highly connected to the 

fungal pathogenic lifestyle since nonhyphal mutants are avirulent (Lo et al. 1997). For 

instance, Guhad et al. (1998) showed that MAPK (Cek1) defective C. albicans mutant was 

avirulent since it established abnormalities in yeast to hyphal transition (Guhad et al. 1998). 

Usually, yeast or hyphal locked mutants of C. albicans are attenuatd in virulence. Recently, 

C. albicans virulence was also linked with mitochondrial activity through the Ras1p 

regulation (Grahl et al. 2015). However, the reverse hyphae-yeast transition of Candida 

involves downregulation of the hyphal-specific genes and differential expression of protein 

synthesis-related genes (Carlisle and Kadosh 2013).  

1.5 Candida albicans biofilms  

Candida biofilms have received increased scientific interest because they enhance C. 

albicans pathogenicity and drug tolerance. Lately, biofilm development has been the 

subject of a myriad interesting studies (Chandra et al. 2001; García-Sánchez et al. 2004; 

López-Ribot 2005; Finkel and Mitchell 2011; Fox and Nobile 2012; Inglis et al. 2013).  In 

vivo, biofilms comprise polymicrobial communities where fungi and anaerobic bacteria 

interact (Fox et al. 2014). The hyphae formation is crucial for fungal biofilm development, 

virulence and drug resistance. Also, hyphal branching ability determines the dynamics of 

 A

D 

B C D 



9 
 

the biofilm morphology. In vitro, the biofilm development demonstrates 3 distinct phases 

(Chandra et al. 2001) (Figure 3):  

1) Early stage includes yeast cell attachment to the substrate and adhesion to the 

neighbouring cells. 

2) Intermediate phase involves pseudohyphal and hyphal filamentous growth and 

branching. 

3) Maturation consists from 2 distinct processes, excretion of the extracellular 

matrix (ECM) and blastospore dispersal. The blastospores are asexual yeast cells that 

facilitate colonisation of new environments. Blastospore dispersal, biofilm formation and 

drug resistance are mediated by the histone deacetylase complex (Set3p, Hos2p, Snt1p and 

Sif2p) (Nobile et al. 2014). The ECM of the biofilms is composed from proteins, 

polysaccharides such as glucose and mannose, lipids and nucleic acid, and contributes to 

fungal drug resistance (Chandra et al. 2001; Fox and Nobile 2012).  

Biofilm formation is a complex phenomenon which is orchestrated by more than 1000 

proteins that are governed by 9 master regulators, Ndt80p, Efg1p, Brg1p, Bcr1p, Rob1p, 

Tec1p, Flo8p, Gal4p and Rfx2p (Nobile et al. 2012; Fox et al. 2015). The biofilm 

development pathways also include negative regulators like Tup1p and Zap1p which are 

hyphal  (Braun and Johnson 1997; Kebaara et al. 2008) and biofilm matrix repressors 

respectively (Nobile et al. 2009).  

Table 2|Chemicals that impair biofilm development in Candida. 

Plant Bacterium  Human  Other  

Terpenoids Phenazines  Antibodies  Silver nanoparticles 
Essential oils HSLs Hormones Povidone-iodine  
Purpurin stain Quinolones Mucins Photodynamic therapy 
Ethanol Probiotic products Milk oligosaccharides  
Propolis    

 

 

Despite complexity, Candida biofilm development and hyphal induction can be impaired by 

several plant terpenoids (natural organic chemicals) such as farnesol, linalool, nerol, 

menthol, carvone and α-thujone (Raut et al. 2013); essential oils derived from coriander 

(Freires et al. 2015), thyme (Bogavac et al. 2015), pepper (Curvelo et al. 2014), tea (de 
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Campos Rasteiro et al. 2014), cinnamon (Pires et al. 2011), lemon (Oliveira et al. 2014) and 

carrot (Alves-Silva et al. 2016); as well as with propolis (Freires et al. 2016). The biofilms are 

additionally affected by exogenous human hormones including progesterone and 

oestradiol (Kinsman et al. 1988; Zhao et al. 1995), the mucins covering the epithelial cells 

(Kavanaugh et al. 2014) and the oligosaccharides contained in the human milk (Gonia et al. 

2015). Also, biofilms are modulated by application of purpurin (Tsang et al. 2012), ethanol 

(Peters et al. 2013) and photodynamic treatment (Sousa et al. 2016). Photodynamic 

therapy was also effective against Candida in the murine model in vivo (Fabio et al. 2016). 

Recently, the use of povidone-iodine ointment (Hoekstra et al. 2016) and silver 

nanoparticals (drug delivery system) were also proposed as one of the effective strategies 

for the treatment of C. albicans infections (Qasim et al. 2015; Wang and Xie 2015). The 

probiotic supplements containing Bacillus subtilis were found to be effective against oral 

infections caused by Candida species (Zhao et al. 2016). Apart from these factors, C. 

albicans morphology and biofilm formation is also influenced by some Gram-negative 

bacteria including P. aeruginosa (Peleg et al. 2010; Holcombe et al. 2011). P. aeruginosa 

phenazines (parent substance of stains/dyes including safranin), pyocyanin, phenazine 

methosulfate and phenazine-1-carboxylate, affect C. albicans biofilm development and 

metabolism (Gibson et al. 2009; Morales et al. 2013) (Table 2).  

1.6 Interaction between Candida albicans and Pseudomonas aeruginosa 

In clinical settings, the majority of the infections are polymicrobial. Multiple pathogens 

including yeast, bacteria and viruses, can colonize and infect the same niche. For example, 

C. albicans is often coisolated with an opportunistic human pathogen bacterium P. 

aeruginosa. C. albicans and P. aeruginosa infections are difficult to treat since both can 

form biofilms resisting the antifungal and antibiotic treatments respectively (Kojic and 

Darouiche 2004). P. aeruginosa is one of the best studied bacterium found in the plethora 

of niches due to its extremely adaptable abilities. P. aeruginosa can colonise kidneys and 

urinary as well as gastrointestinal tract of susceptible individuals causing inflammation and 

sepsis. Additionally, P. aeruginosa is the main cause of morbidity in populations with cystic 

fibrosis (CF) (Govan and Deretic 1996; Chambers et al. 2005; Leclair and Hogan 2010) and 

AIDS (Mendelson et al. 1994). Authors of independent studies have established the 

importance of quorum sensing (QS) system for P. aeruginosa fitness (Heurlier et al. 2006), 

virulence (Smith and Iglewski 2003)  and inter-kingdom signalling (Shiner et al. 2005).  
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A wide variety of investigations suggest that C. albicans and P. aeruginosa can coexist and 

interact in both natural and clinical settings (Hogan and Kolter 2002; Nseir et al. 2007; 

Gibson et al. 2009). C. albicans and P. aeruginosa were coisolated from serious burn 

wounds (Gupta et al. 2005) and the lungs of the CF patients (Martin et al. 1993; Bakare et 

al. 2003). CF patients usually demonstrate imbalance in the microbial flora as a result of 

chronic use of antibiotics that leads to candidiasis (Burns et al. 1999). C. albicans and P. 

aeruginosa have an antagonistic interaction. In vitro analysis established that C. albicans 

biofilm formation and metabolism can be influenced by P. aeruginosa phenazines (Gibson 

et al. 2009; Morales et al. 2013). For instance, P. aeruginosa phenazines enhance ethanol 

production in C. albicans to stimulate biofilm formation in Pseudomonas (Chen et al. 2014). 

Another phenazine, methosulphate (PMS), can kill Candida within its biofilms (Morales et 

al. 2010; Morales et al. 2013). Several studies have also shown that Pseudomonas can 

inhibit Candida biofilm development in vitro (Holcombe et al. 2010; Bandara et al. 2010a; 

Bandara et al. 2010b; Reen et al. 2011; Bandara et al. 2013). Our previous studies further 

confirmed that this biofilm inhibition is N-acyl-L-Homoserine Lactone (HSL)-independent 

(Holcombe et al. 2010; Konstantinidou and Morrissey 2015). Collectively, these data 

suggest that Candida biofilm development and metabolism are intimately related with each 

other (Lindsay et al. 2014).  

Interaction between C. albicans and P. aeruginosa is mainly based on signalling. Several 

studies suggest that Pseudomonas QS molecules are responsible for the signal-mediated 

communication (Hogan and Kolter 2002; McAlester et al. 2008; Deveau and Hogan 2011). 

Pseudomonas QS molecules that are known to modulate Candida – Pseudomonas 

interaction include two types of HSLs, N-(3-oxododecanoyl)-L-homoserine lactone (3O-C12-

HSL) (Hogan et al. 2004; McAlester et al. 2008) and N-butyryl-L-homoserine lactone (C4-

HSL) (Smith and Iglewski 2003), as well as HHQ (2-heptyl-4-quinolone) (Reen et al. 2011). P. 

aeruginosa can inhibit morphological switch of C. albicans from yeast to hyphae using 

these secreted chemicals. It was reported that Pseudomonas HSLs can inhibit the switch of 

Candida from yeast to filamentous growth (Hogan et al. 2004). However, QS molecule of C. 

albicans, farnesol, can limit the virulence of P. aeruginosa by blocking the production of 

Pseudomonas QS molecules and pyocyanin (Kerr et al. 1999; Cugini et al. 2007) and 

affecting motility (McAlester et al. 2008). P. aeruginosa pyocyanin and 1-hydroxyphenazine 

can prevent the growth of C. albicans (Kerr et al. 1999).  
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Other factors that affect the interaction between C. albicans and P. aeruginosa include iron 

availability (Purschke et al. 2012), bacterial cell wall lipopolysaccharides (LPS) (Bandara et 

al. 2010a; Bandara et al. 2013) and extracellular DNA (Sapaar et al. 2014).   

1.7 Quorum Sensing   

Natural polymicrobial communities include diverse species that interact with each other. 

Their interaction is regulated by the environmental sensing mechanism called 

autoinduction (Nealson 1977). Autoinducers are signalling molecules produced in response 

to cellular population density (Eberhard 1972). Given the population density and the 

dimensions of the environment, bacteria can alter or repress their gene expression. This 

stimulus and response system is known as quorum sensing (QS) (Eberhard et al. 1981). The 

QS system was firstly identified in the bacterium, Vibrio fischeri, a bioluminescent symbiont 

of the Hawaii squid (Nealson et al. 1970) and has been extensively studied in bacteria 

(Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4| The structure of HSL (N-acyl-L-homoserine lactone) network in Vibrio fischeri. 

Luciferase expression system regulates expression of gene clusters such as LuxR, LuxI, C, D, 

A and B. O indicates an operator binding site for the regulator protein. This figure 

represents a part of a review article Figure (1) published by Davis et al. (2015). 
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Inter-kingdom communication across the prokaryotic and eukaryotic organisms is based on 

the QS molecules. For paradigm, a bacterial HSL (N-acyl-L-homoserine lactone) can regulate 

the gene expression in eukaryotes. The eukaryotes recognise and respond to the bacterial 

HSLs because their chemical structure considerably resembles eukaryotic hormones. This 

phenomenon is known as “global sensing” (Shiner et al. 2005; Hartmann and Schikora 

2012). 

1.7.1 Pseudomonas aeruginosa quorum sensing molecules  

P. aeruginosa possesses a well-studied QS system (Pesci et al. 1997; Smith and Iglewski 

2003; Bjarnsholt et al. 2010). The two known QS networks in P. aeruginosa are Las and Rhl 

(Pesci et al. 1997). Both systems employ a transcriptional activator and an autoinducer 

synthase to control gene expression (Pearson et al. 1997). Pseudomonas QS network 

regulates semantic functions such as virulence, protein secretion, swarming motility, 4-

quinolone signalling as well as production of secondary metabolites, exoenzymes and 

exotoxins (Diggle et al. 2008). 

Pseudomonas supernatants are rich in signalling molecules. PQS and its precursor HHQ (2-

heptyl-4-quinolone) play an important role in Pseudomonas signalling. P. aeruginosa 

secrets the HSLs, N-(3-oxododecanoyl)-L-homoserine lactone (3O-C12-HSL) and N-butyryl-L-

homoserine lactone (C4-HSL), that signal and regulate C. albicans behaviour. P. aerugionsa 

also produces phenazines such as phenazine methosulfate, phenazine-1-carboxylate and 

pyocyanin that can impair C. albicans biofilm development and metabolism (Gibson et al. 

2009; Morales et al. 2013). Recently, coumarin (fragrance oil) was shown to inhibit P. 

aeruginosa phenazine production, biofilm development and swarming motility (Gutiérrez-

Barranquero et al. 2015).  

1.7.2 Candida albicans quorum sensing molecules 

To promote biofilm formation and pathogenesis C. albicans also produces signalling 

molecules (Kruppa 2009). C. albicans QS molecules control the initiation of hyphae 

development via the protein degradation mediated with Ubr1 (Lu et al. 2014). C. albicans 

excretes among others two well-established QS molecules, farnesol and tyrosol (Figure 5). 

Farnesol is a water insoluble organic alcohol present in essential oils and used in 

perfumery. Farnesol represents a natural pesticide and insect pheromone. Additionally, 

farnesol is reported to possess antitumor (Joo and Jetten 2009) and antibacterial properties 

(Kromidas et al. 2006). For example, farnesol alters cell morphology and disrupts cell 
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membrane integrity of a bacterium Acinetobacter baumannii ultimately leading to the 

biofilm impairment (Kostoulias et al. 2015).  

C. albicans produces farnesol in order to control its cell density (Figure 5A). Farnesol is 

secreted by solely the white cells of C. albicans. The principal biological function of farnesol 

is an inhibition of C. albicans filamentation (Hornby et al. 2001) by affecting cell amino acid 

incorporation (Braun 2005). Farnesol causes inflammation response by activation of the 

human innate immune cells (neutrophils and monocytes) simultaneously suppressing 

cellular adaptive immunity, differentiation of monocytes into immature dendritic cells 

(Leonhardt et al. 2015). Farnesol participates in complex signal transduction pathways of 

yeast to hyphae transition. Its mechanism of action involves activation of Ras/cAMP/PKA 

pathways (Davis-Hanna et al. 2008) and of a hyphal repressor, Tup1p (Kebaara et al. 2008), 

as well as of a Chk1p kinase (Kruppa et al. 2004). Farnesol has the ability to prevent biofilm 

formation in its late phase but cannot affect already existing hyphae (Hornby et al. 2001). 

Moreover, farnesol elevates the expression of genes regulating  hyphal formation, drug 

resistance, cell wall maintenance and heat shock protein production (Cao et al. 2005). 

Westwater et al. (2005) also proposed a possible link between farnesol and the oxidative 

stress resistance. Collectively these data indicate that farnesol affects the dynamics of C. 

albicans morphogenesis (Martins et al. 2007). 

Another QS molecule of C. albicans, tyrosol, represents a natural antioxidant derived from 

an aromatic phenethyl alcohol (Figure 5B). White wine and olive oil that are known to 

possess cardioprotective properties are rich in tyrosol (Samuel et al. 2008; Miró-Casas et al. 

2003). Chen et al. (2004) showed that tyrosol is an autoregulatory QS molecule that delays 

fungal growth and stimulates germ tube formation in the diluted population of C. albicans 

(Chen et al. 2004). After more investigation it became evident that tyrosol also affects 

intermediate and early stages of the hyphae formation (Alem et al. 2006). In synopsis, C. 

albicans QS molecules, farnesol and tyrosol, have antagonistic function on filamentation. 
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Figure 5| Quorum sensing (QS) molecule biosynthesis pathways in C. albicans. The 

Enzymes shown in bold indicate experimental evidence for their enzymatic activity. A| 

Biosynthesis pathway of farnesol. Farnesol is produced from farnesyl pyrophosphate, an 

intermediate in the ergosterol biosynthesis pathway and inhibits C. albicans filamentation 

and biofilm formation. B| Biosynthesis pathway of tyrosol. Both, constitutive (Aro8p) and 

inducible (Aro9p) aromatic aminotransferases can catalyze the initial reaction in tyrosine 

degradation. Tyrosol stimulates growth under dilute culture conditions and has a protective 

effect against human phagocytic cells. Tyrosol production is enhanced in biofilms compared 

to planktonic culture. Figures were obtained from Candida Genome database (CGD) 

(Arnaud et al. 2005). 
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Abstract 

Pathogenicity of C. albicans is linked with its developmental stages, notably the capacity to 

switch from yeast-like to hyphal growth and to form biofilms on abiotic or biotic surfaces. 

To better understand the cellular processes involved in C. albicans development, a 

collection of 63 C. albicans protein kinase mutants was screened for biofilm formation in a 

microtitre plate assay. Thirty eight (38) mutants displayed some degree of biofilm 

impairment, with 20 categorised as ‘Poor’ biofilm formers. The morphology studies showed 

that all the ‘Poor’ biofilm formers were also defective in the switch from yeast to hyphae, 

establishing it as a primary defect of the impaired biofilms. Five genes, VPS15, IME2, PKH3, 

PGA43 and CEX1, were found to encode for proteins not previously reported to influence 

hyphal development or biofilm formation. To identify important processes for biofilm 

development we questioned the interactions of proteins/enzymes encoded by the biofilm-

related genes using the STRING database. The STRING network analysis established that the 

PKA pathway, ribosome biogenesis and some aspects of the cell cycle are important for 

filamentation and biofilm development underlining the complexity of these processes.  
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2. Co-occurrence of filamentation defects and impaired biofilms in 

Candida albicans protein kinase mutants 

2.1 Introduction 

C. albicans has emerged as a serious nosocomial pathogen in part due to formation of drug 

resistant biofilms on indwelling medical devices such as urinary and vascular catheters. 

Hence, fungal biofilms have received a significant interest during the last decade (Chandra 

et al. 2001; López-Ribot 2005; Inglis et al. 2013). Biofilm development represents a complex 

phenomenon and in vitro it demonstrates three distinct phases. The early stage includes 

yeast cell attachment to the substrate as well as adhesion to the neighbouring cells. The 

mechanisms governing yeast attachment are important since they determine subsequent 

biofilm development. The intermediate phase involves pseudohyphal and hyphal 

filamentous growth. The maturation phase consists from two distinct processes, excretion 

of extracellular matrix (ECM) and blastospore dispersal (Chandra et al. 2001; Fox and 

Nobile 2012). This complex phenomenon is orchestrated by more than 1000 proteins 

including PKs, which are governed by 9 master regulators, Ndt80p, Efg1p, Brg1p, Bcr1p, 

Rob1p Tec1p, Flo8p, Gal4p and Rfx2p, that regulate signal transduction pathways at the 

genetic level  (Nobile et al. 2012; Fox et al. 2015).  

Biofilm development is regulated by diverse pathways but some well-characterised 

pathways are involved in the yeast to hyphae transition, Ras/cAMP/PKA (reviewed by 

Hogan and Sundstrom 2009); pseudohyphal induction, MAPK (reviewed by Srinivasa et al. 

2012); and morphogenesis, calcium signalling pathways (Sanglard et al. 2003). For instance, 

inactivation of the transcription factors Cph1p (MAPK pathway) or Efg1p (Ras/cAMP/PKA 

pathway) can inhibit hyphal growth and biofilm development (Lo et al. 1997). Also, it was 

demonstrated that signalling via adenylyl cyclase is essential for hyphal development since 

cells defective in Cdc35p were unable to develop filaments (Rocha et al. 2001). The basic 

environmental factors characterized to induce fungal filamentation in vitro include body 

temperature (37oC), neutral pH (7.0), and low cellular density (~106 blastospores/ml), as 

well as presence of compounds such as serum (blood plasma without clotting factors), 

proline, glucose and N-acetyl-D-glucosamine (Mattia et al. 1982; Whiteway and Oberholzer 

2004).  

Protein phosphorylation is important for signal transduction processes with sequential 

activation of proteins often mediated by PKs. In this study, we took advantage of a set of PK 
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mutants to ask which PKs are required for biofilm formation in C. albicans. This collection 

has been the subject to many different screens showing that particular PK genes were 

responsible for cell wall regulation (Blankenship et al. 2010), cell-substrate attachment 

(Fanning et al. 2013), cell morphology (Blankenship et al. 2010), propolis-induced cell death 

(de Castro et al. 2013) and cell metabolism (Morales et al. 2013).  
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2.2 Materials and Methods 

2.2.1 Yeast strains and growth conditions  

The wild-type C. albicans strains used in this study were BWP17 

(ura3Δ::λimm434/ura3Δ::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG) (Wilson et 

al. 1999) and DAY286 (ura3::λimm434 his1::hisG pARG4::URA3::arg4::hisG) (Davis et al. 

2002). The PK mutants of C. albicans are listed in Table 1. This kinase set was created by 

Aaron Mitchell’s group (Blankenship et al. 2010) and obtained from the Fungal Genetics 

Stock Center (www.fgsc.net/candida/FGSCcandidaresources.htm). PK homozygous 

insertion mutants were created in BWP17 parental strain via Tn7-UAU1 cassette 

(Blankenship et al. 2010). The majority of the PK-coding genes were represented by double 

independent mutant strains but in some cases only a single mutant was available. In total, 

we examined 63 genes using 45 independent duplicate mutants and 18 single mutants. The 

initial FGSC collection was larger and included mutants deleted in ~80 PK/PK-related genes. 

Our reduced set comprised the mutants that, after delivery and culturing, we were able to 

verify by strain-specific PCR (see below). 

Yeast strains were routinely cultured in standard rich medium containing 1% yeast extract, 

2% peptone and 2% glucose (YPD). For biofilm and morphological analyses, the yeast 

strains were pre-grown in non-filament-inducing medium YNB (yeast nitrogen base), as 

described by McAlester et al. (2008) and Holcombe et al. (2010) with some adjustments. 

Briefly, filter-sterilized YNB salts without amino acids (Difco 291940) were supplemented 

with 0.2% glucose, 0.1% maltose and 0.16% filter-sterilized synthetic amino acid drop-out 

Leu– (Kaiser Formedium DSCK052). For the induction of hyphal growth the strains were 

transferred to filament-inducing medium, YNBNP, which consisted from YNB supplemented 

with 2.5 mM N-acetyl-D-glucosamine (Sigma A8625) and 25 mM phosphate (sodium) buffer 

(pH 7). 

2.2.2 PCR 

DNA of wild-type C. albicans and PK mutants was extracted according to Hoffman (2001) 

protocol. The primers were designed with SnapGene (www.snapgene.com) and their 

sequences are listed in the Table 2. Strain-specific PCR was carried out using primers 

flanking the gene insertion sites listed in the Supplementary Table S1 of Blankenship et al. 

(2010) publication. Absence of the band indicated a mutant disrupted in the gene amplified 

by the corresponding primers (Appendix 2.5). All the PCR reactions were carried out 
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utilising a GoTaq Green Master Mix (Promega) according to the manufacturers’ 

instructions. 

2.2.3 Biofilm assay 

A microtiter plate-based biofilm assay (XTT reductase salts) that measured metabolically 

active cells, was carried out as described by Ramage et al. (2001) and Holcombe et al. 

(2010). Briefly, the yeast strains were pre-grown in non-filament-inducing medium (YNB) 

overnight (30oC) and diluted into filament-inducing medium (YNBNP) to A6000.05. The 

diluted cultures (100 μL) were incubated for 1 h (37°C) in flat-bottomed 96-well 

polystyrene plates. After incubation, the attached cells were washed with fresh YNBNP 

medium twice, by inverting the plates carefully, to eliminate non-adhered cells. In order to 

induce biofilm formation the plates were incubated in the dark statically for 24 h (37°C). 

The next day, the biofilms developed on the bottom of the wells were washed with fresh 

YNBNP by careful pipetting. The XTT-menadione solution (100 μL), prepared as below, was 

added to the overnight cultures and incubated in the dark for 2 h (37oC). Lastly, the dyed 

supernatants (80 μL) were transferred to a clean plate for the quantification at a 

wavelength of A490 nm.  

For the preparation of the XTT solutions, 10 mM menadione (Sigma M5625) was dissolved 

in pure acetone and added (10 μL) to the XTT solution. The latter was prepared by 

dissolving 0.015 g of XTT powder (Sigma X4626) in 30 mL sterile dH2O and filtered with 0.2 

μm pore size filter. 

To increase the statistical power of our experiments we carried out 2 independent screens 

and tested the mutants in triplicate with eight technical replicates (n = 24). Biofilms of the 

control, wild-type C. albicans DAY286, ranged from approximately A4901 to A4901.5. Thus, 

the mutants with biofilms above A4901 and below A4900.5 were assigned to the ‘Good’ and 

‘Poor’ biofilm formers respectively. The remaining mutants were ‘Moderate’ biofilm 

formers. A distribution of each sample was assessed and the coincidence of the median and 

the mean indicated a Gaussian (normal) distribution of our data. All the statistical analysis 

of the biofilm assays were carried out in R Statistical Software (R Development Core Team 

2013).  

