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Using a valence force field model based on that introduced by Martin, we present three related methods
through which we analytically determine valence force field parameters. The methods introduced allow easy
derivation of valence force field parameters in terms of the Kleinman parameter ζ and bulk properties of
zincblende and diamond crystals. We start with a model suited for covalent and weakly ionic materials, where the
valence force field parameters are derived in terms of ζ and the bulk elastic constants C11, C12, and C44. We show
that this model breaks down as the material becomes more ionic and specifically when the elastic anisotropy
factor A = 2C44/(C11 − C12) > 2. The analytic model can be stabilized for ionic materials by including Martin’s
electrostatic terms with effective cation and anion charges in the valence force field model. Inclusion of effective
charges determined via the optical phonon mode splitting provides a stable model for all but two of the
materials considered (zincblende GaN and AlN). A stable model is obtained for all materials considered by also
utilizing the inner elastic constant E11 to determine the magnitude of the effective charges used in the Coulomb
interaction. Test calculations show that the models describe well structural relaxation in superlattices and alloys
and reproduce key phonon band structure features.

DOI: 10.1103/PhysRevB.100.094112

I. INTRODUCTION

The use of interatomic potentials for the study of the elastic
properties of solids has a long history. Relations between the
elastic constants of crystals were obtained as early as the 19th
century [1], when the Cauchy relations were derived analyti-
cally using a simple central pairwise atomic interaction. Later
it was found by Born that in order to model covalent crystals,
whose elastic constants do not bear such simple relation to
each other, noncentral interatomic interactions needed to be
included [2]. In this manner the complexity of the involved
potentials grew with the variety of systems to which they were
applied, with today’s interatomic potentials involving up to
hundreds of different atomic interactions, parametrized and
implemented at great computational expense [3,4].

Generally, interatomic potentials were used to predict un-
known crystal properties from known ones. For example,
in the early literature, interatomic potentials parametrized
from known elastic constants (for example C11 and C12) or
phonon frequencies were used to predict such experimentally
inaccessible quantities as inner elastic constants and internal
strain [2,5–7], temperature, pressure and strain dependence of
elastic constants [8–10], third order elastic constants [5,10],
vibrational properties [11–13], as well as to gain general
insights into interatomic forces, and explanations for trends
in elastic properties [5,14,15].

*danielsptanner@gmail.com

More recently, with the advent of ab initio calculations,
capable of determining all bulk elastic, inner elastic, and
dynamical properties of a crystal to a high accuracy, the use
of interatomic potentials for the prediction of the properties of
simple bulk systems has dropped off: While the predictions
of interatomic potentials were useful first approximations,
their use was no longer justified when such properties could
be easily calculated to a high accuracy using first-principles
methods. Furthermore, properties such as the previously ex-
perimentally inaccessible internal relaxation and various shear
moduli, which were formerly predicted by interatomic poten-
tials, may now be used in their parametrization [16].

This has led to the contemporary use of interatomic poten-
tials to be predominantly in the calculation of the properties of
larger nonhomogeneous systems, which cannot be modelled
using a small periodic cell, and for which ab initio calculations
are not computationally feasible. The calculation of the strain
and relaxed atomic positions of large supercells is of crucial
importance to the semiconductor science community [17,18].
This is because the electronic and optical properties of het-
erostructures are strongly influenced by their strain state [19].
Furthermore, computationally cheaper continuum models are
able to account for neither the atomic-scale variation of com-
position, nor the atomic-scale reduction in symmetry which
have significant effects on electronic properties [20,21].

We present here a set of potential models which are ideally
suited to the study of such structures. The valence force field
(VFF) model that we use is based on that introduced by
Martin [14]. It is well established how to determine both
macroscopic elastic constants and quantities such as internal
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elastic constants and the Kleinman parameter from a given
set of VFF parameters. We show here that it is possible for
diamond and zincblende (ZB) structures to solve the inverse
problem, namely to calculate VFF parameters for a given
material based on known elastic constant and internal strain
values. The analysis also derives stability criteria for different
versions of the VFF model, allowing a simple but accurate
model for covalent and weakly ionic materials, with additional
Coulombic terms required for more ionic materials. Having
introduced the different models, we then use the results of
previous ab initio density functional theory calculations to
derive and present VFF parameter sets for a series of III-V
ZB materials. The VFF models presented are straightforward
to implement in existing atomic simulation packages such
as LAMMPS [22] and GULP [23], thereby allowing the
calculation of atomic relaxation and strain with a high degree
of accuracy, efficiency, and physical clarity.

The potential best known for analytic calculation of param-
eters is that of Keating [5]. This uses only two VFF parame-
ters, which are determined analytically from the elastic con-
stants C11 and C12. The model then describes those two param-
eters exactly and captures other elastic properties/constants
reasonably well. In diamond structure Si, for example, the
Keating potential will give exact C11 and C12, and C44 with
a 1% error [5]. Furthermore, while the Keating potential is
limited to modelling a particular strain regime of a particular
crystal phase, it is not, due to the analytic expressions for the
force constants, limited to any particular material. In addition
to the accuracy, efficiency, and cross-material transferability
exhibited by the Keating potential and others in its class, the
simplicity of these models allows not only for the prediction
of the behavior of large complicated systems – but also for
its explanation. Because of these advantages, the Keating
potential remains widely used for the calculation of strain and
atomistic relaxation in large systems, such as semiconductor
quantum dots comprising millions of atoms [24–27].

Unfortunately, to describe the elasticity of cubic crystals
fully requires more than two elastic constants (and more than
two force constants), and the Keating potential fares less well
for materials other than Si. For heteropolar materials (e.g.,
GaAs, InAs) errors in C44 grow with ionicity, and these errors
manifest in the inaccurate modeling of systems where shear
strains or internal relaxations are important [20,25,26].

The model that we present here, by including details of
the inner elasticity of ZB and diamond crystals, improves on
the accuracy of the Keating model for the description of the
elasticity of ZB and diamond structure materials, but retains a
simple analytic relation between the potential force constants
and the elastic properties of the material. The model possesses
the following attractive features: (i) it can be immediately
applied to any diamond or ZB structure material for which the
required elastic constants are known, with no numerical fitting
required; (ii) it offers an exact description of C11, C12, C44,
and the Kleinman parameter ζ , thus providing significantly
improved accuracy over the traditional Keating model, as well
as the advantages of improved accuracy and computational
efficacy over more complex potentials; (iii) analytic expres-
sions for the force constants allow for clear interpretation
and explanation of results, as well as a priori prediction of
crystal properties other than those by which the potential was

parametrized; (iv) as noted above, the simple functional form
of the potential is available in most molecular dynamics or
crystal energy packages, such as LAMMPS or GULP (unlike
the squared dot products of the Keating model), meaning that
anyone with access to these or similar packages can use the
potential immediately.

In the next section, the elasticity of ZB and diamond struc-
ture crystals is described, followed in Sec. III by an outline of
the method by which the force constants of an interatomic po-
tential may be analytically related to the constants governing
the elastic response of any ZB or diamond crystal. We then
present in Sec. III A the solution of the inverse problem for
the covalent model, and an investigation of the stability of the
covalent model for the III-V materials considered, with further
details of the analysis included in the Appendix. Sections III B
and III C introduce electrostatic interactions into the VFF
model, with the values of the effective charges determined
from the measured optical phonon splitting for each material
in Sec. III B and using the internal elastic constant E11 in
Sec. III C. In Sec. IV, the potentials are benchmarked against
first principles and experimental results. Finally, the results
are summarized and conclusions presented in Sec. V.

