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Abstract  

Variable renewable electricity (VRE) decarbonises the electricity grid, but its intermittency leads to 

variations in price, carbon intensity, and curtailment over time. This has led to interest in utilising 

difficult to manage electricity to produce electrofuels (such as hydrogen via water electrolysis) for 

transport. The vast majority of the environmental impact of electrofuels is contained in the 

electricity they consume however, only consuming otherwise curtailed electricity (produced when 

supply exceeds demand) leads to prohibitively expensive hydrogen due to low run hours.  

Using a model which bids for wholesale electricity, two operational strategies (controls) aimed at 

increasing sustainability without requiring policy changes were tested in electricity system models of 

40% to 60% renewable electricity penetration. (1) Bid price control set a maximum price the plant 

will pay for electricity. (2) Wind forecast control dictated that the plant may only run when a 

minimum forecast VRE production is met. 

It was shown that sourcing electricity at times of low cost or high forecast wind power can lead to 

more decarbonised hydrogen production (up to 56% more) at a lower cost (up to 57% less). When 

economically optimised (minimising levelised costs) the bid price control reduced the carbon 

intensity of the electrofuel produced by 5% to 25%, and the wind forecast control by 14% to 38%, 

compared to the grid average. Both controls demonstrated a high proclivity to utilising otherwise 

curtailed electricity and can be said to aid grid balancing. The bid price control also greatly reduced 

the average cost of electricity to the plant. The positive impacts increased with renewables 

penetration, and significant synergies between economic and environmentally conscious operation 

of the plants were noted.  

The operational strategies tested in this paper allow for transport fuels to be produced from grid 

electricity, without exacerbating the mismatch of supply and demand. Future decentralised quasi-

storage using these operating strategies may economically produce transport fuel, and aid grid 

balancing.  
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Abbreviations 

AC Actual Cost LCOE Levelised Cost of Energy 

BP Bid Price P2H Power to Hydrogen 

CCGT Combined Cycle Gas Turbine RE Renewable Electricity 

DGA Difference from Grid Average RED Renewable Energy Directive (EU) 

DSM Demand Side Management RH Run Hours 

FFC Fossil Fuel Comparator SMP System Marginal Price 

HGV Heavy Goods Vehicle SMR Steam Methane Reforming 

ISEM Irish Single Electricity Market VRE Variable Renewable Electricity 

 

Normal temperature and pressure (N): 20°C and 101.325kPa 

The symbol η is used to denote efficiency 

 

1 Introduction 

In response to climate targets, high levels of Variable Renewable Electricity (VRE), in particular wind 

and increasingly solar, are being integrated into the electricity grid; with increasing shares of VRE 

come issues of grid balancing, stability, curtailment, and storage needs, potentially affecting security 

of supply [1,2]. It also leads to price volatility [3] and reduced system marginal prices [4,5], and as 

this paper aims to explore, fluctuations in the carbon intensity of the electricity generated, defined 

as the units of carbon dioxide emitted per unit of electricity generated, and later as units of carbon 

dioxide embodied per unit of fuel produced. Large scale and flexible energy storage options [6,7] as 

well as Demand Side Management (DSM) [8,9] and price controls [10] are seen as a means of 

reducing these effects with presently deployed solutions such as pumped hydro storage [11] 

insufficient to avoid significant dispatch down of VRE [12,13]. 

Electrofuels have been proposed as an advanced transport fuel, DSM of electricity, and a flexible 

storage mechanism for VRE. Power-to-Hydrogen (P2H) is one such electrofuel whereby electricity is 

stored as hydrogen (H2) via electrolysis of water. Thus, P2H changes the energy vector to a gaseous 
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fuel from non-biological origin. P2H is gaining attention as a highly scalable flexible consumer [14], 

offering quick response for storing excess electricity and adding stability to the electricity grid [15], 

while producing an advanced renewable transport fuel [16,17]. The ability of P2H to rapidly ramp up 

and down demand allows it to utilise difficult to manage electricity [18,19] that may otherwise be 

curtailed [12,20]. Operating ideally, P2H offsets the need for energy imports and abates GHG 

emissions [21,22] by providing ancillary grid balancing services that enable further integration of VRE 

[15,20]. Converting electrical energy into chemical energy allows for large-scale storage through 

injection into existing gas grid infrastructure (subject to constraints [23]) or establishment of 

hydrogen fuelling stations, where it offers high storage capacity and discharge times [24]. It may also 

receive a fee for this service, aiding its economic viability. Many technology reviews and studies are 

available which detail the working principles, relative advantages and disadvantages, and trends in 

P2H technologies [18,25]. Besides P2H other electrofuels (P2X) include methane, ammonia, dimethyl 

ether, and methanol all of which rely upon the electrolysis of water as the key enabling technology; 

therefore insights from this work are applicable to all P2X technologies [26].  

Much of the focus of electrofuel research has focused on utilising surplus [27] or otherwise curtailed 

VRE [28,29], or as an alternative to network expansion [20,30]. However, previous work by the 

authors has shown that higher run hours are required for an economical system and therefore, 

surplus VRE alone is insufficient even at very high penetration levels [31,32]. The intermittency too 

would mean that large hydrogen buffers and storage would be required, and the actual volumes of 

gas produced would be limited, rendering the system prohibitively expensive. Yet, as we aim for 

higher levels of renewable energy in power systems the production of renewable synthetic fuels, as 

an alternative to fossil fuel products, is a path which demands more attention [33]. 

Furthermore, P2H can be positioned as a novel biogas upgrading solution, utilising its CO2 content to 

produce renewable methane (CH4) via a Sabatier reaction (CO2 + 4H2 → CH4 + 2H2O). This could 

increase the sustainability of biogas plants, practically doubling methane output, potentially 

offsetting some of the capital required, and promoting a circular economy [17,18,27,34]. 

The EU have outlined that Renewable Energy Sources in Transport (RES-T) must hold at least a 14% 

share of energy in transport by 2030 [35]. P2H is promoted within the EU framework due to its low 

indirect land use change, potentially low carbon intensity, and waste to energy/circular economy 

characteristics. It is expected that the hydrogen produced will be used in the transport sector as this 

sector has low levels of decarbonisation and there are limited alternatives for advanced renewable 

transport fuel production [22,36]. As electric vehicles are likely to dominate the private passenger 

fleet, the best route for P2H is to displace diesel in heavy commercial long distance vehicles [22]. 



   
 

   
 

This is due to its superior energy to mass/volume compared to batteries, growing restrictions on 

particulate emissions, and associated proposed bans on diesel powered engines [22,37]. 

It is critical to maximise the sustainability of P2H from grid electricity for use as a renewable 

transport fuel. Several studies have concluded that the majority of the climate impact of P2H can be 

attributed to the electricity consumed in the electrolysis step [38–40]. Parra et al [41] indicated that 

electrolysis and its associated energy consumption contribute more than 90% of the potential 

environmental impacts (climate change, particulate matter, ozone depletion, eutrophication) of P2H 

with the electricity generation method being the most sensitive parameter. Similar results were 

found by Collet et al. and Reiter et al. who determined low carbon electricity was mandatory to 

achieve a sustainable production of P2H [42,43]. As such, reductions in the carbon intensity of the 

electricity consumed are analogous to reductions in the environmental impact of P2H. This concept 

is central to the paper. 