2.2.4 Morphological analyses 

Morphological assays were carried out as described previously by Hogan et al. (2004) and 

McAlester et al. (2008). Briefly, the yeast cultures were pre-grown overnight in YNB broth 
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(30oC) and diluted into YNBNP (A6001.0) to assay their capacity to switch from yeast to 

filamentous growth. Before (0 h) and after 6 h and 10 h incubation (37oC), the morphology 

of the mutants was examined microscopically. The images were captured digitally at a 

magnification x 400 via Zen2008 software with EX405 BP and Channel D by Zeiss Laser 

Scanning Microscope (LSM) 510. 

2.2.5 Bioinformatics analyses 

The protein sequences of C. albicans PKs were retrieved from the CGD (Candida Genome 

Database) (Arnaud et al. 2005), the analysis of the protein associations were carried out 

using the STRING v9.1 database (Search Tool for the Retrieval of Interacting 

Genes/Proteins) (Jensen et al. 2009), the GOs (Gene Ontologies) were obtained with the 

Blast2GO annotations (Conesa et al. 2005) and pathway analysis were carried out using 

KEGG pathway database (Kyoto Encyclopaedia of Genes and Genomes) (Kanehisa and Goto 

2000). 
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Table 1| Protein kinase mutants used in this study. 

Kinase Plate 1 Kinase Plate 2 

Position Orf19. Gene Updated Position Orf19. Gene Updated 

A7 orf19.4866 CPP1 CPP1 A1 orf19.7044 RIM15 RIM15 
A8 orf19.4866 CPP1 CPP1 A2 orf19.7044 RIM15 RIM15 
A10 orf19.5181 NIK1 NIK1 A3 orf19.5253   YAK1 
B1 orf19.4084 KIS1 KIS1 A4 orf19.5253   YAK1 
B2 orf19.4084 KIS1 KIS1 A5 orf19.2277 TPK2 TPK2 
B3 orf19.469 HST7 HST7 A6 orf19.2277 TPK2 TPK2 
B4 orf19.469 HST7 HST7 A8 orf19.7451 FUN31 FUN31 
B9 orf19.5224 Sc. PKH1 PKH2 A9 orf19.3530 CKA2 CKA2 
B10 orf19.5224 Sc. PKH1 PKH2 A10 orf19.3530 CKA2 CKA2 
C1 orf19.451 SOK1 SOK1 A11 orf19.4297 CKB2 CKB2 
C2 orf19.451 SOK1 SOK1 A12 orf19.4297 CKB2 CKB2 
C3 orf19.1874 Sc. MEK1 MEK1 B1 orf19.4518   YPL150W 
C4 orf19.1874 Sc. MEK1 MEK1 B2 orf19.4518   YPL150W 
C7 orf19.2395 Sc. IME2 IME2 B3 orf19.2268 RCK2 RCK2 
C8 orf19.2395 Sc. IME2 IME2 B4 orf19.2102 CKB1 CKB1 
C9 orf19.3047 Sc. SIP3 SIP3 B7 orf19.844 STE11 STE11 
C10 orf19.3047 Sc. SIP3 SIP3 B8 orf19.844 STE11 STE11 
C11 orf19.794 Sc. SSN3 SSN3 B11 orf19.3049   SPS1 
C12 orf19.794 Sc. SSN3 SSN3 B12 orf19.3049   SPS1 
D1 orf19.4892 TPK1 TPK1 C1 orf19.2436 SKY1 SKY1 
D2 orf19.4892 TPK1 TPK1 C2 orf19.846   NNK1 
D3 orf19.5408 Sc. HRK1 HRK1 C3 orf19.846   NNK1 
D4 orf19.5408 Sc. HRK1 HRK1 C4 orf19.7355 SSN8 SSN8 
D5 orf19.223   FPK1 C5 orf19.3720   BCY1 
D6 orf19.223   FPK1 C6 orf19.3720   BCY1 
D9 orf19.1196 Sc. PKH1 PKH3 C7 orf19.2910 PGA43 PGA43 
D10 orf19.1196 Sc. PKH1 PKH3 C9 orf19.4002   DUN1 
D11 orf19.835 IES1 IES1 C10 orf19.428 IKS1 IKS1 
D12 orf19.835 IES1 IES1 C11 orf19.428 IKS1 IKS1 
E1 orf19.469 HST7 HST7 C12 orf19.1341 PRR2 PRR2 
E2 orf19.469 HST7 HST7 D4 orf19.6243 VPS34 VPS34 
E3 orf19.4084 KIS1 KIS1 D7 orf19.6889 MKK2 MKK2 
E4 orf19.4084 KIS1 KIS1 D8 orf19.6889 MKK2 MKK2 
E5 orf19.2341 HNT1 HNT1 D11 orf19.1341 PRR2 PRR2 
E6 orf19.2341 HNT1 HNT1 D12 orf19.1341 PRR2 PRR2 
E7 orf19.35 Sc. SKY1 SKY2 E1 orf19.130 VPS15 VPS15 
E8 orf19.35 Sc. SKY1 SKY2 E2 orf19.130 VPS15 VPS15 
E9 orf19.4001 Sc. MSS2 MSS2 E3 orf19.2222 YCK3 YCK3 
E10 orf19.4001 Sc. MSS2 MSS2 E7 orf19.1283 MEC1 MEC1 
E11 orf19.4867 SWE1 SWE1 E9 orf19.7510 KIN2 KIN2 
E12 orf19.4867 SWE1 SWE1 E10 orf19.7510 KIN2 KIN2 
F1 orf19.7281 Sc. PKP1 PDK2 E11 orf19.5911 CMK1 CMK1 
F2 orf19.7281 Sc. PKP1 PDK2 E12 orf19.5911 CMK1 CMK1 
F3 orf19.3744   CEX1 F1 orf19.7164   ENV7 
F5 orf19.4144   MCP2 F2 orf19.7164   ENV7 
F6 orf19.4269     F5 orf19.895 HOG1 HOG1 
F9 orf19.4890 CLA4 CLA4 F6 orf19.895 HOG1 HOG1 
F10 orf19.4890 CLA4 CLA4 F7 orf19.5162 BCK1 BCK1 
F11 orf19.4308 HSL1 HSL1 F8 orf19.5162 BCK1 BCK1 
F12 orf19.4308 HSL1 HSL1 F9 orf19.7652 CKA1 CKA1 
G1 orf19.4432 KSP1 KSP1 F10 orf19.7652 CKA1 CKA1 
G2 orf19.4432 KSP1 KSP1 F11 orf19.460 CEK2 CEK2 
G5 orf19.7510 KIN2 KIN2 F12 orf19.460 CEK2 CEK2 
G6 orf19.7510 KIN2 KIN2 

    G7 orf19.2678   BUB1 
    G8 orf19.6913 GCN2 GCN2 
    G9 orf19.6913 GCN2 GCN2 
    G10 orf19.5068 IRE1 IRE1 
    G11 orf19.5068 IRE1 IRE1 
    H1 orf19.3854   SAT4 
    H2 orf19.5357 AKL1 AKL1 
    H5 orf19.7510 KIN2 KIN2 
    H6 orf19.7510 KIN2 KIN2 
    H7 orf19.5224 PKH1 PKH2 
    H8 orf19.5224 PKH1 PKH2 
    H9 orf19.3751   KIN4 
    H10 orf19.3049   SPS1 
    H11 DAY286 
    Mutants with updated names are given in bold type. 
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Table 2| Primers used in this study. 

Forward Sequence (3’ –  5’) Reverse Sequence (3’ –  5’) 

BUD32_F ATGACAGATCACCTAATTGCTAAAGTAC BUD32_R TCAACCCAACATACTTCTTTTTCTTCC 

CKA2_F AGTTTTCCAAGGTGTCAATGTTTT CKA2_R TTGAAAAATGGATGTTCCATTGCC 

CLA4_F CCTTCATCTCAACAACAGCAACAA CLA4_R TCCTTTTGTTTAACCACTTCAGGT 

CTK3_F TTCACACAGGAAACAGCTATGACCATGAT
TACGCCAAGCTcatcacattggtcgtcctggaaat
c 

CTK3_R TCGACCATATGGGAGAGCTCCCAACGCGT
TGGATGCATAGctattgatgaagcaaactacgag
tatgtgaac 

GIN4_F CGTTTGGATAAAGCTGGATTGGC GIN4_R GGAACTTTGGATTTTGGTCTTTGCC 

IME2_F AAGTGCAACTATTTCCATCGTGAC IME2_R CTTGTAGCTTTCATTCCCAGAACT 

KIN3_F ATGTCGATTATCGATGAATATGAATC KIN3_R TTATCGGTACTTACTTATATACTCAAACT 

KIS1_F TGCTCAGTCCAAAATCTACAAATC KIS1_R CATTGCTTTCATCATCATGGTATC 

KIS1_FF TGAATCAGCAACAGCATTCACAAT KIS1_RR ATTCAACACAACGTGGTTTGGAAT 

MSS2_F TCAAATGCAACGAAAGCGACTATT MSS2_R TCCTGAACTTGATGAAATTTCCCA 

NIK1_F GGTTACCTCGGAGTATGGATCCG NIK1_R GAATAGAATGATGGACCAAAACCAACGG 

orf19.3744_F CCTCCTAAGATGTCAGCGTCCG orf19.3744_R GTTGATAGTGTTTCTTGACGTCCTGGG 

PGA43_F GCCCTAGCACGAATTATTGATCCAG PGA43_R GGCTTGACATTGTGGATACTTCCG 

PKH3_123_F GAACATCTACAGAACTTATCTATCCAGCC PKH3_123_R GGAATATGATCCTTCTCCTATTTTCGC 

PKH3_749_F CCGGAATTACTTAAGCACAATATATGCG PKH3_749_R CCACCTTGATGACATGATATGTGGG 

PRK1_1145_F CACCTCTAAACCAAAGACAGATCCG PRK1_1145_R CCCTGAGAATATATTCTTGGTGTATTGCC 

PRK1_485_F GTATCAGGTGACTATAGGTGTGGCC PRK1_485_R GGTGGTAAATAATTTACCGACGAGCC 

PTK2_F CAATGGATATGTTGTTTGACGACCC PTK2_R GAATGTACCTCTTCTAGATGGCGC 

RIO2_F ATGCACCCAAAAAAAAAAAAAAAGAAG RIO2_R CTATTCATCGAGTATATAATTTCCTAGCT 

SAT4_F CCTTCCCCTTCTAATGGAACTACCG SAT4_R CAGTAGGGGTATTGACAGAAGTCGG 

SSN3_F AATGTTGGGATATCTCAACCATCA SSN3_R GGAATTGGTTTAAAATCAGGATGC 

SSN8_F CCTCCTCATACTATAGCGGTGGC SSN8_R CTTGACCAAGAACTTGAGTTTCTTGGG 

VPS15_F TAAACATCAATACCTGCAACAGCA VPS15_R TACCACCGTCATTCTTTGTCTCAA 

VPS34_F GCTTTTTGAGGAAATTAGCAGTTG VPS34_R CGGAAATTGGACTAGTAGCCAATA 

 

  



25 
 

2.3 Results 

2.3.1 Identification of the protein kinases involved in Candida albicans biofilm formation  

To define the genetic control of biofilm development in C. albicans, a collection of 63 

homozygous insertion mutants disrupted in PK and PK-related genes (Blankenship et al. 

2010) was screened twice independently for altered biofilm formation. A pipeline was 

developed to carry out the screen and to classify the mutants into 5 classes based on their 

biofilm formation (Figure 1). A 96-well polystyrene microtitre plate-based biofilm assay 

(XTT reductase) was used to represent the abiotic surface of indwelling medical devices 

that serve as a convenient substrate for Candida biofilm development in vivo. The 

variability in the XTT assay illustrated the importance of the two independent screens and 

of a large sample size (n = 24), which enhanced the statistical power of the results. The 

biofilm assay revealed that 38 mutants (>60%) had reduced biofilm development and were 

classified as ‘Poor’ (sub-classes ‘Very poor’ and ‘Poor’) or ‘Moderate’ biofilm formers. Data 

for the biofilm formation of the mutants classified as ‘Poor’ and ‘Moderate’ are shown in 

Figures 2 (A, B) and 3 (A) respectively. The biofilm formation levels of the remaining 25 

mutants were not significantly different from that of the control (DAY286), hence they 

were classified as ‘Good’ (sub-classes ’Good’ and ‘Very good’) biofilm formers (Figure 3 (B 

and C); Table 3). Our results were consistent with the published literature, since more than 

60% (23/38) of biofilm-defective mutants had deletions in the genes previously known to 

be required for biofilm formation and/or filamentation (see footnotes at the end of Table 

3). Fifteen mutants (5 poor and 10 moderate) represented genes in C. albicans that were 

not previously directly implicated in filamentation or biofilm formation (Table 3). The CGD 

descriptions of all the C. albicans PK mutants used in this study can be found in the 

Appendix 3.5 (Chapter 3). 
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Figure 1| Workflow for the categorisation of C. albicans protein kinase mutants based on 

their biofilm formation ability. Sixty-three (63) PK mutants, obtained from the Fungal 

Genetics Stock Centre, were screened to identify strains with impaired biofilms.  Two (2) 

independent screens were carried out using a microtiter plate-based biofilm assay (XTT), 

which measured the metabolic activity of the cells. Biofilms of the control, wild-type C. 

albicans DAY286, ranged from approximately A4901 to A4901.5. Hence, the mutants that 

developed biofilms above A4901 and below A4900.5 were assigned to the ‘Good’ and the 

‘Poor’ biofilm formers respectively. The rest exhibited moderate biofilm formation trends 

that fluctuated between A4900.5 and A4901. For more detailed analysis, the mutants that 

showed different biofilm formation ability were classified into the intermediate classes, 

‘Very Poor / Poor’ and ‘Very Good / Good’. 
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Figure 2| Biofilm formation of the ‘Poor’ biofilm former mutants. The metabolic activity of 

the biofilms was evaluated via the XTT reduction assay. A| and B| show ‘Very poor’ and 

‘Poor’ biofilm formers respectively. Two independent screens were carried out and labelled 

as screen 1 (green bars) and screen 2 (yellow bars). Each screen included a wild-type strain 

DAY286 (gray box). This control is important because of variation in the efficiency of XTT 

between assays. Most mutants were present as two independent mutants in the collection, 

though one (KIS1) was present four times and several (VPS34, PGA43, CEX1 and SSN8) only 



28 
 

once. Sample size equals to 24 observations (n = 24). 50% of the observations fall into the 

box. The bottom and the top of the box correspond to the 1st and the 3rd quartiles 

respectively. The notch shows the median confidence interval and the middle line inside 

the box indicates the median. The upper and the lower limits demonstrate the maximum 

and the minimum observations. The red dot shows the mean and the white circle an 

outlier. Horizontal dashed line illustrates a threshold defined in Figure 1. 
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Figure 3| Biofilm formation of the ‘Moderate’ and ‘Good’ biofilm formers. The metabolic 

activity of the biofilms was evaluated via the XTT reduction assay. A|, B| and C| show the 

‘Moderate’, ‘Good’ and ‘Very good’ biofilm formers respectively. Two independent screens were 

carried out and the results are presented as follows: top panel, green boxes – screen 1; bottom 

panel, yellow boxplots – screen 2. Each screen included a wild-type C. albicans DAY286 (gray box). 

This control is important because of variation in the efficiency of XTT between assays. Most 

mutants were presented as two independent mutants in the collection, though some were 

presented several times (e.g. PKH2, KIN2) and others (e.g. MEC1, SKY1) only once. Sample size 

equals to 24 observations (n = 24). 50% of the observations fall into the box. The bottom and the 

top of the box correspond to the 1st and the 3rd quartiles respectively. The notch shows the 

median confidence interval and the middle line inside the box indicates the median. The upper 

and the lower limits demonstrate the maximum and the minimum observations. The red dot 

shows the mean and the white circle an outlier. Horizontal dashed line illustrates a threshold 

defined in Figure 1. 
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Table 3| Classes of C. albicans protein kinase mutants based on their biofilm development. PK mutants (63) were assessed through a biofilm assay (XTT) 

and classified into different categories according to the biofilms they developed. Many mutants (38) showed impaired biofilm development and more than 

a half of them (20) were poor biofilm formers. Genes firstly associated with biofilms under our assay conditions are given in bold type. 

 

a 
Single mutant strain available for testing. 

b 
Linked with biofilms (Nobile et al. 2012; Inglis et al. 2013; Bandara et al. 2013). 

c 
Down in biofilms (Nobile et al. 2012). 

d 
Linked with filamentous growth (Blankenship et al. 2010; Inglis et al. 2013; Goyard et al. 2008). 

e 
Wrinkled colony formation (Lindsay et al. 2014). 

f 
Altered cell-surface adherence (Fanning et al. 2012). 

g 
Cell wall stress phenotype (Blankenship et al. 2010). 

h 
Gene name indicates an ortholog in Saccharomyces cerevisiae (CGD 2010). 

 

 

Poor 
Moderate 

 

Good 

Very poor Poor  Good Very good 

VPS15 (C6_01190C)
f
 PKH3 (C6_00350W)

f
 PRR2 (C7_03340C)

f
 YCK3 (C2_08270C)

a, f, g, h
 MEC1 (C5_04060C)

a, d
 

IME2 (CR_03290C) MEK1 (C2_07530C)
d
 CKB1 (C2_00300C)

a, g
 RCK2 (C2_07130C)

a, d, f
 SKY1 (C1_06090C)

a, b
 

CKA2 (C2_04980C)
d, f, g

 FPK1 (C2_08860W)
b, f, h

 TPK2 (C2_07210C)
b, c, d

 BUB1 (C4_03120C)
a
 SPS1 (C1_03470C)

f
 

MSS2 (C5_05090W)
d, g

 HNT1 (C1_10780C)
b
 SIP3 (C1_03450C)

g
 DUN1 (C5_05100C)

a
 KIN4 (CR_02210W)

a, f
 

KIS1 (C2_09230C)
d, g

 PGA43 (C4_06260W)
a
 BCY1 (CR_02460W)

h
 MCP2 (C5_01490C)

a, h
 CPP1 (C1_10000C)

d, g 
 

SOK1 (CR_06000W)
b, d, f

 SKY2 (C2_06600W)
b
 SAT4 (CR_06040W)

a, b, f, g
 YPL150W (C2_04360W)

h
 BCK1 (C7_02990W)

g
 

CLA4 (C1_10210C)
d, g

 CEX1 (CR_02250C)
a, h

 orf19.4269 (C5_02560C)
a 

CEK2 (CR_05940W)
d
 PKH2 (C1_12410C)

f, g
 

IRE1 (C1_07970C)
b, d, f, g

 HSL1 (C5_02840C)
b, d, g

 IKS1 (C1_05370C)
b
 NIK1 (C7_02800W)

a, d
 CMK1 ( C3_04550C) 

VPS34 (C1_06680W)
a, d, g

 HRK1 (C3_00550C)
c
 CKB2 (C5_02760W)

f, g
 CKA1 (CR_10660W)  MKK2 (C2_05780C)

g
 

SSN3 (C2_04260W)
e
 SSN8 (C3_05740C)

a, e
 KSP1 (C1_07380C) NNK1 (C2_03760C)

h
 GCN2 (C7_01330C)

d
 

 
 

HST7 (CR_03900W)
d, f, g

  RIM15 (C7_00740W)
d, g

 

  
SWE1 (C1_10010C)

b, d, g
  ENV7 (C7_04110W)

h
 

  
TPK1 (C1_10220C)

b, d, f, g
  KIN2 (CR_00260W)

g
 

 
 

YAK1 (C1_12120W)
 d, g

  STE11 (C2_03770C)
d, f

 

  
AKL1 (C2_10750C)

a, f
  HOG1 (C2_03330C)

d
 

  
PDK2 (CR_08860W)

f
   

  
FUN31 (C3_06620W)

a, b, f
   

  
IES1 (C2_03900C)   



34 
 

2.3.2 Identification of the protein kinases involved in Candida albicans filamentous 

growth  

Filamentation is an important aspect of biofilm formation, therefore the 20 poor biofilm 

formers (listed as ‘Very poor’ and ‘Poor’ in Table 3), were assayed for their ability to switch 

from yeast to hyphal growth (Figures 4, 5 and 6). Generally, it was observed that some 

mutants failed to filament while others did but not as well as the wild-type, establishing the 

filamentation as a primary defect. The morphology studies showed that all the poor biofilm 

forming mutants were also defective in the switch from yeast to hyphae, revealing a 

complete overlap between these processes. This analysis showed that 5 genes, VPS15, 

IME2, PKH3, PGA43 and CEX1, which were not previously known to have these functions, 

were required for both filamentation and biofilm formation under our assay conditions 

(Figure 4). More specifically, the mutants disrupted in VPS15 and IME2 genes failed to 

filament, PKH3 and PGA43 deleted mutants displayed delayed filamentation and CEX1 

knock-out was less able to form hyphae compared to the wild-type C. albicans (Figure 4). 
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Figure 4| Morphology of the ‘Poor’ biofilm formers reveals their defective filamentation. 

The PK mutants of C. albicans were pre-grown in YNB overnight (30oC) and transferred to 

filament-inducing medium YNBNP (37oC). The morphology of the mutants and of a control 

C. albicans DAY286, was examined at 0, 6 and 10 h time points. The representative images 

were captured digitally via a Zeiss Laser Scanning Microscope (LSM) 510 using Zen 2008 

software with EX405 BP, DICII and Channel D at a magnification x 400. The scale bar 

corresponds to 10 μm. Data are extracted from Figures 5 and 6. 
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Figure 5| Morphology of the ‘Very poor’ biofilm formers reveals their defect in the switch 

from yeast to filamentous growth. The PK mutants of C. albicans were pre-grown in YNB 

overnight (30oC) and transferred to filament-inducing medium YNBNP (37oC). The 

morphology of the mutants and of a control C. albicans DAY286, was examined at 0, 6 and 

10 h time points. The position of the mutant on the PK plate is indicated in parentheses. 

The representative images were captured digitally via a Zeiss Laser Scanning Microscope 

(LSM) 510 using Zen 2008 software with EX405 BP, DICII and Channel D at a magnification x 

400. The scale bar corresponds to 10 μm.  
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Figure 6| The ‘Poor’ biofilm former mutants are defective in the switch from yeast to 

filamentous growth. The PK mutants of C. albicans were pre-grown in YNB overnight (30oC) 

and transferred into filament-inducing media YNBNP (37oC). C. albicans DAY286 was used 

as a control. The position of the mutant on the PK plate is indicated in parentheses. The 

morphology of the mutants was examined at three time-points, 0 h, 6 h and 10 h, utilizing 

Zeiss Laser Scanning Microscope (LSM) 510. The representative images were captured 

digitally using Zen 2008 software with EX405 BP, DICII and Channel D at a magnification x 

400. Scale bar corresponds to 10 μm.  

 

2.3.3 STRING network analyses 

To identify important processes for biofilm development we questioned the interactions of 

proteins/enzymes encoded by the 38 biofilm-related genes using a STRING database 

(Figure 7). STRING is a powerful database that quantitatively integrates experimental data, 

computational prediction methods and published literature to produce an interaction 

network (Jensen et al. 2009). Protein sequences were retrieved from CGD 

(www.candidagenome.org) and entered into the STRING network generation program 

(www.string-db.org). The resulted networks, which were analysed using a K-means option, 

showed that biofilm-related proteins were assigned into three main clusters (Figure 7). The 

38 proteins were also analysed for their function in the KEGG annotated pathways (Table 

4). The proteins of the clusters mostly shared similarity in function or occurrence in the 

same pathway. A list of the putative functional partners can be found in the Table 5. 

Combined, these analyses revealed three main clusters: the first (on the left) corresponded 

to the genes of the Protein Kinase A (PKA) pathway; the second (centre) to the elements of 

cell cycle; and the third (right) to vacuolar function (Figure 7). Some genes (11) did not 

show any associations in the STRING analysis (see the bottom of Figure 7). 
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Figure 7| Predicted STRING interaction networks. In order to produce an interaction network, the STRING database quantitatively integrates experimental 

data, computational prediction methods and published literature. The spheres and edges represent PKs and known/predicted interactions respectively. 

Stronger blue lines indicate the connections with higher confidence. Protein kinase encoding genes are boxed and the asterisk (*) indicates a functional 

partner predicted by the STRING database. A network shows the interaction of the 37 biofilm-related proteins/genes and their functional partners (SKY2 

was not present in the STRING database). 

Poor biofilm formers 

Very poor biofilm formers 

Moderate biofilm formers 
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  Table 4| KEGG pathways from the STRING database. 

