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Abstract

Constraint Programming (CP) is a programming paradigm where relations be-
tween variables can be stated in the form of constraints. CP features discrete
domains and global constraints. Global constraints capture interesting substruc-
tures of a problem, encapsulate dedicated inference algorithms based on feasi-
bility and/or optimality reasoning, and provide information to the search process
on the most viable course. Stochastic Constraint Programming (SCP) is a novel
framework that generalizes CP to stochastic problems, allowing both to model and
solve this class of problems by using any available existingCP solver. Although
this framework proves to be extremely flexible in terms of modeling power, its
current implementation does not scale well.

In order to enhance this framework, in this dissertation we propose a gen-
eral extension for SCP: global chance-constraints. In contrast to global con-
straints, which represent relations among a non-fixed number of decision vari-
ables, global chance-constraints represent relations among a non-fixed number of
decision variables and stochastic variables. Nevertheless, as global constraints
do, global chance-constraints encapsulate dedicated inference algorithms based
on feasibility and/or optimality reasoning and may provideinformation to the
search process. We call optimization-oriented global chance-constraints those
global chance-constraints performing optimality reasoning.

We applied global chance-constraints encapsulating dedicated inference algo-
rithms based on feasibility and/or optimality reasoning toproblems in the area
of stochastic inventory control. Our computational experience shows that global
chance-constraints let us model and solve to optimality problems that could not or
could be only approximately solved by other existing approaches. It also shows
that filtering based on optimality reasoning is extremely effective for this class of
problems.

Roberto Rossi, Cork Constraint Computation Centre, University College Cork,
College Road, Cork, Ireland.

Copyright c© 2008 by Roberto Rossi. All rights reserved.
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Introduction
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1.1 Preliminaries

In this section we firstly provide the motivations for the work presented in this

dissertation; secondly we briefly state the topic discussedin this dissertation; and

finally we discuss the structure of the rest of this chapter.

1.1.1 Motivations

Many computational problems can be described in terms of restrictions imposed

on the set of possible solutions, and Constraint Programming is a problem-solving

technique that works by incorporating those restrictions in a programming envi-

ronment. It draws on methods from combinatorial optimization and Artificial In-

telligence, and has been successfully applied in a number offields from schedul-

ing, computational biology, finance, electrical engineering and Operations Re-

search through to numerical analysis.

Constraint Programming has been extremely successful in the field of deter-

ministic production planning and scheduling [47]. The commercial success of

off-the-shelf tools such as ILOG Scheduler [49] is remarkable.

Nevertheless, real-life management decisions are usuallymade in uncertain

environments. Random behavior such as the weather, lack of essential exact in-

formation such as the future demand, incorrect data due to errors in measurement,

and vague or incomplete definitions, exemplifies the theme ofuncertainty in such

environments.

In this work we aim to investigate the application of Constraint Programming

to decision problems under uncertainty and in particular toproduction/inventory

control problems. Having an effective means to handle theseproblems is a key

to profitability for retail business, which is particularlyaffected by uncertainty.

Supply chains are plagued by uncertainty associated with customers’ demand,

lead-times, suppliers’ capacity, and so forth. We now provide some evidence of

the impact that uncertainty has on retail and on the importance of having state-of-

the-art decision support systems for hedging against it.

Retail replenishment† is a high-value activity. According to the US Commerce

†The process of moving or re-supplying inventory from a reserve storage location to a primary
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Department,$1.1 trillion in inventory supports$3.2 trillion in annual US retail

sales. This inventory is spread out across the value chain, with $400 billion at

retail locations,$290 billion at wholesalers or distributors and$450 billion with

manufacturers. This is a colossal amount of capital tied up in inventory [...].

Improving distribution centre efficiency of just a few percentage points through

advanced automation and real-time replenishment may deliver significant savings

and require less capital to be tied up in inventory.‡

Table 1.1 shows inventory as a percentage of total assets forsome major in-

dustries. It appears that such an amount of inventory shouldsignificantly reduce

Industry Inventory relative to total assets
Automotive dealers and service stations (retail) 53.81%
Apparel and accessory stores 41.14%
Building materials, garden supplies and mobile home dealers (retail) 40.09%
Food stores 33.52%
Electrical and electronic equipment 19.57%
Total construction 17.20%

Table 1.1: Inventory as a percentage of total assets for somemajor industries. Data
source: Internal Revenue Service, U.S. Treasury Department, Statistics of Income,
1977; Corporate Income Tax Returns (Washington, DC: Government Printing Of-
fice, 1982), pp. 27-34.

the probability of stock-out§ at retail level. In fact, many surveys reveal that what

happens in reality is that a high percentage of shoppers, on average, fail to find

products in stock. Stock-out events for many firms representa significant portion

of all retail sales. Even if some of these events are actuallyrecouped via alterna-

tive products, still the lost sales faced by these firms remain high. Obviously this

is seriously affecting both retail margins and customer satisfaction. Overstocks¶,

on the other hand, can be just as damaging financially to the organization. Nowa-

days no retailer can afford to tie up capital unnecessarily in inventory, or risk lost

sales and dissatisfied customers due to stock-outs. However, current practices put

picking location, or to another mode of storage in which picking is performed.
‡“The Future of Retail Replenishment”, Manhattan Associates c©, 2006,

http://www.manh.com/library/MANH-TechVisWhitepaper.pdf
§When at a given moment in a given inventory there is not the quantity of a part or a product

that is demanded. A stock-out occurs in a distribution center when there are orders that can not be
filled within their due date.

¶To stock more products than strictly necessary or desirable.

3



in place by firms seem unable to produce a balanced situation where the right

good is in the right place at the right time. High stockout levels in retail settings

prove to be the norm, rather than the exception. As a study conducted in 1996

by the Andersen Consulting Group — today known as Accenture —revealed, on

a typical afternoon in a typical US supermarket, 8.2% of items are out of stock,

and this number is nearly doubled for items that are advertised. In 3.4% of stock-

outs, consumers refuse to buy an alternative and often take their business to the

competition. The costs of stockouts in US supermarkets alone are estimated at

$7-12 billion of sales. This example illustrates the drastic consequences of stock-

outs, and underlines the importance of properly managing inventory investments

by means of sound modeling techniques and advanced decisionsupport systems.

In the last few decades the Operations Research community developed a large

amount of lore for decision making under uncertainty. Stochastic Programming

(see Sengupta [78], Vajda [95], Kall and Wallace [54]) has been widely and suc-

cessfully applied to problems from the retail world.

In contrast to what has happened in the Operations Research community with

Stochastic Programming, only recently the Constraint Programming community

has started to formalize general approaches that employ Constraint Programming

for optimization under uncertainty. The probabilistic CSPframework [29] has

been one of the first work in this direction. Relevant works are also Partial CSPs

[36] and Soft CSPs [13]. Nevertheless, none of these approaches is as general

as the techniques employed in Stochastic Programming. The very first step to-

wards the integration of Constraint Programming and Stochastic Programming

was made by Walsh, who introduced Stochastic Constraint Programming [98] a

novel framework able to fully represent the stochastic nature of decision problems

under uncertainty. Stochastic Constraint Programming is still a young field, and

only recently a general purpose modeling and solution framework was proposed

for stochastic constraint programs in [91]. There are stillseveral issues open both

in terms of expressiveness of the framework and of efficiencyof the current solu-

tion methods available. Applications to real world problems are also very limited.

In this sense Stochastic Constraint Programming is indeed an interesting “green

field” for research.

We claim that Stochastic Constraint Programming may bring significant ben-

4



efits in the field of stochastic inventory/production control. The results we present

in this work fully support this thesis. In fact we propose Stochastic Constraint

Programming approaches for inventory control that are:

• more accurate than other existing approaches in the literature. The quality

of the solution found is improved significantly, i.e. costs are reduced, and

the expected cost predicted is closer to that realized in practice;

• more effective in terms of computational performance. Our Constraint Pro-

gramming reformulations proved to be orders-of-magnitudemore efficient

than other approaches in the literature;

• more effective in terms of expressiveness. Constraint programming refor-

mulations are particularly compact and, as shown in [92], require fewer

constraints and decision variables than other existing approaches in the lit-

erature.

As discussed above, large amount of capital are invested in inventories by firms.

Having more effective, accurate and efficient approaches toinventory optimiza-

tion is therefore desirable. The research presented in thisdissertation tries to

pursue these objectives.

Topic. In this dissertation we investigate the application of Stochastic Con-

straint Programming techniques and in particular of globalchance-constraints,

a novel modeling concept introduced here, in the area of stochastic inventory con-

trol. We implemented global chance-constraints encapsulating dedicated infer-

ence algorithms based on feasibility and/or optimality reasoning. Our computa-

tional experience shows that global chance-constraints let us model and solve to

optimality problems that could not or could be only approximately solved by other

existing approaches. It also shows that filtering based on optimality reasoning is

extremely effective for this class of problems..

1.1.2 Structure

The rest of this chapter is structured as follows:

5



• in Section 1.2, we provide the relevant formal background inDynamic Pro-

gramming, Constraint Programming, Stochastic ConstraintProgramming,

and inventory control;

• in Section 1.3, we discuss the relevant literature in Stochastic Constraint

Programming and stochastic inventory control; then we alsodiscuss exist-

ing techniques for integrating Operations Research and Constraint Program-

ming approaches in Combinatorial Optimization;

• in Section 1.4, we summarize the content of this dissertation, we state at a

high level our contributions, and finally for each of the following chapters

we list the respective contributions in details;

• in Section 1.5, we discuss possible future research directions. Specifically,

for each of the following chapters we discuss which questions remain open

and which directions may be interesting to follow in the future research;

• in Section 1.6, we draw conclusions.

The general structure of this dissertation will be further discussed in Section

1.4.

6



1.2 Formal background

In this section we discuss the relevant formal background inthe areas of Dy-

namic Programming (Section 1.2.1), Constraint Programming (Section 1.2.2) and

Stochastic Constraint Programming (Section 1.2.3), a framework that employs

Constraint Programming for solving decision problems under uncertainty. Finally

we discuss relevant topics in stochastic inventory control(Section 1.2.4).

1.2.1 Dynamic Programming

This section is mainly based on [33].

Dynamic Programming (DP) is an optimization procedure thatsolves opti-

mization problems by decomposing them into a nested family of subproblems.

The core of DP is theprinciple of optimality[8, 25].

In DP a problemP is associated with astate space graphSG = (S, T ) where

each element of the vertex setS is a state and each element of the arc setT

represents a feasible transition between two states. The original problem is solved

by solving a shortest path problem in the state space graph from an initial state

to a final state (boundary condition)‖. If the original problem is NP-hard, the

corresponding state space graph will have an exponential number of nodes.

Consider a discrete system defined onn steps. Each step is characterized by:

• a final statesk that represents the system at the end of stepk. sk ∈ Sk,

whereSk is the set of feasible states at the end of stepk.

• a decision variablexk that represents a decision taken at stepk. xk ∈ Xk,

whereXk is the set of feasible decisions that could be taken at stepk.

• a cost/profit functionpk(sk, xk) representing the cost/profit achievable in

stepk if sk is the final state andxk the decision considered.

• a state transitiontk(sk−1, xk) that leads the system toward the statesk =

tk(sk−1, xk).

‖This definition of DP is restrictive, but sufficient for the discussion in this work.
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Without loss of generality we will here refer to minimization problems. Op-

timization problems aim at finding the set ofoptimal valuesto be assigned to

decision variables such that the following objective function is minimized:

z = min

{
n∑

k=1

pk(sk, xk)

}
.

To determine the value ofz, DP solves a set of problemsi = 1, . . . , n, each

corresponding to a system composed byi steps and characterized by the statesi

at the end of stepi. The recursive formulation of the cost function at stepi is:

fi(si) = min
xi∈Xi

{
min

si∈Si−1

{fi−1(si−1) + pi(si, xi)}
}

wheresi = ti(si−1, xi). In addition, we have the following boundary condition:

f1(s1) = min
x1∈X1

{p1(s1, x1)}

wheres1 = t1(s0, x1).

DP is based on theprinciple of optimality[8] stating that anoptimal policyis

such that given whatever statesi, and the decisionxi, the decisionsx1, . . . , xi−1

corresponding to the remaining steps constitute an optimalpolicy w.r.t. the state

si−1 resulting from the decision taken at stepi.

DP is often applied to problems requiring a sequence of interrelated decisions,

and has been applied to solve a wide variety of combinatorialoptimization prob-

lems, as well as optimal control problems. Recently, effective hybrid optimization

techniques involving DP and Constraint Programming have been proposed in [33].

In Chapters 5 and 6, we develop similar hybrid techniques in order to efficiently

solve combinatorial optimization problems for inventory control. In the next sec-

tion we formally introduce Constraint Programming.

1.2.2 Constraint Programming

This section is mainly based on [1].

Let v be a variable. Thedomainof v is a set of values that can be assigned to
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v. In what follows we will restrict our attention tofinitedomains. Consider a finite

set of variablesV = {v1, v2, . . . , vk}, wherek > 0, with respective domainsD =

{D1, D2, . . . , Dk}. A constraintC on V is defined as a subset of the Cartesian

product of the domains of the variables inV, i.e. C ⊆ D1 ×D2 × . . .×Dk. The

cardinality ofV, |V|, is thearity of C. C is a unary constraintif it has arity 1,

it is a binary constraintif it has arity 2, and it is anon-binary constraintif it has

arity k, with k > 2. Finally, C is a global constraintif it is a relation among a

non-fixed number of variables.

A Constraint Satisfaction Problem(CSP) [1, 17, 62] is a triple〈V, C,D〉, where

V = {v1, v2, . . . , vk} is a finite set of variables with respective domainsD =

{D1, D2, . . . , Dk}, andC is a finite set of constraints, each of which is defined on

a subset of the variables inV.

Consider a CSP〈V, C,D〉, a tuple(d1, . . . , dk) ∈ D1×D2× . . .×Dk satisfies

a constraintCi ∈ C on the variablesvi1, vi2, . . . , vim if (di1, di2, . . . , dim) ∈ Ci. A

tuple(d1, . . . , dk) ∈ D1×D2× . . .×Dk is asolutionto a CSP if it satisfies every

constraintC ∈ C.
Consider the CSPsP = 〈V, C,D〉 andP ′ = 〈V, C′,D′〉. P andP ′ are called

equivalentif they have the same solution set.P is said to besmaller that P ′ if

they are equivalent andDi ⊆ D′
i for all i. This relation is written asP � P ′. P is

strictly smallerthatP ′, if P � P ′ andDi ⊂ D′
i for at least onei. This is written

P ≺ P ′. When bothP � P ′ andP ′ � P we writeP ≡ P ′

Often we want to find a solution to a CSP that is optimal with respect to certain

criteria. Consider a CSP〈V, C,D〉, whereD = {D1, D2, . . . , Dk}. Let S be the

solution set, that is the set of all the tuples(d1, . . . , dk) ∈ D1 × D2 × . . . × Dk

that are solutions to the CSP. AConstraint Optimization Problem, or a COP, is

a CSP on the solution set of which anobjective function, f : S → R, has to be

optimized. Anoptimal solutionto a COP is a solution to the CSP that is optimal

with respect tof . The objective function value is often represented by a variable

z, together with the “constraint”maximize z or minimize z, respectively for

a maximization or a minimization problem.

In Constraint Programming (CP), the goal is to find a solution(or all solutions)

to a given CSP, or an optimal solution (or all optimal solutions) to a given COP. A

filtering algorithm is typically associated with every constraint. This algorithm re-
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moves values from the domains of the variables participating in the constraint that

cannot belong to any solution of the CSP. These filtering algorithms are repeat-

edly called until no new deduction can be made. This process is calledconstraint

propagationor propagationin short. In conjunction with this process CP uses

a search procedure (like a backtracking algorithm) where filtering algorithms are

systematically applied when the domain of a variable is modified. The solution

process interleavespropagationandsearchto reach the given goal.

Example 1.2.1.Let x1, x2 be variables with respective domainsD1 = {0, 1, 2, 3},
D2 = {0, 1, 2, 3, 4, 5}. Let x3 be a binary variable with domainD3 = {0, 1}. On

these variables we impose the following constraints:x1 ≥ 3 x1 + x2 ≥ 8 and

(x2 > 0)↔ (x3 = 1). We denote the resulting CSP as

x1 ∈ {0, 1, 2, 3}, x2 ∈ {0, 1, 2, 3, 4, 5}, x3 ∈ {0, 1},
x1 ≥ 3,

x1 + x2 = 8,

(x2 > 0)↔ (x3 = 1).

A solution to this CSP isx1 = 3, x2 = 5 andx3 = 1. �

Propagation. Constraint propagation is a process that removes a subset orall

the inconsistent values from the domains, by reasoning on the individual con-

straints. This process may significantly reduce the search space. Thus constraint

propagation is a key instrument to improve the efficiency of CP solvers.

Let C be a constraint on the variablesx1, . . . , xm with respective domains

D1, . . . , Dm. A propagation algorithmfor C removes values fromD1, . . . , Dm

that do not participate in a solution toC. A propagation algorithm does not have

to removeall such values, as this may lead to an exponential running time due to

the nature of some constraints.

We consider the CSPP = 〈V, C,D〉. P can be transformed into a smaller CSP

P ′ by repeatedly applying the propagation algorithm for all constraints inC until

there is no more domain reduction. This process is calledconstraint propagation.

When no more domain reduction can be achieved by iterating the process, we say
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that each constraint, and the CSP, islocally consistentand that we have achieved

a notion of local consistencyon the constraints and the CSP. The term “local

consistency” reflects the fact that the CSP obtained throughthe discussed process

is not globally consistent. It is instead a CSP in which all the constraints are

“locally”, i.e. individually, consistent. A comprehensive discussion on the process

of constraint propagation is given by Apt [1].

If we demand that every domain value of every variable in the constraint be-

longs to a solution to the constraint then what we achieve ishyper-arc consistency,

that is the strongest local consistency notion for a constraint. This still does not

guarantee a solution to the whole CSP because other constraints in it are not con-

sidered in such a process.

Example 1.2.2.Consider again the CSP of Example 1.2.1, i.e. variablesx1, x2, x3

with respective domainsD1 = {0, 1, 2, 3}, D2 = {0, 1, 2, 3, 4, 5}, D3 = {0, 1},
and

x1 ≥ 3, (1.1)

x1 + x2 = 8, (1.2)

(x2 > 0)↔ (x3 = 1). (1.3)

We apply constraint propagation until the constraints are hyper-arc consistent:

x1 ∈ {0, 1, 2, 3}

x2 ∈ {0, 1, 2, 3, 4, 5}

x3 ∈ {0, 1}

(1.1)

−→

x1 ∈ {3}

x2 ∈ {0, 1, 2, 3, 4, 5}

x3 ∈ {0, 1}

(1.2)

−→

x1 ∈ {3}

x2 ∈ {5}

x3 ∈ {0, 1}

(1.3)

−→

x1 ∈ {3}

x2 ∈ {5}

x3 ∈ {1}

�

The three constraints are examined sequentially, as indicated above the arcs.

We first examine constraint 1.1, and deduce that values 0,1 and 2 in D1 do not

appear in a solution to it. Then we examine constraint 1.2, and remove all the

values except 5 fromD2. This is because 5 is the only value that supports the

remaining value 3 inD1. Finally we examine constraint 1.3 and we remove value

0 fromD3. The resulting CSP is hyper-arc consistent. In fact, we found a solution

to the CSP.

The method applied to make a CSP locally consistent should beas efficient
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as possible, in fact constraint propagation is applied eachand every time a deci-

sion variable domain has been changed. This happens very frequently during the

solution process. Note that both the efficiency of the propagation algorithms and

the order in which the propagation algorithms are applied directly influences the

efficiency of constraint propagation.

Search. In the solution process CP employs asearch tree. A search tree is com-

posed by a set of vertices, ornodes, and a set of arcs, orbranches. A nodev is a

direct descendantof a nodeu and, conversely,u is theparentof v, if (u, v) is an

arc of a search tree.

Definition 1.2.1 (Search tree [1]). Let P be a CSP with a sequence of variables

X. A search tree forP is a (finite) tree such that

• its nodes are CSPs,

• its root isP ,

• if P1, . . . , Pm wherem > 0 are all direct descendants ofP0, then the union

of P1, . . . , Pm is equivalent w.r.t.X to P0, for every nodeP0.

A nodeP of a search tree is atdepthd if the length of the path from the root

to P is d.

In CP, a search tree is dynamically built by splitting a CSP into smaller CSPs,

until we reach an inconsistency , i.e. some decision variable domain becomes

empty, or a solution to the CSP. There are two possible ways tosplit a CSP into

smaller CSPs: we can either split a constraint (for instancea disjunction) or split

the domain of a variable. The second being the most common technique.

A direct consequence of what we discussed is that a CSP is associated with

each node in the search tree. At each node we can therefore apply constraint

propagation and we may detect that the corresponding CSP is inconsistent, or

we may achieve some domain reduction for it. Obviously, in both cases we will

generate and explore less nodes, this is the reason why constraint propagation can

speed up the solution process. However, in order to do so, constraint propagation

must be efficient. This means that the time spent on propagation should be less

than the time that is gained by it.
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In splitting the domain of a variable, we first select a variable and then decide

how to split its domain. This process is guided byvariable andvalue ordering

heuristics. These heuristics impose an ordering on the variables and values, re-

spectively. The ordering imposed by these heuristics has a great impact on the

search process.

First we give the following definitions that are relevant to introduce variable

and value ordering heuristics. A relation� on a setS is called apartial order if it

is reflexive (s � s for all s ∈ S), transitive (s � t andt � u impliess � u), and

antisymmetric (s � t andt � s impliess = t). A partial order� is a total order

if s � t or t � s for all t, s ∈ S. Given a partial order� on a sets, an element

s ∈ S is called aleastelement ifs � t for all t ∈ S. Two elementss, t ∈ S are

incomparablewith respect to� if s � t andt � s.

A variable ordering heuristicimposes a partial order on the variables with

non-singleton domains. Themost constrained firstvariable ordering heuristic is

of common use. Variables are ordered according to the respective number of oc-

currences in the constraints. A variable that appears the most often, is ordered

least. The ratio behind this is that, most likely, changing the domains of such vari-

ables will cause more values to be removed by constraint propagation. Another

variable ordering heuristic is thesmallest domain firstheuristic, also known as

thefirst fail heuristic. Variables are ordered, in this heuristic, with respect to the

size of their domains. A variable that has the smallest domain is ordered least.

By using this heuristic less nodes are generated in the search tree and inconsistent

CSPs are detected earlier. If two or more variables are incomparable, a common

strategy is to apply the lexicographic ordering to the variables in order to obtain a

total order.

A value ordering heuristicinduces a partial order on the domain of a variables.

Values in the domains are ordered according to a certain criterion, such that val-

ues that are ordered least are selected first. For instance, the lexicographicvalue

ordering heuristic orders the values according to a lexicographic ordering. The

randomvalue ordering heuristic, instead, orders the variables randomly. Simi-

larly to what discussed for the variable ordering heuristics, if a value ordering

heuristic imposes a partial order on a domain, we can apply the lexicographic or

random value ordering heuristic to incomparable values in order to create a total
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order. A value ordering heuristic is also referred to asbranching heuristicbecause

it decides the order of the branches in the search tree.

A domain splitting procedure is applied after a variable has been selected

and a value ordering heuristics imposed a total order on its domain. Given a

domain, adomain splitting proceduregenerates a partition of the domain. Con-

sider a domainD = {d1, d2, . . . , dm} and a total order� such thatd1 � d2 �
. . . � dm. Two common domain splitting procedures are labeling and bisec-

tion. LabelingsplitsD into {d1}, {d2}, . . . , {dm}. In practice the labeling pro-

cedure is often implemented to split a domainD into {d1}, {d2, . . . , dm}. This

procedure is also calledenumerationin the literature. Bisectionsplits D into

{d1, . . . , dk}, {dk+1, . . . , dm}, wherek = bm/2c.
Consider a CSPP0 = 〈V, C,D〉 and a variablev ∈ V whose domain has been

split into the partitionD1, . . . , Dk. Then we define the direct descendants ofP0

asPi = 〈V, C ∪ {v ∈ Di},D〉 for i = 1, . . . , k. In practice, we modify the

domain of a variable instead of adding a constraint to define adescendant. If the

partition “respects” the value ordering heuristic that wasapplied to the domain,

i.e. di � dj for all di ∈ Di, dj ∈ Dj , i < j andi = 1, . . . , k−1, the corresponding

descendants inherit the ordering of the value ordering heuristic, i.e. P1 � . . . �
Pk.