The gap in the research identified is the use of static or average values for the carbon intensity of the 

electricity consumed [38–44]. This is inconsistent with the complexity of the interaction with the 

electricity grid of such systems [12,30], and challenges the prevalent simplified assumption that P2H 

is sustainable as it operates on curtailed renewable electricity alone [16,27]. Potential changes in the 

carbon intensity of the electricity consumed dictate the carbon intensity of the gas produced and 

understanding this is critical to fully understand the sustainability of P2H/electrofuel systems. 

To test this, a P2H system will be modelled as a large flexible consumer within an electricity market 

with limited interconnection at renewable electricity penetrations of 40%, 50%, and 60%. 

Parameters the P2H plant operator can control, herein referred to as the “plant”, will be varied to 

assess changes to carbon intensity of the hydrogen produced, cost of electricity consumed, and 

potential effects on curtailment. 

In line with configurations found in the latest EU Renewable Energy Directive [35] that aim for P2H 

to consume low carbon and/or difficult to manage electricity, two methods are proposed. One, the 

plant will only run when the system marginal price (SMP) is below a threshold figure (Box 2), as 

drops in the SMP are indicative of balancing issues [3–5]. And two, a wind forecast control, will allow 

the P2H plant to run only at times when forecast wind generation is above a threshold figure (Box 3). 

See Section 2.4 for further explanation. Within these two controls, Optimum high and Optimum low 

are defined. Optimum high is the application of the controls that would allow for 6000 run hours, 

Optimum low allows for 4200 run hours, identified in previous research as the upper and lower ends 

of a range that was found to minimise the levelised cost of energy (LCOE) of a P2H system [31,32].  



   
 

   
 

This work advances upon previous research by the authors [31,32] in the relationship between a P2H 

system, the electricity grid, the running schedule, and the levelised cost of energy. To the best of the 

authors’ knowledge this has not been done before. The objectives of the paper are to: 

- Examine the effect manageable controls (operational strategies), bid price and wind 

forecast, have on the sustainability of an electrofuel system; 

- Investigate the proclivity to utilise otherwise curtailed electricity and hence, the effect on 

demand for fossil fuel based electricity generation when applying these controls; 

- Compare and contrast these results to the grid average carbon intensity; 

- Investigate the trends and change in sustainability of electrofuels with increasing shares of 

VRE.  

2 Methodology 

2.1 Power to Gas/Electrofuel system 

The system modelled consists of electrolysis to produce hydrogen and auxiliary processes such as 

pumping, cooling, and compression to a minimum of 25 bar (Figure 1). It is assumed that when the 

controls have been met the electrolysers consume energy, without technical constraints such as 

ramp-up or buffer capacity. The current commercial state of the art electrolysis technology, polymer 

electrolyte membrane (PEM) has demonstrated the required operational flexibility [45,46]. 

Thorough descriptions of electrolysis can be found in past literature [47]. 

 
 Figure 1 - Graphical representation of the model 

 

Electrolysis stack efficiency at NTP is estimated at 4.4kWh/Nm3 [31,48,49], compression energy 

consumption of 0.2kWh/Nm3 [48,50,51], and auxiliary power consumption of 0.1kWh/Nm3 [31]. This 

gives an overall efficiency of converting electricity to compressed hydrogen of 4.7kWh/Nm3 or 75% 



   
 

   
 

(H2 HHV of 3.54kWh/Nm3) for 2030, the period analysed. The carbon intensity of the compressed 

hydrogen (CO2 embodied per unit) is then equal to the carbon intensity of the electricity (CO2 

emitted per unit) multiplied by the reciprocal of the conversion efficiency expressed as a decimal 

(see Box 1). 

Box 1: Example of relationship between carbon intensity of electricity and that of hydrogen 

An electricity carbon intensity of 200gCO2/kWh will lead to a compressed hydrogen carbon intensity 
of 200/75% = 266.6gCO2/kWh. 

Inversely, a compressed hydrogen carbon intensity of 350gCO2/kWh is indicative of an electricity 
carbon intensity of 350 x 75% = 262.5gCO2/kWh. 

Results can be converted from g/kWh to g/MJ by dividing by 3.6.  

Use 39.4kWh/kgH2 to convert to kgCO2/kgH2 if desired.  

Previous work concludes that relying on curtailed energy alone is uneconomical due to the small and 

intermittent volume of hydrogen that would be produced [31,52]. Therefore, grid connection and 

market engagement are essential for P2H systems. The electricity consumed constitutes the vast 

majority of P2H life cycle carbon emissions and wider environmental impacts [38–43]. This allows us 

to equate reductions in the carbon intensity of the energy consumed, with increases in the 

sustainability of the process. The results of applying the operational strategies (controls) detailed in 

this paper will be compared to the grid average and economically optimised P2H systems in terms of 

overall sustainability.  

2.2 The power system models 

The envisaged system engages in the Irish Single Electricity Market (ISEM) without priority as a large 

flexible consumer, a market similar to those around the world. Therefore, consumption of electricity 

is technology neutral and P2H will compete for energy against demand/storage/interconnection as it 

would in a functioning electricity market. The P2H plants are assumed to be ideally flexible and the 

model does not include constraints or costs for start-up and shut-down, ramp-up, or buffer capacity. 

No mechanism or widespread precedence has been set that would allow a plant to consume energy, 

even that which would otherwise be curtailed, without engaging with an electricity market. P2H 

does not directly benefit from its ability to provide grid balancing services and receive “free” 

electricity, with some rare exceptions [53,54], though this is the subject of much discussion [6,13]. 

Thus, the amount the plant is willing to pay for electricity (its bid price) directly informs the number 

of runs hours and when these hours occur unless the plant operates according to schedule (as may 

be informed by wind generation forecast). The bid price and up/down times of the plant are two 



   
 

   
 

parameters that a plant operator would control when interacting with the electricity market and 

therefore, using them to manipulate the sustainability and cost of the end product is worth 

investigating.  