Analysis of the impaired biofilm former mutants 

Pathway Gene 

Meiosis  TPK1, TPK2, SWE1, IME2, MEK1  

PKA TPK1, TPK2, BCY1 

Cell cycle SWE1, HSL1 

Ribosome biogenesis CKB1, CKB2, CKA2 

Regulation of autophagy VPS15, VPS34 

Protein processing in ER IRE1 

Inositol-phosphate metabolism VPS34 

Phagosome VPS34 

Metabolic pathways VPS34 

Phosphatidylinositol signaling  VPS34 

 

Table 5| Functional partners predicted by the STRING database. 

C. albicans ortholog C. dubliniensis Description Length 

Functional partners of the impaired biofilm former mutants (aa) 

BCY1 (C2_01110C)  CaPKAR PKA regulatory subunit  458 

CDC5 (C1_00950C) CD36_00900 Cell cycle serine/threonine-protein kinase (putative)  653 

CDC28 (CR_06050W) CD36_31500 Cdc28 homologue (putative)  317 

CLB2 (C2_01410C) CYB1 G2/mitotic-specific cyclin (putative) 486 

CYR1 (C7_03070C) CYR1 Adenylate cyclase (putative) 1690  

MEC1 (C5_04060C) CD36_53760 DNA-damage checkpoint kinase, ATR homologue (putative)  2326 

NDT80 (C2_00140W) CD36_15120 Meiosis-specific transcription factor (putative) 509 

POB3 (C2_02380W) CD36_17210 DNA polymerase delta binding protein  538 

SRB8 (C4_05090C) CD36_44710 Subunit of the RNA polymerase II mediator complex (putative) 1755 

C4_02670W CD36_42480 Autophagy-related protein (putative)  519 
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2.4 Discussion 

Biofilm formation on the surface of catheters is a leading cause of C. albicans infections and 

drug resistance in hospitals. The aim of our study was to establish whether particular PKs 

were essential for biofilm formation in C. albicans as this might reveal novel processes and 

pathways that could serve as drug targets. We identified 38 PK mutants that showed some 

degree of biofilm impairment, but some of them were already linked with biofilms. Because 

there is an established link between filamentation and biofilm formation, we assessed the 

capacity of the 20 mutants that were severely impaired in biofilms to switch from yeast to 

hyphal growth and found a complete coincidence of switching and biofilm formation. Thus, 

although processes other than filamentation can be required for biofilm formation, either 

our assay was biased for mutants with filamentation defects or none of the protein kinases 

in our screens is involved in these other processes. There were, however, some novel 

findings and five strains were mutated in genes (VPS15, PKH3, PGA43, IME2 and CEX1) not 

previously directly associated with either filamentation or biofilm formation. It is important 

to note that other studies used different types of filamentation/biofilm assays (and media), 

which may explain minor variance between studies.  

VPS15 encodes a kinase involved in vacuolar protein sorting and although this gene was not 

previously linked to biofilms, other members of the Vps family, Vps1p and Vps34p (also 

identified in our screens), were reported to significantly contribute in filamentation and 

biofilm formation in Candida (Bernardo et al. 2008). Furthermore, the S. cerevisiae vps15 

mutant also forms impaired biofilms (Vandenbosch et al. 2013). Vps15p and Vps34p form a 

complex on the vacuole/Golgi membrane, thus these data indicate that correct protein 

sorting is required for proper fungal development, though this is likely to be an indirect 

rather than a direct effect. PKH3, which encodes a kinase that may be involved in Protein 

Kinase C (PKC) activity, was not previously described as being involved in morphological 

development but the mutant is reported to display significantly decreased cell-substrate 

adherence (Fanning et al. 2012), an important early step for biofilm development (Finkel 

and Mitchell 2011). Interestingly, the network analysis showed that Pkh3p is associated 

with the vacuolar proteins Vps15p and Vps4p, perhaps indicating that the defect in this 

mutant is also related to protein sorting in the vacuole.  PGA43 encodes a Glycosyl-

Phosphatidyl-Inositol (GPI)-anchored protein and thus is likely to be present at the cell 

surface. Its function is not known but other also Gpi family proteins, for example Pga59p 

and Pga62p, are required for cell wall integrity (Moreno-Ruiz et al. 2009). There is very 
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limited information available about C. albicans IME2 but in S. cerevisiae IME2 is required 

for pseudohyphal growth independently of the MAPK filamentation cascade (Strudwich et 

al. 2010). Thus, its involvement in morphological development in C. albicans should not be 

surprising. Cex1p (in S. cerevisiae) binds to tRNA for its export from the nucleus (McGuire 

and Mangroo 2007) and has not previously been linked to morphology.  

Apart from vacuolar process, our analysis also showed that the PKA pathway, ribosome 

biogenesis and some aspects of the cell cycle are required for efficient filamentation and 

biofilm development. The mutants disrupted in C. albicans PKA genes, BCY1, TPK1 and TPK2 

formed moderate biofilms. Bcy1p is a regulatory subunit of the PKA and, Tpk1p and Tpk2p 

are well-documented to be involved in C. albicans biofilm formation and filamentation. 

CKA2, CKB1 and CKB2, genes required for ribosome biogenesis processes, also exhibited 

impaired biofilms under our assay conditions. Elevated transcription of ribosome 

biogenesis genes of biofilm forming cells was previously reported by Garcia-Sanchez et al. 

(2004) and Bonhomme et al. (2011). The next step now would be to indentify the Achilles 

heel of the biofilms based on several most important elements of these processes. 
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Figure 8| Examples of molecular validation of the ‘Very poor’ biofilm former mutants 

with strain-specific PCR. A| DNA quality control using the NL4 (GGTCCGTGTTTCAAGACGG) 

and NL1 (GCATATCAATAAGCGGAGGAAAAG) oligonucleotides as the forward and reverse 

primers respectively. The pair of NL4 and NL1 primers target the variable 28S ribosomal 

DNA. Estimated fragment size equals to ~680 bp. B| C| D| E| F| Cross validation of C. 

albicans PK mutants with the primers for a disrupted gene and any randomly chosen set of 

primers. Estimated fragment sizes equal to ~820 bp (B, C, D, E and F). DNA isolated from 

each mutant is indicated on the top of each column and the primers amplifying a particular 

gene are written in bold italics. Hyperladder I was used as a marker and C. albicans DAY286 

as a wild-type (WT) control. *Controversial mutant DNA. 
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Abstract 

C. albicans biofilm development is a complex phenomenon that mainly implicates 

processes such as adhesion, filamentation supported by intensive cell wall biosynthesis, 

excretion of the extracellular matrix (ECM) and dispersal of blastospores. The filamentation 

is largely governed by the MAPK pathways but our analysis of the ‘Good’ biofilm former PK 

mutants showed that the individual components of these pathways are not required for 

robust biofilm formation, indicating functional redundancy. The ‘Good’ biofilm formers 

were established after the analyses of their biofilms with a biofilm assay (XTT) and with the 

assessment of their clusters in the STRING networks. These mutants were further 

investigated for their response to bacterial supernatants, since C. albicans biofilm 

impairment with P. aeruginosa supernatants, was well-documented by the previous 

publications of McAlester et al. (2008) and Holcombe et al. (2010). These supernatants 

contained QS (quorum sensing) molecules derived from 2 distinct strains of P. aeruginosa 

the wild-type, PAO1, and a homoserine lactone-free (HSL) mutant, ΔQS. The biofilm assay 

showed that P. aeruginosa supernatants inhibited biofilm formation in all mutants, 

regardless of the presence of HSLs. To clarify an effect of the HSLs on Candida morphology 

and filamentation we conducted a morphology assay. This assay suggested that the 

morphology of Candida was affected only by the HSL-containing supernatants that were 

derived from the wild-type P. aeruginosa, PAO1.  This confirms the distinct HSL-dependent 

inhibition of filamentation and the HSL-independent impairment of biofilm development by 

P. aeruginosa supernatants. 
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3. Communication between Candida albicans and Pseudomonas 

aeruginosa 

3.1 Introduction 

Apart from the established environmental factors, C. albicans morphology and biofilm 

formation is also influenced by some environmental microorganisms such as the Gram-

negative bacterium P. aeruginosa (reviewed by Peleg et al. 2010 and Holcombe et al. 

2011). P. aeruginosa is an opportunistic human pathogen capable of causing inflammation 

and sepsis by colonizing kidneys, urinary and gastrointestinal tract of the susceptible 

individuals. Clinical observations suggest that C. albicans and P. aeruginosa populations can 

coexist and influence each other (Bauernfeind et al. 1987; Kerr 1994; Nseir et al. 2007; 

Chotirmall et al. 2010). Notably, Candida and Pseudomonas were coisolated from the lungs 

of Cystic Fibrosis (CF) patients (Martin et al. 1993; Leclair and Hogan 2010), serious burn 

wounds (Gupta et al. 2005) and the urinary catheters (Falleiros de Pádua et al. 2008). In 

vitro analysis established that C. albicans biofilm formation and metabolism can be 

influenced by P. aeruginosa phenazines (Gibson et al. 2009; Morales et al. 2013). For 

example, P. aeruginosa phenazines enhance C. albicans ethanol production which 

stimulates Pseudomonas biofilm formation (Chen et al. 2014). Another phenazine, 

methosulphate (PMS), can kill Candida within its biofilms (Morales et al. 2010; Morales et 

al. 2013). Several studies have also shown that Pseudomonas can inhibit Candida biofilm 

development in vitro (Holcombe et al. 2010; Bandara et al. 2010a; Bandara et al. 2010b; 

Reen et al. 2011; Bandara et al. 2013). These studies collectively suggest that Candida 

biofilm development and metabolism are closely related (Lindsay et al. 2014).  

Communication between C. albicans and P. aeruginosa is based on signalling. P. aeruginosa 

can inhibit the C. albicans morphological switch from yeast to hyphae using secreted 

chemicals. Several studies suggest that Pseudomonas QS (quorum sensing) molecules are 

responsible for the signal-mediated communication between the two species (Hogan and 

Kolter 2002; McAlester et al. 2008; Deveau and Hogan 2011). It was reported that HSLs can 

inhibit the switch of Candida from yeast to filamentous growth (Hogan et al. 2004). 

However, C. albicans QS molecule, farnesol, can limit the virulence of P. aeruginosa by 

blocking the production of Pseudomonas QS molecules and pyocyanin (Cugini et al. 2007) 

and affecting motility (McAlester et al. 2008). P. aeruginosa pyocyanin and 1-

hydroxyphenazine can prevent the growth of C. albicans (Kerr et al. 1999). We further 
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investigated whether deletion of the PK-encoding genes disrupted in the ‘Good’ biofilm 

former mutants affected the signal-mediated interaction between P. aeruginosa and C. 

albicans. 
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3.2 Materials and Methods 

3.2.1 Yeast strains and growth conditions  

The wild-type C. albicans strains used in this study were SC5314 (Gillum et al. 1984), 

BWP17 (ura3Δ::λimm434/ura3Δ::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG) 

(Wilson et al. 1999) and DAY286 (ura3::λimm434 his1::hisG pARG4::URA3::arg4::hisG) 

(Davis et al. 2002). The PK mutants of C. albicans are listed in Table 1 (Chapter 2). This 

kinase set was created by Aaron Mitchell’s group (Blankenship et al. 2010) and obtained 

from the Fungal Genetics Stock Centre (www.fgsc.net/candida/FGSCcandida 

resources.htm). PK homozygous insertion mutants were created in BWP17 parental strain 

via Tn7-UAU1 cassette (Blankenship et al. 2010). The CGD descriptions of the C. albicans PK 

mutants can be found in the Appendix 3.5 (Table 5). The majority of the PK-coding genes 

were represented by double independent mutant strains but in some cases only a single 

mutant was available. In total, we examined 63 genes using 45 independent duplicate 

mutants and 18 single mutants. The initial FGSC collection was larger and included mutants 

deleted in ~80 PK/PK-related genes. Our reduced set comprised the mutants that, after 

delivery and culturing, we were able to verify by strain-specific PCR using primers flanking 

the gene insertion sites (see PCR below).  

Yeast strains were routinely cultured in standard rich medium containing 1% yeast extract, 

2% peptone and 2% glucose (YPD). For biofilm and morphological analyses, the yeast 

strains were pre-grown in non-filament-inducing medium YNB (yeast nitrogen base), as 

described by McAlester et al. (2008) and Holcombe et al. (2010) with some adjustments. 

Briefly, filter-sterilized YNB salts without amino acids (Difco 291940) were supplemented 

with 0.2% glucose, 0.1% maltose and 0.16% filter-sterilized synthetic amino acid drop-out 

Leu– (Kaiser Formedium DSCK052). For the induction of hyphal growth the strains were 

transferred to filament-inducing medium, YNBNP, which consisted from YNB supplemented 

with 2.5 mM N-acetyl-D-glucosamine (Sigma A8625) and 25 mM phosphate (sodium) buffer 

(pH 7).  

3.2.2 PCR 

DNA of wild-type C. albicans and PK mutants was extracted according to Hoffman (2001) 

protocol. The primers were designed with SnapGene (www.snapgene.com) and evaluated 

via Primer-BLAST (www.ncbi.nlm.nih.gov). Strain-specific PCR was carried out using primers 

flanking the gene insertion sites listed in the Supplementary Table S1 of Blankenship et al. 

(2010) publication. Absence of the band indicated a mutant disrupted in the gene amplified 
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by the corresponding primers. The primer sequences are listed in the Table 1. All the PCR 

reactions were carried out utilising a GoTaq Green Master Mix (Promega) according to the 

manufacturers’ instructions. 

3.2.3 Bacterial strains and preparation of supernatants 

The P. aeruginosa strains used in this study were a wild-type PAO1 (Holloway and Morgan 

1986) and a HSL-negative mutant, ΔQS (ΔlasRI::Gm ΔrhlRI::Tc) (Beatson et al. 2002). 

Pseudomonas supernatants were prepared as described by McAlester et al. (2008). Briefly, 

after overnight growth of Pseudomonas in LB broth (37oC) the culture was inoculated into 

100 mL of fresh LB and further grown until it reached an approximate absorbance of 

A6001.2. To harvest the cells, the cultures were centrifuged twice (15 min, 5000 rpm). The 

resulting supernatants were filter-sterilized with 0.2 μm pore size filter, lyophilized and 

used immediately or stored at –80oC. Before utilization, the supernatants were re-

suspended to yield concentration of 2x from a 20x stock in sterile dH2O. Sterile LB broth 

was used as a control after it was prepared in the same manner as the above supernatants.  

3.2.4 Biofilm assay 

A microtiter plate-based biofilm assay (XTT reductase salts) was carried out as described by 

Ramage et al. (2001) and Holcombe et al. (2010). Briefly, the yeast strains were pre-grown 

in non-filament-inducing medium (YNB) overnight (30oC) and diluted into filament-inducing 

medium (YNBNP) to A6000.05. The diluted cultures (100 μL) were incubated for 1 h (37°C) in 

flat-bottomed 96-well polystyrene plates. After incubation, the attached cells were washed 

with fresh YNBNP medium twice, by inverting the plates carefully, to eliminate non-

adhered cells. Where indicated, YNBNP (100 μL) with the Pseudomonas supernatant (2x) 

and LB (2x) was added to the sample and the control cultures respectively. In order to 

induce biofilm formation the plates were incubated in the dark statically for 24 h (37°C). 

The next day, the biofilms developed on the bottom of the plates were washed with fresh 

YNBNP by careful pipetting. The XTT-menadione solution (100 μL), prepared as below, was 

added to the overnight cultures and incubated in the dark for 2 h (37oC). Lastly, the dyed 

supernatants (80 μL) were transferred to a clean plate for the quantification at a 

wavelength of A490 nm.  

Metabolic activity of the cells was measured with a XTT (reductase salts) assay. For the 

preparation of the XTT solutions, 10 mM menadione (Sigma M5625) was dissolved in pure 

acetone and added (10 μL) to the XTT solution. The latter was prepared by dissolving 0.01 g 

of XTT powder (Sigma X4626) in 20 mL sterile dH2O and filtered with 0.2 μm pore size filter. 
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To increase the statistical power of our experiments we tested the mutants in triplicate 

with eight technical replicates (n = 24). Biofilms of the control, wild-type C. albicans 

DAY286, ranged from approximately A4901 to A4901.5. Thus, the mutants with biofilms 

above A4901 and below A4900.5 were assigned to the ‘Good’ and ‘Poor’ biofilm formers 

respectively. The remaining mutants were ‘Moderate’ biofilm formers. A distribution of 

each sample was assessed and the coincidence of the median and the mean indicated a 

Gaussian (normal) distribution of our data. All the statistical analysis of the biofilm assays 

were carried out in R Statistical Software (R Development Core Team 2013).  

3.2.5 Morphological analyses 

Morphological assays were carried out as described previously by Hogan et al. (2004) and 

McAlester et al. (2008). Briefly, the yeast cultures were pre-grown overnight in YNB broth 

(30oC) and diluted into YNBNP (A6001.0) to assay their capacity to switch from yeast to 

filamentous growth. Before (0 h) and after 6 h and 10 h incubation (37oC), the morphology 

of the mutants was examined microscopically. Where indicated, before incubation for 6 h 

(37oC), the sample and the control cultures were treated with the bacterial supernatants 

(2x) and LB (2x) respectively. Since the previous experiments of McAlester et al. (2008) and 

Holcombe et al. (2010) had shown that the morphology of C. albicans SC5314 was impaired 

by the Pseudomonas supernatants, SC5314 was used as an additional control. The images 

were captured digitally at a magnification x 400 via Zen2008 software with EX405 BP and 

Channel D by Zeiss Laser Scanning Microscope (LSM) 510. 

3.2.6 Bioinformatics analyses 

The protein sequences of C. albicans PKs were retrieved from the CGD (Candida Genome 

Database) (Arnaud et al. 2005), the analysis of the protein associations were carried out 

using the STRING v9.1 database (Search Tool for the Retrieval of Interacting 

Genes/Proteins) (Jensen et al. 2009), the GOs (Gene Ontologies) were obtained with the 

Blast2GO annotations (Conesa et al. 2005) and pathway analysis were carried out using 

KEGG pathway database (Kyoto Encyclopaedia of Genes and Genomes) (Kanehisa and Goto 

2000). 
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Table 1| Primers used in this study. 

Forward Sequence (3’ –  5’) Reverse Sequence (3’ –  5’) 

ATG1_F CGTTGAGTTTGTTGGGAAGAGCC ATG1_R CCTTAAGTGCAGTTTCCCTAGCG 

BCK1_F GAAACTGCAAAGCACAGATACTTTACAGC BCK1_R GAGCAACTCTCCTGCAGTGGG 

BUB1_F CGATCGTGTGCTAAGCTCGC BUB1_R AACTCTTGACCACAATAGTCGATTATGGC 

CEK2_F ATGAAGAAATCTACTGGCCCC CEK2_R TTACGACATGACTATTTCGAAAATTTGTT 

CHK1_F CCCCAAGGTTTTGACAATAGCCG CHK1_R GAGAATGTACCCTGGTATCGAATCGG 

CPP1_F CACCACTATCGAGTTATTCAACTACCG CPP1_R GTGGTTGTGGAAATACTCGTGGG 

CST20_F GATACAAGTGAAAACCCTGATGACGC CST20_R CTTTGTTGGCATTGACTGAGATGGG 

DUN1_F CTTGCACTTGTGTCTTTAGAAATTGAAGG DUN1_R TATCATGTGCTGGTGTATGTTGGG 

GCN2_F CAATTTTACATGTGAAGTGGAACGGG GCN2_R CCACCATTCAAAGATGAGAATGAATTCCC 

HNT1_F GGCTTCTCATGCTTCCTGTATATTCTG HNT1_R CAACAACTTGATGAGCAATTCTTCCG 

HOG1_F ATGTCTGCAGATGGAGAATTTACAAGAAC HOG1_R TTAAGCTCCGTTGGCGGAAT 

HST7_F CCATCATCGCCAGCATTATCAAAATAGCC HST7_R GGAGACTGCGATGAAGCTGGC 

MEC1_F CATTCCATTGGATTGGTCATTGATGGG MEC1_R CCGGATTCTTCATAACAGTGTTGGC 

MEK1_F CAGTGCACCTGAAGTATTCAAGGC MEK1_R CTCAGAATAGAAAGGCGAAACACCG 

MKC1_F CAAGTCGTTTGAGACTGTAGATGGG MKC1_R CTTTCTCTTCCTCCTCTTGTCGC 

MKK2_F GCCCCAGAACGTATCACTGGG MKK2_R CATTAGCCACTTCCAAAAGACTCATACCC 

orf19.3720_F CATCGCTACGACATGACATAACCG orf19.3720_R TTGGGGCATTCTTGAACAATGGG 

PBS2_F CTGAAAGTCTTACATAAACCCACCGG PBS2_R GGTCTCATAGTGTTGATCCTTTCCG 

PKC1_2056_F CTGACCTTAGTTTTGAAACTGGTTACGG PKC1_2056_R GAACACCTTGTATTTGATCAGCAAAGGG 

PKC1_3114_F GCATATGATAGAAGTGTTGATTGGTGGG PKC1_3114_R GCATTGTCAGATATATGCGAGAACCC 

PRR1_F CCACCAACATTCAGACTGATTTCCC PRR1_R GCACAGATATAATTTTCACAGCAACTGCC 

RCK2_F GTAGGTTGTTGACTGTGGACCC RCK2_R GAGCAACTTTTGTAGCTGGTGGG 

SKY1_F GGGTCATTTTTCTACCGTGTGGC SKY1_R CTTCTTCCACTTCTACCTAATGAAGGGG 

SLN1_F GATGAAAACTGCATTAGCATCAAATTCCG SLN1_R TCTGTGGCCTCTTTTAATTTTGTAATCGG 

STE11_F CAAATCCCGTTAGTCAATGAGAATGGG STE11_R CATTAGTACACCATTCAGGAATTTGCGG 

YCK2_F GCATCTTAATGGTGGTAGAGGTTGGG YCK2_R CATTTGGTGGATTAGGATGTCCATAACCG 
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3.3 Results 

3.3.1 STRING network analyses 

After establishment of the processes important for biofilm development described in 

Chapter 2, it was interesting to identify the processes not absolutely required for biofilm 

formation by examining the interactions among the 25 PKs that were dispensable for good 

biofilm formation (Table 3, Chapter 2). These PKs were analysed for their interactions using 

STRING database. Figure 1 shows the densely connected network that confidently 

associated the elements of the MAPK signalling pathway, STE11, CPP1, BCK1 and MKK2 

with a hub HOG1, an osmotic, heavy metal and core stress response kinase (Figure 1). A 

smaller cluster showed the interactions of three proteins involved in the cell cycle 

checkpoint (Dun1, Bub1 and Mec1). The proteins of the clusters mostly shared similarity in 

function or occurrence in the same pathway. The 25 proteins were also analysed for their 

function in the KEGG annotated pathways (Table 2). A list of functional partners 

determined by the STRING database can be found in the Table 3. 

Table 2| KEGG pathways from the STRING database. 

Analysis of the good biofilm former mutants  

Pathway Gene 

MAPK signalling HOG1, CPP1, BCK1, STE11, MKK2  

Meiosis BUB1, MEC1, SPS1, RIM15 

Cell cycle BUB1, MEC1, DUN1 

Protein processing in ER GCN2 

Ribosome biogenesis CKA1 

 

Table 3| Functional partners predicted by the STRING database. 

C. albicans ortholog C. dubliniensis Description Length 

Functional partners of the good biofilm former mutants  

BUB3 (C5_03240W) CD36_52990 Cell cycle arrest protein (putative) 373 

CDC20 (C6_01150W) CD36_61260 APC/C activator protein (putative) 702 

PBS2 (C3_06070C) CD36_86000 MAP kinase kinase (putative) 536 

RAD9 (C5_02610C) CD36_52380 DNA repair protein Rad9 homologue (putative) 1065 

RAD53 (C3_03810W) CD36_83790 Serine/threonine-protein kinase Rad53 homologue (putative) 700 

RFA1 (C2_00380C) CD36_15350 Replication factor-A protein 1 (putative) 623 

RFA2 (C2_07120W) CD36_21400 Replication factor A protein 2 (putative) 268 

SUI2 (C1_06960W) CD36_06510 eIF-2-alpha (putative) 300 

TEL1 (C6_03010W) CD36_63010 DNA-damage checkpoint kinase (putative) 2873 

 C1_11370C CD36_10660 Hypothetical protein 730 
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Figure 1| Predicted STRING interaction networks. In order to produce an interaction network, the STRING database quantitatively integrates experimental 

data, computational prediction methods and published literature. The spheres and edges represent PKs and known/predicted interactions respectively. 

Stronger blue lines indicate the connections with higher confidence. Protein kinase encoding genes are boxed and the asterisk (*) indicates a functional 

partner predicted by the STRING database. A network shows the interaction of the genes/proteins not individually required for biofilm formation. 