A search strategydefines thetraversalof the search tree. Assume that all

the direct descendants of a node in a search tree are totally ordered, for instance

according to the given value ordering heuristic. The least element corresponds to

the first descendant.

Depth-first search (DFS): starting from the root node, proceed by descending

to its first descendant. Continue until a leaf is reached, then backtrack to the

parent of the leaf and descend to its next descendant, if it exists. Continue the

process until the root node is reached again and all its descendants have been

visited. DFS is a complete (or exact) search strategy, not redundant. This means

that it explores all paths from the root to a leaf exactly once. In DFS backtracking

to a previous node only takes place after we have visited a leaf. This leads to the

more general notion of depth-first based search strategies.

Depth-first based search strategies: we start at the root node and we pro-

ceed by descending to its first descendant. This process continues until a leaf

14



is reached. Then we backtrack to some previously visited node and descend to

its next descendant, if it exists and if it is allowed. This process continues until

all leafs have been visited. Other examples of depth-first based search strategies,

in addition to DFS, are limited discrepancy search or LDF [38], depth-bounded

discrepancy search or DDS [97], and discrepancy-bounded depth-first search, or

DBDFS [7].

Optimization. By recalling that a COP consists of a CSP together with an ob-

jective functionf , it is easy to see why the search for an optimal solution (or all

the optimal solutions) to a COP operates in a similar fashionto the search for a

solution to a CSP. By restricting (without loss of generality) ourselves to mini-

mization problems, we represent the objective value using avariablez. When a

solutions to the CSP is found, the corresponding value ofz, sayz = β, represents

an upper bound for the optimal value off . It follows that we can add the con-

straintz < β to all the CSPs in the search tree and continue. This will, in practice,

replace the maximum value in the domain ofz with β.

Example 1.2.3.We present the solution process of CP, using the following COP

P0:

x1 ∈ {3, 8}, x2 ∈ {0, 1, 2, 3, 4, 5}, x3 ∈ {0, 1},
minimize z,

z = x1 + 6x3,

x1 ≥ 3,

x1 + x2 = 8,

(x2 > 0)↔ (x3 = 1).

To build a search tree, we apply the lexicographic variable and value ordering

heuristic and use labeling as domain splitting procedure. As search strategy we

use DFS. At each node we apply hyper-arc consistency constraint propagation.

The CSPP0 is the root. The search tree is depicted in Fig. 1.1. We first apply
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Figure 1.1: The search tree of Example 1.2.3

constraint propagation toP0. It follows that

x1 ∈ {3, 8}, x2 ∈ {0, 5}, x3 ∈ {0, 1}, z ∈ {8, 9}.

We select the lexicographically least variable,x1, split its domains into{3} and

{8}, and generate the descendantsP1 andP2 whereP1 = P0 ∪ x1 ∈ {3} and

P2 = P0 ∪ x1 ∈ {8}.
We descend to nodeP1 and apply constraint propagation. It follows that

x1 ∈ {3}, x2 ∈ {5}, x3 ∈ {1}, z ∈ {9}.

We have found a solution withz = 9. Hence we add to all CSPs the constraint

z < 9.

Next we backtrack toP0, descend toP2, and apply constraint propagation. It

follows that

x1 ∈ {8}, x2 ∈ {0}, x3 ∈ {0}, z ∈ {8}.

We have found a solution withz = 8. Hence we add to all CSPs the constraint

z < 8. Next we backtrack toP0 and stop because all its descendants have been

visited.

We return the optimal solution we found in leafP2. �

Optimization-oriented global constraints embed an optimization compo-

nent, representing a proper relaxation of the constraint itself, into a global con-

straint [32]. The relaxation employed can be a continuous relaxation, as in the

examples provided in [32], a DP relaxation, as discussed in [33], or it can be
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any other suitable relaxation. The optimization componentprovides three pieces

of information: (a) the optimal solution of the relaxed problem; (b) the optimal

value of this solution representing an upper bound on the original problem objec-

tive function; (c) agradient functiongrad(V ,v), which returns for each couple

variable-value (V ,v) an optimistic evaluation of the profit obtained ifv is assigned

to V . These pieces of information are exploited both for propagation purposes

and for guiding the search.

1.2.3 Stochastic Constraint Programming

In order to extend CP to decision problems under uncertainty, Walsh [98] proposed

an extension of CP called Stochastic Constraint Programming (SCP) in which

there is a distinction between decision variables, which can be set freely, and

stochastic (or observed) variables, which follow some probability distribution.

We first provide some basic notions on probability theory.

Probability theory. In probability theory uncertainty is represented in terms of

random experiments. Letω be an outcome of an experiment, the set of all the

possible outcomes is represented byΩ.

Subsets ofΩ are calledevents, which combine one or more outcomes. We

denote byA a collection of random events.

To each eventA ∈ A is associated a valuePr{A}, called aprobability, such

that0 ≤ Pr{A} ≤ 1, Pr{∅} = 0, Pr{Ω} = 1 andPr{A1 ∪ A2} = Pr{A1} +

Pr{A2} if A1 ∩A2 = ∅.
The triplet〈Ω,A, Pr〉 is called aprobability spacethat must satisfy a number

of conditions (see, e.g, [54]). Several random variables associated with a prob-

ability space can be defined, namely, all the variables that are influenced by the

random events inA.

In some cases the elementsω ∈ Ω are used to describe a fewstates of the

world or scenarios. All random elements then jointly depend on these finitely

many scenarios.

For a particular random variableξ, its cumulative distribution is defined as

Fξ(x) = Pr{ξ ≤ x}, or more preciselyFξ(x) = Pr{{ω|ξ ≤ x}}.
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A discrete random variable takes a finite or countable numberof different

values. It is described by its probability mass function. This is the list of possible

valuesξk, k ∈ K, with associated probability

fξ(ξk) = Pr{ξ = ξk},

such that
∑

k∈K fξ(ξk) = 1.

Continuous random variables can often be described througha so-calledden-

sity function fξ(ξ). The probability ofξ being in an interval[a, b] is obtained

as

Pr{a ≤ ξ ≤ b} =

∫ b

a

fξ(ξ)dξ,

or equivalently

Pr{a ≤ ξ ≤ b} =

∫ b

a

dFξ(ξ),

whereFξ(.) is the cumulative distribution as earlier. Contrary to the discrete case,

the probability of a single valuePr{ξ = a} is always zero for a continuous random

variable. The distributionFξ(.) must be such that
∫∞

−∞
dFξ(ξ) = 1.

Theexpectationof a random variable is computed asµ =
∑

k∈K ξkfξ(ξk) or

µ =
∫∞

−∞
ξdFξ(ξ) in the discrete and in the continuous case, respectively.

Thevarianceof a random variable isE[(ξ − µ)2], whereE[.] denotes the ex-

pectation.

The expectation ofξr is called ther-th momentof ξ. A point η is called the

α-quantileof ξ if and only if for 0 < α < 1, η = min{x|Fξ(x) ≥ α}.
Let φ : R→ R be a convex function andξ a random variable. Thenφ(E[ξ]) ≤

E[φ(ξ)] (Jensen’s inequality).

Equipped with these notions, we now formally introduce SCP.

Semantics. A stochastic CSPis defined as a 6-tuple〈V, S, D, P, C, θ〉, whereV

is a set of decision variables andS is a set of stochastic variables,D is a function

mapping each element ofV and each element ofS to a domain of potential values.

A decision variable inV is assigneda value from its domain.P is a function

mapping each element ofS to a probability distribution for its associated domain.

C is a set of constraints. A constrainth ∈ C that constrains at least one variable
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in S is achance-constraint. θh is a threshold value in the interval[0, 1], indicating

the minimum satisfaction probability for chance-constraint h. Note that a chance-

constraint with a threshold of1 (or without any explicit threshold specified) is

equivalent to a hard constraint.

A stochastic CSP consists of a number ofdecision stages. A decision stage is

a pair〈Vi, Si〉, whereVi is a set of decision variables andSi is a set of stochastic

variables.

One-stage Stochastic CSP. In a one-stage stochastic CSP, a single stage is con-

sidered,〈V, S〉, and the decision variables are set before observing the realizations

of the stochastic variables. A solution can be therefore expressed as an assignment

for decision variables inV such that, given random values for stochastic variables

in S, the hard constraints are satisfied and the chance-constraints are satisfied in

the specified fraction of all possible scenarios.

m-stage Stochastic CSP. In anm-stage stochastic CSP,V andS are partitioned

into disjoint sets,V1, . . . , Vm andS1, . . . , Sm, and we consider multiple stages,

〈V1, S1〉, 〈V2, S2〉, . . . , 〈Vm, Sm〉. A decision variablexi ∈ Vj is set to a value only

after realizations of stochastic variables
{

yi

∣∣∣yi ∈
⋃j−1

t=1 St

}
in former stages have

been observed. To solve anm-stage stochastic CSP an assignment to the variables

in V1 must be found such that, given random values forS1, assignments can be

found forV2 such that, given random values forS2, ..., assignments can be found

for Vm so that, given random values forSm, the hard constraints are satisfied

and the chance constraints are satisfied in the specified fraction of all possible

scenarios. The solution of anm-stage stochastic CSP is represented by means of

a policy tree[91]. A policy tree is a set of decisions where each path represents

a different possible scenario and the values assigned to decision variables in this

scenarios.

Stochastic Constraint Optimization. Let S denote the space of policy trees

representing all the solutions of a stochastic CSP. We may beinterested in finding

a feasible solution, i.e. a policy trees ∈ S, that maximizes the value of a given

objective functionf(·) over the stochastic variablesS (edges of the policy tree)
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and over a subset̂V ⊆ V of the decision variables (nodes in the policy tree). A

Stochastic COPis then defined in general as

max
s∈S

f(s).

Solution methods. Two solution methods have been proposed so far in the liter-

ature: the first relies on backtracking and forward checkingalgorithms proposed

in [98], the second [91] adopts a scenario based approach.

Policy based view. In the policy based view of [98], the semantics is based

on a tree of decisions. Each path in a policy represents a different possible scenario

(set of values for the stochastic variables), and the valuesassigned to decision

variables in this scenario. To find satisfying policies, backtracking and forward

checking algorithms, which explores the implicit AND/OR graph, are presented.

Stochastic variables give AND nodes as we must find a policy that satisfies all

their values, whilst decision variables give OR nodes as we only need find one

satisfying value. In [5] the authors extend the forward checking procedure to

better take advantage of probabilities and thus achieve stronger pruning. They

also define arc consistency for stochastic CSPs and introduce an arc consistency

algorithm that can handle constraints of any arity.

Scenario based approach. In a scenario based approach [11, 91], a scenario

tree is generated which incorporates all possible realization of discrete random

variables into the model explicitly. A path from the root to an extremity of the

event tree represents a scenarioω ∈ Ω, whereΩ is the set of all possible scenarios.

With each scenario a given probability is associated. IfSi is theith random vari-

able on a path from the root to the leaf representing scenarioω andai is the value

given toSi in the ith stage of this scenario, then the probability of this scenario

is given byPr{ω} =
∏

i Pr(Si = ai). Within each scenario, we have a conven-

tional (non-stochastic) constraint program to solve. All we have to do is replacing

the stochastic variables by the values taken in the scenarioand ensure that the

values found for the decision variables are consistent across scenarios as certain

decision variables are shared across scenarios. Constraints are defined (as in tradi-
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tional constraint satisfaction) by relations of allowed tuples of values, and can be

implemented with specialized and efficient algorithms for consistency checking.

The great advantage of this approach is that conventional constraint solvers can be

used to solve stochastic constraint programs. The scenario-based view of stochas-

tic constraint programs also allows later stage stochasticvariables to take values

which are conditioned by the earlier stage stochastic variables. This is a direct

consequence of employing the scenario representation, in which stochastic vari-

ables are replaced with their scenario dependent values. Ofcourse, there is a price

to pay as the number of scenarios grows exponentially with the number of stages.

For this reason, the authors also proposed several approximate solution methods

based on scenario reduction methods. We here mention two of the reduction ap-

proaches employed. The “most likely scenario” approach only consider a few of

the most probable scenarios and ignore rare events. Latin Hypercube Sampling

[84] ensures that the ensemble of random numbers is representative of the real

variability whereas traditional random sampling (sometimes called brute force) is

just an ensemble of random numbers without any guarantee.

1.2.4 Inventory Control

In the previous sections we formally introduced CP and its extension for decision

problems under uncertainty, SCP. We now introduce the relevant formal back-

ground in inventory control, since the rest of this dissertation will extensively

discuss the application of SCP techniques to inventory control problems.

This section is mainly based on [81].

Lot-sizingis a very active research area in combinatorial optimization. Ana-

lyzing and controlling inventory systems that have to cope with dynamic demand

patterns is a challenging task [14, 30]. Therefore it does not surprise that control-

ling stochastic inventory systems is even harder and that stochastic multi-period

lot-sizing problems currently represent a challenging research area [100]. In the

following sections we will provide some background on stochastic lot-sizing.

In lot-sizing problems, when the demand is assumed to be stochastic, the

cost of insufficient capacity in the short run — that is the cost associated with

shortages, or with averting them — assumes a great importance. The problem in
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stochastic lot-sizing is typically to determine the “correct” quantity of buffer (or

safety) stocks that must be kept to meet unexpected fluctuations of the demand.

There are several possible choices for the shortage costingmethod or for the cus-

tomer service level measure. In what follows we will firstly recall the Newsvendor

problem, probably the most studied problem in stochastic lot-sizing, and then we

will extend the discussion to multi-period stochastic lot-sizing problems under

continuous and periodic review strategies.

The Newsvendor problem. The Newsvendor problem is the prototype of the

problem faced by a news vendor who needs to decide how many newspapers to

buy and stock on a news stand before observing demand. In other words, it is

the problem of controlling the inventory of a single item with stochastic demand

over a single period. As demand occurs, he may face both overage costs — if

he orders too much — or underage costs — if he orders too little. Therefore he

must hedge against overage costs and underage costs in orderto minimize the

respective effects. The problem becomes particularly significant for problem with

high demand uncertainty and large overage and underage costs.

The problem inputs are as follows:

• d: the one period random demand, with meanµ = E[d] and varianceσ2 =

V [d]

• c: the unit cost,

• p: the selling price, wherep > c

• s: the salvage value, wheres < c.

If x units are ordered, thenmin(x, d) units are sold and(x−D)+ = max(x−
d, 0) units are salvaged.

The news vendor profit is given byp min(x, d)+s(x−d)+−cx. The expected

profit is well defined and given by:

π(x) = pE[min(x, d)] + sE[(x− d)+]− cx.
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We now use the fact thatmin(x, d) = d − (d − x)+ and we rewrite the expected

profit as

π(x) = (p− c)µ−G(x) (1.4)

where

G(x) = (c− s)E[x− d)+ + (p− c)E[(d− x)+] ≥ 0.

Often, it is convenient to formulate the problem in terms of per unit holding

and penalty cost. Leth = c−s andb = p−c, whereh andb are respectively the per

unit holding cost and penalty cost. Sometimes the penalty cost is inflated to take

into account theill-will cost associated with unsatisfied demand. Eq. 1.4 allows

us to view the problem of maximizingπ(x) as that of minimizing the expected

holding and penalty costG(x).

Obviously, the Newsvendor problem is only interesting whenthe demand is

random. In fact, letGdet(x) = h(µ − x)+ + b(x − µ)+ be the cost whend

is deterministic, i.e.Pr{d = µ} = 1. Thenx = µ minimizesGdet(x) and

Gdet(µ) = 0, soπet(µ) = (p − c)µ. The problem is also trivial whens = c. In

this (unrealistic) case we can order an infinite amount, satisfy all the demand, and

then return all the unsold items.

We now introduceg(x) = hx+ + bx−. G(x) can then be rewritten asG(x) =

E[g(x − d)]. Functiong is convex, by recalling that convexity is preserved by

linear transformations and by expectation operator, it follows thatG is also con-

vex. By Jensen’s inequality [54]G(x) ≥ Gdet(x). As a result,π(x) ≤ πdet(x) ≤
πdet(µ) = (p−c)µ. We can never expect, in the stochastic case, a higher profit than

the one obtained when the demand is deterministic. Note thatthis result imme-

diately suggests an effective strategy for obtaining bounds for convex stochastic

programs, in Chapter 4 we will present in details such a strategy.

Consider a continuous distribution ford, an optimal solution to the above

problem can be found by taking the derivative ofG and setting it to zero. Since

we can interchange the derivative and the expectation operators, it follows that

G′(x) = hE[δ(x− d)− bE[δ(d− x) whereδ(x) = 1 if x > 0 and zero otherwise.

SinceE[δ(x− d)] = Pr{x− d > 0} andE[δ(d−x)] = Pr{d−x > 0}, it follows

that

G′(x) = h Pr{x− d > 0} − b Pr{d− x > 0}.
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Setting the derivative to zero reveals that

F (x) ≡ Pr{d ≤ x} =
b

b + h
=

p− c

p− s
≡ α. (1.5)

whenF is continuous then at least onex exists that satisfies Eq. 1.5. We select

the smallest of these by letting

x∗ = inf{x ≥ 0|F (x) ≥ α}.

Clearlyx∗, selected this way, is increasing inα and therefore it is increasing inb

and decreasing inh.

WhenF is strictly increasing then the inverse functionF−1 exists and there is

a unique optimal solution given by

x∗ = F−1(α). (1.6)

Nevertheless,d is often defined over the set of natural numbersN = {0, 1, . . .}.
In this case we must consider the forward difference∆G(x) = G(x + 1)−G(x),

x ∈ N. By writing E[(d− x)+] =
∑∞

j=x Pr{d > j}, it is easy to see that

∆G(x) = h− (h + b) Pr{d > x}

is non-decreasing inx, and thatlimx→∞ ∆G(x) = h > 0, so an optimal solution

is given byx∗ = min{x ∈ N|∆G(x) ≥ 0}, or equivalently,

x∗ = min{x ∈ N|F (x) ≥ α},

The Newsvendor model dates back to the 1888 paper by Edgeworth [26] who

used the Central Limit Theorem to determine the amount of cash to keep at a bank

in order to satisfy random cash withdrawals from deposit with high probability.

The fractile solution 1.5 appeared in 1951 in Arrow, Harris and Marchar [2].

The Newsvendor solution can be interpreted as the smallest order quantity

that guarantees that all demand will be satisfied with probability 100α%. In

practice, managers often specifyα and then findx∗ accordingly. This service
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level, also known ascycle service level, should not be confused with the fill-

rate, that is instead the fraction of demand served from stock. This is defined as

β = E[min(d, x)]/E[d].

Normal demand distribution. Particularly interesting is the case when the

demandd is normally distributed. This assumption can be often justified by the

Central Limit Theorem, when the demand comes from many different indepen-

dent or weakly dependent customers.

If d is normally distributed, thend = µ + Zσ, whereZ is a standard normal

random variable (i.e. a normally distributed random variable with mean 0 and

variance1). Let Φ(z) = Pr{Z < z} be the cumulative distribution function of

the standard normal random variable. Although the functionΦ is not available in

closed form, it is available in tables [52].
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Figure 1.2: Newsvendor problem with normally distributed demand

SincePr{d ≤ µ + zασ} = Φ(zα) = α, it follows that

x∗ = µ + zασ

satisfies Eq. 1.6, so it gives the optimal solution for the case of normal demand.

The quantityzα is known assafety factorandx∗ − µ = zα ∗ σ is known as the

safety stock, Fig. 1.2.

It can be shown that

G(x∗) = (h + b)σφ(zα),
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whereφ is the density function of the standard normal random variable, and that

π(x∗) = (p− c)µ− (p− s)σφ(zα).

In addition the fill-rate can be also easily written as

β = 1− cv[φ(zα)− (1− α)zα]

wherecv = σ/µ is the coefficient of variation of the demand. Sinceφ(zα)− (1−
α)zα ≥ 0 is decreasing inα, it follows thatβ is increasing inα and decreasing

in cv. Notice, for example thatβ = 0.97 whenα = 0.75 andcv = 0.2, while

β = 0.991 whenα = 0.9 andcv = 0.2.

Example 1.2.4.Suppose thatd is normal with meanµ = 100 and standard devi-

ationσ = 20. If c = 5, h = 1 andb = 3, thenα = b/(b + h) = 0.75 andx∗ =

100+0.6745 ·20 = 113.49, in factΦ−1(0.75) ∼= 0.6745. Note that the order is for

13.49 units (safety stock) more than the mean. Note also thatφ(0.6745) = 0.3178

soG(113.49) = 4 · 20 · 0.3178 = 25.42 andπ(113.49) = 274.58, with β = 0.97.

�

Inventory control policies. In the previous paragraph we introduced the Newsven-

dor problem. The key aspect of this problem is the fact that asinglereplenishment

decision concerning an order quantity has to be taken in advance, to meet the ran-

dom demand till the end of the time horizon considered.

Nevertheless, what usually happens in the reality is that management has to

take multiple decisions to meet the demand. These decisionsusually concern the

number of planned replenishments, the timing of such replenishments, and the

quantity of items that has to be ordered at each replenishment. Obviously there

are many differentstrategiesto decide on replenishment periods and replenish-

ment quantities. For instance we could fix a rule stating thata replenishment

should be performed every time the inventory level falls below a given threshold.

In this case the decision would concern two aspects: choosing the “threshold” and

the quantity that has to be ordered when the inventory position falls below this

threshold. Alternatively, a strategy could consist in ordering according to prede-
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fined time intervals. Moreover, instead of deciding in advance the exact quantity

to be ordered, we could instead try to fix a level for each replenishment (order-up-

to-level) up to which we will raise the stocks. Each of these different strategies

constitutes aninventory control policy.

For many replenishment policies a challenging problem is that of finding the

optimal “settings”, for instance the reorder levels and theorder-up-to-levels min-

imizing some cost structure or meeting certain service level requirements [89].

Often people are also interested in comparing different policies in such a way to

determine which policy always guarantees the best cost performance [76].

Notation and terminology. We shall now introduce some important issues

and terminology concerning inventory control policies. When demand is stochas-

tic, it is useful to conceptually categorize inventories asfollows:

• On-hand stock:This is stock that is physically on the shelf; it can never

be negative. This quantity is relevant in determining whether a particular

customer demand is satisfied directly from the shelf;

• Backorders:These denote an existing demand that cannot be fulfilled since

no stock is available on the shelf;

• On order: These are stocks which have been ordered, but that for some

reason have not reached the shelf yet. Reasons for this may comprise: stock

inspection, transportation etc.;

• Net stock =(On hand) - (Backorders).

This quantity can become negative (namely, if there are backorders). It

is used in some mathematical derivations and is also a component of the

following important definition:

• Inventory position:The inventory position is defined by the relation

Inventory position = (On hand) + (On order) - (Backorders).
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As we will see, the inventory position is a key quantity for replenishment

decisions.

• Safety stock:The safety (or buffer) stock is defined as the average level of

the net stock just before a replenishment arrives. If the safety stock is zero,

this means that, on average, we will run out of stock at the moment when

a replenishment arrives. A positive safety stock provides abuffer to hedge

against larger-than-average demand between subsequent replenishment ar-

rivals. The numerical value of the safety stock depends, as we will see, on

what happens to demands when there is a stockout.

What happens to a customer’s order when an item is temporarily out of stock

is of obvious importance in inventory control. There are twoextreme cases.

