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ABSTRACT 
 

There is a rich theoretical literature in economics which models habit-forming 
behaviours, of which addiction is the exemplar, but there is a paucity of experimental 
economic studies eliciting and comparing the preferences that economic theory 
suggests may differ between addicts and non-addicts. We evaluate an incentive-
compatible risk and time preference experiment conducted on a sample of student 
smokers and non-smokers at the University of Cape Town in 2012. We adopt a full 
information maximum likelihood statistical framework, which is consistent with the 
data generating processes proposed by structural theories and accounts for subject 
errors in decision making, to explore the relationship between risk preferences, time 
preferences and addiction. Across different theories and econometric specifications 
we find no differences in the risk preferences of smokers and non-smokers but do find 
that smokers discount significantly more heavily than non-smokers. We also identify 
a nonlinear effect of smoking intensity on discounting behaviour and find that 
smoking intensity increases the likelihood of discounting hyperbolically, which means 
heavier smokers may be more prone to time inconsistency and more recalcitrant to 
treatment. These results highlight the importance of the theory-experimental design-
econometric trinity and have important implications for theories of addiction. 
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I. INTRODUCTION 

 

Addiction is a puzzle for economic theory: how can rational-agent modelling 

accommodate the fact that most addicts expend resources to acquire their targets of 

addiction but simultaneously incur real costs to try to reduce or limit their 

consumption of these goods? Furthermore, why is the typical course of addiction 

characterised by repeated unsuccessful attempts to quit prior to final abstention? From 

the standpoint of standard consumer theory in economics these patterns of behaviour 

are difficult to rationalise.  

 

A number of economists over the years have risen to the challenge. In Section II we 

review these efforts, and conclude that making further progress, especially in 

critically bringing economic modelling of addiction to bear on psychological and 

clinical studies, requires as a first step more rigorous specification and identification 

of the relationships between structural risk and time preferences, on the one hand, and 

statistical vulnerability to addiction, on the other. Such progress requires careful 

experimentation to calibrate parametric relationships among preference structures and 

choices that generate, sustain, and mitigate addiction. We undertake such 

experimentation, using regular smokers as the representative addicts.  

 

An incentive-compatible experimental design allows us to explore potential 

differences in the risk and time preferences of smokers and non-smokers and jointly 

estimate utility function curvature and discounting functions. We find no significant 

differences in the risk preferences of smokers and non-smokers but do find that 

smokers discount the future significantly more heavily than non-smokers. These 

results are robust to different assumptions about the way people evaluate lotteries and 

the way they discount utility flows. In addition, we identify a nonlinear effect of 

smoking intensity on discounting behaviour and find that smoking intensity increases 

the likelihood of discounting hyperbolically, which, under the assumption of an 

additively-separable intertemporal utility function, means smokers, and in particular, 

heavier smokers, may be more prone to time inconsistency.  

 

This research makes a number of contributions to the literature. Instead of adopting 

the standard two-step approach to data analysis (see Section III), which is statistically 
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invalid, we estimate risk and time preference parameters as a linear function of 

observable characteristics (e.g., age, gender, and smoking status) so that the 

uncertainty of the parameter estimates propagates into the inferences which are drawn 

from the data. 

 

In addition, when analysing risk preferences and smoking behaviour, we allow risk 

attitudes to be determined both by utility function curvature and probability 

weighting. Prior studies in the literature either focus on utility function curvature or 

probability weighting, but not on both together.  

 

This is only the second study in the smoking-discounting literature to incorporate 

utility function curvature in the estimation of time preference models, and it is the 

first which allows rank-dependent utility theory to characterise choice under risk. In 

addition, this is the first study to identify a nonlinear relationship between smoking 

intensity and discounting behaviour. Smoking more cigarettes is associated with 

increased discounting but only up to a point, after which each additional cigarette is 

associated with lower discounting.  

 

The design and analysis are sensitive to the recognition that multiple decision 

processes characterise the discounting of delayed rewards. It is crucial for researchers 

to be cognisant of this fact when exploring the addiction-discounting relationship. 

Smoking intensity increases the likelihood of discounting hyperbolically, which may 

be an important factor in tobacco addiction and explain recalcitrance to treatment.  

 

Following the review of economic models of addiction in Section II, Section III 

reviews previous research on the relationship between risk preferences, time 

preferences and smoking behaviour. Section IV discusses our experimental design 

and presents summary statistics for the sample. Section V formulates our statistical 

approach to data analysis. Section VI presents the results and Section VII concludes. 
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II. ECONOMIC MODELS OF ADDICTION 

 

Existing work by economists in modelling addictive consumption may be grouped 

into two broad approaches.1 

 

The first approach, often referred to in the literature as rational addict modelling, was 

pioneered by Becker and Murphy (1988). It attributes addiction to unusual properties 

of certain goods, which causes flows of utility from their consumption to accumulate 

as capital that incentivises further consumption and reduces marginal utility from non-

addictive substitutes. On this kind of account, agents fall into addiction without at any 

point behaving contrary to their consistent preferences, and it is not even necessary to 

posit uncertainty about outcomes or forecasts of utility.  

 

Rational addiction models have been widely criticised for systematically mis-

predicting the patterns of temporary cessation and relapse, followed by eventual 

success in achieving control, that characterises the typical life course of an addiction 

(e.g., Ross (2010)). The natural prediction of the basic Becker and Murphy (1988) 

model is that an addict will simply keep consuming their addictive target unless and 

until its price rises beyond the point where its consumption is optimal at the moment 

of choice. The model does, however, offer a prediction, which psychologists have 

generally considered reasonable, about the characteristics of people who are likely to 

be most vulnerable to addiction: those who discount future utility most steeply.  

 

Orphanides and Zervos (1995) added an additional dimension to rational addict 

modelling by incorporating uncertainty on the part of potential consumers about the 

extent of their vulnerability to addiction when they first sample potentially addictive 

goods. This model yields the further prediction, which has again been regarded by 

                                                
1 Outside of the two general approaches we review, some economists have favoured models in which 
the dynamics of addictive processes occur outside the logical space of economic agency, even if within 
the brain and nervous system of the person (e.g., Laibson (2001), Loewenstein, O’Donoghue and Rabin 
(2003), Gul and Pesendorfer (2007)). In such models, addictive temptations are exogenous sources of 
costs to maintenance of consistent or welfare-maximising choice that under some circumstances 
overwhelm the agent’s budget of resources for resistance. For further discussion of these models see 
Ross (2011, 2014a, 2014b). 
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many addiction scientists and clinicians as intuitive, that risk aversion, both 

instantaneous2 and intertemporal, should be a protective factor against addiction. 

 

The second broad approach to economic modelling of addiction responds to criticisms 

of rational addict models for failing to capture the observed synchronic and 

diachronic preference ambivalence of most addicts that is reflected in their apparent 

efforts to resist and modify their own revealed preferences for addictive goods. 

Economists have attempted to deal with this by complicating the agency of addicts in 

one or both of two ways: with either diachronic or synchronic dual self models.  

 

Diachonic dual self models (Winston (1980), Thaler and Shefrin (1981), Schelling 

(1984), Gruber and Köszegi (2001), Bénabou and Tirole (2004)) divide the addicted 

agent into temporal successions of sub-agents that implement divergent temporal 

discounting functions. Both Gruber and Köszegi (2001) and Bénabou and Tirole 

(2004) incorporate the quasi-hyperbolic intertemporal discounting model of Laibson 

(1997) to explain why addicts choose to consume addictive targets at a present 

moment while simultaneously preferring to refrain from such consumption in the 

future. Such a pattern implies inconsistent choice over time by the succession of sub-

agents considered as a group. Diachronic dual self models can then capture varying 

levels of success in resolving such ambivalence by allowing for variation in the extent 

to which addicts accurately recall or predict their own preference histories and 

courses. Consequently, these models also often involve choice under uncertainty.  

 

By contrast, synchronic dual self models incorporate sub-agents that compete for 

control of the agent’s choices at a given point in time (Benhabib and Bisin (2004), 

Bernheim and Rangel (2004)). In these models, the competing agents again differ 

from one another in the intertemporal discounting behaviour that they implement 

when they respectively gain control, and also face varying degrees of uncertainty 

concerning the implications of addictive consumption for present welfare, future 

welfare, or both. Fudenberg and Levine (2006, 2011, 2012) develop models that 
                                                
2 The prefix “instantaneous” is used to differentiate instantaneous risk preferences from intertemporal 
risk preferences. Intertemporal risk preferences refer to preferences over intertemporal lotteries, the 
outcomes of which may be temporally correlated. By contrast, instantaneous risk preferences define 
atemporal attitudes to risk and uncertainty. We only empirically examine instantaneous risk 
preferences so all subsequent references to “risk preferences” refer to the instantaneous or atemporal 
variety. 
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combine diachronic and synchronic complexity of agency. While varying in their 

details and the specific behavioural phenomena they are designed to capture, the three 

Fudenberg and Levine models share as their core strategic interaction and partial 

conflict between short-run sub-agents (“selves”) that are relatively less patient than, 

and relatively more risk averse than, long-run sub-agents (“selves”).  

 

As we document in Section III with specific reference to addictive smoking, 

psychological studies of addiction have also focused recurrently on steep temporal 

discounting and relative indifference to risk as factors that may contribute to the 

formation and persistence of addiction; for a review of psychological literature of this 

kind going beyond smoking, see Ross et al. (2008) chapters 3 and 4. There is, 

furthermore, increasing consensus among psychologists that addictions are learned, 

and modifiable by incentivising interventions (Redish, Jensen and Johnson (2008), 

Heyman (2009)). Psychologists might therefore be expected to welcome efforts by 

economists to contribute improved specification precision and technical rigour with 

respect to the empirical identification of risk and time preference idiosyncrasies that 

distinguish addicts.  

 

It thus constitutes a significant gap in the literature that economists have not yet 

directly empirically estimated differences in risk and time preferences, specified with 

full theoretical precision, between addicts and non-addicts. An important aspect of 

such precision is to respect the need for joint estimation of risk and time preferences 

established by Andersen et al. (2008). Unsurprisingly, none of the many empirical 

studies by psychologists of temporal discounting differences between addicts and 

non-addicts attempt, or indeed recognise the importance of, such joint estimation. In 

its absence, as Andersen et al. (2008) demonstrate theoretically and empirically, 

discount rate estimates are significantly biased upward for risk averse agents, which is 

also likely to result in mis-estimation of whether their structure is exponential, 

hyperbolic, or quasi-hyperbolic. Nor have structural interactions between risk and 

time preferences been explicitly specified in existing economic models of addiction. 

Such specification as it might feature in the distinguishing characterisation of addicts 

cannot be based on a priori theorising, but depends on empirical data.  
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Our empirical comparison of temporally indexed and risky choice behaviour in a 

sample of smokers and a sample of non-smokers is motivated by this concern with 

improved economic modelling of addiction in general. We chose to study smokers for 

three reasons: nicotine is the most readily available addictive drug in general 

populations; there is widespread agreement among addiction scientists and clinicians 

that almost all regular, daily smokers meet the criteria for addiction (West (2006)); 

and the relative non-interference of nicotine with basic cognition and judgment makes 

nicotine addicts a natural starting point population for any new laboratory paradigm. 

 

In our view, improved unification of economic and psychological approaches to 

addiction is most likely to the extent that research in both disciplines is alert to a self-

conscious philosophical orientation. We are guided by the approach that Ainslie 

(1992, 2001) has dubbed “picoeconomics” (see also Ross et al. (2008)). This 

approach emphasises, as does Heyman (2009), that addiction is in large part learned 

behaviour, expressed through choices that are ‘voluntary’ in the non-metaphysical 

sense of being responsive to incentives.  

 

The framework of Ainslie (1992, 2001) recognises that both exogenous and 

endogenous neurophysiological and neurochemical states and processes give rise to 

vulnerabilities and barriers to controlling addiction that an economic model will 

represent as variable costs. The picoeconomic model emphasises the role of 

inconsistent intertemporal discounting in generating and maintaining addictive choice 

patterns, but it does not predict, counterfactually, that most human choice over time 

reflects hyperbolic discounting. Rather, it applies a philosophical thesis that consistent 

valuation of rewards over time requires explanation and should not simply be 

assumed as a natural default disposition. Ainslie himself emphasises the importance 

of “personal rules,” that is, self-enforcing linkages between discrete choices that 

should be reflected in agents’ revealed preferences, but he is also alert to the 

importance of institutional and other environmental “scaffolding” (Clark (1997)) as 

providing support for intertemporally consistent valuation and choice.  

 

Economists and psychologists, notwithstanding their different practical priorities, can 

join in seeking explanation of addiction in breakdowns and loopholes in personal 

rules, in challenges to their implementation resulting from errors in risk perception 
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and estimation, and in strategic complications in the relationships between individuals 

and their social environments.  

 

III. REVIEW OF THE LITERATURE ON RISK PREFERENCES, TIME 

PREFERENCES AND SMOKING BEHAVIOUR 

 

Smoking is known to be one of the primary behavioural risk factors for the additional 

utilisation of health resources and expenditures on health. For just over 50 years the 

U.S. Surgeon General has been collating careful epidemiological evaluations of the 

causal effect of smoking on a large number of diseases (U.S. Department of Health 

and Human Services (2014)). And major litigation efforts have generated estimates of 

additional health expenditures running into the hundreds of billions of dollars (Coller, 

Harrison and McInnes (2002)). Evidently, a better understanding of the determinants 

of smoking behaviour continues to have great significance for health policy.  

 

Smoking involves an intertemporal trade off that should be apparent: any short-term 

benefits from smoking are coupled with the potential for large long-term costs. In 

addition, the decision to smoke involves risks that should be apparent, such as the 

possibility of negative health consequences, and is made under conditions of 

uncertainty, without the person knowing his or her susceptibility to these risks.  

  

Table 1 provides a detailed summary of experimental studies investigating the 

relationship between smoking and time preferences. Online searches of PubMed and 

Econlit, employing the search criteria “smoking” and “discounting” and their variants 

(e.g., “smoke”, “discount”, and “time preference”), were used to locate these studies. 

An initial list of over 50 studies was trimmed according to the following criteria: the 

study had to include a clear smoker, non-smoker comparison3; study participants had 

to make choices between amounts of real money, rather than cigarettes or quality-

adjusted life years, available at different points in time4; and the instrument used to 

                                                
3 A number of studies (e.g., Field et al. (2006), Dallery and Raiff (2007), Epstein et al. (2003)) focus 
purely on discounting among smokers and were excluded due to the lack of non-smokers in the sample. 
4 Odum, Madden and Bickel (2002) and van der Pol and Ruggeri (2008) focus on the discounting of 
health outcomes and Field et al. (2006) and Odum and Baumann (2007) focus on the discounting of 
hypothetical cigarette rewards. 
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assess discounting had to include at least 20 questions.5 The 31 studies satisfying our 

inclusion criteria are listed in Table 1; a detailed discussion of this table is provided in 

Appendix A. 

 

[Table 1 here] 

 

The last column of Table 1 reports whether a significant statistical relationship was 

found between smoking and discounting behaviour. A “positive” relationship between 

smoking and discounting means that smokers discount more heavily than non-

smokers, consistent with expectations before the reported observations. Some of the 

entries in Table 1 report findings from several studies or from different treatments in 

the same study. For example, Baker, Johnson and Bickel (2003) report results from 

real and hypothetical experimental treatments whereas Chabris et al. (2008) report 

findings from multiple studies. In some cases (e.g., Baker, Johnson and Bickel 

(2003)) results were the same across studies and treatments, while in others (e.g., 

Chabris et al. (2008), Heyman and Gibb (2006)) they differed. The last column of 

Table 1 therefore summarises the set of 37 reported findings from the 31 studies. 

 

Of the 37 reported findings in Table 1, 29 were positive and significant while the 

remaining 8 were null results.6 Thus, the bulk of findings in this literature point to a 

positive relationship between smoking and greater discounting behaviour, irrespective 

of whether real or hypothetical rewards, long or short temporal horizons, choice or 

titration elicitation mechanisms, small or large samples, and simple or complex 

statistical procedures were used. 

 

                                                
5 Some panel studies, such as the Health and Retirement Study (HRS), include a module to assess 
discounting behaviour but the limited number of questions (e.g., three questions in the HRS, see 
Bradford (2010)) makes precise estimation and inference difficult. Hence these studies were excluded. 
6 Some studies classified smokers using more than one category (e.g., heavy and light smokers in 
Stillwell and Tunney (2012)), others classified non-smokers using more than one category (e.g., never-
smokers and ex-smokers in Bickel, Odum and Madden (1999)), and still others separated male and 
female smokers and non-smokers (e.g., Jones et al. (2009) and HLR). In a few of these cases, 
comparisons between some of the groups were significant while others were not, which makes coding 
the study problematic. Studies were therefore coded as having found a significant result if at least one 
smoker, non-smoker comparison was statistically significant. This procedure is preferable to coding a 
study as having found no statistically significant results just because one comparison (between, say, 
light smokers and non-smokers) was not significant even though another comparison (between, say, 
heavy smokers and non-smokers) was significant. 
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From a statistical perspective, the most striking feature of Table 1 is the near-

universal two-step approach to data analysis. This approach entails using nonlinear 

least squares (NLLS), or some similar technique, to estimate discounting parameters 

at the level of the individual, and then using the, typically log-transformed, point 

estimates as data in subsequent statistical models. Harrison, Lau and Rutström (2010) 

(HLR) and Hofmeyr et al. (2017) are the only studies in Table 1 which do not use this 

method. The problem with the two-step approach, aside from typically relying on tiny 

samples to estimate discounting parameters at the level of the individual, is that 

estimated discounting parameters are estimates, not data. Such estimates comprise 

both a point estimate (of the mean) and a standard error, and to use only the point 

estimate is to throw away information on the sampling variability of that estimate.  

 

Moreover, using an estimated discounting parameter as data violates one of the 

statistical assumptions of the second-stage models: that the covariates are measured 

without error. Thus, statistical inferences drawn from this approach are simply 

invalid. HLR and Hofmeyr et al. (2017) estimate discounting parameters as a linear 

function of observable characteristics (e.g., age, gender, and smoking status) so that 

the uncertainty of the discounting parameter estimates propagates into the inferences 

which are drawn from the data.7 This valid statistical approach will be used here. 

 

Table 2 provides a detailed summary of studies investigating the relationship between 

smoking and risk preferences. Unlike the literature on time preferences and smoking 

behaviour, there is a dearth of studies analysing the risk preferences of smokers and 

non-smokers. Online searches of PubMed and Econlit, employing the search criteria 

“smoking” and “risk preferences” and their variants (e.g., “smoke,” “risk”, and 

“probability discounting”), were used to locate these papers. An initial list of studies 

was trimmed according to the following rules: the study had to include a clear 

                                                
7 To explain the importance of this approach, suppose that the point estimates of a discounting 
parameter are higher, on average, for smokers than non-smokers. But assume that the estimates of this 
discounting parameter have high noise (viz., standard errors). Comparing only the signals (viz., point 
estimates) may lead one to erroneously conclude that smokers discount at a significantly higher rate 
than non-smokers when an analysis that incorporates both the signals and the noise would find no 
significant difference between the groups. The method we adopt incorporates both the signals and the 
noise so that valid inferences can be drawn. 
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smoker, non-smoker comparison8; and study participants had to have made choices 

between lotteries9 involving amounts of money, rather than cigarettes or quality-

adjusted life years.10 The 11 studies satisfying our inclusion criteria are listed in Table 

2; a detailed discussion of this table is deferred to Appendix B. 

 

Table 2 shows that a majority of the studies (8 out of 11) adopted the probability 

discounting (PD) approach to risk preferences, which defines risk aversion solely in 

terms of the shape of the probability weighting function (PWF).11 The PD model is 

just Yaari’s (1987) dual theory of choice under risk limited to a circumscribed class of 

lotteries and with a specific PWF: π(p) = p / [p + γ(1 – p)]. If γ > 1 this specification 

represents probability pessimism and risk aversion. As subjective probability 

distortions drive risk preferences in the PD framework, it is surprising that 6 out of 

these 8 studies only used 5 probabilities in the elicitation task; the remaining two 

studies (Mitchell (1999) and Yi, Chase and Bickel (2007)) only used 6 and 7 

probabilities, respectively.  

 

[Table 2 here] 

 

The final column of Table 2 shows whether the studies found a significant statistical 

relationship between risk preferences and smoking behaviour: the results are 

equivocal and, other than HLR, the statistical analyses are not valid. A positive 

relationship between smoking and risk preferences means that smokers are more risk 

averse than non-smokers, whereas a negative relationship means that smokers are less 

risk averse than non-smokers. Null results were reported in 3 studies, positive results 

were reported in 5 studies, and negative results were reported in 3 studies.12 These 

                                                
8 Lawyer et al. (2011) investigate whether the risk preferences of smokers and non-smokers differ 
when they make choices over hypothetical or real rewards. However, they do not compare the risk 
preferences of smokers and non-smokers. 
9 A number of studies (e.g., Bradford (2010), Jusot and Khlat (2013)) use survey questions which try to 
elicit general attitudes toward risk and were excluded for this reason. 
10 van der Pol and Ruggeri (2008) investigate risk preferences over hypothetical health outcomes. 
11 Of these studies, 3 also employed the area under the curve (AUC) method of Myerson, Green and 
Warusawitharana (2001). When using the AUC method, one calculates the area under a subject’s 
derived certainty equivalents and normalizes this to lie in the closed unit interval. Larger AUCs imply 
less risk aversion and, thus, the AUCs of smokers and non-smokers can be compared to determine 
whether the groups differ in their risk preferences.  
12 Some studies classified smokers using more than one category (e.g., heavy smokers and light 
smokers in Poltavski and Weatherly (2013), and smokers and “triers” in Reynolds et al. (2003)), and 
HLR separated male and female smokers and non-smokers. We again adopt the classification scheme 
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conflicting results cut across different elicitation mechanisms, real and hypothetical 

rewards, different frameworks for choice under risk, and different methods of 

analysis. Thus Table 2 shows that the relationship between risk preferences and 

smoking behaviour, or lack thereof, differs markedly across studies. 

 

Table 2 also shows that every study except HLR again adopted a two-step approach to 

statistical analysis: NLLS is used to estimate risk preference parameters at the level of 

the individual and then these point estimates are used as data in subsequent statistical 

models. For the reasons outlined above, this approach is statistically invalid. 

 

We add to the extant literature by simultaneously investigating the relationship 

between risk preferences, time preferences and smoking behaviour using an incentive-

compatible experimental design, a relatively large sample of South African university 

students, and a statistical framework which allows one to draw robust inferences 

about smokers and non-smokers. 

 

IV. EXPERIMENTAL DESIGN AND SUMMARY STATISTICS 

 

We recruited 175 subjects from undergraduate classes at the University of Cape Town 

(UCT). Given the focus on smoking behaviour, sign-up sheets included a simple 

screening question: “Do you smoke cigarettes (Yes / No).” A pool of over 900 people 

applied to take part in the study and individuals from the smoking and non-smoking 

groups were randomly selected for inclusion in the project. Those who were selected 

were added to a website which allowed them to sign up for an experimental session 

that did not conflict with their academic timetable.  

 

The experiment took place in a computer lab at UCT which had been set up to run the 

risk and time preference software developed by us. Subjects were separated by 

partitions and were not allowed to talk to each other during the session. The 

experiment was conducted in August 2012 across 10 sessions. The median group size 

was 17 participants and one of us assumed the role of experimenter for every session; 

                                                                                                                                      
that codes a study as having found a statistically significant result if at least one smoker, non-smoker 
comparison was significant, even if all comparisons were not. 
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two research assistants (RAs) were also employed to help administer subject 

payments and answer questions. 

 

Upon arrival at the lab, subjects were randomly allocated to computer terminals and 

given an overview of the tasks that they would complete. Subjects then signed 

informed consent before being taken through a detailed presentation of the risk or 

time preference task.13 The order of these tasks was counter-balanced across sessions 

so subjects either performed the risk or time preference task first. Participants were 

given the opportunity to ask questions at any stage of the presentations or during the 

tasks. After questions had been addressed, subjects completed the first task. 

 

Once all participants had completed the first task, the experimenter went through a 

detailed presentation of the other task. Subjects then completed this task before filling 

out a questionnaire which collected standard demographic characteristics and 

information on smoking behaviour. The experimenter or RAs then determined their 

earnings for the tasks. All subjects received a show-up fee of R20. Earnings for the 

risk preference task were paid out immediately in cash and earnings for the time 

preference task were paid out on the date corresponding to the subject’s choice on the 

randomly selected discounting question. Delayed payments were effected via 

electronic transfer and subjects received a payment notification on their cell phones as 

soon as the transfer took place. Such transfers are a common means of payment in 

South Africa and were used to reduce the transaction costs which subjects would have 

had to incur by coming to collect their delayed payments from us. Experimental 

sessions lasted approximately an hour and subjects earned R370 (roughly $66 at 

purchasing power parity (PPP) at the time) on average.  

 

A. Risk Preference Task 

The risk preference interface was based on Hey and Orme (1994). It presented 

subjects with a choice between two lotteries on a screen, displayed as pie charts with 

accompanying text that listed the probabilities of the prizes. Figure 1 shows a 

                                                
13 The introductory presentation, the risk preference task presentation, and the time preference task 
presentation are included in Appendix C. The presentations were designed to make the tasks 
transparent and easy to understand. The payment system was also discussed in detail so that subjects 
understood how their final earnings were determined. This attention to detail, coupled with salient 
rewards, promotes incentive compatibility and the truthful revelation of preferences. 
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screenshot of the risk preference task. The display seen by subjects used colours, 

allowing for greater discrimination than might be apparent from a monochrome 

presentation (e.g., for the Right lottery). 

 

[Figure 1 here] 

 

The task used prize magnitudes between R0 and R280 (roughly $0 to $50 at PPP at 

the time) and probabilities which varied in increments of 0.05 between 0 and 1. Thus, 

other than HLR, this study used larger lottery prizes than any of the studies in Table 2 

which have incentive-compatible experimental designs. In addition, this study had 

more variation in the probability domain than every other study in Table 2. This 

variation provides for enhanced sensitivity to any probability weighting that might be 

present. 

  

The lottery pairs in the task were based on the set developed by Loomes and Sugden 

(1998) (LS) to test different stochastic specifications of choice under risk. LS 

designed the lottery pairs to accommodate a wide range of risk preferences, to provide 

good coverage of the probability space, and to generate common-ratio tests of 

expected utility (EU) theory. However, all the lotteries over which each subject made 

choices had the same context (i.e., the same set of prizes).14 By contrast, we used four 

prize contexts in the experiment: (R0, R140, R280), (R40, R80, R240), (R20, R100, 

R220), and (R60, R120, R180). Incorporating a number of different prizes and 

probabilities is helpful for the separate identification of the utility function and the 

PWF in models which admit both sources of risk preferences (e.g., rank-dependent 

utility theory). 

