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Abstract  

It has become increasingly clear that the gut microbiota influences not only gastrointestinal 

physiology but also central nervous system (CNS) function by modulating signalling 

pathways of the microbiota-gut-brain axis. Understanding the neurobiological mechanisms 
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underpinning the influence exerted by the gut microbiota on brain function and behaviour has 

become a key research priority. Microbial regulation of tryptophan metabolism has become a 

focal point in this regard, with dual emphasis on the regulation of serotonin synthesis and the 

control of kynurenine pathway metabolism. In this review, we focus in detail on the latter 

pathway and begin by outlining the structural and functional dynamics of the gut microbiota 

and the signalling pathways of the brain-gut axis. We summarise recent preclinical and 

clinical investigations demonstrating that the gut microbiota influences CNS physiology, 

anxiety, depression, social behaviour, cognition and visceral pain. Pertinent studies are drawn 

from neurogastroenterology demonstrating the importance of tryptophan and its metabolites 

in CNS and gastrointestinal function. We outline how kynurenine pathway metabolism may 

be regulated by microbial control of neuroendocrine function and components of the immune 

system. Finally, preclinical evidence demonstrating direct and indirect mechanisms by which 

the gut microbiota can regulate tryptophan availability for kynurenine pathway metabolism, 

with downstream effects on CNS function, is reviewed. Taken together, targeting the gut 

microbiota represents a tractable target with which to modulate kynurenine pathway 

metabolism. Efforts to develop this approach will markedly increase our understanding of 

how the gut microbiota shapes brain and behaviour and provide new insights towards 

successful translation of microbiota-gut-brain axis research from bench to bedside.    

Keywords (max 6): Tryptophan; kynurenine; Stress; Immune system; microbiota-gut-brain-

axis; behaviour.   
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Highlights  

 

 Brain function and behaviour are under substantial microbial control 

 Kynurenine pathway metabolism is critical in a range of CNS and GI functions 

 Gut microbiota may regulate kynurenine pathway metabolism via numerous 

mechanisms  

 The gut microbiota may be targeted to modulate kynurenine pathway metabolism  

 Microbial-modulated kynurenine metabolism may prove beneficial for CNS function  



4 
 

 

1. Introduction 

The importance of the gut microbiota has moved front and centre on the healthcare agenda. 

One of the most exciting developments in gut microbiota research over recent years has been 

the discovery that the collection of microorganisms in our gut can regulate aspects of brain 

function and behaviour (Cryan and Dinan, 2012; Mayer et al., 2014). Understanding the 

neurobiological mechanisms underpinning the extent of the influence exerted by this 

microbial organ on host physiology, brain and behaviour is now a key research priority. A 

number of pathways and potential mechanisms which may regulate microbiota-brain 

interactions are under investigation. One focal point in this regard is the microbial regulation 

of circulating tryptophan availability, with a dual emphasis on the regulation of serotonin 

synthesis and the regulation of kynurenine pathway metabolism. In addition to the ability to 

modulate the expression of relevant central nervous system (CNS) receptor subtypes, this 

attribute gives the gut microbiota a broad neuropharmacological repertoire and makes it an 

appealing and tractable target for the treatment of a range of stress-related disorders. 

This review places the kynurenine pathway under the spotlight. We first briefly describe the 

structural and functional dynamics of the gut microbiota across the lifespan and frame its 

importance in general to health and wellbeing. We then discuss the broad scope of influence 

across physiology, brain and behaviour as it recruits the scaffolding and reciprocal 

communication network of the brain-gut axis to mediate both positive and negative effects. 

Using well established preclinical and clinical examples from the field of 

neurogastroenterology, we outline the potential translational significance of a dysregulated 

microbiota-gut-brain axis in the context of kynurenine pathway metabolism. We also explore 

possible mechanisms, neurodevelopmental implications and the opportunities for intervention 



5 
 

arising from this research, integrating evidence ranging from prenatal and postnatal studies to 

the older extreme of life.  

2. The gut microbiota: Structural and functional dynamics  

The microbes that reside in our gastrointestinal tract are together known as our gut microbiota 

and their collective genomes constitute our gut microbiome (Turnbaugh et al., 2007). When 

comparing the gut microbiota composition between healthy humans, substantial taxonomic 

variability is evident. Such inter-individual diversity may be accounted for by a number of 

environmental, physiological, genetic and psychological factors (Cryan and Dinan, 2012; 

Lozupone et al., 2012; Penders et al., 2006). Nevertheless, it is becoming accepted that whilst 

each individual harbours a unique microbiota, there exists a ‘core’ gut microbiota 

composition and common trends in microbial colonisation from birth, through infancy to 

adulthood and old age have been documented. 

Initial microbial colonisation largely occurs during the birthing process, with vaginally 

delivered infants exposed to maternal faecal and vaginal bacteria, and infants delivered by 

caesarean (C)-section exposed initially to bacteria in the hospital environment and skin of the 

mother (Borre et al., 2014).  However, it must be noted that despite the long held view that 

the in-utero environment is entirely sterile, it has recently been shown that prior to 

breastfeeding, the amniotic fluid, placenta and meconium of newborns, might contain small 

counts of bacteria (Rodríguez et al., 2015). Studies using culture based techniques to measure 

the gut microbial composition of newborns have demonstrated the presence of facultative 

anaerobes such as Enterobacteriaceae, followed by strict anaerobes, including 

Bifidobacterium and Bacteroides (Adlerberth and Wold, 2009). More advanced 16S rRNA 

sequencing, which has the capability to identify unculturable bacteria, has further revealed 

that the healthy, vaginally delivered infant gut is populated initially by Bifidobacterium, 
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Lactobacillus, Enterobacteriaceae and Staphylococcus, with later increases in Veillonella and 

Lachnospiraceae (Palmer et al., 2007).  Up until around 2 years of age, when solid foods are 

introduced, the infant gut microbiota is highly unstable and dynamic (Borre et al., 2014), after 

which, around the third year of life, the composition diversifies, stabilises and begins to 

resembles an adult-like microbial composition (Rodríguez et al., 2015).  