To determine the running schedule of the electrolysers, PLEXOS models of the ISEM in 2030 were 

developed. PLEXOS Integrated Energy Model is a power systems modelling tool used for electricity 

market simulations [55]. The power systems model develops an hourly System Marginal Price (SMP) 

for the ISEM based on current rules, and it has been benchmarked against historic market data and 

has been validated by the regulator to reproduce realistic results [56]. The SMP can be considered as 

the hourly island wide wholesale price of electricity. The model uses deterministic mixed integer 

linear optimisation to minimise the costs of the electricity dispatched including for fuel costs, start-

up costs, penalties for unserved energy, and a penalty cost for not meeting reserve requirements 

[57]. In general, the SMP is low when there is more than sufficient generation capacity online to 

meet demand, such as when wind power is being curtailed. When the amount of generation online 

to meet demand is scarce, the resulting SMP is higher. The SMP is set by the marginal costs of the 

last generator online to meet demand. In Ireland this is often gas fired generation. The SMP is also 

influenced by zero-marginal cost VRE which tends to supress the SMP in times of high VRE 

production. In times of excess VRE generation, curtailment may take place. Current electricity 

market rules offer VRE priority dispatch on the electricity grid, therefore curtailment of VRE is often 

a last resort. The model optimises thermal generation (fossil fuel and renewable), VRE, pumped 

storage, interconnection, as well as reserve classes subject to operational and technical constraints 

[16,58]. Also included are constraints on the unit operation of each power plant including minimum 

and maximum generation, minimum and maximum up and down time and the system ramp up and 

down rates, as well as a system level constraint consisting of an energy balance equation ensuring 

supply meets regional demand at each period [16]. The combination of these constraints, and the 

objective function of minimising production cost leads to the merit order, or the sequence in which 

the generators will be dispatched. Due to zero-marginal cost generation and/or renewables priority 

dispatch, wind energy and other renewables are first in the merit order meaning they run most 

consistently. The deficit is then made up of traditional generators. More detail on how ISEM 

operates can be found online [59,60].  

 

 



   
 

   
 

Three PLEXOS models were tested at 40%, 50%, and 60% renewable electricity (RE) respectively with 

projected planned interconnection outside the island. Thus, as outlined in Figure 2, three energy 

mixes were tested.  

 

RE – Renewable Energy, FF – Fossil Fuel 

Figure 2 – Energy mix of the Renewable Energy scenarios used in the model. 

 

Renewable energy (RE) is calculated as delivered MWeh of electricity from all renewable sources, as 

a percentage of total delivered electricity. VRE then only includes intermittent sources (wind, solar, 

and wave), and not those that are dispatchable (combined heat and power, co-firing of biomass, and 

hydropower) and therefore do not contribute to the fluctuations in supply that would affect price. 

The other Fossil Fuel (FF) portion of these charts consists mainly of coal, peat (co-fired with 

biomass), and small volumes of heavy fuel oil, all of which are dispatchable thermal generators.  

These mixes represent potential future (2030) targets for Ireland [61]. The vast majority of this RE 

will be provided by wind and other intermittent sources. The 40% RE scenario is representative of a 

case where the rate of new installed RE capacity does not increase drastically beyond the levels seen 

today. The 60% RE scenario requires the rate of additional installed capacity of RE to substantially 

outpace that of increasing demand. The 50% RE scenario is an intermediate. Each of these is feasible 

and therefore their implications for P2H worthy of investigation. Table 1 outlines the various levels 

of VRE production in each scenario, data was obtained by analysing the output of the power systems 

model described above. 

 

 

 

40% RE 60% RE 50% RE 



   
 

   
 

Table 1 - Characteristics of VRE production in each of the %RE scenarios 

VRE production (MW)* 40% RE 50% RE 60% RE 

Min  140 169 196 

Average 2079 2540 3048 

Max 5931 6510 7370 

*Refers to the MW of VRE generated in a given hour. 

 

2.3 Calculation of carbon intensity of electricity consumed 

Should the control criteria be met for a given hour, the plant will consume electricity. As PLEXOS 

gives hourly data this calculation can be ran for each interval and hence a total number of run hours 

in a year established (Equations 1 and 3). Similar methods give us the average cost of electricity for 

said run hours (Equations 2 and 4). As well as SMP, the model also calculates the volume of CO2 

produced from electricity generation during each hour. By dividing the CO2 emissions by the energy 

generated we calculate the carbon intensity in gCO2/kWh in each hour (Equation 5). 

 

Equations for bid price control: 

𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝐻𝐻 =  ∑𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝑙𝑙𝑙𝑙 𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑙𝑙𝐻𝐻 𝑓𝑓𝐻𝐻𝐻𝐻 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑆𝑆𝑆𝑆𝑆𝑆 < 𝐵𝐵𝑖𝑖𝐵𝐵 𝑝𝑝𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖    (1) 

𝐴𝐴𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝐴𝐴𝑖𝑖 𝐸𝐸𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 𝐶𝐶𝐻𝐻𝐻𝐻𝑖𝑖 =  ∑𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜𝐼𝐼 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑆𝑆𝑆𝑆𝑆𝑆 < 𝐵𝐵𝑖𝑖𝐵𝐵 𝑆𝑆𝐼𝐼𝑖𝑖𝑖𝑖𝐼𝐼
𝑅𝑅𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅𝐼𝐼 𝐻𝐻𝑜𝑜𝑅𝑅𝐼𝐼𝐼𝐼

   (2)  

Equations for wind forecast control: 

𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝐻𝐻 =  ∑𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝑙𝑙𝑙𝑙 𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑙𝑙𝐻𝐻 𝑓𝑓𝐻𝐻𝐻𝐻 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑉𝑉𝑅𝑅𝐸𝐸 𝑓𝑓𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖 > 𝑇𝑇ℎ𝐻𝐻𝑖𝑖𝐻𝐻ℎ𝐻𝐻𝑙𝑙𝐵𝐵  (3)  

𝐴𝐴𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝐴𝐴𝑖𝑖 𝐸𝐸𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 𝐶𝐶𝐻𝐻𝐻𝐻𝑖𝑖 =  ∑𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜𝐼𝐼 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑉𝑉𝑅𝑅𝑉𝑉 𝑜𝑜𝑜𝑜𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼 > 𝑇𝑇ℎ𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑜𝑜𝐼𝐼𝐵𝐵
𝑅𝑅𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅𝐼𝐼 𝐻𝐻𝑜𝑜𝑅𝑅𝐼𝐼𝐼𝐼

  (4)  

Carbon intensity equation is applicable to both controls: 

𝐶𝐶𝑖𝑖𝐻𝐻𝐶𝐶𝐻𝐻𝑅𝑅 𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝐻𝐻𝑖𝑖𝑙𝑙 𝑝𝑝𝑖𝑖𝐻𝐻 𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑙𝑙 =  𝐻𝐻𝑜𝑜𝑅𝑅𝐼𝐼𝐼𝐼𝐻𝐻 𝐶𝐶𝑂𝑂2 𝑉𝑉𝐸𝐸𝑖𝑖𝐼𝐼𝐼𝐼𝑖𝑖𝑜𝑜𝐼𝐼𝐼𝐼
𝐻𝐻𝑜𝑜𝑅𝑅𝐼𝐼𝐼𝐼𝐻𝐻 𝑆𝑆𝐻𝐻𝐼𝐼𝐼𝐼𝐼𝐼𝐸𝐸 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑜𝑜𝐼𝐼

    (5)  



   
 

   
 

2.4 Derivation and explanation of controls 

2.4.1 Bid price control 

Due to the effects of market interactions, merit order, the priority dispatch of renewables, zero-

marginal cost VRE generators, and curtailment on the SMP, the authors hypothesised that low-cost 

electricity should be analogous to more sustainable electricity, as would be reflected in its lower 

carbon intensity. As the relationships between SMP, VRE production, and carbon intensity are 

complex, a direct correlation does not exist (as exemplified by an R2 value, statistical measure of 

how close the data is to the fitted regression line, of 0.08 for VRE versus SMP in the 50% RE 

scenario). Export of electricity, pumped hydro storage, imports, priority dispatch, and the mixed 

portfolio of efficiencies and costs for generators make the relationship difficult to define and would 

require information beyond that available to those participating in the market. However, the bid 

price is controllable and if a P2H facility’s bid price is below the marginal cost of generation of fossil 

fuel plants (Coal, Oil, Peat, and Gas) then the likelihood of it operating at times of high carbon 

intensity is much lessened, allowing operation on a majority VRE through market forces alone.  