 

[Figure 2 here] 

 

Figure 2 shows the set of Marschak-Machina (MM) triangles representing the 

lotteries, and lottery pairs, which were used in the risk preference task. The top of 

each diagram lists the context of the lotteries (e.g., (R0, R140, R280)) and the 
                                                
14 LS used two experimental treatments: one where subjects made choices over lotteries defined on the 
context ($0, $10, $20) and one where subjects made choices over lotteries defined on the context ($0, 
$10, $30). The probability distributions over these contexts were identical across the two groups except 
for 8 out of the 45 lotteries in the task. 
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gradient of the lines connecting lottery pairs. Each point in the MM triangle 

represents a lottery and the line connecting two, or more, points represents a lottery 

pair, or set of lottery pairs, on offer in the choice task. Figure 2 shows that the risk 

preference task provided thorough coverage of the MM triangle, in the sense of 

including a combination of interior and boundary choices, and that it captures the full 

range of risk preferences, under the null hypothesis of EU theory: risk-loving 

(gradients less than 1), risk neutral (gradients equal to 1), and risk averse (gradients 

greater than 1). Subjects made 40 choices in the risk preference task and one choice 

was selected at random at the end of the experimental session for payment.15 

 

B. Time Preference Task 

The time preference task presented subjects with choices between smaller, sooner 

(SS) and larger, later (LL) monetary rewards. Figure 3 shows a screenshot of the time 

preference task. On each screen subjects had to make 4 choices before proceeding to 

the next screen. The principal (i.e., SS reward) and time horizon were fixed on each 

screen but varied across screens. A calendar was displayed on every screen to show 

the subjects when they would receive the amounts of money they chose. 

 

[Figure 3 here] 

 

Following Coller and Williams (1999), three front end delays (FEDs) to the SS 

rewards were used: zero days, 7 days, and 14 days. This design allows one to hold 

subjective transaction costs constant for the SS and LL rewards at positive FEDs. It 

also facilitates estimation of the parameters of a quasi-hyperbolic or β-δ discounting 

function because the zero day FED allows one to pin down the estimate of β, which 

captures a “passion for the present” or “present-bias” in decision making, whereas the 

                                                
15 We decided to use the Random Lottery Incentive Mechanism (RLIM), where one of the 40 choices 
was chosen at random to be played out for payment. We did so to ensure that we collected enough 
choices over a wide enough array of lotteries to be able to identify EU and rank-dependent utility 
models. If we had opted for giving one choice to each subject, to avoid using RLIM, this would have 
been infeasible. Harrison and Swarthout (2014) find that using RLIM does make a difference 
behaviourally when estimating non-EU models, but not, as one would expect, when estimating EU 
models. A logical response to this problem is simply to assume two independence axioms: one axiom 
that applies to the evaluation of a given prospect, and that is assumed to be violated by non-EU models, 
and another axiom that applies to the evaluation of the experimental payment protocol. One can then 
allow for failure of the former axiom, when estimating non-EU models, but assume the validity of the 
latter axiom. Cox, Sadiraj and Schmidt (2015) also consider the implications of assuming RLIM, and 
discuss in detail the strengths and weaknesses of alternative payment protocols. 
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positive FEDs allow one to estimate the long-term discounting parameter δ. Subjects 

in an experimental session were only exposed to one of these FED treatments. 

 

Two principals (R150 and R250: roughly $27 and $45 at PPP at the time), 14 time 

horizons between the SS and LL rewards (7 to 98 days, in 7-day increments), and 

nominal annual interest rates between 5% and 250% were used in the time preference 

task. These parameters define a battery of 224 possible choice pairs. Each subject 

made 60 choices in the task which were drawn randomly, without replacement, from 

this battery. At the end of the experimental session, one of these choices was 

randomly selected for payment.  

 

C. Summary Statistics 

Table 3 presents summary statistics for the sample of 175 students. The average age 

in the sample is approximately 20 years old, 42% of the sample is White16, two-thirds 

are enrolled in the Commerce faculty at UCT, and approximately one-third receives 

financial aid. Smokers were defined as those people who answered “yes” to the 

question: “Do you currently smoke cigarettes?”17 Current smokers make up 62% of 

the sample18 and this is the largest number of smokers (i.e., 108 smokers) ever 

recruited for a study exploring risk preferences and smoking behaviour. Smokers 

were deliberately oversampled to investigate whether intensity of smoking is related 

                                                
16 Designation of population groups or ‘races’ follows the traditional categorisation in South Africa that 
is still employed in affirmative action and related policies, notwithstanding recognition that it involves 
cultural and historical discriminations that are without biological significance. Approximately 24% of 
the sample is Black. 14% is Coloured, a culturally salient population group in South Africa composed 
of individuals of mainly Indonesian descent who speak Afrikaans as a first language. 17% is Indian. 
The remaining 3% preferred not to classify their race. 
17 There is a vast literature comparing self-reports of smoking with objective measures, e.g., cotinine 
measures, that are known to be correlated with exposure to smoke (see Gorber et al. (2009) for a 
survey). Two recent examples come from the Canadian Health Measures Survey (CHMS) and the 
National Health and Nutrition Examination Survey (NHANES). In the 2007-2009 wave of the CHMS, 
“ever smokers” were asked detailed questions about their current and recent smoking behavior, and 
urine cotinine measurements were taken between one day and 6 weeks after the initial survey response. 
Using these data, Wong et al. (2012) show high levels of consistency between self-reports and 
objective measures and conclude that, “Representative data for the Canadian population showed no 
significant difference between national estimates of smoking prevalence based on self-report versus 
urinary cotinine concentration.” Choi and Cawley (2017) reach a similar conclusion using NHANES 
data from 1999-2012 and find, in addition, that accuracy of self-reported smoking tends to increase 
with level of education. To the extent that this finding is robust, our university sample of smokers are 
likely to have given accurate self-reports of smoking.  
18 The remaining 38% of the sample comprises both former-smokers and never-smokers who will be 
referred to collectively as non-smokers. 
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to risk and time preferences. The mean number of cigarettes smoked per day is 8.67 

with a standard deviation of 5.81 and a range of 1 to 25.19,20  

 

[Table 3 here] 

 

Smokers also completed the Fagerström Test for Nicotine Dependence (FTND) due to 

Heatherton et al. (1991). The FTND is a measure of smoking severity that scores 

people on a scale of 0 to 10, where higher numbers indicate greater severity. The 

average FTND score among smokers is 2.22 with a standard deviation of 2.08. Thus, 

on average, the smokers in this sample are relatively light smokers. In addition, given 

the young age of the sample, the smokers’ lifetime exposure to cigarettes is relatively 

low. In the literature on risk preferences, time preferences and smoking behaviour, 

researchers often try to maximise the difference between smokers and non-smokers 

by selecting heavy smokers to take part in the study. We recruited smokers across the 

entire spectrum of severity to determine whether being a smoker, irrespective of 

intensity, is associated with risk and time preferences. This also allows us to explore 

the relationship between risk preferences, time preferences and smoking intensity. 

 

Table 3 shows that randomisation across experimental treatments ensured that 

approximately 50% of the sample completed the risk preference task prior to the time 

preference task. FED treatments were split evenly across the sample and 50% of 

choices in the time preference task involved the high principal of R250. 

 

  

                                                
19 Estimates from the South African National Health and Nutrition Examination Survey of the mean 
number of cigarettes smoked per day for people aged 15-24 is 5.9 (Shisana et al. (2013, p. 111)). For 
the population as a whole, the mean number of cigarettes smoked per day is 8.5. Thus, our sample, at 
least in terms of the mean number of cigarettes smoked per day, is very similar to the general 
population. 
20 According to The Tobacco Atlas (see www.tobaccoatlas.org and Eriksen et al. (2015)), 22.2% of 
men and 9% of women smoke tobacco daily in South Africa. The prevalence rate for men is lower than 
in other middle-income countries but the prevalence rate for women is higher than in other middle-
income countries. Prevalence rates for selected high-income countries are: US – men: 17.2%, women: 
14.2%; UK – men: 23.2%, women: 20.3%; Australia – men: 15.1%, women: 11.6% ; Germany – men: 
28%, women: 22.2%.  
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V. STATISTICAL SPECIFICATION 

 

The statistical method we employ is direct estimation by maximum likelihood of 

structural models of latent choice processes. The latent choice processes in question 

are captured by models of risk and time preferences. These models provide the 

structure necessary to estimate risk and time preferences using the observed choice 

data. One of the benefits of the maximum likelihood approach is that it uses all of the 

available information to estimate discounting and risk preference parameters and the 

precision of these estimates. This estimation strategy closely follows Andersen et al. 

(2008) and HLR so we provide a brief explanation of the method below, focussing on 

the canonical cases of EU theory and exponential (E) discounting. Further details are 

provided in Appendix D. We also discuss the extension to other risk and time 

preference models. 

 

Assume that utility of income is defined by a power utility function which displays 

constant relative risk aversion (CRRA): 

 U(y) = yr, (1)  

where y is a lottery prize in the risk preference task and r is a parameter to be 

estimated.  

 

To estimate the parameter r we formed a latent index, based on latent preferences, 

that captured the difference in the expected utility of the Right and Left lotteries 

presented to subjects. The value of this index, for each observation, was determined 

by the lottery prizes, their associated probabilities, and an initial estimate of r. This 

latent index was linked to the subjects’ binary choices (i.e., the Left or Right lottery) 

using the cumulative normal distribution function. This “probit” link function 

determined the likelihood of selecting the Left lottery, and hence the likelihood of 

selecting the Right lottery, for each observation in the dataset given the value of the 

latent index. Maximum likelihood estimation was then used to determine the value of 

r that maximised the likelihood of observing all of the data from the experiment. 

 

It is a straightforward extension to make the parameter r a linear function of 

individual characteristics in order to draw robust inferences about potential 

differences in the risk preferences of participants. In addition, every estimate of r 
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includes a standard error which reflects our uncertainty as to the “true” value of r. 

This stands in sharp contrast to the bulk of studies in Table 2 which use risk 

preference point estimates as data in subsequent statistical models. We also extended 

the model by adopting the “contextual utility” (CU) behavioural error specification of 

Wilcox (2011) to allow mistakes on the part of subjects from the perspective of the 

deterministic EU model and to draw robust inferences about the primitive 

“stochastically more risk averse than” relation.21 

 

It is a simple matter to incorporate other theories of choice under risk in this statistical 

framework. Quiggin (1982) developed the rank-dependent utility (RDU) model, 

which assumes that a decision maker transforms objective probabilities into 

subjective decision weights which are then used to evaluate lotteries. In this context, 

we estimate the parameters of a utility function and PWF which maximise the 

likelihood of observing the data from the experiment on the basis of a latent index 

which captures the difference in the rank-dependent utility of the lotteries. 

 

We estimate EU and RDU models to compare the risk preferences of smokers and 

non-smokers. In addition, we estimate the parameters of a variety of PWFs to ensure 

that the results are robust across different specifications. 

 

Shifting to time preferences, under the E model, δ is the discounting parameter which 

equalises the utility of income received at time t (i.e., the utility of the SS reward) 

with the utility of income received at time t + τ (i.e., the utility of the LL reward): 

 [1 / (1 + δ)t]U(yt) = [1 / (1 + δ)t+τ]U(yt+τ), (2)  

for some utility function U(·).  

 

Under the assumptions that EU characterises choices over risky prospects and that 

subjects employ the power utility function, we can add more structure to this 

indifference condition. Specifically, (2) becomes: 

 [1 / (1 + δ)t](yt)r = [1 / (1 + δ)t+τ](yt+τ)r, (3)  

where the general form of the utility function U(·) in (2) has been replaced with the 

specific power utility function U(y) = yr in (3). 
                                                
21 The “stochastically more risk averse than” relation is the stochastic choice counterpart to the “more 
risk averse than” relation (see Pratt (1964)) which is defined for the deterministic EU model. 
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To estimate the parameters of our time preference model, conditional on EU theory, 

power utility, and the E model, we form a latent index that captures the difference in 

the present value of the utility of the SS and LL rewards, and we incorporate the 

behavioural error term originally due to Fechner (1966/1860).  

 

This “joint estimation” approach, developed by Andersen et al. (2008), uses subjects’ 

choices in the risk preference task to pin down the parameters of the utility function, 

and subjects’ choices in the time preference task to pin down the parameters of the E 

discounting model, conditional on the shape of the utility function. This approach 

ensures that we estimate time preferences defined over utility flows, and not flows of 

money. 

 

It is straightforward to incorporate other discounting models in this statistical 

framework. In the case of Weibull discounting, for instance, (3) becomes: 

 [exp(-δt(1/β))](yt)r = [exp(-δ(t+τ)(1/β))](yt+τ)r (4)  

We then form the latent index that captures the difference in the present value of the 

utility of the SS and LL rewards and proceed as before.  

 

VI. RESULTS 

 

We present the results from a set of risk and time preference models so as to explore 

the relationship between risk preferences, time preferences and smoking behaviour. 

We begin with the risk preference results because they provide a natural segue to the 

time preference results which are conditional on the utility function curvature 

identified by the risk preference task.  

 

A. Risk Preferences 

We estimate an EU model employing a power utility function and the CU behavioural 

error specification; see Appendix E for more details. We find a relatively high level of 

risk aversion in the sample; a statistically significant estimate of the behavioural error 

parameter, implying that subjects make behavioural errors in the risk preference task; 

and no substantive differences in the risk preferences of smokers and non-smokers. 

We also estimate a model which allows risk preferences to vary as a quadratic 
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function of smoking intensity as measured by the number of cigarettes smoked per 

day: risk preferences are not significantly related to smoking intensity. These results 

are robust to the assumption that Saha’s (1993) expo-power utility function – which 

admits increasing relative risk aversion, decreasing relative risk aversion, and CRRA 

– characterises choice under risk. 

 

The EU results suggest that there are no significant differences in the risk preferences 

of smokers and non-smokers. However, this analysis, by assumption, ignores the role 

of probability weighting and it may be the case that smokers perceive probabilities 

differently to non-smokers. For example, smokers may underweight moderate to high 

probabilities more so than non-smokers, and may, therefore, underestimate the 

likelihood of the negative consequences associated with smoking. To explore this 

possibility, we estimate RDU models. 

 

One of the key components of a RDU model is the specification of the PWF. We 

estimate the power PWF, the PWF popularised by Tversky and Kahneman (1992) 

(TK), and the Prelec (1998) two-parameter PWF which exhibits considerable 

flexibility; see Appendix D for more details. The functional form for the Prelec 

(1998) PWF is: 

 π(p) =  exp[ -η(-ln p)φ], (5)  

which is defined for 1 > p > 0, η > 0, and φ > 0. This function allows independent 

specification of location and curvature in probability weighting. It also nests the 

power PWF when φ = 1, and nests a one-parameter function when η = 1, which is 

similar to the TK function and admits linear, inverse S-shaped, and S-shaped forms.  

 

We find statistically significant evidence of inverse S-shaped probability weighting. 

To investigate the possibility that smokers perceive probabilities differently to non-

smokers we estimate a RDU model with a power utility function, the CU behavioural 

error specification, and the Prelec (1998) PWF, and allow the parameters to vary as a 

function of observable characteristics and task parameters. Results are presented in 

Table 4.22 Smokers do not differ significantly from non-smokers in the shape of their 

utility functions (i.e., in the estimate of r) nor in the way they perceive probabilities 
                                                
22 Appendix E also presents results from a RDU model employing the TK PWF; the results are 
qualitatively identical to those in Table 4. 
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(i.e., in the estimates of φ and η). In addition, tests of the joint hypothesis that the 

coefficients for smokers across r, φ, and η are equal to zero, cannot be rejected (p = 

0.823).23,24 

 

[Table 4 here] 

 

Thus, at least in this sample, there are no significant differences in risk preferences 

according to smoking behaviour. This result is robust to different theories of choice 

under risk, different PWFs, and a utility function that admits varying relative risk 

aversion. 

 

B. Time Preferences 

We estimate four time preference models: the E model, the quasi-hyperbolic (QH) 

model, Mazur’s (1984) hyperbolic (H) model, and the Weibull (WB) model; see 

Appendix F for more details and Andersen et al. (2014) for a review of all of the 

major discounting models. We employ a Fechner error term and jointly estimate the 

parameters of these models with the curvature of the utility function, assuming RDU25 

and the Prelec (1998) PWF characterise choice under risk, to focus on the discounting 

of utility flows, not flows of money. In the context of addiction, the crucial difference 

between these time preference specifications is that, under the assumption of an 

additively-separable intertemporal utility function, the E model implies time-

consistent preferences whereas the other models can yield time-inconsistent 

preferences.26  

                                                
23 We also estimate a RDU model with the expo-power utility function, the Prelec (1998) PWF, and the 
full set of covariates from Table 4. The smoker variable is not significantly different from zero for any 
of the parameters in the model. In addition, a test of the joint hypothesis that the coefficients for 
smokers across r, α, φ, and η are equal to zero, cannot be rejected (p = 0.967). 
24 We also investigate the relationship between smoking intensity and risk preferences by estimating 
the model in Table 4 and allowing the parameters of interest to vary as a quadratic function of number 
of cigarettes smoked per day. None of the linear or quadratic terms are statistically significant in any of 
the equations and a joint test of the linear and quadratic terms across all equations is not statistically 
significant either (p = 0.576). 
25 Given the presence of probability weighting in this dataset, we employ RDU theory to apportion risk 
preferences into their concave utility and probability weighting components so as to draw accurate 
inferences about discounting behaviour. If one ignores probability weighting when it is present, this 
would lead to biased estimates of utility function curvature and, hence, biased estimates of discounting 
parameters. In Appendix G we test the robustness of our results by estimating these models assuming 
EU theory characterises choice under risk; the results are qualitatively identical to those reported in the 
main text. 
26 Time consistency, or the lack thereof, is central to economic models of addiction. Time-inconsistent 
agents may fail to carry out plans they make for the future which provides a possible explanation for 
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The estimate of the E discount rate δ = 0.493 implies an annual discount rate of 

approximately 49%, which is a marked decline in comparison to the estimate of δ = 

3.234 under the assumption of linear utility (see Appendix F). Similar declines are 

evident across all of the discounting specifications which highlights the point, now 

familiar from Andersen et al. (2008), that incorporating concavity of the utility 

function leads to substantial declines in inferred discount rates.  

 

In the QH model, the estimate of β = 0.988, which captures a “present-bias” or a 

“passion for the present” in discounting behaviour, is statistically significantly less 

than 1 (p = 0.002), which provides evidence of quasi-hyperbolic discounting and 

declining discount rates. The same is true in the WB results: the estimate of β = 1.611, 

which “expands” or “contracts” time, is statistically significantly greater than 1 (p < 

0.001) which leads us to infer that people perceive time as “slowing down,” 

generating declining discount rates. Thus, both the QH and WB results suggest that 

discount rates decline over time, which, when coupled with an additively-separable 

intertemporal utility function, raises the spectre of time-inconsistent choices. 

However, the two discounting functions provide competing explanations for this 

result: a present-bias in the case of the QH model and subjective time perception in 

the case of the WB model.  

 

As a descriptive prelude to the formal statistical results, Figure 4 shows a kernel-

weighted local polynomial regression, with a 95% confidence interval, of the fraction 

of LL choices by smokers and non-smokers for the nominal annual interest rates on 

offer in the time preference task. At each interest rate, the point estimate of the 

fraction of LL choices by smokers is less than the point estimate of the fraction of LL 

choices by non-smokers, and the 95% confidence intervals do not overlap. This 

suggests that smokers discount more heavily than non-smokers, but clearly this result 

must be subjected to closer statistical scrutiny before any definitive conclusions are 

reached. 

 
                                                                                                                                      
the behavioural puzzles listed earlier: addicts expend resources to acquire their targets of addiction but 
then incur real costs to try to reduce or limit their consumption of these goods; and the fact that the 
typical course of addiction is characterised by repeated unsuccessful attempts to quit prior to final 
abstention. 
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[Figure 4 here] 

 

Consequently, we estimate the four time preference models, assuming RDU and the 

Prelec (1998) PWF, where risk and discounting parameters are allowed to vary by 

smoking status, other observable characteristics, and task parameters; see Appendix F 

for the results. Across all specifications, the effect of smoking on the estimate of δ is 

positive and statistically significant at the 1% level, implying that smokers tend to 

discount the future more heavily than non-smokers. The magnitude of this difference 

in discounting behaviour is economically significant. In the E model, for example, 

smokers have an annual discount rate which is 26 percentage points higher than non-

smokers. Thus, the positive relationship between smoking and discounting identified 

in Table 1 has been replicated using a full set of covariates and a joint estimation 

approach to time preferences which controls for utility function curvature and 

probability weighting.27 

 

The estimates of β in the QH and WB models, by contrast, do not vary according to 

smoking status. Thus, smokers are no more present-biased than non-smokers in the 

QH model nor are they more likely to perceive time as slowing down in the WB 

model. It is only the long-term discount rate δ which differs between smokers and 

non-smokers in these models.  

 

It is inferentially risky to try to boil down smoking to a binary covariate (e.g., smoker, 

non-smoker) because one runs the risk of mischaracterising the full effects of 

smoking behaviour if there are differences between non-smokers, light smokers, 

moderate smokers, and heavy smokers. Thus, to extend our analysis, we investigate 

whether smoking intensity and discounting behaviour are related by estimating the 

four time preference models and allowing the parameters of interest to vary as a 

quadratic function of the number of cigarettes smoked per day, other observable 

characteristics, and task parameters. 

 

                                                
27 Appendix G presents results from the four time preference models where EU theory is assumed to 
characterise choice under risk: the results are virtually identical to the models which assume RDU and 
the Prelec (1998) PWF. 
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In all models, both the linear and quadratic terms are statistically significant in the 

estimate of δ: the linear term is positive and significant whereas the quadratic term is 

negative and significant. Thus, there is a concave relationship between discounting 

behaviour and number of cigarettes smoked per day: every additional cigarette is 

associated with an increase in discounting, but at a decreasing rate until a maximum is 

reached, after which every additional cigarette is associated with a decrease in 

discounting.28  

 

[Table 5 here] 

 

Table 5 maps out the response surface for estimates of δ in the four time preference 

models evaluated at different values of number of cigarettes smoked per day. At low 

values of number of cigarettes, the conditional marginal effect of additional cigarettes 

is positive. By 15 cigarettes, though, the conditional marginal effect of additional 

cigarettes is negative. Table 5 highlights the nonlinear effect of smoking intensity on 

discounting behaviour. To our knowledge, this is the first study of time preferences 

and smoking behaviour which has identified this effect. 

 

C. Mixture Models of Discounting Behaviour 

The analyses conducted thus far have been based on the implicit assumption that the 

observations are produced by only one discounting data generating process (DGP): 

either E, H, QH, or WB. However, the data may be a result of more than one DGP. 

For example, the E model may explain some discounting choices better than the H 

model whereas the H model may explain other choices better than the E model. The 

assumption that only one DGP characterises all of the data precludes such a 

possibility. 

 

Finite mixture models29 allow two or more DGPs to account for the data and also 

provide a measure of the proportion of the data which is best explained by each 

                                                
28 In the QH model, smoking intensity is not significantly related to the extent of present-bias. In the 
WB model, though, the number of cigarettes’ linear term is negative and significant in the estimate of 
β, albeit at the 10% level. Thus, the more cigarettes smoked per day, the less likely people are to 
perceive time as slowing down.  
29 For detailed discussions of mixture models see McLachlan and Peel (2000), Harrison and Rutström 
(2009), and Conte, Hey and Moffatt (2011). Mixture models have been applied to discounting 
behaviour by Andersen et al. (2008), Coller, Harrison and Rutström (2012) and Andersen et al. (2014). 
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process. In the current context, one can estimate a mixture model of, say, the E and H 

discounting functions and then ask the data to determine each function’s level of 

support. To do so one specifies a “grand likelihood” function which is just a 

probability-weighted average of the likelihoods of the two models; see Appendix H 

for more details. 

 

We estimate a mixture model of the E and H discounting functions and both functions 

find statistically significant support in the data.30 In addition, the mixture model 

shows that discounting parameter estimates are distorted when the E or H models 

have to account for all of the data. We also use the mixture model to explore the 

factors that may affect the likelihood of discounting according to the E and H 

functions.  

 

Given that the typical pattern of addiction is characterised by choice behaviour that 

implies time-inconsistent preferences, it is of particular importance to determine 

whether smoking behaviour is associated with a greater likelihood of discounting 

according to the time-inconsistent H model as opposed to the time-consistent E 

model. Given our interest in smoking intensity, rather than a binary classification of 

smoking status, we estimate a mixture model of the E and H discounting functions 

and allow the risk and time preference parameters to vary as a quadratic function of 

number of cigarettes smoked per day. In addition, we include a full set of covariates 

in the mixture probability equation and a number of cigarettes smoked per day linear 

term31 to identify the factors that may affect the likelihood of discounting according to 

the E and H models. 

 

[Table 6 here] 

 
                                                
30 Appendix H contains the results from all of the two-process mixture models that can be estimated 
from the four discounting specifications. We only discuss the results from the E and H mixture model 
in this section because these are the most commonly used discounting functions in the addiction 
literature and they are representative of the results from the other mixture models.  
31 We also estimate the mixture model with a full set of covariates in the mixture probability equation 
and allow this equation to vary as a quadratic function of number of cigarettes smoked per day. The 
quadratic term is not statistically significant, implying that we do not need to incorporate higher order 
polynomials of this variable in the equation, and can employ the linear term by itself. As would be 
expected from the results in Table 6, when we incorporate both the linear and quadratic terms of 
number of cigarettes smoked per day, a joint test of the coefficients on these terms is statistically 
significant at the 5% level. 
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Table 6 presents the results. Of particular interest is that the number of cigarettes 

smoked per day is negatively and statistically significantly (p < 0.01) related to the 

likelihood of discounting according to the E model. The magnitude of this effect is 

large: every additional cigarette smoked per day is associated with a 2 percentage 

point decrease in the likelihood of discounting according to the E model and, hence, a 

2 percentage point increase in the likelihood of discounting according to the H model. 

Thus, as smoking intensity increases this is associated with a greater likelihood of 

discounting hyperbolically as opposed to discounting exponentially. This result has 

important implications for our understanding of addiction. In addition to the nonlinear 

effect of smoking intensity on inferred discount rates identified in the previous 

section, smoking intensity is also linked to the likelihood of making time-inconsistent 

choices, which is the hallmark of addictive consumption patterns. To our knowledge, 

this is the first study to have identified this effect.  

 

VII. DISCUSSION AND CONCLUSIONS 

 

We analyse the relationship between risk preferences, time preferences and smoking 

behaviour using an incentive-compatible experimental design and a joint estimation 

approach to data analysis. We find that both probability weighting and utility function 

curvature affect attitudes to risk in this sample but we find no statistically significant 

relationship between risk preferences and smoking behaviour. This result is robust to 

different theories of choice under risk, different PWFs, and different utility functions 

which admit varying relative risk aversion. 

 

To analyse the time preferences of our sample we adopt the methodology of HLR 

which jointly estimates utility function curvature and discounting functions so as to 

characterise time preferences over utility flows, not flows of money. We find that 

controlling for the concavity of the utility function leads to a dramatic decline in 

estimates of δ, replicating the result of Andersen et al. (2008). We also allow RDU to 

characterise choice under risk so as to apportion risk preferences into their utility 

curvature and probability weighting components.  