During adulthood, a healthy individuals’ gut microbiota is dominated by four main phyla; 

Bacteroidetes, Firmicutes, Actinobacteria, and Verrucomicrobia (Human Microbiome 

Project Consortium, 2012). The healthy young adult and middle aged gut microbiota 

composition is characterised by diversity of the bacterial species which are present 

(Lozupone et al., 2012). As an individual moves through to old age, the microbial 

composition of the gut changes to a greater proportion of Bacteroides spp. with distinct 

abundance patterns of Clostridium groups identified in elderly compared to younger adults 

(Claesson et al., 2011). As such, at the extremes of life- infancy and old age- the gut 

microbial composition is extremely dynamic and undergoes significant changes, whereas the 

healthy young adulthood and middle age gut microbiota is characterised by relative stability 

and high diversity. Even during adulthood, however, the microbial composition of the gut can 

dramatically change over the course of one year (Knights et al., 2014). This has led to 

controversy as to how best to characterise, and track, the gut microbiota composition in an 

individual. The concept of ‘enterotypes’ (3 core clusters of a bacterial genus: Bacteroides, 

Prevotella or Ruminococcus) is not universally accepted due to inter-individual variation 

between clusters and difficulties in defining an individual’s gut microbial composition within 

one enterotype (Knights et al., 2014). An alternative view is that the gut microbial 

composition reflects a core set of functional profiles in which some bacterial species are more 

critically involved in the functional profile and may thus influence, to a greater degree, health 

and disease (Flint et al., 2012).  
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Across the lifespan, a number of factors have been identified which purportedly disturb the 

normal microbial composition of the gut. These factors have been reviewed extensively 

elsewhere (Rodriguez, 2015) and include mode of delivery at birth, antibiotic treatment, diet, 

stress, infection and host genetics. However, two recent articles question the extent to which 

some of the aforementioned factors disturb the adult gut microbiota composition (Falony et 

al., 2016; Zhernakova et al., 2016) highlighting the need for further investigation with larger 

populations. Nevertheless, the health ramifications of disturbing the gut microbiota 

composition at each stage of life are potentially wide ranging and the implications for brain 

function behaviour, as will be outlined in the following sections, may be significant.     

3. Microbiota -gut-brain axis signalling 

Communication between the brain and gut occurs along a network of pathways collectively 

termed the brain-gut axis (see Figure 1). The brain-gut axis encompass the CNS, enteric 

nervous system (ENS), sympathetic and parasympathetic branches of the autonomic nervous 

system, neuroendocrine and neuroimmune pathways, and the gut microbiota (Cryan and 

Dinan, 2012). A complex reflexive network of efferent and afferent fibers between the 

gastrointestinal (GI) tract and the CNS facilitate interactions within the axis (Furness, 2012). 

Bidirectional communication along hormonal, neural, and immune pathways allow the CNS 

to influence motor, sensory and secretory functions of the GI tract, and conversely, signals 

arising from the GI tract to influence CNS function (Aziz and Thompson, 1998).  Much work 

has been conducted over the past two decades to delineate the role of brain-gut interactions in 

the context of functional GI disorders such as irritable bowel syndrome (IBS) (Mayer et al., 

2006; Mayer et al., 2009), to a lesser degree organic GI disorders such as inflammatory bowel 

disease (IBD), and other disorders that may be associated with dysregulated brain-gut 

communication such as obesity and anorexia nervosa (Hoebel, 1997; Schellekens et al., 

2012). However, over recent years the gut microbiota has taken the limelight as a key 
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mediator of brain-gut axis signalling, with a growing body of evidence indicating that the 

influence of the microbiota extends beyond the gut and is pivotal in many aspects of brain 

function and behaviour (Cryan and Dinan, 2012; Mayer et al., 2014; Sampson and 

Mazmanian, 2015). Gut microbiota to brain signaling may occur through a number of inter-

related mechanisms including activating afferent sensory neurons of the vagus nerve, neuro-

immune pathways, neuroendocrine pathways, microbial metabolites such as short-chain fatty 

acids (SCFAs), microbial derived neurotransmitters (Cryan and Dinan, 2012) and as will be 

the focus here, through modulating circulating tryptophan availability with implications for 

kynurenine pathway metabolism in the periphery and in the CNS.   

*****************************Insert Figure 1 Here*********************************** 

4. General influence of the gut microbiota on brain and behaviour 

4.1.Anxiety & Depression 

A number of approaches have been utilised in preclinical models to investigate how the gut 

microbiota influences brain function and behaviour, including the use of germ-free (GF) 

mice, pre/probiotic treatment, antibiotic treatment, deliberate bacterial infection of the GI 

tract and faecal microbiota transplant (Cryan and Dinan, 2012) . Such studies have 

demonstrated, with relative consistency, that the gut microbiota modulates anxiety (Arentsen 

et al., 2015; Clarke et al., 2013; Diaz Heijtz et al., 2011; Neufeld et al., 2011; Savignac et al., 

2014) and depressive like behaviour (Bravo et al., 2011; Desbonnet et al., 2015; Desbonnet et 

al., 2008; Messaoudi et al., 2011; Wong et al., 2016). Of particular note is a study showing 

that an anxiety-like phenotype can be transferred from one mouse strain to another by faecal 

microbiota transplant (Bercik et al., 2011).  

Emerging data in healthy humans support preclinical findings suggesting the gut microbiota 

influence mood and anxiety (Benton et al., 2007; Messaoudi et al., 2011; Steenbergen et al., 
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2015). Few investigations have been conducted with psychiatric populations. Emerging data 

suggests that patients with major depressive disorder have an altered microbial composition 

when compared to non-depressed individuals (Jiang et al., 2015; Zheng et al., 2016) although 

an independent study did not identify such differences. Despite these conflicting findings, the 

fact that a faecal microbiota transplant from patients with major depressive disorder to GF 

mice induced a depressive-like phenotype in these animals (Zheng et al., 2016), lends support 

to a role for the gut microbiota in depressive symptomatology. Nevertheless, conflicting 

results in psychiatric populations are perhaps not surprising due to a wide variation of 

symptoms within DSM diagnostic categories, and future large trials with well phenotyped 

populations are needed to delineate the role of the gut microbiota in depression and anxiety.  

4.2. Cognitive function 

Preclinical studies utilising various strategies including GF and GI infection models (Gareau, 

2014; Gareau et al., 2011), antibiotic treatment (Desbonnet et al., 2015; Fröhlich et al., 2016) 

dietary manipulation (Li et al., 2009; Ohland et al., 2013) and probiotic treatment (Davari et 

al., 2013; Ohland et al., 2013), have found that cognitive function is influenced by the 

composition of the gut microbiota. Preliminary findings in healthy populations have shown 

that a prebiotic can modulate emotional attention performance (Schmidt et al., 2015), and a 

probiotic can alter functional brain activity when performing a similar emotional attention 

task (Tillisch et al., 2013).  