• Complete backordering:When a stockout occurs, demands are backordered

and filled as soon as an adequate-sized replenishment arrives.

• Complete lost sales:When a stockout occurs, demands are lost until a re-

plenishment arrives; customers go elsewhere to satisfy their needs.

Although most inventory models have been developed for one or the other of

these two extreme situations, in many practical situation we find a combination of

these two extremes. The ratio behind the inventory models commonly in use is

that the decisions they produce tend to be quite insensitiveto the degree of back-

ordering possible in particular situation. The reason for this is that in practice

high customer service levels are used, which implies infrequent stockout occa-

sions. When we use the termstockout, we mean a stockout occasion or event. The

number of of units backordered or lost is a measure of the impact of the stockout.

It should be noted that since the safety stock is defined as theaverage netstock

just before a replenishment arrives, its numerical value isinfluenced by whether

backordering is actually possible.

Continuous vs Periodic Review. A key question in inventory control sys-

tems is: “how often should the inventory status be determined?”. The answer
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to this question specifies the review interval (R), which is the time that elapses

between two consecutive moments at which we know the stock level.

An extreme case is the so called “continuous review”. Under continuous re-

view the stock status is always known. In reality, continuous surveillance is almost

never employed; instead, each transaction (shipment, receipt, demand, etc.) typi-

cally triggers an immediate updating of the status (transaction reporting).

Under “periodic review”, as the name implies, the stock status is determined

only everyR time units; between the moments of review there may be consider-

able uncertainty concerning the value of the stock level.

Example 1.2.5.A common example of periodic review system is the petrol sta-

tion. The drivers of the gas truck comes regularly, say once every other day, to

refill the station. If the station runs out of gas between two visits, no action is

taken until the next review. �

Inventory control policies. Theformof the inventory control policy is tightly

related to the following two issues: “When should a replenishment order be placed?”

and “How large should the replenishment order be?”. There are a number of pos-

sible control systems, in what follows we shall review four possible types which

are rather common in practical applications. The notation we will use is the fol-

lowing: s denotes a reorder point, which is the inventory position threshold which

triggers a replenishment;Q denotes a fixed order quantity;S denotes the order-

up-to-level, that specifies a level to which the order issuedshould bring the current

inventory position.

Order-Point, Order Quantity (s, Q) Policy: This is a continuous review policy

(that is,R = 0) that results extremely simple to be implemented in practice. A

fixed quantityQ is ordered whenever the inventory position drops to the reorder

point or lower (Fig. 1.3). It should be noted that the inventory position, and not the

net stock, is used to trigger an order. This because the inventory position includes

the on-order stock and it takes proper account of the material requested but not

yet received.

Order-point, Order-Up-to-Level (s, S) Policy: Again this is a continuous re-

view policy where a replenishment is made whenever the inventory position drops
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Figure 1.3: The (s, Q) system

to the order points or lower (Fig. 1.4). In contrast to the (s, Q) policy, here a vari-

able replenishment quantity is used, in fact we order enoughto raise the inventory

position to the order-up-to-levelS. If all demand transactions are unit-sized, the

two systems are identical because the replenishment decision will always be made

when the inventory position is exactlys, that isS = s + Q. Otherwise if trans-

actions larger than unit-size are allowed the replenishment quantity in the (s, S)

system becomes a variable. It should be noted that the best (s, S) policy can be

shown to have total cost of replenishment, carrying inventory, and shortage no

larger than those of the best (s, Q) policy. However, the computational effort to

find thebest(s, S) pair is substantially more.

Periodic-Review, Order-Up-to-Level (R, S) Policy: This policy, also known as

replenishment cycle policy, is in common use especially when items are ordered

from the same supplier, or require resource sharing. EveryR units of time (that

is, at each review instant) we order the amount required to raise the inventory

position to the levelS (Fig. 1.5).

(R, s, S) Policy: This policy combines (s, S) and (R, S). The idea is that every

R units of times we check the inventory position. If it is at or below the reorder

point s, we order enough to raise it toS. If the position is aboves, nothing is
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done until at least the next review. The (s, S) policy is the special case where

R = 0, and the(R, S) is the special case wheres = S − 1. Alternatively one can

think of the (R, s, S) as a periodic implementation of (s, S) with s = S − 1. It

has been shown [76] that under quite general assumptions on the demand pattern

and the cost structure, the best (R, s, S) policy produces a lower total cost than

any other policy. Nevertheless the computational effort tofind the optimal policy

parametersR, s andS is more intense than for any other policy.

We presented four inventory control policies of common use.It should be

noted that demand uncertainty is not the only reason for which we may not be

able to satisfy some of customers’ demand on a routine basis directly out of stock.

When the supplier capacity or the replenishment lead-time —the time required

for the items ordered to be effectively available on the shelf — are probabilistic,

we may also end up at some point without enough items to satisfy all the demand.

As we have seen, under all these possible sources of uncertainty, if demand is

unusually large, lead-times are longer than expected or we are operating for some

reason at reduced capacity, a stockout may occur or emergency actions may be re-

quired to avoid a stockout. On the other hand, if demand is lower than anticipated
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or lead-times are shorter than expected, then the replenishment arrives earlier than

needed and inventory is carried at a cost. Safety stocks are the main lever to

hedge against uncertainty. Different perspectives can be adopted to balance these

two types of risk.

Safety Stocks Based on Minimizing Cost:These approaches involve specifying

a way of costing a shortage and then minimizing the total costof ordering, car-

rying inventory and dealing with shortages. Holding more inventory reduces the

probability of shortages, but increases the inventory holding cost. The objective

is to then find the optimal trade off that minimizes the overall cost.

Safety Stocks Based on Customer Service:Often it is the case that costing

shortages raises difficulties. An alternative approach adopted by the management

is then to introduce a control parameter known asservice level. The service level

becomes a constraint in establishing the safety stock of an item; for example,

minimize the carrying cost of an item subject to satisfying,routinely from stock,

95% of all demands. There is a considerable choice in the selection of a service

measure. Three commonly used measures are thecycle service level, thefill-rate,

and theready-rate. The cycle (orα) service level denotes the required minimum
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fraction of cycles in which a stockout does not occur. A stockout is defined as

an occasion when the on-hand-stock drops to the zero level. The fill-rate (orβ

service level) is the fraction of customer demand that is metroutinely; that is,

without backorders or lost sales. Finally, the ready-rate is the fraction of time that

net stock is positive.
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1.3 Related works

In this section we discuss related works in three areas: SCP,stochastic inventory

control and hybrid methods employing techniques from Operations Research and

CP for combinatorial optimization. Related works in SCP arediscussed in Section

1.3.1. Previous approaches to stochastic inventory control are discussed in Section

1.3.2. Works on integration between CP and Operations Research are discussed

in Section 1.3.3.

1.3.1 Stochastic Constraint Programming

In this section we discuss, firstly, the seminal work on SCP byWalsh [98]. Sec-

ondly we discuss two solution techniques that have been proposed and that build

two alternative solution methods on the original frameworkproposed by Walsh: a

scenario based approach by Tarim et al. [91]; and an improvedforward checking

procedure and an arc consistency algorithm by Balafoutis and Stergiou [5].

Foundations. To the best of our knowledge the first work that tried to createa

bridge between Stochastic Programming and CP is by Benoist et al. [9]. This

work is mainly a review over existing Stochastic Programming techniques for

optimization under uncertainty and ad-hoc approaches developed by the CP com-

munity to cope with similar problems. The authors emphasizethe fact that, while

Stochastic Programming [11] produced a wealth of impressive results over the

last 35 years, in the CP community people often developed andused ad-hoc tech-

niques, of which very little has been formalized. The authors mention, among

the typical approaches adopted in CP for optimization underuncertainty, the use

of a static combinatorial algorithm using expected values as inputs, the use of

simulation-based optimization to compare possible decisions, and finally the use

of hybrid approaches trying to introduce the stochastic nature in the general de-

sign of the algorithm. The authors also conclude that CP, because of its expressing

power, is particularly suitable for modeling and solving combinatorial optimiza-

tion problems that are stochastic in nature. Both simulation-based approaches

for optimization under uncertainty and expected value-based approaches can be

easily implemented, nevertheless the authors left severalquestions opened: “how
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can the search space be abstracted from a stochastic description, onto which a

combinatorial approach can be found?”; “how to obtain upper(lower) bounds

to be used in a branch-and-bound algorithm?”; “how can a fastand incremental

CP simulation engine be built, which possibly integrates hybrid methods combin-

ing CP and Stochastic Programming methods?”. Some of these questions have

been addressed in some recent works by Walsh [98], Tarim et al. [91], Balafoutis

and Stergiou [5] etc. Walsh [98] proposedStochastic Constraint Programming,

a generic framework for representing problems that are stochastic in nature using

CP. Walsh [98] and Tarim et al. [91] proposed two effective and alternative ways

for representing the search space of a generic stochastic constraint program. Some

other questions will be answered in this work. For instance,how to obtain and ex-

ploit tight upper (lower) bounds through Stochastic Programming techniques to

perform cost-based filtering for certain classes of stochastic constraint programs.

Other questions are still open, particularly those concerning the integration of ef-

ficient general purpose techniques for stochastic optimization in CP.

The framework. SCP is a framework proposed by Walsh [98]. The framework

has been described in Section 1.2.3 and it is meant to model decision problems in-

volving uncertainty and probability. In contrast to CP, SCPfeatures both decision

andrandom(or stochastic) variables. Walsh discusses both the semantics of this

framework and the computational complexity of a generic stochastic constraint

program. He also proposes two complete algorithms in [98] for solving stochastic

constraint program: abacktracking algorithm and aforward checking algo-

rithm.

The backtracking algorithm differentiates between decision and stochastic vari-

ables. On meeting a decision variable, it tries each value inits domain in turn. On

meeting a random variable, it tries each value in turn and it returns the sum of the

answers to the subproblems weighted by the probabilities oftheir occurrence. The

algorithm also follows a scheme similar to the Davis-Putnamlike algorithm for

stochastic satisfiability [61], employing upper and lower bounds on satisfaction

probability for a given random variable assignment to prunesearch and determine

optimal satisfaction.

The forward checking algorithm is based on the backtrackingalgorithm. On
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instantiating a decision or a random variable, it checks forward and it prunes value

from the domains of future decision and stochastic variables which break con-

straints. Walsh also briefly mentions some approximation procedures, namely a

strategy where stochastic variables are replaced by their most probable values,

thus leading to a deterministic constraint satisfaction problem, and a strategy em-

ploying Monte Carlo sampling to test a subset of the possibleworlds.

There are three main assumptions in the framework proposed by Walsh. Firstly,

his framework assumes that stochastic variables are independent, instead in the

work on Tarim et al. [91] dependency between random variables will be properly

accounted by means ofscenariosand effective sampling techniques. Secondly,

probability distributions are not allowed to change over time and are assumed to

be fixed and known a-priori. Thirdly, variable domains are assumed to be finite,

this third assumption will be in some cases relaxed in our work, thus allowing

continuous distributions to be considered.

Walsh also discusses related works that inspired SCP. Both stochastic integer

programming [11] and stochastic satisfiability [61] originally motivated SCP. SCP

shares the advantages that CP has over integer programming and over satisfiability

(eg. global constraints, non-linear constraints, and constraint propagation). Mixed

constraint satisfaction [29] is closely related to one-stage stochastic constraint pro-

grams. In [79] constraint satisfaction has been extended toinclude probabilistic

preferences on the values assigned to variables. Branchingconstraint satisfaction

[35] models problems in which there is uncertainty in the number of variables.

Walsh also points to three existing extensions of the traditional constraint satis-

faction problem that model uncertain constraints.Partial constraint satisfaction

[36] tries to maximize the number of constraints satisfied.Probabilistic constraint

satisfaction[29] assigns to each constraint a certain probability of being part of

the problem, this probability is independent of all the other constraints that partic-

ipate to the problem. Finallyvaluedandsemi-ring based constraint satisfaction

[12] generalizes probabilistic constraint satisfaction in the sense that a value is

associated with each tuple in a constraint, whilst in valuedconstraint satisfaction,

a value is associated with each constraint. Nevertheless Walsh points out the fact

that none of these approaches deal with variables that may have uncertain or prob-

abilistic values as SCP does.
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A scenario-based approach. In [91] Tarim et al. proposed scenario based

SCP. The novelty in this work is the fact that the authors adopt a semantics for

stochastic constraint programs based on scenario trees. Byusing this semantics

the authors can compile stochastic constraint programs into conventional (non-

stochastic) constraint programs and they can therefore useexisting constraint

solvers to effectively solve this class of problems.

Scenario-based SCP has been outlined in Section 1.2.3. Tarim et al. not only

defined a general way to compile stochastic constraint programs into conventional

constraint programs, but they also proposed a language, that is stochastic OPL,

which is based on the OPL constraint modeling language [46].Using this lan-

guage the authors modeled optimization problems under uncertainty from a vari-

ety of fields: portfolio selection; agricultural planning;and production/inventory

management.

The main novelty brought by this scenario based approach is the fact that it

allows multiple chance-constraints and a range of different objectives to be mod-

eled, such as Markowitz’s mean/variance model. The authorspoint out that each

of these changes would require substantial modifications inthe backtracking and

forward checking algorithms proposed in [98]. The scenariobased view allows

each of these extension to be easily modeled using stochastic OPL, compiled down

into standard OPL and solved by means of existing solvers. Itshould be noted

that the approach is general and the compilation does not need necessarily to be

performed using OPL, but it can be implemented using any available CP language

and/or software package. The main drawback of this approachis related to the fact

that the scenario tree required to model a given problem exponentially grows in

size when random variable domains are large thus leading to large models difficult

to be solved. However, the authors in [91] remark that a scenario-based approach

is feasible for many problems and that they observed much better performance us-

ing scenario-based approach on the book production planning example of Walsh

[98] compared to the tree search methods.

In addition to this general purpose modeling/solving framework the authors

also proposed some technique to improve the efficiency of thesolution process. In

order to do so, they proposed scenario reduction techniques, such as Monte Carlo

Sampling or Latin Hypercube Sampling [84], to reduce the number of scenarios
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considered in the model. Their experimental results show the effectiveness of this

approach, which in practice is able to find high quality solutions using a small

number of scenarios. Finally, inspired by robust optimization techniques used in

Operations Research [60], the authors also proposed some techniques to generate

robust solutions, that is solutions that adopt similar (or the same) decisions under

different scenarios.

An improved forward checking procedure and an Arc Consistency algorithm.

The scenario based semantics of Tarim et al. for SCP is a validalternative to the

original policy based semantics proposed by Walsh. The policy based semantics in

[98] has been further explored in [5]. In this work Balafoutis and Stergiou propose

an improved formulation for the original forward checking procedure proposed by

Walsh.

The new forward checking procedure takes better advantage of probabilities

and achieves stronger pruning. The key observation is related to the fact that

when a forward check is operated and values from future stochastic variables are

removed, the strategy in [98] exploits only a “local” view ofthe future problem.

Thus it is not taken into account the fact that, as values are removed from future

stochastic variables, the maximum possible satisfaction of the current assignment

is reduced. In other words the strategy in [98] considers value removals from any

future stochastic variable as “independent” of value removals from other future

stochastic variables.

In addition to the improved forward checking strategy the authors in [5] also

define arc consistency for stochastic constraint programs,in analogy with the

widely known notion of arc consistency [1] for classic (deterministic) constraint

programs, which we discussed in Section 1.2.2. Based on thisdefinition an arc

consistency algorithm is proposed that is able to handle constraints of any arity

and that is particularly effective on binary constraints. Furthermore, a Maintain-

ing Arc Consistency algorithm is also proposed, that can operate on non-binary

problems.
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1.3.2 Stochastic Inventory Control

In this section we discuss the relevant literature on stochastic inventory control and

in particular on the (R,S) model, to which we extensively apply SCP techniques

in this dissertation.

In Section 1.2.4 the relevant formal background on deterministic/stochastic in-

ventory control and stochastic lot sizing has been provided. For a further discus-

sion the reader can refer to several textbooks on inventory theory [53, 64, 81, 102].

Although an extensive literature exists on inventory control, this is still a very ac-

tive research area especially when modeling requires uncertainty to be taken into

account. Girlich and Chikan [39] give a very interesting “historical” review on

the topic. A well known review on the literature on quantitatively-oriented ap-

proaches for determining lot sizes when production or procurement yields are

random is provided by Yano and Lee [100]. Yano and Lee underline the fact that

very little literature exists on multi-period stochastic lot sizing problems.

An interesting class of production/inventory control problems considers the

single-location, single-product case under non-stationary stochastic demand. In

this class of problems a fixed procurement cost is charged each time a replenish-

ment order is placed, whatever the size of the order, and a linear holding cost is

charged on any unit carried over in inventory from one periodto the next. The ob-

jective is to minimize the expected total cost under a service level constraint, that

is the probability that at the end of every time period the netinventory will not be

negative or a penalty cost incurred for each unit of demand that is back-ordered.

This class has been widely studied because of its key role in practice.

As discussed in section 1.2.4 one of the possible policies that can be adopted

to cope with this class of problems is thereplenishment cycle policyor (R,S) pol-

icy. A detailed discussion on the characteristics of (R,S) can be found in [22].

We recall that in this policy a replenishment is placed everyR periods to raise

the inventory level to the order-up-to-levelS. This provides an effective means

of damping planning instability (deviations in planned orders, also known asner-

vousness[23, 44]) and coping with demand uncertainty. As pointed outby Silver

et al. ([81], pp. 236–237), (R,S) is particularly appealing when items are ordered

from the same supplier or require resource sharing. In thesecases all items in a co-
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ordinated group can be given the same replenishment period.In [51] Janssen and

de Kok discuss a two-supplier periodic model where one supplier delivers a fixed

quantity while the amount delivered by the other is governedby an (R,S) pol-

icy. In [82] Smits et al. consider a production-inventory problem with compound

renewal item demand. The model consists of stock-points, one for each item,

controlled according to (R,S)-policies and one machine which replenishes them.

Periodic review also allows a reasonable prediction of the level of the workload on

the staff involved, and is particularly suitable for advanced planning environments

and risk management [85]. For these reasons (R,S) is a popular inventory policy.

Under the assumption of non-stationary demand the (R,S) policy takes the

form (Rn,Sn) whereRn denotes the length of thenth replenishment cycle andSn

the corresponding order-up-to-level.

For the service level constrained problem, early works wereheuristic (Silver

[80] and Askin [3]). Bookbinder and Tan [15] proposed another heuristic, under

the static-dynamic uncertainty strategy. In this strategy, the replenishment peri-

ods are fixed at the beginning of the planning horizon and the actual orders at

future replenishment periods are determined only at those replenishment periods,

depending upon the realized demand.

For the formulation under penalty cost scheme a mixed integer non-linear pro-

gram has been proposed by Sox [83]. A solution algorithm thatresembles the

Wagner-Whitin [96] algorithm but with some additional feasibility constraints has

been also presented in the same work.

The first complete approach for solving the non-stationary (R,S) policy under

service level constraints has been proposed by Tarim and Kingsman in [89]. This

approach operates under mild assumptions and models the problem as a mixed

integer linear program. The model proposed can be solved by means of any avail-

able off-the-shelf tool such as ILOG CPLEX [49].

Similarly, a mixed integer program — which again operates under similar mild

assumptions — has been proposed by Tarim and Kingsman in [90]for the formu-

lation operating under a penalty cost scheme. In this case the cost function in the

Stochastic Programming formulation of the problem is non-linear and it cannot be

directly represented in the mixed integer linear program. This function is there-

fore modeled by means of a piecewise linear approximation. Again, the model
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provided can be solved using any available package for mathematical program-

ming.

Both the two models discussed in the former paragraphs are very effective and

provide for the first time two practical means for computing near-optimal policy

parameters for the replenishment cycle policy.

In [92] an efficient CP formulation has been proposed by Tarimand Smith

for the service level constrained problem. This formulation exploits key features

of CP: search heuristics, global constraints and discrete domains. The search

process is guided in such a way to branch first on binary variables. The model is

formulated in a more natural way than the respective mixed integer program, by

employing decision variables to index other decision variables. A preprocessing

algorithm is proposed to reduce a-priori the set of optimal candidate values in

decision variable domains and thus to reduce the effort spent in the tree-search

process. The model proves to be much more effective than the respective mixed

integer programming formulation.

Two recent works by Tempelmeier [93] and by Pujawan and Silver [65] show

that finding optimal replenishment cycle policy parameters— in both a heuristic

or a complete way — is an active research area and prove the interest that the

works by Tarim and Kingsman raised in the Operations Research community.

Specifically the first work extends Tarim and Kingsman model under service level

constraints in order to cosider a different service level measure, theβ service

level (or fill rate), which has been discussed in Section 1.2.4. The second work

develops two heuristics to minimize the expected total relevant cost per unit time.

These heuristics try to select an appropriate augmentationquantity beyond the

expected total demand through to the planned (deterministic) time of the next

replenishment.

1.3.3 Integration of Operations Research and Constraint Pro-

gramming Techniques in Combinatorial Optimization

In this section we shall give a brief overview on the integration of Operations

Research and CP techniques in combinatorial optimization.This research area is

attracting more and more attention in different communities. An extensive dis-
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cussion on hybrid techniques for combinatorial optimization is presented in [94].

The discussion in [94] is mainly focused on integrating CP and mathematical pro-

gramming (and in particular mixed integer linear programming) for combinatorial

optimization. This is only one of the many possible directions for integrating CP

with other techniques from Operations Research and Artificial Intelligence. For

instance, CP has been successfully integrated with local search [99], DP [33],

linear programming and cost-based reasoning [31, 32]. All these works show that

techniques from Operations Research and Artificial Intelligence can be effectively

incorporated within global constraints in constraint programs in order to achieve

stronger filtering during the search, guide the search process, quickly obtain near-

optimal solutions, etc.

For the discussion in this dissertation, it is particularlyinteresting to further

describe the approaches in [31, 32] and [33].

In the first work, by Focacci et al. [31, 32], a linear programming relaxation

is employed in the filtering process. The filtering is performed using the reduced

costs provided in the final tableau that gives the solution ofthe linear program.

Nevertheless the approach described in their work is general and does not neces-

sarily need reduced costs or a linear relaxation to be performed. In fact, as already

discussed,optimization-oriented global constraintsembed a generic optimization

component, representing a proper relaxation of the constraint itself, into a global

constraint.

In the second work, by Focacci and Milano [33], the original combinatorial

optimization problem of interest, typically NP-hard, is relaxed in such a way to

obtain a new problem whose DP state space representation [20] contains a number

of nodes and arcs polynomial in the problem input. The solution to this relaxed

problem is efficiently obtained using a shortest path algorithm in the state space.

The optimal solution to this relaxed problem provides a bound that is again used

for filtering purposes or for guiding the search.
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1.4 Thesis Statement

In this section, firstly we provide a summary of the work described in this disser-

tation, secondly we highlight the contributions of our work. Finally, for each of

the following chapters we summarize the respective content.

1.4.1 Summary

This dissertation is mainly focused on investigating the application of SCP tech-

niques in the area of stochastic inventory control. Hybrid techniques integrating

SCP with DP and other approaches borrowed from Operations Research are em-

ployed for improving the optimization process.

We concentrate on an interesting problem of practical interest in inventory

control: the computation of optimal replenishment cycle policy parameters under

non-stationary stochastic demand. As discussed in Section1.3.2, this problem

has been the object of significant research in the last twentyyears. We consider

different existing formulations of this problem, namely the one under service level

constraints, and the one under penalty cost scheme. For boththese formulations

the existing approaches proposed by Tarim and Kingsman [89,90] present two

drawbacks.

Firstly, these approaches are not complete and can provide only near-optimal

solutions. Specifically, for both the models mixed integer linear programs have

been proposed. The one proposed to address the service levelconstrained prob-

lem [89] assumes that negative orders are not allowed, so that if the actual stock

exceeds the order-up-to-level for that review, this excessstock is carried forward

and not returned to the supply source. This event is assumed to be rare, and

therefore its effects are ignored. As a direct consequence of this, the model only

computes suboptimal policy parameters and an approximate expected total cost.