II. THEORY

The primitive unit cell of a ZB or diamond crystal is shown
in Fig. 1. The cell consists of two interpenetrating face cen-
tered cubic lattices. The cell can be strained as a whole, and
displacements can also occur between the sublattices, known
as internal strain [2,6]. In the harmonic regime macroscopic
distortions of the whole cell are completely specified by the
strain tensor ε, and the internal strain between the sublattices
is specified by the internal strain vector u.

The free energy per unit mass per unit volume of a ZB
or diamond crystal for a general state of (small) macroscopic
and internal strain consistent with its cubic symmetry is

FIG. 1. Zincblende primitive cell.
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given by:

U = 1
2C11

(
ε2

1 + ε2
2 + ε2

3

) + C12(ε1ε2 + ε1ε3 + ε2ε3)

+ 1
2C0

44

(
ε2

4 + ε2
5 + ε2

6

) + D14(uxε4 + uyε5 + uzε6)

+ 1
2 E11

(
u2

x + u2
y + u2

z

)
. (1)

Here the notation of Cousins [6,10,28] is utilized for the
elastic and inner elastic constants, and we have also above em-
ployed Voigt [29,30] notation, which, using the symmetry of
the strain tensor, makes the convenient contraction of indices:
11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6. In the
above equation C11 and C12 are the familiar second-order
elastic constants of a cubic crystal, which may be readily
obtained from experiment, while C0

44 is the experimentally
unobtainable unrelaxed or “bare” C44 (also known as the
clamped-ion contribution to the elastic constant C44 [31,32]);
C0

44 governs how the crystal responds to shear strains when the
internal strain is set equal to zero. The constant D14 accounts
for coupling between internal and macroscopic strain, and the
term E11 describes the contribution to the free energy from a
pure internal strain.

E11 may be related to the zone-center transverse optical
phonon frequency and can thus be obtained indirectly from
experiment. This relation is given by [16,28,31]:

E11 = 4μω2
TO/a3

0, (2)

where μ is the reduced mass of the anion and cation system,
ωTO is the transverse optical phonon frequency at �, and
a0 is the lattice constant. The remaining two constants, C0

44
and D14, may be obtained by considering the crystal energy
once it is minimized with respect to internal strain, u. The
value of the internal strain which minimizes the free energy is
given by:

u0 =
(

− a0

4
ζε4,−a0

4
ζε5,−a0

4
ζε6

)
, (3)

where ζ is Kleinman’s internal strain parameter [33],
given by:

ζ =
√

3

r0

D14

E11
. (4)

Though very difficult to perform, especially for more brittle
crystals [28], measurements of the Kleinman parameter, ζ ,
have been made for a limited number of materials. For exam-
ple, there are experimental values of the Kleinman parameter
in the literature for Si [34], Ge [34], GaAs [35], C [36], and
InSb [37]. However, reflecting a general trend for inner elastic
properties, first principles determinations of the Kleinman
parameter are abundant for most group IV or III-V cubic
materials [31,38,39]. Substituting Eq. (3) into Eq. (1) then
gives the familiar expression for the free energy which is
minimized with respect to internal strain:

U = 1
2C11

(
ε2

1 + ε2
2 + ε2

3

) + C12(ε1ε2 + ε1ε3 + ε2ε3)

+ 1
2C44

(
ε2

4 + ε2
5 + ε2

6

)
, (5)

where C44 is now the experimentally measurable C44, reduced
from its unrelaxed value by:

C44 = C0
44 − D2

14

E11
= C0

44 − r2
0

3
ζ 2E11. (6)

Given the above dependencies amongst the relaxed and
unrelaxed elastic constants, if any three independent constants
(out of the five: C44, ζ , E11, D14, C0

44) are known, then the
remaining two can be obtained indirectly. Likewise, if any
interatomic potential is able to accurately model C11, C12, and
three of these constants, then the free energy density under
any combination of strain or sublattice displacement will be
fully described.

To relate these components of the free energy density to the
force constants of an interatomic potential, the interatomic po-
tential is used to express the energy of an arbitrarily deformed
primitive diamond or ZB cell. This energy is divided by the
equilibrium cell volume to obtain the free energy density, and
then the VFF energy, expressed naturally as a function of the
distance between the two atoms in the primitive cell, is cast in
terms of the strain and internal strain:

U VFF(ri j, θi jk ) �⇒ U VFF(ε, u). (7)

Here we have denoted the primitive cell energy density, ex-
pressed in terms of the VFF force constants as U VFF. Gener-
ally, the expression of the VFF energy in terms of the strain
and internal strain, U VFF(ε, u), will be a very complicated
and long function of ε. However, we are only interested in
harmonic elastic properties, so it can therefore be expanded in
a Taylor series about the equilibrium and truncated to second
order.

To effect the transformation of Eq. (7), consider Fig. 1.
Keeping the atom at the origin of the cell fixed, the interatomic
bond lengths can be expressed in terms of the strain and
internal strain through the transformation with strain of the
atomic position vectors:

rA = rA,0 = [0, 0, 0],
(8)

rB = (I + ε)rB,0 + u.

Here, rA (rB) is the position of the atom labeled A (B) in Fig. 1,
with rA,0 (rB,0) being the equilibrium position of this atom,
and I is the 3 × 3 identity matrix. Substituting these position
vectors into the expression for the VFF energy will give the
energy in terms of the strain, which can then be truncated to
second order. This procedure has been detailed by Keating [5].

Following this expansion, direct analytic relations between
the elastic and inner elastic constants and the force constants
may be obtained via the derivatives:

C11 = ∂2U VFF

∂ε2
1

; C12 = ∂2U VFF

∂ε1∂ε2
,

C0
44 = ∂2U VFF

∂ε2
4

; D14 = ∂2U VFF

∂ux∂ε4
,

E11 = ∂2U VFF

∂u2
x

; C44 = ∂2U VFF(u = u0)

∂ε2
4

,

ζ = −4u0
x (ε4)

a0ε4
. (9)
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FIG. 2. Valence force field interaction terms contributing to Eq. (10). From left to right: bond stretching, kr ; bond bending, kθ ; bond-bond
stretching, krr ; bond-stretching angle-bending coupling constant, krθ .

In the next section, we present the VFF model with which we
model the elastic energy density described above.

III. INTERATOMIC POTENTIAL

The VFF with which we describe the elastic properties
of diamond and ZB crystals was originally introduced by
Musgrave and Pople [11]. We shall follow the developments
made on this potential by Martin [14]. Discarding a purport-
edly unimportant cross angle term, and including terms which
account for the Coulomb interaction between the partially
charged ions of a heteropolar crystal, Martin gives the form of
the potential which will be used in this work. For each atom
in a ZB crystal Martin’s potential is given by:

Vi = 1

2

∑
j �=i

1

2
kr

(
ri j −r0

i j

)2+
∑
j �=i

∑
k �=i,k> j

{
1

2
ki
θ r0

i j r
0
ik

(
θi jk −θ0

i jk

)2

+ ki
rθ

[
r0

i j

(
ri j − r0

i j

) + r0
ik

(
rik − r0

ik

)](
θi jk − θ0

i jk

)
+ ki

rr

(
ri j − r0

i j

)(
rik − r0

ik

)} + 1

2

′∑
j �=i

Z∗
i Z∗

j e2

4πεrε0ri j

− 1

2

nn∑
j �=i

1

4
αM

Z∗
i Z∗

j e2

4πεrε0r0
i j

2

(
ri j − r0

i j

)
. (10)

Here i refers to the central atom being considered, while
j and k run over the four nearest neighbors for each i,
except for the summation

∑′
j �=i, which runs over the whole

crystal. This means that in modeling the energy of a ZB
or diamond primitive cell eight bond lengths and twelve
angles will be treated. The half preceding all two body terms
prevents double counting when summing over i, to obtain
the energy of the whole crystal from the energy per atom.
ri j = (ri j · ri j )

1
2 refers to the bond length between atom i

and j, θi jk = cos−1
(

ri j ·rik

|ri j ||rik |
)

refers to the angle between the

bonds ri j and rik , and r0
i j and θ0

i jk denote the equilibrium bond
lengths and bond angles, respectively.