Targeting the gut microbiota for pro-cognitive benefits may be particularly suited to 

application at the extremes of life, when brain function is more vulnerable and in a state of 

flux; rapid development in function characterised by increasingly complex cognitive abilities 

during infancy and slow decline in function accompanied by a steady reduction in specific 

cognitive abilities during old age (Prenderville et al., 2015). One small randomised controlled 
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trial suggests that microbiota-targeted interventions may be beneficial in age-related 

cognitive decline (Chung et al., 2014). To date there have been no studies to determine the 

efficacy of microbiota targeted supplementation in promoting cognitive development during 

infancy. However, when considering preclinical findings that the gut microbiota can 

profoundly influence neurodevelopment during critical postnatal periods (Clarke et al., 2013; 

Desbonnet et al., 2014; Stilling et al., 2015b; Sudo et al., 2004), future trials with infants are 

clearly warranted. 

4.3.Social Behaviour  

When considering that microorganisms and humans coevolved over millennia, it is perhaps 

not surprising that there is increasing evidence that the gut microbiota is critical in the 

development and expression of social behaviour (Stilling et al., 2014a; Stilling et al., 2014b, 

2015a). GF animals exhibit altered social novelty preference- a natural social behaviour 

expressed by conventional mice- (Arentsen et al., 2015; Desbonnet et al., 2014) which can be 

normalised if bacterial colonisation occurs post-weaning (Desbonnet et al., 2014). The 

maternal immune activation mouse model has been utilised to investigate, pre-clinically, 

neurodevelopmental disorders such as autism spectrum disorders which are characterised by 

marked social and communication difficulties (Carr, 2006). The maternal immune activation 

model produces offspring exhibiting deficits in social behaviour, gastrointestinal 

disturbances, increased intestinal permeability and alterations in the composition of the gut 

microbiota (Malkova et al., 2012). It is noteworthy then, that treatment with the probiotic 

Bacteroides fragilis was found to improve intestinal barrier function and normalize 

communicative and stereotypic behaviours in maternal immune activation offspring (Hsiao et 

al., 2013).  
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4.4.Visceral Pain 

Chronic visceral pain affects up to 25% of the population and represents significant challenge 

for healthcare providers and society as a whole (Moloney et al., 2015). Chronic pain of the GI 

tract is a predominant symptom of IBS in which dysregulation of the brain-gut axis has long 

been considered to underlie the pathophysiology in the disorder (Moloney et al., 2016). A 

number of lines of evidence suggest that the gut microbiota may drive visceral pain in IBS. 

For example, recent studies have demonstrated an altered gut microbiota composition in IBS 

(Jeffery et al., 2012) which is associated with symptom scores (Kennedy et al., 2014). A 

number of probiotic bacteria show efficacy in reducing symptoms in IBS (Clarke et al., 

2012a), and in preclinical models, antibiotic treatment during early life leads to visceral 

hypersensitivity in adulthood (O’Mahony et al., 2014), whilst probiotic treatment ameliorates 

visceral hypersensitivity (McKernan et al., 2010). As such, there is increasing interest in how 

alterations in the gut microbiota may impact the development of visceral pain and 

hypersensitivity, and the potential for microbiota targeted therapies to treat these problematic 

symptoms (Moloney et al., 2016).  

5. Tryptophan metabolism, serotonin & the kynurenine pathway 

As the precursor molecule to serotonin (5-HT), kynurenine and downstream metabolites of 

the kynurenine pathway (Badawy, 2015a; Palego et al., 2016), changes in the supply and 

availability of the essential amino acid tryptophan has many implications for ENS and CNS 

functioning and thus brain-gut axis signalling. Around 95% of the body’s 5-HT is located 

within the GI tract, primarily synthesised by enterochromaffin cells, and 5% in the CNS 

(Camilleri, 2002; Gershon and Tack, 2007; Mayer et al., 2001). In healthy humans, other 

mammals and in disease states, 5-HT in the GI tract is involved in a range of largely reflexive 

functions including motility (Chial et al., 2003; Gorard et al., 1994), secretion and absorption 
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(Bearcroft et al., 1997), intestinal transit (Wilmer et al., 1993) and colonic tone (Klatt et al., 

1999; Talley et al., 1990). In addition, 5-HT mediates feelings of nausea and can induce 

vomiting by stimulating 5-HT3 receptors on vagal afferent pathways which signal to the 

nucleus tractus solitarii (Klatt et al., 1999; Talley et al., 1990). In addition, peripheral 5-HT 

release in the GI tract can modulate food intake by stimulating vagal afferent pathways 

(Donovan and Tecott, 2013) and inhibition of peripherial 5-HT synthesis has been shown to 

reduce obesity and metabolic dysfunction through actions on brown adipose tissue 

thermogenesis (Crane et al., 2015). In the CNS, 5-HT is involved in a range of mood, 

behavioural and cognitive functions, and is the purported target of many psychiatric 

medications (Berger et al., 2009; Cryan and Leonard, 2000). Whilst serotonergic signalling is 

critical in CNS and ENS function, a full review is not within the scope of this article (See 

(Gershon and Tack, 2007; Mawe and Hoffman, 2013; O’Mahony et al., 2015; Spiller, 2008) 

for excellent reviews on this topic).   

Around 90% of tryptophan is metabolised along the kynurenine pathway (O’Mahony et al., 

2015). The rate of tryptophan metabolism along the kynurenine pathway is dependent on 

expression of indoleamine-2,3-dioxygenase (IDO1), found in all tissues, and tryptophan-2,3-

dioxygenase (TDO) which is localised to the liver (Clarke et al., 2012b). IDO1 expression 

can be induced by the action of inflammatory cytokines, Interferon (IFN)-γ in particular, and 

TDO expression by glucocorticoids (O’Mahony et al., 2015). IDO1 is the best characterised 

of these IDO enzymes in converting tryptophan to kynurenine both in the GI tract and other 

tissues of the body (Ciorba, 2013) although our knowledge of the more recently discovered 

IDO2 is steadily increasing (Ball et al., 2007; Fatokun et al., 2013). As IDO1 is induced by 

proinflammatory cytokines, its  expression has been proposed as a biomarker of GI diseases, 

including IBD where it reflects mucosal inflammation, and in colon cancer (Ciorba, 2013).   
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Downstream metabolites of the kynurenine pathway (See Figure 2 and (Badawy, 2015b)  for 

more detailed description of kynurenine pathway), quinolinic and kynurenic acid  are of 

particular interest for neurogastroenterology as they are neuroactive metabolites that act on 