 

We explore the relationship between time preferences and smoking behaviour in three 

ways. First, we focus on the marginal effect of smoking status on time preferences by 
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estimating the discounting models and making the parameters of interest a linear 

function of observable characteristics and task parameters. Across all specifications, 

the estimate of δ for smokers is positive and statistically significant, implying that 

smokers discount at a higher rate than non-smokers. In Appendix G we also test to see 

whether these results are robust to the assumption that EU characterises choice under 

risk: the results are qualitatively identical to those in Section VI. 

 

Second, to investigate whether smoking intensity is related to discounting behaviour, 

we estimate the four time preference models and allow the parameters of interest to 

vary as a quadratic function of number of cigarettes smoked per day, other observable 

characteristics, and task parameters. These analyses reveal a concave relationship 

between smoking intensity and estimates of the discounting parameter δ. Specifically, 

every additional cigarette is associated with an increase in discounting, but at a 

decreasing rate until a maximum is reached, after which every additional cigarette is 

associated with a decrease in discounting.  

 

Finally, we estimate mixture models of the different discounting specifications and 

focus on the link between smoking intensity and the likelihood of making time-

inconsistent choices. We find that smoking intensity is positively and significantly 

related to the likelihood of discounting hyperbolically, which suggests that smokers, 

and, in particular, heavier smokers, are more likely to make time-inconsistent choices. 

 

This research makes a number of contributions to the literature. When analysing risk 

preferences and smoking behaviour, we allow risk attitudes to be determined both by 

utility function curvature and probability weighting. Prior studies in the literature 

either focus on utility function curvature or probability weighting, not both. 

Consequently, they are always open to the critique that the other source of risk 

attitudes, the one not explored in the study, differs according to smoking behaviour. 

Incorporating both utility function curvature and probability weighting in estimates of 

risk attitudes provides us with immunity to this critique and allows us to make 

stronger claims about differences in risk preferences according to smoking behaviour. 

 

This is only the second study in the smoking-discounting literature to incorporate 

utility function curvature in the estimation of time preference models, and it is the 
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first which allows RDU to characterise choice under risk. Although the qualitative 

discounting estimates do not differ significantly across the EU and RDU 

specifications, it is nevertheless theoretically appropriate to quantitatively apportion 

risk preferences into their utility curvature and probability weighting components. 

 

This is the first study to identify a nonlinear effect of smoking intensity on 

discounting behaviour. Smoking more cigarettes is associated with an increase 

discounting but only up to a point, after which each additional cigarette is associated 

with lower discounting. This nonlinear effect may explain why some studies, which 

only recruited heavy smokers and never-smokers, fail to find a difference in 

discounting behaviour between these groups.  

 

In addition, this nonlinear effect of smoking intensity may provide an explanation for 

patterns of cigarette consumption. It has long been assumed that the marked modal 

clustering around 20 cigarettes per day in mature smokers simply reflects the fact that 

cigarettes are typically sold in packs of 20. It may be the case, though, that cigarette 

companies learned to sell cigarettes in packs of 20 because that is where the 

psychofunctional, and not merely the homeostatic, equilibrium lies for the majority of 

mature smokers. 

 

This research also reiterates the point that multiple decision processes characterise the 

discounting of delayed rewards. It is crucial for researchers to be cognisant of this fact 

when exploring the smoking-discounting relationship. Smoking intensity increases the 

likelihood of discounting hyperbolically, which may be an important factor in tobacco 

addiction and explain recalcitrance to treatment.  To our knowledge, this is the first 

study in the literature to identify this effect in a sample of smokers and non-smokers. 

 

This research naturally involves some limitations. Clearly our sample of young South 

African university students is not representative of a general population, and the 

smokers among them are not representative of smokers in general. But the 

significance of our findings, we suggest, does not depend on supporting inferences 

about general populations. Existing theories of addiction focus on differences between 

addicts and non-addicts. Since people who smoke as few as five cigarettes every day 

can be addicted, our observation of effects of smoking intensity on key variables in 
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the economic structure of choice is novel. The “clean” conditions of the laboratory 

often furnish, as here, the best initial environment for detecting effects not predicted 

by established theory. The next step in follow-up research is obviously to use larger, 

more representative samples, along with field studies, to determine whether the 

effects are robust. 

 

Another potential issue with the sample is the extent of possible selection bias. As 

discussed earlier, a large number of people applied to take part in the study, so people 

in the smoking and non-smoking groups were randomly selected to form the study 

pool. It may be the case that those who were selected were not representative of their 

group. Ideally we would use information on the population of smokers and non-

smokers at UCT to correct for any sample selection issues present in the data.32 

Unfortunately, we do not have any additional information on the population of 

smokers and non-smokers at UCT. 

 

A question that arises naturally in this line of research is whether risk and time 

preferences are domain- or context-specific. A noteworthy feature of the limited 

existing empirical literature on addiction and risk and time preferences is that the 

latter are invariably measured in the domain of responses to monetary rewards, 

despite the fact that the most directly relevant arguments of utility functions where 

addiction is concerned refer to social and health status. While it is possible that most 

people’s risk and time preferences are closely related across domains, this cannot be 

assumed, especially in a population that is already atypical in being characterised by 

addiction.  

 

It is practically challenging to address the question of cross-domain preference 

structure consistency in the laboratory using hypothetical rewards because one loses 

salience and dominance without money as a reward medium when trying to induce 

                                                
32 Harrison, Lau and Rutström (2009) and Harrison and Lau (2014) analyse the effect of sample 
selection bias on estimated risk preference parameters. They used the Danish Registry to gather 
information on people who were invited to participate in their experiment but who did not take part and 
this allowed them to make sample selection corrections for the sample of people who were invited and 
who did participate in the experiment. Harrison, Lau and Rutström (2009) find that correcting for 
sample selection bias leads to attenuated risk aversion estimates, implying that their sample was more 
risk averse than the population from which it was drawn. Similarly, Harrison and Lau (2014) find that 
sample selection corrections lead to lower estimates of risk aversion. 
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value. Arguably, the best long-run methodology for handling this difficulty will be to 

use laboratory work on choices over money as a baseline for extensions into the field 

where participants’ choices affect their real health and social well-being. In that case 

the first stage research involving monetary rewards is the immediate priority. 

 

We stress that our results refer to correlations between smoking behaviour and 

preferences. It is apparent that causality can run in both directions, even if we have 

priors that favour the causal effect of preferences on smoking behaviour as being 

more prominent. There are several ways to go beyond statements about correlation, 

which should be considered in future work. One is to mimic a randomised control 

trial, by matching smokers and non-smokers using some metric such as a propensity 

score (see Rubin (1998, 2001)), and then evaluating the risk and time preferences of 

these matched samples. This approach avoids the obvious ethical problem of 

randomising “smoking” to a sample. One problem with this approach is the need for 

much larger samples than we have available. A more fundamental problem is that it 

requires that we reduce “smoking” to a coarse representation of the full 

characterisation of smoking behaviour (e.g., to a binary variable, an ordered discrete 

variable, or a single continuous variable). This would blunt the very non-linearity of 

smoking intensity that is one of our major findings. 

 

These issues notwithstanding, we provide a rigorous framework within which to 

analyse risk preferences, time preferences and smoking behaviour. Future 

experimental research should abandon binary classifications of smoking status and 

seek to replicate the nonlinear effect of smoking intensity on discounting behaviour, 

and the link between smoking intensity and the likelihood of making time-

inconsistent choices. If these results hold in other samples, our understanding of 

smoking specifically, and addiction generally, will be sharpened. 
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TABLE 1: REVIEW OF EXPERIMENTAL LITERATURE ON SMOKING AND DISCOUNTING BEHAVIOUR 

Study Sample  
(size) 

Elicitation 
method 

Task-related 
incentives  
(max LL) 

Horizon 
Front 

end delay 
(FED) 

Correct for 
non-linear 

utility 

Models  
(estimated rates) 

Statistical 
method 

Hyperbolicky 
discounting? 

Significant 
relationship with 

smoking? 

Bickel, Odum and 
Madden (1999) 

Adults in Burlington, VT, 
USA  

(NS = 23, NNS = 22,  
NES = 21) 

Choice 
(ordered) 

No  
($1000) 7 - 9131 days No No 

H and E 
(δH

S = 0.054) 
(δH

NS = 0.007) 
(δH

ES = 0.007) 

NLLS for 
discounting, 

ANOVA and non-
parametric tests for 

analysis 

Yes (compared to 
E) based on R2 
comparisons 

Yes, positive for S 
relative to NS 

(p<0.01) and ES 
(p<0.01); No for NS 

relative to ES. 

Mitchell (1999) 
Adults in Durham, NH, 

USA 
(NS = 20, NNS = 20) 

Choice 
(random) 

Yes  
($10) 0 - 365 days No No 

H 
(δS = 0.012) 
(δNS = 0.006) 

NLLS for 
discounting, non-

parametric tests for 
analysis 

By assumption Yes (p<0.06), positive. 

Baker, Johnson and 
Bickel (2003) 

Adults in Burlington, VT, 
USA 

(NS = 30, NNS = 30) 

Titration 
(random - 

Richards et 
al. (1999)) 

Yes  
($100) 

Real:  
1 - 183 days No No 

H 
NRD but from Figure 2: 

($10: δS = 0.008,  
δNS = 0.001) 

($100: δS = 0.005,  
δNS = 0.001) 

NLLS for 
discounting, 
ANOVA for 

analysis 

By assumption 

Real: Yes (p<0.01), 
positive. 

No  
($1000) 

Hypothetical:  
1 - 9131 days No No 

H 
NRD but from Figure 2: 

($10: δS = 0.008,  
δNS = 0.003) 

($100: δS = 0.006,  
δNS = 0.0008) 

($1000: δS = 0.004,  
δNS = 0.0005) 

Hypothetical: Yes 
(p<0.01), positive. 

Reynolds, Karraker, 
Horn and Richards 

(2003) 

Adolescents in 
Morgantown, WV, USA  
(NS = 19, NNS = 19, NT = 

17) 

Titration 
(random - 

Richards et 
al. (1999)) 

1-out-of-2-tasks  
($10) 1 - 365 days No No 

H 
(δS = 0.010) 
(δNS = 0.007) 
(δT = 0.016) 

NLLS for 
discounting, 
ANOVA for 

analysis 

By assumption No. 

Reynolds (2004) 

Adolescents and young 
adults in Morgantown, 

WV, USA 
(NS(adolescent) = 19, NS(adult) = 

25, NNS = 29) 

Titration 
(random - 

Richards et 
al. (1999)) 

1-out-of-2-tasks  
($10) 1 - 365 days No No 

H 
(δS(adolescent) = 0.016) 

(δS(adult) = 0.075)  
(δNS(adult) = 0.012) 

NLLS for 
discounting, 

ANOVA, 
correlations and post 
hoc tests for analysis 

By assumption 

Yes, positive for S(adult) 
relative to S(adolescent) 

(p<0.05) and NS(adult) 
(p<0.05). No for 

S(adolescent) relative to 
NS(adult). 

Reynolds, Richards, 
Horn and Karraker 

(2004) 

Mostly students in 
Morgantown, WV, USA  

(NS = 25, NNS = 29) 

Titration 
(random - 

Richards et 
al. (1999)) 

1-out-of-2-tasks  
($10) 1 - 365 days No No 

H 
(δS = 0.066) 
(δNS = 0.015) 

NLLS for 
discounting, 
ANOVA for 

analysis 

By assumption Yes (p<0.05), positive. 

Ohmura, Takahashi 
and Kitamura (2005) 

Students in Sapporo, Japan  
(NS = 27, NNS = 23) 

Titration 
(random - 

Richards et 
al. (1999)) 

No  
(¥100,000 = 

$1000) 

7 - 1826 
days) No No 

H, E and AUC. 
(AUCS = 0.54)  
(AUCNS = 0.58) 

AUC and NLLS for 
discounting, 

correlations and t 
tests for analysis 

Yes (compared to 
E) based on R2 
comparisons 

No. 

Source: Authors’ construction. See Appendix A for more details on these studies. 
Notes: S = smoker; NS = non-smoker/never-smoker; ES = ex-smoker; LS = light smoker; T = trier; FS = fast smoking adopter; SS = slow smoking progressor. 
H = hyperbolic; E = exponential; QH = quasi-hyperbolic; AUC = area under the curve; NRD = not reported directly; a = annual rate; b = weekly rate; NLLS = non-linear least squares; ML = maximum likelihood. 
ANOVA = analysis of variance; ANCOVA = analysis of covariance 

 
  



TABLE 1: REVIEW OF EXPERIMENTAL LITERATURE ON SMOKING AND DISCOUNTING BEHAVIOUR (CONTINUED) 

Study Sample  
(size) 

Elicitation 
method 

Task-related 
incentives  
(max LL) 

Horizon 
Front 

end delay 
(FED) 

Correct for 
non-linear 

utility 

Models  
(estimated rates) 

Statistical 
method 

Hyperbolicky 
discounting? 

Significant 
relationship with 

smoking? 

Heyman and Gibb 
(2006) 

Students in Cambridge, MA, 
USA  

(NS = 19, NNS = 31, NLS = 21) 

Choice 
(ordered) 

Yes  
($29) 

Real:  
1 – 30 days No No 

H 
Real: (δS = 0.074)  

(δNS = 0.036)  
(δLS = 0.045) 

Algebra and 
averaging for 

discounting, F-test 
and post-hoc tests 

for analysis 

By assumption 

Real: Yes, positive for 
S relative to NS 
(p<0.01) and LS 

(p<0.05); No for LS 
relative to NS. 

No  
($1000) 

Hypothetical:  
7 – 3650 days No No 

H 
Hypothetical: 
(δS = 0.007)  
(δNS = 0.009)  
(δLS = 0.004) 

Hypothetical: No. 

Reynolds (2006) Adults in Buffalo, NY, USA 
 (NS = 15, NNS = 15) 

Titration 
(random – 
Richards et 
al. (1999)) 

No  
($10) 1 – 365 days No No 

H 
(δS = 0.088) 
(δNS = 0.020) 

NLLS for 
discounting, non-

parametric tests for 
analysis 

By assumption Yes (p<0.01), positive. 

Johnson, Bickel 
and Baker (2007) 

Adults in Burlington, VT, 
USA 

(NS = 30, NNS = 30, NLS = 30) 

Titration 
(random – 
Richards et 
al. (1999)) 

Yes  
($100) 

Real:  
1 – 183 days No No 

H 
Real:  

($10: δS = 0.006,  
δLS = 0.003,  
δNS = 0.0009)  

($100: δS = 0.003,  
δLS = 0.001,  
δNS = 0.0008) 

NLLS for 
discounting, 
ANOVA for 

analysis 

By assumption 

Real: Yes, positive for 
S (p<0.05) and LS 
(p<0.05) relative to 

NS; No for S relative 
to LS. 

No  
($1000) 

Hypothetical:  
1 – 9131 days No No 

H 
Hypothetical:  

($10: δS = 0.006,  
δLS = 0.007,  
δNS = 0.002) 

($100: δS = 0.004,  
δLS = 0.002,  
δNS = 0.0005) 

($1000: δS = 0.002,  
δLS = 0.0008,  
δNS = 0.0003) 

Hypothetical: Yes, 
positive for S (p<0.01) 

and LS (p<0.05) 
relative to NS; No for 

S relative to LS. 

Reynolds et al. 
(2007) 

Adolescents in Columbus, 
OH, USA  

(NS = 25, NNS = 26) 

Titration 
(random – 
Richards et 
al. (1999)) 

Yes  
($10) 1 – 365 days No No 

AUC 
NRD but from Figure 1: 

(AUCS = 0.129)  
AUCNS = 0.234) 

AUC for 
discounting, 
ANOVA and 
ANCOVA for 

analysis 

AUC, but dropped 
subjects that had 

poor H fit 
Yes (p<0.05), positive. 

Bickel, Yi, Kowal 
and Gatchalian 

(2008) 

Adults in Little Rock, AR, 
USA 

(NS = 30, NNS = 29) 

Titration 
(random - 

Richards et 
al. (1999)) 

No  
($1000) 1 - 9131 days No No 

H and E 
(δH

S = 0.007) 
(δH

NS = 0.001) 

NLLS for 
discounting, 

ANCOVA for 
analysis 

Yes (compared to 
E) based on R2 
comparisons 

Yes (p<0.05), positive. 

Source: Authors’ construction. See Appendix A for more details on these studies. 
Notes: S = smoker; NS = non-smoker/never-smoker; ES = ex-smoker; LS = light smoker; T = trier; FS = fast smoking adopter; SS = slow smoking progressor. 
H = hyperbolic; E = exponential; QH = quasi-hyperbolic; AUC = area under the curve; NRD = not reported directly; a = annual rate; b = weekly rate; NLLS = non-linear least squares; ML = maximum likelihood. 
ANOVA = analysis of variance; ANCOVA = analysis of covariance 

 
  



TABLE 1: REVIEW OF EXPERIMENTAL LITERATURE ON SMOKING AND DISCOUNTING BEHAVIOUR (CONTINUED) 

Study Sample  
(size) 

Elicitation 
method 

Task-related 
incentives  
(max LL) 

Horizon 
Front 

end delay 
(FED) 

Correct for 
non-linear 

utility 

Models  
(estimated rates) 

Statistical 
method 

Hyperbolicky 
discounting? 

Significant 
relationship with 

smoking? 

Chabris et al. 
(2008) 

1. Adults in Boston, MA, 
USA 

(N = 126) 
Choice 

(random – 
Kirby et al. 

(1999)) 

1-in-6-chance  
($85) 7 – 186 days No No H 

(δ = 0.015, SD = 0.02) 

ML for discounting, 
OLS, Tobit, Probit 

for analysis 
By assumption Yes (p<0.05), positive. 

2. Adults in the USA 
(recruited online)  

(N = 326) 

1-in-6-chance  
($85) 7 – 186 days No No H 

(δ = 0.008, SD = 0.009) 

ML for discounting, 
OLS, Tobit, Probit 

for analysis 
By assumption No 

Sweitzer et al. 
(2008) 

Adults in Allegheny County, 
PA, USA  

(NS = 101, NNS = 145,  
NT = 279, NES = 185) 

Choice 
(random) 

No  
($100) 7 - 1825 days No No 

H 
(δS = 0.120) 
(δNS = 0.079) 
(δT = 0.090) 
(δES = 0.086) 

NLLS for 
discounting, 

ANCOVA for 
analysis 

By assumption 

Yes, positive for S 
relative to NS 

(p<0.01), ES (p<0.01) 
and T (p<0.01); No for 
all other comparisons. 

Adams and Nettle 
(2009) 

Adults in 15 major urban 
areas in the USA (recruited 

online)  
(NS = 70, NNS = 346) 

Choice 
(ordered) 

No  
($1000) 

30 - 3652 
days No No H 

(δ = 1.3)a 

NLLS for 
discounting, logistic 

regression for 
analysis 

By assumption No. 

Audrain-
McGovern et al. 

(2009) 

High school students in 
northern Virginia, USA  
(NNS = 556, NFS = 112,  

NSS = 241) 

Choice 
(random - 

Kirby et al. 
(1999)) 

Not reported  
($85) 7 - 186 days No No 

H 
Assuming ln 

transformation:  
(δFS = 0.023) 
(δSS = 0.016) 
(δNS = 0.010) 

Algebra and 
averaging for 

discounting, latent 
growth curve 

modeling (LGCM) 
and growth mixture 
modeling (GMM) 

for analysis 

By assumption 

LCGM: Yes (p<0.05), 
positive. GMM: Yes, 

positive for FS 
(p<0.05) and SS 

(p<0.05) relative to 
NS; No for FS relative 

to SS. 

Jones, Landes, Yi 
and Bickel (2009) 

Adults in Little Rock, AR, 
USA 

(NS = 86, NNS = 141) 

Titration 
(ordered or 

random) 

No  
($1000) 1 - 9131 days No No 

H 
NRD but from Figure 3: 
($100: δS(men) = 0.012, 
δNS(men) = 0.001, δS(women) 

= 0.0015, δNS(women) 
=0.002) 

($1000: δS(men) = 0.0075, 
δNS(men) = 0.0005, δS(women) 

= 0.001, δNS(women) 
=0.001) 

NLLS for 
discounting, 

ANCOVA for 
analysis 

By assumption 

Yes, positive for S(men) 
(p<0.01) relative 

NS(men) at $100 and 
$1000 magnitudes; No 
for S(women) relative to 

NS(women) at both 
magnitudes. 

Melanko et al. 
(2009) 

Adolescents in central Ohio, 
USA  

(NS = 50, NNS = 25). Smokers 
were split into high and low 

pyschopathology groups. 

Titration 
(random - 

Richards et 
al. (1999)) 

Yes  
($10) 1 - 365 days No No 

AUC 
NRD but from Figure 1: 

(AUCS(low) = 0.126)  
(AUCS(high) = 0.214)  

(AUCNS = 0.275) 

AUC for 
discounting, 
ANOVA for 

analysis 

AUC, no 
assumption about 

form of 
discounting 

Yes, positive for S(low) 
relative to NS 

(p=0.01); No for all 
other comparisons. 

Businelle, 
McVay, Kendzor 

and Copeland 
(2010) 

Adults in southern USA  
(NS = 20, NNS = 34) 

Choice 
(ordered) 

No  
($1000) 

0.25 - 9131 
days No No 

H and AUC 
(δS = 0.077) 
(δNS = 0.039) 

NLLS and AUC for 
discounting, 

ANCOVA for 
analysis 

By assumption 
(but also used 

AUC) 
Yes (p=0.01), positive. 

Source: Authors’ construction. See Appendix A for more details on these studies. 
Notes: S = smoker; NS = non-smoker/never-smoker; ES = ex-smoker; LS = light smoker; T = trier; FS = fast smoking adopter; SS = slow smoking progressor. 
H = hyperbolic; E = exponential; QH = quasi-hyperbolic; AUC = area under the curve; NRD = not reported directly; a = annual rate; b = weekly rate; NLLS = non-linear least squares; ML = maximum likelihood. 
ANOVA = analysis of variance; ANCOVA = analysis of covariance 

 
 
 
 
 



TABLE 1: REVIEW OF EXPERIMENTAL LITERATURE ON SMOKING AND DISCOUNTING BEHAVIOUR (CONTINUED) 

Study Sample  
(size) 

Elicitation 
method 

Task-related 
incentives  
(max LL) 

Horizon 
Front 

end delay 
(FED) 

Correct for 
non-linear 

utility 

Models  
(estimated rates) 

Statistical 
method 

Hyperbolicky 
discounting? 

Significant 
relationship with 

smoking? 

Harrison, Lau and 
Rutström (2010) 

Adults in Denmark  
(NS = 71, NNS = 181) 

Choice 
(ordered) 

1-in-10-chance 
($1175) 30 - 730 days Yes Yes 

H and E 
Linear utility:  

(δH
S(men) = 0.341)a 

(δH
NS(men) = 0.240)a  

(δH
S(women) = 0.329)a 

(δH
NS(women) = 0.250)a ML for discounting 

and analysis 

25% - 40% of 
choices by 

smokers and non-
smokers best 

characterised by H 

Linear utility:  
Men: Yes (p<0.05), 

positive;  
Women: Yes (p<0.10), 

positive. 

H and E 
Concave utility:  

(δH
S(men) = 0.127)a 

(δH
NS(men) = 0.093)a 

(δH
S(women) = 0.109)a 

δH
NS(women) = 0.095)a 

Concave utility:  
Men: Yes (p<0.05), 

positive;  
Women: No. 

Bickel et al. 
(2012) 

Adults in the USA (recruited 
online)  

(NS = 182, NNS = 614) 

Choice 
(random) 

No  
($85) 10 - 75 days No No H 

(Not reported) 

Algebra and 
averaging for 
discounting, 

ANCOVA for 
analysis 

By assumption Yes (p<0.01), positive. 

Mitchell and 
Wilson (2012) 

1. Adults in Portland, OR, 
USA 

(NS = 20, NNS = 20) 
Choice 

(random) 

Yes  
($50) 14 - 154 days Yes No 

H and QH 
(0 FED: δH

S = 0.230,  
δH

NS = 0.020)  
(+ FED: δH

S = 0.070,  
δH

NS = 0.010) 
NLLS and ML for 

discounting, 
ANOVA for 

analysis 

By assumption 
(but also 

estimated QH) 

Yes (p<0.01), positive. 

2. Adults in Portland, OR, 
USA 

(NS = 16, NNS = 16) 

No  
($50) 14 - 154 days Yes No 

H and QH 
(0 FED: δH

S = 0.120,  
δH

NS = 0.020) 
(+ FED: δH

S = 0.050,  
δH

NS = 0.010) 

Yes (p<0.01), positive. 

Reynolds and 
Fields (2012) 

Adolescents in Columbus, 
OH, USA  

(NS = 50, NNS = 50, NT = 41) 

Titration 
(random - 

Richards et 
al. (1999)) 

Yes  
($10) 1 - 365 days No No 

AUC 
NRD but from Figure 1: 

(AUCS = 0.166) 
(AUCT = 0.224) 
(AUCNS = 0.347) 

AUC for 
discounting, 
ANOVA and 
ANCOVA for 

analysis 

AUC, no 
assumption about 

form of 
discounting 

Yes, positive for S 
(p<0.01) and T 

(p<0.05) relative to 
NS; No for S relative 

to T. 

Stillwell and 
Tunney (2012) 

International online study  
(NS = 1592, NLS = 669,  

NNS = 6777) 

Choice 
(ordered or 

random) 

No  
($1000) 7 - 1826 days No No 

H 
NRD but from Figure 3:  

(δS = 0.437) 
(δLS = 0.397)  
(δNS = 0.369) 

NLLS for 
discounting, 
ANOVA for 

analysis 

Yes (compared to 
E) based RSS 
comparisons 

Yes, positive for S 
relative to LS (p<0.01) 
and NS (p<0.01) and 

positive for LS relative 
to NS (p<0.01). 

Wing, Moss, 
Rabin and George 

(2012) 

Adults in the greater Toronto 
area, Canada  

(NS = 23, NNS = 37) 

Choice 
(random - 

Kirby et al. 
(1999)) 

No  
($85) 7 - 186 days No No 

H 
NRD but from Figure 1:  

(δS = 0.017) 
(δNS = 0.011) 

Algebra and 
averaging for 
discounting, 

ANCOVA for 
analysis 

By assumption No. 

Source: Authors’ construction. See Appendix A for more details on these studies. 
Notes: S = smoker; NS = non-smoker/never-smoker; ES = ex-smoker; LS = light smoker; T = trier; FS = fast smoking adopter; SS = slow smoking progressor. 
H = hyperbolic; E = exponential; QH = quasi-hyperbolic; AUC = area under the curve; NRD = not reported directly; a = annual rate; b = weekly rate; NLLS = non-linear least squares; ML = maximum likelihood. 
ANOVA = analysis of variance; ANCOVA = analysis of covariance 

 
  



TABLE 1: REVIEW OF EXPERIMENTAL LITERATURE ON SMOKING AND DISCOUNTING BEHAVIOUR (CONTINUED) 

Study Sample  
(size) 

Elicitation 
method 

Task-related 
incentives  
(max LL) 

Horizon 
Front 

end delay 
(FED) 

Correct for 
non-linear 

utility 

Models  
(estimated rates) 

Statistical 
method 

Hyperbolicky 
discounting? 