The covalent potential terms of Eq. (10) are schematically
illustrated in Fig. 2. The term kr captures the resistance of
any bond to length changes away from the equilibrium length,
likewise ki

θ describes the harmonic resistance to changes in an-
gle. The term ki

rr describes the relation between neighboring
bonds which share an atom (atom i); how one bond will tend
to increase in length if another is decreased. ki

rθ describes the
interaction between the angle between two bonds, and each of
the two bonds; this will, for example, for ki

rθ > 0, make it en-

ergetically favorable for bond lengths to increase when bond
angles decrease. This energetic favorability can be imputed to
changes in the s-p mixing on the orbitals sitting on the central
atom [40]. The amount by which the energy changes due to
this rehybridization would in principle depend on the species
of the central atom; which in turn would imply different three-
body terms are needed for the cation and the anion, hence the
superscript i on these terms. However, Martin justifies the ex-
clusion of this effect by emphasizing that the potential is being
used to study only phenomena in the long-wavelength regime:
elastic properties, as well as zone center optic and acoustic
modes. In this case the force constants for the two atoms in
the unit cell always enter the energy and frequency equations
together, and thus could not be separated, nor would treating
them as different result in an improvement in the description
of any of our targeted elastic constants. Anion-centered and
cation-centered angular terms are thus treated as the same.

The last two terms in Eq. (10) account for electrostatic
effects, with Z∗ representing the effective charge of the ions
and αM denoting the Madelung constant. The first of these
is the screened Coulomb interaction, and the second is a
linear repulsive term, given by the linear part of the Taylor
expansion of the Coulomb energy in the strain, necessary to
keep the crystal stable at equilibrium, and also to preserve the
symmetry of the elastic constant tensor. The prime symbol
over the summation of Coulomb interaction indicates it is
a long-ranged interaction which must be computed over the
whole crystal.

In the work by Martin further approximations and de-
pendencies were applied to the force constants such that
Eq. (10) becomes equivalent to the Keating potential with
additional Coulombic terms. In this work no dependencies
amongst the force constants are imposed, and there are thus
four force constants and an effective charge with which we can
describe the elastic properties of diamond and ZB crystals. For
the description of the elastic energy density given in Eq. (1),
no advantage can be expected from including any further force
constants in the VFF model, given the arbitrariness in choice
of parameter values when fitting six or more VFF parameters
to the five independent elastic constants.

To obtain the numerical values for the force constants in
Eq. (10), the potential must be expanded after the manner
of Keating, as described in Sec. II. However, this procedure
is not straightforward for the Coulomb term; in this case a
numerical Ewald summation must be performed for different
strained crystal states to determine the dependence of the
Coulomb energy of the whole crystal on strain. The expansion
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of our potential in Eq. (10) in terms of strain and sublattice displacement is given in Eq. (11) below:

U =
√

3

2

(
1

12r0
(kr + 6krr + 12kθ ) + 3α1

8
SC0

)[
ε2

1 + ε2
2 + ε2

3

]

+
( √

3

12r0
(kr + 6krr − 6kθ ) + 3

√
3α2

16
SC0

)
[ε1ε2 + ε1ε3 + ε2ε3]

+ 1

2

( √
3

12r0
(kr − 2krr + 4

√
2krθ + 2kθ ) + 3

√
3α2

16
SC0

)[
ε2

4 + ε2
5 + ε2

6

]

+
(

1

4r2
0

(kr − 2krr − 2
√

2krθ − 4kθ ) + 9α4

64r0
SC0

)
[uxε1 + uyε2 + uzε3]

+ 1

2

(√
3

4r3
0

(kr − 2krr − 8
√

2krθ + 8kθ ) + 9
√

3α3

128r2
0

SC0

)[
u2

x + u2
y + u2

z

]
. (11)

Here we follow Martin [14] and employ the simplifying nota-
tion (in S.I. units) of S and C0, where S is the dimensionless
quantity, Z∗2

εr
, and C0 has units of GPa and is given by: e2

4πε0r4
0
.

The quantities αi are the numerical coefficients obtained by
performing an Ewald summation at different strains, and
adding to this the strain dependence of the linear repulsive
term, which already contains within it the Madelung constant,
αM , which is an Ewald summation at zero strain. So for
example, the result of performing an Ewald summation of
these two electrostatic terms of the crystal for different strain
states then yields an electrostatic energy which depends on
strain as follows:

Eel = α1
(
ε2

1 + ε2
2 + ε2

3

)
SC0 + α2(ε1ε2 + ε1ε3 + ε2ε3)SC0

+ α2

2

(
ε2

4 + ε2
5 + ε2

6

)
SC0 + α3

(
ũ2

x + ũ2
y + ũ2

z

)
SC0

+α4(ũxε4 + ũyε5 + ũzε6)SC0. (12)

Above we have utilized the notation ũi = ui
a0

so that the expan-
sion coefficients all have the same units. We see reproduced
above the result, expected from considerations of symmetry,
that the coefficient of the electrostatic energy dependence
on biaxial strain is double that of its dependence on shear
strain [14,41,42]. The numerical values of these coefficients
are given by:

α1 = −0.128411, α2 = −0.417608,
(13)

α3 = −6.53970, α4 = −3.62707.

When both the nearest neighbor terms and the Coulomb
term have been so expanded in the strain, and the resulting
energy density compared with Eq. (1), we may use Eqs. (9) to
obtain the following expressions for our VFF force constants
and effective charge:

C11 =
√

3

12r0
(kr + 6krr + 12kθ ) + 3

√
3α1

8
SC0 ,

C12 =
√

3

12r0
(kr + 6krr − 6kθ ) + 3

√
3α2

16
SC0 ,

C0
44 =

√
3

3r0
(kr − 2krr + 4

√
2krθ + 2kθ ) + 3

√
3α2

16
SC0 ,

D14 = 1

4r2
0

(kr − 2krr − 2
√

2krθ − 4kθ ) + 9α4

64r0
SC0 ,

E11 =
√

3

4r3
0

(kr − 2krr − 8
√

2krθ + 8kθ ) + 9
√

3α3

128r2
0

SC0. (14)

The expressions for the relaxed C44 and the Kleinman param-
eter ζ may be obtained from Eqs. (4) and (6).

In what follows, three different parametrizations of the
VFF model are presented and discussed. Because there are
many weakly-polar ZB and nonpolar diamond structured
materials, and because the Coulomb interaction is the most
computationally expensive to implement, in Sec. III A, we
introduce a computationally efficient covalent VFF in which
Coulomb terms are neglected. This parametrization is ideally
suited to materials like C, Si, Ge or weakly polar III-V
materials. However, as we will show it is not applicable to
materials with ionicity and anisotropy past a certain threshold,
such as, for example, InP and InAs. Therefore, in Sec. III B,
the Coulomb potential is included via the conventional
parametrization based on the optic mode splitting [14,42,43],
and the effects of its inclusion on the stability of the model are
discussed. It is found that this conventional parametrization
results in a general increase in accuracy of the potential and
restores stability for mildly ionic materials such as InP and
InAs, but that this stabilizing effect is not sufficiently large
for highly ionic and anisotropic materials such as cubic GaN
and AlN. Thus, in Sec. III C a nonconventional inclusion of
the Coulomb interaction is presented, whereby the effective
charge is parametrized along with the force constants from the
elastic energy density relations, ensuring stability with respect
to any macroscopic or internal strain, and complete specifica-
tion of the energy density of any diamond or ZB crystal.