N-methyl-D-aspartate (NMDA) and alpha7 (α7) nicotinic acetylcholine receptors in the CNS 

and ENS (Perkins and Stone, 1982; Stone and Darlington, 2002; Stone and Perkins, 1981). In 

the ENS and CNS, kynurenic acid is an antagonist of NMDA, and α7 nicotinic receptors, and 

in the ENS is an agonist of G-protein coupled GPR35 receptor (Turski et al., 2013). In the 

CNS, kynurenic acid has long been viewed as potentially neuroprotective whilst quinolinic 

acid is primarily considered an excitotoxic NMDA receptor agonist (Stone and Darlington, 

2013). Less is understood regarding the functions of kynurenic acid  and quinolinic acid in 

the GI tract; however, both appear to be involved in immunoregulation (Keszthelyi et al., 

2009). Interestingly, kynurenic acid may have anti-inflammatory properties in the GI tract 

(Kaszaki et al., 2012), and has been shown, in-vitro, to inhibit the proliferation of colon 

cancer cells (Walczak et al., 2014).  

**************************Insert Figure 2 Here****************************** 

6. Stress, the gut microbiota and the implications for kynurenine pathway metabolism 

It has become clear that there is an intricate relationship between the gut microbiota and 

stress. Over a decade ago a seminal study was the first to demonstrate that GF mice subjected 

to a mild-restraint stress exhibited an exaggerated hypothalamic-pituitary-adrenal (HPA) axis 

(the core mammalian neuroendocrine system) response when compared to specific pathogen 

free control animals (Sudo et al., 2004). Of note, bacterial colonization with faecal matter 

from specific pathogen free mice was able to partially normalize the abnormal stress response 

in GF animals and could be fully normalized in a time-dependent manner by monoassociation 

with the probiotic B. infantis (Sudo et al., 2004). Subsequent preclinical investigations have 
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replicated this finding (Clarke et al., 2013), and demonstrated that probiotic treatment can 

normalise early life stress-induced HPA axis dysfunction (Gareau et al., 2007). Moreover, a 

recent preliminary investigation in a small sample of healthy control participants reported that 

treatment with a prebiotic supplement can modulate the cortisol awakening response 

(Schmidt et al., 2015). Taken together these studies suggest that neuroendocrine function is 

influenced by the gut microbiota. However, it must also be noted that the microbial-

neuroendocrine relationship is bi-directional as stress can change the composition of the gut 

microbiota. This is true of early-life stress (Bailey and Coe, 1999; O'Mahony et al., 2009)  

prenatal stress (Golubeva et al., 2015a; Jasarevic et al., 2015; Zijlmans et al., 2015) and 

psychological stress (Bailey et al., 2011; Bharwani et al., 2016; Galley et al., 2014; Reber et 

al., 2016) 

As outlined above and elsewhere in this issue, glucocorticoids modulate the expression of 

TDO (O'Farrell and Harkin, 2015; O’Mahony et al., 2015). As such, TDO activity may at 

least partly be contingent on a microbial-neuroendocrine interplay with significant 

implications for brain function and behaviour.   

7. The immune system, the gut microbiota and implications for kynurenine pathway 

metabolism 

As noted above, kynurenine pathway metabolism is tightly regulated by inflammatory 

mediators and multiple enzymes in the pathway are immunoresponsive (Campbell et al., 

2014). The gut microbiota engages dynamically with the host across the lifespan to educate 

and regulate the immune system (El Aidy et al., 2015; Round and Mazmanian, 2009). This is 

clear not just from GF animals but also in the compromised immune response to infection of 

animals whose gut microbiota is depleted using antibiotics (Holzscheiter et al., 2014). 

Conversely, the immune system also acts to govern community composition and diversity of 

the intestinal microbiota (Hooper et al., 2012).   
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Microbiota-deficient GF animals have an immature immune system which could explain the 

reduced kynurenine pathway metabolism in these animals (see below) (Clarke et al., 2013). 

Normalisation of this metabolic abnormality following colonisation post-weaning tallies with 

the fact that immune system function can also be reinstated by introduction of an intestinal 

microbiota to GF animals (Clarke et al., 2013; O'Hara and Shanahan, 2006; Tlaskalova-

Hogenova et al., 1983; Umesaki et al., 1995). Indeed a feature of the germ-free state is a 

reduced expression of gastrointestinal toll-like receptors (TLRs) which recognise microbial 

components in the gastrointestinal tract (Kawai and Akira, 2010; Wang et al., 2010). 

Activation of TLRs is associated with increased kynurenine pathway metabolism (Clarke et 

al., 2012b; Mahanonda et al., 2007; Wang et al., 2011), a feature which may be via IFN-γ 

dependent or IFN-γ independent IDO1 induction (Campbell et al., 2014). The translational 

relevance of these findings is bolstered by knowledge that in IBS, there is evidence of low-

grade immune activation that is associated with gut microbiota alterations (Kennedy et al., 

2014b) and increased kynurenine pathway metabolism (Clarke et al., 2009a; Clarke et al., 

2012b; Fitzgerald et al., 2008). Interestingly, TLRs are also expressed in the CNS (Kigerl et 

al., 2014) where they play a role, for example, in visceral pain following chronic stress 

(Tramullas et al., 2014) and the TLR3 ligand poly(I:C) induces the expression of IDO in 

human astrocytes (Suh et al., 2007). 

The aryl hydrocarbon receptor  also serves as a sensor to pick up exogenous and endogenous 

stimuli and to subsequently modulate the immune response (Julliard et al., 2014). Activation 

of aryl hydrocarbon receptor facilitates host-microbe homeostasis and indole produced from 

tryptophan by microbes is an important ligand for this transcription factor (Hubbard et al., 

2015). Although kynurenine has been regarded as an inert precursor to downstream 

neuroactive agents, it also activates the aryl hydrocarbon receptor (Julliard et al., 2014; 

Kawasaki et al., 2014; Nuti et al., 2014; Opitz et al., 2011). Meanwhile, aryl hydrocarbon 
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receptor itself plays a role in the regulation of IDO and TDO expression (Bessede et al., 