Very good biofilm formers 

Good biofilm formers 
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3.3.2 Bacterial supernatants inhibit biofilm formation of the ’Good’ biofilm formers  

Several groups have reported that P. aeruginosa secreted signals negatively impact on C. 

albicans morphology and biofilm development. In some cases, this may involve PKs or 

other proteins acting as signal transducers. Therefore, it was questioned how mutants that 

still formed robust (good) biofilms responded to Pseudomonas supernatants. To address 

this, Candida biofilm formation was assessed after application of the supernatants derived 

from two strains of P. aeruginosa, a wild-type PAO1 and a HSL-free mutant, ΔQS. There was 

slight difference in how the mutants reacted to the supernatants, with biofilm formation 

severely inhibited in all cases. However, supernatants derived from the ΔQS strain of 

Pseudomonas (see blue boxplots: s/n DeltaQS) demonstrated less inhibitory effect on the 

biofilms of mutants disrupted in STE11, BCK1 and HOG1 genes. This is shown in detail for 

representative proteins of each major MAPK pathway, STE11 (regulates growth, mating, 

cell wall construction and invasive growth), BCK1 (regulates cell wall integrity, adaption to 

stress and invasive growth), CEK2 (participates in mating) and HOG1 (regulates adaption to 

stress) (Figure 2).  

 

 

 

 

 

Figure 2| Biofilm formation of representatives of major MAPK pathways in the presence 

of P. aeruginosa supernatants. The effect of P. aeruginosa supernatants on the biofilm 

formation of one representative of four different MAPK pathways was assessed using the 

standard XTT microtitre plate assay. In each case, two independent mutants were available. 

The biofilm assay comprised three conditions: control (No s/n); supernatant from a wild-

type Pseudomonas (s/n PAO1); or supernatant from a mutant Pseudomonas lacking HSL 

molecules (s/n DeltaQS). Wild-type C. albicans DAY286 was used as a control. The sample 

size equals to 24 observations (n = 24). Notched boxplots indicate the distribution of each 

sample. The notch shows the median confidence interval and the middle line inside the box 

indicates the median. Red dot indicates a mean, white circle an outlier and a horizontal 

dashed line shows a threshold A4900.5. Data are extracted from Figure 3. 
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Biofilm formation of all the good biofilm former mutants with and without application of 

bacterial supernatants is demonstrated in Figure 3. This figure shows that the biofilms of 

some C. albicans PK mutants were less affected by the supernatants derived from a ΔQS 

strain of Pseudomonas lacking HSL coding gene. These mutants are listed in the Table 4.  

Table 4| C. albicans PK mutants less affected by the ΔQS supernatants. Data are extracted 

from Figure 3. 

Mutants less affected by the ΔQS supernatants 

‘Good’ biofilm formers ‘Very good’ biofilm formers 

YCK3 MEC1 

DUN1 SKY1 

YPL150W BCK1 

CKA1 CMK1 

NNK1 MKK2 

 RIM15 

 ENV7 

 STE11 

 HOG1 
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Figure 3| Biofilm formation of the ‘Good’ biofilm formers after application of the Pseudomonas supernatants derived from the wild-type, PAO1, and a 

mutant, ΔQS. A| Good, B| and C| Very good biofilm former mutants. The effect of P. aeruginosa supernatants on the biofilm formation of mutants was 

assessed using the standard XTT microtitre plate assay. Wild type C. albicans DAY286 was used as a control. The biofilm assay comprised three conditions: 

control (No s/n); supernatant from a wild-type (s/n: PAO1); or supernatant from a mutant lacking HSL molecules (s/n: Delta QS). Notched boxplots indicate 

the distribution of each sample. The sample size equals to 24 observations (n = 24). The bottom and the top of the box indicate the 1st and the 3rd quartiles 

respectively. The notch shows the median confidence interval and the middle line inside the box indicates the median. The upper and the lower limits 

demonstrate the maximum and the minimum observations respectively. Red dot indicates a mean, white circle an outlier and a horizontal dashed line 

shows a threshold A4900.5 (~1/3 of the wild type biofilm). A coincidence of the mean and median indicates a normal distribution of the data. The statistical 

analyses were performed in R Statistical Software. 

C 
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3.3.3 ΔQS bacterial supernatants inhibit biofilm formation of the good biofilm formers 

without affecting their morphology 

Since the biofilms are linked to yeast morphology, we also assessed the mutants’ ability to 

switch from yeast to hyphal growth in the absence or presence of bacterial supernatants 

(Figure 4). As previously reported by McAlester et al. (2008) and Holcombe et al. (2010), 

supernatants from the wild-type P. aeruginosa prevented yeast switching to hyphal 

growth. This was the case for both wild-type C. albicans and the mutants tested. In 

contrast, all the ΔQS supernatant-treated mutants maintained a yeast to hyphae switch 

(with the possible exception of CEK2) consistent with other reports of HSL-dependent and 

HSL-independent effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4| Morphology of representatives of major MAPK pathways in the presence of P. 

aeruginosa supernatants. The effect of P. aeruginosa supernatants on morphological 

development of one representative of four different MAPK pathways was assessed using 

the standard yeast to hyphae transition assay. Two wild-type C. albicans strains, DAY286 

and SC5314, and four mutants were tested for filamentation. The morphology of each 
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strain was examined after 6 h incubation (37oC) in filament-inducing medium (YNBNP). The 

treatments were: control (No s/n); supernatant from a wild-type P. aeruginosa strain (PAO1 

s/n); or supernatant from a P. aeruginosa mutant lacking HSL molecules (ΔQS s/n). The 

scale bar corresponds to 10 μm. 

  



62 
 

3.4 Discussion 

Biofilm formation in C. albicans is mediated by diverse processes such as adherence and 

hyphal growth. After highlighting the additional processes that were important for robust 

biofilm development (Chapter 2), it was also interesting to see which proteins were not 

absolutely required for biofilm formation and, in this regard, the finding that none of the 

individual PKs in MAP kinase cascades is required appears surprising. This result can be 

explained by the redundancy and cross-talk that is built into these pathways and thus is 

likely that individual mutants are compensated by parallel processes in the cell. Network 

analysis also suggested that impairing aspects of the cell cycle has no impact on these 

functions and the presence of cell cycle processes in both the ‘Poor’ and the ‘Good’ 

categories reflects the complexity of these processes in the cell.   

Previous studies of McAlester et al. (2008) and Holcombe et al. (2010) showed that both 

the yeast-hyphal transition and Candida biofilms were impaired by Pseudomonas 

supernatants. In the case of morphology, QS molecules (HSLs) are known to play a role by 

targeting the Ras/cAMP/PKA pathway (reviewed by Hogan and Sundstrom 2009), whereas 

quinolones may be involved in the biofilm effect, through an unknown mechanism (Reen et 

al. 2011). We assessed whether any of the mutants that formed good biofilms failed to 

respond to P. aeruginosa supernatants without finding any obvious positives. Furthermore, 

the remaining PK mutants were also subject to this screen, with the same findings (data not 

shown). However, mutants were briefly differentiated into HSL-dependent and HSL-

independent but none of the protein kinases was strongly related with signal transduction 

response in Candida to Pseudomonas signals. Initially, CEK2 stood out as this mutant failed 

to filament in the presence of HSL-negative supernatant but close inspection of the control 

conditions indicated that this is an underlying morphological defect in this mutant (Figure 

4). In fact, it is somewhat surprising that the mutant is able to form biofilms given the 

pseudohyphal nature of the strain (Figure 2 and 4).  

The comprehensive analysis of the response of wild-type and 63 mutants to supernatants 

from wild-type and QS- (HSL-negative) strains of P. aeruginosa unequivocally separates the 

two effects on C. albicans: HSL-dependent impairment of morphology and HSL-

independent impairment of biofilms. It remains to be determined whether the latter effect 

is fully explained by the action of quinolones (natural antimicrobial signalling molecules) or 

whether it arises from a combination of effects, for examples, quinolones, LPS 

(lipopolysaccharides) and other molecules.  
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3.5 Appendix  

Table 5|CGD Descriptions of C. albicans PK mutants. 

ID Gene CGD description Virulence-pathogenicity Biofilms-filamentation References 

Very poor  

C6_01190C  
(orf19.130) 

VPS15 Involved in retrograde 
endosome-to-Golgi protein 
transport 
 

Required for normal 
virulence 

 (Liu et al. 2014) 

CR_03290C 
(orf19.2395) 

 IME2 Ser/Thr PK activity Hypersensitivity to 
amphotericin B 
 

 (Xu et al. 2007) 

C2_04980C  
(orf19.3530) 

CKA2 Catalytic alpha-subunit activity 
of protein kinase CK2; 
synthetically lethal with CKA1  
 

Linked with pathogenesis; 
attenuated virulence in a 
mouse oropharyngeal 
candidiasis but not in a 
systemic mouse model; 
interaction with calcineurin 
pathway affects 
fluconazole sensitivity 
 

 (Nobile et al. 2003; Bruno 
and Mitchell 2005; Chiang 
et al. 2007; Inglis et al. 
2013) 

C5_05090W 
(orf19.4001) 

MSS2 Role in protein insertion into 
mitochondrial membrane from 
inner side and extrinsic to 
mitochondrial inner membrane, 
mitochondrial matrix 
localization 
  

 (CGD 2010) 

C2_09230C 
(orf19.4084)  

KIS1 Snf1p complex scaffold protein 
activity; interacts with Snf4p; 
Hap43p-repressed gene 
 

Mutants are hypersensitive 
to caspofungin and 
hydrogen peroxide (H2O2) 

 (Corvey et al. 2005; 
Blankenship et al. 2010; 
Singh et al. 2011) 
 

CR_06000W 
(orf19.451) 

SOK1 Required for degradation of 
Nrg1p; 
induced by alpha pheromone in 
SpiderM medium   

Mutants are sensitive to 
growth on hydrogen 
peroxide (H2O2) medium  

Up in biofilms; rat 
catheter and Spider 
biofilm induced 

(Bennett and Johnson 
2006; Nett et al. 2009; 
Blankenship et al. 2010; 
Nobile et al. 2012; Lu et al. 
2014) 
 

C1_10210C 
(orf19.4890) 

CLA4 Ser/Thr PK activity (Ste20p 
family)  

Linked with pathogenesis; 
required for virulence in 
mouse systemic infection; 
mutant caspofungin 
sensitive 

Linked with filamentous 
growth; required for wild-
type filamentous growth 
and has role in 
chlamydospore formation  
 

(Martin et al. 2005; 
Leberer et al. 1997; 
Blankenship et al. 2010; 
Inglis et al. 2013) 

C1_07970C 
(orf19.5068) 

IRE1 Role in cell wall regulation Mutant is hypersensitive to 
caspofungin 

Up in biofilms; spider 
biofilm induced 

(Blankenship et al. 2010; 
Nobile et al. 2012)  
 

C1_06680W 
(orf19.6243) 

VPS34 Required for normal vesicle 
transport; autophosphorylated 
class III phosphatidylinositol 3-
kinase activity 

Linked with pathogenesis; 
required for virulence in 
mouse systemic infection; 
caspofungin and hydrogen 
peroxide sensitivity 

Linked with filamentous 
growth; required for 
hyphal growth and 
fibroblast adherence and 
is growth-regulated  

(Eck et al. 2000; 
Bruckmann et al. 2000; 
Bruckmann et al. 2001; 
Gunther et al. 2005; 
Blankenship et al. 2010; 
Inglis et al. 2013) 
 

C2_04260W 
(orf19.794) 

 SSN3 Cyclin-dependent PK activity 
(putative) 

Mutants are sensitive to 
hydrogen peroxide (H2O2) 
medium 
 

 (Epp et al. 2010; 
Blankenship et al. 2010; 
Zhang et al. 2012)  

Poor to moderate  

C6_00350W 
(orf19.1196) 

PKH3 Ortholog(s) have protein kinase 
activity and role in MAPK 
cascade involved in cell wall 
biogenesis, protein 
phosphorylation 
 

  (CGD 2010; Pastor-Flores et 
al. 2013) 
 
 

C2_07530C 
(orf19.1874) 

MEK1 Role in meiosis, meiotic 
recombination checkpoint, 
protein phosphorylation, 

  (CGD 2010) 
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regulation of linear element 
assembly and cytosol, linear 
element localization 
 

C2_08860W 
(orf19.223) 

FPK1 Hap43-repressed; possibly an 
essential gene, disruptants not 
obtained by UAU1 method  

Induced by prostaglandins Up in biofilms; flow model 
biofilm induced; Spider 
biofilm induced 

(Levitin and Whiteway 
2007; Mitchell 2009; 
Bonhomme et al. 2011; 
Singh et al. 2011; Nobile et 
al. 2012) 
 

C1_10780C 
(orf19.2341) 

HNT1 Similar activity with protein 
kinase C inhibitor-I; protein 
level decreases in stationary 
phase cultures 
  

 (Kusch et al. 2008) 

C4_06260W 
(orf19.2910)  

PGA43 Putative GPI-anchored protein 
activity (posttranslational 
modification) 
 

 
 

 
 

(De Groot et al. 2003) 
 

C2_06600W 
(orf19.35) 

SKY2 Predicted kinase activity  Up in biofilms; rat 
catheter, flow model, 
spider biofilm induced 

(Nett et al. 2009; 
Bonhomme et al. 2011; 
Nobile et al. 2012) 
 

CR_02250C 
(orf19.3744) 

CEX1 Ortholog(s) have tRNA binding 
activity, role in tRNA export 
from nucleus and cytoplasm, 
nuclear pore localization 
 

  (CGD 2010) 

C5_02840C 
(orf19.4308) 

HSL1 Involved in determination of 
morphology during the cell 
cycle of both yeast-form and 
hyphal cells via regulation of 
Swe1p and Cdc28p 
 

Required for full virulence 
and kidney colonization in 
mouse systemic infection 
 

Linked with filamentation 
and biofilms  

(Wightman et al. 2004; 
Umeyama et al. 2005; Inglis 
et al. 2013) 
 

C3_00550C 
(orf19.5408) 

HRK1 Predicted role in cellular ion 
homeostasis 
 

 Down in biofilms; spider 
biofilm repressed 

(Blankenship et al. 2010; 
Nobile et al. 2012) 
 

C3_05740C 
(orf19.7355) 

SSN8 Ortholog of S. cerevisiae Ssn8; a 
component of RNA polymerase 
II holoenzyme 
 

Mutants are viable and are 
sensitive to hydrogen 
peroxide medium 

 (Nobile et al. 2003; 
Blankenship et al. 2010; 
Zhang et al. 2012) 

Moderate  

C7_03340C 
(orf19.1341) 

PRR2  Ser/Thr PK activity (putative)  Mutation confers 
resistance to 5-
fluorocytosine (5-FC) 
 

 (Xu et al. 2007) 

C2_00300C 
(orf19.2102) 

CKB1 Regulation of casein kinase II (β 
subunit) 

Null mutants are 
hypersensitive to 
caspofungin and hydrogen 
peroxide (H2O2) medium 
 

 (Zelada et al. 2003; 
Blankenship et al. 2010; 
Bruno and Mitchell 2005) 

C2_07210C 
(orf19.2277) 

TPK2 Controls morphogenesis and 
stress response; cAMP-
dependent PK catalytic subunit; 
isoform of Tpk1 
 

Linked with pathogenesis; 
needed for epithelial cell 
damage, engulfment and 
oral (not systemic) 
virulence in mice 

Linked with filamentous 
growth and biofilms; 
down in biofilms; rat 
catheter, spider biofilm 
repressed 

(Sonneborn et al. 2000; 
Bockmuhl et al. 2001; 
Cloutier et al. 2003; Park et 
al. 2005; Nett et al. 2009; 
Nobile et al. 2012; Inglis et 
al. 2013) 
 

C1_03450C 
(orf19.3047) 

SIP3 Protein kinase-related protein 
activity  
 

Required for normal 
sensitivity to caspofungin 

 (Blankenship et al. 2010) 

CR_02460W 
(orf19.3720) 

BCY1 Ortholog(s) have endo-1,4-beta-
xylanase activity and SCF 
ubiquitin ligase complex, 
cytoplasm localization 
 

  (CGD 2010) 
 

CR_06040W 
(orf19.3854) 

SAT4 Clade-associated gene 
expression 

Amphotericin B induced Up in biofilms; spider 
biofilm induced 
 

(Liu et al. 2005; MacCallum 
et al. 2009; Nobile et al. 
2012) 
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C5_02560C 
(orf19.4269) 

 Protein kinase activity and role 
in protein phosphorylation; has 
domain(s) with predicted ATP 
binding 
 

  (CGD 2010) 

C1_05370C 
(orf19.428) 

IKS1 Induced during planktonic 
growth; putative 
serine/threonine kinase activity  
 

 Rat catheter biofilm 
repressed 

(Murillo et al. 2005; Nett et 
al. 2009) 

C5_02760W 
(orf19.4297) 

CKB2 Regulation of casein kinase II (β 
subunit)  

Null mutants are 
hypersensitive to 
caspofungin 
 

 (Zelada et al. 2003; Bruno 
and Mitchell 2005; 
Blankenship et al. 2010) 
 

C1_07380C 
(orf19.4432) 

KSP1 mRNA binds She3 and is 
localized to hyphal tips  
 

Mutation confers 
hypersensitivity to 
amphotericin B 
 

 (Xu et al. 2007; Elson et al. 
2009) 

CR_03900W 
(orf19.469) 

HST7 MAPK involved in mating; 
phosphorylates Cek1p; 
functional homolog of S. 
cerevisiae Ste7p;  

Wild-type virulence in 
mouse systemic infection; 
mutants are 
hypersensitive to 
caspofungin 
 

Linked with filamentous 
growth; Involved in 
hyphal growth signal 
transduction pathways; 

(Clark et al. 1995; Kohler 
and Fink 1996; Leberer et 
al. 1996; Csank et al. 1998; 
Chen et al. 2002; Magee et 
al. 2002; Eisman et al. 
2006; Blankenship et al. 
2010; Inglis et al. 2013) 
 

C1_10010C 
(orf19.4867) 

SWE1 Role in control of growth and 
morphogenesis  
 

Required for full virulence; 
Linked with pathogenesis; 
mutant is hypersensitive 
to caspofungin 
 

Not required for 
filamentous growth; 
regulated by 6 biofilm 
regulators 

(Wightman et al. 2004; 
Bennett RJ and Johnson 
2006; Gale et al. 2009; 
Blankenship et al. 2010; 
Nobile et al. 
2012; Inglis et al. 2013) 
 

C1_10220C 
(orf19.4892) 

TPK1 Controls morphogenesis and 
stress response; WT nuclear 
localization requires Bcy1;  
cAMP-dependent PK catalytic 
subunit; Tpk2 isoform 
 

 Linked with filamentous 
growth and biofilms; rat 
catheter and Spider 
biofilm induced; produced 
during stationary, not 
exponential growth 
 

(Bockmuhl et al. 2001; 
Cassola  et al. 2004; 
Cloutier et al. 2003; Nett et 
al. 2009; Nobile et al. 2012; 
Inglis et al. 2013) 
 

C1_12120W 
(orf19.5253) 

 YAK1  Tyr PK activity and role in 
protein phosphorylation; 
domain(s) with ATP binding 
(predicted) 
 

  (CGD 2010) 
 

C2_10750C 
(orf19.5357) 

AKL1 Induced during the mating 
process 
 

  (Zhao et al. 2005) 

CR_08860W 
(orf19.7281) 

PDK2  Putative pyruvate 
dehydrogenase kinase activity  
 

Mutation confers 
hypersensitivity to 
amphotericin B 
 

 (Xu et al. 2007) 

C3_06620W 
(orf19.7451) 

FUN31 Involved in cell wall damage 
response; similar to S. cerevisiae 
Psk1p;  

Induced by Mnl1 under 
weak acid stress 

Up in biofilms; rat 
catheter and Spider 
biofilm induced 

(Nobile et al. 2003; Rauceo 
et al. 2008; Ramsdale et al. 
2008; Nett et al. 2009; 
Nobile et al. 2012) 
 

C2_03900C 
(orf19.835) 

IES1 Ortholog(s) have role in 
nucleosome mobilization and 
Ino80 complex, cytosol 
localization 
 

  (CGD 2010) 

Moderate to good  

C2_08270C 
(orf19.2222) 

YCK3 Plasma membrane-localized   (Cabezon et al. 2009) 
 

C2_07130C 
(orf19.2268) 

RCK2 Induced by osmotic stress via 
Hog1p; macrophage / 
pseudohyphal-repressed  

Linked with pathogenesis; 
mutants are sensitive to 
rapamycin 

Linked with filamentous 
growth 

(Singh et al. 2005; Enjalbert 
et al. 2006; Li et al. 2008; 
Inglis et al. 2013) 
 

C4_03120C 
(orf19.2678) 

 BUB1 Checkpoint kinase activity  Mutation confers 
increased sensitivity to 

 (Xu et al. 2007) 
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nocodazole 
 

C5_05100C 
(orf19.4002) 

DUN1 Involved in DNA damage cell-
cycle checkpoint; induced under 
Cdc5p depletion 
 

  (Bachewich et al. 2005) 
 
 

C5_01490C 
(orf19.4144) 

MCP2 Predicted protein kinase; clade-
associated gene expression 
 

  (MacCallum et al. 2009) 
 

C2_04360W 
(orf19.4518) 

YPL150
W 

Protein kinase of unknown 
function; mutants are viable 
 

  (Nobile et al. 2003) 

CR_05940W 
(orf19.460) 

CEK2 Required for mating; 
component of the signal 
transduction pathway that 
regulates mating 

Induced by Cph1, 
pheromone 

Linked with filamentous 
growth; transposon 
mutation affects 
filamentous growth 
 

(Zhou et al. 1999; Chen et 
al. 2002; Uhl et al. 2003; 
Dignard and Whiteway 
2006; Inglis et al. 2013) 
 

C7_02800W 
(orf19.5181) 

NIK1 Involved in a two-component 
signaling pathway that regulates 
cell wall biosynthesis 

Linked with pathogenesis; 
required for wild-type 
virulence in mouse 
systemic infection but not 
for drug sensitivity / 
resistance 
 

Linked with filamentous 
growth; not required for 
wild-type growth 

(Nagahashi et al. 1998; 
Yamada-Okabe et al. 1999; 
Selitrennikoff et al. 2001; 
Buschart et al. 2012; Inglis 
et al. 2013)  
 

CR_10660W 
(orf19.7652) 

CKA1 Synthetically lethal with CKA2  Cka1p and Cka2p have a 
common target with 
respect to fluconazole 
resistance; flucytosine 
induced 
 

 (Bruno and Mitchell 2005; 
Liu et al. 2005) 
 

C2_03760C 
(orf19.846) 

NNK1 Implicated in proteasome 
function in S. cerevisiae  
 

Induced by Mnl1 under 
weak acid stress 

 (Ramsdale et al. 2008) 

Very good  

C5_04060C 
(orf19.1283) 

MEC1 Role in genome integrity; RNA 
abundance regulated by tyrosol 
and cell density 

  (Chen et al. 2004; Legrand 
et al. 2011) 
 

C1_06090C 
(orf19.2436) 

SKY1 Ser/Thr PK activity (predicted)  Up in biofilms; Spider 
biofilm induced 
 

(Nobile et al. 2012) 
 

C1_03470C 
(orf19.3049) 

SPS1 Role in activation of bipolar cell 
growth, ascospore wall 
assembly, protein 
phosphorylation and cell 
division site, cytosol, nucleus, 
prospore membrane 
localization 
  

 (CGD 2010) 

CR_02210W 
(orf19.3751) 
 

KIN4 Possibly an essential gene, 
disruptants not obtained by 
UAU1 method 
  

  (Mitchell AP 2009) 

C1_10000C 
(orf19.4866) 

CPP1 Regulates Cst20-Hst7-Cek1-
Cph1 filamentation pathway; 
yeast-enriched  

Linked with pathogenesis; 
required for virulence in 
mice; induced by alpha 
pheromone in Spider 
Mmedium; 

Linked with filamentous 
growth; represses yeast-
hyphal switch; Spider 
biofilm induced 
 

(Csank et al. 1997; Csank et 
al. 1998; Cheng et al. 2003; 
Bennett et al. 2003; Nobile 
et al. 2012; Inglis et al. 
2013)  
 

C7_02990W 
(orf19.5162) 

BCK1 Role in cell integrity pathway Mutant is hypersensitive 
to caspofungin 
 

 (Nguyen et al. 2004; Monge 
et al. 2006; Blankenship et 
al. 2010) 
 

C1_12410C 
(orf19.5224) 

PKH2 Role in sphingolipid-mediated 
signaling pathway that controls 
endocytosis (predicted)  
 

 mRNA binds She3 and is 
localized to hyphal tips 

(Elson et al. 2009; Pastor-
Flores et al. 2013) 

C3_04550C 
(orf19.5911) 

CMK1 Expression regulated upon 
white-opaque switching; 
biochemically purified 
Ca2+/CaM-dependent kinase is  

 (Lan et al. 2002; Dhillon et 
al. 2003; Singh et al. 2011; 
Ding et al. 2014) 
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soluble, cytosolic, monomeric, 
and serine-autophosphorylated; 
Hap43p-repressed 
 

C2_05780C 
(orf19.6889) 

MKK2 Involved in signal transduction; 
macrophage-downregulated  

Mutants are 
hypersensitive to 
caspofungin 
 

 (Nobile et al. 2003; 
Fernandez-Arenas et al. 
2007; Blankenship et al. 
2010) 
 

C7_01330C 
(orf19.6913) 

GCN2 Nonessential role in amino acid 
starvation response 

 Linked with filamentous 
growth 

(Tournu et al. 2005; Inglis 
et al. 2013) 
 

C7_00740W 
(orf19.7044) 

RIM15 Role in age-dependent response 
to oxidative stress involved in 
chronological cell aging, 
conidiophore development, 
protein phosphorylation, 
regulation of meiosis 
 

 Role in hyphal growth (Stichternoth et al. 2011) 

C7_04110W 
(orf19.7164) 

ENV7 Ortholog(s) have role in 
ascospore formation, 
conidiophore development, 
conidium formation, response 
to oxidative stress, sporocarp 
development involved in sexual 
reproduction, vacuolar protein 
processing 
 

  (CGD 2010) 

CR_00260W 
(orf19.7510) 

KIN2 Transcription is positively 
regulated by Tbf1 
  

 (Hogues et al. 2008) 
 

C2_03770C 
(orf19.844) 

STE11 Similar activity to S. cerevisiae 
Ste11p 
 

Linked with pathogenesis; 
mutants are sensitive to 
growth on hydrogen 
peroxide (H2O2) medium 
 

Linked with filamentous 
growth 

(Lee et al. 2005; Bennett 
and Johnson 2005; 
Blankenship et al. 2010; 
Inglis et al. 2013) 
 

C2_03330C 
(orf19.895) 

HOG1 Role in regulation of glycerol, D-
arabitol in response to stress; 
Role in osmotic-, heavy metal-, 
and core stress response  

Linked with pathogenesis; 
mutant induces protective 
mouse immune response; 
phosphorylated in 
response to hydrogen 
peroxide (H2O2)(Ssk1-
dependent) or NaCl 

Linked with filamentous 
growth 

(San Jose et al. 1996; 
Alonso-Monge et al. 1999; 
Smith et al. 2004; 
Fernandez-Arenas et al. 
2004; Kayingo and Wong 
2005; Enjalbert et al. 2006; 
Inglis et al. 2013) 
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Abstract 

C. albicans is a serious pathogen that features high drug resistant properties partially due 

to its biofilms. The biofilm development depends on the environmental stimuli/signals that 

are sensed by the fungal cell receptors. These signals are transmitted by the protein kinases 

(PK) and the gene transcription is regulated by the transcription factors (TF). Using C. 

albicans TF binding site library and Python algorithms, we created a TFbsST database 

(Transcription Factor binding site Search Tool), a user-friendly application for in silico 

analyses of Candida promoters. TFbsST database contains TF binding sites of C. albicans 

and related Candida species such as C. parapsilosis, C. dubliniensis and C. glabrata. 