All numerical quantities determined from the presented
numerical relations in the following sections make use of
the elastic and Kleinman parameters calculated in Ref. [39],
while values for the zone-center optical phonon frequencies
are taken from elsewhere in the literature and cited as used.
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A. Covalent (non-Coulombic) VFF

To efficiently model nonpolar crystals, we may set S, in Eqs. (14), to 0. Then, using Eqs. (6) and (4), we obtain the following
simplified expressions for C44 and ζ :

C44 = 3
√

3

2r0

krkθ − 2krrkθ − 4k2
rθ

kr − 2krr − 8
√

2krθ + 8kθ

, (15)

ζ = kr − 2krr − 2
√

2krθ − 4kθ

kr − 2krr − 8
√

2krθ + 8kθ

. (16)

We can invert these two equations, along with the expressions for C11 and C12 in Eq. (14). Taking care to eliminate the
extraneous root that comes from a quadratic equation derived from C44 and ζ (see Appendix), we obtain direct expressions for
the force constants in terms of the second order elastic constants and the Kleinman parameter. These read:

kθ = 2(C11 − C12)r0

3
√

3
, (17)

kr = r0[C11(2 + 2ζ + 5ζ 2) + C12(1 − 8ζ − 2ζ 2) + 3C44(1 − 4ζ )]√
3(1 − ζ )2

, (18)

krr = r0[C11(2 − 10ζ − ζ 2) + C12(7 − 8ζ + 10ζ 2) − 3C44(1 − 4ζ )]

6
√

3(1 − ζ )2
, (19)

krθ = r0

3

√
2

3

(C11 − C12)(1 + 2ζ ) − 3C44

ζ − 1
. (20)

Having this one-to-one analytic relation between the force
constants and the elastic constants has several advantages.
Like the Keating model we have direct expressions for the
force constants with no numerical fitting procedures required.
Thus, unlike potentials for which a numerical fitting is re-
quired, and a new fitting is needed for each material, Eqs. (17)
to (20) ideally represent a VFF for any ZB or diamond struc-
ture material: Once the elastic constants and the Kleinman
parameter are known, so too are the force constants. Unlike
the Keating potential which describes exactly only the elastic
constants C11 and C12, with significant errors often found for
C44 and ζ , the above relations ensure that these properties are
reproduced exactly.

With respect to other more sophisticated potentials, this
parametrization of the VFF model offers all the advantages
of simplicity, efficiency, and clarity of the much used Keating
model. The model even offers greater accuracy, in the regime
for which it is parametrized, when compared to more complex
potentials.

In addition, these simple expressions make the explanation
of different trends in elastic properties in terms of the force
constants a straightforward procedure. For example, Eqs. (14)
and (17)–(20) may be used to obtain expressions for the other
elastic constants, C0

44, E11, and D14. These expressions may
then be used to predict quantities on which the model has not
been parametrized to ascertain the suitability of the potential
for the different materials.

One such prediction is the value of the inner elastic con-
stant E11, which can be related to the experimental transverse
optical phonon mode at the � point. While the potential is
not aimed at the accurate description of dynamical properties,
such quantities will nevertheless give an indication of whether
or not the energetics of, for example, the internal strain, are
reasonable. The quantity E11 is related to the frequency of
the transverse optical phonon mode at � for ZB structures by
Eq. (2). From Eqs. (14) and (17) to (20), the following relation

between E11 and the known elastic properties is derived:

E11 = 16(C11 − C12 − C44)

(1 − ζ )2a2
0

. (21)

A negative E11 would lead to two undesirable results: imag-
inary ωTO [cf Eq. (2)], and worse, the scenario that the
energy density has a stationary point which is a maximum
rather than a minimum in the internal strain; i.e., that the
crystal is unstable with respect to internal strain. This latter
consequence invalidates the basis of the whole procedure by
which the relaxed elastic constants are derived, wherein the
assumption is made that the energy is being minimized with
respect to the internal strain.

An inspection of the terms in the numerator of Eq. (21)
reveals that only those crystals for which C11 − C12 > C44, or:

A = 2C44

C11 − C12
< 2, (22)

where A is the anisotropy parameter [48], are stable against
sublattice displacements. Furthermore, we note that this result
is not restricted to our particular potential form but holds also
for similar covalent potentials with Keating-style coordinates
(i.e., a potential which is a function of dot products of bond
vectors), and those with additional angle-angle coupling terms
such as those in Refs. [11,16,42,49,50]. Thus, we may say that
no nearest-neighbor VFF model can simultaneously describe
C11, C12, C44, and ζ for crystals with A > 2.

Relations of this kind may also be used in guiding nu-
merical fittings away from dead ends with an appropriate
choice of fitting weights. For example, Eq. (21) presents an
upper limit on the accuracy with which the components of
the elasticity of a ZB or diamond structured crystal can be
simultaneously described using any nearest neighbor VFF
model. The relation shows that, for example, in the work of
Steiger et al. [42], if equal weights in the numerical fitting
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TABLE I. Covalent VFF model prediction of E11 via Eq. (21),
and zone-center transverse-optical phonon frequency, ωTO, via
Eq. (2). Experimental values and percentage differences between
these and predicted values are given in brackets. a= Ref. [44];
b=Ref. [45]; c=Ref. [46]; d=Ref. [47].

E11 (GPa Å
−2

) ωTO (cm−1)

AlN −210.9 n/a
AlP 12.06 241 (454a, −46%)
AlAs 11.09 209 (360b, −42%)
AlSb 12.45 238 (318c, −25%)
GaN −132.9 n/a
GaP 22.45 269 (366d, −27%)
GaAs 16.52 189 (273d, −30%)
GaSb 13.40 173 (231c, −25%)
InN −282.0 n/a
InP −2.62 n/a
InAs −0.3 n/a
InSb 4.28 93 (185c, −49%)

were given to C11, C12, C44, E11, and ζ , then it would not
be possible to simultaneously minimize the residuals, and the
fitting would go on forever.

The values of E11 predicted from Eq. (21), and the trans-
verse optical phonon frequencies, ωTO, corresponding to these
are shown in Table I. Table I shows that, with negative
predicted values for E11 and imaginary ωTO, the potential
is not suitable for the highly ionic cubic III-N or any of
the indium containing III-Vs other than InSb. Simulations of
these crystals with negative E11 using this potential are then
unstable with respect to internal displacements.

Table I and the condition defined in Eq. (22) demonstrate
that the VFF potential [Eq. (10)] parametrized via Eqs. (17)–
(20), is suitable for neither the structural relaxation nor the
dynamics of materials for which A > 2, while for materials
with A < 2 the potential describes the parameters of the struc-
tural relaxation very well (Ci j and ζ ), but does not accurately
describe the � point optical phonons. These results have
been further corroborated by actual structural relaxations,
where materials with A < 2 relax to the correct equilibrium
state and respond correctly to different applied strains. The
force constants for selected III-V materials whose structural

TABLE II. Force constant values for the covalent VFF model for
selected III-V semiconductors.

kr kθ krr krθ S

units eV Å
−2

eV rad−2 eV Å
−2

eV Å
−1

rad−1

AlP 5.505 0.401 0.640 0.453 0.000
AlAs 4.962 0.361 0.521 0.391 0.000
AlSb 4.557 0.294 0.320 0.249 0.000
GaP 6.237 0.464 0.455 0.421 0.000
GaAs 5.292 0.397 0.396 0.364 0.000
GaSb 4.542 0.319 0.264 0.258 0.000
InSb 3.194 0.218 0.362 0.248 0.000

relaxation is suitably described by the covalent VFF model
are given in Table II.