2014; Jaronen and Quintana, 2014). This complex crosstalk is an important example of the 

interface between the gut microbiota, kynurenine pathway metabolism and the immune 

response. Interestingly, in the absence of aryl hydrocarbon receptor receptors, studies in mice 

indicate that endogenous kynurenic acid levels are increased (Garcia-Lara et al., 2015) while 

kynurenine mediates aryl hydrocarbon receptor activation in the brain after experimental 

stroke (Cuartero et al., 2014). In addition, it has recently been demonstrated that astrocyte 

activity and CNS inflammation is modulated by Type I interferons and tryptophan 

metabolites, via the aryl hydrocarbon receptor (Rothhammer et al., 2016) and administration 

of a aryl hydrocarbon receptor agonist attenuates intestinal inflammation in a preclinical 

mouse model of colitis (Lamas et al., 2016) 

Alternatively, microbial metabolites such as SCFAs can impact on intestinal barrier integrity 

and the systemic inflammation arising from increased intestinal permeability could also lead 

to alterations in kynurenine pathway metabolism (Kelly et al., 2015b; Tilg and Moschen, 

2015). Given the compartmentalisation of the different arms of kynurenine pathway 

metabolism between microglia and astrocytes in the CNS, it is also interesting to note recent 

observations that the gut microbiota acts to regulate microglia maturation and function (Erny 

et al., 2015). However, to date, to our knowledge, kynurenine pathway metabolites in the 

CNS have not been reported in studies of microbiota-deficient animals. Interestingly, mice 

infected with Toxoplasma gondii do have elevated levels of kynurenine, kynurenic acid, 3-

hydroxykynurenine and QUIN in the brain (Notarangelo et al., 2014) and reactivation of  

Toxoplasma gondii is associated with activation of brain IDO, likely via IFN-γ dependent 

mechanisms (Mahmoud et al., 2016).  
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8. Preclinical evidence supporting a role for the gut microbiota in regulating the 

availability of tryptophan for kynurenine metabolism  

The link between the availability of tryptophan metabolism for kynurenine metabolism and 

the composition of the gut microbiota is underlined by a number of different preclinical 

approaches. Firstly, using both targeted and unbiased analysis in GF animals, it has been 

demonstrated that circulating total tryptophan levels are increased in the absence of a gut 

microbiota (Clarke et al., 2013; El Aidy et al., 2012a; Mardinoglu et al., 2015; Wikoff et al., 

2009). Despite increased circulating tryptophan availability, both kynurenine pathway 

metabolism and circulating serotonin concentrations are decreased (Clarke et al., 2013; 

Wikoff et al., 2009). This is consistent with the observation that gastrointestinal serotonin 

synthesis, which modulates circulating levels, is driven by microbial metabolites such as 

SCFAs or tryptophan-derived indole metabolites (Reigstad et al., 2015; Yano et al., 2015). 

Antibiotic-induced microbiota depletion from weaning onwards also increases circulating 

tryptophan availability and reduces peripheral kynurenine pathway metabolism (Desbonnet et 

al., 2015). Importantly, colonisation of GF animals post weaning normalises circulating 

tryptophan availability and kynurenine pathway metabolism (Clarke et al., 2013; El Aidy et 

al., 2012b). More subtle microbiota manipulations such as deliberate infection with Trichuris 

muris, also increases the kynurenine/tryptophan ratio (Bercik et al., 2010).   

The majority of preclinical studies to date have focused on total circulating tryptophan levels 

with less attention given to the dynamics of tryptophan flux down the kynurenine pathway, 

including the assessment of free tryptophan levels (Badawy, 2015a). Nevertheless, it is clear 

that total tryptophan concentrations inform the equilibrium with free tryptophan and many 

consider total tryptophan to be important for brain tryptophan uptake (Fernstrom and 

Fernstrom, 2006). Circulating levels of many of the amino acids which compete with 

tryptophan for transport across the BBB such as tyrosine, phenylalanine, isoleucine and 
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valine are also increased in GF animals (Mardinoglu et al., 2015; Wikoff et al., 2009). 

Despite this, it is interesting to note that increased circulating total tryptophan levels do result 

in increased hippocampal serotonin concentrations in GF animals (Clarke et al., 2013). It 

remains to be seen if the reduced circulating availability of kynurenine associated with a 

gross microbiota deficiency is reflected in alterations in CNS kynurenine and downstream 

metabolites.  

These preclinical studies to date have spurred interest in whether targeting the gut microbiota 

might be a viable strategy to influence circulating tryptophan availability for kynurenine 

metabolism in the periphery and CNS. In this context, administration of B. infantis to rodents 

increased tryptophan concentrations, reduced onward tryptophan metabolism to kynurenine 

and increased circulating kynurenic acid concentrations (Desbonnet et al., 2008). 

Administration of  L. johnsonii to rats also resulted in a reduction in serum kynurenine 

concentration, a result  associated with the ability of L. johnsonii to reduce IDO activity in 

vitro in HT-29 intestinal epithelial cells, possibly by increasing hydrogen peroxide production 

(Freewan et al., 2013; Valladares et al., 2013). Achieving functional outcomes by translating 

current preclinical microbiota findings to a precision approach for microbial regulation of 

kynurenine production in human subjects is a challenge that now needs to be embraced.  

9. Microbial regulation of CNS receptors, Neurogenesis and Myelination  

One of the remarkable features of the gut microbiota is the impact on gene expression in the 

CNS as indicated, for example, by studies in GF animals (Diaz Heijtz et al., 2011; Stilling et 

al., 2015c). This includes GABA receptor expression in the amygdala following ingestion of 

L. rhamnosus (Bravo et al., 2011) and 5-HT1A receptor expression in the hippocampus under 

GF conditions (Neufeld et al., 2011). The intersection between the pharmacodynamic 

interactions of kynurenine pathway metabolites and those CNS receptor subtypes whose 



19 
 

expression is influenced by the gut microbiota is narrow at present but potentially important. 

For example, studies have indicated that NMDA receptor subunit NR2B mRNA expression is 

decreased in the central amygdala of germ-free mice (Neufeld et al., 2011). Moreover, NR1 

subunit expression in the hippocampus was increased following prebiotic supplementation 

(Savignac et al., 2013). However, an alternative prebiotic did not alter CNS NDMA receptor 

expression in the frontal cortex (Savignac et al., 2015) and further studies are required to 

demonstrate that deliberate effects on relevant receptors can be achieved with other 

interventions such as probiotics.  