The model proposed under penalty cost scheme [90] operates under the same as-

sumption, but in addition to that it also employs a piecewiselinear approximation

for representing the cost function.

Secondly, these approaches do not scale well and perform poorly for real-

world sized instances. Specifically, both the models require a large number of
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binary decision variables and, in addition to this, the model under penalty cost

scheme quickly becomes intractable as the planning horizonlength and the num-

ber of segments in the piecewise linear approximation increase.

Furthermore, no approach in the literature exists for computing optimal re-

plenishment policy parameters under non-stationary stochastic demand when a

stochastic delivery lag is considered for each order issued. Indeed a model that

considers immediate delivery is a poor representation of the real world.

In our work, firstly we address the assumption on negative orders for the ser-

vice level constrained model. In order to do so, we develop a novel modeling tool

in SCP —global chance-constraints— that lets us fully represent the complex

interactions that arise when multiple chance-constraintsare added in a model.

One of the conclusions drawn is that the original assumptiontends to underes-

timate holding costs and to produce, in certain cases, buffer stocks higher than

strictly necessary. Nevertheless in general this assumption does not significantly

affect the quality of the optimal policy parameters computed. Therefore, when

considering the problem under penalty cost scheme, we retain the assumption on

negative orders, and we employ global chance-constraints to represent the non-

linear cost function and to obtain a more accurate solution than the one provided

by the mixed integer linear program.

Global chance-constraints have been employed in our work not only to obtain

more accurate or complete solutions, but also to obtain moreefficient reformula-

tions of the existing models. Specifically, we enhanced the SCP model proposed

by Tarim and Smith [92] by augmenting it with three global chance-constraints

implementing dedicated cost-based filtering techniques. We also enhanced with

similar techniques our SCP model under penalty cost scheme.

Finally we employed global chance-constraints to represent multiple level of

uncertainty, namely demand uncertainty and delivery uncertainty, and compute

optimal policy parameters for this challenging model that so far has not been stud-

ied in the literature.

In the next section we analyze in details the contributions of this work.
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1.4.2 Contributions

From a theoretical point of view there are two main contributions in this dis-

sertation: we introduced the novel concepts ofglobal chance-constraintsand of

optimization-oriented global chance-constraints. The first, as stated, let us model

complex interactions that arise in stochastic constraint programs where several

chance-constraints appear together. The second let us apply cost based filter-

ing in a stochastic environment, by exploiting cost-based reasoning and/or relax-

ations involving decision variables, random variables andthe constraints defined

on these.

From a practical point of view, our contribution consists inthe application

of both these techniques to known problems in the area of stochastic inventory

control.

Global chance-constraints

There are three main contributions related to this novelty:

• Formal background. We have formally introducedglobal chance-

constraints, defined as constraints that capture a relation among a non-fixed

number of decision and random variables. These constraintsnot only are

more expressive than the respective aggregation of simple chance-constraints,

but they can be associated with more powerful filtering algorithms (Chap.

2).

• Application 1. We have appliedglobal chance-constraintsto com-

pute optimal replenishment cycle policy parameters under non-stationary

stochastic demand and service level constraints.Global chance-constraints

allow the assumption on negative orders adopted in previousworks [89, 92]

to be relaxed and thus they let us compute the real optimal solution for the

problem (Chap. 2).

• Application 2. We exploitedglobal chance-constraintsto represent mul-

tiple layers of uncertainty, demand uncertainty and delivery uncertainty,

and to compute replenishment cycle policy parameters undernon-stationary
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stochastic demand, service level constraints and stochastic delivery lag (Chap.

3).

Optimization-oriented global chance-constraints

There are two main contributions related to this novelty:

• Formal background. We have formally introducedoptimization-oriented

global chance-constraints, defined as global chance-constraints that encap-

sulate suitable relaxations of the constraints considered. This relaxation, in

contrast to conventional optimization-oriented global constraints, may in-

volve stochastic variables (Chap. 4).

• Application 3. By usingoptimization-oriented global chance-constraints,

we have augmented the SCP model originally proposed by Tarimand Smith

[92] for computing optimal replenishment cycle policy parameters under

non-stationary stochastic demand and service level constraints. In Tarim

and Smith’s model domain filtering was originally performedonly in a

proactive way before starting the search process. The cost-based filter-

ing dynamically performed during the search by the optimization-oriented

global chance-constraints proposed let us now efficiently compute near-

optimal replenishment cycle policy parameters under non-stationary stochas-

tic demand and service level constraints (Chap. 5). The augmented model

produces run times that are orders-of-magnitude lower thanthose achieved

by the state of the art approach in [92].

A global perspective

Finally we have employed bothglobal chance-constraintsandoptimization-oriented

global chance-constraintsto obtain the state of the art approach for computing re-

plenishment cycle policy parameters under non-stationarystochastic demand and

a penalty cost scheme:

• Application 4. We have appliedglobal chance-constraintsto model

the non-linear cost function that is only approximated by the approach in
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[90], which employs a piecewise linear approximation for modeling pe-

riod holding and back-ordering costs. In addition to this wehave applied

optimization-oriented global chance-constraintsto the same model in or-

der to perform cost-based reasoning and thus improve the efficiency of the

search process (Chap. 6).

1.4.3 Paper I (Chap. 2): A Global Chance-Constraint for Stochas-

tic Inventory Systems under Service Level Constraints

[75]

SCP has been introduced in [98] to model decision problem involving uncertainty

and probability. In contrast to conventional approaches inStochastic Program-

ming, SCP features all the key features of CP: constraint propagation, variable

and value selection strategies and so forth.

To solve stochastic constraint programs, Tarim et al. in [91] proposed a se-

mantics based on scenario trees. This semantics is extremely flexible, especially

for the fact that it lets stochastic constraint programs be compiled down into con-

ventional constraint programs, so that conventional constraint solvers can be em-

ployed to find a solution. Nevertheless, the framework proposed by Tarim et

al. still presents limits: in particular, as formulated in [91], it does not specify

how a generic relation among a non-predefined number of decision variables and

stochastic variables under a given policy of response should be translated into a

conventional constraint program. This is obviously not an easy task, as it is prob-

lem dependent.

In order to address this issue we propose in this chapter an extension for SCP:

global chance-constraints. Global chance-constraints, similarly to conventional

global constraints, represent relations among a non predefined number of vari-

ables and incorporate dedicated filtering algorithms. In contrast to conventional

global constraints, global chance-constraints representrelations among decision

andstochasticvariables and can model any policy of response.

By means of this novelty and using the scenario based semantics proposed

by Tarim et al. [91], in this work we were able to relax the original assumption

on negative order quantities that had to be adopted in [89, 92] for computing re-
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plenishment cycle policy parameters under non-stationarystochastic demand. In

contrast to models previously proposed our model provides (i) the exact cost of

an optimal solution, and (ii) exact policy parameters, thatis replenishment cycle

lengths and order-up-to-levels. A comparison among our approach and previous

approaches shows that the discussed assumption does not significantly affect the

quality of the policy parameters computed by the models in [89, 92], but it does

affect the computed cost, which typically differs significantly from the real cost

of the solution provided.

1.4.4 Paper II (Chap. 3): Computing Replenishment Cycle

Policy under Non-stationary Stochastic Lead Time [72]

Also in this chapter we rely on the scenario based semantics originally proposed

in [91]. The problem here is to compute replenishment cycle policy parameters

under non-stationary stochastic demand, delivery lag and service level constraints.

Incorporating a delivery lag in inventory control models isa very active research

topic, as the literature review presented in this chapter will show. To the best of our

knowledge, this is the first work in which a non-stationary stochastic demand and

a non-stationary stochastic delivery lag are considered together when computing

replenishment cycle policy parameters under service levelconstraints.

The first part of this work is dedicated to the derivation of a mathematical

model for computing feasible buffer stocks under non-stationary stochastic de-

mand, delivery lag and service level constraints. The expression obtained repre-

sents a non-linear relation among decision variables (replenishment decisions and

inventory levels) and stochastic variables (stochastic demands and delivery lags).

Using the expression derived in the first part of this chapter, we developed a

global chance-constraintand the respective filtering procedure able to take into

account both demand and delivery lag uncertainty while computing buffer stocks

required to guarantee the given minimum service level in terms of non-stockout

probability. The approach was tested against different delivery lag distributions.

The experimental results presented show the behavior of theexpected total cost

of the optimal policy with respect to the expected value and to the variance of the

delivery lag.
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1.4.5 Paper III (Chap. 4): Cost-based filtering for stochastic

constraint programming [74]

In this chapter we introduceoptimization-oriented global chance-constraints. These

are global chance-constraints incorporating an optimization component that al-

lows cost-based reasoning to be performed during the search. Cost-based reason-

ing lets the solver filter in a proactive way provably suboptimal values from the

domain of decision variables. In contrast to conventional optimization-oriented

global constraint, in optimization-oriented global chance-constraints the cost-based

reasoning may involve stochastic variables in different ways: by relaxing some of

the constraints in which they appear, or by exploiting knowninequalities borrowed

from Stochastic Programming.

In this chapter we discuss a general purpose procedure for performing cost-

based reasoning for certain classes of stochastic constraint programs, when some

assumptions are respected. These assumptions are generally respected in prac-

tical applications, as witnessed by a large literature available in the Stochastic

Programming community that operates under the same assumptions.

Two problems from the Stochastic Programming literature are considered in

order to show the effectiveness of cost-based reasoning in SCP. The static stochas-

tic knapsack problem [56] and the stochastic sequencing problem under release

time and deadline, a stochastic generalization of a known NP-hard problem [37].

Our experimental results show order-of-magnitude improvements for both the

problem considered.

1.4.6 Paper IV (Chap. 5): Cost-based Filtering Techniques for

Stochastic Inventory Control under Service Level Con-

straints [87, 88]

The assumptions discussed in Chapter 4, required in order toapply the cost-based

filtering strategy there discussed, are not always respected by stochastic constraint

programs. When the relaxations and the inequalities there discussed cannot be

applied, it is usually still possible to perform cost-basedreasoning by employing

some ad-hoc methodology for the problem modeled. It may alsooften be the
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case, that even if the methods discussed are applicable, ad-hoc methodologies may

provide tighter bounds and therefore be more appropriate toperform cost-based

reasoning.

We consider the problem of computing replenishment cycle policy parameters

under non-stationary stochastic demand and service level constraints as formu-

lated in [89, 92]. The model proposed by Tarim and Smith is a one-stage stochas-

tic constraint program addressed through ad-hoc techniques adopted to compute

minimum buffer stocks required to meet the given service level constraints. Some

ad-hoc domain filtering techniques are proposed in [92]. These techniques con-

sider the probability distribution of the stochastic variables and the input parame-

ters of the problem (holding cost, ordering cost, service level probability) in order

to perform a preprocessing of decision variable domains based on cost-based rea-

soning.

In this work, in order to enhance the search process, we developed dedi-

catedoptimization-oriented global chance-constraints(or for simplicity, global

constraints) able to dynamically perform Tarim and Smith’scost-based reason-

ing involving decision and stochastic variables during thesearch process. On the

top of this we developed novel ad-hoc cost-based reasoning techniques for Tarim

and Smith’s model. These techniques are incomparable with those proposed by

Tarim and Smith in terms of filtering power. Finally an effective DP relaxation is

proposed, which can produce tight bounds employed to prune suboptimal nodes

of the search tree during the search. According to what discussed in Chapter

4 also in this case experimental results show order-of-magnitude improvements

with respect to both the mathematical programming formulation in [89] and the

CP formulation in [92].

1.4.7 Paper V (Chap. 6): Constraint Programming for Stochas-

tic Inventory Systems under Shortage Cost [71, 73]

This final chapter is particularly interesting since both the techniques described

in former chapters,global chance-constraintsand optimization-oriented global

chance-constraints, are employed in order to provide the state of the art approach,

both in terms of quality of the solution provided and efficiency of the search pro-
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cess, for computing replenishment cycle policy parametersunder non-stationary

stochastic demand and a penalty cost scheme.

Global chance-constraintsare employed in this chapter to dynamically com-

pute during the search process the non-linear cost functionof the problem, which

in [90] was approximated by using a piecewise linear representation.

Optimization-oriented global chance-constraintsare employed to perform cost-

based reasoning exploiting a DP relaxation similar to the one discussed in Chapter

5, for the service level constrained problem.

For this reason this chapter somehow provides a global view on the contri-

butions of this dissertation, since it synthesizes both thenovelties proposed in a

single application.

Our experimental results show: (i) the improvement in termsof quality of the

solution obtained over the mixed integer linear programming model in [90], (ii)

the efficiency of our approach that can be effectively applied to planning hori-

zons of a significant length, (iii) the stability of the performances achieved under

different input parameters and random demand patterns.
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1.5 Future Work

Several topics in this dissertation suggest directions forfuture research. In this

section, for each of the following chapters, we try to summarize which questions

remain open and which future research directions are promising.

Chapter 2. We recall that this chapter deals mainly with the concept ofglobal

chance-constraint. There are both theoretical and practical aspects that should be

considered in the future research on global chance-constraints. Obviously there is

a clear opportunity for proposing a full family of global chance-constraints with

dedicated consistency and filtering rules similarly to whathas been done in the

last 20 years for deterministic constraints. In our specificapplication discussed

in Chapter 2 DP is used in the filtering procedure. We employeda trivial recur-

sive implementation, that is obviously quite inefficient, more efficient procedures

may be developed by trading space with time and by storing information indy-

namic tables updated through a publish-subscribe mechanism triggered by con-

straint propagation. We believe this is a promising research direction that should

be pursued in future works, since it provides a general purpose approach to deal

with propagation in global chance-constraints.

Chapter 3. In this chapter a global chance-constraint is developed with the

respective filtering procedure. Again we see an opportunityhere for employing

dynamictables in order to improve efficiency as discussed above. In addition to

this, we also think that the hybrid technique here employed,which merges de-

terministic equivalent modeling [18] and scenario based approach [11, 91], may

be employed as a general technique to develop propagation algorithms for other

global chance-constraints. Furthermore no bounding or filtering techniques have

been discussed. It is clear that, by incorporating dedicated filtering algorithms, the

proposed model has the potential of becoming very efficient.Tight bounds may

be obtained, for instance, by applying the technique discussed in Chapter 4.

Chapter 4. This chapter proposes a general approach for performing cost-based

filtering in SCP. Obviously the approach may have a wide rangeof applications

that should be considered in future works. Possible research directions may also:

consider different inequalities that may be suitable for generating valid bounds in

the filtering process; discuss the cost-based filtering strategy when generic chance-
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constraints and stochastic constraint programs are considered — the discussion

in this chapter is restricted to special classes of stochastic constraint programs

—; and exploit the information provided by optimization-oriented global chance-

constraints to define search strategies.

Chapter 5. In this chapter we develop three optimization oriented global-

chance constraints for improving the search process in a stochastic constraint pro-

gram that computes replenishment cycle policy parameters under non-stationary

stochastic demand and service level constraints. The resulting model, in which

these three global constraints are posted, is very efficientand provides the state-

of-the-art approach for computing replenishment cycle policy parameters. Obvi-

ously CP is not the only approach that can be used to solve thisproblem. We also

explored other research directions, in particular in the field of DP. Our prelimi-

nary experience, not discussed in this dissertation, showsthat DP also provides

remarkable performances and it should be further explored as a valid technique

for computing replenishment cycle policy parameters. Finally, techniques similar

to the those developed in this chapter may be also applied to the problems dis-

cussed in Chapter 2 and 3 for speeding up the search process.

Chapter 6. This chapter, as already discussed, summarizes all the contributions

of this dissertation in a single application. Again performances are very satisfac-

tory and they suit real world problems with long planning horizons spanning up to

38 periods. Note that with 36 periods we can plan for a year ahead with a weekly

granularity. Again we see a window of opportunity in this problem for applying

other techniques such as DP, but we do not have any result so far in this direction.

Another possible research direction consists in considering also for this problem a

stochastic lead time and in developing a propagation algorithm similar to the one

developed in Chapter 3. Supplier capacity constraints may also be considered,

note that this would make the problem extremely hard to be treated, thus this last

extension is a particularly challenging one.
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1.6 Conclusions

There are two main research areas for which this dissertation represents a contri-

bution:Stochastic Constraint Programmingandstochastic inventory control. The

contributions brought to the field of SCP are mainly theoretical and they consist

in the introduction of two novel modeling concepts:global chance-constraints

andoptimization-oriented global chance-constraints. Global chance-constraints

are mainly concerned with expressiveness, although they may be also used to

perform efficient propagation in SCP. In contrast, optimization-oriented global

chance-constraints play a key role in achieving efficiency in the search process for

stochastic constraint optimization problems. The contributions brought to the field

of stochastic inventory control directly follow from the application of the former

novelties to well-known problems from the inventory control literature. The com-

putation of replenishment cycle policy parameters under non-stationary demand

is a very active research topic as we have shown. We improved the state of the

art approaches both in terms of quality of the solution foundand in terms of com-

putational efficiency. We also augmented the complexity of the models studied in

the literature by adding multiple-layers of uncertainty (i.e. demand and delivery

uncertainty), a topic that has not been explored before for the non-stationary case.

In summary, not only we proposednovel optimization models and algorithms that

constitute a step forward in stochastic inventory control, but we also made signif-

icant theoretical contributions to a new trend of research that applies constraint

reasoning— a technique that in the last 25 years generated a remarkableamount

of lore — to optimization problems under uncertainty.
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Chapter 2

Paper I: A Global

Chance-Constraint for Stochastic

Inventory Systems under Service

Level Constraints

R. Rossi, S. A. Tarim, B. Hnich and S. Prestwich

Abstract

We consider a class of production/inventory control problems that has a single
product and a single stocking location, for which a stochastic demand with a
known non-stationary probability distribution is given. Under the widely-known
replenishment cycle policy the problem of computing policyparameters under
service level constraints has been modeled using various techniques. Tarim &
Kingsman introduced a modeling strategy that constitutes the state-of-the-art ap-
proach for solving this problem. In this paper we identify two sources of approx-
imation in Tarim & Kingsman’s model and we propose an exactstochastic con-
straint programmingapproach. We build our approach on a novel concept,global
chance-constraints, which we introduce in this paper. Solutions provided by our
exact approach are employed to analyze the accuracy of the model developed by
Tarim & Kingsman.
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2.1 Introduction

The study of lot-sizing began with Wagner and Whitin [96], and there is now

a sizeable literature in this area extending the basic modelto consider capacity

constraints, multiple items, multiple stages, etc. However, most previous work on

lot-sizing has been directed towards the deterministic case. For a general overview

over deterministic lot-sizing problems the reader may refer to [30].

The practical problem is that in general many, if not all, of the future demands

have to be forecasted. Point forecasts are typically treated as deterministic de-

mands. However, the existence of forecast errors radicallyaffects the behavior of

the lot-sizing procedures based on assuming the deterministic demand situation.

Forecasting errors lead both to stock-outs occurring with unsatisfied demands and

to larger inventories being carried than planned. The introduction of safety stocks

in turn generates even larger inventories and also more orders. It is reported by

Davis [21] that a study at Hewlett-Packard revealed the factthat 60% of the inven-

tory investment in their manufacturing and distribution system is due to demand

uncertainty.

As pointed out in [40] one major theme in the continuing development of in-

ventory theory is to incorporate more realistic assumptions about product demand

into inventory models. In most industrial contexts, demandis uncertain and hard

to forecast. Many demand histories behave like random walksthat evolve over

time with frequent changes in their directions and rates of growth or decline. Fur-

thermore, as product life cycles get shorter, the randomness and unpredictability

of these demand processes have become even greater. In practice, for such de-

mand processes, inventory managers often rely on forecastsbased on a time series

of prior demand, such as a weighted moving average. Typically these forecasts

are predicated on a belief that the most recent demand observations are the best

predictors for future demand.

An interesting class of production/inventory control problems therefore con-

siders the single-location, single-product case under non-stationary stochastic de-

mand. This class has been widely studied because of its key role in practice. We

assume a fixed procurement cost each time a replenishment order is placed, what-

ever the size of the order, and a linear holding cost on any unit carried over in

56



inventory from one period to the next. Our objective is to minimize the expected

total cost under a service level constraint, that is the probability that at the end of

every time period the net inventory will not be negative. Early works in the area

were heuristic (Silver [80] and Askin [3]). Bookbinder and Tan [15] proposed an-

other heuristic, under the static-dynamic uncertainty strategy. In this strategy, the

replenishment periods are fixed at the beginning of the planning horizon and the

actual orders at future replenishment periods are determined only at those replen-

ishment periods, depending upon the realized demand. The expected total cost is

minimized under the minimal service-level constraint.

We focus on the work of Tarim & Kingsman [89], where the authors proposed

a mathematical programming approach to compute near-optimal policy parame-

ters for the inventory control policy known as thereplenishment cycle policyor

(R,S) policy. A detailed discussion on the characteristics of (R,S) can be found

in [22]. In this policy a replenishment is placed everyR periods to raise the

inventory level to the order-up-to-levelS. This provides an effective means of

damping planning instability (deviations in planned orders, also known asner-

vousness[23, 44]) and coping with demand uncertainty. As pointed outby Silver

et al. ([81], pp. 236–237), (R,S) is particularly appealing when items are ordered

from the same supplier or require resource sharing. In thesecases all items in a co-

ordinated group can be given the same replenishment period.In [51] Janssen and

de Kok discuss a two-supplier periodic model where one supplier delivers a fixed

quantity while the amount delivered by the other is governedby an (R,S) pol-

icy. In [82] Smits et al. consider a production-inventory problem with compound

renewal item demand. The model consists of stock-points, one for each item,

controlled according to (R,S)-policies and one machine which replenishes them.

Periodic review also allows a reasonable prediction of the level of the workload on

the staff involved, and is particularly suitable for advanced planning environments

and risk management [85]. For these reasons (R,S) is a popular inventory policy.

Under the assumption of non-stationary demand it takes the form (Rn,Sn) where

Rn denotes the length of thenth replenishment cycle andSn the corresponding

order-up-to-level.

Tarim & Kingsman’s formulation operates under the assumption that negative

orders are not allowed, so that if the actual stock exceeds the order-up-to-level
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for that review, this excess stock is carried forward and notreturned to the supply

source. This event is assumed to be rare, and therefore its effects are ignored. As a

direct consequence of this, the model only computes suboptimal policy parameters

and an approximate expected total cost.

In this paper we exploitstochastic constraint programming, a novel model-

ing framework introduced by Walsh [98], to fully model the original stochastic

programming formulation for computing(Rn, Sn) policy parameters. In our ap-

proach we extend the original framework with a new concept,global chance-

constraints, and we employ this to compute optimal(Rn, Sn) policy parameters

and the exact expected total cost for a given parameter configuration. By using

optimal solutions provided by our model we gauge the accuracy of the solutions

provided by Tarim & Kingsman’s approach for a set of instances. In our ex-

periments we show that the assumption adopted in Tarim & Kingsman’s model

are justified and that their model constitutes a valid trade-off for computing near-

optimal(Rn, Sn) policy parameters when a short computational time is required.

This paper is organized as follows. In Section 2.2 we providesome formal

background about different modeling techniques employed in this paper: stochas-

tic programming, constraint programming, stochastic constraint programming and

inventory control models. In Section 2.3 we review the existing approaches devel-

oped in the literature to compute(Rn, Sn) policy parameters. In Section 2.4 we

introduceglobal chance-constraintsand we present a novelstochastic constraint

programmingapproach, based on this new concept, to compute optimal(Rn, Sn)

policy parameters. In Section 2.5 we compare results produced by our exact ap-

proach with those provided by the state-of-the-art MIP approach for computing

near-optimal(Rn, Sn) policy parameters. In Section 2.6 we draw conclusions.