From the fact that the inequality of Eq. (22) tends to be
most strongly violated by the more ionic compounds, we can
infer that the Coulomb interaction plays an important role in
stabilizing heteropolar crystals, and that neglecting it is not
justified. We therefore include the Coulomb interaction in the
next subsection, using the conventional parametrization based
on the splitting in zone-center transverse and longitudinal
optical phonon mode frequencies.

B. Conventional inclusion of Coulomb interaction

Conventionally [14,42,43,51] the effective charge param-
eter, S, in a VFF potential is determined from the splitting
between the optic mode frequencies at the � point. This
relation is given in Eq. (23) below:

S = Z∗2

εr
=

(
�

4πe2

)
με0

(
ω2

LO − ω2
TO

)
. (23)

Here Z∗ is the effective charge, εr is, in this relation, the high
frequency dielectric constant of the material in question, � is
the volume of the primitive cell, e is the electronic charge, ωLO

and ωTO are the longitudinal and transverse optical phonon
frequencies, respectively, and μ is the reduced mass of the
anion and cation atoms. With this value for S, we may solve
Eqs. (14) in a similar manner as before to obtain the following
expressions for the force constants:

kθ = 2
(
C11 − C12 + 3

√
3

8 (2α2 − α1)SC0
)
r0

3
√

3
, (24)

kr = r0[C11(2 + 2ζ + 5ζ 2) + C12(1 − 8ζ − 2ζ 2) + 3C44(1 − 4ζ ) + SC0(a1 + a2ζ + a3ζ
2)]√

3(1 − ζ )2
, (25)

krr = r0[C11(2 − 10ζ − ζ 2) + C12(7 − 8ζ + 10ζ 2) − 3C44(1 − 4ζ ) + SC0(a4 + a5ζ + a6ζ
2)]

6
√

3(1 − ζ )2
, (26)

krθ = r0

3

√
2

3

(C11 − C12)(1 + 2ζ ) − 3C44 + SC0(a7 + a8ζ )

ζ − 1
. (27)
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TABLE III. Force constant values for selected III-V semicon-
ductors using the Coulombic VFF model fitted to optical phonon
frequency splitting.

kr kθ krr krθ S

units eV Å
−2

eV rad−2 eV Å
−2

eV Å
−1

rad−1

AlP 7.017 0.392 0.450 0.333 0.689
AlAs 6.880 0.349 0.279 0.240 0.593
AlSb 5.550 0.289 0.192 0.173 0.373
GaP 7.841 0.453 0.263 0.287 0.510
GaAs 6.520 0.389 0.250 0.261 0.448
GaSb 5.068 0.315 0.199 0.215 0.222
InN 10.513 0.272 0.862 0.425 1.996
InP 5.892 0.276 0.366 0.262 0.609
InAs 5.031 0.243 0.325 0.227 0.551
InSb 4.272 0.213 0.215 0.172 0.384

Here the ai denote combinations of Ewald summation terms:

a1 = −12
√

3

128
(8α1 + 8α2 + 3α4),

a2 = −6
√

3

128
(16α1 − 80α2 − 3α3),

a3 = −3
√

3

128
(80α1 − 16α2 − 3α3 + 24α4),

a4 = 12
√

3

128
(−8α1 − 8α2 + 3α4),

a5 = 6
√

3

128
(80α1 − 16α2 − 3α3),

a6 = 3
√

3

128
(16α1 − 80α2 − 3α3 + 24α4),

a7 = −6
√

3

128
(8α1 − 16α2 + 3α4),

a8 = −3
√

3

128
(32α1 − 16α2 − 3α3 + 6α4).

Note that Eqs. (24)–(27) are identical to the covalent equa-
tions [Eqs. (17)–(20)] apart from the electrostatic addition; the
non-Coulombic case can be recovered by setting S = 0. Force
constants and effective charge parameters for selected III-V
materials obtained from Eqs. (24)–(27) are given in Table III.

Using these new force constant expressions, the inner
elastic constant, E11, predicted by the model is given by the
relation:

E11 = 16(C11 − C12 − C44 + 0.135645C0S)

(1 − ζ )2a2
0

, (28)

where the numerical factor 0.135645 results from the
sum: 3

√
3

8 (−α1 + α2 + α3
16 − α4

4 ). From this equation the sta-
bilizing effect of the Coulomb interaction is apparent: The
larger the product SC0, the less strict need be the inequality
C11 − C12 > C44 to maintain stability. Thus, materials with an
anisotropy parameter A > 2, which are unstable in the purely
covalent model, can be stabilized by the inclusion of Coulomb
effects. Table IV illustrates this for the parametrization used
here, where the calculated value of E11 is given for the III-V
materials that we consider.

Table IV shows that while many materials unstable in the
non-Coulombic case have become stable, the Coulomb inter-
action derived from Eq. (23) is not sufficient to stabilize the
highly ionic cubic III-N materials AlN and GaN. Furthermore,
we note that while InN is stable while utilizing the optical
phonon splitting of Kim et al. [43], using other results (e.g.,
from Ref. [61]) for ωTO and ωLO will yield a smaller value for
S and an unstable crystal.

Nevertheless, the values of ωTO derived using Eq. (2)
and presented in Table IV reveal a universal reduction in

TABLE IV. Properties relevant to, and predicted from, the conventionally parametrized Coulombic VFF. First four columns are related to
Eq. (28) and the predicted value of the internal elastic constant, E11. C′ = C11 − C12, and C44 are obtained from Ref. [39], S is determined
using Eq. (23) with experimental phonon frequencies, and C0 is the quantity e2

4πε0r4
0

. The ωTO and ωLO columns compare VFF-predicted phonon

frequencies with experiment and the Z∗ column gives effective charges obtained from experiment via Eq. (23), using values for εr from
Ref. [52], and gives in brackets, where available, ab initio values. Superscripts a–k indicate where experimental values of ωTO and ωLO,
or theoretical values of Z∗, were obtained: a=Ref. [43]; b=Ref. [44]; c=Ref. [45]; d=Ref. [47]; e=Ref. [53]; f=Ref. [54]; g=Ref. [55];
h=Ref. [52]; i=Ref. [56]; j=Ref. [57]; k=Ref. [58]; l=Ref. [53]; m=Ref. [59]; n=Ref. [60].

C′-C44 (GPa) S 0.136 C0S (GPa) E11 (GPa Å
−2

) ωTO (cm−1) ωLO (cm−1) Z∗

AlN −53.48 1.5454a 37.91 −61.40 n/a n/a 2.73 (2.70j)
AlP 4.00 0.6888b 6.84 32.22 342 (454b,25%) 390 (491b,21%) 2.28 (−)
AlAs 4.06 0.5931c 5.05 24.91 313 (360c,13%) 361 (402c,10%) 2.21 (2.17k)
AlSb 5.03 0.3728d 2.26 18.07 287 (323d,11%) 310 (344d,10%) 1.95 (1.91k)
GaN −31.31 1.3373e 29.23 −8.83 n/a n/a 2.55 (2.65l)
GaP 9.11 0.5098d 5.11 35.03 336 (366d,8 %) 376 (403d,7 %) 2.16 (2.03m)
GaAs 7.41 0.4476d 3.81 25.01 232 (273d,15%) 259 (296d,13%) 2.20 (2.19n)
GaSb 6.38 0.2224f 1.38 16.33 191 (231f ,17%) 202 (240f ,16%) 1.79 (1.73k)
InN −28.01 1.9960g 28.64 6.37 164 (478g,66%) 529 (694g,24%) 4.09 (3.02j)
InP −0.69 0.609h 5.08 14.29 226 (307h,26%) 294 (343h,14%) 2.58 (2.38m)
InAs −0.10 0.5507i 3.50 11.10 154 (217i,29%) 185 (240i,23%) 2.61 (−)
InSb 1.55 0.3839i 1.84 9.54 139 (180i,23%) 155 (192i,20%) 2.45 (−)
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the error, when compared with the non-Coulombic results
presented in Table I. Furthermore, with the addition of the
Coulomb interaction, the qualitative description of the zone-
center optical phonons is greatly improved, with ωTO and ωLO

no longer degenerate. The values of ωTO and ωLO predicted
using the VFF described by Eqs. (23) and (24)–(26) are given
in Table IV. In addition, we see from Table IV that the
effective charge parameter S, obtained from experiment via
Eq. (23), produces Born effective charges, Z∗, which are in
good agreement with those determined from first-principles
calculations.