Significant 
relationship with 

smoking? 

Balevich, Wein 
and Flory (2013) 

Students in Flushing, NY, 
USA 

(NS = 50, NNS = 102, 
NT = 91) 

Choice 
(random) or 

titration 
(random) 

No  
($100) 1 - 1825 days No No 

H 
(δS = 0.126) 
(δNS = 0.135) 
(δT = 0.138) 

NLLS for 
discounting, 
ANOVA for 

analysis 

By assumption No. 

Poltavski and 
Weatherly (2013) 

Students in Grand Forks, 
ND, USA 

(NS = 16, NLS = 74, NNS = 92) 

Choice 
(random) 

No 
($100,000) 

183 - 3652 
days No No 

H and AUC 
($1000: δS= 0.010,  

δLS = 0.010, δNS = 0.007) 
($100,000: δS = 0.008,  
δLS = 0.008, δNS = 0.007) 

NLLS and AUC for 
discounting, 
ANOVA for 

analysis 

By assumption 
(but also used 

AUC) 
No. 

Sheffer et al. 
(2013) 

Adults in Little Rock, AR, 
USA 

(NS = 47, NNS = 19) 

Titration 
(random - 

Richards et 
al. (1999)) 

No  
($1000) 1 - 9131 days No No 

H 
NRD but from Figure 1:  

(δS = 0.020) 
(δNS = 0.004 

NLLS for 
discounting, 

ANCOVA for 
analysis 

By assumption Yes (p<0.05), positive. 

Kang and Ikeda 
(2014) 

Adults in Japan  
(NS ≈ 862, NNS ≈ 2588) 

Choice 
(ordered) 

No  
(¥1000,000 = 

$10000) 
7 - 365 days Yes No 

E and proxies for H 
(See Table III, the mean 
of δE ranges from 0.022 

to 1.904)a 

ML for discounting, 
hurdle model for 

analysis 

Assumes E but 
constructs H 

proxies 
Yes (p<0.01), positive. 

Kobiella et al. 
(2014) 

Adults in Mannheim, 
Germany 

(NS = 27, NNS = 31) 

Choice 
(random) 

Yes  
(€41.32) 14 - 28 days Yes No 

H 
(δS = 0.055)b 
(δNS = 0.038)b 

NLLS for 
discounting, t-tests 

for analysis 
By assumption Yes (p<0.05), positive. 

Hofmeyr et al. 
(2017) 

Adults in Los Angeles, CA, 
USA 

(NS = 163, NNS = 834,  
NES = 208) 

Choice 
(random - 

Kirby et al. 
(1999)) 

UCLA: No 
($85) 

USC: 1-out-of-2-
tasks 
($85) 

7-186 days No No 

H, E and QH 
(δH

S = 0.021) 
(δH

NS = 0.012) 
(δH

ES = 0.013) 

ML for discounting 
and analysis 

41% - 52% of 
choices best 

characterised by H 

Yes, positive for S 
relative to NS 

(p<0.01) and ES 
(p<0.01); No for ES 

relative to NS. 
Source: Authors’ construction. See Appendix A for more details on these studies. 
Notes: S = smoker; NS = non-smoker/never-smoker; ES = ex-smoker; LS = light smoker; T = trier; FS = fast smoking adopter; SS = slow smoking progressor. 
H = hyperbolic; E = exponential; QH = quasi-hyperbolic; AUC = area under the curve; NRD = not reported directly; a = annual rate; b = weekly rate; NLLS = non-linear least squares; ML = maximum likelihood. 
ANOVA = analysis of variance; ANCOVA = analysis of covariance 

 
 
 
 



TABLE 2: REVIEW OF EXPERIMENTAL LITERATURE ON SMOKING AND RISK PREFERENCES 

Study Sample  
(size) 

Elicitation  
method 

Incentives  
(max prize) Probabilities Models  

(estimated rates) 
Statistical method 

(valid?) 
Significant relationship 

with smoking? 

Mitchell (1999) Adults in Durham, NH, USA  
(NS = 20, NNS = 20) Choice (random) Yes  

($10) 0.1, 0.25, 0.5, 0.75, 0.9, 1 
PD 

(γS = 1.328) 
(γNS = 1.371) 

NLLS for risk aversion, non-
parametric tests for analysis. 

(not valid) 
No. 

Reynolds, Karraker, 
Horn and Richards 

(2003) 

Adolescents in Morgantown, 
WV, USA  

(NS = 19, NNS = 19, NT = 17) 

Titration (random 
- Richards et al. 

(1999)) 

1-out-of-2-tasks  
($10) 0.25, 0.5, 0.75, 0.9, 1 

PD 
NRD but from Figure 2: 

(γS = 1.610) 
(γNS = 1.110) 
(γT = 3.820) 

NLLS for risk aversion, ANOVA 
for analysis. 
(not valid) 

Yes, positive for T relative S 
(p<0.05) and NS (p<0.05); No 

for S relative to NS. 

Reynolds, Richards, 
Horn and Karraker 

(2004) 

Mostly students in 
Morgantown, WV, USA  

(NS = 25, NNS = 29) 

Titration (random 
- Richards et al. 

(1999)) 

1-out-of-2-tasks  
($10) 0.25, 0.5, 0.75, 0.9, 1 

PD 
(γS = 1.910) 
(γNS = 1.470) 

NLLS for risk aversion, ANOVA 
for analysis. 
(not valid) 

Yes (p<0.05), positive 
(smokers are more risk averse) 

Ohmura, Takahashi 
and Kitamura (2005) 

Students in Sapporo, Japan  
(NS = 27, NNS = 23) 

Titration (random 
- Richards et al. 

(1999)) 

No  
(¥100,000 = 

$1000) 
0.1, 0.3, 0.5, 0.7, 0.9 

PD and AUC 
AUCS = 0.230 
AUCNS = 0.180 

AUC and NLLS for risk aversion, 
correlations and t-tests for 

analysis. 
(not valid) 

Yes (p=0.08), negative 
(smokers are less risk averse) 

Reynolds (2006) Adults in Buffalo, NY, USA 
 (NS = 15, NNS = 15) 

Titration (random 
- Richards et al. 

(1999)) 

No  
($10) 0.25, 0.5, 0.75, 0.9, 1 

PD 
(γS = 3.908) 
(γNS = 1.574) 

NLLS for risk aversion, non-
parametric tests for analysis. 

(not valid) 

Yes (p<0.05), positive 
(smokers are more risk averse) 

Reynolds et al. (2007) 
Adolescents in Columbus, 

OH, USA  
(NS = 25, NNS = 26) 

Titration (random 
- Richards et al. 

(1999)) 

Yes  
($10) 0.25, 0.5, 0.75, 0.9, 1 AUC and PD 

(Not reported) 

AUC for risk aversion, ANOVA 
for analysis. 
(not valid) 

No. 

Yi, Chase and Bickel 
(2007) 

Adults in Little Rock, AR, 
USA 

(NS = 30, NNS = 29) 
Titration (ordered) No 

($1000) 
0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 

0.95 
PD and AUC 
(Not reported) 

NLLS and AUC for risk aversion, 
ANOVA for analysis. 

(not valid) 

No when analysing all the data; 
Yes (p<0.05), positive, when 
using only probabilities ≥ 0.5. 

Anderson and Mellor 
(2008) 

Adults subjects in 
Williamsburg, VA, USA 

(NS ≈ 79, NNS ≈ 898) 

Choice (ordered - 
MPL) 

Yes  
($11.55) 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8, 0.9, 1 

CRRA (1-r) 
(r = 0.257) 

Algebra and averaging for risk 
aversion, probit model for 

analysis. 
(not valid) 

Yes (p<0.1), negative (smokers 
are less risk averse). 

Harrison, Lau and 
Rutström (2010) 

Adults in Denmark  
(NS = 71, NNS = 181) 

Choice (ordered - 
MPL) 

1-in-10-chance 
($687) 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8, 0.9, 1 

CRRA (1-r) 
(rS(men) = 0.729) 
(rNS(men) = 0.746) 
(rS(women) = 0.811) 
(rNS(women) = 0.755) 

ML for risk aversion and 
analysis. 
(valid) 

Men: No; 
Women: Yes (p<0.06), positive 
(smokers are more risk averse) 

Szrek, Chao, 
Ramlagan and Peltzer 

(2012) 

Adults in Witbank, South 
Africa 

(NS ≈ 59, NNS ≈ 292) 

Choice (ordered - 
MPL) 

Yes 
(R48 ≈ $7) 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8, 0.9, 1 

CRRA (1-r) 
(r = 0.35, SD = 0.62) 

Algebra and averaging for risk 
aversion, logit model for analysis. 

(not valid) 
No. 

Poltavski and 
Weatherly (2013) 

Students in Grand Forks, 
ND, USA 

(NS = 16, NLS = 74, NNS = 92) 
Choice (random) No  

($100,000) 0.01, 0.1, 0.5, 0.9, 0.99 

PD and AUC 
($1000: γS = 0.118, γLS = 0.134, 

γNS = 0.307) 
($100,000:γS = 0.031, γLS = 0.167, 

γNS = 0.181) 

NLLS and AUC for risk aversion, 
ANOVA for analysis. 

(not valid) 

Yes, negative for S relative to 
NS (p<0.05); No for all other 

comparisons. 

Source: Authors’ construction. See Appendix B for more details on these studies. 
Notes: S = smoker; NS = non-smoker/never-smoker; LS = light smoker; T = trier; PD = probability discounting; AUC = area under the curve; NRD = not reported directly; MPL = multiple price list. 
 NLLS = non-linear least squares; ML = maximum likelihood; ANOVA = analysis of variance. 



TABLE 3 
DESCRIPTIVE STATISTICS 

   Variable Mean Std Deviation 
Demographics 

  Age 19.789 1.815 
White 0.417 0.495 
Male 0.549 0.499 
Commerce faculty 0.674 0.470 
Financial aid 0.314 0.466 
Smoke 0.617 0.487 
Treatments 

  Risk task first 0.514 0.501 
FED: 0 days 0.343 0.475 
FED: 1 week 0.326 0.469 
FED: 2 weeks 0.331 0.471 
High Principal 0.498 0.500 

 
 
  



TABLE 4: RDU THEORY ML ESTIMATES 
HETEROGENOUS PREFERENCES 

 Model 

 Prelec 
  Estimate Std Error 
Power function parameter (r)  
Age -0.004 0.011 
White 0.029 0.051 
Male 0.062 0.049 
Commerce faculty 0.030 0.062 
Financial aid -0.051 0.058 
Risk task first -0.015 0.050 
Smoker -0.005 0.055 
Constant 0.366 0.230 
PWF parameter (φ) 

  Age -0.003 0.006 
White 0.001 0.047 
Male -0.009 0.044 
Commerce faculty -0.084 0.120 
Financial aid 0.034 0.056 
Risk task first 0.054 0.080 
Smoker 0.028 0.049 
Constant 0.871*** 0.206 
PWF parameter (η)   
Age -0.027 0.046 
White -0.062 0.121 
Male -0.166 0.137 
Commerce faculty -0.216 0.184 
Financial aid -0.014 0.139 
Risk task first 0.166 0.153 
Smoker 0.146 0.177 
Constant 1.425** 0.676 
Error (µ)   
Constant 0.166*** 0.008 
N 7000  
log-likelihood -4119.762   
Results account for clustering at the individual level 
* p<0.10, ** p<0.05, *** p<0.01  

 
 
  



TABLE 5: NUMBER OF CIGARETTES CONDITIONAL MARGINAL EFFECTS FOR δ 

 Model 1 Model 2 Model 3 Model 4 
  Exponential Hyperbolic Quasi-Hyperbolic Weibull 
Number of cigarettes     0 0.052 (0.015) 0.044 (0.013) 0.053 (0.014) 0.018 (0.006) 

5 0.031 (0.009) 0.025 (0.007) 0.032 (0.009) 0.011 (0.003) 
10 0.010 (0.006) 0.006 (0.005) 0.011 (0.005) 0.004 (0.002) 
15 -0.011 (0.009) -0.013 (0.010) -0.010 (0.008) -0.003 (0.002) 
20 -0.032 (0.015) -0.032 (0.016) -0.030 (0.014) -0.010 (0.004) 
25 -0.053 (0.022) -0.051 (0.023) -0.051 (0.020) -0.017 (0.006) 

Standard errors in parentheses 
 
 
  



TABLE 6: MIXTURE MODEL ML ESTIMATES 
RANK-DEPENDENT UTILITY AND HETEROGENOUS PREFERENCES 

 Estimate Std error p-value 95% Confidence Interval 
Power function parameter (r)      Number of Cigarettes 0.016*** 0.005 0.003 0.005 0.026 
Number of Cigarettes2 -0.001*** 0.000 0.003 -0.001 0.000 
Constant 0.305*** 0.028 0.000 0.251 0.359 
PWF parameter (φ)      Number of Cigarettes -0.013 0.012 0.267 -0.035 0.010 
Number of Cigarettes2 0.001 0.001 0.146 0.000 0.002 
Constant 0.813*** 0.036 0.000 0.743 0.883 
PWF parameter (η)      Number of Cigarettes 0.018 0.019 0.362 -0.020 0.055 
Number of Cigarettes2 0.000 0.001 0.993 -0.002 0.002 
Constant 0.818*** 0.047 0.000 0.725 0.910 
Discounting parameter (δEmix)      Number of Cigarettes 0.031*** 0.010 0.002 0.012 0.051 
Number of Cigarettes2 -0.002*** 0.001 0.003 -0.003 -0.001 
Constant 0.116*** 0.019 0.000 0.078 0.153 
Discounting parameter (δHmix)      Number of Cigarettes 0.047*** 0.017 0.005 0.014 0.079 
Number of Cigarettes2 -0.002*** 0.001 0.002 -0.003 -0.001 
Constant 0.640*** 0.076 0.000 0.491 0.790 
Mixture probability (πE)      Age -0.002 0.016 0.900 -0.033 0.029 
White 0.076 0.086 0.374 -0.092 0.244 
Male -0.105 0.074 0.156 -0.250 0.040 
Commerce faculty -0.017 0.089 0.850 -0.192 0.158 
Financial aid -0.118 0.084 0.160 -0.283 0.047 
Risk task first -0.049 0.080 0.541 -0.205 0.107 
FED: 1 week -0.105 0.083 0.203 -0.267 0.057 
FED: 2 weeks -0.038 0.091 0.679 -0.216 0.141 
High Principal 0.186*** 0.051 0.000 0.087 0.285 
Number of Cigarettes -0.018*** 0.007 0.007 -0.031 -0.005 
Constant 0.512 0.313 0.102 -0.101 1.125 
Error terms      Risk error (µ) 0.166*** 0.007 0.000 0.151 0.180 
Time error (ν) 0.051*** 0.012 0.000 0.026 0.075 
N 17500     log-likelihood -8484.767         
Results account for clustering at the individual level 
* p<0.10, ** p<0.05, *** p<0.01 
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Figure 2: MM triangles of lotteries in the risk preference task
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APPENDIX A  
[ONLINE WORKING PAPER] 

 

As discussed in the main text, Table 1 provides a detailed summary of experimental 

studies investigating the relationship between smoking and time preferences. In this 

appendix we discuss Table 1 in more detail.  

 

Mitchell (1999) and Bickel, Odum and Madden (1999) conducted the first 

experiments investigating the relationship between smoking and discounting 

behaviour. Mitchell (1999) presented 20 relatively heavy1, current smokers (NS = 20) 

and 20 never-smokers (NNS = 20) with 137 choice questions between a real larger, 

later (LL) reward of $10 available after one of six delays (0, 7, 30, 90, 180, or 365 

days, i.e., the temporal horizon ranged from 0 to 365 days) and a real smaller, sooner 

(SS) reward, which varied between $0.01 and $10.50, available immediately.2 The 

questions were drawn randomly from this battery, without replacement, and presented 

to subjects sequentially. At the end of the experiment, one of a subject’s choices was 

selected randomly for payment. 

 

Mitchell used each subject’s choices to determine an indifference point between the 

LL reward (i.e., $10) available after a particular delay (e.g., 7 days) and an SS reward 

available immediately. For example, if a subject chose $10 in 7 days over $6.50 

immediately but then chose $7 immediately over $10 in 7 days, the subject was 

assigned an indifference point of $6.75. Taking the average of these two values is 

arbitrary and doing so throws away information about the uncertainty of this estimate; 

all that one can infer from this pattern of choices is that a subject’s indifference point 

lies in the open interval ($6.50, $7). Interval data of this form is analysed 

appropriately using interval regression methods but Mitchell (1999) used the 

estimated indifference points as data to construct Mann-Whitney tests of differences 

in the indifference points of heavy smokers and never-smokers. Mitchell (1999) found 

that current smokers’ indifference points were significantly lower than never-

                                                
1 The smokers in Mitchell’s (1999) study stated that they smoked at least 15 cigarettes per day and 
provided a breath sample to verify their smoking status. 
2 One would expect people to choose $10.50 now over $10 available after a delay so incorporating this 
question may be a test of subject comprehension; Mitchell (1999) provided no justification for the 
question’s inclusion. 
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smokers’ indifference points for the 7 day (p < 0.05), 30 day (p < 0.01), and 90 day (p 

< 0.06) delays.  

 

In addition, Mitchell (1999) fitted Mazur’s (1984) hyperbolic (H) discounting 

function to the indifference points for each subject and then compared the estimated 

discounting parameters of current smokers and never-smokers using a Mann-Whitney 

test; she found that current smokers discounted significantly more than never-smokers 

(p < 0.06). Using the point estimate of a discounting parameter as a datum ignores the 

uncertainty of this estimate and, thus, should not be used for inferential purposes. 

 

Bickel, Odum and Madden (1999) (BOM) presented 23 heavy, current smokers, 22 

never-smokers, and 21 ex-smokers (NS = 23, NNS = 22, and NES = 21)3 with 189 

choice questions between a hypothetical LL reward of $1000 available after one of 

seven delays (the temporal horizon ranged from 7 days to 25 years) and a hypothetical 

SS reward available immediately. For each delay, the SS rewards were presented 

sequentially in descending and then ascending order and subjects were asked to 

indicate their preference between each SS reward and the LL reward of $1000. A 

simple average of the last SS reward chosen in descending order and the first SS 

reward chosen in ascending order was used to define a person’s indifference point for 

the $1000 LL reward at a particular delay; this method was used to derive 7 

indifference points, for the seven delays in the task, for each subject even though 

taking the average of these two values is arbitrary and doing so throws away 

information about the uncertainty of the estimate. 

 

BOM then fitted an exponential (E) function and Mazur’s (1984) H function, using 

non-linear least squares (NLLS) estimation, to each subject’s 7 derived indifference 

points. For each subject, BOM then compared4 the fit of these two functions using the 

coefficient of determination, R2, and found that for most subjects, H provided a better 

fit than E. They then used each subject’s estimated R2 value for the E and H functions 

as data to construct tests of whether the E or H functions provided a better fit to the 
                                                
3 The smokers in BOM (1999) reported smoking at least 20 cigarettes per day for 5 years and had a 
Fagerström Test for Nicotine Dependence score of at least 6. Never-smokers reported never smoking 
and ex-smokers reported abstinence for at least one year following 5 years of smoking at least 20 
cigarettes a day.  
4 This was a simple comparison of the point estimates of R2 for the E and H functions and not a formal 
statistical test. 
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discounting data across all subjects in the different smoking groups. Using the point 

estimate of a statistic (i.e., the value of R2) as a datum ignores the uncertainty of this 

estimate and, thus, does not produce a valid test of one function’s ability to better 

explain discounting data. Nevertheless, BOM state that the H function provided a 

better fit than the E function among current smokers (p < 0.01), never-smokers (p < 

0.01), and ex-smokers (p < 0.01). 

 

Finally, BOM compared the point estimates of the H discounting function across the 

current smoker, never-smoker, and ex-smoker groups by estimating an analysis of 

variance (ANOVA) model which included a smoking status covariate; they found a 

significant overall effect of smoking status but estimates should not be used as data 

for inferential purposes. In addition, planned Mann-Whitney pairwise comparisons of 

the H discounting function estimates showed that current smokers discounted 

significantly more than never-smokers (p < 0.01), and ex-smokers (p < 0.01); there 

was no significant difference between never-smokers and ex-smokers. 

 

Thus, the first two studies analysing the relationship between smoking and 

discounting behaviour suggested that current smokers discount more heavily than 

never-smokers. In addition, it appeared that this result was robust to different subject 

pools, real as opposed to hypothetical rewards, different LL reward magnitudes ($10 

versus $1000), and different elicitation mechanisms (random versus ordered choice). 

Although not confirmed by both studies, there was some evidence that the H function 

provided a better fit to the discounting data than the E function. 

 

Reynolds, Karraker, Horn and Richards (2003) (RKHR), in a study with adolescent 

smokers (NS = 19), adolescent never-smokers (NNS = 19), and adolescent “triers” (NT 

= 17)5, provided the first null result in this literature. They used the titration procedure 

of Richards, Zhang, Mitchell and de Wit (1999) (RZMW), dubbed “Titration 

(random) – Richards et al. (1999)” in Table 1 in the main text, to derive indifference 

points for real $10 LL rewards available at different points in time (the temporal 

                                                
5 “Triers” had smoked cigarettes for the first time in the 6 months prior to the study and they smoked 
an average of 3.76 cigarettes in total over this time span. Smokers, by contrast, had smoked every week 
for at least 6 months prior to the study and they smoked 46.42 cigarettes, on average, per week. 
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horizon ranged from 1 to 365 days). This titration procedure has been used 

extensively in the smoking and discounting literature and deserves further comment. 

 

A titration procedure uses a subject’s choices to determine the next set of choices that 

the subject faces. As a simple example, if someone chooses $10 after 7 days over $5 

now, the titration algorithm assumes that $10 after 7 days will be chosen over all 

amounts of money less than $5 available now (e.g., $4 or $3 available now). 

Consequently, the titration algorithm will narrow the search for a subject’s 

indifference point for that delay period (i.e., 7 days in our example) to the open 

interval ($5, $10). Some titration procedures take the average of the two values 

defining that interval to determine the next SS reward presented to the subject, $7.50 

in this case. If the subject chooses $7.50 now over $10 in 7 days, then the range for 

indifference points is narrowed to ($5, $7.50). If, by contrast, the subject chooses $10 

in 7 days over $7.50 now, then the range for indifference points is narrowed to ($7.50, 

$10). By continually splitting the difference of an interval, the titration algorithm 

converges to a subject’s indifference point for a particular delay.6,7 

 

An issue with this titration procedure is that if a subject makes a mistake (e.g., 

chooses $10 after 7 days when he meant to choose $5 now), it becomes impossible to 

recover the subject’s “true” indifference point because the algorithm uses that mistake 

to refine the subsequent set of choices presented to the subject. The algorithm 

developed by RZMW is more sophisticated and uses two top and two bottom limits, 

rather than one top limit (e.g., $10 in our previous example) and one bottom limit 

(e.g., $5 in our previous example), to alleviate this issue. By employing multiple top 

and bottom limits, the algorithm of RZMW can recover a subject’s indifference point 

even after a mistake. 

 

Another issue with a simple titration algorithm which splits the difference of an 

interval is that the adjusting nature of the algorithm is evident to the subject and he 

can deduce that his future choices depend on his current choices. This raises an 

                                                
6 Clearly the algorithm must terminate at some point, lest it continue indefinitely. In studies with $10 
LL rewards, as in RKHR, the algorithm stopped when the difference between the rewards in the 
interval had declined to $0.50. 
7 As the interval within which a person’s indifference point lies gets smaller and smaller, it is 
questionable whether that person is willing or able to make increasingly fine-grained choices. 
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obvious incentive-compatibility problem because the subject can “game” the 

algorithm so as to be presented with higher SS rewards on subsequent decisions. The 

algorithm of RZMW attempts to mitigate this problem by randomly drawing SS 

amounts from within an interval, rather than simply splitting the difference, and by 

randomly selecting LL reward delays, rather than determining the indifference point 

for one delay before moving on to the next. 

 

RKHR used this algorithm to investigate the discounting behaviour of adolescent 

smokers, never-smokers, and “triers.” Subjects also completed a probability 

discounting task and they were paid for one choice across both tasks; this payment 

scheme is referred to as 1-out-of-2-tasks in Table 1. The H discounting function was 

estimated for each subject, using NLLS, and the estimated discounting parameters 

were log transformed to normalise their distribution.8 These transformed discounting 

parameters were used as data and fed into an ANOVA model so as to compare the 

discounting behaviour of the 3 smoking groups: there were no significant differences 

between smokers, never-smokers and “triers.” As discussed in the main text, this 

near-universal two-step approach to data analysis is not valid statistically because 

point estimates are used as data in subsequent statistical models. 

 

Table 1 collates the results from the other studies and, on inspection, a number of 

interesting patterns emerge. The vast majority (i.e., 25) of the studies investigating 

smoking and discounting behaviour were conducted in the US, 2 took place in Japan, 

1 in Denmark, 1 in Canada, 1 in Germany, and 1 recruited subjects internationally 

over the internet. An important feature of these studies is that they have relatively 

diverse subject pools (i.e., they do not typically rely on convenient student samples 

but rather recruit from the community at large) which thereby bolsters the external 

validity of the results.  

 

However, most of the studies have small sample sizes: 19 of the 31 studies recruited 

less than 100 people and 15 of these studies had samples of less than 70 people. 

                                                
8 RKHR used the common (i.e., base 10) logarithm to transform their data. A number of studies (e.g., 
Reynolds, Richards, Horn and Karraker (2004), Reynolds (2004), Heyman and Gibb (2006), Johnson, 
Bickel and Baker (2007) also adopt the common logarithmic transformation while others (e.g., Baker, 
Johnson and Bickel (2003), Bickel, Yi, Kowal and Gatchalian (2008), Jones, Landes, Yi and Bickel 
(2009), Sheffer et al. (2013)) use the natural logarithm to transform discounting parameters.  
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Fortunately, since 2008, the trend has been towards larger and larger samples (e.g., 

Sweitzer et al. (2008) recruited 710 subjects, Audrain-McGovern et al. (2009) 

recruited 909 subjects, Hofmeyr et al. (2017) recruited 1205 subjects, Kang and Ikeda 

(2014) used a sample of 3450 people, and Stillwell and Tunney (2012) recruited 9038 

individuals). 

 

With regard to elicitation mechanisms, 17 studies used choice procedures, 13 used 

titration, and 1 employed both methods (see Balevich, Wein and Flory (2013)). A 

perennial issue in the interpretation of experimental results is whether real or 

hypothetical rewards were used in a study. If a study uses hypothetical rewards, all it 

really elicits is the choices a person thinks he would make when faced with those 

contingencies, or the choices he thinks the experimenter wants him to make. If real 

rewards are used, by contrast, a subject’s choices ultimately determine the payment he 

receives and this – coupled with a task that is easily understood, a transparent 

payment scheme, salient rewards, and an incentive-compatible experimental design – 

promotes truthful revelation of preferences. Thus, one should give far more credence 

to studies using real as opposed to hypothetical rewards because in the former 

instance one can analyse what people actually did rather than what they think they 

would do or what they want the experimenter to think they would do. 