2.2 Formal background

In this paper we employ and merge several different modelingtechniques. In

this section some formal background and references are given for each technique

exploited.
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2.2.1 Stochastic Programming

Stochastic programming[11] is a well known modeling technique that deals with

problems where uncertainty comes into play. Problems of optimization under

uncertainty are characterized by the necessity of making decisions without know-

ing what their full effect will be. Such problems appear in many application areas

and present many interesting conceptual and computationalchallenges. Stochastic

programming needs to represent uncertain elements of the problem. Typically ran-

dom variables are employed to model this uncertainty to which probability theory

can be applied. For this purpose such uncertain elements must have a known prob-

ability distribution. The typical requirement in stochastic programs is to maintain

certain constraints, calledchance constraints[18], satisfied at a prescribed level of

probability. The objective is typically related to the minimization/maximization

of some expectation on the problem costs. There are several different approaches

to tackle stochastic programs. A first method dealing with stochastic parameters

in stochastic programming is the so-calledexpected value model[11], which op-

timizes the expected objective function subject to some expected constraints. An-

other method,chance-constrained programming, was pioneered by Charnes and

Cooper [18] as a means of handling uncertainty by specifyinga confidence level

at which it is desired that the stochastic constraint holds.Chance-constrained pro-

gramming models can be converted into deterministic equivalents for some special

cases, and then solved by some solution methods of deterministic mathematical

programming. A typical example for this technique is given by the Newsvendor

problem [81]. However it is almost impossible to do this for complex chance-

constrained programming models. A third approach employs scenarios, which

are particular representations of how the future might unfold. Each scenario is as-

signed a probability value, that is its likelihood. Some kind of probabilistic model

or simulation is used to generate a batch of such scenarios. The challenge then, is

how to make good use of these scenarios in coming up with an effective decision.

2.2.2 Constraint Programming

A Constraint Satisfaction Problem(CSP) [1, 17, 62] is a triple〈V, C, D〉, where

V is a set of decision variables,D is a function mapping each element ofV to a
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domain of potential values, andC is a set of constraints stating allowed combina-

tions of values for subsets of variables inV . A solutionto a CSP is simply a set of

values of the variables such that the values are in the domains of the variables and

all of the constraints are satisfied. We may also be interested in finding a feasible

solution that minimizes (maximizes) the value of a given objective function over a

subset of the variables. Alternatively, we can define a constraint as a mathematical

function:f : D1×D2× . . .×Dn → {0, 1} such thatf(x1, x2, . . . , xn) = 1 if and

only if C(x1, x2, . . . , xn) is satisfied. Using this functional notation, we can then

define a constraint satisfaction problem (CSP) as follows (see also [1]): givenn

domainsD1, D2, . . ., Dn andm constraintsf1, f2, . . ., fm find x1, x2, . . ., xn such

that

fk(x1, x2, . . . , xn) = 1, 1 ≤ k ≤ m; (2.1)

xj ∈ Dj , 1 ≤ j ≤ n. (2.2)

The problem is only a feasibility problem, and no objective function is defined.

Nevertheless, CSPs are also an important class of combinatorial optimization

problems. Here the functionsfk do not necessarily have closed mathematical

forms (for example, functional representations) and can bedefined simply by pro-

viding the subsetS of the setD1×D2×. . .×Dn, such that if(x1, x2, . . . , xn) ∈ S,

then the constraint is satisfied.

We now recall some key concepts inConstraint Programming(CP): constraint

filtering algorithm, constraint propagation and arc-consistency [67]. In CP a fil-

tering algorithm is typically associated with every constraint. This algorithm re-

moves values from the domains of the variables participating in the constraint that

cannot belong to any solution of the CSP. These filtering algorithms are repeat-

edly called until no new deduction can be made. This process is called propa-

gation mechanism. In conjunction with this process CP uses asearch procedure

(like a backtracking algorithm) where filtering algorithmsare systematically ap-

plied when the domain of a variable is modified. One of the mostinteresting

properties of a filtering algorithm is arc-consistency. We say that a filtering algo-

rithm associated with a constraint establishes arc-consistency if it removes all the

values from the domains of the variables involved in the constraint that are not
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consistent with the constraint. As a consequence of resultsin [70], where authors

proved that any non-binary constraint can be translated into an equivalent binary

one with additional variables, several studies on arc-consistency were limited to

binary constraints. However modeling problems by means of binary constraints

presents several drawbacks. Firstly these constraints arepoor in term of expres-

siveness. Secondly the domain reduction achieved by the respective filtering al-

gorithm associated is typically weak. In order to overcome both these problems

constraints that capture a relation among a non-fixed numberof variables were

introduced. These constraints not only are more expressivethan the respective

aggregation of simple constraints, but they can be associated with more power-

ful filtering algorithms that take into account the simultaneous presence of simple

constraints to further reduce the domains of the variables.These constraints are

calledglobal constraints. One of the most well known examples is thealldiff

constraint [66], both because of its expressiveness and itsefficiency in establishing

arc-consistency.

2.2.3 Stochastic Constraint Programming

In [98] and [91] astochastic constraint satisfaction problem(stochastic CSP) is

defined as a 6-tuple〈V, S, D, P, C, θ〉, whereV is a set of decision variables and

S is a set of stochastic variables,D is a function mapping each element ofV and

each element ofS to a domain of potential values. A decision variable inV is

assigneda value from its domain.P is a function mapping each element ofS to

a probability distribution for its associated domain.C is a set of constraints. A

constrainth ∈ C that constrains at least one variable inS is achance-constraint.

θh is a threshold value in the interval[0, 1], indicating the minimum satisfaction

probability for chance-constrainth. Note that a chance-constraint with a threshold

of 1 is equivalent to a hard constraint.

A stochastic CSP consists of a number ofdecision stages. Solving a stochastic

CSP implies a two step process.

In the first step apolicy of responsehas to be defined. A policy of response

states the rules that decide when decision variables have tobe set. There are two

extreme policies: here-and-now and wait-and-see. Thehere-and-nowpolicy sets
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all decision variables before observing the realization ofthe random variables.

A solution can be therefore expressed as an assignment for decision variables

in V . The wait-and-seepolicy delays as much as possible the assignment of a

value to a decision variable. Therefore a decision variablexi ∈ V is set to a

value only after the realizations of stochastic variablesy1, . . . , yi−1 ∈ S have

been observed. Under this policy typically the solution of astochastic CSP is

represented by means of apolicy tree[91]. A policy tree is a tree of decisions

where each path represents a different possible scenario (set of values for the

stochastic variables) and the values assigned to decision variables in this scenario.

Hybrid policies can be defined by stating at which stagek, 1 ≤ k ≤ j a decision

variablexj has to be set. The solution for any policy that is not a purehere-and-

nowwill be expressed in general as a policy tree.

In the second step we solve the stochastic CSP under the givenpolicy by

finding specificpolicy parameters. In a one-stage stochastic CSP, the decision

variables are set before the stochastic variables and the chosen policy ishere-and-

now. Under any other policy, that iswait-and-seeor hybrid, we have anm-stage

stochastic CSP whereV andS are partitioned into disjoint sets,V1, . . . , Vm and

S1, . . . , Sm. To solve anm-stage stochastic CSP an assignment to the variables

in V1 must be found such that, given random values forS1, an assignment can

be found forV2 such that, given random values forS2 . . ., an assignment can be

found forVm so that, given random values forSm the hard constraints are satis-

fied and the chance-constraints are satisfied in the specifiedfraction of all possible

scenarios.

In [98] a policy based view of stochastic constraint programs is proposed. The

semantics is based on a tree of decisions. Each path in a policy represents a dif-

ferent possible scenario (set of values for the stochastic variables), and the values

assigned to decision variables in this scenario. To find satisfying policies, back-

tracking and forward checking algorithms, which explores the implicit AND/OR

graph, are presented. Such an approach has been further investigated in [5]. An

alternative semantics for stochastic constraint programs, which suggests an al-

ternative solution method, comes from a scenario-based view [11]. In [91] the

authors outline this solution method, which consists in generating a scenario-tree

that incorporates all possible realizations of discrete random variables into the
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model explicitly. The great advantage of such an approach isthat conventional

constraint solvers can be used to solve stochastic CSP. Of course, there is a price

to pay in this approach, as the number of scenarios grows exponentially with the

number of stages and such a growth is particularly affected by random variables

that contain a wide range of values in their domain. To deal with this problem the

authors developed dedicated scenario-reduction techniques, which unfortunately

affect the completeness of the approach when applied to improve performances

of the search process. Another limit of the approaches in [98] and [91] is that

they provide implementations only for await-and-seepolicy. The reason for this

is that, when decision and random variables are split into disjoint setsV1, . . . , Vm

andS1, . . . , Sm containing more than one element, the computation requiredto

find policy parameters usually is special purpose and it is unlikely to be performed

by a general approach.

2.2.4 Inventory control and (Rn,Sn) policy
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Figure 2.1: (Rn,Sn) policy. d̃i + d̃i+1 + . . . + d̃j is the expected demand overRn;
b(i, j) is the minimum buffer stock required to guarantee service level α; X̃n is
the expected order quantity in periodi for replenishment cyclen; Ĩi−1 andĨj are
respectively the expected closing-inventory-levels for periodsi− 1 andj.

In this paper we consider the class of production/inventorycontrol problems

that refers to the single location, single product case under non-stationary stochas-

tic demand. We consider the following inputs: a planning horizon of N periods

and a demanddt for each periodt ∈ {1, . . . , N}, which is a random variable
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with probability density functiongt(dt). In the following sections we will as-

sume, without loss of generality, that these variables are normally distributed. We

assume that the demand occurs instantaneously at the beginning of each time pe-

riod. The demand we consider is non-stationary, that is it can vary from period to

period, and we also assume that demands in different periodsare independent. A

fixed delivery costa is considered for each order and also a linear holding costh

is considered for each unit of product carried in stock from one period to the next.

We assume that it is not possible to sell back excess items to the vendor at the

end of a period. As a service level constraint we require the probability that at the

end of every period the net inventory will not be negative to be at least a given

valueα. Our aim is to find a replenishment plan that minimizes the expected total

cost, which is composed of ordering costs and holding costs,over theN-period

planning horizon, satisfying the service level constraints.

Different inventory control policies can be adopted for thedescribed prob-

lem. A policy states the rules to decide when orders have to beplaced and how

to compute the replenishment lot-size for each order. For a discussion of inven-

tory control policies see [81]. In what follows the problem described above will

be solved adopting the replenishment cycle policy (Rn,Sn). We recall thatRn

denotes the length of thenth replenishment cycle andSn the respective order-up-

to-level (Fig. 2.1). In this policy the actual order quantity Xn for replenishment

cyclen is determined only after the demand in former periods has been realized.

Xn is computed as the amount of stock required to raise the closing inventory

level of replenishment cyclen − 1 up to levelSn. In order to provide a solution

for our problem under the(Rn, Sn) policy we must populate both the setsRn and

Sn for n = {1, . . . , N}.

2.3 Existing approaches

Early works in stochastic inventory control area adopted heuristic strategies such

as those proposed by Silver [80], Askin [3] and Bookbinder & Tan [15]. The

first complete (MIP) solution method, which operates under mild assumptions,
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was introduced for this problem by Tarim & Kingsman [89]. Tarim & Smith [92]

introduced a more compact and efficient CP formulation for the same model. Ded-

icatedcost-based filteringtechniques for such a CP model were presented in [87]

and [88]. This latter enhanced model proved to be able to solve real world problem

instances considering up to a50 periods planning horizon in a few seconds. In the

following sections we discuss the assumptions adopted by Tarim & Kingsman and

we propose a stochastic constraint programming approach inwhich these assump-

tions are dropped. By means of this approach we can compute optimal (Rn, Sn)

policy parameters and the real associated expected total cost. Of course there is a

price to pay for dropping Tarim & Kingsman’s assumptions, infact our approach

is less efficient than the one proposed in [88].

2.3.1 Stochastic programming model

The stochastic programming formulation for the general multi-period produc-

tion/inventory problem with stochastic demand can be expressed as finding the

timing of the stock reviews and the size of the non-negative replenishment orders,

Xt in periodt, with the objective of minimizing the expected total costE{TC}
over a finite planning horizon ofN periods. The model is given below:

min E{TC} =

∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(aδt + h ·max(It, 0))

g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN)

(2.3)

subject to, fort = 1 . . .N

δt =

{
1, if Xt > 0

0, otherwise
(2.4)

It = I0 +

t∑

i=1

(Xi − di) (2.5)

Pr{It ≥ 0} ≥ α (2.6)

It ∈ R, Xt ≥ 0, δt ∈ {0, 1}. (2.7)
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The demanddt in each period is a continuous random variable with probability

distribution functiongt(dt). Each decision variableIt represents the inventory

level at the end of periodt. The binary decision variablesδt state whether a

replenishment is fixed for periodt (δt = 1) or not (δt = 0). Chance-constraint

(2.6) enforces the required service level, that is the probability α the net inventory

will not be negative at the end of each and every time period. The objective

function (2.3) minimizes the expected total cost over the given planning horizon.

Although this stochastic programming approach fully models our

production/inventory problem, a solution cannot be expressed before aresponse

policy is chosen. We have already seen that a policy states the rulesto decide when

decision variables have to be set. By using the general approach proposed in [91]

a solution can be found underwait-and-seepolicy. In this policy a replenishment

decisionXk for periodk is made only after all the outcomes for random variables

associated with former periods1, . . . , k − 1 have been observed. The solution

therefore is expressed as a policy tree, which can exponentially grow in dimension

even for short planning horizons.

In order to avoid this intractable solution, approaches based on order-up-to-

level strategies have typically been proposed for this model in the literature. Ex-

pressing replenishment decisions in terms of order-up-to-levels instead of order

quantities is a convenient way to find optimal policy parameters without employ-

ing an exponential solution tree. An order-up-to-level forperiodk represents the

level to which stocks have to be maintained at the beginning of such a period.

Therefore at the beginning of each periodk, k = 1 . . . , N , in our planning hori-

zon we can observe the actual inventory level and we can decide if an order has to

be issued to bring the inventory up to the required level. There are two well-known

order-up-to-level policies for the general model proposed.

The so-called (sn,Sn) policy [81] is a purewait-and-seepolicy where at the

end of periodk we observe the inventory level and if this level is belowsk, then

an order is issued to raise stocks up to levelSk. It is easy to see that this policy

is wait-and-seesince every decision, placing or not an order and the actual size of

the order, is taken at the very last moment, by observing the demands that have

been realized in the former periods. Furthermore a solutionunder this policy can

be expressed by using only N pairs (sk,Sk), in contrast to the exponential solution
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tree required when the problem is modeled using order quantities.

A hybrid order-up-to-level policy is the so-called (Rn,Sn) policy [15], also

known as replenishment cycle policy, which we described above. In this policy

the inventory review times are set under ahere-and-nowstrategy at the beginning

of the planning horizon. These decisions are not affected bythe actual demand

realized in each period. On the other hand, for each inventory review we need to

observe the actual demand realized in former periods to compute the actual order

quantity. This makes the (Rn,Sn) policy hybrid, since the order quantity for each

review is computed in await-and-seefashion only after previous demands have

been realized. Also in this case the solution can be efficiently expressed. In fact

we only requireM (≤ N) couples of values (Rk,Sk), k = 1, . . . , M , whereRk

is the length of thek-th replenishment cycle andSk is the respective order-up-to-

level.

From these considerations, and from the well known Jensen’sinequality [11],

it is easy to see that an (sn,Sn) policy always has a lower expected total cost than

an (Rn,Sn) policy. The optimality of the (sn,Sn) policy has been presented in [76].

In what follows we will focus on the (Rn,Sn) policy. In fact, as already discussed,

despite being suboptimal this policy presents several interesting aspects.

In the next section we will recall a CP model proposed by Tarimand Smith

[92] and based on adeterministic equivalentmathematical programming (MIP)

model originally introduced by Tarim & Kingsman in [89] to compute (Rn,Sn)

policy parameters. This model can only provide near-optimal policy parameters

because it relies on assumptions that affect optimality. Inthe following section

these assumptions are discussed.

2.3.2 Tarim & Kingsman’s approach

In this section we provide a description of thedeterministic equivalentCP for-

mulation for the (Rn,Sn) policy proposed by Tarim and Smith in [92] and based

on the approach originally introduced by Tarim and Kingsmanin [89]. It should

be noted that this formulation is the discrete version of themodel presented in

Section 2.3.1. Since the normal distribution is the limiting case of a discrete bi-
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nomial distributionPp(k|n)† as the sample sizen becomes large‡, in the discrete

model an uniformly distributed random demand with meanµ and varianceσ2 can

be modeled as a discrete random variable following a binomial probability mass

functionPp(k|n), wherenp = µ andnp(1− p) = σ2.

Thedeterministic equivalentCP formulation for the (Rn,Sn) policy proposed

in [92] is

min E{TC} =
N∑

t=1

(
aδt + hĨt

)
(2.8)

subject to, fort = 1 . . .N

Ĩt + d̃t − Ĩt−1 ≥ 0 (2.9)

Ĩt + d̃t − Ĩt−1 > 0⇒ δt = 1 (2.10)

Ĩt ≥ b

(
max

j∈{1..t}
j · δj , t

)
(2.11)

Ĩt ∈ Z+ ∪ {0}, δt ∈ {0, 1} (2.12)

whereb(i, j) is defined by

b(i, j) = G−1
di+di+1+...+dj

(α)−
j∑

k=i

d̃k. (2.13)

Gdi+di+1+...+dj
is the cumulative probability distribution function ofdi + di+1 +

. . .+dj. It is assumed thatG is strictly increasing, henceG−1 is uniquely defined.

Unfortunately the computation of the binomial cumulative distribution function is

time consuming. For this reason it is common to adopt an approximate approach

that exploits the respective normal cumulative distribution function§, whose com-

putation is much easier. In what follows we will adopt this approach not only for

its efficiency, but also because it lets us comply in the discrete model with the

†The binomial distribution gives the discrete probability distributionPp(k|n) of obtaining ex-
actlyk successes out ofn Bernoulli trials [52]

‡In which casePp(k|n) is normal with meanµ = np and varianceσ2 = np(1− p).
§This approximation is a huge time-saver (exact calculations ofPp(k|n) with large n are very

onerous); it can be seen as a consequence of the central limittheorem [52] sincePp(k|n) is a sum
of n independent, identically distributed 0-1 indicator variables.
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original problem definition that assumes a normally distributed demand in each

period. We will therefore compute buffer stock levels as

b(i, j) = round
(
G−1

di,di+1,...,dj
(α)
)
−

j∑

k=i

d̃k,

wheredi, di+1, . . . , dj are normally distributed random variables. The term

G−1
di+di+1+...+dj

(α) is rounded to the nearest integer — functionround(·) — ac-

cording to the known concept ofcontinuity correction(see [24]) in probability

theory. For a detailed discussion on this CP model see [87]. Each decision vari-

able Ĩt represents the expected inventory level at the end of periodt. It should

be noted that the expected inventory level at the beginning of such a period is

simply Ĩt + d̃t and if a replenishment is scheduled int this latter value denotes

the order-up-to-level (Sn) in period t. Eachd̃t represents the expected demand

in a given periodt according to its probability mass functiongt(dt). The binary

decision variablesδt state whether a replenishment is fixed for periodt (δt = 1)

or not (δt = 0). The objective function (2.8) minimizes the expected total cost

over the given planning horizon. The two terms that contribute to the expected

total cost are ordering costs and inventory holding costs. Constraint (2.9) enforces

a no-buy-back condition, which means that received goods cannot be returned to

the supplier. As a consequence of this the expected inventory level at the end of

periodt must be no less than the expected inventory level at the end ofperiodt−1

minus the expected demand in periodt. Constraint (2.10) expresses the replen-

ishment condition. We have a replenishment if the expected inventory level at the

end of periodt is greater than the expected inventory level at the end of period

t − 1 minus the expected demand in periodt. This means that we received some

extra goods as a consequence of an order. Constraint (2.11) enforces the required

service levelα. This is done by specifying the minimum buffer stock required for

each periodt in order to assure that, at the end of every time period, the probability

that the net inventory will not be negative is at leastα. These buffer stocks, which

are stored in matrixb(·, ·), are pre-computed following the approach originally

suggested in [89].

The CP formulation operates under the assumption that negative orders are not
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allowed, so that if the actual stock exceeds the order-up-to-level for that review,

this excess stock is carried forward and not returned to the supply source. However

this event is assumed to be rare, therefore in the model it is ignored (Fig. 2.2).
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Figure 2.2: In Tarim & Kingsman [89] the event that actual stock exceeds the
order-up-to-levelSn for a given reviewRn is assumed to be rare. In other words,
in their model observing a low demand duringRn−1 has negligible probability.
This implies that probabilitiesp1, p2, . . . , pm are assumed to be low.
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Figure 2.3: Negative inventory levels.

Let us analyze the effects of this assumption on the solutions produced by the CP

approach.

1. The cost of carrying excess stock as a consequence of a low demand before

a given replenishment is ignored, therefore the actual costof a policy can be higher

than the one provided by the model.
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2. The event of carrying excess stock as a consequence of low demand before

a given replenishment can have an impact on the service levelof next periods.

In particular, when the probability of ending up with a stocklevel higher than the

order-up-to-level fixed in a given replenishment period is sufficiently high, it could

be possible to exploit excess stock to provide the required service level, keeping

lower expected closing inventory levels in following periods.

Furthermore, the CP approach models holding cost by considering expected

closing-inventory-level values̃It in each period (Fig. 2.3), while in the original

stochastic programming formulation negative inventoriesdo not contribute to the

actual overall expected holding cost, which may be therefore higher than the one

computed by the CP model.

2.4 A stochastic constraint programming approach

based on global chance-constraints

In this section we provide a novel CP approach to find optimal(Rn, Sn) pol-

icy parameters. Our approach avoids both the assumptions adopted in Tarim and

Kingsman [89], therefore it considers the effect of excess stock on the service

level of subsequent replenishment cycles and on the expected total cost of a given

policy. It also considers the fact that a negative closing-inventory-level does not

contribute to the overall holding cost. The core of our modeling strategy is the new

concept ofglobal chance-constraints. By means of this novelty we are able to dy-

namically compute the exact service level provided by a given policy parameter

configuration and the expected total cost associated with it.

2.4.1 Chance-constraints and policies

The techniques proposed in [98] and [91] for solving stochastic CSPs are general-

purpose but limited towait-and-seepolicies. Since in the inventory control prob-

lem presented we apply a hybrid policy, we adopt a different and specialized ap-

proach. By recalling that we can define a constraint as a mathematical function,

in a similar fashion it is possible to define achance-constraint, originally intro-

71



duced by Charnes and Cooper [18], as a mathematical function. Depending on

the chosen policy the domain of our functionf will change. For instance if we

restrict ourselves to ahere-and-nowpolicy, so that the solution for our stochastic

CSP can be expressed as a simple assignment for the decision variables, the func-

tion will be f : D(x1) × . . . × D(xn) → {0, 1}, whereV = {x1, . . . , xn}, and

f(x1, . . . , xn) = 1 if and only if x1, . . . , xn is an assignment such that, given ran-

dom values fory1, . . . , yn, whereS = {y1, . . . , yn} the hard constraints are satis-

fied and the chance-constraints are satisfied in the specifiedfraction of all possible

scenarios. In await-and-seepolicy as we have seenV1 = {x1}, . . . , Vn = {xn}
andS1 = {y1}, . . . , Sn = {yn}. Therefore the functionf(x1, x2, . . . , xn) will

map each possiblepolicy tree in the solution space identified by our chance-

constraint to the two possible values{0, 1}. f(x1, x2, . . . , xn) = 1 if and only

if the assignment for the variablex1 is such that, given a random value fory1,

an assignment can be found for variablex2 such that, given a random value for

y2 . . ., an assignment can be found for variablexm so that, given a random value

for ym the hard constraints are satisfied and the chance-constraints are satisfied in

the specified fraction of all possible scenarios. These functions can obviously be

expressed in theory for any possible policy.