When generators are placed in descending order of capacity factor (ratio of actual output to 

maximum output) it is roughly equivalent to the merit order and hence, we can see how carbon 

intensity will change as demand increases and more generators are brought online. Market effects 

dictate that the low-cost and renewable generators tend to run first therefore, they have the highest 

capacity factors on the system. The same would not be true for an electricity market where coal was 

the ubiquitous low-cost baseload generator, however it is expected that an effective Emission 

Trading Scheme (ETS) price will be in place to act against this. Figure 3 shows that the plants with the 

highest capacity factor typically also have the lowest emissions; the first ten plants in Figure 3 are 

modern combined cycle gas turbines (CCGT). 



   
 

   
 

 

Figure 3 - Capacity factor and carbon intensity of electricity produced by large dispatchable thermal generators on the ISEM 
for 50% RE scenario. Each bar represents a single generator/plant. 

In Figure 4 a marked increase in carbon intensity can be seen once cumulative capacity exceeds 

approximately 4500MW. It is at this point that additional older, more expensive, and less efficient 

generators will be dispatched beyond those already generating for power quality or network stability 

reasons, this will then be reflected in the SMP. This is due to the fact that the lowest marginal cost 

generators also tend to be the cleanest as seen in Figure 3. 

 

 

Figure 4 - Cumulative generation capacity and moving average carbon intensity of electricity produced by large 
dispatchable thermal generators on the ISEM for 50% RE scenario. Each dot corresponds to a single generator/plant along 
the X-axis. 
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In analysing the electricity market data, it is proposed that lower SMPs can be equated with lower 

emissions and higher VRE production; positive correlation has been found between increased shares 

of VRE and the periodic availability of low-cost electricity in other studies too, but this has not then 

been linked to carbon intensity [3–5,10,33]. For the analysis, the plant was only to run when the 

SMP was below a fixed value (Box 2). 

Box 2: Bid price control, example of operation 

Should the plant bid price be €50/MWh, and the current system marginal price (SMP) be €30/MWh, 
the plant will run. Once the SMP exceeds €50/MWh, the plant will turn off until such a time as the 
SMP falls below €50/MWh again.  
This applies to the results in Figure 9, Tables 5 and 6, and throughout. 

 

2.4.2 Wind forecast control 

Should the P2H plant only run at times when the levels of VRE in the energy mix are sufficiently high, 

the authors theorise that the likelihood of consuming high carbon electricity is lessened. In the case 

of the ISEM, VRE is almost entirely wind energy, thus, it is proposed that the P2H plant only run 

when predicted wind energy is above a certain level, referred to as the minimum wind forecast. 

Wind and solar energy forecast methodologies for the ISEM can be found online [62].  

Information was collected to examine if forecast and actual wind generation closely matched, to 

verify the applicability of this operational strategy. The relationship between wind energy (99% of 

VRE in the ISEM) and the carbon intensity of the electricity was examined for similar reasons. Three 

separate approximately 30-day periods were tested, one of which included extreme weather events 

in order to fully test the robustness of the correlation. Data was downloaded from the EirGrid 

website as referenced; Table 2 outlines the information collected [63]. The periods examined are 

representative of an average wind energy (VRE) penetration of 34% and thus, overall RE penetration 

of 36% when including hydropower and other existing RE sources.  

Table 2 - Data downloaded from EirGrid to test correlations 

Period/Data Forecast Wind 

Generation (MW) 

Actual Wind 

Generation (MW) 

Carbon Intensity 

(gCO2/kWh) 

Extreme 

Weather 

1. 20/9/17 – 19/10/17     

2. 28/1/18 – 26/2/18    
 

3. 27/2/18 – 28/3/18    
 



   
 

   
 

Figure 5 is graphical representation of the clear positive correlation between the forecast and actual 

wind generation for period 2. Regression analysis was carried out to quantify the relationship 

between the variables. The three periods were found to have very high levels of correlation (R-

squared values of 0.83, 0.91, and 0.90 respectively). It can be concluded that forecasts provide 

sufficiently accurate data for the method to hold up to scrutiny at this stage.  

 
 
Figure 5 – Forecast wind generation and actual wind generation for period 2. 

Figure 6 indicates a clear negative correlation between actual wind generation and the carbon 

intensity of the electricity for period 2. Again, this is true for all three periods which have R-squared 

values of 0.81, 0.89, and 0.92 respectively. 

 
 
Figure 6 – Actual wind generation and carbon intensity of electricity for period 2. 

The same regression analysis was carried out on the data from the PLEXOS models in an effort to 

further validate the models and ensure that correlations seen in real world data still applied (Figure 

7). The 40%, 50%, and 60% RE models produced R-squared values of 0.91, 0.92, and 0.88 

respectively across one complete year, confirming the relationships.  



   
 

   
 

 

Figure 7 - Carbon intensity of electricity and VRE generation for a thirty-day period of the 50% RE model, illustrative of the 
correlation. 

In conclusion, if a P2H plant is to base its operating schedule on forecast wind generation it will lead 

to consuming energy in times of reduced carbon intensity electricity. For the analysis, the plant was 

only to run when certain levels of wind were predicted, expressed as a percentage of the average 

wind generated; this will be known as the wind forecast control (Box 3).  

Box 3: Wind forecast control, defining a “150% wind” operational strategy  
 
If average wind generation is 2500 MW, and the Wind forecast control dictates a 150% minimum for 
the P2H to run, therefore, P2H will “turn on” only when the forecast wind generation is above 3750 
MW (2500 x 150%).  
This applies to the results in Figure 10, Tables 7 and 8, and throughout. 

 

2.4.3 Grid average and economically optimised P2H system 

To assess whether positive carbon effects are seen and ensure that the controls do not sacrifice 

economic viability in an attempt to improve environmental sustainability, the results are compared 

to the carbon intensity of hydrogen from the grid average and of the economically optimised 

system. Too low run hours of the P2H plant may maximise environmental benefits but will not allow 

for project amortisation. Too high run hours and the system may be unnecessarily consuming 

energy, increasing its environmental impact without reducing the Levelised Cost of Energy (LCOE) 

[32]. Optimisation was defined as minimising the LCOE by adjusting the bid price until the rise in 

average electricity cost was no longer compensated for by the subsequent increase in run hours 

under base 2030 cost assumptions, as per McDonagh et al. [31]. More details on this rationale and 

methodology can be found in McDonagh et al. [32].  