 

Of the studies in Table 1, 5 only used real rewards (Mitchell (1999), Reynolds et al. 

(2007), Melanko et al. (2009), Reynolds and Fields (2012), Kobiella et al. (2014)) 

whereas 4 used a combination of real and hypothetical rewards (Baker, Johnson and 

Bickel (2003), Heyman and Gibb (2006), Johnson, Bickel and Baker (2007), Mitchell 

and Wilson (2012)). Entirely hypothetical rewards were used in 15 studies (BOM, 

Ohmura, Takahashi and Kitamura (2005), Reynolds (2006), Bickel, Yi, Kowal and 

Gatchalian (2008), Sweitzer et al. (2008), Adams and Nettle (2009), Jones, Landes, 

Yi and Bickel (2009), Businelle, McVay, Kendzor and Copeland (2010), Bickel et al. 

(2012), Stillwell and Tunney (2012), Wing, Moss, Rabin and George (2012), 

Balevich, Wein and Flory (2013), Poltavski and Weatherly (2013), Sheffer et al. 

(2013), Kang and Ikeda (2014)), 1 study did not report whether real or hypothetical 

rewards were used (Audrain-McGovern et al. (2009)), and 6 studies used probabilistic 

payment schemes (RKHR, Reynolds (2004), Reynolds, Richards, Horn and Karraker 

(2004), Chabris et al. (2008), Harrison, Lau and Rutström (2010), Hofmeyr et al. 
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(2017)).9 Thus, approximately half of the studies in Table 1 used entirely hypothetical 

rewards and this should be taken into account when drawing conclusions about the 

relationship between smoking and discounting behaviour. 

 

The temporal horizon (i.e., the time delay between the SS and LL rewards) of the 

studies reported in Table 1 ranges from 6 hours to 25 years. Studies using real 

rewards or probabilistic payment schemes tend to employ far shorter temporal 

horizons than studies using hypothetical rewards; this makes sense because the 

credibility of payments in the distant future would be open to question. Of the studies 

using real rewards or probabilistic payment schemes, only 1 had a temporal horizon 

as long as 2 years (i.e., Harrison, Lau and Rutström (2010)) whereas 7 studies using 

hypothetical rewards had temporal horizons extending out to 25 years (BOM, Baker, 

Johnson and Bickel (2003), Johnson, Bickel and Baker (2007), Bickel, Yi, Kowal and 

Gatchalian (2008), Jones, Landes, Yi and Bickel (2009), Businelle, McVay, Kendzor 

and Copeland (2010), Sheffer et al. (2013)). 

 

Time preferences are represented mathematically using a discounting function. There 

are a number of discounting functions which have been proposed but the majority of 

studies in Table 1 (i.e., 22 out of 31) adopted the assumption that people discount 

hyperbolically and, thus, only used Mazur’s (1984) H function in their analyses.10 

There are 4 studies in Table 1 which directly compared the E and H discounting 

functions, using either R2 or the residual sum of squares (RSS) to adjudicate between 

them, and all of the studies found that the H function better explains discounting data 

(BOM, Ohmura, Takahashi and Kitamura (2005), Bickel, Yi, Kowal and Gatchalian 

(2008), Stillwell and Tunney (2012)). There are 3 studies (Reynolds et al. (2007), 
                                                
9 Studies employing real rewards typically make use of the random lottery incentive mechanism 
(RLIM) to determine subject payment. RLIM randomly selects one of a subject’s choices on a task and, 
in a study with real rewards, pays out this choice with certainty. A probabilistic payment scheme also 
makes use of RLIM but subjects are only given some chance of being paid for the randomly selected 
choice (i.e., subjects are not paid with certainty). In Chabris et al. (2008) subjects were given a 1-in-6 
chance of being paid for one of their choices while in Harrison, Lau and Rutström (2010) subjects were 
given a 1-in-10 chance of being paid for one of their choices. By contrast, RKHR, Reynolds, Richards, 
Horn and Karraker (2004), Reynolds (2004) and Hofmeyr et al. (2017) paid subjects for 1 choice 
across two different tasks, implying that subjects had roughly a 50% chance of being paid for one of 
their choices on the discounting task.  
10 Businelle, McVay, Kendzor and Copeland (2010) and Poltavski and Weatherly (2013) assumed 
hyperbolic discounting but also used the area under the curve (AUC) method of Myerson, Green and 
Warusawitharana (2001) to draw inferences about the relationship between smoking and discounting. 
Mitchell and Wilson (2012) assumed hyperbolic discounting but also estimated a quasi-hyperbolic 
discounting function. 
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Melanko et al. (2009), Reynolds and Fields (2012)) which only used the “theoretically 

neutral” area under the curve (AUC) method of Myerson, Green and 

Warusawitharana (2001) to compare the discounting of smokers and non-smokers11, 

and 2 studies (Harrison, Lau and Rutström (2010) and Hofmeyr et al. (2017)) 

estimated a statistical model that allows both E and H discounting functions to 

characterise the data.  

 

The approach of Harrison, Lau and Rutström (2010) (HLR) and Hofmeyr et al. (2017) 

is based on the idea that some discounting choices may be better explained by an E 

function whereas others may be better explained by an H function and that the data 

should be used to determine the proportion of choices best explained by each model. 

Using this so-called “mixture model” approach, HLR found that approximately 25% - 

40% of discounting choices were best characterised by the H function while Hofmeyr 

et al. (2017) found that 41% - 52% were best characterised by the H function. This 

suggests that researchers investigating the link between smoking and discounting 

behaviour may have relied too heavily on the H function because it does not explain 

all discounting choices all of the time.  

 

Mixture models also address a deeper issue of bias in the estimation of discounting 

models. Suppose, for example, that at least 50% of the choices in a dataset are best 

characterised by the H function whereas the remaining fraction is best characterised 

by the E function. If one just estimates the H model on the whole dataset then one will 

reject the E model in favour of the H model because the estimate obtained from the H 

model will be halfway between the “true” H estimate and the estimate one would 

obtain from the E model. Thus, if one just estimates the H model then this biases 

against the E model. Mixture models remove this source of bias by allowing both 

discounting models to account for the data, and by estimating the proportion of the 

data which each model explains. We adopt the approach of HLR and Hofmeyr et al. 

(2017) and estimate mixture models of a number of different discounting 

specifications so as not to be wedded to any particular discounting framework and to 

                                                
11 The AUC method is “theoretically neutral” because it does not assume that discounting takes a 
particular form (e.g., E or H). Instead, when using the AUC method, one calculates the area under a 
subject’s derived indifference points and normalises this to lie in the closed unit interval [0, 1]. Larger 
AUCs imply shallower discounting and, thus, the AUCs of smokers and non-smokers can be compared 
to determine whether the groups differ in their discounting behaviour. 
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determine the proportion of discounting choices that is explained by each 

specification. 

 

HLR deserves further comment because it was the first study in this literature to use a 

front end delay (FED) to the SS reward and it is the only study which incorporates 

utility function curvature when estimating discounting models. Prior to the work of 

Coller and Williams (1999) it was common to make receipt of the SS reward 

immediate, as is the case in most of the studies in Table 1. An issue with an 

experimental design where the SS reward is immediate (i.e., a design with no FED) is 

that it may increase preference for the SS reward due to the additional transaction 

costs and uncertainty associated with receipt of the LL reward. A FED is used to hold 

these transactions costs constant across the two rewards. Following the work of HLR, 

Mitchell and Wilson (2012), Kang and Ikeda (2014) and Kobiella et al. (2014) used a 

FED for some of the choices they presented to subjects. 

 

Time preferences are defined over time-dated utility flows, not flows of money. These 

are equivalent if a utility function is linear but Andersen, Harrison, Lau and Rutström 

(2008) showed that if a utility function is concave then the assumption of linearity 

will, for the same observed choices, bias the estimation of discounting parameters 

upwards. Thus, to draw accurate inferences about discounting behaviour it is 

important to incorporate utility function curvature in the estimation of discounting 

models. To our knowledge, HLR are the only researchers to incorporate the shape of 

the utility function when analysing the relationship between smoking and discounting 

behaviour. They used a risk preference task to determine the curvature of the utility 

function, under the assumption that expected utility theory characterised choices over 

risky prospects, which they then estimated jointly with the parameters of discounting 

models.  

 

Incorporating utility function curvature had a marked effect on their results. 

Assuming linear utility, HLR found that both male and female smokers discount 

significantly more than their non-smoking counterparts. However, when the 

discounting models were estimated jointly with the curvature of the utility function, 

only male smokers discounted significantly more than male non-smokers; there was 

no statistically significant difference in the discounting behaviour of female smokers 
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and non-smokers. The null result for women, under joint estimation, was driven by 

the fact that female smokers were significantly more risk averse (i.e., had significantly 

more curvature in their utility functions) than female non-smokers. By assuming 

linear utility, this difference in utility function curvature among women showed up as 

a difference in their discounting behaviour.  Thus, to draw accurate inferences about 

smoking and discounting, it is crucial to jointly estimate utility function curvature and 

discounting parameters.  

 

An important feature of the estimates presented in Table 1 is that 27 of the studies 

computed daily discount rates. This is common in the behavioural psychology 

literature but not in economics where annual discount rates are the norm. Of the 

remaining studies, 3 estimated annual rates, and 1 estimated weekly rates. 

 

As discussed in the main text, the last column of Table 1 reports whether the 

researchers found a significant statistical relationship between smoking and 

discounting behaviour. Of the 37 reported findings in Table 1, 29 were positive and 

significant while the remaining 8 were null results. Thus, the bulk of findings in this 

literature – irrespective of whether real or hypothetical rewards, long or short 

temporal horizons, choice or titration elicitation mechanisms, small or large samples, 

and simple or complex statistical procedures were used – point to a positive 

relationship between smoking and discounting behaviour. 

 

ADDITIONAL REFERENCES 

 
RICHARDS, J. B., L. ZHANG, S. H. MITCHELL, AND H. DE WIT (1999): “Delay or 

Probability Discounting in a Model of Impulsive Behavior: Effect of 
Alcohol,” Journal of the Experimental Analysis of Behavior, 71, 121-43. 
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APPENDIX B  
[ONLINE WORKING PAPER] 

 

As discussed in the main text, Table 2 provides a detailed summary of studies 

investigating the relationship between risk preferences and smoking behaviour. In this 

appendix we discuss Table 2 in more detail. 

 

Mitchell (1999) conducted the first experimental study investigating the risk 

preferences of 20 relatively heavy12, current smokers (NS = 20) and 20 never-smokers 

(NNS = 20). She presented subjects with 137 choice questions between a lottery which 

paid out $10 with specific probabilities (p = 0.1, 0.25, 0.5, 0.75, 0.9, and 1) and $0 

with the complementary probability (i.e., the lottery ($10, p; $0, 1 – p)), and a sure 

amount of money which varied between $0.01 and $10.50. The questions were drawn 

randomly from this battery, without replacement, and presented to subjects 

sequentially. At the end of the experiment, one of a subject’s choices was selected 

randomly for payment. 

 

Mitchell used each subject’s choices to determine a certainty equivalent for the lottery 

($10, p; $0, 1 – p) at different values of p. For example, if a subject chose $4 over the 

lottery ($10, 0.5; $0, 0.5) but then chose the lottery ($10, 0.5; $0, 0.5) over $3.50, the 

subject was assigned a certainty equivalent of $3.75. Taking the average of these two 

values is arbitrary and doing so throws away information about the uncertainty of this 

estimate; all that one can infer from this pattern of choices is that a subject’s certainty 

equivalent lies in the open interval ($3.50, $4). Interval data of this form is analysed 

appropriately using interval regression methods but Mitchell used the estimated 

certainty equivalents (i.e., the point estimate $3.75 in the example) as data to 

construct Mann-Whitney tests of differences in the certainty equivalents of heavy 

smokers and never-smokers; no significant differences between these groups were 

found. 

 

                                                
12 The smokers in Mitchell’s (1999) study stated that they smoked at least 15 cigarettes per day and 
provided a breath sample to verify their smoking status. 
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In addition, Mitchell fitted the probability discounting (PD) probability weighting 

function (PWF)13 to the certainty equivalents for each subject and then compared the 

estimated PWF parameters of smokers and never-smokers. She found evidence of risk 

aversion in both groups (i.e., γ > 1) but no significant differences in the risk 

preferences of smokers and never-smokers. Echoing the issue raised earlier, using the 

point estimate of any parameter as a datum ignores the uncertainty of this estimate 

and should not be used for inferential purposes.14 

 

Reynolds, Karraker, Horn and Richards (2003) (RKHR) found that risk preferences 

differ according to smoking status but perhaps not in the way that would be expected, 

and with a statistical approach which is not valid. RKHR used the titration algorithm 

of Richards, Zhang, Mitchell and de Wit (1999), which was discussed in Appendix A, 

to elicit certainty equivalents for the lottery ($10, p; $0, 1 – p) at different values of p 

among adolescent smokers (NS = 19), adolescent never-smokers (NNS = 19), and 

adolescent “triers” (NT = 17).15,16 Subjects also completed a delay discounting task 

and they were paid for one choice across both tasks; this payment scheme is referred 

to as 1-out-of-2-tasks in Table 2.  

 

RKHR fitted the PD PWF to the estimated certainty equivalents, using non-linear 

least squares (NLLS) estimation, and then used the estimated PWF parameters as data 

in an ANOVA model so as to compare the three smoking status groups. For reasons 

outlined earlier, this statistical approach is not valid but RKHR report that they found 

evidence of risk aversion in all groups (γ > 1) and they found that “triers” were more 

                                                
13 The PD model is just Yaari’s (1987) dual theory of choice under risk limited to a circumscribed class 
of lotteries and with a specific PWF: π(p) = p / [p + γ(1 – p)]; if γ > 1 this represents probability 
pessimism and risk aversion.  
14 The seventh column of Table 2 lists the statistical method that was adopted in each study and 
provides a binary summary judgement (i.e., valid or not valid), in parentheses, of whether the statistical 
approach was valid given the data obtained in the experiment. This binary summary judgement does 
not imply that the estimates which the researchers obtained were “wrong” but rather that the method 
used to derive the estimates was not appropriate for the data. 
15 “Triers” had smoked cigarettes for the first time in the 6 months prior to the study and they smoked 
an average of 3.76 cigarettes in total over this time span. Smokers, by contrast, had smoked every week 
for at least 6 months prior to the study and they smoked 46.42 cigarettes, on average, per week. 
16 As discussed in Appendix A, a titration algorithm is susceptible to being “gamed” by subjects 
because it narrows the search for the interval within which a person’s certainty equivalent, for a 
particular value of p, lies by making the choices an experimental subject faces contingent on his prior 
choices. Thus, titration procedures lack incentive compatibility. Moreover, RKHR used the mid-point 
of the titration-derived interval as the person’s certainty equivalent, even though any value within this 
interval is consistent with the data generating process (DGP). In other words, RKHR used an estimate 
as data, without taking into account the uncertainty of this estimate.  
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risk averse than smokers (p < 0.05) and never-smokers (p < 0.05); there were no 

significant differences between smokers and never-smokers. As discussed in the main 

text, this near-universal two-step approach to data analysis is not valid statistically 

because point estimates are used as data in subsequent statistical models. 

 

Table 2 collates the results from the other studies. A clear majority of the studies (8 

out of 11) were conducted in the US, with only one study a piece taking place in 

Japan, Denmark, and South Africa. An important feature of these studies is that only 3 

use student subject pools while the rest recruit from the community at large; diverse 

samples help to bolster the external validity of the results so it is unfortunate that the 

statistical analyses in every study except Harrison, Lau and Rutström (2010) (HLR) 

hinder meaningful inferences. 

 

The majority of studies on risk preferences and smoking behaviour have small sample 

sizes: the first 7 studies listed in Table 2 recruited less than 60 people. Fortunately, 

since 2008, 4 relatively large studies have taken place: Anderson and Mellor (2008) 

(AM) elicited risk preference data on 79 smokers and 898 non-smokers; HLR 

recruited 252 subjects; Szrek, Chao, Ramlagan and Peltzer (2012) (SCRP) used a 

sample of 351 individuals; and Poltavski and Weatherley (2013) recruited 182 people. 

 

With regard to elicitation mechanisms, there is a roughly equal split between titration 

(6 out of 11 studies) and choice procedures. AM, HLR, and SCRP used an ordered 

choice elicitation mechanism, originally devised by Miller, Meyer and Lanzetta 

(1969) and refined by Holt and Laury (2002) (HL), which has been used extensively 

in the experimental economics literature on choice under risk, and thereby deserves 

further comment.17 This elicitation procedure is referred to as a multiple price list 

(MPL). 

 

In a MPL, subjects are given a table with 10 rows, and on each row they must choose 

between a “safe” and a “risky” lottery. In Table B:1, which is adapted from Table I in 

HL (p. 1645), Option A is the “safe” lottery because the range of the prizes is small 

(e.g., ($2.00, p; $1.60, 1 – p)), and Option B is the “risky” lottery because the range of 
                                                
17 Harrison and Rutström (2008, p. 44-61) provide a detailed discussion of different risk preference 
elicitation mechanisms. 



 -A14- 

the prizes is large (e.g., ($3.85, p; $0.10, 1 – p)). On row 1 of the table p = 0.1, and as 

you move down the table p increases by 0.1 on each row, implying that by row 10, p 

= 1. In the last 3 columns of the table we have included the expected value (EV) of 

Option A, the EV of Option B, and their difference, although this information is not 

usually provided to subjects.  

 

In row 1 of Table B:1, the EV of Option A exceeds the EV of Option B but by row 5 

the EV of Option B exceeds the EV of Option A. The logic behind this elicitation 

mechanism is that only a very risk loving subject would choose Option B (the “risky” 

lottery) on row 1, and only a very risk averse subject would choose Option A (the 

“safe” lottery) on row 9.18 A risk neutral subject would switch from choosing Option 

A to Option B as the EV difference first changes sign (i.e., on row 5 of the table). 

Thus, if a subject switches to Option B before row 5 he is risk loving, if he switches 

to Option B on row 5 he is risk neutral, and if he switches to Option B after row 5 he 

is risk averse. 

 
TABLE B:1: LOTTERY CHOICES IN THE HL RISK PREFERENCE EXPERIMENT 

 
Option A 

 
Option B EVA EVB Difference 

Row p $ p $   p $ p $ ($) ($) ($) 
1 0.1 2.00 0.9 1.60 

 
0.1 3.85 0.9 0.10 1.64 0.48 1.17 

2 0.2 2.00 0.8 1.60 
 

0.2 3.85 0.8 0.10 1.68 0.85 0.83 
3 0.3 2.00 0.7 1.60 

 
0.3 3.85 0.7 0.10 1.72 1.23 0.50 

4 0.4 2.00 0.6 1.60 
 

0.4 3.85 0.6 0.10 1.76 1.60 0.16 
5 0.5 2.00 0.5 1.60 

 
0.5 3.85 0.5 0.10 1.80 1.98 -0.18 

6 0.6 2.00 0.4 1.60 
 

0.6 3.85 0.4 0.10 1.84 2.35 -0.51 
7 0.7 2.00 0.3 1.60 

 
0.7 3.85 0.3 0.10 1.88 2.73 -0.85 

8 0.8 2.00 0.2 1.60 
 

0.8 3.85 0.2 0.10 1.92 3.10 -1.18 
9 0.9 2.00 0.1 1.60 

 
0.9 3.85 0.1 0.10 1.96 3.48 -1.52 

10 1 2.00 0 1.60   1 3.85 0 0.10 2.00 3.85 -1.85 
Source: HL (p. 1645) 

 

We can say even more about risk preferences by putting some parametric structure on 

the subjects’ utility functions. Specifically, if we assume that subjects employ a power 

utility function U(y) = yr, which displays constant relative risk aversion (CRRA), and 

                                                
18 As row 10 involves sure outcomes (i.e., p = 1) it is not relevant to risk preferences at all but is a good 
test of whether subjects understood the experiment because one would expect them to choose the larger 
sure outcome (e.g., $3.85 from the example) over the smaller sure outcome (e.g., $2.00 from the 
example). Harrison and Rutström (2009, p. 132) also advocate including a row 0 where the smaller 
outcome under each lottery (i.e., $1.60 under Option A and $0.10 under Option B) is received with 
certainty so as to “bracket” the MPL logic. In other words, if subjects can see that they should choose 
Option A on row 0 and Option B on row 10, then all they need to determine is the row on which they 
switch. 
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that they evaluate lotteries according to expected utility (EU) theory, then we can use 

a subject’s pattern of choices on the MPL to define bounds on the risk preference 

parameter r.19  

 

For example, suppose that a subject chose Option A on the first 5 rows of Table B:1 

and then switched to Option B on row 6. To calculate the upper bound on r we solve 

the following equation: 

0.5($2.00)r + 0.5($1.60)r = 0.5($3.85)r + 0.5($0.10)r ⇔ r  ≈ 0.85 

This equation defines the value of r which makes a subject indifferent between the 

two lotteries on row 5. To calculate the lower bound on r we solve the following 

equation: 

0.6($2.00)r + 0.4($1.60)r = 0.6($3.85)r + 0.4($0.10)r ⇔ r  ≈ 0.59 

This equation defines the value of r which makes a subject indifferent between the 

two lotteries on row 6. Thus, if a subject chooses the Option A lottery on the first 5 

rows and then switches to the Option B lottery on row 6, this pattern of choices 

implies a risk preference parameter r which lies in the open interval (0.59, 0.85). 

Interval data of this form is analysed appropriately using interval regression methods 

but AM and SCRP used the mid-point of these intervals as data to compare the risk 

preferences of smokers and non-smokers. As discussed previously, this approach 

throws away useful information on the uncertainty of the parameter estimates and 

violates the statistical assumptions of the second-stage models. Thus, the inferences 

drawn from these data are not valid statistically. 

 

As discussed in the main text, a majority of the studies in Table 2 (8 out of 11) 

adopted the PD approach20 to risk preferences, which defines risk aversion solely in 

terms of the shape of the PWF.21 As subjective probability distortions drive risk 

                                                
19 Under EU theory the shape of a utility function determines attitudes toward risk. Using the power 
utility function above, r > 1 denotes risk loving behaviour, r = 1 denotes risk neutral behaviour, and r < 
1 denotes risk aversion. If r = 0, U(y) = ln y, and if r < 0, U(y) = -yr, following Wakker (2008). AM, 
HLR and SCRP use a different parameterisation of the CRRA utility function: U(y) = y(1-r)/(1-r). Under 
this formulation, r < 0 denotes risk loving behaviour, r = 0 implies risk neutral behaviour, and r > 0 
denotes risk aversion; if r = 1, U(y) = ln y. 
20 The PD model is just Yaari’s (1987) dual theory of choice under risk limited to a circumscribed class 
of lotteries and with a specific PWF: π(p) = p / [p + γ(1 – p)]; if γ > 1 this represents probability 
pessimism and risk aversion.  
21 Of these studies, 3 also employed the area under the curve (AUC) method of Myerson, Green and 
Warusawitharana (2001). When using the AUC method, one calculates the area under a subject’s 
derived certainty equivalents and normalizes this to lie in the closed unit interval. Larger AUCs imply 
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preferences in the PD framework, it is surprising that 6 out of these 8 studies only 

used 5 probabilities in the elicitation task; the remaining two studies (Mitchell (1999) 

and Yi, Chase and Bickel (2007)) only used 6 and 7 probabilities, respectively. AM, 

HLR, and SCRP assumed that EU theory characterises choice under risk, so risk 

preferences are determined solely by the shape of the utility function. All of these 

studies used a MPL, which has 10 probabilities, and they assumed a CRRA utility 

function: specifically, U(y) = y(1-r) / (1-r). We allow risk preferences to be determined 

both by the shape of the utility function and the shape of the PWF so as to provide a 

bridge between prior studies in the literature. In addition, this allows us to explore 

whether smokers and non-smokers differ in the shape of their utility functions, the 

shape of their PWFs, or both. 

 

In contrast to studies of smoking and discounting behaviour, there is a greater 

proportion of studies using real rewards or probabilistic payment schemes in the 

literature on smoking and risk preferences. Table 2 shows that 4 studies (Mitchell 

(1999), Reynolds et al. (2007), AM, SCRP) used only real rewards, whereas 3 studies 

used probabilistic payment schemes (RKHR, Reynolds, Richards, Horn and Karraker 

(2004), HLR).22 The remaining 4 studies (Ohmura, Takahashi and Kitamura (2005), 

Reynolds (2006), Yi, Chase and Bickel (2007), Poltavski and Weatherly (2013)) used 

entirely hypothetical rewards. The use of real rewards or probabilistic payment 

schemes – coupled with a task that is easily understood, a transparent payment 

scheme, salient rewards, and an incentive-compatible experimental design – promotes 

the truthful revelation of preferences and, thus, far more credence should be given to 

the results from these studies than those which employ hypothetical rewards. 

 

As discussed in the main text, the final column of Table 2 shows whether the studies 

found a significant statistical relationship between risk preferences and smoking 
                                                                                                                                      
less risk aversion and, thus, the AUCs of smokers and non-smokers can be compared to determine 
whether the groups differ in their risk preferences. However, the AUC method does not allow one to 
derive valid statistical tests of the hypothesis of differences in risk preferences. 
22 Studies employing real rewards typically make use of the random lottery incentive mechanism 
(RLIM) to determine subject payment. RLIM randomly selects one of a subject’s choices on a task and, 
in a study with real rewards, pays out this choice with certainty. A probabilistic payment scheme also 
makes use of RLIM but subjects are only given some chance of being paid for the randomly selected 
choice (i.e., subjects are not paid with certainty). In HLR subjects were given a 1-in-10 chance of being 
paid for one of their choices. By contrast, RKHR and Reynolds, Richards, Horn and Karraker (2004) 
paid subjects for 1 choice across 2 different tasks, implying that subjects had roughly a 50% chance of 
being paid for one of their choices on the risk preference task. 
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behaviour: the results are equivocal and, other than HLR, the statistical analyses are 

not valid. Null results were reported in 3 studies, positive results were reported in 5 

studies, and negative results were reported in 3 studies. These conflicting results cut 

across different elicitation mechanisms, real and hypothetical rewards, different 

frameworks for choice under risk, and different methods of analysis. Thus, Table 2 

shows that the relationship between risk preferences and smoking behaviour, or lack 

thereof, differs markedly across studies. 
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APPENDIX C 
[ONLINE WORKING PAPER] 

 

The introductory presentation, risk preference task presentation, and time preference 

task presentation are included in this appendix. The introductory presentation explains 

the nature of the risk and time preference tasks and it includes a detailed discussion of 

the physical randomisation devices used in the experiments. The risk preference task 

presentation discusses the computer environment within which choices are made, the 

lotteries on offer and how to interpret them, and the payment scheme that is used to 

determine earnings. The time preference task presentation explains the computer 

environment within which choices are made, the calendar which shows subjects the 

dates at which smaller, sooner (SS) and larger, later (LL) rewards are available, and 

the payment scheme that is used to determine earnings. The presentations were 

designed to ensure that subjects understood how their choices ultimately led to the 

earnings they received so as to incentivise the truthful revelation of preferences.  