2.4.2 Global chance-constraints

We recalled a known concept in stochastic programming: chance-constraints. We

also saw in former sections how CP can be extended to considerrandom vari-

ables and chance-constraints. This leads to what is calledstochastic constraint

programming. We now aim to extend stochastic constraint programming with a

new concept in analogy to what has been done for CP. We alreadysaw in Section

2.2 that in CP the simultaneous presence of several simple constraints, for effi-

ciency and expressiveness, is typically modeled by means ofglobal constraints.

Also in stochastic programmingwe can identify simple chance-constraints of the

form Pr{D ≥ r} ≥ α, typically involving a decision variableD and a random

variabler. An example is given by the service level at periodt in our inventory

control problem,Pr{It ≥ 0} ≥ α. These simple chance-constraints in stochas-

tic programming typically appear as a set. In our inventory model we enforce a
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service level constraint for every period in our planning horizon, that is we repli-

catePr{It ≥ 0} ≥ α, for t = 1, . . . , N . In a stochastic constraint programming

framework it is therefore natural to group this set of simplechance-constraints

and to define what we will call aglobal chance-constraintover a set of decision

variables and a set of random variables. The general signature for a global chance-

constraint will be

globalChanceConstraint(D1, . . . , DN , r1, . . . , rN , α),

whereD1, . . . , DN are decision variablesr1, . . . , rN are random variables andα

is a value in the interval[0, 1], indicating the minimum satisfaction probability for

the chance-constraint. According to the probability distribution functions of ran-

dom variables, the filtering algorithm of this constraint will prune values from do-

mains ofD1, . . . , DN that cannot guarantee the chance-constraints are satisfiedat

the required threshold probability. Depending on the givenproblem and on the re-

sponse policy chosen, dedicated efficient filtering algorithms can be implemented

(see the forward checking technique proposed by Walsh [98] for wait-and-see

policies, and the improved algorithm in [5]).

This new concept defines much more than a notation extension.In fact it

should be noted that stochastic programming is a very high level modeling frame-

work. An apparently simple constraint like the one presented, Pr{It ≥ 0},
actually hides in the stochastic programming model interdependencies between

several, and often all, decision variables and random variables in the problem.

Usually evaluating these dependencies requires the computation of a convolution

integral. Therefore in general it will not be possible to express a global chance-

constraint in stochastic constraint programming as a set ofsimple and independent

chance-constraints. An immediate example is given by Tarimand Smith’s model

[92]. Here thechance-constraintsin the stochastic programming model are mod-

eled as independent deterministic equivalent constraintsaccording to the approach

proposed by Tarim and Kingsman [89]. As discussed in the former sections this

leads to several approximations, since many dependencies between decision and

random variables are ignored. In the following sections we introduce a global

chance-constraint able to model these dependencies.
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2.4.3 A global chance-constraint for (Rn,Sn) policy

We focus on the (Rn,Sn) policy, which is hybrid and therefore cannot be solved by

means of the approaches in [5, 91] that only cope with wait-and-see policies. As

already discussed, by reasoning in terms of order-up-to-levels, under this policy

a solution for our stochastic model can be efficiently expressed as an assignment

for our decision variables, that is replenishment decisions and order-up-to-levels,

and it does not require a tree representation. We developed adedicatedglobal

chance-constraintthat identifies feasible policy parameters for our inventory con-

trol problem. As in the case of hard constraints the functiondoes not necessarily

have closed mathematical form. In our case this function is defined by provid-

ing an algorithm able to identify feasible assignments for decision variables, i.e.

policy parameters. Within the same constraint we also developed an algorithm to

compute the expected total cost for a given policy parameterconfiguration. The

signature of our global chance-constraint is as follows

serviceLevelRS(C, a, h, Ĩ, δ, d, α)

whereC is a decision variable denoting the expected total cost,a is the fixed or-

dering cost,h is the holding cost per unit,̃I andδ are arrays of decision variables,

d is an array of discrete random variablesdt with probability mass functiongt(dt)

andα is the required service level. This constraint ensures that, at the end of each

time period, the probability that the net inventory will notbe negative is at least

α. It is therefore semantically equivalent to Constraint (2.6) for t = {1, . . . , N}
and it can be used to express these constraints in a CP model. The decision vari-

ableC represents a lower bound on the expected total cost (Eq. 2.3)for a given

partial assignment for decision variablesĨ andδ, and such a bound is tight when

all the decision variables̃I andδ are ground. It should be noted that theglobal

viewprovided by this constraint allows us to consider joint probabilities during the

search when service levels and the expected total cost are computed. These joint

probabilities are ignored when the same condition is expressed by means of many

independent constraints as in Tarim and Smith [92]. In the following sections we

will describe the deterministic equivalent CP model that incorporates our global

chance-constraint and the propagation logic for the constraint.
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2.4.4 Deterministic equivalent model

The deterministic equivalent model that incorporates our constraint is

min E{TC} = C (2.14)

subject to

serviceLevelRS(C, a, h, Ĩt∈{1,...,N}, δt∈{1,...,N}, dt∈{1,...,N}, α) (2.15)

and fort = 1 . . . N ,

Ĩt + d̃t − Ĩt−1 ≥ 0 (2.16)

Ĩt + d̃t − Ĩt−1 > 0⇒ δt = 1 (2.17)

Ĩt, C ∈ Z+ ∪ {0}, δt ∈ {0, 1}. (2.18)

It is easy to see that the model is similar to the one proposed in [92] and presented

in Section 2.3.2. Again we observe two sets of decision variables: the replenish-

ment decision in periodt, δt; and the expected closing-inventory-level in period

t, Ĩt. The buffer stocks needed to provide the required service level α and the ex-

pected total costC for a given policy are computed by the special purpose global

chance-constraint.

2.4.5 Propagating the service level global chance-constraint

In order to propagate our constraint and compute a feasible assignment for the

expected closing-inventory-levels̃I, we will consider now a two-replenishment

cycle case (Fig. 2.4) in a four-period planning horizon, then we will extend

the idea in a recursive fashion to the case ofM subsequent replenishment cy-

cles{R1, . . . , RM} over N periods. Two consecutive replenishment cycles are

planned over the planning horizon considered, let us call them R1 andR2. R1

covers periods{1, 2}, R2 periods{3, 4}. LetSi be the opening inventory level for

Ri andPr{di ≤ D} be the probability of the event “observing a demand in period

i less than or equal toD”, wheredi is a random variable that represents the distri-
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bution of the demand in periodi. In a simple newsvendor problem [81] over one
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Figure 2.4: Two replenishment cycle case.

period with random demandd, the opening-inventory-level that provides a service

levelα can be computed asG−1
d (α), whereG−1

d is the inverse cumulative distribu-

tion function ofd. It is easy to see thatS1 = G−1
d1+d2

(α) and the correct minimum

opening-inventory-levelS2 for R2, which guarantees the required service levelα,

can be computed from the following relation that mixesscenario-based approach

andchance-constrained programming

Pr{d1 + d2 ≥ S1 − S2} ·Gd3+d4(S
2)+

S1−S2∑

i=0

(
Pr{d1 + d2 = i} ·Gd3+d4(S

1 − i)
)
≥ α,

(2.19)

whereGdi+di+1+...+dj
(·) is the cumulative probability distribution function ofdi +

di+1 + . . .+ dj. For the two replenishment cycles case, this can be rewritten using

the following extended form

(1−Gd1+d2(S
1 − S2 − 1)) ·Gd3+d4(S2)+

S1−S2∑

i=0

(Gd1+d2(i)−Gd1+d2(i− 1)) ·Gd3+d4(S
1 − i) ≥ α.

(2.20)

Notice that ifS1 is smaller thanS2, obviously the former cycle has no influence

on the computation ofS2 and Condition 2.19 becomesGd3+d4(S
2) ≥ α. Further-

76



more, if the computedS2 is such thatS2 < S1−d̃1, we just setS2 to the minimum

value allowed, that isS1 − d̃1.

Finally observe that the term

S1−S2∑

i=1

(Gd1+d2(i)−Gd1+d2(i− 1)) ·Gd3+d4(S
1 − i)

in Condition 2.20 has to be multiplied by the normalization term

Gd1+d2(S
1 − S2 − 1)

/ S1−S2∑

i=0

(Gd1+d2(i)−Gd1+d2(i− 1))

in order to guarantee that the sum of all the event probabilities is one. In fact

negative demands are disregarded, but the respective probabilities must be taken

into account to cover the space of all possible events.

In order to propagate (Algorithm 1:propagate) this constraint in the case

of M subsequent replenishment cycles overN periods, at each node of the search

tree we look for the firstM consecutive replenishment cycles (Algorithm 1, line

2) identified by the current partial assignment for decisionvariablesδ. Two re-

plenishment cyclesRm, Rm+1 are consecutive if the last period ofRm is g and the

first period ofRm+1 is g + 1. A replenishment cycleRk over periods{i, . . . , j}
can be identified by a full assignment overδi, . . . , δj+1 whereδi, δj+1 are set

to 1 and δi+1, . . . , δj are set to0 (FunctionlistCycles()). The opening-

inventory-levelS1 for the first replenishment cycleR1 covering periods{1, . . . , j}
can be easily computed asG−1

d1+...+dj
(α). In what follows we will describe a re-

cursivescenario-based approach[11] to compute the opening-inventory-levelSj

required in replenishment cyclej ∈ {1, . . . , M}. We will assume that opening-

inventory-levels forR1, . . . , Rj−1 are known (Algorithm 1, line 8) and we will

use a generalized version of Condition 2.19 to compute such avalue (Algorithm

1, lines 19 to 21). A generalized version of Eq. 2.19 for the case of M re-

plenishment cycles can be introduced by observing thatSj, j ∈ {1, . . . , M},
the opening-inventory-level for opening-inventory-level for replenishment cycle

Rj, is affected only by former replenishment cycles{Ri, . . . , Rj−1}, wherei =

min {v ∈ {1, . . . , j}| (Sv ≥ S1) ∧ . . . ∧ (Sv ≥ Sv−1)}. If i = j no former
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replenishment cycle affectsRj . Now since we know the distribution of the de-

mand in replenishment cycles{Ri, . . . , Rj} and under the assumption that former

opening-inventory-levels{Si, . . . , Sj−1} have been already set, it is easy to recur-

sively compute the expected service level for replenishment cycleRj by using a

scenario based approach. We can therefore extend Condition 2.19 to computeSj

for Rj given that{Ri, . . . , Rj−1} are the former periods affecting service level of

Rj.

Let Pj(S
j) be the probability of observing an inventory level ofSj, that is the

opening-inventory-levelRj , at the beginning ofRj.

Let Pj(S
j, h) be the probability of observing an inventory level ofSj +h, that

is h units higher than the opening-inventory-level ofRj, at the beginning ofRj .

Givenq ∈ Z+ ∪ {0} andk ∈ {i, . . . , M}, the probability associated with the

event “observing a demand less or equal toq in replenishment cycleRk” can be

easily computed. Such a probability is in factGd
Rk

(q), wheredRk is the demand

distribution in replenishment cycleRk, that is, ifRk covers periods{m, . . . , n},
dRk = dm + . . . + dn. Let Ĝd

Rk
(q) be the element of probabilityGd

Rk
(q) −

Gd
Rk

(q − 1).

• if Sj−1 ≥ Sj, thenPj(S
j) is computed as

Pj−1(S
j−1) ·

(
1−Gd

Rj−1
(Sj−1 − Sj − 1)

)
+

Si−Sj−1∑

k=1

Pj−1(S
j−1, k) ·

(
1−Gd

Rj−1
(Sj−1 − Sj + k − 1)

) (2.21)

that isPj−1(S
j−1) multiplied by the probability of the event “observing a

demand greater or equal toSj−1 − Sj in replenishment cycleRj−1”, plus

the summation, fork = 1, . . . , Si − Sj−1, of Pj−1(S
j−1, k) multiplied by

the probability of the event “inRj−1 we observe a demand greater or equal

to Sj−1 − Sj + k”.
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• if Sj−1 < Sj , thenPj(S
j) is computed as

Pj−1(S
j−1) +

Sj−Sj−1∑

k=1

Pj−1(S
j−1, k)+

Si−Sj∑

k=1

Pj−1(S
j−1, Sj − Sj−1 + k) ·

(
1−Gd

Rj−1
(k − 1)

)
(2.22)

• if Sj−1 ≥ Sj + h, thenPj(S
j, h) is computed as

Pj−1(S
j−1) · Ĝd

Rj−1
(Sj−1 − Sj − h)+

Si−Sj−1−h∑

k=1

Pj−1(S
j−1, k) · Ĝd

Rj−1
(Sj−1 − Sj − h + k)

(2.23)

• if Sj−1 < Sj + h, thenPj(S
j, h) is computed as

Si−Sj−1∑

k=Sj+h−Sj−1

Pj−1(S
j−1, k) · Ĝd

Rj−1
(k − Sj − h + Sj−1). (2.24)

ObviouslyPi(S
i) = 1 since, for the wayRi is chosen, no former replenishment

cycle may affect its order-up-to-levelSi. By following a dynamic programming

[8] scheme,Sj can be computed as the minimum value that satisfies

Pj(S
j) ·Gd

Rj
(Sj) +

Si−Sj∑

k=1

(
Pj(S

j , k) ·Gd
Rj

(Sj + k)
)
≥ α. (2.25)

Since this paper is not focused on efficiency issues, the dynamic programming al-

gorithm developed to implement Eq. 2.25 simply employs a recursive code struc-

tured as the functional equation itself. Nevertheless we want to underline that the

proposed recursion only aims to describe a correct functional equation to compute

feasible assignments. As in every dynamic program, efficiency can be obtained by

adopting a forward recursion and by trading memory and time to avoid computing

the probability of a given scenario more than once. In the recursive computation

scenarios with negative demands are not considered, therefore we must normalize
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Figure 2.5: Normalization.

the probabilities of other events in order to ensure that their sum covers the whole

space of the possible events. In other words we need to ensurethat the probability

associated with area A in Fig. 2.5 is one. This is a known approach in inventory

control and it is usually justified since the distortion introduced by this normal-

ization typically does not affect the quality of the solutions. A possible way to

perform this normalization step is to divide the term

Pj(S
j) ·Gd

Rj
(Sj) +

Si−Sj∑

k=1

(
Pj(S

j, k) ·Gd
Rj

(Sj + k)
)

in Condition 2.25 by the following normalization term

Pj(S
j) +

Si−Sj∑

i=k

Pj(S
j, k) (2.26)

in order to guarantee that the sum of all the probabilities ofthe events considered

in stepj is one.

In order to speed up the search for the optimal opening-inventory-level asso-

ciated with a given replenishment cycleRk, recall that opening-inventory-levels

computed as shown in [92] are always greater than or equal to optimal opening-

inventory-level satisfying Eq. 2.25. Therefore an efficient strategy (Procedure

setBufferForCycle()) for finding optimal opening-inventory-levels is to
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consider sequentially the firstM replenishment cycles,Rk, k ∈ {1, . . . , M},
identified by the current partial assignment for replenishment decisionsδ. For

each replenishment cycleRk an upper-bound for the optimal opening-inventory-

level can be computed asdG−1
d

Rk
(α)e (see [89]). Starting from this upper-bound

we can decrease it and search for the minimum value that satisfies Eq. 2.25 (Pro-

ceduresetBufferForCycle(), line 4). Opening-inventory-levels computed

as in [89] are close to optimal because probabilities associated with negative or-

der quantity scenarios are typically low, therefore this strategy requires only a few

steps to reach the optimum levels.

2.4.6 Computing holding cost

In this section we address the problem of computing the correct holding cost for

a given replenishment cycleR covering periods{i, . . . , j} when the expected

closing-inventory-level̃It for each periodt ∈ {i, . . . , j} is given. We recall that

Ĩj denotesSj minus the expected demand in replenishment cyclej, d̃Rj . The

problem of computing the exact holding cost arises from the fact that negative

inventory levels do not contribute to the overall holding cost. Therefore the term

hĨt in the objective function of the model presented by Tarim & Kingsman is

not a complete representation of this cost component. OnceĨj is known every

other Ĩk, k ∈ {i, . . . , j − 1} can be easily computed as̃Ik = Ĩj +
∑j

t=k+1 d̃t.

Let h(R, Ĩj) be the expected holding cost for replenishment cycleR when the

expected closing-inventory-levelĨj is given. This cost component is made up of

individual cost components for each period in our replenishment cycleR. Let

us consider a given periodk ∈ {i, . . . , j}. The opening inventory level forR is

Si = Ĩj +
∑j

t=i d̃t. We recall that the probability of observing an overall demandr

over the time span{i, . . . , k} is denoted bŷGdi+...+dk
(r). By lettingr range from

0 to Si we obtain every possible scenario for which a holding cost isincurred in

periodk. Therefore the expected holding cost for periodk can be expressed as

h
∑Si

r=0(Si − r) · Ĝdi+...+dk
(r) and the expected holding cost for replenishment

cycleR will be the sum of the contributions from every periodk ∈ {i, . . . , j}.
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Algorithm 1 : propagate

input : C, δ1, . . . , δN , Ĩ1, . . . , ĨN , α, a, h, d1, . . . , dN , N

begin1

cycles← listCycles(δ1, . . . , δN , Ĩ1, . . . , ĨN , N) ;2

n← # elements incycles;3

if n = 0 then4

return;5

cost← a · n;6

condition← true;7

for each elemente in cycles do8

let {i, . . . , j} be the span covered bye;9

if no decision variablẽIi, . . . , Ĩj is assignedthen10

condition← false;11

else if∃k | decision variablẽIk, i ≤ k ≤ j is assignedthen12

Si ← cycle opening inventory level ofe, linearly dependent on13

Ĩk;
holdingCost← cycle holding cost ofe with opening inventory14

levelSi (Eq. 2.27);
cost← cost + holdingCost;15

if condition then16

C ← cost;17

else18

setBufferForCycle(cycles, d1, . . . , dN , α);19

let e be the last element incycles, a replenishment cycle over20

{i, . . . , j};
Si ← cycle opening inventory level ofe, linearly dependent oñIj ;21

holdingCost← cycle holding cost ofe with opening inventory22

levelSi (Eq. 2.27);
cost← cost + holdingCost;23

Inf(C)← cost;24

end25
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ProceduresetBufferForCycle(cycles, d1, . . . , dN , α)
input : cycles, d1, . . . , dN , α

begin1

let R be the last element incycles, a replenishment cycle over2

{i, . . . , j};
S ← dG−1

di+...+dj
(α)e;3

decreaseS to the min value that satisfies Eq. 2.25, with former cycles4

as listed incycles;
Ĩj ← x− d̃i − ...− d̃j;5

end6

Function listCycles(δ1, . . . , δN , Ĩ1 . . . , ĨN , N)
input : δ1, . . . , δN , N
output: cycles

begin1

cycles← {};2

lastCycle← null;3

pointer ← 1;4

for eachδi, i = 2, . . . , N do5

if δi is not assignedthen6

returncycles;7

else iflastCycle 6= null then8

let {i, . . . , j} be the span covered bylastCycle;9

if no variableĨi, . . . , Ĩj is assignedthen10

returncycles;11

if δi is assigned to1 then12

lastCycle← a replenishment cycle over{pointer, ..., i− 1};13

addlastCycle to cycles;14

pointer ← i;15

lastCycle← a replenishment cycle over{pointer, ..., N};16

addlastCycle to cycles;17

returncycles;18

end19
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2.4.7 Computing the objective function

In order to compute the expected total cost for a given replenishment plan, or a

lower bound for such a cost associated with a given partial assignment for re-

plenishment decisionsδ, we look again for the firstM consecutive replenishment

cycles identified by the current partial assignment for decision variablesδ. There-

fore we will assume thatR1, . . . , RM are known (Algorithm 1, line 8) and we will

follow a reasoning similar to the one developed to satisfy our chance-constraints.

The expected holding cost for replenishment cycleRj, j ∈ {1, . . . , M}, is

affected only by former replenishment cycles{Ri, . . . , Rj−1}, wherei = min

{v ∈ {1, . . . , j}| (Sv ≥ S1) ∧ . . . ∧ (Sv ≥ Sv−1)}. If i = j no former replen-

ishment cycle affectsRj . Now since we know the distribution of the demand

in replenishment cycles{Ri, . . . , Rj} and since we assume that former opening-

inventory-levels{Si, . . . , Sj−1} have been already set, it is easy to recursively

compute the expected holding cost for replenishment cycleRj by using asce-

nario based approach.

The expected holding cost (HC) for Rj given that{Ri, . . . , Rj−1} are the

earlier periods affectingRj can be computed as

E{HCRj} = Pj(S
j) · h(Rj , Ĩj) +

Si−Sj∑

k=1

(
Pj(S

j, k) · h(Rj , Ĩj + i)
)

. (2.27)

Also in this case, since negative demands are not consideredin the summation,

event probabilities must be normalized accordingly using the term given in Eq.

2.26 as shown before.

A valid lower bound (Algorithm 1, line 24) for the expected total cost of a

given partial assignment involving decision variablesδ — tight when the assign-

ment is complete (Algorithm 1, line 17) — can be computed by considering a

fixed ordering cost for each replenishment cycleRi identified by the assignment

(Algorithm 1, line 6), plus the expected holding cost for thefirst M consecu-

tive replenishment cyclesR1, . . . , RM computed as explained above (Algorithm

1, lines 14 and 22).
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2.4.8 Cost-based filtering

In order to improve the search process we employed a cost-based filtering method

similar to the one proposed in [87]. We will not describe in detail the whole

method. We will rather try to give a high level description ofit. The reader may

refer to [87] for further details.

Firstly we recall that, in Tarim and Kingsman’s model [89], upper bounds for

decision variables̃Ii, i = {1, . . . , N} can be computed by considering a single re-

plenishment cycle covering the whole planning horizon. Thebuffer stock required

to guarantee the required service level isb(1, N), as defined in Eq. 2.13. Since

b(i, j) is an increasing function [92], it directly follows that themaximum value

for the domain of̃IN is obviouslyb(1, N) and that for every other decision variable

Ĩi, i = {1, . . . , N −1} the maximum value in the domain isb(1, N)+
∑N

k=i+1 d̃k.

These bounds are still valid in our model. In fact the effect of excess stocks from

former periods may only decrease a buffer stock needed to provide a given service

level.

A lower bound for the cost of an optimal policy associated with a given partial

assignment can be computed as shown in [87]. In this work the authors solve in

polynomial time, by using a shortest path algorithm, a relaxation of the original

problem where inventory conservation constraints betweensubsequent replenish-

ment cycles are relaxed. This means that negative order quantities are allowed in

this relaxed model. The bound is dynamically computed during the search pro-

cess and it takes into account partial assignments for both decision variablesδt

and inventory levels̃It, by respectively forbidding or forcing stated nodes in the

optimal path to reflect assignments forδt variables, and by modifying costs in the

connection matrix to reflect assignments forĨt variables.

A similar approach can be adopted in our case by noticing thatTarim and

Kingsman’s approach underestimates holding cost in each period. Firstly because

it considers the contribution of negative inventory levelson the holding cost. Sec-

ondly because it does not consider the effect of excess stocks from former periods

not only in the service level computation, but also in the cost computation. This

means that Tarim and Kingsman’s model always computes a costthat is less than

or equal to the actual cost associated with a given policy. Onthe other hand, as
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seen, such a model overestimates buffer stocks.

In our cost-based filtering approach we relax not only the inventory conserva-

tion constraints, as in [87], but also the constraints that force buffer stocks at the

end of each replenishment cycle. Therefore we simply solve adeterministic pro-

duction planning problem under fixed ordering cost and linear holding cost. The

same algorithm proposed in [87] can be employed to efficiently solve this prob-

lem. Since we do not take into account buffer stocks, and fromthe former consid-

erations on the cost structure, this relaxed Tarim and Kingsman model provides

a lower bound for the cost provided by our exact model. Also inour cost-based

filtering approach this bound is dynamically computed during the search process

and it takes into account partial assignments for both decision variablesδt and

inventory levels̃It as discussed above.