Additionally, TFbsST performs TF frequency (outputs a table with %) and TF localization 

analysis (outputs graphs and tables). These features render the TFbsST software as a useful 

tool for in silico analysis of Candida gene promoter sequences.  

Previous studies of Holcombe et al. (2010) had shown that P. aeruginosa secreted signals 

can affect C. albicans biofilms. To investigate the regulation of Candida genes that were 

altered in response to P. aeruginosa secreted chemicals, we utilised a TFbsST application. 

The up-to-date gene ontology (GO) annotation indicated that the genes coding for the cell 

wall/surface proteins, important for biofilm formation, contained members of the biofilm-

related gene families, RBT and ALS. To identify the TFs that were overrepresented in these 

gene families, we carried out TF frequency analyses. These analyses showed that Efg1p was 

overrepresented in both RBT and ALS families. To question whether Efg1p could regulate 

the RBT family genes across other Candida species, C. parapsilosis RBT family gene 

promoters were screened against C. parapsilosis Efg1p using a Motif search option of the 

TFbsST application. Efg1p binding sites were predicted to regulate some C. parapsilosis RBT 

genes indicating that Efg1p is an important TF across the different Candida species.  
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4. TFbsST: Transcription Factor binding site Search Tool  

4.1 Introduction 

A serious human pathogen, C. albicans, can cause nosocomial infections partially due to its 

ability to form drug resistant biofilms on indwelling medical devices. In these clinical 

settings, C. albicans is frequently coisolated with P. aeruginosa.  P. aeruginosa is the main 

cause of morbidity in populations with cystic fibrosis (CF) (Govan and Deretic 1996; 

Chambers et al. 2005; Leclair and Hogan 2010) and AIDS (Mendelson et al. 1994). Studies 

from our laboratory (Holcombe et al. 2010; Reen et al. 2011;) and independent 

investigations (Bandara et al. 2010a; Bandara et al. 2010b; Bandara et al. 2013) have shown 

that Pseudomonas can inhibit Candida biofilm development in vitro. C. albicans biofilm 

development is a complex phenomenon orchestrated by more than 1000 genes that are 

governed by 9 master transcription regulators, Efg1p, Ndt80p, Brg1p, Bcr1p, Rob1p, Tec1p, 

Flo8p, Gal4p and Rfx2p (Nobile et al. 2012; Fox et al. 2015). 

Transcription factors (TF) regulate expression of target genes during transcription. TFs 

contain DNA binding domains that facilitate recognition and binding of TFs to specific small 

DNA sequences across the promoter region (1000 bp upstream) of target genes. A 

collection of TF DNA binding site data facilitates computational analysis of the gene 

promoter regions when using appropriate software. A comprehensive TF motif database is 

useful for in silico analysis of transcriptional networks and gene regulation studies. We 

additionally used our TF binding site database for computational analysis of biofilm 

regulation in C. albicans as well as for the investigation of interaction between C. albicans 

and P. aeruginosa.   

Given the rapid progress of bioinformatics tools, many databases were developed to 

analyse the promoter regions of genes in S. cerevisiae or other model organisms: 

 YeTFaSCo (Yeast Transcription Factor Specificity Compendium) focuses on S. cerevisiae 

TF binding sites that are evaluated for quality using several metrics. These specificities 

are given in Position Frequency (PFM) or Position Weight Matrix (PWM) formats. 

YeTFaSCo is mainly used to find the position of potential binding sites of a sequence 

and for inspection of precomputed genome-wide binding sites (http://yetfasco.ccbr. 

utoronto.ca)  (de Boer and Hughes 2011). 

http://yetfasco.ccbr.utoronto.ca/help.php#eval
http://nbrowse.ccbr.utoronto.ca/mgb2/gbrowse/yetfasco/
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 UniPROBE (Universal PBM Resource for Oligonucleotide Binding Evaluation) database 

hosts S. cerevisiae data generated by protein binding microarray (PBM) technology. 

The UniPROBE database provides comprehensive data on the preferences of proteins 

for any DNA sequence variants of length K (K-mer). For more complete analyses, the 

UniPROBE website can output weight matrix (PWM) and graphical logo of the K-mer 

sequence (http://the_brain.bwh.harvard.edu/ uniprobe) (Newburger and Bulyk 2009). 

 YEASTRACT DISCOVERER provides tools for de novo identification of binding site 

consensus sequences from a set of gene promoter regions. DISCOVERER contains 

MUSA (Motif finding using an UnSupervised Approach) algorithms that return the list 

of motifs ordered by their p-value. In order to extract these motifs, specification of the 

parameters such as box lengths and distances between boxes is not required from the 

user (http://www.yeastract.com/formfindregulators.php) (Teixeira et al. 2006). 

 MYBS (Mining Yeast Binding Sites) integrates both experimentally verified data and 

predicted position weight matrixes (PWMs) from 11 different databases. To search for 

motifs in the promoters of the input genes, MYBS uses ChIP-chip data and 

phylogenetic footprinting as its main filters and considers 7 species including C. 

glabrata. For the identification of potential regulatory associations between two TFs 

and their combinatorial regulation, MYBS enables the visualization of potential 

regulators and target gene sets for each TF pair (http://bits.iis.sinica.edu.tw) (Tsai et 

al. 2007). 

 YPA (Yeast Promoter Atlas) compiles promoter features of S. cerevisiae. YPA integrates 

various resources (including promoter sequences, TATA boxes, TF binding sites, 

nucleosome occupancy, DNA bendability, TF-TF interaction and gene expression data) 

to provide a comprehensive view of gene promoter region 

(http://ypa.csbb.ntu.edu.tw) (Chang et al. 2011). 

 JASPAR CORE database contains a curated set of profiles, derived from published 

collections of experimentally defined TF binding sites for eukaryotes. JASPAR CORE 

Fungi mostly contains S. cerevisiae TF binding site sequence logos 

(http://jaspar.genereg.net) (Sandelin et al. 2004).  

 TRANSFAC® provides experimentally-proven eukaryotic TF motif consensus sequences 

and a list of TF-regulated genes. TRANSCompel contains eukaryotic TF sets that are 

experimentally proven to interact in a synergistic or antagonistic manner 

(http://www.gene-regulation.com/pub/databases.html) (Matys et al. 2006). 

http://the_brain.bwh.harvard.edu/pbm.html
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 The MacIsaac collection contains TF motifs from solely ChIP-chip data (MacIsaac et al. 

2006). 

To our knowledge there is no bioinformatics tool available for C. albicans promoter region 

analyses. Hence we generated a C. albicans TF binding site database and created Python 

algorithms to develop publically available software TFbsST (Transcription Factor binding 

site Search Tool) for the analyses of Candida promoter regions. TFbsST is the first 

bioinformatics tool for in silico promoter analyses of Candida species including C. albicans, 

C. dubliniensis, C. parapsilosis and C. glabrata (http://bioinfo.ucc.ie/TFbsST/). 

To investigate the regulation of Candida genes that were altered in the presence of 

bacterial supernatants, we screened the C. albicans gene sets that were upregulated or 

downregulated in response to Pseudomonas supernatants (McAlester et al. 2008) across 

the TFbsST database. After gene ontology (GO) analysis with Blast2Go, the proteins 

encoded by these genes were grouped according to their localization in the cell. Cell wall 

proteins are important for biofilm formation. To question their regulation, the promoter 

regions of the genes coding for the proteins localized around the cell wall were investigated 

in more detail. The overrepresented TFs were established after analyses of different gene 

sets and gene families.  

 

 

  



73 
 

4.2 Materials and Methods 

4.2.1 General approach 

In order to generate a comprehensive TFbsST database for C. albicans promoter region 

analyses in silico, we developed a research strategy shown in Figure 1. This workflow 

represents a modified ‘Waterfall’ software development model where the project 

requirements were based on the analyses of DNA sequences in gene promoters. Briefly, to 

populate a TF database with the corresponding DNA binding site motifs, the relevant 

literature was reviewed and experimentally validated motifs were selected for the 

database. Python scripts were designed for promoter analysis and TF database was used as 

a source of DNA binding site motifs. These files served as the basis for the creation of the 

TFbsST application. After software design we implemented the testing and verification 

process that involved prediction of TF frequencies across the C. albicans genome and 

analyses of cell wall protein coding gene families.  

To analyse the 4 gene sets, the expression of which was impaired in response to bacterial 

supernatants according to Holcombe et al. (2010), we retrieved their protein sequences 

from the Candida Genome Database (CGD) (Arnaud et al. 2005) and annotated with the 

Blast2Go annotation tool (Conesa et al. 2005). Blast2Go uses input protein sequences to 

assign the proteins into 3 classes according to their molecular function (F), biological 

process they are involved in (P) and the cellular component (C) where they are localized in 

the cell. Thus, we defined smaller subsets based on the localisation of the proteins that 

these differentially expressed genes encoded in the cell. In parallel, as a control group of 

genes, we downloaded a file with all C. albicans genes plus 1000 bp upstream and 1000 bp 

downstream regions from the CGD and retrieved 1000 bp upstream regions using Python 

scripts for further TF binding site frequency predictions (%). In silico comparative analyses 

of C. albicans and C. parapsilosis RBT family gene promoter regions against Efg1p via the 

TFbsST database validated our computational methodology.   
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Figure 1| Workflow for the analyses of C. albicans gene promoter regions (from -1000 bp 

to +1 bp). To design TFbsST application we developed TF binding site database and Python 

algorithms. TFbsST software was used to analyse differentially expressed gene sets of C. 

albicans in response to P. aeruginosa supernatants (Holcombe et al. 2010). Protein 

sequences of these gene sets were retrieved from CGD and annotated with Blast2Go 

annotation tool. Proteins localized across cell wall/surface were considered important due 

to their significance in biofilm formation. Cell wall/surface group of proteins included RBT 

and ALS family genes that were known to be downregulated in presence of bacterial 

supernatants (Holcombe et al. 2010). The groups were further analysed across different TFs 

of C. albicans. A file with all C. albicans genes plus 1000 bp upstream and 1000 bp 

downstream regions served as a control. 
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4.2.2 Transcription factor binding site database creation 

For reliable computational prediction, the ideal TF binding site library would contain TFs 

associated to a single most accurate DNA binding site motif. Since the minimum number of 

features increases the prediction power of the results in computational biology, we 

optimized the TF database relating a single accurate motif to each TF (except from Cwt1p, 

Msn4p and Srr1p). As a result, our database includes an optimized set of TF binding site 

motifs that increase the reliability of the predictions. However, the source of each binding 

site differs for each TF. Hence, it was difficult to compare the TF binding site data. Thus, to 

select an optimum motif for each TF we took several approaches that lead to the creation 

of the curated TF binding site library (Table 1).  

The TF binding site database was based on publically available experimental data related to 

C. albicans TFs and their binding site motifs (Table 1). To facilitate comparative analysis 

among Candida species we also searched for indicative TF binding sites of C. parapsilosis, C. 

dubliniensis and C. glabrata. To evaluate the TF binding sites for quality, we applied several 

approaches. Firstly, a direct search was performed to find DNA binding site motifs of the 

TFs from the Homann et al. (2009) TF mutant collection. Secondly, a general search of the 

literature was performed to assign binding sites to the corresponding TF, looking for any TF 

binding sites of C. albicans and indicative TF binding sites of C. parapsilosis, C. dubliniensis 

and C. glabrata. Next, a reference-directed approach was taken to identify the most 

relevant motifs. For this we prioritised the motifs that were found by the reliable methods, 

for paradigm ChIP-Chip analysis, and were published in established journals. To optimise 

our database, we also took a time-directed approach considering the most recently 

identified binding sites. Some TF binding sites of C. albicans and S. cerevisiae display 

similarity in their sequence. Finally, we compared C. albicans TF binding sites with that of S. 

cerevisiae for similarities in YeTFaSCo (de Boer and Hughes 2011). YeTFaSCo contains a S. 

cerevisiae TF collection of specificities that are evaluated for quality with several metrics.  

  

http://yetfasco.ccbr.utoronto.ca/help.php#eval
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Table 1| Candida transcription factor binding site consensus sequences. ID shows the 
systematic nomenclature as in CGD and TF indicates the name of a transcription factor. 

a
 Frequency of the TFs among all C. albicans (SC3514) genes (~6219) is given in % that is rounded to its closest 

digit (This study). The analyses were carried out from December 2015 to January 2016. 
b
 Number of C. albicans genes predicted to possess a TF binding site (This study).  

ID TF TF consensus binding site %a Genesb Reference 

Candida albicans     

CR_07440W Ace2p HHCACCACCWM 12 746 Swidergall et al. (2015)  
C3_06000W Ahr1p CGNBWVWWVNT 60 3731 Askew et al. (2011) 
C1_09090C Arg81p KCGCGST 3 187 Tuch et al. (2008) 
CR_02560C Asg1p (asgs) YMTTGKYS 78 4851 Tuch et al. (2008) 
CR_02510W Azf1p (orf19.173) RAADAARAAR 91 5659 Swidergall et al. (2015) 
C2_05640W Bas1p TGACTC 27 1679 Gasch et al. (2004) 
CR_06440C Bcr1p TAMATRCATR 5 311 Nobile et al. (2012) 
C2_01110C Bcy1p (Mcb) ACGCG 18 1119 Gasch et al. (2004) 
C1_05140W Brg1p (Gat2) SMGGTAM 29 1804 Nobile et al. (2012) 
C3_02220W Cap1p (Ap-1) MTKASTMA 41 2550 Goudot et al. (2011) 
C4_06580W Cbf1p TCACGTG 9 560 Gasch et al. (2004) 
C1_07370C Cph1p (ScSte12) TGAAACA 30 1866 Banerjee et al. (2007) 
C6_00280W Cph2p (Sre1-like seq) YCACMCCAY 6 373 Lane et al.( 2001); Lane et al. (2015) 
CR_05530C Cwt1p AGGGCT 10 622 Moreno et al. (2007) 
  AGCCCT Moreno et al. (2007) 
CR_07530C Ecm22p/Upc2p TCGTWWWW 49 3047 Gasch et al. (2004) 
CR_07890W Efg1p RTGCATRW 17 1057 Nobile et al. (2012) 
C3_00670C Fkh2p RTAAAYAWW 61 3794 Gasch et al.( 2004);  Gordan et al. 

(2012) 
C2_09940W Gcn4p TGACTM 55 3420 Gasch et al. (2004) 
C1_07680W Hap2p CCAATCA 22 1368 Ozsarac et al. (1995) 
C4_01390W Hap3p CCAAT 96 5970 Johnson et al. (2005);  Baek et al. 

(2008); Linde et al. (2010) 
C1_09870W Hcm1p (Fkh2) WMAAYA 100 6219 Gordan et al. (2012) 
C2_03840C Ino4p (Ino2+Ino4) NBWTCASRTG 15 933 Hoppen et al. (2007) 
C3_04110C Mbp1p ACGCGTSR 2 124 Gordan et al. (2012) 
C7_00890C Mcm1p ACCRRAWWRGGMA 1 62 Perez et al. (2014) 
C2_10230W Met32p TGTGGC 23 1430 Gasch et al. (2004) 
C5_02940C Mig1p SYGGRG 65 4042 Banerjee et al. (2007) 
C1_08940C Msn4p (STRE - Msn2/4) CCCCT 55 3420 Banerjee et al. (2007) 
  AGGGG Banerjee et al. (2007) 
C5_01755C Matα1p(MtlALPHA1) WTCCTTW 62 3856 Baker et al. (2011); Tuch et al. (2008) 
C2_00140W Ndt80p TTACACAAA 5 311 Nobile et al. (2012)  
C7_04230W Nrg1p MVCCCT 68 4229 Argimon et al. (2007); Banerjee et al. 

(2007) 
CR_02640W Rfg1p ACAAT 99 6157 Gordan et al. (2012) 
C1_14340C Rim101p CCAAGAA 28 1741 Ramon and Fonzi (2003) 
C1_13620W Rob1p GGWAAWNWAWWTCC 1 62 Nobile et al. (2012) 
C1_04330W Rpn4p GGTGGCAAAA 1 62 Gasch et al. (2004) 
C1_10020W Sfu1p WGATAA 91 5659 Linde et al. (2010) 
CR_05610C Srr1p (SRR) AAGAA 100 6219 Banerjee et al. (2007) 
  CCGAA Banerjee et al. (2007) 
  ATTGG Banerjee et al. (2007) 
C1_01790W Swi4p CRCGAA 27 1679 Gordan et al. (2012) 
C5_01840C Tac1p CGGAWATCGGATATTTTTTTT 0.1 6 Banerjee et al. (2007) 
C3_04530C Tec1p RCATTCY 35 2177 Nobile et al. (2012); Argimon et al. 

(2007) 
C1_08460C Upc2p CGBDTR 91 5659 Znaidi et al. (2008) 
C1_10150W Wor1p WTARRSTTT 30 1866 Lohse et al. (2010) 
C7_00970C Yox1p WWYAWTT 100 6219 Tuch et al. (2008) 

Candida parapsilosis  CPAR2     

_ Dal82p AYGCRC   Connolly et al. (2013) 
213640 Ndt80p CACAAAR   Connolly et al. (2013) 
701620 Efg1p CTGCATR   Connolly et al. (2013) 
100880 Azf1p AAAARDA   Connolly et al. (2013) 
403080 Zap1p CACBACC   Connolly et al. (2013) 
211740 Stp4p GGTAGCR   Connolly et al. (2013) 
Candida dubliniensis     

Cd36_07150 Hap2P CCAAT   CGD 

Candida glabrata     

CAGL0A00451g Pdr1p HYCCRKGGR   Paul et al. (2014) 
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4.2.3 Python algorithm design 

To analyze the promoter regions (1000 bp upstream) of Candida genes, Python algorithms 

were designed using mainly ‘Bio’ and ‘Bio.Seq’ libraries as well as ‘Seq’, ‘SeqIO’, ‘sys’ and 

‘re’ modules of Python 3.2 and 2.7 versions (www.python.org). Two similar scripts were 

designed to answer two different biological questions. The first script predicted the 

frequency (%) of the input genes possessing a selected TF. However, for more detailed 

analysis the second script was created using the first as a template. The second script 

identified a DNA binding site motif, sequence ID where this binding site was present, the 

exact start position of the binding site, as well as a total number of the binding sites in each 

sequence.  

For both algorithms an input file had a FASTA format with ‘>’ sign followed by a gene ID, 

and a DNA sequence starting on the next line. The input file was treated as a dictionary 

with the IDs and their sequences defined as the keys and values respectively. Another 

dictionary was required for the TF database where a TF was defined as the key and its 

corresponding binding sites as a string of values. To decode the motifs written with 

ambiguous DNA code an incorporated combinatorial program was designed and called 

from the main script.  

To output the percentage of sequences possessing a specific TF binding site, we followed 

simple mathematical logic. To obtain TF information, its copy was made and the value of 

each TF (key) was zeroed. Next, to define a sequence line and the reverse complementary 

DNA strand, the sequences and TFs were looped in the file creating a sequence counter. To 

check whether a specific binding site matched with any sequence, a ‘match’ statement was 

used in combination with ‘for’ and ‘in’ statements. When the motif was found in the 

sequence the count was increased by 1. To output the percentage count, the final 

statement was iterated through the TF count data. 

To retrieve the detailed information about the binding site motif, the sequence ID where 

this motif was present, the exact start position of the motif and a total number of binding 

sites in each sequence, a similar logic was followed with minor changes. The above script 

that outputted the percentage data was modified and the output was differentiated 

towards the final ‘print’ statement. Namely, when more than 0 binding sites were found in 

the sequence, the program outputted the sequence, TF, binding site motif as well as the 

start position and a total number of the binding sites for each DNA strand. 
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4.2.4 TFbsST website development 

To avail comprehensive in silico analyses of Candida promoter regions we went beyond the 

Python scripts and created the TFbsST database (Transcription Factor binding site Search 

Tool). TFbsST was based on the TF binding site database (Table 1) and Python scripts (see 

above) for promoter region analyses following a ‘Waterfall’ model of software 

development. The Waterfall model includes 5 elements: requirements, design, 

implementation, verification and maintenance. To develop the TFbsST software we mainly 

used HTML5 (Hyper Text Markup Language 5), mySQL (Structured Query Language) and 

JavaScript programming languages that incorporated different text files. These text files 

stored data for TF binding site motifs, Candida species and references related to each 

motif. This flexible design simplified the upgrading and maintenance processes of the 

TFbsST website. TFbsST logos were designed using the free online software 

(www.logomakr.com).  

4.2.5 GO annotation  

To analyze Candida genes that were altered in expression in response to bacterial 

supernatants, we annotated their Gene Ontologies (GOs). More specifically, the protein 

sequences of C. albicans genes upregulated or downregulated in presence of P. aeruginosa 

supernatants, were retrieved from CGD and annotated with the Blast2Go functional 

annotation tool (Conesa et al. 2005). Blast2Go uses input protein sequences to assign the 

proteins into 3 classes according to their molecular function (F), biological process they are 

involved in (P) and the cellular component (C) where they are localized in the cell. Cellular 

component (C) annotation was used to analyze the localization of proteins whose gene 

expression was impaired after application of bacterial supernatants. The corresponding 

graphs were performed using Prism V6 for Mac (www.graphpad.com) or R Statistical 

Software (R development core team). 