 

 
 

Introduc)on*
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Welcome*
•  Hello*everyone*and*welcome*to*today’s*
research*session.*

•  Thank*you*for*agreeing*to*take*part*in*this*
study,*your*views*and*choices*will*be*very*
informa)ve*and*helpful.*

•  Before*we*get*started*I*would*like*to*explain*
how*things*are*going*to*work.*

•  When*I*have*finished*this*short*explana)on*I*
will*ask*you*to*read*and*sign*a*consent*form.*

•  Once*that*is*done,*we*can*begin*with*the*
tasks.*

2*Tasks*and*a*Ques)onnaire*
•  You*will*take*part*in*2*tasks*and*you*will*have*the*
opportunity*to*earn*money*in*each*task.*

•  One*of*the*tasks*requires*you*to*make*choices*
between*loHeries*with*varying*prizes*and*
chances*of*winning.*You*will*make*40*of*these*
choices.*

•  The*other*task*asks*you*to*choose*between*
amounts*of*money*available*at*different*points*in*
)me.*You*will*make*60*of*these*choices.*

•  Once*you*have*completed*the*2*tasks,*you*will*
need*to*fill*out*a*short*ques)onnaire.*

•  Once*this*is*done,*we*will*determine*your*
earnings*and*you*will*be*free*to*leave.*
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Earnings*
•  You*will*be*paid*R20*just*for*par)cipa)ng*in*
today’s*session.*

•  At*the*end*of*the*session,*we*will*determine*your*
earnings*for*the*tasks.*

•  Some*of*this*money*will*be*paid*to*you*at*the*end*
of*the*session*and*the*rest*of*it*will*be*paid*to*
you*in*the*future.*

•  This*is*why*we*need*your*bank*details:*to*pay*you*
via*electronic*transfer*at*a*future*date.*

•  To*determine*your*earnings*for*the*tasks,*we*will*
ask*you*to*roll*some*dice.*

•  Let’s*go*through*a*quick*explana)on*of*the*dice*
you*will*roll.*

10Vsided*dice*
•  At*the*end*of*today’s*session*we*will*ask*you*to*roll*some*dice*into*a*

plas)c*bowl*which*you*can*see*below.*
•  Two*of*the*dice*that*you*will*roll*are*10Vsided*dice*and*these*are*

used*to*select*a*number*between*1*and*100.*
•  Every*number*between*1*and*100,*and*including*1*and*100,*is*

equally*likely*to*occur.*
•  An*example*of*a*dice*roll*is*shown*below.*
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10Vsided*dice*
•  Let’s*look*at*a*closeVup*of*the*10Vsided*dice.*
•  As*you*can*see,*one*of*the*10Vsided*dice*has*sides*which*increase*in*

mul)ples*of*10:*00,*10,*20,*30,*40,*50,*60,*70,*80*and*90.*
•  The*other*10Vsided*die*has*sides*which*increase*in*mul)ples*of*1:*0,*1,*2,*3,*

4,*5,*6,*7,*8*and*9.*
•  You*will*roll*the*two*10Vsided*dice*together*and*add*the*numbers*on*the*

two*dice*to*select*a*number*between*1*and*100.*
•  In*the*example*below,*the*number*that*was*rolled*is*86*(80*+*6).*

10Vsided*dice*
•  To*tell*the*difference*between*a*6*and*a*9*there*is*a*dot*at*

the*base*of*the*number.*
•  This*is*why*the*number*in*the*picture*on*the*le_*below*is*a*

6:*there*is*a*dot*at*the*base*of*the*6.*
•  9*looks*different*because*there*is*a*dot*at*the*base*of*the*9.*
•  The*picture*on*the*right*below*shows*you*what*a*9*looks*

like.*
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10Vsided*dice*
•  To*roll*a*number*between*1*and*9*you*need*to*roll*00*and*a*single*

number*between*1*and*9.*
•  As*you*can*see*in*the*picture*on*the*le_*below,*the*number*that*

was*rolled*is*5*(00*+*5).*
•  In*the*case*where*you*roll*00*and*0,*this*will*be*treated*as*100.*
•  As*you*can*see*in*the*picture*on*the*right*below,*the*number*that*

was*rolled*is*100*(00*and*0).*

Consent*Form*
•  We*have*now*finished*the*introductory*
explana)on.*

•  To*con)nue*with*today’s*session*I*need*you*to*
read*and*sign*the*consent*form.*

•  This*form*explains*your*rights*as*a*research*
par)cipant*and*by*signing*it,*you*give*your*
consent*to*par)cipate*in*the*study.*

•  If*you*have*any*ques)ons*please*raise*your*
hand*and*someone*will*come*to*answer*them.*

•  You*may*read*through*the*consent*form*now.*
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Task%Instruc,ons%

Introduc,on%
•  In%this%task%you%will%choose%between%lo6eries%
with%varying%prizes%and%chances%of%winning.%

•  On%each%computer%screen%you%will%be%presented%
with%a%pair%of%lo6eries%and%you%will%need%to%
choose%one%of%them.%

•  There%are%40%pairs%of%lo6eries%in%this%task.%
•  For%each%pair%of%lo6eries,%you%should%choose%the%
lo6ery%that%you%would%prefer%to%play.%

•  You%will%actually%get%the%chance%to%play%one%of%the%
lo6eries%you%choose,%and%you%will%be%paid%
according%to%the%outcome%of%this%lo6ery.%

•  So%you%should%think%carefully%about%which%lo6ery%
you%prefer%in%each%pair.%
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Computer%Display%
•  All%of%the%choices%in%this%task%will%be%made%on%a%computer.%%
•  This%is%what%the%computer%display%will%look%like:%%

•  The%display%on%your%screen%will%be%larger%and%easier%to%read.%

Computer%Display%
•  On%the%computer%screen%there%are%two%lo6eries:%a%“LeK”%lo6ery%and%a%

“Right”%lo6ery.%
•  Let’s%look%at%the%LeK%lo6ery%together.%
•  For%the%LeK%lo6ery%there%is%a%20%%chance%of%winning%R0,%a%60%%chance%of%

winning%R100,%and%a%20%%chance%of%winning%R200.%
•  The%coloured%areas%of%the%pie%chart%and%the%text%below%the%pie%chart%

represent%these%chances.%
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The%LeK%Lo6ery%
•  As%you%can%see,%20%%of%the%pie%

chart%is%blue%and%this%means%you%
have%a%20%%chance%of%winning%R0.%

•  This%is%what%the%blue%text%below%the%
pie%chart%tells%you:%“Chance%of%
winning%R0%is%20%”.%

•  Similarly,%60%%of%the%pie%chart%is%red%
which%means%there%is%a%60%%chance%
of%winning%R100.%

•  This%is%what%the%red%text%below%the%
pie%chart%tells%you:%“Chance%of%
winning%R100%is%60%”.%

•  Finally,%20%%of%the%pie%chart%is%
green%which%means%there%is%a%20%%
chance%of%winning%R200.%

•  This%is%what%the%green%text%below%
the%pie%chart%tells%you:%“Chance%of%
winning%R200%is%20%”.%

The%Right%Lo6ery%
•  If%we%look%at%the%Right%lo6ery%we%

see%that%there%is%a%10%%chance%of%
winning%R0%and%a%90%%chance%of%
winning%R100.%

•  10%%of%the%pie%chart%is%blue%and%
this%means%there%is%a%10%%chance%
of%winning%R0.%

•  This%is%what%the%blue%text%below%
the%pie%chart%tells%you:%“Chance%of%
winning%R0%is%10%”.%

•  90%%of%the%pie%chart%is%red%which%
means%there%is%a%90%%chance%of%
winning%R100.%

•  This%is%what%the%red%text%below%
the%pie%chart%tells%you:%“Chance%of%
winning%R100%is%90%”.%
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Your%Lo6ery%Winnings%
•  The%amount%that%you%win%from%a%lo6ery%will%be%determined%

by%the%draw%of%a%random%number%between%1%and%100.%
•  Each%number%between%1%and%100,%and%including%1%and%100,%

is%equally%likely%to%occur.%
•  You%will%draw%this%number%yourself%by%rolling%two%10Xsided%

dice.%
•  One%of%the%10Xsided%dice%has%sides%which%increase%in%

mul,ples%of%10:%00,%10,%20,%30,%40,%50,%60,%70,%80%and%90.%
•  The%other%10Xsided%die%has%sides%which%increase%in%mul,ples%

of%1:%0,%1,%2,%3,%4,%5,%6,%7,%8%and%9.%
•  You%will%roll%the%two%10Xsided%dice%together%and%add%the%

numbers%on%the%two%dice%to%select%a%number%between%1%
and%100.%

•  For%example,%suppose%the%one%10Xsided%die%lands%on%70%and%
the%other%10Xsided%die%lands%on%5.%

•  Then%we%will%select%number%75.%
•  We%will%work%through%an%actual%example%of%this%later.%

Choices%
•  Now,%suppose%that%you%prefer%the%LeK%lo6ery%in%the%example%below.%
•  To%choose%the%LeK%lo6ery%just%click%the%bu6on%saying%“Select%LeK”.%
•  This%is%what%the%display%will%then%look%like%if%you%choose%the%LeK%lo6ery.%
•  You%can%then%click%the%bu6on%saying%“Confirm”%to%move%on%to%the%next%

screen%with%a%new%pair%of%lo6eries.%
•  If%you%would%like%to%change%your%choice%then%just%click%“Cancel”.%
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Choices%
•  Suppose%instead%that%you%prefer%the%Right%lo6ery%in%the%example%below.%
•  To%choose%the%Right%lo6ery%just%click%the%bu6on%saying%“Select%Right”.%
•  This%is%what%the%display%will%then%look%like%if%you%choose%the%Right%lo6ery.%
•  You%can%then%click%the%bu6on%saying%“Confirm”%to%move%on%to%the%next%

screen%with%a%new%pair%of%lo6eries.%
•  If%you%would%like%to%change%your%choice%then%just%click%“Cancel”.%

Total%Number%of%Choices%%
•  You%will%need%to%make%40%choices%across%40%screens.%
•  On%each%screen%there%is%a%different%lo6ery%pair%and%
you%will%need%to%choose%either%the%LeK%lo6ery%or%the%
Right%lo6ery.%

•  The%Rand%amounts%under%the%lo6eries%change%on%
each%screen.%

•  In%addi,on,%the%chances%of%winning%the%Rand%
amounts%change%for%each%lo6ery%on%each%screen.%

•  So%please%pay%careful%a6en,on%when%making%each%
choice.%

•  At%the%end%of%the%session%today%we%will%determine%
your%earnings%for%this%task%in%the%following%way.%
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Payment%
•  First,%you%will%select%one%of%the%lo6ery%pairs%from%this%task%by%rolling%

a%4Xsided%die%and%then%a%10Xsided%die.%
•  You%will%roll%the%4Xsided%die%to%select%10%lo6ery%pairs.%
•  If%the%die%lands%on%1,%you%will%select%lo6ery%pairs%1X10;%if%the%die%

lands%on%2,%you%will%select%lo6ery%pairs%11X20;%if%the%die%lands%on%3,%
you%will%select%lo6ery%pairs%21X30;%and%if%the%die%lands%on%4,%you%will%
select%lo6ery%pairs%31X40.%

•  You%will%then%roll%the%10Xsided%die%to%select%one%lo6ery%pair%from%
this%set%of%10%pairs.%

•  For%example,%if%the%4Xsided%die%lands%on%3,%you%will%select%lo6ery%
pairs%21X30.%

•  If%you%then%roll%a%7%on%the%10Xsided%die,%you%will%select%lo6ery%pair%
27.%

•  Once%you%have%selected%the%lo6ery%pair,%we%will%look%at%the%choice%
that%you%made:%the%LeK%lo6ery%or%the%Right%lo6ery.%

•  We%will%then%determine%your%winnings%from%this%lo6ery%by%rolling%
two%10Xsided%dice,%as%explained%earlier.%

•  Let’s%see%what%this%means%for%the%example%we%looked%at%earlier.%

Payment%
•  Suppose%that%the%lo6ery%pair%we%looked%at%earlier%gets%selected%for%payment%

when%you%roll%the%4Xsided%die%and%then%the%10Xsided%die.%
•  And%suppose%that%you%chose%the%LeK%lo6ery%on%this%screen.%
•  For%the%LeK%lo6ery%there%is%a%20%%chance%of%winning%R0,%a%60%%chance%of%winning%

R100,%and%a%20%%chance%of%winning%R200.%
•  You%will%now%roll%two%10Xsided%dice%to%determine%your%winnings.%
•  As%you%can%see%on%the%screen,%if%you%roll%a%number%between%1%and%20,%you%will%

win%R0.%Thus,%you%have%a%20%%chance%of%winning%R0.%
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Payment%
•  If%you%roll%a%number%between%21%and%80%you%will%win%R100.%Thus,%you%have%a%60%%

chance%of%winning%R100.%
•  Finally,%if%you%roll%a%number%between%81%and%100%you%will%win%R200.%Thus,%you%have%

a%20%%chance%of%winning%R200.%
•  Suppose%you%roll%the%two%10Xsided%dice%and%one%10Xsided%die%lands%on%60%while%the%

other%10Xsided%die%lands%on%7.%
•  Then%we%will%select%number%67.%
•  Because%67%is%between%21%and%80,%you%will%win%R100.%

Payment%
•  Thus,%payment%for%this%task%is%determined%by%three%
things:%
1.  The%lo6ery%pair%that%is%chosen%to%be%played%out%using%the%

4Xsided%die%and%the%10Xsided%die.%
2.  Your%choice%of%the%LeK%lo6ery%or%the%Right%lo6ery%in%each%

pair.%
3.  The%outcome%of%that%lo6ery%when%you%roll%the%two%10X

sided%dice.%

•  All%winnings%will%be%paid%in%cash%at%the%end%of%
today’s%session.%
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Choose%the%Op,on%you%Prefer%
•  The%lo6ery%you%prefer%in%each%pair%is%a%ma6er%of%
personal%taste.%

•  The%person%next%to%you%may%have%different%tastes%so%
their%choices%should%not%ma6er%to%you.%

•  Please%work%silently%and%make%your%choices%by%
thinking%carefully%about%each%lo6ery.%

•  Since%there%is%a%chance%that%any%one%of%your%40%
choices%could%be%selected%for%payment,%you%should%
approach%each%pair%of%lo6eries%as%if%it%is%the%one%that%
you%will%be%paid%for.%

•  If%you%have%any%ques,ons%please%raise%your%hand%and%
someone%will%come%to%answer%them.%

•  You%may%begin%the%task.%
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Task%Instruc,ons%

Introduc,on%
•  In%this%task%you%will%choose%between%different%
amounts%of%money%available%at%different%,mes.%

•  You%will%need%to%make%60%choices%in%total.%
•  For%each%choice%you%will%decide%between%a%
smaller%amount%of%money%which%is%available%
sooner%and%a%larger%amount%of%money%which%is%
available%later.%

•  One%of%your%60%choices%will%be%selected%at%
random%for%payment%and%you%will%receive%the%
amount%of%money%that%you%chose%on%the%
appropriate%date.%
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Computer%Display%
•  All%of%these%choices%will%be%made%on%a%computer.%%
•  This%is%what%the%computer%display%will%look%like:%%

•  The%display%on%your%screen%will%be%larger%and%easier%to%read.%

Computer%Display%
•  At%the%top%of%the%display%is%a%calendar%showing%you%today’s%date%in%purple%

(11%July%2012)%and%a%future%date%in%green%(25%July%2012).%%
•  Below%the%calendar%are%two%columns:%a%purple%column%with%amounts%of%

money%available%today%and%a%green%column%with%amounts%of%money%
available%in%14%days%from%today.%

•  You%need%to%make%4%choices%on%this%screen.%%
•  Each%choice%appears%on%a%different%row.%
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Choices%
•  Let’s%look%at%the%first%row%together.%
•  In%the%first%row,%you%need%to%choose%between%receiving%R200%today%or%

R201.15%in%14%days%from%today.%
•  Note%that%R200%is%the%smaller%of%the%two%amounts%but%it%is%available%today.%
•  R201.15%is%the%larger%of%the%two%amounts%but%it%is%only%available%aUer%14%

days.%
•  Suppose%that%you%prefer%R200%today%rather%than%R201.15%in%14%days.%
•  To%choose%R200%today%just%click%the%buXon%saying%“Select”%under%%%%%%%%%%%

“R200%today”.%%
•  This%is%what%the%display%will%look%like%if%you%choose%R200%today.%

Choices%
•  Suppose%instead%that%you%prefer%R201.15%in%14%days%rather%than%R200%

today.%
•  To%choose%R201.15%in%14%days%just%click%the%buXon%saying%“Select”%under%

“R201.15%in%14%days”.%
•  This%is%what%the%display%will%look%like%if%you%choose%R201.15%in%14%days.%
•  Once%you%have%made%your%choice%on%the%first%row%you%can%move%on%to%the%

other%rows%on%the%screen.%
•  Note%that%you%need%to%make%4%choices%on%the%screen%before%you%can%move%

on%to%the%next%set%of%4%choices%on%a%new%screen.%
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Choices%
•  Once%you%have%made%all%your%choices%on%the%screen,%the%display%will%look%

something%like%the%example%below.%
•  You%can%then%click%the%buXon%saying%“Confirm”%to%move%on%to%the%next%

screen.%
•  If%you%would%like%to%change%your%choices%then%click%“Cancel”.%

Total%Number%of%Choices%%
•  You%will%need%to%make%60%choices%in%total%across%15%screens.%
•  The%Rand%amounts%change%on%each%row%of%each%screen.%
•  In%addi,on,%the%,mes%for%delivery%of%the%Rand%amounts%

change%across%the%screens.%
•  For%example,%on%the%screen%we%just%looked%at,%you%had%to%

choose%between%an%amount%of%money%available%today%and%an%
amount%of%money%available%in%14%days.%

•  On%a%different%screen,%you%may%need%to%choose%between%an%
amount%of%money%available%in%14%days%and%another%amount%of%
money%available%in%21%days.%%

•  So%please%pay%careful%aXen,on%when%making%your%choices.%
•  At%the%end%of%the%session%today%we%will%determine%your%

earnings%for%this%task%in%the%following%way.%
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Payment%
•  First,%you%will%select%one%of%the%15%screens%from%this%task%by%rolling%a%

20]sided%die.%
•  If%the%die%lands%on%1,%you%will%select%screen%1;%if%the%die%lands%on%7,%

you%will%select%screen%7;%if%the%die%lands%on%12,%you%will%select%screen%
12;%and%so%on.%

•  If%the%die%lands%on%16,%17,%18,%19%or%20,%you%will%roll%the%die%again%
un,l%it%lands%on%a%number%between%1%and%15.%

•  Once%you%have%selected%a%screen,%you%will%roll%a%4]sided%die%to%select%
1%of%the%4%rows%on%the%screen.%

•  If%the%die%lands%on%1,%you%will%select%row%1;%if%the%die%lands%on%2,%you%
will%select%row%2;%and%so%on.%

•  Once%you%have%selected%the%row,%we%will%look%at%the%choice%you%
made%on%that%row.%

•  You%will%then%be%paid%for%the%choice%that%you%made%on%that%row%on%
the%date%listed%for%that%choice.%

•  Let’s%see%what%this%means%for%the%example%we%looked%at%earlier.%

Payment%
•  Suppose%that%the%screen%we%looked%at%earlier%gets%selected%for%payment%when%

you%roll%the%20]sided%die.%
•  You%will%then%need%to%roll%the%4]sided%die%to%select%a%row%for%payment.%
•  Suppose%that%the%die%lands%on%3,%then%you%will%select%row%3.%
•  On%row%3,%you%chose%R209.70%in%14%days%so%you%will%be%paid%R209.70%in%14%days%

via%electronic%transfer.%%
•  You%will%receive%a%payment%confirma,on%when%the%transac,on%has%taken%

place.%



 -A36- 

 

Choose%the%Op,on%you%Prefer%
•  Note%that%the%op,on%you%prefer%on%each%row%is%a%
maXer%of%personal%taste.%

•  The%people%next%to%you%may%have%different%tastes%so%
their%choices%should%not%maXer%to%you.%

•  Please%work%silently%and%make%your%choices%by%
thinking%carefully%about%each%op,on.%

•  Since%there%is%a%chance%that%any%of%your%60%choices%
could%be%selected%for%payment,%you%should%approach%
each%choice%as%if%it%is%the%one%that%you%will%be%paid%
for.%

•  If%you%have%any%ques,ons%please%raise%your%hand%and%
someone%will%come%to%answer%them?%

•  You%may%begin%the%task.%
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APPENDIX D 
[ONLINE WORKING PAPER] 

 

The statistical method we employ is direct estimation by maximum likelihood of 

structural models of latent choice processes. The latent choice processes in question 

are captured by models of risk and time preferences. These models provide the 

structure necessary to estimate risk and time preferences using the observed choice 

data. One of the benefits of the maximum likelihood approach is that it uses all of the 

available information to estimate discounting and risk preference parameters and the 

precision of these estimates. We review the basic logic of the estimation strategy 

below, focussing on the canonical cases of EU theory and exponential (E) 

discounting. We then discuss the extension to other risk and time preference models. 

 

Assume that utility of income is defined by a power utility function which displays 

constant relative risk aversion (CRRA): 

 U(y) = yr, (1)  

where y is a lottery prize in the risk preference task and r is a parameter to be 

estimated. If r = 0, U(y) = ln y, and if r < 0, U(y) = -yr, following Wakker (2008). 

Under EU theory risk preferences are determined by the shape of the utility function, 

so with the power utility function parameterisation r > 1 yields a convex utility 

function and risk loving behaviour, r = 1 implies a linear utility function and risk 

neutrality, and r < 1 yields a concave utility function and risk aversion. 

 

Let there be three possible outcomes in a lottery, just like the risk preference task used 

here. Under EU theory the probabilities for each outcome yj, p(yj), are those that are 

used in the experimental task, so expected utility is the probability-weighted utility of 

each outcome in each lottery i: 

 EUi = ∑ j=1,2,3 [ p(yj) × U(yj) ] (2)  

To determine the value of r, the EU for each lottery pair (i.e., the Left and Right 

lotteries in Figure 1) is calculated for a candidate estimate of r and an index of their 

differences is formed: 

 ÑEU = EUR – EUL (3)  

This is a latent index, based on latent preferences, which captures the difference in 

EU of the Right and Left lotteries presented to subjects. This index is then linked to 
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the subjects’ observed choices using the cumulative normal distribution function 

Φ(ÑEU). This function takes any argument (ÑEU) between ±∞ and smoothly 

transforms it into a number between 0 and 1. Thus, we have the so-called “probit” 

link function: 

 Pr(Choose lottery R) = Φ(ÑEU) (4)  

The latent index in (3) is linked to subjects’ observed choices by specifying that 

lottery R is chosen when Φ(ÑEU) > ½, which is what (4) implies.  

 

The likelihood of the observed responses, conditional on the power utility and EU 

model being true, depends on the estimates of r given the statistical model above and 

the choices of subjects in the risk preference task. The conditional log-likelihood for 

the risk preference responses is: 

ln LiRP(r; z, X) = ∑i[(lnΦ(ÑEU)×I(zi=1)) + (ln(1 - Φ(ÑEU))×I(zi=0))], (5)  

where I(·) is the indicator function, zi = 1(0) denotes the choice of the R(L) lottery in 

choice pair i, and X is a vector of individual characteristics capturing smoking status, 

age, gender, education etc. 

 

One of the advantages of structural maximum likelihood estimation is that it is a 

straightforward extension to make the parameter of interest, the risk preference 

parameter r, a linear function of individual characteristics. In this case, one estimates 

r = r0 + rβ×X, where r0 is a fixed parameter and rβ is a coefficient vector linked to the 

variable vector X of individual characteristics. If no individual characteristics are 

included in the model we estimate r = r0, which is the risk preference parameter 

estimated at the level of the sample without taking into account observed, individual 

heterogeneity (i.e., assuming homogenous preferences). Every estimate of r includes a 

standard error which reflects our uncertainty as to the “true” value of r. This stands in 

sharp contrast to the bulk of studies in Table 2 which use risk preference point 

estimates as data in subsequent statistical models. 

 

Another important extension to the simple model defined above is to allow for some 

behavioural errors on the part of subjects when they make choices between lotteries L 

and R. This error could be as simple as a “tremble,” where, say, a subject wants to 

choose lottery R but mistakenly selects lottery L. We adopt the “contextual utility” 
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(CU) behavioural error specification of Wilcox (2011) to allow mistakes on the part 

of subjects from the perspective of the deterministic EU model and to draw robust 

inferences about the primitive “stochastically more risk averse than” relation.23 The 

CU specification normalises the ÑEU index so that it falls within the closed unit 

interval [0, 1] and incorporates the behavioural error term originally due to Fechner 

(1966/1860). Thus, rather than adopt the simple ÑEU index in (3), we make use of the 

index: 

 ÑEU = [(EUR – EUL) / λ] / µ, (6)  

where λ is the normalising term and µ is the Fechner error term.  

 

Different values of µ affect our ÑEU index. As µ → 0 this specification collapses to a 

deterministic choice model where the choice is strictly determined by the EU of the 

two lotteries. However, as µ → ∞, ÑEU → 0, and a subject’s choice is essentially 

random, with an equal probability of selecting either lottery. When µ = 1 we are back 

to specification (3), so the Fechner error term is a parameter which basically flattens 

the probit link function as its value increases. The new conditional log-likelihood is: 

ln LiRP(r, µ; z, X) = ∑i[(lnΦ(ÑEU)×I(zi=1)) + (ln(1 - Φ(ÑEU))×I(zi=0))] (7)  

The expression in (7) can be maximised using standard numerical methods to estimate 

the power function parameter r, which defines risk preferences under EU theory, and 

the Fechner error term µ, which determines the extent to which choices involve errors 

on the part of subjects. 

 

It is a simple matter to incorporate other theories of choice under risk in this statistical 

framework. Quiggin (1982) developed the rank-dependent utility (RDU) model, 

which assumes that a decision maker transforms objective probabilities into 

subjective decision weights which are then used to evaluate lotteries. According to 

this theory, risk preferences are determined both by the shape of the utility function, 

like EU theory, and the shape of the PWF. Under RDU we replace (2) with: 

 RDUi = ∑ j=1,…,n [ w(yj) × U(yj) ], (8)  

where  

 wj = π(pj + … + pn) – π(pj+1 + … + pn), (9)  

                                                
23 The “stochastically more risk averse than” relation is the stochastic choice counterpart to the “more 
risk averse than” relation (see Pratt (1964)) which is defined for the deterministic EU model. 
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for j = 1, … , n-1, and 

 wj = π(pj), (10)  

for j = n. The subscript j represents outcomes ranked from worst to best, and π(p) is a 

specific PWF.  

 

A number of different PWFs have been used in the literature and Stott (2006) 

provides a useful review. Tversky and Kahneman (1992) (TK) popularised the 

following PWF: 

 π(p) = pγ / [ pγ + (1-p)γ ]1/γ, (11)  

for 1 > p > 0. This function permits linear, “inverse S-shaped” and “S-shaped” forms. 