2.5 Comparison with Tarim & Kingsman’s approach

In this section we compare the results obtained by the approach presented in [87]

with the exact solutions provided by the new model.

The following assumptions are valid for the rest of this section. We assume

that the demand in each period is normally distributed aboutthe forecast value

with the same coefficient of variationτ . Thus the standard deviation of demand

in periodt is σt = τ · d̃t. In all cases, initial inventory levels, delivery lead-times

and salvage values are set to zero.

All experiments here presented were performed on an Intel(R) Centrino(TM)

CPU 1.50GHz with 500Mb RAM. The solver used for our test is Choco [58], an

open-source solver developed in Java.

Firstly we consider a decreasing demand pattern over a5-period planning hori-

zon. The planning horizon considered is short since this demand pattern is partic-

ularly hard to treat.

The forecasts for the demand in each period are given in Table2.1. As in-

put parameters we considereda ∈ {1, 100, 200}, τ ∈ {0.15, 0.25} and α ∈
{0.95, 0.75}. The holding costh is fixed and equal to1 for all the instances, since

replenishment decisions are affected only by the ratio between ordering cost and

holding cost. In Table 2.2 experimental results are presented. For each instance
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Period 1 2 3 4 5

Decreasing d̃t 400 130 150 60 35

Table 2.1: Expected values for a decreasing demand pattern.

Total Cost
parameters T&K Exact

a τ α E{TC} Ê{TC} gap(%) sec E{TC} gap(%) sec
1 1 0.25 0.95 324 370 12.4 1 358 3.35 469
2 100 0.25 0.95 773 814 5.04 1 799 1.88 254
3 200 0.25 0.95 1152 1189 3.11 1 1176 1.11 165
4 1 0.15 0.95 197 205 3.90 1 200 2.50 372
5 100 0.15 0.95 637 644 1.09 1 640 0.63 249
6 200 0.15 0.95 984 990 0.61 1 985 0.51 30
7 1 0.25 0.75 135 178 24.1 1 172 3.49 219
8 100 0.25 0.75 573 613 6.53 1 607 0.99 161
9 200 0.25 0.75 886 910 2.64 1 907 0.33 22
10 1 0.15 0.75 83 101 17.8 1 100 1.00 282
11 100 0.15 0.75 517 535 3.36 1 534 0.19 181
12 200 0.15 0.75 797 810 1.60 1 809 0.12 8

Table 2.2: Decreasing demand pattern. Columns “E{TC}” are the expected total
cost computed by Tarim and Kingsman’s approximate approach(T&K) and by
our exact approach (Exact). In order to compute T&KE{TC} we employed the
efficient CP approach proposed in [87]. In columns “sec” we report, in seconds,
the time performance for each model. Since T&K provides an approximate ex-
pected total cost, in column “̂E{TC}” we report the actual expected total cost of
such a solution, which is computed by simulating demands according to the given
distribution in each period and by observing the realized total cost over10000
runs. The two columns “gap” for T&K and Exact report respectively: the differ-
ence between T&KE{TC} and T&K Ê{TC}, in percentage on T&KE{TC},
and the difference between T&K̂E{TC} and ExactE{TC} in percentage on
ExactE{TC}. Holding costh is set to1 for every instance.

considered “ExactE{TC}” is the expected total cost of the optimal solution (i.e.

set of policy parameters: replenishment cycle lengths and order-up-to-levels) ob-

tained using the complete approach we presented. “T&KE{TC}” is the approx-

imate expected total cost of the solution obtained by using the model proposed in

[87], which adopts Tarim & Kingsman’s approach. “T&K̂E{TC}” is the actual

expected total cost of the solution obtained using the modelproposed in [87]. This

actual expected total cost has been computed by simulation.Notice that for some

parameter configurations the solution obtained with the approach in [92] differs
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from the optimal one, while for other cases the approximate approach produces

a solution close to the optimal one. The reasons are different depending on the

particular parameter configuration.

Instance (1) has a low ordering costa, therefore we expect to order frequently.

The expected total holding cost and the buffer stock levels required to provide

service levelα are affected by the negative trend of the demand and by excess

stocks carried from former replenishment cycle as a consequence of this trend

(Fig. 2.6). Since the model in [87] does not take into accountthese effects the
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Figure 2.6: Comparison between inventory levels computed by the exact and the
approximate approach.

expected total cost of the optimal solution it provides (T&K̂E{TC}) differs from

the actual optimum (ExactE{TC}).
Instances (10), (11) and (12) have a low service levelα and coefficient of vari-

ationτ . In this case the policy parameters computed by the approachin [87] are

optimal, in fact T&K Ê{TC} is close to ExactE{TC}. The effect of excess

stocks is so low that it can actually be ignored, but the approximate expected total

cost computed by the approach in [87] (T&KE{TC}) differs from the exact one

(T&K Ê{TC}) by respectively17.8%, 3.36% and1.60%, since negative inven-

tory levels affect the expected total cost of the policy. This follows from the fact

that we require a low service level and we keep low buffer stock levels, therefore

the probability of ending up with negative inventory levelsbecomes high and the
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Period 1 2 3 4 5 6 7 8

Seasonal d̃t 50 75 90 75 50 25 10 25

Life cycle d̃t 20 25 30 35 40 25 20 10

Erratic d̃t 50 30 70 15 60 10 30 15

Table 2.3: Expected values for Seasonal, Life Cycle and Erratic demand patterns.

effect of negative inventory levels on the expected holdingcost increases as the

length of the replenishment cycles decreases.

It should be noted that the computational effort required byour exact approach

to compute policy parameters is directly affected by the number of replenishment

cycles in our plan. This is the reason why we observe higher run times when the

ratio between ordering cost and holding cost is low. This is true in general also

for the instances that will be considered below.

We will now consider three other demand patterns that typically arise in prac-

tice. These patterns were originally proposed by Berry in [10] and they were

also adopted for the experiments in [89]. The patterns are presented in Table

2.3. We did not consider a constant demand pattern, which is instead included in

Berry’s test bed, since it is obvious that for this pattern the solutions provided by

our approach would not differ from the ones provided by Tarim’s and Kingsman

approach. In these cases as input parameters we considereda ∈ {1, 50, 100},
τ ∈ {0.2, 0.3} andα ∈ {0.95, 0.75}. In Table 2.4 experimental results for these

three further demand patterns are presented. Similar considerations to those just

introduced indicate why also for these demand patterns in some cases the results

provided by our exact approach may differ substantially from those obtained with

the approximate one. Typically such a difference is due to the combined effect of

excess stocks and/or negative inventory levels as already discussed.

From our experiments it is clear that the approximate expected total cost com-

puted by Tarim & Kingsman’s model (T&KE{TC}) may substantially underesti-

mate the exact expected total cost (T&K̂E{TC}) associated with a given solution,

which can be easily computed by simulation or by using our exact model. This is

particularly evident in the erratic demand case, where for instances43 and46 the

approximate expected total cost predicted by Tarim & Kingsman’s model (T&K
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Total Cost
parameters T&K Exact

a τ α E{TC} Ê{TC} gap(%) sec E{TC} gap(%) sec
13 1 0.3 0.95 205 213 3.76 1 207 2.90 2774
14 50 0.3 0.95 566 570 0.70 1 564 1.06 478
15 100 0.3 0.95 858 864 0.69 1 859 0.58 104
16 1 0.2 0.95 139 140 0.71 1 139 0.72 1412
17 50 0.2 0.95 498 499 0.20 1 498 0.20 180
18 100 0.2 0.95 771 772 0.13 1 766 0.78 66
19 1 0.3 0.75 88 108 18.5 1 106 1.89 908
20 50 0.3 0.75 440 458 3.93 1 458 0.00 165
21 100 0.3 0.75 696 710 1.97 1 709 0.14 56
22 1 0.2 0.75 61 73 16.4 1 72 1.39 603
23 50 0.2 0.75 411 422 2.61 1 420 0.48 109
24 100 0.2 0.75 658 666 1.20 1 665 0.15 51

25 1 0.3 0.95 109 110 0.91 1 110 0.00 48
26 50 0.3 0.95 441 443 0.45 1 438 1.14 8
27 100 0.3 0.95 634 634 0.00 1 630 0.63 4
28 1 0.2 0.95 76 77 1.30 1 77 0.00 34
29 50 0.2 0.95 393 393 0.00 1 392 0.26 6
30 100 0.2 0.95 574 574 0.00 1 570 0.70 4
31 1 0.3 0.75 49 58 15.5 1 56 3.57 30
32 50 0.3 0.75 355 362 1.93 1 357 1.40 6
33 100 0.3 0.75 529 535 1.12 1 531 0.75 4
34 1 0.2 0.75 35 41 14.6 1 40 2.50 27
35 50 0.2 0.75 333 338 1.48 1 334 1.20 6
36 100 0.2 0.75 503 507 0.79 1 503 0.80 4

37 1 0.3 0.95 175 195 10.2 1 188 3.72 554
38 50 0.3 0.95 492 494 0.40 1 489 1.02 33
39 100 0.3 0.95 692 692 0.00 1 689 0.44 14
40 1 0.2 0.95 110 122 9.84 1 119 2.52 381
41 50 0.2 0.95 418 418 0.00 1 417 0.24 25
42 100 0.2 0.95 618 619 0.16 1 617 0.32 10
43 1 0.3 0.75 64 90 28.8 1 85 5.88 277
44 50 0.3 0.75 360 370 2.70 1 369 0.27 18
45 100 0.3 0.75 560 570 1.75 1 569 0.18 9
46 1 0.2 0.75 45 59 23.7 1 56 5.36 225
47 50 0.2 0.75 332 339 2.06 1 339 0.00 19
48 100 0.2 0.75 532 539 1.30 1 536 0.56 8

Table 2.4: Experimental results for Seasonal (13, . . . , 24), Life Cycle (25, . . . , 36)
and Erratic (37, . . . , 48) demand patterns.

E{TC}) is respectively28.8% and23.7% less costly than the exact expected total

cost associated with the policy parameter configuration in the respective solution

(T&K Ê{TC}). Although Tarim & Kingsman’s model underestimates cost —

T&K E{TC} is on average5.26% lower than T&K Ê{TC} — over the whole

test bed the average difference between T&KÊ{TC} and ExactE{TC} is only

1.25%. This means that the approximate approach in [89] actually computes near-

optimal parameters for (Rn,Sn) policy, reorder points and the respective order-up-

to-levels, regardless of the underestimated cost. Nevertheless for some instances,
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i.e. (29), (30), (31) etc., T&KE{TC} is equal to T&KÊ{TC}, which means that

for these instances the assumptions adopted by Tarim and Kingsman are valid. In

summary these results suggest that Tarim & Kingsman’s modelcan actually com-

pute near-optimal policy parameters, although the approximate expected total cost

predicted can often differ significantly from the actual expected total cost associ-

ated with these reorder points and respective order-up-to-levels.

As we may notice from the run-times reported in columns “sec”, the approach

proposed in [87] always outperforms our exact method and runs efficiently for

every instance considered. Further results presented in [87] suggest that such

an approach can efficiently handle large scale instances. Since our results sug-

gest that the exact solution in the average case differs onlyslightly from the one

provided by Tarim and Kingsman’s approximate approach, when efficiency is an

issue, their approach remains a valid alternative to our exact model.

2.6 Conclusions

We identified two sources of approximation in Tarim & Kingsman’s model for

computing (Rn,Sn) policy parameters under service level constraint. We pro-

posed an exactstochastic constraint programmingapproach based on a novel

concept —global chance-constraints— which extends the original stochastic

constraint programming framework proposed by Walsh. We described a dedi-

cated global chance-constraint that computes optimal inventory levels to meet the

required service level and the expect total cost associatedwith them. We analyzed

the accuracy of the approximate solutions provided by the model developed by

Tarim & Kingsman over four different demand patterns and over several different

input parameter configurations. We also provided insights into for which kind of

instances the assumptions adopted by Tarim & Kingsman may affect the quality

of the solution provided by their model. Our results suggestthat their modeling

strategy is a good trade-off between quality of the solutionand efficiency of the

search process.
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Chapter 3

Paper II: Computing Replenishment

Cycle Policy under Non-stationary

Stochastic Lead Time

R. Rossi, S. A. Tarim, B. Hnich and S. Prestwich

Abstract

In this paper we address the general multi-period production/inventory problem
with non-stationary stochastic demand and supplier lead time under service-level
constraints. A replenishment cycle policy (Rn,Sn) is modeled, whereRn is then-
th replenishment cycle length andSn is the respective order-up-to-level. Initially,
we extend an existing formulation for this policy in such a way to incorporate a
dynamic deterministic lead time allowing order-crossovers. Following this, we
extend the model to incorporate a non-stationary stochastic lead time. Within a
constraint programming framework, a dedicated constraintimplementing a hybrid
approach is proposed to compute replenishment cycle policyparameters.
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3.1 Introduction

Inventory theory provides methods for managing inventories in different envi-

ronments. An interesting class of production/inventory control problems is the

one that considers the single location, single product caseunder non-stationary

stochastic demand. In contrast to the production planning problem under deter-

ministic demand (Wagner and Whitin [96]), different inventory control policies

can be adopted to cope with the stochastic version.

A policy states the rules to decide when orders have to be placed and how to

compute the replenishment lot-size for each order. For a discussion on inventory

control policies see Silver et al. [81]. One of the well-known policies that can be

adopted in inventory control is the replenishment cycle policy, (R,S). Under the

non-stationary demand assumption this policy takes the dynamic form (Rn,Sn)

whereRn denotes the length of thenth replenishment cycle, andSn the order-up-

to-level value for thenth replenishment.

It is a known result (Scarf [76]) that such a policy is not optimal in term of

cost minimization, since non-stationary (sn,Sn) always dominates it even when

a delivery lag is considered (Kaplan [55]). However, as discussed in Tarim and

Kingsman [89],(R, S) provides an effective means of dampening the planning in-

stability. Furthermore, it is particularly appealing whenitems are ordered from the

same supplier or require resource sharing. In such a case allitems in a coordinated

group can be given the same replenishment period. Periodic review also allows

a reasonable prediction of the level of the workload on the staff involved and is

particularly suitable for advanced planning environments. For these reasons, as

stated by Silver et al. [81],(R, S) is a popular inventory policy.

Due to its combinatorial nature, (Rn,Sn) policy — even in the absence of

stochastic lead time — presents a difficult problem to solve to optimality (Tarim

and Kingsman [89]). Early work in the area have been carried out in Askin [3],

Silver [80] and a heuristic procedure was proposed by Bookbinder and Tan [15].

Although many works in inventory control assume a penalty cost parameter for

penalizing stock-outs, in all the works cited here the cost is minimized under a

service level constraint, which is in practice a very popular measure, since it has

been widely recognized that penalty costs, and in particular the cost of loosing
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customer goodwill, are usually difficult to assess (Bashyamand Fu [6]).

A common assumption, in practice very restrictive, in all these works is the

absence of delivery lag. A work on stochastic lead time in continuous-time in-

ventory models was presented in Zipkin [101]. Kaplan [55] characterized the

optimal policy for a dynamic inventory problem where the time lag in delivery of

an item is a discrete random variable with known distribution. Since tracking all

the outstanding orders by means of dynamic programming requires a large multi-

dimensional state vector, Kaplan assumes that orders do notcross in time and that

supplier lead time probabilities are independent of the size/number of outstanding

orders (for details on order-crossover see Hayya et al. [43]). Under these assump-

tions he was able to provide a solution method for the problemand to derive the

optimal policy. The first assumption is valid for systems where supplier’s produc-

tion system has a single-server queue structure operating under a FIFO policy. In

Bashyam and Fu [6] a similar problem — operating under(s, S) policy, having a

service level constraint and allowing orders to cross in time — is described and

solved by means of a simulation based approach. To the best ofour knowledge,

there is no complete approach in the literature that addresses the (Rn,Sn) policy

under stochastic supplier lead time.

In this paper, we use a “stochastic constraint programming”approach to ad-

dress (Rn,Sn) policy under stochastic supplier lead time. Computing optimal pol-

icy parameters under these assumptions is a hard problem from a computational

point of view. We build on the work of Eppen and Martin [27] andfollowing a

similar approach we develop ascenario based method[11, 91] for solving (Rn,Sn)

under stochastic demand and supplier lead time. Efficient methods for computing

(Rn,Sn) policy parameters based on Constraint Programming were proposed in

Tarim et al. [87, 92]. In this paper, under the same assumptions, we develop a

dedicatedconstraintthat realizes a deterministic equivalent modeling of chance-

constraints [18] by employing a scenario based approach [91]. A constraint pro-

gramming(CP) [1] model is proposed and an example is given where an inventory

control problem is solved to optimality under a given discrete stochastic supplier

lead time with known distribution.

The paper is organized as follows. In Section 3.2 we provide some formal

background related to the modeling techniques employed. InSection 3.3 we pro-
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vide a formal definition for the general multi-period production/inventory problem

with non-stationary stochastic demand and lead time. In Section 3.4 we extend

Tarim and Kingsman’s [89] model for the replenishment cyclepolicy in order to

consider a dynamic deterministic supplier lead time, whichassumes that orders

may cross in time. In Section 3.5 former results are embeddedin a scenario based

approach to solve the problem when a stochastic supplier lead time with known

probability mass function is given. In Section 3.6 a CP modelis proposed, which

incorporates former results in a dedicated constraint ableto dynamically enforce

the given service level constraint during search. Furthermore a demonstrative ex-

ample is given in this section to clarify the approach. In Section 3.7 an instance is

solved under deterministic and stochastic supplier lead times; solutions are then

discussed. In Section 3.8 results are summarized and directions for future research

are given.

3.2 Constraint Programming

A Constraint Satisfaction Problem(CSP) [1, 17, 62] is a triple〈V, C, D〉, where

V is a set of decision variables,D is a function mapping each element ofV to a

domain of potential values, andC is a set of constraints stating allowed combina-

tions of values for subsets of variables inV . A solutionto a CSP is simply a set of

values of the variables such that the values are in the domains of the variables and

all of the constraints are satisfied. We may also be interested in finding a feasible

solution that minimizes (maximizes) the value of a given objective function over a

subset of the variables. Alternatively, we can define a constraint as a mathematical

function:f : D1×D2× . . .×Dn → {0, 1} such thatf(x1, x2, . . . , xn) = 1 if and

only if C(x1, x2, . . . , xn) is satisfied. Using this functional notation, we can then

define a constraint satisfaction problem (CSP) as follows (see also [1]): givenn

domainsD1, D2, . . ., Dn andm constraintsf1, f2, . . ., fm find x1, x2, . . ., xn such

that

fk(x1, x2, . . . , xn) = 1, 1 ≤ k ≤ m; (3.1)

xj ∈ Dj , 1 ≤ j ≤ n. (3.2)
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The problem is only a feasibility problem, and no objective function is defined.

Nevertheless, CSPs are also an important class of combinatorial optimization

problems. Here the functionsfk do not necessarily have closed mathematical

forms (for example, functional representations) and can bedefined simply by pro-

viding the setS described above.

For key concepts in Constraint Programming (CP) such as constraint filtering

algorithm, constraint propagation and arc-consistency see [1, 67].

In [98] and [91] astochastic constraint satisfaction problem(stochastic CSP)

is defined as a 6-tuple< V, S, D, P, C, θ >. V is a set of decision variables and

S is a set of stochastic variables.D is a function mapping each element ofV and

each element ofS to a domain of potential values. A decision variable inV is

assigneda value from its domain.P is a function mapping each element ofS to

a probability distribution for its associated domain.C is a set of constraints. A

constrainth ∈ C that constrains at least one variable inS is achance-constraint.

θh is a threshold value in the interval[0, 1], indicating the minimum satisfaction

probability for chance-constrainth. Note that a chance-constraint with a threshold

of 1 is equivalent to a hard constraint.

In [98] a policy based view of stochastic constraint programs is proposed. The

semantics is based on a tree of decisions. Each path in a policy represents a dif-

ferent possible scenario (set of values for the stochastic variables), and the values

assigned to decision variables in this scenario. To find satisfying policies, back-

tracking and forward checking algorithms, which explores the implicit AND/OR

graph, are presented. Such an approach has been further investigated in [5]. An

alternative semantics for stochastic constraint programs, which suggests an al-

ternative solution method, comes from a scenario-based view [11]. In [91] the

authors outline this solution method, which consists in generating a scenario-tree

that incorporates all possible realizations of discrete random variables into the

model explicitly. The great advantage of such an approach isthat conventional

constraint solvers can be used to solve stochastic CSP. Of course, there is a price

to pay in this approach, as the number of scenarios grows exponentially with the

number of stages and such a growth is particularly affected by random variables

that contain a wide range of values in their domain.
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3.3 Problem Definition

We consider a finite planning horizon ofN periods and a demanddt for each pe-

riod t ∈ {1, . . . , N}, which is a random variable with probability density function

gt(dt). We assume that the demand occurs instantaneously at the beginning of

each time period. The demand we consider is non-stationary,that is it can vary

from period to period, and we also assume that demands in different periods are

independent.

In the following sections we will consider two different cases, respectively: a

deterministic lead time of lengthLt for an order placed in periodt ∈ {1, ..., N}
and a stochastic lead timelt with probability mass functionft(lt) for an order

placed in periodt ∈ {1, ..., N}. Note that{lt} are mutually independent and each

of them is also independent of the respective order quantity. A fixed delivery cost

a is incurred for each order and a variable unit costv. A linear holding costh

is incurred for each unit of product carried in stock from oneperiod to the next.

We assume that it is not possible to sell back excess items to the vendor at the

end of a period and that negative orders are not allowed, so that if the actual stock

exceeds the order-up-to-level for that review, this excessstock is carried forward

and not returned to the supply source. However, such occurrences are regarded

as rare events and accordingly the cost of carrying excess stocks and the positive

effect on the service level of subsequent periods is ignored. As a service level

constraint we require the probability that at the end of eachand every period the

net inventory will not be negative set to be at least a given valueα. Our aim is to

minimize the expected total cost, which is composed of ordering costs, unit costs

and holding costs, over theN-period planning horizon, satisfying the service level

constraints.

The actual sequence of ordering and delivery to be considered can be arbitrary

as Kaplan notices in [55]. In the following we will adopt the same sequence of

action he describes, since it handles all the deliveries symmetrically and allows

for some delay in the arrival deliveries at the beginning of aperiod. The sequence

is therefore as follows. At the beginning of a period, the inventory on hand after

all the demands from previous periods have been realized is known. Since we are

assuming complete backlogging, this quantity may be negative. Also known are
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orders placed in previous periods which have not been delivered yet. On the basis

of this information, an ordering decision is made for the current period. All the

deliveries that are to be made during a period are assumed to be made immedi-

ately after this ordering decision and hence are on hand at the beginning of the

period. A further discussion that states the convenience ofthis sequence of events

can be found in Kaplan [55]. To summarize there are three successive events at

the beginning of each period. First, stock on hand and outstanding orders are de-

termined. Second, an ordering decision is made on the basis of this information.

Third, all supplier deliveries for the current period, including possibly the most

recent orders, are received.

3.4 Dynamic Deterministic Lead Time

In this section we focus on the general multi-period production/inventory prob-

lem with stochastic demands and dynamic deterministic leadtime. The reader

may also refer to [42] about this topic. This problem can be formulated as finding

the timing of the stock reviews and the size of the respectivenon-negative replen-

ishment orders,Xt in periodt, with the objective of minimizing the expected total

costE{TC} over a finite planning horizon ofN periods. Since a dynamic de-

terministic lead timeLt ≥ 0 is considered in each periodt = 1, . . . , N , an order

placed in periodt will be received only at periodt + Lt. Depending on the values

assigned toLt it may be obviously not possible to provide the required service

level for some initial periods. In general we will be able to provide the required

service levelα starting from the periodt for which the valuet + Lt is minimum.