Studies demonstrating that the  gut microbiota can influence cognitive function, anxiety and 

depressive-like behaviour in animals should be appreciated in the context  that adult 

hippocampal neurogenesis is under microbial influence (Möhle et al., 2016; Ogbonnaya et al., 

2015). However, it is not yet apparent whether this has any consequences for discrete 

populations of neurons that provide the interface between endogenous kynurenine pathway 

neuroactives and glutamatergic, and cholinergic neurotransmission. In addition, recent 

preclinical evidence using different approaches demonstrating that the gut microbiota 

regulate myelination in the prefrontal cortex (Gacias et al., 2016; Hoban et al., 2016) further 

expands the repertoire of CNS functions influenced by gut microbial composition.    

10. Microbial regulation of features relevant to CNS tryptophan and kynurenine 

pathway metabolism 

Both the regulation of circulating tryptophan availability and distribution and subsequent 

kynurenine pathway metabolism in the periphery and CNS, is tightly regulated during all 

stages of life (Badawy, 2015a, b; Ruddick et al., 2006). This is desirable, especially in the 

context of having checks and balances in place for the control of CNS availability of 

neuroactive metabolites with such a broad pharmacodynamic impact (Muller and Homberg, 

2015; Schwarcz et al., 2012). From a pharmacokinetic perspective, there are recent 
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indications that the gut microbiota impacts not just the availability of circulating tryptophan 

and kynurenine but also has the potential to modulate their distribution and subsequent CNS 

fate. For example, under normal circumstances tryptophan and kynurenine enter the CNS via 

the LNAA transporter (Ruddick et al., 2006). kynurenic acid and quinolinic acid are not 

considered to cross the BBB in appreciable quantities (Schwarcz et al., 2012). However, the 

integrity of the BBB may be contingent on the gut microbiota (Braniste et al., 2014) such that 

the brain appears more accessible in germ-free animals. Similarly, the metabolic fate of 

kynurenine reaching the CNS is influenced by microglia (See Figure 3 (Schwarcz and 

Pellicciari, 2002)), whose maturation and function is defective in the absence of a gut 

microbiota (Erny et al., 2015). As indicated above, microbially-derived indole metabolites of 

tryptophan can also act via astrocytes to influence CNS inflammation (ref). In all instances, it 

remains to be demonstrated that less-extreme microbiota-based manipulations can be 

successfully applied to either improve BBB integrity, or influence the neurobiological 

consequences of microglialactivation states or astrocyte function. Nevertheless, 

understanding the role of the gut microbiota in regulating the fluctuation of kynurenine 

metabolite distribution to the CNS as well as their subsequent metabolic fate might yield 

some interesting insights to expedite the therapeutic opportunities arising from 

compartmentalisation of kynurenine pathway metabolism in the CNS.  

***************************Insert Figure 3 Here****************************** 

11. Microbial metabolism of tryptophan and the impact of microbial metabolites 

generated from tryptophan on host physiology 

The metabolic transformation of tryptophan by bacteria is an important but neglected feature 

which might be important in microbial regulation of circulating tryptophan availability to the 

host for kynurenine pathway metabolism in the periphery and CNS. Most tryptophan 
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supplied for bacterial metabolism in the colon comes in the form of undigested protein and 

the major metabolite is indole (Berstad et al., 2015). Indole production by bacteria is 

catalysed by tryptophanase, an enzyme not present in eukaryotic cells (Scherzer et al., 2009). 

Indeed, tryptophan itself can be synthesised via the shikimic acid pathway in bacteria and 

plants (Maeda and Dudareva, 2012; Martinez et al., 2015) with the last two steps of bacterial 

tryptophan biosynthesis catalysed by tryptophan synthase (Raboni et al., 2009; Yanofsky, 

2007). Given that tryptophan synthesis is energetically expensive for cells and that it is 

usually readily available via dietary proteins (Priya et al., 2014), the evolutionary loss of this 

feature in mammals is understandable. The exact contribution of bacterial tryptophan 

synthetic pathways to circulating levels is unclear. 

The consequences for the host of tryptophan-derived indoles are varied and include an impact 

on oxidative stress, intestinal inflammation, and hormone secretion (Lee and Lee, 2010; Lee 

et al., 2015). Indoles produced by bacteria also have a beneficial impact on intestinal 

epithelial cells by acting to strengthen the mucosal barrier (Bansal et al., 2010). Recently, it 

has been demonstrated that these indole metabolites can promote gastrointestinal serotonin 

synthesis from tryptophan (Yano et al., 2015), a feature shared with other microbial 

metabolites such as SCFAs (Reigstad et al., 2015). It is likely then that the increase in 

circulating tryptophan availability arises at least partially as a consequence of the interaction 

between microbial metabolites and the host. Interestingly, bacteria are responsive to 

psychotropic drugs acting on the serotonergic system, such as selective serotonin reuptake 

inhibitors (Munoz-Bellido et al., 2000). The might be related to the ability of drugs like 

tricyclic antidepressants to bind to LeuT, a bacterial homologue of neurotransmitter 

transporters (Henry et al., 2007; Singh et al., 2007). 

Our gut bacteria synthesise a variety of neuroactive agents recognised by the host and this 

includes the use of tryptophan to generate serotonin (Clarke et al., 2014b). They can also 
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produce kynurenic acid which is present in rat small intestine at micromolar concentrations 

where it could activate the GPR35 receptor (Kuc et al., 2008). This is possibly due to the 

bacterial enzyme aspartate aminotransferase (AspAT) which is capable of the transamination 

of kynurenine and 3-HK to kynurenic acid (Han et al., 2001). In bacteria, quinolinic acid can 

be produced from aspartate (Begley et al., 2001). Although it was thought that the tryptophan 

to quinolinic acid was unique to eukaryotes, analyses of bacterial genomes have identified 

TDO, kynurenine-3-monooxygenase, kynureninase, kynurenine formamidase and 3-

hydroxyanthranilate-3,4-dioxygenase homologs (Kurnasov et al., 2003a; Kurnasov et al., 

2003b). In bacteria, kynureninase acts directly on l-kynurenine to produce anthranilate and l-

Ala (Phillips, 2011).  

In addition to the examples mentioned above, bacteria can also use tryptophan to produce 

multiple other bioactive products with diverse properties (Alkhalaf and Ryan, 2015). The 

major direct microbial influence then on circulating availability of tryptophan, assuming an 

adequate dietary supply of this essential amino acid, likely arises as a result of bacterial 

tryptophan utilisation and metabolism and the impact of microbial metabolites on host 

serotonergic production. This raises the possibility, for example, that the reduced diversity of 

the gut microbiota in disease states could contribute to fluctuating levels of tryptophan and 

kynurenine. Moving forward, it will be important to establish which specific members of the 

bacterial consortium are most important for this function.  