However, given our aim is to completely describe the elas-
tic energy of any ZB or diamond structure material, the insta-
bilities found for AlN and GaN lead to the conclusion that for
this VFF model, the conventional Coulomb parametrization is
not appropriate when modeling highly ionic materials. Other
approaches to the parametrization of the effective charge exist
in the literature: For example, Grosse and Neugebauer [51]
used the difference in the total energies of ZB and wurtzite
phases of the III-N materials, AlN, GaN, and InN to determine
the effective charge, and Barret and Wang [62] introduced a
model where the atomic charge is separated from the Born ef-
fective charge, and both are utilized in a double charge model
for the accurate treatment of the lattice dynamics of surfaces.
However, in both of these methods, the charge parameter S
produced is smaller than that obtained using Eq. (23).

Therefore, in the next section, we seek a more direct
means of ensuring that the VFF model correctly describes the
dependence of the energy of the crystal on the internal strain.
This involves breaking with the conventional parametrization
of the effective charge, and setting the parameter S such that
the inner elastic constant E11 is exactly reproduced. With this
parametrization, the elastic energy density and internal strain
of a ZB or diamond crystal will then be well described by the
VFF for any combination of macroscopic and internal strain.

C. Inner elastic parametrization of effective charge

In order to guarantee that the elastic energy density is
completely described by our VFF model we include the inner
elastic constant E11 in the fitting and solve for S such that
the correct, positive value is reproduced. Thus the interaction
parameters kr , kθ , krr , krθ , and S are obtained from the known
elastic constants C11, C12, C44, ζ , and E11. This ensures not
only that the crystal will be stable against shear and internal
strains, since we are fitting directly to a positive E11, but also
that the dependence of the free energy of any diamond or
ZB crystal on any combination of macroscopic and internal
strain, will be described completely. Allowing S to be set in
this way is justified because there is in any case some degree
of arbitrariness in the choice of the effective charge, given
delocalization and screening effects present in the crystal.

To achieve this parametrization we make use of Eq. (28),
which gives the value of E11 in terms of C11, C12, C44, ζ , and
S. We now solve this equation for S, to obtain the following
expression:

S = E11(1 − ζ )2a2
0 − 16(C11 − C12 − C44)

6
√

3C0(−α1 + α2 + α3/16 − α4/4)
. (29)

TABLE V. Force constant values determined using the Coulom-
bic VFF model with effective charges determined by elastic and inner
elastic properties.

kr kθ krr krθ S

units eV Å
−2

eV rad−2 eV Å
−2

eV Å
−1

rad−1

AlN 23.52 0.506 −0.024 0.517 3.378
AlP 9.30 0.379 0.162 0.361 1.046
AlAs 8.00 0.343 0.139 0.371 0.9387
AlSb 6.42 0.284 0.081 0.283 0.6991
GaN 19.17 0.536 0.239 0.696 2.45786
GaP 8.67 0.447 0.165 0.514 0.7721
GaAs 7.90 0.379 0.087 0.357 0.9490
GaSb 6.43 0.307 0.032 0.275 0.8052
InN 14.75 0.263 0.220 0.467 2.3266
InP 7.71 0.269 0.115 0.356 1.04947
InAs 6.85 0.235 0.077 0.264 1.0794
InSb 5.49 0.208 0.049 0.246 0.8252

Substituting the value for S thus obtained into Eqs. (24)–(27)
yields the required potential.

With this potential, all elastic properties input are repro-
duced exactly, as is ωTO, through the inner elastic constant
E11. The force constants obtained using Eqs. (29) and (24)–
(27), for selected III-V materials, are shown in Table V.
Of particular note in Table V is the much larger screened
Coulomb parameter S = Z∗2

εr
compared to the conventional

parametrization shown in Table III. We attribute this to the
greater importance of short-ranged Coulomb interactions over
long-ranged interactions for the stabilization of the crystal
with respect to internal strains. Interactions between closer
atoms will have fewer atoms and electrons between them
to screen the field, and prioritizing these interactions will
manifest as a larger S in the potential. In addition, it is possible
that longer range forces other than the Coulomb interaction
are being effectively incorporated into this parameter. Either
way, the potential represents a significant improvement in the
description of the elastic properties of the highly ionic ZB
structured materials.

Table VI shows a comparison of calculated ωLO versus
previous theory and experimental values. Comparing with
Table IV, we find that the inner elastic parametrization offers a
universal improvement over the conventional parametrization.
Being directly fitted to E11 it reproduces ωTO exactly, and for
ωLO, to which it was not fit, it also performs considerably
better.

In the next section, we will perform a further bench-
marking of each of the potentials. We first benchmark the
models against first principles DFT relaxations. We find the
agreement between the VFF relaxed atomic positions and
those obtained from DFT is good, and that again, the new
effective charge parametrization produces the best results. We
then compare their relative performances in the calculation of
phonon spectra, where we show best overall agreement with
experiment is again obtained for the third model presented.
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TABLE VI. Value of transverse and longitudinal optical phonon
frequency at the � point, ωLO, predicted from Coulombic VFF po-
tential with effective charges determined by elastic and inner elastic
properties. Experimental values and percentage difference are given
in brackets. Apart from AlN, a=Ref. [43], and GaN, b=Ref. [53], all
experimental values are the same as those in Table IV.

ωTO (cm−1) ωLO (cm−1)

AlN 654 (654a,0%) 1145(908a,−26%)
AlP 454 (454,0%) 542 (491, −10%)
AlAs 360 (360,0%) 425 (402, −6%)
AlSb 323 (323,0%) 362 (344, −5%)
GaN 560 (560b,0%) 878 (750b,−17%)
GaP 366 (366,0 %) 421 (403, −4%)
GaAs 273 (273,0%) 321 (296, −8%)
GaSb 231 (231,0%) 262 (240,−9%)
InN 478 (478,0%) 724 (694, −4%)
InP 307 (307,0%) 369 (350, −6%)
InAs 217 (217,0%) 260 (240, −8%)
InSb 180 (180,0%) 203 (192, −6%)

IV. COMPARISON WITH EXPERIMENTAL
AND ab initio DATA

In this section, we present a benchmarking of the three
different potentials. We first validate the potentials for use as
a tool for structural relaxation: We find, using each potential,
the relaxed atomic positions in various InAs/GaAs supercells
and compare these positions with those obtained from DFT
calculations within the local density approximation (LDA).
Then, we analyze and compare with experiment the VFF
calculated phonon band structure of GaAs. Our choice of
GaAs/InAs systems for benchmarking is based on the fol-
lowing considerations: InAs/GaAs heterostructures are one
of the most technologically relevant semiconductor material
systems, widely studied, and grown along various different
crystallographic directions [27]; secondly, both InAs and
GaAs are ionic materials, with InAs being a material for which
the anisotropy factor is just past the threshold of stability
(A < 2) for the covalent potential, and therefore a system
which is a combination of these two binary compounds serves
as an ideal test bed for the different variants of the potential.