4.2.6 Candida albicans and Candida parapsilosis promoter analysis 

Cell wall proteins are important for biofilm formation. In order to validate our 

computational method, we analysed the promoter regions of the RBT genes coding for the 

cell wall proteins in two Candida species, C. albicans and C. parapsilosis. All RBT family 

genes with their promoter regions were retrieved and stored in a single FASTA file for each 

Candida species. To extract and store the promoter regions from each file, we used Python 

scripts. RBT family gene promoter regions were analysed against Efg1p binding sites of the 

corresponding Candida species via the TFbsST database. The screening option of the TFbsST 
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database that availed analytical analysis of the specified promoters produced the graphical 

output of the TF binding site positions in addition to other details. These details included 

the ID of the promoter sequence, TF, TF binding site motif and its start position as well as 

the total number of binding sites in each promoter. To design the TF binding site logos 

corresponding to each set of RBT family gene promoter, we used a Weblogo designer tool 

(http://weblogo.berkeley.edu/logo.cgi) incorporated into the TFbsST database.   
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4.3 Results 

4.3.1 Transcription factor binding site database 

To analyse C. albicans promoter regions a detailed plan was designed as shown in the 

Figure 1. Initially, to develop a TFbsST application, a TF binding site database was generated 

from the published experimentally defined motifs. Python algorithms were designed 

following a modified ‘Waterfall’ software development strategy.  In order to analyse C. 

albicans 4 gene sets of Holcombe et al. (2010), with upregulated or downregulated gene 

expression in response to bacterial supernatants, we retrieved their protein sequences 

from CGD and annotated their GOs using the Blast2Go annotation. Thus, we defined 

smaller protein subsets based on the localisation of the proteins that these differentially 

expressed genes encoded in the cell. As a control group of genes, we downloaded a file 

with all C. albicans genes with 1000 bp up/downstream regions (CGD) and retrieved their 

promoters using Python scripts. To evaluate the TFbsST database we predicted the TF 

frequencies (%) in C. albicans genome and carried out promoter analyses of the cell wall 

protein coding family genes, RBT and ALS. Comparative analyses of C. albicans and C. 

parapsilosis RBT family gene promoters against Efg1p validated our approach.   

TF binding site database was based on the published literature (Table 1). In total, we found 

binding site motifs for 41 TFs and 1 TF complex (Ino2p+Ino4p) in C. albicans. To facilitate 

comparative analysis among Candida species we also searched for indicative TF binding 

sites of C. parapsilosis, C. dubliniensis and C. glabrata. TFbsST contains 4 tables storing TF 

binding site data that are tagged with the corresponding Candida species (Table 1). For 

more precise presentation of the TFs, their updated systematic nomenclature was included 

in the first column of the Table 1. The second column displays a name of each TF and the 

third consensus binding site motif written with IUPAC nucleotide code (for abbreviations 

see www.genome.jp/kegg/catalog/codes1). To better understand the distribution of the 

TFs in C. albicans genome, we calculated TF frequencies (fourth column) and the 

approximate number of genes (fifth column) regulated by each TF. The final column refers 

to the relevant publication from where the TF binding site motif was retrieved (Table 1).  

The preliminarily generated TF binding site database was further optimised to create a TF 

binding site library with a single binding site corresponding to each TF. However, in some 

cases multiple motifs were associated with one TF, for example, Cwt1p, Msn4p and Srr1p. 

Several motifs possessed flanking or internal bases with low information content. Since a 



81 
 

motif is not improved by removing these bases (de Boer and Hughes 2011), most binding 

site motifs were left in their original form in our database. 

4.3.2 TFbsST software 

TFbsST was based on the TF binding site database (Table 1) and the Python algorithms (see 

Materials and methods) that were designed for promoter analyses. The Python algorithms 

use the TF database as a source of motifs for DNA sequence analysis. The home page of the 

TFbsST website displays the basic information about the software and its function (Figure 

2A). A left hand-side (LHS) menu bar was created to facilitate rapid navigation within the 

website. The LHS bar contains links to access DNA sequence analysis tool (Scan) (Figure 2B), 

downloadable table of the TF motif database (Motifs), downloadable list of publications 

where each motif was found (References) (also see Table 1) and an option allowing 

addition of a new TF binding site (Add Motif). The TFbsST database can also be used to 

access 7 similar databases listed in the ‘Databases’ section of the LHS bar (Figure 2C). The 

last features of the LHS menu include the information about the authors (Authors) and 

contacts (Contact us) (Figure 2).   

The main function of the TFbsST application is to analyse the DNA sequences across all the 

TFs available in its database. A DNA sequence analysis tool located under the ‘Scan’ link 

leads to the next page where a desired Candida species can be selected. The TFbsST 

website can be used to analyze promoter regions of C. albicans and related species 

including C. parapsilosis, C. dubliniensis and C. glabrata. Each Candida species is linked to a 

different database table availing more information about C. albicans (Table 1). The 

sequence scanner of the TFbsST website outputs 2 different results based on the users’ 

request. The first option outputs a table with the percentage (%) of the user-defined 

sequences possessing a selected TF or all the available TFs of the database. To calculate the 

frequency (%), a number of genes with predicted TF is divided by the total number of input 

genes and multiplied by 100. The second option outputs a graphical display of the precise 

binding site position(s) of a selected TF among other details. These details are tabulated 

and include the ID and strand of input promoter sequence where any binding site is found, 

binding site motif and the corresponding TF. 
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Figure 2| Screenshots illustrating some features of the TFbsST database. A| Part of the 

TFbsST database Homepage. The Homepage provides general information about the 

database and its functionalities. LHS menu facilitates rapid navigation within the website 

through the Scan, Motifs, References, Databases and other features. B| Scan function of 

the TFbsST database. This function facilitates DNA sequence analysis for the TFs of the 

TFbsST database with the ‘Binding site position’ and ‘Frequency’ options. The results of the 

A 

B 

C 
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‘Binding site position’ analyses are summarised in graphs and tables, the ‘Frequency’ 

analyses are organised in tables. C| Databases listed in the TFbsST database. The TFbsST 

database provides an access to the 7 TF databases that mainly focus on S. cerevisiae.    

 

4.3.3 Overrepresented and underrepresented transcription factors in Candida albicans 

gene promoter regions  

To analyze C. albicans promoter regions we used TFbsST application and Python programs. 

The Python scripts that analysed the TF frequencies and predicted the TF binding sites were 

incorporated into the TFbsST software. However, some Python algorithms were 

additionally designed to retrieve gene promoter regions (-1000 bp to +1 bp). In silico 

genome-wide frequency analyses of C. albicans promoters against TFbsST database 

predicted that 3 TFs Hcm1p, Srr1p and Yox1p possessed ubiquitously distributed binding 

sites across all its 6219 genes (100%) (Table 1). However, these TFs are unlikely to regulate 

the whole C. albicans genome in vivo, hence more work is required to optimise their 

binding site motifs. The DNA binding sites of 5 TFs, Tac1p, Rob1p, Rpn4p, Mcm1p and 

Mbp1p, were predicted to appear sporadically (1% - 2%) in C. albicans promoters occupying 

about 100 genes. Such a low occurrence frequency indicates that the above TFs regulate 

specific group of genes (Table 1).  

4.3.4 RBT and ALS are important for interaction between Candida albicans and 

Pseudomonas aeruginosa   

To better understand the regulation of genes whose expression was impaired in response 

to bacterial supernatants we carried out in silico promoter analyses via the TFbsST 

database. Previous studies of Holcombe et al. (2010) and McAlester et al. (2008) had 

established differentially expressed genes of C. albicans in response to P. aeruginosa 

supernatants. In Holcombe et al. (2010) study, C. albicans cultures were grown in presence 

of 4 different types of Pseudomonas supernatants (wild-type PAO1, clinical isolates CF144, 

CF177 and HSL-free mutant PAO1ΔQS) as well as in presence of supernatants derived from 

HSL-producing Pseudomonas strains. Gene expression profiles of Candida indicated that 

some genes were significantly upregulated or downregulated in the above conditions 

(threshold ≥2 fold) (Holcombe et al. 2010). Promoter regions of these gene sets were 

subject to TF frequency analysis (Table 2). The results of computational investigation 

revealed that Efg1p and Mbp1p were overrepresented in the downregulated sets and 

Ndt80p in the upregulated sets of the genes treated with all 4 types of bacterial 
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supernatants (Table 2). All three TFs regulate biofilm development in C. albicans (Nobile et 

al. 2012). This prediction suggested that the pathways of C. albicans - P. aerugionsa 

communication and Candida biofilm formation may converge. This seems logical since we 

examine biofilm formation as a reference point of the above two species interaction. A file 

with all C. albicans gene promoter regions served as a control. 

To further investigate the interaction between C. albicans and P. aeruginosa, we annotated 

C. albicans gene sets that were significantly upregulated or downregulated in response to 

bacterial supernatants. We predicted subcellular localization of the proteins that these 

differentially expressed genes encoded in the cell. Protein localization is an important 

component of computational prediction informing where a protein resides in the cell and 

what is its function based on its sequence. The protein sequences of differentially 

expressed genes were retrieved from CGD and their GOs were annotated with Blast2Go 

annotation tool. With this up-to-date annotation we were able to annotate many proteins 

that were previously assigned to unknown function. For instance, 13 proteins with 

previously unknown function, encoded by the upregulated genes in presence of 4 types of 

bacterial supernatants, were annotated in this study (Appendix 4.5 Table 6 bold type). 

Many genes that were downregulated in presence of bacterial supernatants were also 

encoding for proteins with previously unknown function (Holcombe et al. 2010; McAlester 

et al. 2008).  From this list 20 additional genes were annotated in this study (Appendix 4.5 

Table 7 bold type). Recent annotations of the following genes KAR4, orf19.1336.2, 

orf19.6747, orf19.1114, orf19.409 (Appendix 4.5 Table 8 bold type) and POL12, FRK1, 

BUD14, WOR3, NOP9 (Appendix 4.5 Table 9 bold type) provide further insights about the 

proteins that are involved in Candida – Pseudomonas interactions. 

Blast2Go is a sequence-based annotation tool that assigns the proteins into 3 categories 

according to their molecular function (F), biological process they are involved in (P) and the 

cellular component where they are localized in the cell (C). Using cellular component-based 

localization annotation, we shortlisted smaller gene subsets coding for cell wall/surface 

proteins since they are important for Candida biofilm formation (Figure 3 and Table 3). 

Notably, downregulated genes coding for proteins of cell wall/surface, plasma membrane, 

endoplasmic reticulum and intracellular region exceeded those of upregulated genes in the 

gene set treated with 4 different types of bacterial supernatants (Figure 3A). These cell 

wall/surface protein coding genes contained two members of RBT and ALS family genes, 

RBT1, RBT4 and ALS1, ALS3 respectively (Table 3). Clearly, GO annotation confirmed that 



85 
 

RBT and ALS gene families are important for interaction between C. albicans and P. 

aerugionsa. 
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Table 2| Promoter region (from -1000 bp to +1 bp) analyses of C. albicans genes that 

were impaired after application of P. aeruginosa QS molecules. 

 
 

All 4 types of bacterial supernatants HSL-containing supernatants 

TF  Control
 a

  
(%) 

Up
b
 (%) Up S

c
 

(%) 
Down

b
 

(%) 
Down S

c
 

(%)
 

 Up
b
 (%) Up S

c
 

(%) 
Down

b
 

(%) 
Down S

c
 

(%) 

Ace2 12 10 20 10 8 6 0 8 0 
Ahr1 60 61 40 62 86 71 100 58 0 
Arg81 3 3 10 6 0 3 0 0 0 
Asg1 (asgs) 78 75 80 84 100 74 80 93 100 
Azf1  91 94 90 92 93 90 100 93 50 
Bas1 27 27 30 40 36 43 20 12 0 
Bcr1 5 8 10 3 0 8 0 4 0 
Bcy1 (Mcb) 18 11 20 21 22 16 20 12 0 
Brg1 (Gat2) 29 29 40 20 29 27 40 16 50 
Cap1 (Ap-1) 41 42 50 57 58 48 80 27 0 
Cbf1 9 16 10 7 8 24 20 4 50 
Cph1 
(ScSte12) 

30 29 10 26 15 32 40 16 50 

Cph2 (Sre1-
like seq) 

6 5 10 5 8 8 20 8 0 

Cwt1 10 19 20 13 15 6 0 8 50 
Ecm22/Upc
2 

49 47 40 55 86 35 40 70 50 

Efg1 17 15 20 20 43 16 20 12 0 
Fkh2 61 69 80 70 79 48 40 62 50 
Gcn4 55 60 70 60 65 77 60 35 100 
Hap2 22 17 0 23 29 19 40 20 50 
Hap3 96 49 100 92 100 95 80 81 50 
Hcm1 (Fkh2) 100 100 100 100 100 100 100 100 100 
Ino4 
(Ino2+Ino4) 

15 18 10 15 22 27 20 12 0 

Mbp1 2 0 0 5 15 0 0 4 0 
Mcm1 1 0 0 0 0 0 0 0 0 
Met32 23 25 20 25 22 24 0 20 0 
Mig1 65 60 30 65 58 69 40 54 0 
Msn4 (STRE 
- Msn2/4) 

55 51 60 65 50 45 0 58 50 

Matα1 
(MTLALPHA
1) 

62 60 50 71 79 66 80 62 100 

Ndt80 5 7 10 10 8 8 40 12 0 
Nrg1 68 70 80 70 79 66 80 70 100 
Rfg1 99 99 100 100 100 100 100 97 100 
Rim101 28 27 40 29 36 19 0 47 50 
Rob1 1 1 0 0 0 0 0 0 0 
Rpn4 1 1 10 0 0 3 0 0 0 
Sfu1 91 92 90 93 86 85 80 89 50 
Srr1 (SRR) 100 100 100 100 100 100 100 100 100 
Swi4 27 17 10 24 36 16 0 20 0 
Tac1 0.1 0 0 0 0 0 0 0 0 
Tec1 35 34 70 38 65 37 60 47 0 
Upc2 91 94 100 92 100 93 80 89 100 
Wor1 30 30 20 27 22 27 40 39 50 
Yox1 100 100 100 100 100 100 100 100 100 

a
 Control includes all Candida albicans (SC3514) genes (~6219 genes). 

b 
Gene sets were retrieved from Holcombe et al. (2010) (Supplementary Tables S1 – S4). 

c
 Subsets are Cell wall/surface genes/proteins from the corresponding gene set (see Figure 2). 

The frequencies (%) are rounded to their closest digit (This study). The analyses were carried out from 
December 2015 to January 2016. 
Underrepresented TFs in the control group are given in bold type (This study). 
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Figure 3| Localization of C. albicans proteins encoded by the upregulated (green bars) 

and downregulated (red bars) genes in response to P. aeruginosa supernatants. A| Genes 

with altered expression in response to supernatants derived from 4 strains of P. aeruginosa 

(wild-type PAO1, clinical isolates CF144, CF177 and HSL-free PAO1ΔQS). B| Genes with 

altered expression in response to supernatants derived from HSL-producing P. aeruginosa 

strains. Image was produced using scientific statistics software GraphPad Prism v 6 for Mac. 

 

 Table 3| C. albicans gene subsets coding for cell wall/surface proteins. These subsets 

were either upregulated or downregulated in response to the supernatants derived from 4 

strains of Pseudomonas, PAO1, CF144, CF177, PAO1ΔQS and HSL-containing supernatants 

(data were extracted from Figure 3). 

4 types of bacterial supernatants HSL-containing supernatants 

Upregulated Downregulated Upregulated Downregulated 

ID Gene ID Gene ID Gene ID Gene 

CR_10110W CHT3 C4_02410C AHP1 C6_03700W ALS1 C4_03570W HWP1 
C2_08490W DSE1 CR_07070C ALS3 C4_01160W CRD2 C2_01380W PLB4.5 
C5_02080C HSP12 C4_03470C ECE1 C5_02790C GAP1   
C4_06720W NOP1 C5_02460C ECM331 C6_02010C GPD2   
C2_08870C PIR1 C6_00440C FET34 C4_04080C PGA31   
C6_02070C RPL23A C1_14130W FTR1     
C2_08040C RPS10 CR_10100C INO1     
C6_00650C RPS13 C3_01360C IRO1     
C5_04110W SCW11 CR_10790W MAL2     
C2_08590W YWP1 C4_00200C MET15     
  C4_03520C RBT1     
  C1_07030C RBT4     
  C2_00680C SOD5     
  C7_00260C YLR001C     
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4.3.5 Overrepresented TFs in the RBT and ALS family gene promoters  

Previous studies of Holcombe et al. (2010) had shown that RBT1 and RBT4 were 

downregulated in presence of bacterial supernatants. From Holcombe et al. (2010) dataset 

RBT1 and RBT4, along with ALS1 and ALS3 (although not downregulated), were also found 

among our shortlisted genes coding for cell wall proteins (Table 3). Hence, it was 

interesting to explore which TFs could possibly regulate expression of these genes. To 

predict TF distribution frequencies across C. albicans RBT and ALS family gene promoters 

we retrieved their gene sequences plus 1000 bp up/downstream regions from CGD. The 

promoters of RBT family genes, including RBT1, RBT2, RBT4, RBT5, RBT6, RBT7 and RBT8, 

were retrieved with Python scripts and analysed for TF frequencies in the TFbsST software. 

The promoter regions of ALS family genes, ALS1, ALS2, ALS3 (CDC24), ALS3, ALS4, ALS5, 

ALS6, ALS7 and ALS9, were analysed in the same way using a separate FASTA file. Figure 4 

shows predicted TF ratios in the promoters of the RBT and ALS family genes (Figure 4). RBT 

family possessed 7 overrepresented TFs, Mcm1p, Mbp1p, Bcr1p, Efg1p, Ndt80p, Cwt1p and 

Cph2p, determined by the 2-fold threshold (red horizontal line). Only 2 TFs, Rpn4p and 

Efg1p, were overrepresented in the ALS family. Notably, Efg1p was overrepresented in both 

gene families (Figure 4). 

More detailed analyses showed that 3 out of 9 master regulators, Efg1p, Bcr1p and Ndt80p, 

that govern biofilm development in C. albicans (Nobile et al. 2012; Fox et al. 2015), 

possessed binding sites across promoter regions of 5 different genes in the RBT family 

(Table 4). Table 4 shows that RBT1, RBT4 and RBT6 are mainly regulated by Efg1p, RBT2 is 

additionally regulated by Bcr1p and RBT5 solely by Bcr1p and Ndt80p. DNA binding sites of 

Efg1p were also found in 4 ALS family genes, ALS1, ALS3, ALS4 and ALS9 (Table 5). Thus, 

Efg1p appeared as a protagonist of gene regulation in both gene families, RBT and ALS. 

Other overrepresented TFs in the RBT family were Cph2p and Cwt1p. Cph2p promotes 

hyphal growth by directly regulating Tec1p to induce hyphal-specific genes (Lane et al. 

2001) and Cwt1p regulates cell wall integrity (Moreno et al. 2003). These results partially 

confirmed our approach since RBT family genes are strongly expressed during hyphal 

growth but they are dramatically downregulated in presence of Pseudomonas supernatants 

under yeast growth conditions (McAlester et al. 2008; Holcombe et al. 2010).   
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Figure 4| Promoter region (from -1000 bp to +1 bp) analyses of the RBT and ALS gene families across the TFbsST database. Individual TF frequency (%) of 

each gene family member was divided by the TF frequency of the control group (all Candida genes) to obtain the final ratio illustrated with red circles. A| 

RBT and B| ALS gene families. A set of all C. albicans genes was used as a control. Overrepresented TFs are determined by the empirical 2-fold threshold 

(red horizontal line). Efg1p was overrepresented in both gene families. The figures were produced using the R Statistical Software. 
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Table 4| Promoter region (from -1000 bp to +1 bp) analyses of C. albicans genes. 

Overrepresented TFs in relation to the whole C. albicans genome determined by the 2-fold threshold, are given 
in bold type (This study). Data are extracted from Figure 4. 
RBT gene family includes: RBT1, RBT2 (FRE10), RBT4, RBT5, RBT6 (PGA7), RBT7 and RBT8 (PGA10). 
 
 

 

 

 

  

TF binding 
site  

RBT1 RBT2 RBT4 RBT5 RBT6 RBT7 RBT8 

Ahr1 +  + + + + + 
Asg1 (asgs) + + + +  + + 
Azf1  + + + + + +  
Bas1     +   
Bcr1  +  +    
Bcy1 (Mcb)   +     
Brg1 (Gat2) +   +  +  
Cap1 (Ap-1) + +  +    
Cbf1       + 
Cph1 
(ScSte12) 

  +     

Cph2 (Sre1-
like seq) 

     +  

Cwt1  +    +  
Ecm22/Upc2 +   + + + + 
Efg1 + + +  +   
Fkh2 +  +   + + 
Gcn4 + + + + +   
Hap2  +    + + 
Hap3 + + + + + + + 
Hcm1 (Fkh2) + + + + + + + 
Ino4 
(Ino2+Ino4) 

   +   + 

Mbp1   +     
Mcm1       + 
Mig1 +  +     
Msn4 (STRE - 
Msn2/4) 

 + + +  +  

Matα1 
(MTLALPHA1) 

 + + + +   

Ndt80    +    
Nrg1  + +  + +  
Rfg1 + + + + + + + 
Rim101    + +   
Sfu1 + + +  + + + 
Srr1 (SRR) + + + + + + + 
Swi4       + 
Tec1 +  +     
Upc2 + + + + + + + 
Wor1   +  + +  
Yox1 + + + + + + + 
Total TF 
binding sites 

18 18 22 19 17 19 16 
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Table 5| Promoter region (from -1000 bp to +1 bp) analyses of C. albicans genes. 

TF binding 
site 

ALS1 ALS2 ALS3 ALS3
a
 ALS4 ALS5 ALS6 ALS7 ALS9 

Ahr1 + +   + +  +  
Asg1 (asgs) + + + +   + + + 
Azf1  + + + + + + + + + 
Brg1 (Gat2)      +   + 
Cap1 (Ap-1) + + + + +    + 
Ecm22/Upc2 + + +   +  +  
Efg1 +  +  +    + 
Fkh2  +        
Gcn4  +  +  +    
Hap2    +  +   + 
Hap3 + + + + + + + + + 
Hcm1 (Fkh2) + + + + + + + + + 
Met32        + + 
Mig1     + + +  + 
Msn4 (STRE - 
Msn2/4) 

 + + + + + + 
  

Matα1 
(MTLALPHA1) 

+ + +  +  + 
 + 

Nrg1 + + + + + + +  + 
Rfg1 + + + + + + + + + 
Rim101  +  + +    + 
Rpn4    +      
Sfu1 + + +  + + +  + 
Srr1 (SRR) + + + + + + + + + 
Swi4  +  + +     
Tec1 + + +    +  + 
Upc2 + + + + + + + + + 
Wor1 +   +  + +   
Yox1 + + + + + + + + + 
Total TF 
binding site 

17 20 16 17 17 17 15 11 19 

a 
ALS3 (CDC24). 

Overrepresented TFs in relation to the whole C. albicans genome, determined by the 2-fold threshold, are given 
in bold type (This study). Data are extracted from Figure 4. 
ALS gene family include: ALS1, ALS2, ALS3 (CDC24), ALS3, ALS4, ALS5, ALS6, ALS7 and ALS9. 
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4.3.6 Efg1p binding sites in Candida albicans and Candida parapsilosis promoter regions   

In order to validate our database we studied abundance of Efg1p binding sites in a related 

yeast C. parapsilosis. Efg1p is a well-studied TF regulating hyphal growth, adhesion and 

virulence. Efg1p was overrepresented in the promoter regions of the RBT and ALS gene 

families in C. albicans (Figure 4). Hence, we questioned whether Efg1p could regulate RBT 

family genes across other Candida species. To answer this question we studied the 

abundance of Efg1p binding sites in the promoters of the C. parapsilosis RBT family genes 

(Figure 5). Both C. albicans and C. parapsilosis possess 7 RBT family genes. Gene sequences 

plus 1000 bp up/downstream regions of all RBT family genes were retrieved from CGD and 

stored in FASTA files. Upstream (1000 bp) promoter sequences were extracted via Python 

programs and their detailed analyses were conducted using a Binding site position search 

option of the TFbsST application. TFbsST outputted detailed results of the search (Figure 

5A). Figure 5A shows that Efg1p binding sites were found in both C. albicans and C. 

parapsilosis (Figure 5A). More specifically, C. albicans possessed Efg1p binding sites in 4 

RBT gene promoters, RBT1, RBT2 (including reverse-complement strand), RBT4 and RBT6. 

C. parapsilosis contained Efg1p binding site motifs in 2 RBT gene promoters, RBT2 and 

RBT4. To compare Efg1p motifs we produced representative logos using the binding site 

sequences (given in bold type) of the corresponding species (Figure 5B).   