12. Behaviours influenced by the gut microbiota and tryptophan metabolites 

As outlined above, the gut microbiota has been shown to influence an array of behaviours in 

preclinical, and to a lesser degree, clinical studies, many of which are also influenced by the 

5-HT system (Berger et al., 2009). Over recent years, the influence of kynurenine pathway 

metabolites on brain function and behaviour has been the focus of increasing investigation 
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(Schwarcz et al., 2012; Stone and Darlington, 2013). Despite methodological difficulties in 

definitively linking the gut microbiota, tryptophan metabolism and behaviour, it is clear there 

is significant overlap in behaviours under microbial influence and those modulated by 

neuroactives derived from tryptophan (Berger et al., 2009; O'Mahony et al., 2015a). This 

includes depression and anxiety, as well as cognitive performance, social behaviours and 

visceral pain perception (McKernan et al., 2010; Moloney et al., 2016; Muller et al., 2015; 

Nestler et al., 2002; O’Mahony et al., 2014; Schwarcz et al., 2012). Early 

neurodevelopmental programming by the gut microbiota has become a topic of significant 

interest. Moreover, the prenatal period represents an important period during which the gut 

microbiota could be targeted for improved health outcomes (Clarke et al., 2014a). There are 

now strong indications that variable kynurenine pathway metabolism during the first 1000 

days of life could have important neurodevelopmental implications. Prenatal inhibition of the 

kynurenine pathway in rats produces changes in hippocampal neuron morphology as well as 

differences in neocortical and cerebellar protein expression which persist into adulthood 

(Khalil et al., 2014; Pisar et al., 2014). Conversely, increases in brain kynurenic acid in rats 

following dietary exposure to kynurenine during gestation and postnatal development also 

results in neurochemical and cognitive deficits in adulthood (Alexander et al., 2013; Pershing 

et al., 2015; Pocivavsek et al., 2012). This corresponds to a time period during pregnancy in 

which the maternal microbiota undergoes major remodelling (Clarke et al., 2014b) and during 

early life when the gut microbiota is seeded and undergoes extensive development (Borre et 

al., 2014; O'Mahony et al., 2015b). It is plausible that many of the detrimental effects of 

disturbances in the assembly of the infant microbiota (mode of birth, antibiotic use, maternal 

transmission of a suboptimal microbiota) could be mediated at least partially via aberrant 

microbially-regulated patterns of circulating tryptophan availability and kynurenine 

metabolism in the periphery and CNS. In parallel, this is also a vulnerable period of both 
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CNS glutamatergic and serotonergic system development (Golubeva et al., 2015b; Haberny 

et al., 2002; O'Mahony et al., 2015a; O'Mahony et al., 2015b). Marrying these research 

themes together is an important research objective and could inform the mechanisms through 

which interventions aimed at counteracting the detrimental impact of early-life microbiota 

disturbances produce their effects.  

13. The importance of tryptophan supply and availability in neurogastroenterology 

Tryptophan metabolism along kynurenine pathway has important implications for 

neurogastroenterology due to the dual effects of kynurenine and downstream metabolites in 

GI and CNS function, and thus brain-gut axis signalling. IBS is the best characterised 

microbiota-gut-brain axis disorder and there is evidence for immune related tryptophan 

metabolism along the kynurenine pathway (Clarke et al., 2012b; Clarke et al., 2009c; 

Keszthelyi et al., 2013), which has been linked to the severity of GI symptoms (Fitzgerald et 

al., 2008). IBS is commonly co-morbid with mood and anxiety problems, which may reflect a 

dual effect of altered tryptophan metabolism on GI and CNS function in the disorder (Clarke 

et al., 2012b; Clarke et al., 2009b; Fitzgerald et al., 2008). This is supported by the finding 

that mucosal kynurenic acid and 5-HT levels correlated with self-reported anxiety and 

depression scores in patients with IBS (Keszthelyi et al., 2013).  

Acute tryptophan depletion (ATD) is the most common clinical method to determine the 

impact of manipulating peripheral levels of tryptophan on CNS and ENS function, and has 

been utilised to investigate brain-gut axis communication in healthy control participants and 

individuals with IBS (Kilkens et al., 2005; Kilkens et al., 2004; Labus et al., 2011; 

Shufflebotham et al., 2006). Systemic free tryptophan competes with all other large neutral 

amino acids (LNAAs; valine, leucine, isoleucine, methionine, phenylalanine and tyrosines) 

for transportation across the BBB (Silber and Schmitt, 2010) where once across, it is 
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subsequently synthesised into a variety of agents including kynurenine via specific metabolic 

processes. As such, ATD is based on the premise that by reducing the plasma tryptophan to 

LNAA ratio, the rate of tryptophan subsequently crossing the BBB for further metabolism is 

also reduced (Hood et al., 2005). As tryptophan is an essential amino acid, ATD is normally 

achieved by administering an amino acid mix to study participants that contains a large 

amount of all other LNAAs, but lacks tryptophan. Despite a predominant focus on the effects 

of ATD on serotonin, this specificity has often come into question over the years and 

alternative mechanisms mediating the central and peripheral effects of ATD have been 

speculated upon (van Donkelaar et al., 2011). In support of an alternative/additional 

mechanism of action, it has been demonstrated in healthy control participants that ATD 

increases plasma kynurenic acid (Keszthelyi et al., 2012) and decreases plasma kynurenine 

levels in both healthy controls and female patients with IBS (Kennedy et al., 2015). Of note, 

ATD concurrently improved visuospatial memory performance in patients with IBS 

(Kennedy et al., 2015), which has previously been shown to be impaired in this clinical 

population (Kennedy et al., 2014a). Moreover, an intriguing study further demonstrated that 

the brain response to visceral pain stimulation in healthy females following ATD reflected 

the brain response in patients with IBS who underwent the same visceral pain stimulation, but 

not ATD (Labus et al., 2011). Together these studies lend further support for altered 

tryptophan metabolism in brain-gut axis dysregulation in IBS.  

Finally, although not generally considered a brain-gut axis disorder, mood and anxiety 

problems are common in IBD (Casellas et al., 2002) which may be linked to inflammatory 

mediated tryptophan metabolism along the kynurenine pathway (Forrest et al., 2003; Forrest 

et al., 2002). As such there is increasing interest in how dysregulated brain-gut 

communication impacts on peripheral and central symptoms in IBD (Bernstein et al., 2010; 

Bonaz and Bernstein, 2013). 
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Taken together, targeting the kynurenine pathway in brain-gut axis disorders such as IBS may 

prove beneficial; however, the basic functions of kynurenine pathway metabolites, 

particularly in the ENS, have yet to be fully delineated.  