   
 

   
 

As can be seen in Figure 8 sharp rises in LCOE are observed as P2H plant run hours fall below 

approximately 3800 p.a. with the plant no longer producing enough hydrogen to effectively pay back 

the capital cost. The optimum number of run hours was found to be between 4200 and 6000 p.a 

across all three %RE scenarios. In this case increasing run hours further will not reduce the levelised 

cost of the product hydrogen (LCOE) as the electricity during these additional hours is more 

expensive, and more emissive [32]. Thus, for the plant to remain economical two strategies to be 

tested were conceived: Optimum low is the required minimum wind forecast/bid price to allow 4200 

run hours p.a.; Optimum high allows for 6000 run hours p.a.  

Box 4: How to read Figure 8 

Green dashed line (more economic, less carbon sustainability)  
- Bid price €60/MWh, ca. 6300 run hours, LCOE ca. €110/MWh. 
 
Red dashed line (less economic, more carbon sustainability)  
- Bid price ca. €37/MWh, ca. 3300 run hours, LCOE €200/MWh. 
 

 

Figure 8 - Change in LCOE and run hours of a P2H system with increasing bid price for the 50% RE scenario. Equivalents for 
the 40% and 60% scenarios can be found in supplementary data. 
 

Table 3 contains the results for each scenario in terms of the carbon intensity of the compressed 

hydrogen produced. 



   
 

   
 

Table 3 – The carbon intensity of compressed hydrogen when consuming grid electricity assuming 75% conversion efficiency 
(box 1) and the average SMP in each of the %RE scenarios. 

Hydrogen carbon 

intensity (gCO2/kWh) 

40% RE 50% RE 60% RE 

Min 104 81 75 

Average 324 295 303 

Max 720 641 711 

Econ. optimised 308 274 269 

    

Average SMP (€/MWh) 59 57 56 

For reference Fossil Fuel comparator from the EU RED for transport is 338.4gCO2/kWh.  

The total emissions from the electricity grid are greater at 60% RE than at 50% RE due to increased 

(5.5 times) exports to the UK via an interconnector in the 60% RE scenario, and increased use of 

pumped hydro storage, indicative of the difficulties in facilitating very high VRE penetration. This is 

reflected in the increase in hydrogen carbon intensity between the 50% and 60% scenarios. The 40% 

RE scenario is a net importer via the interconnector and does not show such issues. The carbon 

intensity results of each of the economically optimised hydrogen systems is less than it would be 

from production from the respective grid average.  

2.4.3.1 Measuring effects on curtailment 

Ultimately the installed capacity of P2H is what determines the effect on curtailment, larger systems 

will capture more potentially curtailed electricity. However, should the plants have a tendency to 

consume at times of curtailment above that which could be attributed to randomness then the 

presence of P2H can be said to have a positive externality on the grid. By consuming during 

curtailment, P2H acts as a surrogate storage mechanism and reduces the peaks and troughs of the 

supply/demand curve. The consumption profiles that result from each control will be compared to 

Table 4, data which was collected by analysing the output of the power systems model. 

Table 4 - Occurrence of curtailment in each scenario calculated over each one-hour period 

Scenario 40% RE 50% RE 60% RE 

Hours of curtailment 70 422 1213 

Proportion of year 0.8% 4.8% 13.8% 

Highest curtailment  823 MW 2131 MW 3686 MW 

Typical curtailment* 300 MW 654 MW 1132 MW 

*Typical curtailment calculated as the average of the non-zero hourly curtailment values thus, is the average value of 
curtailment when it occurs.  



   
 

   
 

 

3 Results and Discussion  

3.1  Bid price method  

3.1.1 Bid price method optimises low cost hydrogen 

Both the carbon intensity and run hours experience large increases at bid prices of approximately 

€32-35/MWh (Figure 9). Below this the carbon intensity is significantly lower, showing a correlation 

between lower cost and lower carbon intensity electricity. A bid price of €30/MWh leads to a 55-

58% reduction in carbon intensity but only allows for 150, 557, and 1264 run hours in the 40%, 50%, 

and 60% scenarios respectively which even at the resultant low average costs of electricity will not 

make a viable system. However, the resource of low cost/low carbon electricity is shown to increase 

with increasing VRE penetration. 

 
Note: 40%, 50%, and 60% relate to the percentage renewable electricity penetration. Therefore, “C intensity 50%” is the 
carbon intensity of hydrogen in the 50% renewable electricity penetration scenario, “Run hours 50%” is similarly defined. 
“RED FF Comparator” (334.8 gCO2/MJ) is the standard emissions value for fossil fuel transport, against which renewables 
are compared [35].  

Figure 9 - Change in carbon intensity of hydrogen produced and run hours of the P2H system with increasing bid price. 

 

The trends in the lines for run hours are largely explained by the availability of less than €1/MWh 

electricity in the 60% scenario (962 hours), symptomatic of balancing issues, and the relative lack 



   
 

   
 

thereof in the 40% scenario (56 hours). Above bid prices of €30/MWh the lines begin to converge as 

the average costs are similar (Table 3) however, the maximum SMP is largest in the 60% scenario. 

Therefore, the number of run hours achieved at the highest end of the bid price range will be greater 

in the 40% scenario. The 50% scenario represents intermediate values. 

Low (€35/MWh) and High (€70/MWh) bid prices were chosen as values that lay either side of the 

large increase in run hours observed in Figure 9. In all bid price controls the carbon intensity was 

reduced with the greatest effect seen at the lowest bid prices, confirming the hypothesis that lower 

cost electricity would be more sustainable in the ISEM. This effect was more pronounced as VRE 

penetration increased.  

From Table 5 we see that a bid price of €35/MWh reduces the carbon intensity of the electricity 

consumed by 20-36% scenarios, but the system operates for sub-optimal run hours in all scenarios. A 

€70/MWh bid price allows for 3-7% reduction, and can in fact run for longer than is necessary to 

minimise the LCOE while still producing positive carbon effects. In the economically optimised range 

we see a 5% (optimum high 40% RE) to 25% (optimum low 60% RE) reduction in carbon intensity. 

The synergies between economic and environmental operation are striking with reductions of 34-

50% in the cost of electricity compared to the grid average within the optimised range. All scenarios 

see large drops in electricity cost, by far the largest contributor to P2H LCOE. 

In Tables 5 and 6 “Optimum low” and Optimum high” refer to the required minimum bid price to 

achieve 4200 and 6000 run hours per annum respectively, see Box 1 and 2.4.3 for further details. 

“Low” and “High” are bid prices that lie either side of the large increase in run hours seen in Figure 9.  