Gonzalez and Wu (1999) review the empirical evidence on this function and find that 

1 > γ > 0 in most studies. This gives the function an inverse S-shape with 

overweighting of low probabilities up to a crossover point where π(p) = p, and then 

underweighting of moderate to high probabilities.24  We estimate the TK PWF, 

amongst others, to see whether we replicate this inverse S-shaped result in this 

sample. 

 

To estimate a RDU model, assuming power utility, the TK PWF, and the CU 

behavioural error specification, one forms the RDU index ÑRDU = [(RDUR - 

RDUL)/λ]/µ in the manner of (3) and then links this to the subjects’ observed choices 

using the cumulative normal distribution function in the manner of (4). This defines 

the conditional log-likelihood for the model which is then used to estimate r, µ, and γ, 

where γ is the parameter defining the TK PWF. We estimate EU and RDU models to 

compare the risk preferences of smokers and non-smokers. In addition, we estimate 

the parameters of a variety of PWFs to ensure that the results are robust across 

different specifications. 

 

Shifting to time preferences, under the E model, δ is the discounting parameter which 

equalises the utility of income received at time t with the utility of income received at 

time t + τ: 

 [1 / (1 + δ)t]U(yt) = [1 / (1 + δ)t+τ]U(yt+τ), (12)  

for some utility function U(·).  
                                                
24 However, Rieger and Wang (2006) and Ingersoll (2008) show that this function is not monotonic at 
very small values of γ. 
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Under the assumptions that EU characterises choices over risky prospects and that 

subjects employ the power utility function, we can add more structure to this 

indifference condition. Specifically, (12) becomes: 

 [1 / (1 + δ)t](yt)r = [1 / (1 + δ)t+τ](yt+τ)r, (13)  

where the general form of the utility function U(·) in (12) has been replaced with the 

specific power utility function U(y) = yr in (13).  

 

The left hand side of (13) represents the present value (PV) of the utility of the SS 

reward in the time preference task whereas the right hand side of (13) represents the 

present value of the utility of the LL reward. Thus, 

 PVSS = [1 / (1 + δ)t](yt)r, (14)  

and 

 PVLL = [1 / (1 + δ)t+τ](yt+τ)r (15)  

To estimate the parameters of our time preference model, conditional on EU theory, 

power utility, and the E model, we form the latent index: 

 ÑPV = (PVSS – PVLL) / ν, (16)  

where ν is a Fechner error term for the time preference task, just as µ was the 

behavioural error term for the risk preference task. We could force µ = ν but there is 

little sense in doing so if we think that one task may be more cognitively challenging 

than the other, and hence more prone to subject error. To remain open to this 

possibility, we allow µ and ν to vary independently.25  

 

The latent index (16) captures the difference in the present values of the utility of the 

SS and LL rewards. It is linked to subjects’ observed choices using the cumulative 

normal distribution function Φ(ÑPV). This defines our probit link function: 

 Pr(Choose SS reward) = Φ(ÑPV) (17)  

The latent index in (16) is linked to subjects’ observed choices by specifying that the 

SS reward is chosen when Φ(ÑPV) > ½, which is what (17) implies. 

 

                                                
25 Our prior is that the risk preference task, which incorporated up to three prizes in each lottery and a 
host of different probabilities, is more cognitively challenging than the time preference task, where 
subjects simply had to make choices between two rewards available at different points in time. 
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The likelihood of the observed time preference responses, conditional on the EU, 

power utility, and E models being true, depends on the estimates of r, δ, and ν, given 

the statistical model above. The conditional log-likelihood is: 

ln LiTP(r, δ, ν; z, X) = ∑i[(lnΦ(ÑPV)×I(zi=1)) + (ln(1 - Φ(ÑPV))×I(zi=0))] (18)  

The joint likelihood of the risk and time preference responses can then be formed as: 

 ln Li (r, δ, µ, ν; z, X) = ln LiRP + ln LiTP (19)  

This “joint estimation” approach, developed by Andersen, Harrison, Lau and 

Rutström (2008), uses subjects’ choices in the risk preference task to pin down the 

parameters of the utility function, and subjects’ choices in the time preference task to 

pin down the parameters of the E discounting model, conditional on the shape of the 

utility function. This approach ensures that we estimate time preferences defined over 

utility flows, and not flows of money. 

 

It is straightforward to incorporate other discounting models in this statistical 

framework. In the case of Weibull discounting, for instance, (13) becomes: 

 [exp(-δt(1/β))](yt)r = [exp(-δ(t+τ)(1/β))](yt+τ)r (20)  

(14) and (15) are adjusted appropriately to incorporate this new expression and then 

one forms the latent index in (16) and proceeds as before. Andersen, Harrison, Lau 

and Rutström (2014) review all of the major discounting models. 
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APPENDIX E 
[ONLINE WORKING PAPER] 

 
In this appendix we discuss the risk preference results under the assumptions that 

expected utility (EU) theory and rank-dependent utility (RDU) theory characterise 

choice under risk. 

 

A. Risk Preferences: EU Theory 

Table E:1 presents baseline estimates of an EU model employing a power utility 

function and the CU behavioural error specification. These results pool choices across 

all individuals, which means we are estimating the value of r0 for the sample as a 

whole. In other words, we are initially assuming homogenous preferences. The results 

account for clustering at the individual level by adjusting the standard errors of the 

estimates to take into account the fact that each respondent made multiple choices 

across the 40 risk preference questions. 

 

The estimate of r = 0.306 implies a relatively high level of risk aversion in the 

sample. The estimate of µ = 0.175 is positive and statistically significant, implying 

that subjects make behavioural errors in the risk preference task.  

 
TABLE E:1: EXPECTED UTILITY THEORY ML ESTIMATES 

HOMOGENOUS PREFERENCES 

 Model 
Power function parameter (r) 0.306*** 

 (0.028) 
Error (µ) 0.175*** 
  (0.009) 
N 7000 
log-likelihood -4198.932 
Results account for clustering at the individual level 
Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 

 

To analyse the link between risk preferences and smoking behaviour, one can make 

the parameter of interest r a linear function of smoking status. This captures the “total 

effect” of smoking status on risk preferences without controlling for any potential 

differences between smokers and non-smokers like age, education, and gender. The 

point estimate of the “smoker” variable in this model is -0.027 with a standard error 
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of 0.048, which means there is not a statistically significant relationship between risk 

preferences and smoking status in this sample.26 

 
TABLE E:2: EXPECTED UTILITY THEORY ML ESTIMATES 

HETEROGENOUS PREFERENCES 

 Model 
  Estimate Std Error 
Power function parameter (r)   Age 0.005 0.012 
White 0.045 0.05 
Male 0.119** 0.047 
Commerce faculty 0.081 0.055 
Financial aid -0.033 0.055 
Risk task first -0.031 0.046 
Smoker -0.036 0.058 
Constant 0.123 0.223 
Error (µ)   Constant 0.173*** 0.009 
N 7000  
log-likelihood -4180.528   
Results account for clustering at the individual level  
* p<0.10, ** p<0.05, *** p<0.01 

 

Table E:2 presents the results from a model that takes into account observed, 

individual heterogeneity by conditioning the power function parameter estimate on a 

set of covariates and task parameters. Specifically, the model includes the 

demographic variables from Table 3 in the main text and a variable specifying 

whether the risk preference task preceded the time preference task. This model 

captures the “marginal effect” of smoking status on risk preferences while controlling 

for other factors which may mediate this relationship. 

 

Table E:2 shows that the only variable which is significantly and individually related 

to risk preferences in this sample is gender: men are less risk averse than women. 

Thus, estimates from the EU model with a power utility function and CU error 

specification point to no statistically significant differences in the risk preferences of 

smokers and non-smokers.27 

                                                
26 We also estimate a model which allows risk preferences to vary as a quadratic function of smoking 
intensity as measured by the number of cigarettes smoked per day: risk preferences are not 
significantly related to smoking intensity. 
27 To explore the possibility that the power utility function is too restrictive to accurately characterise 
choice under risk in this sample, we also estimate the expo-power (EP) utility function of Saha (1993), 
which admits increasing relative risk aversion (IRRA), decreasing relative risk aversion (DRRA), and 
CRRA. This EP utility function takes the following form: U(y) =  θ - exp(-αyr), where θ > 1 and αr > 0. 
In a model with the full set of covariates and task parameters, none of the coefficients nor the constant 
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B. Risk Preferences: RDU Theory 

The EU results suggest that there are no significant differences in the risk preferences 

of smokers and non-smokers. However, this analysis, by assumption, ignored the role 

of probability weighting and it may be the case that smokers perceive probabilities 

differently to non-smokers. To explore this possibility, we estimate RDU models. 

 

One of the key components of a RDU model is the specification of the PWF. The TK 

PWF was presented in Appendix D (Eq. 11). Two other commonly used PWFs are the 

power function and the Prelec (1998) function. The power PWF is just like the power 

utility function except that prizes are replaced with probabilities: 

 π(p) = pγ (1)  

An important feature of the power PWF is that it is either concave, convex, or linear 

throughout its range. This means that interior probabilities are either viewed 

objectively (i.e., linear weighting), always overweighted, or always underweighted. 

Thus, the power PWF does not permit the inverse S-shaped or S-shaped forms of the 

TK PWF.  

 

Prelec (1998) derived a two-parameter PWF which exhibits considerable flexibility. 

The functional form for this PWF is: 

 π(p) =  exp[ -η(-ln p)φ], (2)  

which is defined for 1 > p > 0, η > 0, and φ > 0.28 This function allows independent 

specification of location and curvature in probability weighting. It also nests the 

power PWF when φ = 1, and nests a one-parameter function when η = 1, which is 

similar to the TK function and admits linear, inverse S-shaped, and S-shaped forms.  

 

                                                                                                                                      
term for the expo parameter α are significantly different to zero. In addition, a test of the joint 
hypothesis that all of the covariates, including the constant term, are equal to zero for the expo 
parameter α cannot be rejected (p = 0.833). Harrison, Lau and Rutström (2007, p. 358) used this 
approach to determine whether CRRA held over the range of prizes used in their experiments. They too 
found that a test of the joint hypothesis that all of the covariates, and the constant term, are equal to 
zero, could not be rejected, which lead them to conclude that CRRA was an appropriate 
characterisation for their sample. Thus, the power utility function will be employed in subsequent 
analyses because it adequately characterises choice under risk in this sample. 
28 Prelec (1998, proposition 1, part C, p. 503) provides these parameter restrictions. Prelec (1998, 
proposition 1, part B, p. 503) constrains 1 > φ > 0, but this constraint can be quite restrictive in practice 
because it restricts the PWF to be inverse-S shaped. When estimating the models we impose these 
constraints using nonlinear transformations of the parameters. To recover the core parameters we use 
the inverse of these nonlinear transformations, and then apply the “delta method” to derive standard 
errors and p-values for the estimates (see Oehlert (1992)). 
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Table E:3 presents baseline estimates of RDU models employing the power utility 

function, the CU behavioural error specification, and the three PWFs discussed above. 

In Model 1 the power PWF parameter γ = 0.953, implying slight overweighting of all 

probabilities. However, this estimate is not significantly different from 1 (p = 0.301) 

so we cannot rule out the hypothesis of a linear PWF where probabilities are viewed 

objectively.  

 
TABLE E:3: RANK-DEPENDENT UTILITY THEORY ML ESTIMATES 

HOMOGENOUS PREFERENCES 

 Model 1 Model 2 Model 3 
  Power TK Prelec 
Power function parameter (r) 0.283*** 0.351*** 0.324*** 

 (0.024) (0.032) (0.026) 
PWF parameter (γ/φ) 0.953*** 0.868*** 0.797*** 

 (0.045) (0.022) (0.025) 
PWF parameter (η)   0.882*** 

   (0.033) 
Error (µ) 0.176*** 0.170*** 0.169*** 
  (0.009) (0.009) (0.008) 
N 7000 7000 7000 
log-likelihood -4197.975 -4177.421 -4151.295 
Results account for clustering at the individual level  
Standard errors in parentheses    * p<0.10, ** p<0.05, *** p<0.01   

 

 

In Model 2 the TK PWF parameter γ = 0.868, which yields an inverse S-shaped 

function implying overweighting of low probabilities and underweighting of moderate 

to high probabilities. The estimate of γ is significantly less than 1 at any regular level 

of significance (p < 0.001).29 In Model 3 we replicate the inverse S-shaped PWF that 

we find with the TK function as the estimates of φ = 0.797 and η = 0.882 are 

significantly less than 1 (p < 0.001 in both cases). 

 

The estimates in Table E:3 show that probability weighting plays a role in the 

determination of risk attitudes in this sample. This will need to be taken into account 

when adopting the joint estimation approach to discounting behaviour because the 

extent of utility function curvature identified by the risk preference task propagates 

into estimates of discounting parameters. Thus, if one ignores probability weighting 

                                                
29 The presence of inverse S-shaped probability weighting explains why the estimate of γ is not 
significantly different to 1 in the model with the power PWF: in effect, the power PWF is “confused” 
because it has to be linear, concave, or convex throughout its range. 
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when it is present, this would lead to biased estimates of utility function curvature 

and, hence, biased estimates of discounting parameters. In effect, when probability 

weighting is present, one ought to apportion risk preferences into their concave utility 

and probability weighting components so that accurate inferences about discounting 

behaviour can be drawn. 

 

 
 

Figure E:1 plots the PWFs, and implied decision weights, for the estimates in Table 

E:3. The decision weights are graphed for equi-probable 2-outcome and 3-outcome 

reference lotteries. In the case of a 3-outcome equi-probable reference lottery, we 

show the decision weight applied to the worst outcome, the decision weight applied to 

the intermediate outcome, and the decision weight applied to the best outcome in the 

lottery. 

 

To investigate the possibility that smokers perceive probabilities differently to non-

smokers, even if their utility functions do not differ, we estimate the two models in 

Table E:3 which admit inverse S-shaped PWFs and allow the parameters to vary as a 
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function of observable characteristics and task parameters. Results are presented in 

Table E:4.30 

 
TABLE E:4: RANK-DEPENDENT UTILITY THEORY ML ESTIMATES 

HETEROGENOUS PREFERENCES 

 Model 1 Model 2 

 TK Prelec 
  Estimate Std Error Estimate Std Error 
Power function parameter (r)     Age 0.005 0.013 -0.004 0.011 
White 0.038 0.060 0.029 0.051 
Male 0.114** 0.055 0.062 0.049 
Commerce faculty 0.113* 0.060 0.030 0.062 
Financial aid -0.057 0.065 -0.051 0.058 
Risk task first -0.057 0.055 -0.015 0.050 
Smoker -0.048 0.068 -0.005 0.055 
Constant 0.179 0.246 0.366 0.230 
PWF parameter (γ/φ)     Age -0.002 0.011 -0.003 0.006 
White 0.021 0.054 0.001 0.047 
Male 0.016 0.050 -0.009 0.044 
Commerce faculty -0.083 0.057 -0.084 0.120 
Financial aid 0.061 0.059 0.034 0.056 
Risk task first 0.055 0.051 0.054 0.080 
Smoker 0.026 0.056 0.028 0.049 
Constant 0.876*** 0.228 0.871*** 0.206 
PWF parameter (η)     Age   -0.027 0.046 
White   -0.062 0.121 
Male   -0.166 0.137 
Commerce faculty   -0.216 0.184 
Financial aid   -0.014 0.139 
Risk task first   0.166 0.153 
Smoker   0.146 0.177 
Constant     1.425** 0.676 
Error (µ)     Constant 0.168*** 0.008 0.166*** 0.008 
N 7000  7000  
log-likelihood -4153.594   -4119.762   
Results account for clustering at the individual level   
* p<0.10, ** p<0.05, *** p<0.01    

 

                                                
30 The experimental design of the risk preference task lends itself to common-ratio tests of EU theory. 
To complement the analyses in this section, we conduct a set of common-ratio tests for the lotteries 
represented in the MM triangles in Figure 2 to determine whether the choice patterns of smokers are 
more or less EU-consistent than non-smokers. We adopt the non-parametric Cochran Q test and find 
that both smokers and non-smokers violate EU theory in every MM triangle in Figure 2 (p < 0.001 in 
every test) except the MM triangle with a gradient of 3. In this latter MM triangle, we cannot reject the 
hypothesis that non-smokers satisfy EU theory (p = 0.111) but we can reject this hypothesis for 
smokers (p = 0.027). Thus, in only 1 of the 8 MM triangles of Figure 2 are non-smokers more EU-
consistent than smokers. The bulk of the evidence, therefore, suggests little difference in the extent to 
which smokers and non-smokers violate EU theory; one reaches the same conclusion from the 
estimates in Table E:4. 
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In both of the models in Table E:4, smokers do not differ significantly from non-

smokers in the shape of their utility functions (i.e., in the estimate of r) nor in the way 

they perceive probabilities (i.e., in the estimates of γ/φ and η). In addition, tests of the 

joint hypothesis that the coefficients for smokers across r, γ/φ, and η are equal to zero, 

cannot be rejected under either model (p = 0.771 for the TK model and p = 0.823 for 

the Prelec model).31 Thus, at least in this sample, there are no significant differences 

in the risk preferences of smokers and non-smokers. This result is robust to different 

theories of choice under risk, different PWFs, and a utility function that admits 

varying relative risk aversion. 
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31 We also estimate a RDU model with the expo-power utility function, the Prelec PWF, and the full set 
of covariates from Table E:4. The smoker variable is not significantly different from zero for any of the 
parameters in the model. In addition, a test of the joint hypothesis that the coefficients for smokers 
across r, α, φ, and η are equal to zero, cannot be rejected (p = 0.967). 
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APPENDIX F 
[ONLINE WORKING PAPER] 

 

In this appendix we provide a more detailed discussion of the time preference models 

that were used in our empirical analyses. We also estimate the four discounting 

models used in the main text under the assumption that RDU theory characterises 

choice under risk so as to investigate the smoking-discounting relationship.  

 

The discount factor for the E model is: 

 DE(t) = 1 / (1 + δ)t, (1)  

for t ≥ 0, and where the discount rate d is: 

 dE(t) = δ (2)  

Two important features of this model are that it is mathematically tractable (i.e., the 

geometric series ∑t DE(t) converges in the limit), and the discount rate dE(t) is a 

constant over time which, when coupled with an additively-separable intertemporal 

utility function, implies time-consistent preferences.32  

 

Phelps and Pollak (1968) developed the quasi-hyperbolic (QH) discounting function, 

in the context of a social planning problem, which has a discount factor: 

 DQH(t) = 1  if t = 0 (3a)  

 DQH(t) = β / (1 + δ)t  if t > 0 (3b)  

If β = 1 the QH specification collapses to the E model, whereas if β < 1 discounting is 

quasi-hyperbolic. We use β and δ to represent different parameters in each of the 

discounting models even though there is nothing which implies that they should be 

the same value across the different specifications; this choice was made for notational 

simplicity. When β < 1 discount rates decline over time in the QH model, which, 

under the assumption of an additively-separable intertemporal utility function, can 

yield time-inconsistent choices. Thus, the QH model can account for a “present-bias” 

or a “passion for the present” in discounting behaviour. Like the E discount factor, ∑t 

DQH(t) converges in the limit 

 
                                                
32 Time consistency, or the lack thereof, is central to economic models of addiction. Time-inconsistent 
agents may fail to carry out plans they make for the future which provides a possible explanation for 
the behavioural puzzles listed earlier: 1) addicts expend resources to acquire their targets of addiction 
but then incur real costs to try to reduce or limit their consumption of these goods; and 2) the typical 
course of addiction is characterised by repeated unsuccessful attempts to quit prior to final abstention. 
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Mazur (1984, p. 427) developed the H discounting function to account for pigeons’ 

preferences over fixed and variable schedules of reinforcement. The H specification 

has a discount factor: 

 DH(t) = 1 / (1 + δt) (4)  

This function has been used extensively in the psychology literature and in 28 of the 

31 studies in Table 1. Unlike the E and QH discounting specifications, the harmonic 

series ∑t DH(t) does not converge and the H model has not been widely used therefore 

in the theoretical economics literature. Mazur’s (1984) H function forms part of a 

whole family of hyperbolic discounting models, but we use (4) due to its importance 

in the literature on time preferences and smoking. 

 

The final discounting function which we estimate was originally proposed by Read 

(2001, equation 16, p. 25) and has been dubbed the “Weibull” (WB) discounting 

function by Jamison and Jamison (2011, p. 5) because it has an associated Weibull 

probability density function. The discount factor for the WB specification is: 

 DWB(t) = exp(-δt(1/β)), (5)  

for δ > 0 and β > 0. When β = 1 (5) collapses to the E specification so the parameter β 

either “expands” or “contracts” time. When β > 1 it is as if time has contracted or is 

perceived to be “slowing down” by the individual, which yields declining discount 

rates and the potential for time inconsistency. By contrast, when β < 1 it is as if time 

has expanded or is “speeding up” as perceived by the individual. The individual is 

then assumed to behave “exponentially” with respect to these subjective perceptions 

of the time horizon. 

 

Table F:1 presents results from the four discounting models employing the Fechner 

error term, assuming linear utility, and using years as the unit of measurement for the 

estimation of the parameters; this table is included for comparative purposes. Recall 

that if no individual characteristics are included in the model we estimate δ = δ0 and β 

= β0, which are the discounting parameters estimated at the level of the sample 

without taking into account observed, individual heterogeneity (i.e., assuming 

homogenous preferences). Recall that the results account for clustering at the 

individual level which adjusts the standard errors of the estimates to take into account 

the fact that each respondent made multiple choices across the 60 time preference 

questions. 



 -A52- 

 
TABLE F:1: DISCOUNTING FUNCTION ML ESTIMATES 
LINEAR UTILITY AND HOMOGENOUS PREFERENCES 

 Model 1 Model 2 Model 3 Model 4 
  Exponential Hyperbolic Quasi-Hyperbolic Weibull 
Discounting parameter (δ) 3.234*** 1.715*** 2.833*** 0.890*** 

 (0.287) (0.096) (0.271) (0.066) 
Discounting parameter (β)   0.962*** 1.518*** 

   (0.013) (0.107) 
Error (ν) 24.272*** 24.043*** 23.669*** 23.573*** 
  (1.774) (1.742) (1.626) (1.591) 
N 10500 10500 10500 10500 
log-likelihood -5419.508 -5335.484 -5352.777 -5233.649 
Results account for clustering at the individual level   Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 

 

Under the assumption of linear utility, estimated discount rates are huge and differ 

markedly across the different specifications. In the E model, the estimate of δ = 3.234 

implies an annual discount rate in excess of 320%.  

 

In Table F:2, by contrast, where we estimate the discounting models under the 

assumptions of RDU and the Prelec (1998) PWF, discount rates are far lower, and 

more similar. For example, the estimate of the E discount rate δ = 0.493 implies an 

annual discount rate of approximately 49%. Similar declines are evident across all of 

the discounting specifications which highlights the point, now familiar from 

Andersen, Harrison, Lau and Rutström (2008), that incorporating concavity of the 

utility function leads to substantial declines in inferred discount rates.  

 

In the QH model, the estimate of β = 0.988, which captures a “present-bias” or a 

“passion for the present” in discounting behaviour, is statistically significantly less 

than 1 (p = 0.002), which provides evidence of quasi-hyperbolic discounting and 

declining discount rates. The same is true in the WB results: the estimate of β = 1.611, 

which “expands” or “contracts” time, is statistically significantly greater than 1 (p < 

0.001) which leads us to infer that people perceive time as “slowing down,” 

generating declining discount rates. Thus, both the QH and WB results suggest that 

discount rates decline over time, which, when coupled with an additively-separable 

intertemporal utility function, raises the spectre of time-inconsistent choices. 

However, the two discounting functions provide competing explanations for this 
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result: a present-bias in the case of the QH model and subjective time perception in 

the case of the WB model.  

 
TABLE F:2: DISCOUNTING FUNCTION ML ESTIMATES 

RANK-DEPENDENT UTILITY AND HOMOGENOUS PREFERENCES 

 Model 1 Model 2 Model 3 Model 4 

 Exponential Hyperbolic Quasi-Hyperbolic Weibull 
  Prelec Prelec Prelec Prelec 
Power function parameter (r) 0.277*** 0.327*** 0.260*** 0.238*** 

 (0.028) (0.027) (0.029) (0.030) 
PWF parameter (φ) 0.797*** 0.797*** 0.796*** 0.795*** 

 (0.025) (0.025) (0.025) (0.026) 
PWF parameter (η) 0.838*** 0.884*** 0.823*** 0.804*** 

 (0.032) (0.034) (0.032) (0.031) 
Discounting parameter (δ) 0.493*** 0.502*** 0.415*** 0.204*** 

 (0.062) (0.050) (0.057) (0.028) 
Discounting parameter (β)   0.988*** 1.611*** 

   (0.004) (0.115) 
Risk error (µ) 0.178*** 0.169*** 0.181*** 0.186*** 

 (0.009) (0.008) (0.010) (0.010) 
Time error (ν) 0.151*** 0.231*** 0.128*** 0.104*** 
  (0.041) (0.055) (0.036) (0.031) 
N 17500 17500 17500 17500 
log-likelihood -9471.828 -9441.151 -9383.297 -9234.32 
Results account for clustering at the individual level   Standard errors in parentheses     * p<0.10, ** p<0.05, *** p<0.01    

 

 

Tables F:3:A and F:3:B present the results from the four discounting functions where 

the parameters are allowed to vary as a function of smoking status, other observable 

characteristics, and task parameters; these models, therefore, capture the “marginal 

effect” of smoking status. Across all of the models, the estimate of δ for smokers is 

positive and statistically significant at the 1% level. By contrast, in the QH and WB 

models the estimate of β for smokers is not statistically significant. 