To benchmark the potentials against first principles struc-
tural relaxations, we first parametrize our VFF using elastic
constants from DFT calculations commensurate with those
from which the relaxed atomic positions were determined.
While the force constants presented earlier will more accu-
rately reproduce the true atomic positions (since the hybrid-
functional-DFT elastic constants agree better with experi-
ment), performing test structure relaxations using HSE DFT is
computationally costly and not necessary. When benchmark-
ing, no extra information is gained by making comparisons to
a computationally more expensive functional.

The elastic constants Ci j and the Kleinman parameter ζ

were calculated using LDA DFT, as implemented in the VASP
code [63], using a k-point grid of 16 × 16 × 16 and a cutoff
energy of 600 eV, and are given in Table VII. These elastic
constants were used to parametrize the three VFF models via
Eqs. (17) to (20), Eqs. (24) to (27), and (23) and (29).

Next, four different supercells have been relaxed using
LDA DFT: (i) a simple GaAs/InAs interface along the [001]
crystallographic direction, modelled as a supercell of alternat-
ing GaAs/InAs conventional unit cells, containing 16 atoms
and having unrelaxed dimensions a0, a0, 2a0, where a0 =
5.6198 Å, in the x, y, and z directions, respectively; (ii) a
(001) quantum well type interface, consisting of a GaAs cubic
unit cell, an InAs cubic unit cell, and then another GaAs cell,
containing 24 atoms and having initial dimensions a0, a0, 3a0;
(iii) a GaAs/InAs interface along the [111] direction, con-
sisting of alternating GaAs/InAs six-atom unit cells [32,64]
with the z axis along the [111] direction, containing 12 atoms
and having unrelaxed lattice vectors a1 = ( a0√

2
, 0, 0), a2 =

( a0

2
√

2
,

√
3a0

2
√

2
, 0), a3 = (0, 0, 2

√
3a0); (iv) a 64 atom GaInAs

supercell, consisting of a 2 × 2 × 2 replication of a conven-
tional ZB cell, with In atoms substituted for Ga atoms with a
probability according to the nominal In content of 25%. For
each of these supercells, the total free energy was minimized
until the force on any atom was less than 0.001 eV/Å. The
LDA calculations were in all cases performed with a cutoff
energy of 600 eV, and k-point grid densities of: 12 × 12 × 6,
12 × 12 × 4, 12 × 12 × 5, and 8 × 8 × 8, for supercells (i)–
(iv), respectively.

Following the relaxation of each of these supercells using
LDA DFT, the same supercells were relaxed using the three
parametrizations of the VFF in the software package GULP
[23]. A summary of the comparison between the relaxations
produced by these VFF potentials and LDA DFT is presented
in Table VIII.

Examining first the averaged results presented at the bot-
tom of Table VIII, a trend of increasing accuracy in the re-
production of all quantities is seen when progressing from the
covalent potential, through to the conventionally parametrized
ionic potential, to the new inner elastic parametrization of the
effective charge. This suggests the importance of accurately
describing E11 for structural relaxations.

Looking in more detail, we find for the covalent potential
that it is able to well relax the two [001] oriented systems
for which there are no macroscopic shear strains, but it fails
completely for the (111) interface and alloy systems. For
the [111]-oriented system, GULP is unable to minimize the
energy density resulting from the unstable potential. For the
alloy supercell GULP is able to achieve a minimum, owing
to the stabilizing effect of the GaAs matrix, but the instability
of the InAs VFF with respect to shear strains is manifested in
larger errors in bond lengths and angles. For the ionic poten-
tials, a good description of the lattice and bond properties is
found for all systems, and unlike the covalent potentials, there

TABLE VII. LDA DFT calculated elastic and structural proper-
ties of GaAs and InAs. Calculations were performed on a k-point
grid of 16 × 16 × 16 and a plane-wave cutoff energy of 600 eV. a0 is

in Å, Ci j are in GPa, ζ is dimensionless, and E11 is in GPa Å
−2

.

a0 C11 C12 C44 ζ E11

GaAs 5.6198 115 52 58 0.547 34
InAs 6.0312 85 48 38 0.687 23
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TABLE VIII. Percentage differences between structural prop-
erties of supercells relaxed using LDA DFT, and three different
VFF models. See text for description of supercells; ‘All’ refers to
an averaging of all supercell errors. VFF (a) is the covalent VFF,
(b) is the conventional Coulombic VFF, and (c) is the elastically
parametrized Coulombic VFF. �|ai| denotes the average difference
in the magnitude of the lattice vectors, �ri j is the average difference
in all bond lengths, and �θ is the average difference in angles.

Supercell VFF �|ai|(%) �ri j (%) �θ (%)

(a) 0.45 0.15 0.33
[001] GaAs/InAs (b) 0.35 0.27 0.32

(c) 0.36 0.15 0.26

(a) 0.36 0.07 0.27
[001] GaAs/InAs/GaAs (b) 0.28 0.19 0.27

(c) 0.26 0.11 0.22

(a)
[111] GaAs/InAs (b) 0.19 0.37 0.48

(c) 0.22 0.32 0.48

(a) 0.03 1.94 1.5
InGaAs alloy (b) 0.04 0.35 0.37

(c) 0.05 0.25 0.32

(a) 0.28 0.72 0.70
All (b) 0.22 0.30 0.36

(c) 0.22 0.21 0.32

is no increase in the errors for the [111]-oriented or alloyed
structures. For all potentials, aside from the unstable covalent
potential, the errors in the relaxation of the alloy supercell are
much lower than those in the layered systems. This may be
imputed to nonlinear strain effects experienced in the sharply
interfaced supercells—the errors in this case could be reduced
by inclusion of anharmonic force constants and third order
elastic constants [39]. Overall, the agreement between the
first-principles and VFF relaxations of the here-considered
supercells is very good and serves to validate the VFF for use
in larger scale structural relaxations.

Next, the full phonon band structure of GaAs, calculated
using each parametrization of the potential, and determined
experimentally [65], is shown in Fig. 3. All three of the
parametrizations share a good description of the acoustic
modes, near the � point especially, with the description of the
longitudinal acoustic modes remaining good at larger wave
vectors. All three potentials share the property that the soften-
ing of the transverse acoustic mode, in the � to X , L, and K
directions, is not well described; this is a characteristic feature
of nearest neighbor VFFs, and may be remedied, for example,
by inclusion of an angular interaction term which involves
four coplanar bonds [10,42,62,66,67]. However, given that
our aim is to introduce a potential for simple, accurate, and
efficient structural relaxation, rather than accurate phonon
dispersions through the full Brillouin zone, we do not here
include this term.

Looking to the differences between the different potentials,
we find that, compared to the other two, the covalent VFF
has larger errors in the longitudinal acoustic modes at large
wave vectors and that its description of the optical modes is
qualitatively and quantitatively significantly inferior to that

FIG. 3. Phonon band structure of GaAs calculated using different
VFF parametrizations: (a) band structure calculated using covalent
VFF with effective charge parameter S = 0, and force constants
described by Eqs. (17)–(20); (b) band structure calculated using
ionic VFF, with effective charge determined via Eq. (23), and force
constants determined by Eqs. (24)–(27); (c) band structure calculated
using ionic VFF, with effective charges determined via Eq. (29)
and force constants given by Eqs. (24)–(27). The filled symbols are
experimental frequencies taken from Ref. [65].

of the two ionic potentials; this is to be expected, given the
non-negligible ionicity of GaAs. Comparing the two ionic
models, we find that using E11 to parametrize the effective
charge produces a band structure which generally agrees bet-
ter with experiment than that produced by the potential with
a conventionally parametrized effective charge; however, the
conventional parametrization does produce better agreement
with experiment for the longitudinal acoustic branch at L.