Table 5 - Results for carbon intensity and cost of bid price method 

  40% RE penetration  50% RE penetration  60% RE penetration 

  BP RH 

(AC) 

H2 

CO2 

DGA  BP RH 

(AC) 

H2 

CO2 

DGA  BP RH 

(AC) 

H2 

CO2 

DGA 

Low  35  1967 

(32) 

260 -20% 

(-46%) 

 35  2543 

(29) 

219 -26% 

(-49%) 

 35  3057 

(24) 

195 -36% 

(-57%) 

Optimum 

low  

 43  4200 

(36) 

289 -11% 

(-39%) 

 41  4200 

(32) 

251 -15% 

(-44%) 

 39  4200 

(28) 

228 -25% 

(-50%) 

Optimum 

high  

 55  6000 

(39) 

309 -5% 

(-34%) 

 54  6000 

(36) 

276 -6% 

(-37%) 

 55  6000 

(33) 

273 -10% 

(-41%) 

High  70  6702 

(41) 

313 -3% 

(-31%) 

 70  6757 

(39) 

283 -4% 

(-32%) 

 70  6622 

(36) 

281 -7% 

(-36%) 



   
 

   
 

RE = Renewable Electricity, BP = Bid Price in €/MWh, RH = Run Hours, AC = Average Cost of electricity in €/MWh, H2 CO2 = 
Carbon intensity of hydrogen produced in gCO2/kWh, DGA = Difference from Grid Average, the % difference between the 
resultant value and the average carbon intensity or average cost of electricity from that scenario 

Example interpretation of Table 5: 
We can see that in a 60% RE scenario bidding “Low” for electricity at €35/MWh will lead to run hours 
of 3057, an actual electricity cost of €24/MWh, and a hydrogen carbon intensity of 195 gCO2/kWh. 
These are 36% less emissive and 57% cheaper respectively than the grid average.  

 

3.1.2 Bid price method enhances demand side management reducing curtailed electricity 

The P2H system runs the vast majority of times during which VRE is being dispatched down as the 

bid price control disproportionally consumes otherwise curtailed electricity, likely due to curtailment 

being reflected in the SMP. The percentage of run hours that coincide with curtailment is greater 

than the average in all scenarios. Again, this has the effect of acting as both DSM and storage with 

the effect increasing with VRE penetration.  

 

Table 6 - Results for effect on curtailment of bid price control 

  40% RE penetration  50% RE penetration  60% RE penetration 

BP 

control 

 RH HC RH% 

(0.8%)1 

C% 

(70)2 

 RH HC RH% 

(4.8%)1 

C% 

(422)2 

 RH HC RH% 

(13.8%)1 

C% 

(1213)2 

Low  1967 61 3.1% 87.1%  2543 359 14.1% 85.1%  3012 974 32.4% 80.3% 

Optimum 

low  

 4200 66 1.6% 94.3%  4200 373 9.0% 88.4%  4200 986 24.3% 81.3% 

Optimum 

high  

 6000 70 1.2% 100%  6000 395 6.6% 93.6%  6000 1050 17.5% 86.6% 

High  6702  70 1.0% 100%  6757 400 5.9% 94.8%  6622 1100 16.6% 90.7% 

RE = Renewable Electricity, RH = Run Hours, HC = Hours where consumption coincides with Curtailment, RH% = % of Run 
Hours during which curtailment occurs, C% = % of total number of hours during which curtailment occurs that have been 
captured. 
1 % of the year during which curtailment occurs in the given scenario from Table 4. 
2 Number of hours per year during which curtailment occurs in the given scenario from Table 4. 

Example interpretation of Table 6: 
We can see that in a 50% RE scenario bidding “Optimum high” in order to achieve 6000 run hours, 
the plant will run for 395 hours during which curtailment is occurring. This represents 6.6% of the 
system run time and a 93.6% match to times when curtailment is occurring, significantly greater 
than the grid average. 

 



   
 

   
 

3.2 Wind forecast method  

3.2.1 Wind forecast method allows synergies between decarbonisation and cost of P2H 

If we recall Box 3 and the wind forecast control, the minimum wind forecast is the minimum volume 

of wind generation forecast in order for the P2H plant to run under this strategy. The plant will 

produce hydrogen if the forecast is greater than or equal to this set point.  

From Figure 10, we see that the carbon intensity of hydrogen decreases as the minimum wind 

forecast for the plant to run increases however, associated run hours decline faster. This means the 

most environmentally beneficial system is unlikely to be economical without large incentives, as 

exemplified by the sub 3000 run hours above 120% minimum wind forecast. 

 

 
Note: 40%, 50%, and 60% relate to the percentage renewable electricity penetration. Therefore, “C intensity 50%” is the 
carbon intensity of hydrogen in the 50% renewable electricity penetration scenario, “Run hours 50%” is similarly defined. 
“RED FF Comparator” is the standard emissions value for fossil fuel transport, against which renewables are compared [35].  

Figure 10 - Change in carbon intensity of the hydrogen produced and run hours of the P2H system with increasing minimum 
forecast wind energy required to run, expressed as a percentage of average wind generation. 
 

From Table 7 we see that dictating for a minimum forecast of 150% wind reduces the carbon 

intensity of the electricity consumed by 39-56%, but as with the bid price control the system 

operates for sub-optimal run hours in all. A 50% wind threshold allows for an 8-14% carbon intensity 

reduction and again similarly to the bid price control means the system can in fact run for longer 

than is deemed optimal. In the economically optimised range we see a 14% (optimised high 40% RE) 



   
 

   
 

to 38% (optimised low 60% RE) reduction in carbon intensity. This implies there are synergies 

between economically and environmentally conscious driven operation of the P2H system, with all 

scenarios producing an average cost of electricity less than the grid average. The positive carbon 

effects of the wind forecast control are enhanced as the level of VRE penetration increases. 

In Tables 7 and 8 “Optimum low” and Optimum high” refer to the required wind forecast to achieve 

4200 and 6000 run hours per annum respectively, see Box 2 and 2.4.3 for further details. “150% 

wind” is used as an example of an operational strategy focused on producing low carbon fuel, and 

“50% wind” is a compromise of economic and environmentally conscious operation. These tables 

can be interpreted similarly to Tables 5 and 6. 

Table 7 - Results for carbon intensity and cost of wind forecast method. 

  40% RE penetration  50% RE penetration  60% RE penetration 

  MW RH 

(AC)  

H2 

CO2 

DGA  MW RH 

(AC) 

H2 

CO2 

DGA  MW RH 

(AC) 

H2 

CO2 

DGA 

150% 

wind  

 3118 1706 

(45)   

197 -39% 

(-24%) 

 3810 1781 

(45)  

157 -47% 

(-21%) 

 4573 1713 

(46) 

132 -56% 

(-18%) 

Optimum 

low  

 1909 4200 

(50)  

250 -23% 

(-15%) 

 2352 4200 

(50)  

210 -29% 

(-12%) 

 2922 4200 

(50) 

187 -38% 

(-11%) 

Optimum 

high 

 1364 6000 

(54)  

280 -14% 

(-8%) 

 1656 6000 

(54)  

245 -17% 

(-5%) 

 2029 6000 

(54) 

233 -23% 

(-4%) 

50% wind  1039 7097 

(56)  

299 -8% 

(-5%) 

 1270 7075 

(56)  

264 -10% 

(-2%) 

 1524 7127 

(56)  

261 -14% 

(-0.2%) 

RE = Renewable Electricity, MW = Minimum Wind forecast in MW, RH = Run Hours, AC = Average Cost of Electricity in 
€/MWh, H2 CO2 = Carbon intensity of hydrogen produced in gCO2/kWh, DGA = Difference from Grid Average, the % 
difference between the resultant value and the average carbon intensity or average cost of electricity from that scenario 

 

3.2.2 Wind forecast method prioritises consumption of curtailed electricity 

Table 8 shows that the wind forecast control could have a significant effect on curtailment. In all 

scenarios the percentage of run hours that contain curtailment are above average, meaning that 

they disproportionally consume otherwise wasted electricity. This effect is increased with increasing 

penetration of VRE and is somewhat intuitive as high levels of wind energy in the mix generally lead 

to some dispatch down of VRE. The wind forecast control inherently prioritises the consumption of 

potentially lost electricity generation acting as a form of DSM/storage.  