 

Thus, we observe a positive relationship between smoking and discounting behaviour 

which holds across all of the time preference models and all of the model 

specifications we estimate. This result is also robust to the assumption that EU 

characterises choice under risk (see Appendix G). However, smokers do not differ 

from non-smokers with regard to present-bias in the QH model nor in terms of time 

perception in the WB model. 
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TABLE F:3:A: DISCOUNTING FUNCTION ML ESTIMATES 
RANK-DEPENDENT UTILITY AND HETEROGENOUS PREFERENCES 

 Model 1 Model 2 

 Exponential Hyperbolic 
  Estimate Std error Estimate Std error 
Power function parameter (r)     Age -0.008 0.006 -0.009 0.006 
White -0.016 0.020 -0.020 0.022 
Male -0.019 0.017 -0.019 0.018 
Commerce faculty 0.008 0.020 0.008 0.022 
Financial aid 0.043** 0.019 0.046** 0.021 
Risk task first 0.006 0.018 0.009 0.019 
Smoker 0.060*** 0.022 0.067*** 0.024 
Constant 0.443*** 0.125 0.528*** 0.131 
PWF parameter (φ)     Age -0.003 0.013 -0.003 0.012 
White -0.019 0.062 -0.020 0.059 
Male -0.006 0.056 -0.003 0.053 
Commerce faculty -0.108 0.071 -0.108 0.068 
Financial aid 0.014 0.059 0.005 0.056 
Risk task first 0.090* 0.052 0.083* 0.050 
Smoker 0.022 0.061 0.021 0.058 
Constant 0.890*** 0.275 0.882*** 0.265 
PWF parameter (η)     Age -0.022 0.019 -0.023 0.020 
White -0.125 0.087 -0.134 0.089 
Male -0.218*** 0.081 -0.216*** 0.082 
Commerce faculty -0.202** 0.102 -0.209** 0.104 
Financial aid 0.061 0.086 0.059 0.087 
Risk task first 0.130* 0.078 0.133* 0.080 
Smoker 0.158* 0.096 0.168* 0.098 
Constant 1.458*** 0.389 1.550*** 0.398 
Discounting parameter (δ)     Age -0.003 0.016 -0.001 0.015 
White -0.101 0.074 -0.095 0.064 
Male 0.132** 0.064 0.124** 0.052 
Commerce faculty 0.032 0.078 0.018 0.068 
Financial aid 0.121 0.075 0.095 0.063 
Risk task first 0.024 0.066 0.031 0.058 
FED: 1 week 0.059 0.071 0.058 0.062 
FED: 2 weeks -0.004 0.072 0.004 0.063 
High Principal -0.208*** 0.036 -0.191*** 0.026 
Smoker 0.260*** 0.070 0.220*** 0.062 
Constant 0.512 0.320 0.490* 0.289 
Table continues on next page     

 
  



 -A55- 

TABLE F:3:A: DISCOUNTING FUNCTION ML ESTIMATES (CONTINUED) 
RANK-DEPENDENT UTILITY AND HETEROGENOUS PREFERENCES 

 Model 1 Model 2 

 Exponential Hyperbolic 
  Estimate Std error Estimate Std error 
Risk error (µ)     Constant 0.169*** 0.008 0.159*** 0.007 
Time error (ν)     Constant 0.196*** 0.048 0.338*** 0.070 
N 17500  17500  log-likelihood -9076.945   -9024.286   
Results account for clustering at the individual level 
* p<0.10, ** p<0.05, *** p<0.01 

 

 

 
TABLE F:3:B: DISCOUNTING FUNCTION ML ESTIMATES 

RANK-DEPENDENT UTILITY AND HETEROGENOUS PREFERENCES 

 Model 3 Model 4 

 Quasi-Hyperbolic Weibull 
  Estimate Std error Estimate Std error 
Power function parameter (r)     Age -0.007 0.005 -0.004 0.005 
White -0.019 0.019 -0.013 0.016 
Male -0.021 0.017 -0.025* 0.015 
Commerce faculty 0.007 0.017 0.013 0.016 
Financial aid 0.035* 0.019 0.025 0.017 
Risk task first -0.002 0.023 -0.001 0.015 
Smoker 0.060*** 0.022 0.049** 0.022 
Constant 0.414*** 0.111 0.339*** 0.116 
PWF parameter (φ)     Age -0.003 0.013 -0.004 0.013 
White -0.019 0.063 -0.018 0.064 
Male -0.006 0.057 -0.006 0.058 
Commerce faculty -0.109 0.072 -0.11 0.073 
Financial aid 0.017 0.06 0.023 0.061 
Risk task first 0.093* 0.053 0.094* 0.054 
Smoker 0.022 0.062 0.024 0.063 
Constant 0.892*** 0.276 0.898*** 0.279 
PWF parameter (η)     Age -0.021 0.019 -0.018 0.02 
White -0.129 0.087 -0.12 0.087 
Male -0.220*** 0.08 -0.225*** 0.081 
Commerce faculty -0.203** 0.101 -0.194* 0.1 
Financial aid 0.055 0.085 0.048 0.084 
Risk task first 0.122 0.08 0.123 0.077 
Smoker 0.157 0.097 0.144 0.098 
Constant 1.429*** 0.387 1.349*** 0.403 
Table continues on next page     
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TABLE F:3:B: DISCOUNTING FUNCTION ML ESTIMATES (CONTINUED) 
RANK-DEPENDENT UTILITY AND HETEROGENOUS PREFERENCES 

 Model 3 Model 4 

 Quasi-Hyperbolic Weibull 
  Estimate Std error Estimate Std error 
Discounting parameter (δ)     Age -0.007 0.013 0.007 0.007 
White -0.088 0.071 -0.049 0.031 
Male 0.142** 0.06 0.053*** 0.02 
Commerce faculty 0.018 0.075 -0.003 0.03 
Financial aid 0.103 0.067 0.001 0.026 
Risk task first -0.044 0.065 -0.027 0.028 
FED: 1 week 0.344*** 0.079 0.139** 0.068 
FED: 2 weeks 0.287*** 0.066 0.204** 0.088 
High Principal -0.156*** 0.03 -0.056*** 0.015 
Smoker 0.224*** 0.073 0.082*** 0.028 
Constant 0.279 0.266 0.003 0.133 
Discounting parameter (β)     Age -0.004 0.004 -0.007 0.079 
White -0.002 0.012 0.285 0.306 
Male 0.011 0.009 -0.492 0.357 
Commerce faculty 0.002 0.012 -0.032 0.238 
Financial aid -0.005 0.012 0.520* 0.284 
Risk task first -0.021* 0.011 0.929** 0.4 
FED: 1 week 0.348 0.273 2.840* 1.45 
FED: 2 weeks 0.167 0.217 4.155* 2.39 
High Principal 0.006** 0.002 0.081 0.107 
Smoker -0.002 0.012 -0.382 0.701 
Constant 1.040*** 0.067 2.161 1.709 
Risk error (µ) 

    Constant 0.172*** 0.008 0.175*** 0.01 
Time error (ν)     Constant 0.195*** 0.051 0.130*** 0.047 
N 17500  17500  log-likelihood -8826.297   -8522.212   
Results account for clustering at the individual level   * p<0.10, ** p<0.05, *** p<0.01     

 

 
ADDITIONAL REFERENCES 
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APPENDIX G  
[ONLINE WORKING PAPER] 

 

In this appendix, we replicate the results presented in the main text and Appendix F 

under the assumption that EU theory characterises choice under risk. In Table G:1 we 

estimate the discounting models jointly with the curvature of the utility function and 

replicate the result from Table F:2: discount rates are far lower, and more similar, 

when compared to the model assuming linear utility (Table F:1). In addition, in the 

QH model in Table G:1, the estimate of β = 0.987 is statistically significantly less 

than 1 (p = 0.003), which provides evidence of quasi-hyperbolic discounting and 

declining discount rates. The same is true in the WB results: the estimate of β = 1.608 

is statistically significantly greater than 1 (p < 0.001) which leads us to infer that 

people perceive time as “slowing down” and this generates declining discount rates.  

 
TABLE G:1: DISCOUNTING FUNCTION ML ESTIMATES 

CONCAVE UTILITY AND HOMOGENOUS PREFERENCES 

 Model 1 Model 2 Model 3 Model 4 
  Exponential Hyperbolic Quasi-Hyperbolic Weibull 
Power function parameter (r) 0.283*** 0.309*** 0.273*** 0.260*** 

 (0.032) (0.028) (0.034) (0.037) 
Discounting parameter (δ) 0.507*** 0.472*** 0.441*** 0.223*** 

 (0.070) (0.049) (0.065) (0.032) 
Discounting parameter (β)   0.987*** 1.608*** 

   (0.004) (0.114) 
Risk error (µ) 0.183*** 0.174*** 0.187*** 0.192*** 

 (0.011) (0.009) (0.012) (0.014) 
Time error (ν) 0.159*** 0.198*** 0.145*** 0.128*** 
  (0.047) (0.050) (0.045) (0.044) 
N 17500 17500 17500 17500 
log-likelihood -9519.026 -9488.92 -9430.8 -9282.495 
Results account for clustering at the individual level   Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 

 

 

Tables G:2:A and G:2:B analyse the smoking-discounting relationship by making the 

parameters of interest a linear function of observable characteristics and task 

parameters. In the E and H models in Table G:2:A, there is a positive and significant 

relationship between smoking and discounting behaviour: smokers discount the future 

more heavily than non-smokers. 
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Similarly, in the QH and WB models in Table G:2:B, the estimate of δ for smokers is 

positive and statistically significant. However, smoking status is not significantly 

related to the extent of present-bias in the QH model nor in the way people perceive 

time in the WB model (i.e., in the estimates of β). Thus, the results in tables G:2:A 

and G:2:B replicate those reported in the main text; the comparable tables are 

presented in Appendix F. 

 
TABLE G:2:A: DISCOUNTING FUNCTION ML ESTIMATES 

CONCAVE UTILITY AND HETEROGENOUS PREFERENCES 

 Model 1 Model 2 

 Exponential Hyperbolic 
  Estimate Std error Estimate Std error 
Power function parameter (r)     Age -0.006 0.005 -0.007 0.005 
White -0.012 0.018 -0.014 0.019 
Male -0.012 0.016 -0.010 0.017 
Commerce faculty 0.011 0.018 0.011 0.020 
Financial aid 0.039** 0.018 0.040** 0.019 
Risk task first 0.004 0.016 0.006 0.017 
Smoker 0.052*** 0.020 0.056*** 0.021 
Constant 0.382*** 0.110 0.419*** 0.111 
Discounting parameter (δ)     Age -0.004 0.014 -0.003 0.011 
White -0.091 0.066 -0.081 0.052 
Male 0.114** 0.055 0.098** 0.042 
Commerce faculty 0.027 0.067 0.014 0.055 
Financial aid 0.111* 0.067 0.085 0.052 
Risk task first 0.022 0.058 0.025 0.047 
FED: 1 week 0.053 0.063 0.048 0.051 
FED: 2 weeks -0.004 0.064 0.002 0.052 
High Principal -0.178*** 0.033 -0.149*** 0.021 
Smoker 0.232*** 0.062 0.187*** 0.050 
Constant 0.485* 0.276 0.444** 0.224 
Risk error (µ)     Constant 0.181*** 0.011 0.170*** 0.008 
Time error (ν)     Constant 0.155*** 0.042 0.201*** 0.044 
N 17500  17500  log-likelihood -9163.252   -9117.061   
Results account for clustering at the individual level   * p<0.10, ** p<0.05, *** p<0.01 
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TABLE G:2:B: DISCOUNTING FUNCTION ML ESTIMATES 
CONCAVE UTILITY AND HETEROGENOUS PREFERENCES 

 Model 3 Model 4 

 Quasi-Hyperbolic Weibull 
  Estimate Std error Estimate Std error 
Power function parameter (r)     Age -0.006 0.005 -0.003 0.005 
White -0.015 0.018 -0.010 0.015 
Male -0.013 0.016 -0.019 0.014 
Commerce faculty 0.010 0.016 0.016 0.016 
Financial aid 0.031* 0.018 0.023 0.016 
Risk task first -0.004 0.021 -0.002 0.015 
Smoker 0.053*** 0.020 0.044** 0.020 
Constant 0.368*** 0.101 0.307*** 0.101 
Discounting parameter (δ)     Age -0.007 0.011 0.007 0.007 
White -0.082 0.065 -0.047 0.029 
Male 0.132** 0.056 0.051*** 0.020 
Commerce faculty 0.018 0.069 -0.002 0.029 
Financial aid 0.094 0.063 0.000 0.025 
Risk task first -0.041 0.060 -0.026 0.027 
FED: 1 week 0.313*** 0.075 0.133** 0.067 
FED: 2 weeks 0.265*** 0.064 0.203** 0.092 
High Principal -0.139*** 0.029 -0.054*** 0.013 
Smoker 0.206*** 0.067 0.080*** 0.026 
Constant 0.260 0.242 0.005 0.129 
Discount parameter (β)     Age -0.003 0.003 -0.009 0.079 
White -0.002 0.011 0.288 0.306 
Male 0.011 0.009 -0.499 0.360 
Commerce faculty 0.002 0.011 -0.026 0.239 
Financial aid -0.005 0.011 0.526* 0.281 
Risk task first -0.020* 0.010 0.922** 0.397 
FED: 1 week 0.360 0.279 2.839* 1.452 
FED: 2 weeks 0.140 0.213 4.379* 2.455 
High Principal 0.005** 0.002 0.076 0.106 
Smoker -0.002 0.011 -0.382 0.706 
Constant 1.035*** 0.062 2.200 1.712 
Risk error (µ) 

    Constant 0.184*** 0.011 0.187*** 0.012 
Time error (ν)     Constant 0.163*** 0.046 0.119*** 0.039 
N 17500  17500  log-likelihood -8912.317   -8606.675   
Results account for clustering at the individual level   * p<0.10, ** p<0.05, *** p<0.01     

 

Table G:3 maps out the response surface for estimates of δ in the four time preference 

models evaluated at different values of number of cigarettes smoked per day and 

assuming EU theory characterises choice under risk. Analogous to Table 5 in the 

main text, at low values of number of cigarettes, the conditional marginal effect of 

additional cigarettes is positive. By 15 cigarettes, though, the conditional marginal 

effect of additional cigarettes is negative. Table G:3 therefore replicates the results 
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from Table 5 in the main text and highlights the nonlinear effect of smoking intensity 

on discounting behaviour. 

 
TABLE G:3: NUMBER OF CIGARETTES CONDITIONAL MARGINAL EFFECTS FOR δ 

 Model 1 Model 2 Model 3 Model 4 
  Exponential Hyperbolic Quasi-Hyperbolic Weibull 
Number of cigarettes     0 0.045 (0.012) 0.037 (0.010) 0.048 (0.013) 0.017 (0.005) 

5 0.027 (0.007) 0.021 (0.006) 0.029 (0.008) 0.010 (0.003) 
10 0.009 (0.005) 0.006 (0.004) 0.010 (0.005) 0.004 (0.002) 
15 -0.010 (0.008) -0.010 (0.008) -0.009 (0.007) -0.003 (0.002) 
20 -0.028 (0.013) -0.026 (0.013) -0.028 (0.013) -0.010 (0.004) 
25 -0.046 (0.019) -0.041 (0.018) -0.047 (0.018) -0.017 (0.006) 

Standard errors in parentheses 
 

In sum, the preceding results show that the smoking-discounting relationship is robust 

to the assumption that EU, rather than RDU, characterises choice under risk.  
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APPENDIX H 
[ONLINE WORKING PAPER] 

 

In this appendix we present the results from all of the two process mixture models that 

can be estimated from the four discounting functions used in the main text.33 RDU 

and the Prelec PWF are assumed to characterise choice under risk in the joint 

estimation of these models. Focussing on a mixture of the E and H discounting 

models, we explain the statistical approach below and then present the results for all 

of the models. 

 

Letting πE represent the probability that the E model is correct, and πH = (1 – πE) the 

probability that the H model is correct, the grand likelihood is the probability-

weighted average of the two conditional likelihoods LE and LH for the E and H 

models, respectively. Thus, the likelihood for the mixture model is given by: 

ln Li(r, φ, η, δE, δH, µ, ν, κ; z, X) = Σi ln [(πE × LE) + (πH × LH)], (1) 

where κ is a parameter which defines the log odds of the probability of the E model: 

πE = 1 / (1 + exp(κ)). This transformation allows the parameter κ to take on any value 

during the maximisation process but constrains the probabilities πE and πH to lie 

within the unit interval. The grand likelihood in (1) is maximised to estimate the 

parameters of each model and the weight accorded to each model in the data, under 

the assumptions that RDU and the Prelec PWF characterise choice under risk. 

 

Table H:1 presents estimates of the mixture model of the E and H discounting 

functions assuming homogenous preferences. The estimate of πE = 0.347 implies that 

the E model accounts for approximately 35% of the choices in the data; the H model 

therefore accounts for roughly 65% of the choices. A hypothesis test that πE = 0.5 is 

                                                
33 One can use Vuong (1989) and Clarke (2007) non-nested model selection tests to formally determine 
which discounting function, in a pairwise comparison, finds more support in the dataset as a whole. 
The choice between these tests is based on the distribution of the individual log-ratios of the models. 
When the distribution of these log-ratios is leptokurtic, as we find in our data, the Clarke (2007) test is 
superior, from both statistical efficiency and power perspectives, to the Vuong (1989) test. Clarke 
(2007) tests of the four discounting models provided the following transitive ranking: WB > H > E > 
QH. In words, the WB model finds the most support in the data, the QH model finds the least support, 
and the E and H models are intermediate to these. Thus, if one had to select a single model that best 
characterises the time preferences of this sample, the WB model would be the choice. However, when 
multiple time preference processes are present in a dataset, one should be cognisant of this fact and 
estimate a mixture model to determine the proportion of choices best explained by each process. If one 
discounting model is truly superior to another, in the sense that it better explains all the data, then this 
will be reflected in a mixture probability estimate of zero for the inferior model. 
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easily rejected (p < 0.001) but so too is the hypothesis that πE = 0 (p < 0.001).34 Thus 

the E and H discounting models both find significant support in the data, even though 

the H model finds more support. Consequently it is a mistake to assume that only one 

DGP characterises the data. 

 
TABLE H:1: MIXTURE MODEL ML ESTIMATES 

RANK-DEPENDENT UTILITY AND HOMOGENOUS PREFERENCES 

 Estimate Std Error p-value 95% Confidence Interval 

      Rank-dependent utility theory 

      Power function parameter (r) 0.336*** 0.027 0.000 0.283 0.390 

      PWF parameter (φ) 0.797*** 0.025 0.000 0.749 0.846 

      PWF parameter (η) 0.893*** 0.035 0.000 0.825 0.961 

      Exponential discounting model 

      Discounting parameter (δEmix) 0.137*** 0.017 0.000 0.104 0.169 

      Mixture probability (πE) 0.347*** 0.034 0.000 0.280 0.414 

      Hyperbolic discounting model 

      Discounting parameter (δHmix) 0.730*** 0.069 0.000 0.596 0.865 

      Mixture probability (πH) 0.653*** 0.034 0.000 0.586 0.720 

      Error terms 

      Risk Error (µ) 0.167*** 0.008 0.000 0.152 0.182 
Time Error (ν) 0.051*** 0.015 0.001 0.021 0.081 
            
N 17500     log-likelihood -8808.992         

      H0: πE = 0.5, p-value < 0.001 
            
Results account for clustering at the individual level    * p<0.10, ** p<0.05, *** p<0.01      

The mixture model in Table H:1 also shows how discounting parameter estimates are 

distorted when the E or H models have to account for all the data. In Model 1 of Table 

                                                
34 In all of the mixture models in this section, one of the discounting functions explains significantly 
more of the choices than the other discounting function. However, all discounting functions find 
significant support in the data which reinforces the point that it is a mistake to assume only one DGP 
characterises all discounting choices all of the time. The mixture probability estimates for the other 
mixture models are: E-QH model - πE = 0.636; E-WB model - πE = 0.406; H-QH model - πH = 0.634; 
H-WB model - πH = 0.611; QH-WB model - πQH = 0.609. 
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F:2, where the E model was assumed to be the sole DGP, the estimate of δE = 0.493. 

In the mixture model, the estimate of δE, which we refer to as δEmix in Table H:1 and 

Figure H:1, is statistically significantly lower at 0.137 (p < 0.001). This implies that 

when one tries to make all the data fit the E model, one inflates the estimate of the 

discounting parameter since 65% of the data “wants” to be modelled as H. Similarly, 

in Model 2 of Table F:2, where the H model was assumed to be the sole DGP, the 

estimate of δH = 0.502. In the mixture model in Table H:1, the estimate of δHmix is 

statistically significantly higher at 0.730 (p < 0.001). Thus, by assuming one DGP we 

are averaging the estimates that we derive when allowing multiple DGPs to 

characterise the data. 

 

 
 

Finally, the estimate of the Fechner error term ν = 0.051 in the mixture model in 

Table H:1 is statistically significantly lower than the estimates of ν for the E (p < 

0.001) and H models (p < 0.001) in Table F:2. Thus, what was being captured as 

subject errors in decision making when estimating the E and H models separately is 

partly the product of forcing the data to fit one DGP. 

 

δE
 mix = 0.137

δH
mix = 0.730

δE = 0.493

δH = 0.502

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

D
is

co
un

t f
ac

to
r

0 1 2 3 4
Delay (years)

Figure H:1: Exponential and hyperbolic discount factors
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We present the results from the other two process mixture models below. The take-

home message is that all discounting models find significant support in the data. 

 
TABLE H:2: MIXTURE MODEL ML ESTIMATES 

RANK-DEPENDENT UTILITY AND HOMOGENOUS PREFERENCES 

 Estimate Std Error p-value 95% Confidence Interval 

      Rank-dependent utility theory 

      Power function parameter (r) 0.293*** 0.027 0.000 0.240 0.346 

      PWF parameter (φ) 0.797*** 0.025 0.000 0.748 0.846 

      PWF parameter (η) 0.853*** 0.032 0.000 0.790 0.916 

      Exponential discounting model 

      Discounting parameter (δEmix) 0.815*** 0.107 0.000 0.605 1.026 

      Mixture probability (πE) 0.636*** 0.039 0.000 0.561 0.712 

      Quasi-Hyperbolic discounting model 

      Discounting parameter (δQHmix) 0.105*** 0.014 0.000 0.077 0.133 

      Discounting parameter (βQHmix) 0.994*** 0.002 0.000 0.991 0.998 

      Mixture probability (πQH) 0.364*** 0.039 0.000 0.288 0.439 

      Error terms 

      Risk Error (µ) 0.175*** 0.008 0.000 0.158 0.191 
Time Error (ν) 0.034*** 0.010 0.001 0.015 0.053 
            
N 17500     log-likelihood -8775.861         

      H0: πE = 0.5, p-value < 0.001 
            
Results account for clustering at the individual level 
* p<0.10, ** p<0.05, *** p<0.01 
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TABLE H:3: MIXTURE MODEL ML ESTIMATES 
RANK-DEPENDENT UTILITY AND HOMOGENOUS PREFERENCES 

 Estimate Std Error p-value 95% Confidence Interval 

      Rank-dependent utility theory 

      Power function parameter (r) 0.301*** 0.027 0.000 0.249 0.353 

      PWF parameter (φ) 0.797*** 0.025 0.000 0.748 0.846 

      PWF parameter (η) 0.860*** 0.032 0.000 0.798 0.923 

      Exponential discounting model 

      Discounting parameter (δEmix) 0.153*** 0.017 0.000 0.119 0.186 

      Mixture probability (πE) 0.406*** 0.034 0.000 0.339 0.474 

      Weibull discounting model 

      Discounting parameter (δWBmix) 0.534*** 0.131 0.000 0.279 0.790 

      Discounting parameter (βWBmix) 5.940** 2.722 0.029 0.605 11.275 

      Mixture probability (πWB) 0.594*** 0.034 0.000 0.526 0.661 

      Error terms 

      Risk Error (µ) 0.173*** 0.008 0.000 0.157 0.189 
Time Error (ν) 0.055*** 0.014 0.000 0.027 0.084 
            
N 17500     log-likelihood -8720.160         

      H0: πE = 0.5, p-value = 0.006 
            
Results account for clustering at the individual level    * p<0.10, ** p<0.05, *** p<0.01 
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TABLE H:4: MIXTURE MODEL ML ESTIMATES 
RANK-DEPENDENT UTILITY AND HOMOGENOUS PREFERENCES 

 Estimate Std Error p-value 95% Confidence Interval 

      Rank-dependent utility theory 

      Power function parameter (r) 0.329*** 0.027 0.000 0.277 0.381 

      PWF parameter (φ) 0.797*** 0.025 0.000 0.749 0.846 

      PWF parameter (η) 0.886*** 0.035 0.000 0.819 0.954 

      Hyperbolic discounting model 

      Discounting parameter (δHmix) 0.717*** 0.067 0.000 0.585 0.849 

      Mixture probability (πH) 0.634*** 0.036 0.000 0.564 0.704 

      Quasi-Hyperbolic discounting model 

      Discounting parameter (δQHmix) 0.119*** 0.015 0.000 0.090 0.148 

      Discounting parameter (βQHmix) 0.994*** 0.002 0.000 0.990 0.998 

      Mixture probability (πQH) 0.366*** 0.036 0.000 0.296 0.436 

      Error terms 

      Risk Error (µ) 0.168*** 0.008 0.000 0.153 0.184 
Time Error (ν) 0.046*** 0.012 0.000 0.021 0.070 
            
N 17500     log-likelihood -8752.007         

      H0: πH = 0.5, p-value < 0.001 
            
Results account for clustering at the individual level 
* p<0.10, ** p<0.05, *** p<0.01 
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TABLE H:5: MIXTURE MODEL ML ESTIMATES 
RANK-DEPENDENT UTILITY AND HOMOGENOUS PREFERENCES 

 Estimate Std Error p-value 95% Confidence Interval 

      Rank-dependent utility theory 

      Power function parameter (r) 0.328*** 0.026 0.000 0.276 0.379 

      PWF parameter (φ) 0.797*** 0.025 0.000 0.749 0.846 

      PWF parameter (η) 0.884*** 0.034 0.000 0.817 0.952 

      Hyperbolic discounting model 

      Discounting parameter (δHmix) 0.720*** 0.069 0.000 0.585 0.855 

      Mixture probability (πH) 0.611*** 0.039 0.000 0.535 0.688 

      Weibull discounting model 

      Discounting parameter (δWBmix) 0.072*** 0.009 0.000 0.053 0.090 

      Discounting parameter (βWBmix) 1.759*** 0.206 0.000 1.355 2.164 

      Mixture probability (πWB) 0.389*** 0.039 0.000 0.312 0.465 

      Error terms 

      Risk Error (µ) 0.169*** 0.008 0.000 0.153 0.184 
Time Error (ν) 0.044*** 0.012 0.000 0.021 0.068 
            
N 17500     log-likelihood -8703.874         

      H0: πH = 0.5, p-value = 0.004 
            
Results account for clustering at the individual level 
* p<0.10, ** p<0.05, *** p<0.01 
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TABLE H:6: MIXTURE MODEL ML ESTIMATES 
RANK-DEPENDENT UTILITY AND HOMOGENOUS PREFERENCES 

 Estimate Std Error p-value 95% Confidence Interval 

      Rank-dependent utility theory 

      Power function parameter (r) 0.291*** 0.027 0.000 0.238 0.343 

      PWF parameter (φ) 0.797*** 0.025 0.000 0.748 0.846 

      PWF parameter (η) 0.851*** 0.032 0.000 0.788 0.913 

      Quasi-Hyperbolic discounting model 

      Discounting parameter (δQHmix) 0.797*** 0.111 0.000 0.579 1.015 

      Discounting parameter (βQHmix) 0.996*** 0.003 0.000 0.990 1.002 

      Mixture probability (πQH) 0.609*** 0.044 0.000 0.524 0.695 

      Weibull discounting model 

      Discounting parameter (δWBmix) 0.066*** 0.009 0.000 0.047 0.084 

      Discounting parameter (βWBmix) 1.720*** 0.188 0.000 1.352 2.087 

      Mixture probability (πWB) 0.391*** 0.044 0.000 0.305 0.476 

      Error terms 

      Risk Error (µ) 0.175*** 0.008 0.000 0.159 0.192 
Time Error (ν) 0.034*** 0.010 0.000 0.015 0.052 
            
N 17500     log-likelihood -8715.090         

      H0: πQH = 0.5, p-value = 0.012 
            
Results account for clustering at the individual level 
* p<0.10, ** p<0.05, *** p<0.01 
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