14. Perspectives and conclusions 

One of the important implications of our discussion to date is that the gut microbiota might be 

a tractable target to regulate circulating tryptophan availability and kynurenine pathway 

metabolism in the periphery and CNS across the lifespan, either via direct or indirect 

mechanisms. For example, restoring intestinal permeability via the gut microbiota might be 

an important point of control (Kelly et al., 2015b). Similarly, promoting gut microbiota 

diversity during old age might improve health outcomes by mitigating the detrimental impact 

of aging on the CNS, which could in part be mediated via the kynurenine pathway (Claesson 

et al., 2012; Oxenkrug, 2007; Prenderville et al., 2015). Regulation of the stress response via 

the gut microbiota could also be a viable strategy where the underlying pathophysiology 

favours TDO activation (Dinan and Cryan, 2012). 

There is much interest in the minute regarding the possible wider application of faecal 

microbiota transplant beyond its use for the treatment of Clostridium difficile infection (Kelly 

et al., 2015a; Shanahan and Quigley, 2014). In the preclinical literature, the adoptive transfer 

of behavioural phenotypes via the gut microbiota is a fascinating area of research whose 

translational relevance needs to be established (Collins et al., 2013). This could have 

implications for broadening the remit of faecal microbiota transplants and it remains to be 

demonstrated that transfer of a microbiota profile associated with activated kynurenine 

pathway metabolism can manifest in the host as a similar physiological profile. The flip side 

of the coin of course is whether this strategy could be exploited to restore normal levels of 

kynurenine metabolism. In any case, less controversial options for beneficially manipulating 
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the microbiota are likely to emerge and early studies in rodents suggest that probiotics might 

be an option (Desbonnet et al., 2008). Developing ‘psychobiotics’ with precise kynurenine 

modulating capabilities could be an interesting option in this regard (Dinan et al., 2013). Of 

course, diet plays a major role in shaping the gut microbiota (Dinan and Cryan, 2015; Goyal 

et al., 2015) and may provide a means to sculpt aspects of kynurenine pathway metabolism. 

There are recent indications that a more nuanced approach might need to be considered with 

this approach as taxa that are missing from a low diversity gut microbiota are unlikely be 

restored by supplementation with fiber alone (Sonnenburg et al., 2016).  

In conclusion, fluctuating levels of kynurenine pathway metabolites are associated with 

numerous neuropsychiatric and gastrointestinal disorders. New and emerging research 

implicates the gut microbiota in the regulation of circulating tryptophan availability and 

downstream kynurenine pathway metabolism in the periphery and CNS. Integrating these 

observations suggests that novel interventions targeting the gut microbiota might be exploited 

to restore pathway equilibrium and improve mental health outcomes. This research stream is 

at an early stage and the best method and time of intervention remains a matter of debate and 

requires extensive elaboration on the key bacterial players, including their relevant metabolic 

outputs. This will markedly increase our understanding of how the gut microbiota shapes 

brain and behaviour and provide new insights towards successful translation of microbiotas-

gut-brain axis research from bench to bedside. 
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Figure 1.  Microbiota -gut-brain axis. The gut microbiota can signal to the brain via a number of pathways 

which include, regulating immune activity and the production of proinflammatory cytokines that can either 

stimulate the HPA axis to produce CRH, ACTH and cortisol, or directly impact on CNS immune activity; 

through the production of SCFAs such as propionate, butyrate, and acetate; the production of neurotransmitters 

which may enter circulation and cross the blood brain barrier; by modulating tryptophan metabolism and 

downstream metabolites, serotonin, kynurenic acid and quinolinic acid. Neuronal and spinal pathways, 

particularly afferent signalling pathways of the vagus nerve, are critical in mediating the effect of the gut 

microbiota on brain function and behaviour. Microbial produced SCFAs and indole also impact on EC cells of 

the enteric nervous system. Abbreviations: ACTH, adrenocorticotropin hormone; CRH, corticotropin-releasing 

hormone; EC, enterochromaffin cells; GABA, gamma-aminobutyric acid; HPA, hypothalamic-pituitary-adrenal; 

SFCAs, short-chain fatty acids. 
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Figure 2. Tryptophan Metabolism. Tryptophan metabolism along the kynurenine pathway is dependent on 

indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO). The expression of IDO and TDO 

can be induced by stress elevated glucocorticoid levels or inflammatory cytokines, respectively. Once formed, 

KYN proceeds along two different branches of the pathway, one leading to QUIN production and one to KYNA 

production. Abbreviations: KAT, kynurenine aminotransferase; KMO, Kynurenine 3-monooxygenase; 3HAA, 

3-hydroxyanthranilic acid oxygenase; 3-HANA, 3-hydroxyanthranilic acid; QUIN, quinolinic acid; KYNA, 

kynurenic acid.   
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Figure 3. The impact of the gut microbiota on critical points of control in kynurenine pathway 

metabolism. The gut microiota may regulate the circulating availability of both tryptophan and kynurenine for 

onward CNS metabolism as well as peripheral KYNA levels. Kyn and KYNA can activate GI AHR and GPR35 

receptors respectively. Normally KYNA and QUIN do not cross the BBB in appreciable quantities. However, 

under germ-free conditions, the BBB is more permeable suggesting a mechanism through which these 

metabolites might cross more readily following gut microbiota manipulation. In the CNS, the gut microbiota can 

influence microglia cells to regulate QUIN production. QUIN is an excitotoxic NMDA receptor agonist and 

KYNA a NMDA receptor antagonist. NMDA receptor expression in the CNS is also regulated by the gut 

microbiota. Taken together, this suggests that the gut microbiota can potentially influence both the 

pharmacokinetic and pharmacodynamics of kynurenine pathway metabolism. Abbreviations: α-7-nACh-R, 

alpha-7-nicotinic-acetylcholine receptor;  AHR, aryl hydrocarbon receptor; GI, gastrointestinal; BBB, blood 

brain barrier; CNS, central nervous system; GPR35, G-protein coupled receptor 35; KYNA, kynurenic acid; L-

GLU, L-glutamine; L-KYN, kynurenine; L-TRP, L-tryptophan; NMDA, N-methyl-D-aspartate; QUIN, 

quinolinic acid; 3-HK, 3-hydroxykynurenine. 

 