 



   
 

   
 

 

Table 8 - Results for effect on curtailment of wind forecast control 

  40% RE penetration  50% RE penetration  60% RE penetration 

WF 

control 

 RH HC RH% 

(0.8%)1 

C% 

(70)2 

 RH HC RH% 

(4.8%)1 

C% 

(422)2 

 RH HC RH% 

(13.8%)1 

C% 

(1213)2 

150% 

Wind 

 1706 70 4.1% 100%  1781 403 22.6% 95.5%  1713 887 51.8% 73.1% 

Optimum 

low  

 4200 70 1.7% 100%  4200 422 10.0% 100%  4200 1213 28.9% 100% 

Optimum 

high  

 6000 70 1.2% 100%  6000 422 7.0% 100%  6000 1213 20.2% 100% 

50% 

Wind 

 7097 70 1.0% 100%  7075 422 6.0% 100%  7127 1213 17.0% 100% 

RE = Renewable Electricity, RH = Run Hours, HC = Hours where consumption coincides with Curtailment, RH% = % of Run 
Hours during which curtailment occurs, C% = % of total number of hours during which curtailment occurs that have been 
captured. 
1 % of the year during which curtailment occurs in the given scenario. 
2 Number of hours per year during which curtailment occurs in the given scenario. 

 

3.3 P2H systems generate advanced transport fuels without irregular charging 

associated with electric vehicles 

In purely carbon emissions terms all scenarios outperform the Renewable Energy Directive (RED) 

Fossil Fuel Comparator (FFC) within the energy mixes examined when producing hydrogen at 75% 

efficiency [35]. Electrofuels may have significant positive externalities before a fixed reduction target 

is met and there are advantages in terms of air quality, indigenous low input fuel production, 

facilitation of additional VRE, leveraging VRE in transport, and grid stability. The results in this work 

add weight to the argument that regulations should be adapted in relation to electrofuels as present 

regulations hinder their development, with special consideration paid to preventing a situation 

where grid electricity is consumed and substituted elsewhere with fossil generation [39]. The latest 

RED is an attempt at this [35]. Electrofuel contributions to renewable targets are complex but at a 

minimum are based upon the average share of RE in the country; for example, in a country with 70% 

RE, 70% of the hydrogen is counted as renewable [35]. When renewable generation can be matched 

with consumption and guarantees of origin given, or when the installation is used to relieve grid 

congestion the fuel may be counted as 100% renewable but may require a premium on the 

electricity cost [35]. These are significant as the volume of energy required to meet the RES-T targets 



   
 

   
 

is large, sufficient alternatives for advanced transport fuels are in short supply, and there is a 

proposed cap on first generation biofuels [35]. Electrofuels then contribute to a country’s RES-T 

targets in much the same way as Electric Vehicles (EVs).  

A possible criticism of electrofuels is their possible support of inflexible fossil fuel thermal 

generators. The operational strategies proposed in this paper largely avoid such issues as these same 

generators tend to have higher marginal costs and thus, in the presence of market forces, 

overarching RE targets, and increasing carbon taxes, will play a decreasing role in the future energy 

system. The load shifting characteristics mean P2H at various scales does not create additional peak 

load demand, may lessen the frequency of CCGT start-up/shut down, and act as DSM reducing need 

for less efficient generators to come online [10]. Employing these operational controls in P2H 

overcome disadvantages of EVs where charging is decentralised and erratic and may exacerbate the 

peaks and troughs that produce difficulty in balancing supply and demand. 

3.4 Operational strategies reduce carbon intensity and cost of hydrogen produced 

Both operational strategies reduced the carbon intensity of the hydrogen produced and 

disproportionately consumed otherwise curtailed energy, largely avoiding consumption in times of 

excess demand, with the wind forecast control doing both to a greater extent. The controls also 

allowed for reduced electricity costs aiding financial sustainability. By providing demand during 

times of curtailment the facility reduces the need to dispatch down VRE boosting its economic 

viability [16]. However, operating the plant only during periods of greatest environmental benefit 

would not allow for amortisation of the capital expenditure without significant grid services 

payments/incentives for either control [31,32]. Sufficiently monetising the services offered to the 

electrical grid could negate the need to consume unsustainable electricity; this is independent of the 

size of the system. What is most promising is that economically optimised systems showed GHG 

savings and this effect increased with increasing VRE penetration.  

Across all scenarios the wind forecast control had greater environmental benefits, and more 

effectively captured curtailment than the bid price control. Periods of reduced carbon intensity and 

curtailment aligned well with high forecast generation delivering GHG savings. Wind forecast 

controls would be most applicable when the primary concern is maximising the use of VRE in 

electrofuels (positive carbon effects) and a sufficient incentive to produce electrofuels exists.  

Dictating a maximum bid price for the system resulted in GHG savings too, though not as 

significantly as the wind forecast control. The mixed portfolio of marginal costs, efficiencies, and 

ramp capabilities mean that the point at which the electricity mix moves from VRE supported by 



   
 

   
 

CCGT, to more emissive generators (such as coal fired) is difficult to define. However, the bid price 

control also delivers large savings in electricity costs. Bid price controls are most applicable in a free 

market where P2H plant aims to minimise costs, and carbon savings are coincidental and synergistic. 

3.5 Comparing electrolytic hydrogen from our scenarios to steam methane reforming 

Hydrogen is a valuable input to many chemical processes, and the potential to produce low carbon 

hydrogen has also generated interest in its use as a transport fuel. It can be combined with carbon 

dioxide to create methane in the power to gas process [18] or used directly in fuel cells where 

compressed hydrogen offers superior charging times and energy density to batteries. Figure 10 

provides a direct comparison between the electrolytic hydrogen produced in the scenarios tested 

and that derived via Steam Methane Reforming (SMR). Values of 8.9 to 12.9kgCO2-eq/kgH2 were 

found in literature representing the upper and lower limits of carbon intensity for SMR [40]. A value 

of 11.5kgCO2-eq/kgH2 is used in Figure 10 to allow for reduced fugitive emissions and the use of 

partially decarbonised energy in the process. No fugitive methane is produced during electrolysis 

and so kgCO2/kgH2 to kgCO2-eq/kgH2 provides a fair comparison. 