 
C. albicans 
Seq: C4_03520C_RBT1 TF: Efg1 Binding site: ATGCATAA Start position(s): [489] Total number: 1 
Seq: C4_04320W_RBT2 TF: Efg1 Binding site: ATGCATAA Start position(s): [52] Total number: 1 
RC_: C4_04320W_RBT2 TF: Efg1 Binding site: ATGCATGT Start position(s) rev_comp: [944] Total number: 1 
Seq: C1_07030C_RBT4 TF: Efg1 Binding site: ATGCATGT Start position(s): [294] Total number: 1 
RC_: C4_00120W_RBT6 TF: Efg1 Binding site: ATGCATGA Start position(s) rev_comp: [260] Total number: 1 
 

C. parapsilosis 
RC_: CPAR2_RBT2_401740 TF: Efg1 Binding site: CTGCATA Start position(s) rev_comp: [344] Total number: 1 
Seq: CPAR2_RBT4_208800 TF: Efg1 Binding site: CTGCATA Start position(s): [360] Total number: 1 
 
 
 
 

  
 

 

Figure 5| C. albicans and C. parapsilosis RBT gene promoter analyses in the TFbsST 

database. A| Analytical output of Efg1p binding sites in C. albicans and C. parapsilosis RBT 

family genes. B| Efg1p binding site motifs in C. albicans and C. parapsilosis RBT family 

A 

B 
C. albicans Efg1p motif C. parapsilosis Efg1p motif 

ATGCATRW CTGCATA 
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genes. Logos of the Efg1p binding site sequences were produced using free online software 

Weblogo (http://weblogo.berkeley.edu/logo.cgi).  

 

Figure 6 is a graphical illustration of Efg1p localization in the promoters of C. albicans and C. 

parapsilosis RBT family genes based on its binding sites (Figure 6). Both, C. albicans and C. 

parapsilosis possessed Efg1p binding sites in RBT2 and RBT4 promoters. Efg1p had similar 

localization across the RBT4 promoters in both Candida species. C. albicans Efg1p displayed 

overlapping motifs in the RBT2 promoter. These findings support both our approach and 

database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6| Efg1p binding sites across the C. albicans and C. parapsilosis RBT family gene 

promoters. Four C. albicans RBT family genes, CaRBT1, CaRBT2, CaRBT4 and CaRBT6 posses 

Efg1p binding sites with CaRBT2 having overlapping sequences. Two C. parapsilosis RBT 

family genes, CpRBT2 and CpRBT4 posses Efg1p binding motifs. Efg1p has similar 

localization in RBT4 promoters of both Candida species. +1 indicates an ORF starting point.  

CaRBT1 
+1 

CaRBT2 
+1 

CaRBT4 
+1 

CaRBT6 
+1 

CpRBT2 
+1 

CpRBT4 
+1 
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4.4 Discussion 

C. albicans biofilms cause serious infections to nosocomial patients in hospitals. C. albicans 

biofilm-related genes are governed by 9 transcriptional regulators (Nobile et al. 2012; Fox 

et al. 2015). According to the DBD transcription factor prediction database, C. albicans 

possesses more than 500 putative TFs (www.transcriptionfactor.org). However, the binding 

site motifs of many TFs are unknown. Additionally, a limited number of bioinformatics tools 

for the analyses of C. albicans promoter sequences makes the in silico investigation even 

harder. Due to the latter, a novel bioinformatics tool, TFbsST database, was established to 

compile C. albicans TF binding site data.  TFbsST software can be used to screen Candida 

gene promoter sequences for these TFs. 

The vast majority of yeast databases are generated for a model yeast S. cerevisiae 

(UniPROBE, YEASTRACT, MYBS, YPA, JASPAR, TRANSFAC® and YeTFaSCo). To design the 

TFbsST application these databases were carefully reviewed and YeTFaSCo was used as the 

basis of our database. Nevertheless, there are significant differences between the 

YeTFaSCo and TFbsST databases. The main difference is that TFbsST includes TF motifs for 

C. albicans. Another important feature of the TFbsST database is that it also contains other 

Candida species such as C. parapsilosis, C. dubliniensis and C. glabrata. Additionally, the 

TFbsST database can perform TF frequency analysis (outputs a table with %) along with the 

TF localization analysis (outputs graphs and tables). Therefore, TFbsST is a user-friendly and 

dynamic website that can be used for more complete gene regulation analyses in Candida.  

However, a list of rational criteria for further evaluation of the motifs and database tools 

was generated to optimise the TFbsST database. To improve in silico prediction power a 

sophisticated TF motif scoring system based on their establishment method (e.g. ChIP-chip 

or gene expression) is planned to be incorporated in the TFbsST database. In addition, GO 

annotation and inter-study agreement could provide further details and relevant scores to 

the TF binding sites. Clearly, browsing TFbsST reveals that limited piece of information is 

available for the Candida species other than C. albicans. Due to the latter, easily modifiable 

text files were integrated into the TFbsST website. This flexible structure facilitates rapid 

enrichment of TF, motif and related organism lists.  

The TFbsST database was used to analyse TF frequencies in C. albicans genome. These in 

silico analyses showed several TF motifs that were ubiquitous in nearly all C. albicans genes 

(Hcm1p, Srr1p and Yox1p) and others that were significantly rare (Tac1p, Rob1p, Rpn4p, 
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Mcm1p and Mbp1p). Hcm1p is a forkhead TF that plays an important role in fungal 

morphogenesis (Bensen et al. 2002) and iron homeostasis (Singh et al. 2011). Srr1p is a 2-

component response regulator also required for morphogenesis (Desai et al. 2011) and 

H2O2 (hydrogen peroxide) resistance (Bruce et al. 2011). Yox1p is a putative transcriptional 

repressor (Tuch et al. 2008) that peaks at G1/S phase of cell cycle (Cote et al. 2009). 

Despite their important role, it is unlikely that these TFs regulate the expression of all genes 

in C. albicans. Thus, more research is required to reveal the most accurate DNA binding site 

motifs of these TFs. Closer look at some TFs predicted to regulate small number of genes 

revealed that these TFs are parts of a larger protein complex. For example, Mbp1p and 

Tac1p represent part of MBF complex (Cote et al. 2009) and DRE (drug responsive element) 

element respectively. Other TFs in this group regulate different functions in the cell. For 

instance, Rob1p regulates biofilm development (Liu et al. 2005; Nett et al. 2009) and a C2H2 

(Acetylene) TF, Rpn4p, regulates proteasome synthesis (Gasch et al. 2004; Enjalbert et al. 

2006). Mcm1p is a protein with unknown function (CGD). This data suggest that more 

research is required to elucidate the exact role of these TFs. 

Mcm1p and Mbp1p were predicted to be overrepresented in RBT family genes. However, a 

closer inspection of Mcm1p and Mbp1p in the RBT family indicated that binding site motifs 

of these TFs were present in a single RBT gene. Overrepresentation was due to their low 

frequency in C. albicans genome. The remaining overrepresented TFs in RBT genes, 

predicted on the basis of their binding sites, regulate biofilm formation in C. albicans. 

Bcr1p, Efg1p, Ndt80p are master regulators (Nobile et al. 2012), Cph2p regulates 

filamentous growth (Lane et al. 2001) and Cwt1p governs cell wall integrity (Moreno et al. 

2003). Efg1p and Rpn4p were overrepresented in the ALS gene family. However, binding 

sites of Rpn4p were present only in a single ALS gene (ALS9). Efg1p though was predicted to 

be present in some genes of both gene families, RBT and ALS. These results suggest that 

Efg1p can regulate important gene families that shape biofilm development in C. albicans. 

Efg1p binding sites were also found in the C. parapsilosis RBT family genes. This finding 

suggests that Efg1p can regulate RBT genes across different species of Candida. To 

experimentally validate these in silico analyses, gene expression experiments of Candida 

EFG1 mutants grown in YNBNP (filament-inducing medium) can be conducted quantifying 

RBT genes expression with RTqPCR. 

To analyse the effect of bacterial supernatants on Candida, differentially expressed genes 

of C. albicans, defined by Holcombe et al. (2010) that were significantly upregulated or 
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downregulated in response to P. aeruginosa supernatants, were annotated with Blast2Go. 

The up-to-date annotation of these genes elucidated the localization of many proteins that 

were not previously annotated. These data provide new insights about the proteins that 

are involved in Candida – Pseudomonas interactions. The question now is whether these 

genes are regulated by a specific transcription regulator or if they are governed by different 

TFs.  
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4.5 Appendix 

Table 6| Gene ontology (GO) annotations of upregulated gene set in response to the 

supernatants derived from 4 strains of Pseudomonas, PAO1, CF144, CF177 and ΔQS. This 

Holcombe et al. (2010) dataset was re-analysed here and up-to-date GO annotations were 

obtained with Blast2Go. This table is summarised in the Figure 3A (green bars). 

ID Gene GO – cellular component 

Plasma membrane  

C4_01100C AGP2 Integral component of plasma membrane  
C3_03070W AMF1 Integral component of membrane  
C3_04070C CDR11 Integral component of membrane  
C2_06020W CNT Integral component of plasma membrane 
CR_09370W ELF1 Plasma membrane  
C7_02910W ENA21 Integral component of membrane  
C4_03700W FNX1 Integral component of membrane 
C4_05430C GAP5 Integral component of plasma membrane  
C6_00330C GNP1 Integral component of plasma membrane  
C4_06760W GUT2 Plasma membrane  
C6_03790C HGT10 Integral component of plasma membrane 
C1_13130C HIP1 Integral component of plasma membrane  
C1_09680W MTS1 Plasma membrane  
C4_01940W PHO89 Integral component of plasma membrane 
C1_09210C SGE11 Integral component of membrane  
C6_03840C SNQ2 Plasma membrane; Integral component of membrane 
C2_09900C TIM23 Plasma membrane  
CR_04200W YDJ1 TRC complex  
C2_08590W YWP1 Anchored component of membrane 

Cytoplasm   

C1_07710C ADE4 Cytoplasm 
C2_01270W CHA1 Cytoplasm  
C5_03640W DPH51 Cytosol  
C2_05100C ERF1 Cytoplasmic stress granule; Cytosol 
C6_02500C GCV1 Cytoplasm  
C1_08400C GCV2 Cytosol  
C1_10450W GLY1 Cytosol  
C1_09490C GUA1 Cytoplasm  
C2_06390C IMH3 Cytoplasm  
C6_02230W LSG1 Cytosolic large ribosomal subunit  
C4_04720W MTD1 Cytosol  
CR_06720W NMD3 Cytosolic large ribosomal subunit  
C5_00260W PRS1 Cytosol  
C1_03350C RLI1 Cytosolic ribosome  
C1_11040W RPL29 Cytosolic large ribosomal subunit  
C1_06890C RPL34B Cytosolic large ribosomal subunit  
C1_11360W RPL37B Cytosolic large ribosomal subunit  
C3_04680W RPP2B Cytosol  
C6_00650C RPS13 Cytosolic small ribosomal subunit  
C3_04670C RPS15 Cytosolic small ribosomal subunit  
C1_01370C RPS21B Cytosolic small ribosomal subunit  
C3_00090W RPS24 Cytosolic small ribosomal subunit  
CR_07630C RPS27 Cytosol 
C7_00710W RPS28B Cytosolic small ribosomal subunit 
C3_04860W SFP1 Cytoplasm  
C2_03220C STP4 Cytoplasm  
C5_02490C TIF5 Cytosolic small ribosomal subunit 
C5_04570C URA7 Cytoplasm 
CR_04200W YDJ1 Perinuclear region of cytoplasm  
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Nucleus   

C3_05160C DBP10 Nucleolus 
CR_02530W DBP2 Nucleus  
C1_10030W DBP3 Nucleolus  
C5_03640W DPH51 Nucleus  
CR_09370W ELF1 Nucleus  
C1_04130W ERB1 Nucleoplasm; PeBoW complex  
C2_05100C ERF1 Nucleus 
C3_06850W FCR1 Nucleus  
C5_04750C HAS1 Nucleolus; Nuclear envelope  
C2_08000C KRE30 Nucleus; Nucleoid  
C6_02770W MRT4 Nucleoplasm; Nucleolus  
C4_03030C NAN1 rDNA heterochromatin; RENT complex; t-UTP complex 
C2_00140W NDT80 Nuclear chromatin  
CR_05520W NOC2 Nucleolus; Noc1p-Noc2p complex; Noc2p-Noc3p complex 
C6_03640W NOG2 Nucleolus; Nucleoplasm  
C4_06720W NOP1 Nuclear chromosome; Cajal body  
C7_04230W NRG1 Nucleus  
C6_00920W orf19.93 Nucleus  
C5_00260W PRS1 Nucleus  
C2_07450C RCL1 Nucleolus  
C1_03350C RLI1 Nucleus  
C7_00570W RPA135 DNA-directed RNA polymerase I complex  
C3_00090W RPS24 Nucleolus  
C1_12680W RRB1 Nucleolus  
C2_08480W RRP8 Nucleolus  
C3_04860W SFP1 Nucleus  
C3_04380C SNU13 Spliceosomal complex; U4/U6 x U5 tri-snRNP complex 
C2_03220C STP4 Nucleus  
C1_02790W TIF34 Eukaryotic translation initiation factor 3 complex  
C3_02130W UTP4 t-UTP complex  

Ribosome   

C3_05160C DBP10 Preribosome, large subunit precursor  
C1_10030W DBP3 Preribosome, large subunit precursor  
C2_08490W DSE1 Pwp2p-containing subcomplex of 90S preribosome  
C1_04130W ERB1 Preribosome, large subunit precursor  
C5_04750C HAS1 Preribosome, large subunit precursor  
C2_08000C KRE30 Ribosome  
C6_02770W MRT4 Ribosome; Preribosome, large subunit precursor 
C4_03030C NAN1 90S preribosome  
CR_04360C NHP2 Ribosome  
C6_03640W NOG2 Preribosome, large subunit precursor  
C4_06720W NOP1 Ribosome; 90S preribosome  
C6_00370C NOP5 90S preribosome 
C5_00260W PRS1 Ribose phosphate diphosphokinase complex  
C1_03350C RLI1 Preribosome, large subunit precursor  
C2_06810C RPL11 Ribosome 
C6_02070C RPL23A Ribosome 
C4_04900W RPL30 Ribosome  
C5_04590C RPL43A Ribosome  
C3_04680W RPP2B Ribosome  
C2_08040C RPS10 Ribosome  
C6_00650C  RPS13 90S preribosome  
C7_00960W RPS18 Small ribosomal subunit  
C1_06460C RPS22A Ribosome  
CR_07630C RPS27 Ribosome  
CR_09950C SIK1 90S preribosome  
C1_02790W TIF34 Multi-eIF complex 
C5_02490C TIF5 Multi-eIF complex  
C3_02130W UTP4 90S preribosome  
C3_05160C DBP10 Preribosome, large subunit precursor  

Mitochondrion   

C2_08100W CPD1 Mitochondrion  
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CR_02530W DBP2 Mitochondrion  
CR_09370W ELF1 Mitochondrion  
C1_08400C GCV2 Mitochondrion; Glycine cleavage complex 
C4_06760W GUT2 Integral component of mitochondrial outer membrane; Glycerol-3-

phosphate dehydrogenase complex 
CR_05520W NOC2 Mitochondrion  
C6_00920W orf19.93 Mitochondrial intermembrane space  
C3_00090W RPS24 Mitochondrion  
C2_09900C TIM23 Mitochondrial inner membrane presequence translocase complex; 

Integral component of mitochondrial inner membrane  

Cell wall/surface   

CR_10110W CHT3 Cell surface; Extracellular region 
C2_08490W DSE1 Fungal-type cell wall  
C5_02080C HSP12 Yeast-form cell wall; Hyphal cell wall 
C4_06720W NOP1 Cell surface  
C2_08870C PIR1 Yeast-form cell wall; Extracellular region  
C6_02070C RPL23A Hyphal cell wall  
C2_08040C RPS10 Cell surface 
C6_00650C RPS13 Hyphal cell wall  
C5_04110W SCW11 Cell surface; Fungal-type cell wall; Extracellular region 
C2_08590W YWP1 Cell surface; Yeast-form cell wall; Hyphal cell wall; Extracellular region 

43S/48S preinitiation complex 

C5_02490C TIF5 Eukaryotic 48S preinitiation complex  
C2_10710W TIF11 Eukaryotic 43S preinitiation complex; Eukaryotic 48S preinitiation 

complex 
C1_02790W TIF34 Eukaryotic 43S preinitiation complex; Eukaryotic 48S preinitiation 

complex  

Small-subunit processome 

C2_08490W DSE1 Small-subunit processome  
C4_03030C NAN1 Small-subunit processome 
C4_06720W NOP1 Small-subunit processome  
C6_00370C NOP5 Small-subunit processome 
CR_09950C SIK1 Small-subunit processome  
C3_04380C SNU13 Small-subunit processome 
C3_02130W UTP4 Small-subunit processome  

Box C/D snoRNP complex 

CR_04360C NHP2 Box H/ACA snoRNP complex  
C4_06720W NOP1 Box C/D snoRNP complex  
C6_00370C NOP5 Box C/D snoRNP complex  
CR_09950C SIK1 Box C/D snoRNP complex  
C3_04380C SNU13 Box C/D snoRNP complex  

Vacuole   

C4_01100C AGP2 Fungal-type vacuole membrane  
C4_05430C GAP5 Vacuole  
C6_00330C GNP1 Vacuole  
C1_13130C HIP1 Vacuole  

Viral nucleocapsid 

CR_04360C NHP2 Viral nucleocapsid 
C3_04380C SNU13 Viral nucleocapsid  
CR_04200W YDJ1 Viral envelope  

Golgi apparatus   

C2_08100W CPD1 Golgi apparatus  
C6_02230W LSG1 Golgi apparatus  

Endoplasmic reticulum 

C4_01100C AGP2 Endoplasmic reticulum membrane  
C6_02230W LSG1 Endoplasmic reticulum  

Polysome   

CR_09370W ELF1 Polysome  

Intracellular region 

C1_02840W PDE2 Intracellular region 

Mating projection tip 

C6_02230W LSG1 Mating projection tip  
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Not yet annotated to any cellular component 

C2_03520C ADAEC   
C6_02480W ADH7  
CR_06860C ARO10   
C1_10740C ASR1  
C3_07280C ENT4  
C2_10360C HEM3  
C4_02050W HGH1   
C4_02440C PGA38   
C1_07330W RME1   
C4_06390W SOU1   
C4_03370C orf19.3364  
C3_03460C orf19.344   
C2_05160C orf19.3547  
C5_01550C orf19.4149   
C1_10360C orf19.4907   
C1_11990W orf19.5267  
C7_01430C orf19.6586  

Up-to-date annotation of genes coding for proteins with previously unknown function is given in bold type (This 

study). 
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Table 7| Gene ontology (GO) annotations of the downregulated gene set in response to 

the supernatants derived from 4 strains of Pseudomonas, PAO1, CF144, CF177 and ΔQS. 

This Holcombe et al. (2010) dataset was re-analysed here and up-to-date GO annotations 

were obtained with Blast2Go. This table is summarised in the Figure 3A (red bars). 

ID Gene GO – cellular component 

Plasma membrane  

CR_07070C ALS3 Plasma membrane; Anchored component of membrane  
CR_02910W APG13 Extrinsic component of membrane  
C6_04210C ATM1 Integral component of membrane  
C1_05700W AUT7 Extrinsic component of membrane  
C1_06520C BPH1 Extrinsic component of membrane 
C2_03320W CHK1 Membrane  
C5_02460C ECM331 Plasma membrane; Anchored component of membrane 
C1_08590C ERG1 Plasma membrane; Integral component of membrane; Lipid particle  
C6_00440C FET34 Plasma membrane 
C1_14130W FTR1 High-affinity iron permease complex  
C3_05580C GAP2 Integral component of plasma membrane  
C7_00280W HGT12 Integral component of plasma membrane  
C1_02110C HGT2 Integral component of plasma membrane  
C2_04940C ITR1 Integral component of plasma membrane 
C2_07580W MAE1 Integral component of membrane  
C5_04930C MAL31 Integral component of plasma membrane  
C4_00430W MEP2 Integral component of plasma membrane  
C3_00650W NGT1 Plasma membrane; Integral component of membrane  
CR_02240C OPT2 Plasma membrane  
CR_02900W ScOPT2 Plasma membrane  
CR_02490W OPT4 Plasma membrane  
C4_03520C RBT1 Anchored component of membrane 
CR_06660W SEO1 Integral component of membrane  
C2_00680C SOD5 Anchored component of membrane 
C2_06010W SPO72 Extrinsic component of membrane 
C2_02860W SUR2 Integral component of membrane  
C5_03060C TNA1 Plasma membrane; Integral component of membrane  
C3_06710W VHC1 Integral component of vacuolar membrane 
CR_03270W VHT1 Integral component of plasma membrane  

Cytoplasm   

C4_02410C AHP1 Cytosol  
C4_05560C ARO9 Cytoplasm 
C1_05700W AUT7 Cytosol 
CR_10360C CTM1 Cytosol 
C1_04660W DUR1,2 Cytoplasm  
C6_03340C GLC3 Cytoplasm 
C4_02990C GST2 Cytoplasm 
CR_10100C INO1 Cytoplasm  
C1_12010C KIP4 Cytoplasm  
CR_04480C LAP3 Cytoplasm  
C7_00400W LEU2 Cytosol 
C4_05320W LYS1 Cytoplasm  
C3_06590W LYS9 Cytosol  
CR_10790W MAL2 Cytoplasm  
C3_02950C MET13 Cytosol  
C4_00200C MET15 Cytoplasm 
C4_00150C PEX5 Cytosol 
CR_02820W PGM2 Cytosol 
C2_07570W RNR22 Cytosol; Ribonucleoside-diphosphate reductase complex 
C2_00680C SOD5 Cytoplasm  
CR_05720W TPS1 Alpha,alpha-trehalose-phosphate synthase complex (UDP-forming) 
CR_09010C YHR112C Cytoplasm  
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Nucleus   

C4_05560C ARO9 Nucleus  
C1_05700W AUT7 Nucleus  
C2_09940W GCN4 Nucleoplasm; Nuclear chromatin; Transcription factor complex 
C2_06650C PRP31 U4/U6 x U5 tri-snRNP complex  
C4_02030W RFX2 Nucleus  
C5_00980W TRY3 Nucleus  
C1_06280C UME6 Nucleus 
CR_09930W YDR124W Nucleus  
CR_09010C YHR112C Nucleus  

Cell wall/surface   

C4_02410C AHP1 Yeast-form cell wall; Hyphal cell wall 
CR_07070C ALS3 Yeast-form cell wall; Hyphal cell wall; Cell surface  
C4_03470C ECE1 Hyphal cell wall  
C5_02460C ECM331 Fungal-type cell wall; Cell surface  
C6_00440C FET34 Cell surface  
C1_14130W FTR1 Cell surface 
CR_10100C INO1 Hyphal cell wall; Cell surface 
C3_01360C IRO1 Cell  
C4_00200C MET15 Hyphal cell wall  
C4_03520C RBT1 Cell wall 
C2_00680C SOD5 Yeast-form cell wall; Hyphal cell wall; Cell surface  

Extracellular region 

CR_07070C ALS3 Extracellular region 
C5_02460C ECM331 Extracellular region  
CR_10790W MAL2 Extracellular region 
C4_03520C RBT1 Extracellular region 
C1_07030C RBT4 Extracellular region  
C2_00680C SOD5 Extracellular region 
C7_00260C YLR001C Extracellular space  

Mitochondrion   

C6_04210C ATM1 Mitochondrial inner membrane  
C4_04620C CTN2 Mitochondrion  
CR_01400W LYS12 Mitochondrion  
C3_02950C MET13 Mitochondrion  
C2_08390W orf19.1433 Mitochondrion 
C7_00260C YLR001C Mitochondrion 

Vacuole   

C4_02360W AMS1 Fungal-type vacuole membrane  
C1_05700W AUT7 Fungal-type vacuole membrane  
C6_00440C FET34 Fungal-type vacuole membrane  
C2_06880C PRB1 Fungal-type vacuole  
C7_00260C YLR001C Fungal-type vacuole membrane  

Endoplasmic reticulum 

C1_06520C BPH1 Endomembrane system 
C1_08590C ERG1 Endoplasmic reticulum membrane  
C4_06810C SLY1 Endoplasmic reticulum; ER to Golgi transport vesicle 
C2_02860W SUR2 Endoplasmic reticulum membrane  

Intracellular   

C1_06520C BPH1 Intracellular  
C4_06480C CEK1 Intracellular 
C2_03320W CHK1 Intracellular  
C5_00450C IFG3 Intracellular 
CR_07190W RGD2 Intracellular  

Autophagosome   

CR_02910W APG13 Pre-autophagosomal structure membrane 
C1_05700W AUT7 Autophagosome membrane; Pre-autophagosom; Cvt vesicle membrane 
C2_06010W SPO72 Pre-autophagosomal structure  

Peroxisome   

C4_04620C CTN2 Peroxisome  
C3_05360C LON1 Peroxisomal matrix 
C4_00150C PEX5 Peroxisomal membrane  
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Golgi apparatus   

C4_00430W MEP2 Golgi apparatus  
C4_06810C SLY1 Golgi membrane  

Microtubule   

C1_12010C KIP4 Microtubule; Kinesin complex 

Vacuole   

C3_05580C GAP2 Vacuole  

Viral nucleocapsid 

C2_06650C PRP31 Viral nucleocapsid  

Endosome   

C2_06010W SPO72 Late endosome 

Glyoxysome   

C1_04500W ICL1 Glyoxysome 

Not yet annotated to any cellular component 

CR_02070C ADH5   
C4_06340W AGO1 

 C2_03120W AMO1 
 C3_01820W BGL98 
 CR_01930C BIO2 
 C2_02950W BNA3 
 C1_08170C BUL1 
 C5_02690W BZD99 
 C6_01070C CIP1 
 C3_04550C CMK1 
 C2_00690W EEP2 
 C4_03910W FGR28   

C6_01650C FMP27 
 C3_06450W GLG2   

C1_01360C GLG21   
C6_00840W GPX2   
C1_07520C IST2 

 C1_00170W LEU4 
 C6_03310W LPF39 
 C7_03470W LPF44 
 C1_02820W LYS2   

C2_04460W LYS22   
CR_07220C NDL1   
C5_05190W PCL5 

 C4_01850C PDC12 
 C1_08950W PFK26 
 C6_03320W PHZ1 
 C1_13160W PSA2 
 C4_03940C PYC2 
 C6_03260W RNH11   

C5_03930C SIA1 
 C4_00190W SMA2 
 C2_10690W TPS3 
 C7_00170W VPS70 
 CR_10570C YHB4 
 C1_01930W YIL024C 
 C2_02390W orf19.1562 
 C3_02330C orf19.1611 
 C6_04480C orf19.2132 
 C3_01020W orf19.2506 
 C1_02730W orf19.2962 
 C1_05440C orf19.419 
 C2_04400W orf19.4513 
 C4_01860C orf19.4607 
 C1_09310C orf19.4791 
 C1_09340C orf19.4795 
 C1_10060C orf19.4873 
 C1_13430C orf19.4970 
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Annotation of genes coding for proteins with previously unknown function is given in bold type (This study). 