Overall, we can conclude that all potentials reproduce
well the acoustic branches near the � point, while the best
agreement with experiment throughout the Brillouin zone is
obtained by the potential in which the effective charge is
determined by fitting to the elastic and inner elastic properties.
This shows, in combination with Table VIII, that the new
Coulombic parametrization produces improved relaxation and
phonon spectra compared to the conventional parametrization.
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V. CONCLUSION

In conclusion, we have presented a VFF model, based on
that originally introduced by Musgrave and Pople [11] and
modified by Martin [14], which explicitly fits to the often
neglected and ill-described Kleinman parameter, as well as
the three cubic second order elastic constants, of which C44

is often poorly represented in the popular Keating model
[5]. Three different parametrizations of the potential were
presented: a covalent (non-Coulombic) one for nonionic or
weakly ionic materials; and two parametrizations which in-
clude electrostatic forces, in one of which we determine the
effective charges via zone-center phonon frequency splittings,
while in the second case the effective charges are determined
via the inner elastic properties.

The force constants of the model were derived analytically
with explicit expressions given for them in terms of macro-
scopic elastic constants, as well as inner elastic properties
which can be measured and/or directly calculated using den-
sity functional theory. This allows the potential to be used for
a given material without the need for any additional numerical
fitting: Once the elastic and related properties of the material
are known, the force constants can be obtained immediately
from them by means of the analytic expressions presented
here.

In addition to ease of application, the analytic determina-
tion of force constants also has the advantage that it allows for
the a priori prediction of properties outside of the determining
parameter set of the potential. This capability allowed for the
analysis of the suitability of the potential for application to
different materials. This analysis furnished the result (general
for nearest neighbor VFFs), that a stable non-Coulombic
potential which accurately describes the three cubic elastic
constants and Kleinman’s internal strain parameter is not
achievable for materials for which the anisotropy factor, A, is
>2. The stabilizing effect of the Coulomb interaction was first
examined based on conventional parametrization in terms of
the optical phonon splitting frequency. This parametrization
was found to stabilize most materials, with the exception of
the highly ionic cubic III-N materials, GaN and AlN. This
instability was remedied by use of a new parametrization of
the effective charges, which resulted in a potential capable
of fully describing the elastic energy density of any diamond
or zincblende crystal. In benchmarking against density func-
tional theory and experiment, this new parametrization of
the effective charge was shown to produce improved phonon
spectra and structural relaxations.

The described potential thus offers an efficient, intuitive,
and accurate description of all classes of zincblende or dia-
mond crystal, with increased accuracy, efficiency, and clarity
when compared with machine-learning-based or other com-
plex potentials, and with increased accuracy at little extra
computational cost when compared with the extensively used
simpler VFFs often used for structural relaxation in the litera-
ture.
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APPENDIX

We note that Eqs. (14) provide five linear relationships
between five macroscopic elastic constants (C11, C12, C0

44, D14,
and E11) and the five parameters required in our general VFF
model. We can therefore solve these linear equations directly
to obtain expressions for the VFF parameters in terms of
macroscopic elastic properties that can be determined using
well established DFT approaches. While this is useful, it may
be generally preferred to calculate the VFF parameters in
terms of the experimentally accessible elastic constants, C11,
C12, and C44, as well as the internal strain parameter ζ , in
particular given that an accurate description of ζ is required
for an accurate description of relative atomic displacements
within a given unit cell. We outline here how the covalent VFF
terms can be calculated from the linear expressions for C11

and C12 in Eqs. (14) and from the nonlinear expressions for
C44 and ζ in Eqs. (15) and (16). The method that we describe
can be readily modified to treat the more general case of the
ionic potential with additional terms proportional to SC0.

Subtracting C11 from C12 in Eqs. (14) reveals immediately
the unique determination of kθ in terms of C11 and C12:

kθ = 2r0

3
√

3
(C11 − C12). (A1)

Adding twice C12 to C11 in Eqs. (14) furnishes a linear
expression for krr in terms of C11, C12, and kr :

krr = 2r0

3
√

3
(C11 + 2C12) − kr

6
. (A2)

Multiplying out Eq. (16) and utilising Eq. (A2), a linear
expression relating krθ to kr is obtained:

kr = krθ
3√
2

4ζ − 1

ζ − 1
− 3kθ (2ζ + 1)

ζ − 1
+ r0(C11 + 2C12)√

2
.

(A3)

Having now expressions for krr in terms of kr , and krθ in terms
of kr , the remaining equation for C44, Eq. (6), can be cast in
terms of only krθ and known elastic constants. Expanding out
Eq. (6) we are left with the quadratic equation:

a︷︸︸︷
3

2r2
0

k2
rθ +

b︷ ︸︸ ︷
3C44 + C′(1 − 4ζ )√

6(ζ − 1)r0

krθ

+ C′(C′ − 3C44 + 2C′ζ
)

9(ζ − 1)︸ ︷︷ ︸
c

= 0. (A4)

This may be solved using the quadratic formula: krθ =
−b±√

b2−4ac
2a . The two solutions then correspond to different

values of krθ , krr , and kr , with the same kθ . However, imple-
mentation of this formula reveals one of the solutions to be
extraneous, as discussed further below.
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Taking the coefficients from Eq. (A4), we obtain:

b2 − 4ac = 3

2r2
0

(C44 − C′)2

(ζ − 1)2 . (A5)

Putting this into the quadratic formula and simplifying, we
obtain:

krθ = − 4r0

3
√

6

3C44 − C′(1 − 4ζ )

ζ − 1
± 4r2

0

3

√
3

2

(
C44 − C′

(ζ − 1)r0

)2

.

(A6)

These two solutions simplify to:

k+
rθ = 2

3

√
2

3
r0C

′ =
√

2kθ , (A7)

and, already given in Eq. (20) in Sec. III A above:

k−
rθ = r0

3

√
2

3

(C11 − C12)(1 + 2ζ ) − 3C44

ζ − 1
. (A8)

By inspection of Eq. (14) we can see that the extraneous
solution is that in Eq. (A7), which would lead to the un-
defined scenario of 0/0 in Eqs. (15) and (16). Furthermore,

we see that whether this solution is that with the positive
or negative root depends on whether C44 > C′, equivalent to
whether A > 2. In addition, we note that these two conditions
also govern whether or not the VFF will be stable against
internal strain (E11 > 0); so the result also holds that as the
sign of the extraneous solution changes, so does the sign of
E11. When this sign change occurs, the underlying assump-
tion in the derivation of the equations that the energy has
been minimized with respect to the internal strain becomes
invalid.

Thus, the single correct analytic expression for the force
constant krθ in terms of the elastic constants and the Kleinman
parameter is the right hand solution in Eq. (A8). Via Eqs. (A1),
(A2), and (A3), we then obtain the full single set of force
constants of Eqs. (17)–(20).

Alternatively, the pitfalls of the extraneous root may be
more efficiently circumvented by simply solving the equation
set comprising C11, C12, and ζ , from Eq. (14) along with the
rightmost expression of Eq. (6), where the ζ is not swopped
for its numerical value, but rather left as a known numerical
quantity. Choosing this set of equations a quadratic term in krθ

never arises, and there is simply a squared ζ , which adds no
extra roots to the equation set.
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