 
Note: Section 2.4.3, Table 5, and Table 7 provide brief explanations of the derivation of “Low”, Optimum Low”, “Optimum 
High”, and “High” 

Figure 10 - Carbon intensity of the hydrogen produced from electrolysis using the Bid Price and Wind Forecast methods in 
each RE penetration scenario, the carbon intensity of SMR is shown for reference.  

From Figure 10 it can be seen that at least 50% RE penetration is required to outperform SMR under 

all bid strategies in terms of carbon emissions. At penetrations of 50% and above significant 

reductions are noted implying that when aiming to displace fossil derived hydrogen, electrolytic 



   
 

   
 

hydrogen is suitable under these controls. These results are also of importance to those attempting 

to reduce the environmental impact of processes that consume hydrogen such as oil refining and 

fertiliser production.  

3.6 Potential to displace fossil fuels in heavy goods transport 

It is the author’s opinion that the thermodynamic inefficiencies of hydrogen production and use, 

combined with the vast improvement in passenger Electric Vehicle (EV) technology make hydrogen 

passenger transport unattractive in the short to medium term. The figures below do not account for 

the difficulties the grid faces when charging a large number of electric vehicles, or the advantages of 

decentralised hydrogen production but they do illustrate the unsuitability of hydrogen to passenger 

transport in this context. From Box 5 it is clear that passenger EVs are far less emissive than Fuel Cell 

Vehicles (FCVs) and this unlikely to change significantly by 2030.  

Box 5: Passenger electric vehicle (EV) versus fuel cell vehicle (FCV) emissions per 100km  

Taking the 50% RE penetration scenario and assuming the EV charges at the grid average. 

Hyundai Ioniq (EV) [64] : 15.5kWh/100km 

 
15.5𝑘𝑘𝑘𝑘ℎ/100𝑘𝑘𝑘𝑘
90% 𝜂𝜂 𝑖𝑖ℎ𝑖𝑖𝐻𝐻𝐴𝐴𝑖𝑖𝑅𝑅𝐴𝐴 

 ×
221𝐴𝐴𝐶𝐶𝑂𝑂2
𝑘𝑘𝑘𝑘ℎ

= 𝟑𝟑.𝟖𝟖𝒌𝒌𝒌𝒌𝒌𝒌𝑶𝑶𝟐𝟐/𝟏𝟏𝟏𝟏𝟏𝟏𝒌𝒌𝟏𝟏 

Toyota Mirai (FCV) [65]: 67MPGe ≈ 1kgH2/100 km  

From "150%" Wind forecast to "High" Bid price = 𝟔𝟔.𝟐𝟐 − 𝟏𝟏𝟏𝟏.𝟏𝟏𝒌𝒌𝒌𝒌𝒌𝒌𝑶𝑶𝟐𝟐/𝟏𝟏𝟏𝟏𝟏𝟏𝒌𝒌𝟏𝟏 

 

However, unlike passenger vehicles a clear alternative to fossil fuels suitable for Heavy Goods 

Vehicles (HGVs) has not arisen largely due to their energy density requirements, policy constraining 

first generation liquid biofuels (such as 3.6% cap for 2030 in RED), and prohibitive costs [66]. 

Hydrogen fuel cells are a promising technology for HGVs offering zero PM, NOx, and SOx emissions, 

and a route to low carbon transport.  

 

 

 

 

 

 



   
 

   
 

 

Box 6: Diesel versus hydrogen fuel cell heavy goods vehicle (HGV) emissions per 100km  

Taking the 50% RE penetration scenario and a standard diesel truck in 2030. 

Diesel HGV allowing for η improvements to 2030 [67]: 37l/100km 

37𝑙𝑙
100𝑘𝑘𝑘𝑘

×
2827𝐴𝐴𝐶𝐶𝑂𝑂2
𝑙𝑙𝐵𝐵𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

= 𝟏𝟏𝟏𝟏𝟏𝟏.𝟔𝟔𝒌𝒌𝒌𝒌𝒌𝒌𝑶𝑶𝟐𝟐/𝟏𝟏𝟏𝟏𝟏𝟏𝒌𝒌𝟏𝟏 

Fuel cell HGV combined η of 55% [68]: 282kWh/100km 

From "150%" Wind forecast to "High" Bid price = 𝟏𝟏𝟏𝟏.𝟑𝟑 − 𝟕𝟕𝟕𝟕.𝟖𝟖𝒌𝒌𝒌𝒌𝒌𝒌𝑶𝑶𝟐𝟐/𝟏𝟏𝟏𝟏𝟏𝟏𝒌𝒌𝟏𝟏 

HGV operating on EU RED liquid biofuel [35]: Minimum 65% savings versus FFC of 94gCO2-eq/MJ  

Combusted in diesel engine assuming equal η = 𝟏𝟏𝟕𝟕𝒌𝒌𝒌𝒌𝒌𝒌𝑶𝑶𝟐𝟐/𝟏𝟏𝟏𝟏𝟏𝟏𝒌𝒌𝟏𝟏 

References and calculations can be found in the supplemental data. 

Box 6 demonstrates a clear carbon saving in utilising hydrogen in FC HGVs well in advance of a fully 

decarbonised electricity system when utilising the controls tested. The FC HGV can deliver carbon 

emissions reductions comparable to that of an EU approved transport biofuel at 50% RE penetration 

while avoiding issues of air pollution. It is hypothesised that with the continued decarbonisation of 

the electricity system and the superior efficiency of FC HGVs, they will significantly outperform 

renewable liquid biofuels in the future. 

4 Conclusion  

This work examined the effect that two operational strategies (controls) which do not require 

changes in policy would have on sustainability: (1) dictating a plant maximum bid price for electricity 

and (2) a minimum forecast VRE production. Sustainability was measured through: changes in the 

carbon intensity of the hydrogen produced in a P2H (electrofuel) system; the effect on curtailment; 

and the cost of electricity consumed. Both controls were found to produce significant benefits in 

terms of reducing the carbon intensity. Also shown was the increased proclivity to consuming 

otherwise curtailed energy and to act as a quasi-storage mechanism, especially for the wind forecast 

control. Notably, synergistic effects between operating an electrofuel system to minimise levelised 

costs and environmental impacts were demonstrated, particularly for the bid price control. 

However, when greater environmental benefits were sought this was at the sacrifice of an 

economically optimised system. The carbon intensity of the hydrogen was found to be less than the 

fossil fuel comparator of the EU Renewable Energy Directive (RED) in all scenarios tested (40-60% 



   
 

   
 

renewable electricity generation) and particularly suitable for use in fuel cell heavy goods vehicles. 

Environmental and cost benefits were found to increase with increasing renewable penetration. 

Applying these operational strategies is in line with the visions of the RED and would make 

electrofuel production more sustainable in advance of a fully decarbonised electricity system, and at 

a time when increased options for decarbonised transport are required. 

The results in this paper are applicable to power-to-X, cooperative charging, or any grid interaction 

when engaging as a wholesale consumer/agent in an electricity market.  
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