 

C7_03280C orf19.5125 
 CR_06570C orf19.915 
  

  



105 
 

Table 8| Gene ontology (GO) annotations of the upregulated gene set in response to the 

HSL-containing Pseudomonas supernatants. This Holcombe et al. (2010) dataset was re-

analysed here and up-to-date GO annotations were obtained with Blast2Go. This table is 

summarised in the Figure 3B (green bars). 

ID Gene GO – cellular component 

Plasma membrane 

C6_03700W ALS1 Plasma membrane; Anchored component of membrane  
C1_09150W AOX2 Plasma membrane; Integral component of membrane  
C4_04310W COX11 Plasma membrane  
C4_01160W CRD2 Integral component of membrane  
C2_02280W FMP39 Plasma membrane; Integral component of membrane  
C5_02790C GAP1 Integral component of plasma membrane  
C5_03500W GAP6 Integral component of plasma membrane  
C2_02610C HGT20 Integral component of plasma membrane  
C3_02310W MEP1 Integral component of plasma membrane  
C1_11870W MUP1 Integral component of plasma membrane  
CM_00310W NAD2 Integral component of membrane  
C5_03800W orf19.1114 Plasma membrane; Integral component of mitochondrial inner 

membrane  
C1_08610C orf19.409 Plasma membrane; Integral component of membrane 
C4_04080C PGA31 Anchored component of membrane  
C3_03800W PTR22 Plasma membrane; Integral component of membrane  
C4_02890C QCR9 Plasma membrane  

C2_06470W RTA2 
Plasma membrane; Integral component of membrane; Membrane 
raft 

C2_06460W RTA3 Integral component of membrane  
CR_09170C SSU1 Plasma membrane; Integral component of membrane  

Mitochondrion   

C1_09150W AOX2 Mitochondrion; Respiratory chain  
C7_03380W CMC2 Mitochondrial intermembrane space 

C4_04310W COX11 
Mitochondrial inner membrane; Mitochondrial intermembrane 
space; Mitochondrial ribosome 

C2_01180W COX17 Mitochondrial intermembrane space  
C2_02280W FMP39 Mitochondrial membrane 
C2_10240W GPD1 Glycerol-3-phosphate dehydrogenase complex  
C6_02010C GPD2 Glycerol-3-phosphate dehydrogenase complex  
CM_00310W NAD2 Mitochondrial respiratory chain complex I  
C5_03800W orf19.1114 Mitochondrial respiratory chain supercomplex  
C4_02890C QCR9 Mitochondrial respiratory chain complex III  

Cell wall/surface 

C6_03700W ALS1 Yeast-form cell wall; Hyphal cell wall; Cell surface  
C4_01160W CRD2 Yeast-form cell wall  
C5_02790C GAP1 Fungal-type cell wall; Cell surface  
C6_02010C GPD2 Cell surface  
C4_04080C PGA31 Yeast-form cell wall; Cell surface  

Cytoplasm   

CR_06950C ATX1 Cytosol  
CR_02330C KAR4 Cytoplasm  
C3_07430W orf19.6747 Cytosol  
C7_02810W PRX1 Cytoplasm  

Nucleus   

CR_06950C ATX1 Nucleus 
C7_02810W PRX1 Nucleus  
C7_03380W orf19.1336.2 Nucleus  

Vacuole   

C5_02790C GAP1 Vacuole  
C5_03500W GAP6 Vacuole  

Extracellular region 
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C6_03700W ALS1 Extracellular region  
C4_04080C PGA31 Extracellular region  

Exocyst   

C4_04310W COX11 Exocyst  

Not yet assigned to any cellular component 

C6_02480W ADH7 
 C2_00340C ARO8 
 C1_04450C FMA1 
 C1_02980W GOR1 
 C2_02940W MET1 
 C6_01420C OYE23 
 CR_02580W PAN6 
 C1_05770C PRC3 
 C3_00320W RHR2 
 C2_02900W orf19.5814 
 Up-to-date annotation of genes coding for proteins with previously unknown function is given in bold type (This 

study). 
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Table 9| Gene ontology (GO) annotations of the downregulated gene set in response to 

the HSL-containing Pseudomonas supernatants. This Holcombe et al. (2010) dataset was 

re-analysed here and up-to-date GO annotations were obtained with Blast2Go. This table is 

summarised in the Figure 3B (red bars). 

ID Gene GO – cellular component 

Plasma membrane   

C3_00920W ATO1 Integral component of membrane 

C6_00790C CTR1 
Plasma membrane; Integral component of 
membrane  

CR_07290W FRE7 Integral component of membrane  
CR_02210W FRK1 Cell cortex  
C1_01980W HGT1 Integral component of plasma membrane 
C4_01070W HGT17 Integral component of plasma membrane 
C4_03570W HWP1 Anchored component of membrane  
C4_04030W JEN2 Integral component of plasma membrane 
CR_01220W TNA12 Integral component of membrane 

Nucleus   

CR_09880W DEF1 Nucleus  
C1_04040C NOP9 Nucleolus  
CR_00310C RNT1 Nucleus  
CR_03890W WOR3 Nucleus 
C3_02640C ZCF1 Nucleus  

Ribosome   

C1_04040C NOP9 90S preribosome; Preribosome, small subunit 
precursor 

α DNApol:primase complex 

C1_07490C POL12 Alpha DNA polymerase:primase complex  

Cell wall/surface   

C4_03570W HWP1 Cell wall  
C2_01380W PLB4.5 Cell surface  

Bud   

C2_05260W BUD14 Cellular bud neck; Cellular bud tip; Incipient 
cellular bud site  

Cytoplasm   

C1_02120C SHA3 Cytoplasm  

Exosome   

C2_08550C MSU1 Exosome (RNase complex) 

Fatty acid synthase complex 

C3_04830C FAS2 Fatty acid synthase complex  

Intracellular part   

CR_10340W PTP3 Intracellular part  

Mitochondrion   

C3_04830C FAS2 Mitochondrion  

Trans-Golgi network   

C7_03480W YEL1 Trans-Golgi network  

Not yet annotated to any cellular component  

CR_00640W ACC1 
 C4_00960W PTC8 
 C6_02330W orf19.3475 
 C1_00190C orf19.6084 
 Up-to-date annotation of genes coding for proteins with previously unknown function is given in bold type (This 

study). 
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Chapter 5 

 

General Discussion 
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5. General discussion 

5.1 Introduction 

In the final part, the main findings of this research are briefly summarised and integrated 

with the existing knowledge to describe the main conclusions. A detailed experimental plan 

and database update strategies are outlined for the progression of this project. Also, new 

insights in C.  albicans biofilms and interspecies interaction are highlighted indicating future 

directions of the field. This chapter concludes with the recommendation for investigation of 

C. albicans biofilms rather than of the planktonic cells, focus on the polymicrobial 

communities instead of monocultures and suggestion of translational studies from in vitro 

to in vivo models.     

5.2 Research result summary 

Protein kinases (PK) and transcription factors (TF) mediate signal transduction and 

transcription of proteins involved in C. albicans biofilm development. We described 5 

additional PKs, VPS15, PKH3, PGA43, IME2 and CEX1, that could contribute to the efficient 

filamentation and robust biofilm development. To identify the ‘Poor’ biofilm former 

mutants we used different biofilm and morphology assays from those who had previously 

screened this PK collection (Blankenship et al. 2010; Fanning et al. 2013; de Castro et al. 

2013; Morales et al. 2013). Filamentation is essential for biofilm development but our 

screens highlighted additional processes, such as vascular biosynthesis and ribosome 

biogenesis, that were also important for C. albicans biofilms.  The discovery that the 

individual elements of the MAPK pathway were not essential for Candida biofilms was 

unexpected suggesting that in order to filament the MAPK mutants may exploit the 

functionally overlapping MAPK pathways. However, consistent with earlier publications of 

Holcombe et al. (2010) and McAlester et al. (2008), P. aeruginosa supernatants were 

shown to have 2 distinct effects on C. albicans: HSL-independent biofilm impairment and 

HSL-dependent filamentation inhibition. To further investigate TF-regulated genes in 

Candida we created a TFbsST database and found that one of the master biofilm regulators, 

Efg1p, is also implicated in yeast-hyphae switch. Efg1p binding site elements were 

additionally predicted to be conserved in C. parapsilosis hyphae-related genes (RBT). 

Currently, the TFbsST database is limited to some Candida species TFs but these findings 

increase our knowledge of Candida biofilms and inter-species interactions adding novel 

bioinformatics tools to answer interesting questions of, for example, Candida gene 

regulation mechanisms. 
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5.3 Candida albicans interaction with bacteria  

This research was focused on the investigation of C. albicans – P. aeruginosa interaction 

but C. albicans is also known to communicate with Gram-positive bacteria in addition to P. 

aeruginosa, which is Gram-negative, and increase the health burden. Polymicrobial 

infections are hard to treat since they include various pathogens such as bacteria, yeast and 

viruses, requiring different treatments. These pathogens possess synergistic or antagonistic 

behaviour affecting the dynamics of their communities and the outcome of the therapies. 

The Candida-bacterial interaction can promote or prevent the infections in the human-

host. For example, a bacterium Streptococcus gordonii promotes the adherence of C. 

albicans cells, filamentous growth of hyphae and C. albicans biofilm formation on the 

epithelial cells of the oral cavity (reviewed by Morales and Hogan 2010). S. gordonii 

attaches to the epithelial cell surface with its polypeptides promoting the adherence of C. 

albicans. In return, the presence of C. albicans decreases the oxygen to the preferred levels 

by S. gordonii. This leads to the increased growth of S. gordonii communities (reviewed by 

Morales and Hogan 2010). These conditions in the oral cavity favour the development of 

yeast-bacterial biofilms that are difficult to treat with the existing therapies.  

The synergetic behaviour of C. albicans and another Gram-positive bacterium, 

Staphylococcus aureus, also ultimately leads to robust biofilm development, significantly 

increasing mortality rates in mice (Shirtliff et al. 2009; Harriott and Noverr 2009). In these 

mixed biofilms, C. albicans prostaglandin E2 (hormone-like fatty acid) stimulates the 

growth of S. aureus (Krause et al. 2015). Urinary tract infections are enhanced by the 

cooperation of C. albicans and Escherichia coli (Gram-negative), that increases the 

attachment ability of C. albicans on the surface of the epithelial cells (Levison and Pitsakis 

1987). The lipopolysaccharides of E. coli further enhance the mortality rates of C. albicans-

infected mice (Akagawa et al. 1995).  

However, the human host can benefit from the antagonistic behaviour of C. albicans and 

Lactobacillus. Different Lactobacillus species that are normal residents of the intestinal and 

female reproductive tracts can prevent adherence of C. albicans on the surface of the 

epithelial cells (reviewed by Morales and Hogan 2010). They secrete surlactins that prevent 

the adherence of C. albicans and compete for the attachment on the cell surface. These 

data reflect the complexity of mixed infection and the inter-kingdom interaction. Hence, 

more emphasis should be given to the studies of the polymicrobial communities.  
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5.4 Pseudomonas aeruginosa interaction with fungi 

In this study we looked at the effects of P. aeruginosa on C. albicans but P. aeruginosa was 

also shown to affect other fungi. Conditions like CF and burn wounds involve polymicrobial 

infections with mixed bacterial and yeast communities. For example, the lungs of the CF 

patients are colonised by bacteria (mainly P. aeruginosa) and yeast including C. albicans, 

different Aspergillus and Scedosporium species and Exophiala dermatitidis (reviewed by 

Pihet et al. 2009). The study of the mixed cocultures indicated that P. aeruginosa can kill 

Aspergillus fumigatus conidia (Manavathu et al. 2014) and inhibit the growth of 

Scedosporium aurantiacum (Kaur et al. 2015). P. aeruginosa extracellular molecules can 

also inhibit A. fumigatus biofilm formation (Mowat et al. 2010) and its phenazines can 

manipulate A. fumigatus iron homeostasis (Briard et al. 2015). In contrast, P. aeruginosa 

volatiles stimulate the growth of A. fumigatus colonies on minimal media (Briard et al. 

2016). The interaction between P. aeruginosa and E. dermatitidis (black yeast) remains 

unclear. These interactions highlight the importance of in vivo models that can shed more 

light to the mixed infections. 

5.5 In vivo models for the investigation of fungal biofilms 

We investigated the C. albicans biofilms and inter-kingdom cross-talk highlighting several 

aspects that are important for the biofilm formation in vitro. The majority of the 

researchers study fungal biofilms and yeast-bacterial interaction in vitro. The wealth of 

knowledge generated from the in vitro analyses can be employed to clarify the microbial 

interaction and biofilm development in vivo. Plethora of in vivo models is utilised for the 

investigation of fungal biofilms that significantly contribute to the knowledge of biofilm 

physiology and microbial interaction with the host. The in vivo biofilm development is 

significantly affected by the host factors including the host antibodies, nutrient availability, 

flow of the liquids (e.g. blood, urine) and the substrate properties. Although biofilms are 

known to be developed by several medically important fungi, Aspergillus, Pneumocystis, 

Blastomyces, Zygomycetes, Trichosporon, Cryptococcus, Fusarium and Malassezia, Candida 

biofilms are the mostly studied since C. albicans is a model pathogen for the investigation 

of the fungal biofilm infections (Reviewed by Nett and Andes 2016).  

Many in vivo models are developed for the study of the Candida biofilm-related infections 

but the most popular is a central venous catheter model that is adopted for utilisation in a 

mouse (Lazzell et al. 2009), a rat (Andes et al. 2004) and a rabbit (Schinabeck et al. 2004). 

This model involves the insertion of a vascular catheter employing the surgical procedures 
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and allows the assessment of antifungal influence on the biofilm growth following systemic 

administration of a drug. These models significantly contributed into the establishment of 

the multi-drug resistance phenomenon in vivo directing the research towards the search 

for more effective therapies. Another,  subcutaneous implant model in a mouse (Zumbuehl 

et al. 2007) and a rat (Ricicova et al. 2010), was designed using amphogel, hydrogel and 

amphotericin B-containing disks, inoculated with C. albicans and implanted 

subcuntaneously.  Employing this model, Zumbuehl et al. (2007) showed that the hydrogel 

of this antifungal is suitable for the prevention of device-related infections due to its long-

term efficiency.  

To investigate denture infections that are common within the denture-wearers, a rat 

denture stomatitis model with a novel intraoral system was developed by Johnson et al. 

(2012). The previous Macacairus monkey models contributed into the knowledge of host 

response to denture biofilms but the less costly rat models were found to be more useful 

for the drug efficacy studies. Additional to the animal models, a human dental plaque 

model is used for more realistic studies of the oral communities. To study the oral flora, 

disks made of different materials are inserted in the removable intrabuccal splints of 

volunteers and after removal of the discs bearing oral microbial communities are analysed 

by the researchers (Rimondini et al. 1997; Scarano et al. 2004).  

To study oropharyngeal and vaginal candidiasis the mouse oral (Dongari-Bagtzoglou et al. 

2009) and vaginal mucosal models were developed respectively (Harriott et al. 2010). 

These models revealed the complexity of the oral biofilms that involved bacteria, 

neutrophils of host innate immune system (WBC) and keratin that protects epithelial cells 

from damage/stress (Dongari-Bagtzoglou et al. 2009). A vaginal candidiasis model however, 

showed that vaginal biofilms and those developed on abiotic surfaces share regulation 

factors (Harriott et al. 2010). 

The clinical scenario of candiduria was characterised using a mouse urinary catheter model 

(Wang and Fries 2011). This model employs an insertion of a catheter with a guide wire 

into the bladder through the urethra of a female mouse. To investigate the candiduria and 

other catheter-related infections, this animal is infected with C. albicans intravesicularly. 

The occurred infection is rapidly detectable persisting up to a month and closely resembles 

the Candida biofilm formation environment in the patients (Wang and Fries 2011). Thus, 

this model can also be used for C. albicans biofilm-related studies in the future.  
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Clearly, animal models of biofilm-associated infections are beneficial for pathogenesis and 

drug discovery studies. However, more in vivo models are required to study the biofilms of 

other clinically relevant niches, for instance of (burn) wounds. 

5.5.1 In vivo models for the investigation of bacterial biofilms 

This project was mainly focused on fungal biofilms but bacterial biofilms also cause serious 

infections. Diverse in vivo models are developed to mimic the bacterial biofilm infections 

addressing important therapeutic questions of bacterial infections. In vivo biofilm infection 

models include the rat and mouse CF models for the investigation of the lung microbiome 

(Keiser and Engelhardt 2011), a murine cystitis (bladder infection) model for the study of 

bacteria inoculated in the bladder (Justice et al. 2004), an excisional wound model (mice) 

for the S. aureus infection in the cut wounds (Akiyama et al. 1996) and a rabbit model for 

the infective endocarditis where a high bacterial concentration is injected intravenously 

(Xiong et al. 2006).   

In this research, fungal biofilms formed on abiotic surface were explored in great detail but 

bacterial biofilms can also be found on abiotic surfaces. The in vivo device-related infection 

models are common for the investigation of the bacterial biofilms developed on medical 

devises. The most popular are the rat vascular catheter models that were developed with 

the utilisation of the plastic catheter inserted in the vein of the rat (Ebert et al. 2011). 

Additionally, many urinary catheter models were described in mice, rats and rabbits in 

order to study the diverse aspects of the catheter-related infections. For example, using the 

urethral infection model Cirioni et al. (2011) examined the effects of the antibacterials on 

the infections caused by P. aeruginosa (Cirioni et al. 2011) and Allison et al. (2011) 

described the eradication of the bacterial persister cells via aminoglycoside therapy that 

inhibits protein synthesis (Allison et al. 2011). The orthopaedic and dental implant models 

also contribute into the understanding of the bacterial biofilms. To investigate the fungal 

biofilms, these models can be modified by incorporating the aspects of fungal infection and 

biofilms.  

5.6 Future directions for the progression of this project 

5.6.1 Candida albicans biofilm studies using ‘Poor’ biofilm former protein kinase mutants 

Based on our discussion, the future research should be directed towards the detailed 

investigation of C. albicans biofilms in addition to its planktonic cells. The results of this 

Ph.D. project provide useful lead towards different directions for further research. Many 

questions arise in relation to the PKs that were firstly assigned to C. albicans biofilm 
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formation and filamentation in this study (Chapter 2). Hence, for the progression of this 

work, the mutants disrupted in these PK coding genes can be studied in detail. More 

specifically, 5 genes VPS15, PKH3, PGA43, IME2 and CEX1 disrupted in the mutants firstly 

associated with poor biofilm formation and impaired filamentous growth in this study can 

be followed up for further clarification of their role in C. albicans (Chapter 2). Vps15p, 

involved in vacuolar protein sorting and Pkh3p, required for PKC activity and cell-substrate 

adherence (Fanning et al. 2012), were clustered together in the protein-protein interaction 

networks (Chapter 2). To clarify their association, vacuolar morphology of the mutants 

disrupted in the genes coding for these proteins can be examined microscopically and their 

cell wall proteome can be determined with the spectrometry. Pga43p is probably required 

for cell wall integrity (Moreno-Ruiz et al. 2009) and can additionally be included in these 

studies. Apart from their role in C. albicans biofilm formation and filamentation, IME2 and 

CEX1 are not yet confidently assigned to any specific function. However, mutant disrupted 

in IME2 is hypersensitive to amphotericin B (Xu et al. 2007) and CEX1 is largely unexplored. 

Hence, their sensitivity to diverse antifungals can be determined using azoles, polyenes and 

echinocardins. In order to clarify the reason behind the poor biofilm and filamentation 

phenotypes of these mutants, their stress response under different osmotic and oxidative 

stress conditions can be explored in addition to the virulence in animal models in vivo. This 

knowledge will enable to design more effective antifungal therapies.  

5.6.2 Candida albicans – Pseudomonas aeruginosa interaction studies in vivo 

As the most infections are polymicrobial, the future studies should definitely focus on both 

physical and signal-mediated interaction between the microbes of the polymicrobial 

communities. The in vivo animal models including 2 pathogens are highly desirable because 

they can highlight more details of the infections (Lindsay and Hogan 2014). For example, 

our evidence suggests that in vitro, P. aeruginosa can significantly affect C. albicans and 

filamentous growth by its secreted molecules (Chapter 3). In vivo studies of their behaviour 

in animal models coinfected with both C. albicans and P. aeruginosa could further clarify 

the communication of these pathogens. To explore other elements involved in their 

communication the host needs to be included in the future experiments. The ultimate goal 

is to exploit this knowledge and devise virulence-limiting methods in order to benefit the 

infected patients. 
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5.6.3 In vitro validation of predicted in silico analyses  

In silico studies of a master transcriptional regulator Efg1p, predicting its important role in 

yeast-hyphae switch as well as in C. albicans – P. aeruginosa interaction (Chapter 4), can be 

validated via in vitro analyses. To validate the in silico analysis of Efg1p across the RBT 

family gene promoter sequences (Chapter 4), RBT gene expression analysis can be 

conducted in vitro. Gene expression of RBT1, RBT2, RBT4 and RBT6 can be quantified in the 

EFG1 mutant grown at 37oC in YNBNP (filament-inducing medium) with RTqPCR including 

EFG1 mutant grown at 30oC in YNB (non-filament-inducing medium) as a control. The 

expression of the RBT genes is expected to be decreased in the EFG1 mutant grown at 37oC 

in YNBNP since Holcombe et al. (2010) have shown that both RBT1 and RBT4 were 

upregulated during filamentation of wild-type C. albicans and severely downregulated in 

the yeast conditions.  

5.6.4 Updating and maintenance of the TFbsST database  

A TFbsST database, developed here (Chapter 4), represents an important bioinformatics 

tool for in silico analysis of C. albicans promoter sequences and should be regularly 

updated in the framework of the future projects. To ensure operational efficiency, the 

TFbsST database should be updated regularly by populating the existing lists with more 

functionalities, TFs, experimentally tested motifs and Candida/non-Candida species. One of 

the functionalities that can be considered is an additional option for the user-defined motif 

that can be used to screen the promoter sequences. Constantly increasing lists of verified 

TFs and their motifs are good source of data and will need to be captured in the next 

versions of the TFbsST database. To accelerate Candida research, emerging pathogenic 

Candida species including C. tropicalis and C. krusei, need to be added to the TFbsST 

database list of organisms. An addition of an industrial yeast Kluyveromyces marxianus will 

make the TFbsST database useful bioinformatics tool for the remaining students in Dr. 

Morrissey’s laboratory, who currently study different aspects of K. marxianus.  
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