Let M be this period. Notice also that it will never be optimal to place any order in

a periodt such thatt+Lt > N , since such an order will not be received within the

given planning horizon. The problem can be formulated as a chance-constrained

programming model (see Bookbinder and Tan [15]),

min E{TC} =

∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(aδt + vXt + h ·max(It, 0))

×g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN)

(3.3)
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subject to,

δt =

{
1, if Xt > 0

0, otherwise
t = 1, ..., N (3.4)

It = I0 +
∑

{i|i≥1,Li+i≤t}

Xi −
t∑

i=1

di t = 1, ..., N (3.5)

Pr{It ≥ 0} ≥ α t = M, ..., N (3.6)

It ∈ Z, Xt ≥ 0, δt ∈ {0, 1} t = 1, ..., N (3.7)

where we comply with the notation used in [15],

dt : the demand in periodt, a random variable with probability density

function,gt(dt),

a : the fixed ordering cost (incurred when an order is placed),

h : the proportional stock holding cost,

v : the unit variable cost of an item,

Lt : the deterministic delivery lead time in periodt, Lt ≥ 0

δt : a{0,1} variable that takes the value of 1 if a replenishment occurs in

periodt and 0 otherwise,

It : the inventory level (stock on hand minus back-orders) at the end of

periodt,

I0 : the initial inventory,

Xt : the size of the replenishment order placed in periodt, Xt ≥ 0,

(received in periodt + L).

Let us denote the inventory position (the total amount of stock on hand plus out-

standing orders minus back-orders) at the end of periodt asPt. It directly follows

that

Pt = It +
∑

{i|1≤i≤t,Li+i>t}

Xi. (3.8)
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wherePt is the inventory position in periodt and it is assumedP0 = I0. We now

reformulate the model using the inventory position,

min E{TC} =

∫

d1

∫

d2

. . .

∫

dN

N∑

t=1



aδt + vXt + h ·max(Pt −
∑

{i|1≤i≤t,Li+i>t}

Xi, 0)





× g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN)

(3.9)

subject to,

δt =

{
1, if Xt > 0

0, otherwise
t = 1, ..., N (3.10)

Pt = I0 +

t∑

i=1

(Xi − di) t = 1, ..., N (3.11)

Pr{Pt ≥
∑

{i|1≤i≤t,Li+i>t}

Xt} ≥ α t = M, ..., N (3.12)

Pt ∈ Z, Xt ≥ 0, δt ∈ {0, 1} t = 1, ..., N. (3.13)

By using the expectation operatorE{·}, since{dt} are assumed to be mutually

independent, we may rewrite the objective function as

min E{TC} =

N∑

t=1



h · E




max(Pt −
∑

{i|1≤i≤t,Li+i>t}

Xi, 0)




+ a · δt + v ·Xt



 .

(3.14)

When a stock-out occurs, all demand is back-ordered and filled as soon as an ade-

quate supply arrives. However, the probability that net inventory will not be nega-

tive is set normally quite high by the management, so that thecost of back-orders

can be ignored in the model. Moreover, Bookbinder and Tan discuss that the term

E{max(It, 0)}may be approximated byE{It}, in view of these remarks. There-

fore in our model we approximate the termE{max(Pt−
∑

{i|1≤i≤t,Li+i>t} Xi, 0)}
with the termE{Pt −

∑
{i|1≤i≤t,Li+i>t} Xi}.
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The general chance constrained programming formulation given above can be

modified to incorporate the inventory control policy adopted. In this paper we

adopt the “replenishment cycle policy”, which is equivalent to Bookbinder-Tan’s

“static-dynamic uncertainty strategy”. The replenishment cycle policy (ie,(R, S)

policy) is static in the sense that the replenishment periods are determined once

and for all at the beginning of the planning horizon, anddynamicas the order

quantities are decided only after observing the realized demand. In what follows

–based on [89], in which lead times are ignored– we formulatethe replenishment

cycle policy under dynamic deterministic lead times,Lt.

Consider a review schedule, which hasm reviews over theN period plan-

ning horizon with orders placed at{T1, T2, . . . , Tm}, whereTi > Ti−1, Tm ≤
N − LTm

. For convenienceT1 is defined as the start of the planning horizon and

Tm+1 = N + 1 as the period immediately after the end of the planning horizon.

The review schedule may be generalized to consider the case whereT1 > 1, if

the opening stockI0 is sufficient to cover the immediate needs at the start of the

planning horizon. The associated stock reviews will take place at the beginning

of periodsTi, i = 1, . . . , m. In the considered dynamic review and replenishment

policy clearly the ordersXi are all equal to zero except at replenishment periods

T1, T2, . . . , Tm. The inventory levelIt carried from periodt to periodt + 1 is the

opening stock plus any orders that have arrived up to and including periodt less

the total demand to date. Hence is given by

It = I0 +
∑

{i|LTi
+Ti≤t}

XTi
−

t∑

k=1

dk, t = 1, . . . , N. (3.15)

Let us define

p(t) = max
{
i|∀j, j ≤ i, Tj + LTj

≤ t, i = 1, . . . , m
}

. (3.16)

The inventory levelIt at the end of periodt (Eq. 3.15) can be expressed as

It = I0 +

p(t)∑

i=1

XTi
+

∑

{i|i>p(t),LTi
+Ti≤t}

XTi
−

t∑

k=1

dk, t = 1, . . . , N. (3.17)

101



We now want to reformulate the constraints of the chance constrained model

in terms of a new set of decision variablesRTi
, i = 1, . . . , m. We define

Pt = RTi
−

t∑

k=Ti

dk, Ti ≤ t < Ti+1, i = 1, . . . , m (3.18)

whereRTi
can be interpreted as an order-up-to-position which stock should be

raised after placing an order at theith review periodTi, andRTi
−∑t

k=Ti
dk is the

end of period inventory position. We can now express the whole model in term

of these new decision variablesRTi
, which are related to the inventory position in

periodTi. The new problem is therefore to determine the number of reviews,m,

theTi, and the associatedRTi
for i = 1, . . . , m.

If there is no replenishment scheduled for periodt, thenRt equals the opening

inventory position in periodt. It follows that the variableRt must be equal toPt−1

if no order is placed in periodt and equal to the order-up-to-position if there is a

review in periodt. We can express this using the following constraints

Rt = Pt + dt, t = 1, . . . , N (3.19)

Rt ≥ Pt−1, t = 1, . . . , N (3.20)

Rt > Pt−1 ⇒ δt = 1, t = 1, . . . , N. (3.21)

The values for the order-up-to-position variables,Rt, are then those that give the

minimum expected total costE{TC}. The desired opening stock positions, as

required for the solution to the problem, will then be those values ofRt, for which

δt = 1. It is now clear that Constraints 3.4 and 3.5 can be replaced by Eq. 3.19,

3.21 and 3.20.

Let us now express Eq. 3.17 usingRTi
as decision variables

It = RTp(t)
+

∑

{i|i>p(t),LTi
+Ti≤t}

(
RTi
− RTi−1

+ dTi−1
+ . . . + dTi−1

)
−

t∑

k=Tp(t)

dk,

t = 1, . . . , N.

(3.22)

102



As already mentioned,α is the desired minimum probability that the net inventory

level in any time period will be non-negative.M is by definition the first period

at which the inventory can be controlled. Keeping this in mind we require

Pr {It ≥ 0} ≥ α, t = M, . . . , N. (3.23)

which implies, by substitutingIt with the right term in Eq. 3.22,

GS



RTp(t)
+

∑

{i|i>p(t),LTi
+Ti≤t}

(RTi
−RTi−1

)



 ≥ α,

t = M, . . . , N.

(3.24)

whereS =
∑t

k=Tp(t)
dk−

∑
{i|i>p(t),LTi

+Ti≤t}(dTi−1
+ . . .+dTi−1) and, as given in

[15], Gd1+d2+...+dt
(.) is the cumulative distribution function ofD(t) = d1 + d2 +

. . . + dt.

We now express the whole model in terms of the new set of variables Ri.

Since we consider expectations̃Pi and d̃i, it follows thatRi = P̃i + d̃i and also

that the termXt in the objective function can be expressed asRt − P̃t−1. We

replace the service level constraint 3.6 using the new formulation in Eq. 3.24. We

should note thatv
∑N

t=1

(
Rt − P̃t−1

)
in the objective function can be rewritten as

v
∑N

t=1 d̃t + v · PN , where
∑N

t=1 d̃t is obviously a constant of the problem. The

resulting model is as follows,

E{TC} =

v

N∑

t=1

d̃t + min




N∑

t=1



h ·



P̃t −
∑

{i|1≤i≤t,Li+i>t}

(Ri − P̃i−1)



+ a · δt



 + v · P̃N





(3.25)
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subject to,

{T1, . . . , Tm} = {t ∈ {1, . . . , N}|δt = 1}
Eq. 3.24, t = M, . . . , N

Rt > P̃t−1 ⇒ δt = 1, t = 1, . . . , N (3.26)

Rt ≥ P̃t−1, t = 1, . . . , N (3.27)

Rt = P̃t + d̃t, t = 1, . . . , N (3.28)

Rt ≥ 0, P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N (3.29)

So far we treated the replenishment cycle policy formulation of the production/inventory

problem under non-stationary stochastic demand,dt, and dynamic deterministic

lead time,Lt. We now recall that a deterministic equivalent formulationof this

problem under the same policy, non-stationary stochastic demand,dt, and deter-

ministic but constant lead time,L, was proposed in [86]. According to this for-

mulation and from the results presented here, when the lead time is deterministic

and constant, it is easy to see that Eq. 3.24 becomes

GdTp(t)
+dTp(t)+1+...+dt

(RTp(t)
) ≥ α, t = L + 1, . . . , N. (3.30)

We adopt the following change of variable:Ti = Tp(t). Since the lead time is

deterministic and constantTi will be equal toTp(t) for everyt such thatTi + L ≤
t < Ti+1 + L. It directly follows that

GdTi
+dTi+1+...+dt

(RTi
) ≥ α, Ti + L ≤ t < Ti+1 + L. (3.31)

By definingk = t− L we can rewrite the former expression as

GdTi
+dTi+1+...+dk+L

(RTi
) ≥ α, Ti ≤ k < Ti+1 (3.32)
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and therefore, sincẽPk = RTi
−∑k

n=Ti
d̃n, it follows,

P̃k ≥ G−1
dTi

+dTi+1+...+dk+L
(α)−

k∑

n=Ti

d̃n, Ti ≤ k < Ti+1. (3.33)

G−1 is an ”inverse function”, such thatG−1
D(t)(α) = u meansα = GD(t)(u) =

Pr{D(t) ≤ u}. We assume thatG is strictly increasing, henceG−1 is uniquely

defined. The right-hand side of Eq. 3.33 can be calculated off-line and memorized

in a table once the form ofgt(·) is selected. Let

Φ[i, j] = G−1
di+di+1+...+dj+L

(α)−
j∑

k=i

d̃k. (3.34)

By employing the table presented in Eq. 3.34, the whole modelunder determin-

istic and constant lead time,L, can be easily expressed using a CP formulation

similar to the one presented in [92]. The whole model is

E{TC} =

v

N∑

t=1

d̃t + min

[
N∑

t=1

(

h ·
(

P̃t −
t∑

i=t−L+1

(Ri − P̃i−1)

)

+ a · δt

)

+ v · P̃N

]

(3.35)

subject to,

Rt > P̃t−1 ⇒ δt = 1 t = 1, . . . , N (3.36)

Rt ≥ P̃t−1 t = 1, . . . , N (3.37)

P̃t ≥ Φ[ max
j∈{1..t}

{j · δj}, t] t = 1, . . . , N − L (3.38)

Rt = P̃t + d̃t, t = 1, . . . , N (3.39)

Rt ≥ 0, P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N (3.40)

where elements in matrixΦ are indexed using theelement constraint [45]. Ob-

viously if we want to invert the cumulative distribution function in Eq. 3.24 as

in the constant lead time case, the dimension of the table where the buffer stock
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levels are stored has to increase, since many decision variables take part in the

computation of the stock-out probability. Instead of building this matrix, it may

be therefore convenient to develop a dedicatedconstraintfor the CP formulation

of the model. In fact, in CP relations between decision variables can be expressed

by means of dedicated constraints that may include customized algorithms to gen-

erate parameters and verify complex conditions like Eq. 3.24. In this constraint

we simply wait for a partial assignment of decision variables {δt} and, by us-

ing Eq. 3.24, we dynamically generate during the search deterministic equivalent

constraints in a way similar to the one presented in the example above. These de-

terministic constraints are enforced to guarantee the required service level under

the given partial replenishment plan.

3.5 Non-stationary Stochastic Lead Time

We now consider the general multi-period production/inventory problem with

non-stationary stochastic demand and lead time. As in Eppenand Martin [27],

we consider a discrete stochastic lead time with probability mass functionfi(·)
in each periodi = 1, . . . , N . This means that an order placed in periodi will

be received afterk periods with probabilityfi(k). Sincefi(k) is discrete we

shall assume that there is a maximum lead timeL for which
∑L

k=0 fi(k) = 1,

i = 1, . . . , N . The probability of observing any lead time lengthp > L will be

always0. Therefore the possible lead time lengths are limited toS = {0, . . . , L}
and the probability mass function is defined on the finite setS. Depending on the

probabilities assigned to each lead time length by the probability mass function, it

may not be possible to provide the required service level forsome initial periods.

In general, reasoning in a worst case scenario, it will always be possible to provide

the required service levelα starting from periodL + 1. The chance-constrained

programming model is given below,

min E{TC} =

∫

d1

. . .

∫

dN

∑

l1

. . .
∑

lN

T∑

t=1

(v ·Xt + a · δt + h · It)

f1(l1)f2(l2) . . . fN(lN)× g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . . d(dN)

(3.41)

106



subject to,

It = I0 +
∑

{i|i≥1,li≤t−i}

Xi − dt t = 1, . . . , N (3.42)

δt =

{
1, if Xt > 0

0, otherwise
t = 1, . . . , N (3.43)

Pr{It ≥ 0} ≥ α t = L + 1, . . . , N (3.44)

It ∈ Z+
0 , Xt ≥ 0, δt ∈ {0, 1} t = 1, . . . , N (3.45)

where

li : the lead time length of the order placed in periodi, a discrete

random variable with probability mass functionfi(·).

We now reformulate the model using the inventory position,

min E{TC} =

∫

d1

. . .

∫

dN

∑

l1

. . .
∑

lN

N∑

t=1



aδt + vXt + h ·



Pt −
∑

{i|1≤i≤t,li>t−i}

Xi









f1(l1)f2(l2) . . . fN(lN)× g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN)

(3.46)

subject to,

δt =

{
1, if Xt > 0

0, otherwise
t = 1, ..., N (3.47)

Pt = I0 +

t∑

i=1

(Xi − di) t = 1, ..., N (3.48)

Pr{Pt ≥
∑

{i|1≤i≤t,li>t−i}

Xi} ≥ α t = L + 1, ..., N (3.49)

Pt ∈ Z+
0 , Xt ≥ 0, δt ∈ {0, 1} t = 1, ..., N. (3.50)
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Let us define the cumulative distribution functionFi(k) =
∑k

p=0 fi(p), k ≥ 0.

Given the probability mass functionfi(li) and sinceli is a discrete random variable

it directly follows

t∑

i=1

Fi(t− i)Xi =

t∑

i=1

t−i∑

p=0

fi(p)Xi t = 1, . . . , N. (3.51)

By recalling that{dt} are assumed to be mutually independent, we may rewrite

the objective function as

min E{TC} =

N∑

t=1

(
h · E

{(
Pt −

t∑

i=1

(1− Fi(t− i))Xi

)
+ v ·Xt

}
+ a · δt

)
(3.52)

Also in this case we want to adopt a replenishment cycle policy and we want

to express the whole model in terms of the new set of variablesRi, so that order

quantities have to be decided only after the demand in the former periods have

been realized. The analysis developed in the former sectionfor the replenishment

condition (Eq. 3.43) and inventory conservation constraints (Eq. 3.42) still holds,

since it refers to the opening-inventory-position, which by definition is not af-

fected by the lead time length. So it is clear that these constraints can be replaced

by Eq. 3.19, 3.21 and 3.20. Since we are considering expectations, the termXt in

the objective function can be expressed asRt − P̃t−1. As we did in the dynamic

deterministic lead time case, we now have to express the service level constraint

as a relation between the opening-inventory-positions such that the overall service

level provided at the end of each period is at leastα. In order to express this

service level constraint we propose a scenario based approach over the discrete

random variablesli, i = 1, . . . , N . Let us recall that in a scenario based approach

[11, 91], a scenario tree is generated which incorporates all possible realization of

discrete random variables into the model explicitly. A pathfrom the root to an

extremity of the event tree represents a scenarioω ∈ Ω, whereΩ is the set of all

possible scenarios. To each scenario a given probability isassociated. IfSi is the

ith random variable on a path from the root to the leaf representing scenarioω and
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ai is the value given toSi in theith stage of this scenario, then the probability of

this scenario is given byPr{ω} =
∏

i Pr(Si = ai). Within each scenario, we have

a conventional (non-stochastic) constraint program to solve. All we have to do is

replacing the stochastic variables by the values taken in the scenario and ensure

that the values found for the decision variables are consistent across scenarios as

certain decision variables are shared across scenarios.

In our problem we can divide random variables into two sets: the discrete ran-

dom variables{li} which represent lead times and the continuous random vari-

ables{di} which represent demands. We deal with each set in a separate fashion,

by employing a scenario based approach for the discrete random variables and

a deterministic equivalent modeling approach for the continuous random vari-

ables. This is possible since, as we have already remarked, under a given scenario

ω discrete random variables are treated as deterministic values. The problem is

then reduced to the general multi-period production/inventory problem with dy-

namic deterministic lead time and stochastic demand, for which we have already

presented in the former section a deterministic equivalentmodel that is able to

represent the chance-constraints involving continuous random variables{di}.
Consider a review scheduleZ, which hasm reviews over the N period plan-

ning horizon with orders placed at{T1, T2, . . . , Tm}, whereTi > Ti−1, Tm ≤ N .

For convenienceT1 is defined as the start of the planning horizon andTm+1 =

N +1 as the period immediately after the end of the planning horizon. The review

schedule may be generalized to consider the case whereT1 > 1, if the opening

stockI0 is sufficient to cover the immediate needs at the start of the planning hori-

zon. The associated stock reviews will take place at the beginning of periodsTi,

i = 1, . . . , m. In the considered dynamic review and replenishment policyclearly

the ordersXi are all equal to zero except at replenishment periodsT1, T2, . . . , Tm.

The inventory levelIt carried from periodt to periodt + 1 is the opening stock

plus any orders that have arrived up to and including periodt less the total demand

to date. A scenarioωt is a possible lead time realization for all the orders placed

up to periodt in the given review scheduleZ. Let Ωt be the set of all the possible

scenariosωt. The first observation we need is related to the definition ofp(t) (Eq.

3.16). We have definedTp(t) as the latest period before periodt in the planning

horizon, for which we are sure that all the former orders, including the one placed
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in Tp(t) if there is any, have been delivered within periodt. Under the assumption

that the probability mass functionfi(·) is defined on a finite setS, p(t) provides a

bound for the scenario tree size. In fact if the possible leadtime lengths inS are

0, . . . , L, the earliest order that is delivered in periodt with probability1 under

every possible scenarioωt is the latest placed in the span1, . . . , t− L. Therefore

since each scenarioωt identifies the orders that have been received before or in

periodt, it directly follows that the number of scenarios in the treethat is needed

to compute the buffer stocks for periodst − L, . . . , t under any possible review

scheduleZ is at most2L, when we placeL + 1 orders in periodst − L, . . . , t,

but it may be lower if less reviews are planned. Under a given review schedule

Z and a scenarioωt the service level constraint for a periodt can be easily ex-

pressed by means of Eq. 3.24. It follows that the service level constraint is always

a relation between at mostL + 1 decision variablesPi that represent the closing-

inventory-position (or equivalentlyRi which are the order-up-to-position) of the

replenishment cycles covering the spant − L, . . . , t. Let pω(t) be the value of

p(t) under a given scenarioωt when a review scheduleZ is considered. In order

to satisfy the service level constraints in our original model, we require that the

overall service level under all the possible scenarios for each set of at mostL + 1

decision variables is at leastα or equivalently, by using Eq. 3.24

∑

ωt∈Ωt

Pr{ωt} ·GS



RTpω(t)
+

∑

{i|i>pω(t),(lTi
|ωt)≤t−Ti}

(RTi
− RTi−1

)



 ≥ α,

t = L + 1, . . . , N,

(3.53)

whereS =
∑t

k=Tpω(t)
dk−

∑
{i|i>pω(t),(lTi

|ωt)≤t−Ti}
(dTi−1

+ . . .+dTi−1). Therefore

the complete model under the replenishment cycle policy canbe expressed as

E{TC} =

v

N∑

t=1

d̃t+min

[
N∑

t=1

(

h ·
(

P̃t −
t∑

i=1

(1− Fi(t− i))(Ri − P̃i−1)

)

+ a · δt

)

+ v · P̃N

]

(3.54)
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subject to,

{T1, . . . , Tm} = {t ∈ {1, . . . , N}|δt = 1}
Eq. 3.53, t = L + 1, . . . , N

Rt > P̃t−1 ⇒ δt = 1 t = 1, . . . , N (3.55)

Rt ≥ P̃t−1 t = 1, . . . , N (3.56)

Rt = P̃t + d̃t t = 1, . . . , N (3.57)

Rt ≥ 0, P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N. (3.58)

3.6 Stochastic Lead Time: a CP Implementation

In this section we present a CP formulation for the (Rn,Sn) problem under stochas-

tic lead time. Results from the former section will be employed in the CP formu-

lation. In order to model the service level constraint (Eq. 3.53) we presented in the

former section, a new constraintserviceLevel(·) will be defined. Such a constraint

is needed to dynamically compute the correct buffer stock positions on the basis

of the current replenishment plan, that is{δt} assignments. Without loss of gen-

erality we will consider here a different and simpler objective function. In such

a function we will charge a holding cost at the end of each period based on the

current inventory position, rather than the current inventory level. This will reflect

the fact that we charge interests not only on the actual amount of items we have

in stock, but also on outstanding orders. It should be noted that it is possible to

build a CP model that considers the original objective function. We chose not to

implement this function in our tool. In fact, in the researchproject carried out for

a leading international telecommunications company that motivated this research

we were explicitly required to charge holding cost on the inventory position and

not on the inventory level. Doing so often make sense since companies may as-

sess holding cost on their total invested capital and not simply on items in stock.

A further and detailed justification for this can be found in [48]†.

†In this work the author considers a holding cost based on the inventory position rather than
on-hand inventory in their order-up-to policy. He underlines how a holding cost based on inventory
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The CP model that incorporates our dedicated chance constraint and the ob-

jective function discussed is therefore

min E{TC} =

N∑

t=1

(
a · δt + h · P̃t

)
+ v · P̃N (3.59)

subject to,

P̃t + d̃t − P̃t−1 > 0⇒ δt = 1 t = 1, . . . , N (3.60)

δt = 0⇒ P̃t + d̃t − P̃t−1 = 0 t = 1, . . . , N (3.61)

P̃t + d̃t − P̃t−1 ≥ 0 t = 1, . . . , N (3.62)

serviceLevel(δ1, . . . , δN ,

P̃1, . . . , P̃N ,

g1(d1), . . . , gN(dN),

f(·), α)

(3.63)

P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N. (3.64)

It must be noted that the domain size value for theP̃t variables, exactly as in the

zero lead time case, is limited and more precisely it is equalto the amount of

stock required to satisfy subsequent demands till the end ofthe planning horizon,

meeting the required service level when only a single replenishment is scheduled

at the beginning of the planning horizon. In what follows we describe the signature

of the new constraint we have introduced.serviceLevel(·) describes a relation

between all the decision variables in the model. It also accepts as parameters the

position provides a simple and more accurate expression forinventory holding costs in the com-
bined manufacturing and warehouse divisions. In fact he observed that the order of a part initiates
a succession of charges which are incurred throughout the lead time (direct material cost, direct la-
bor cost and overheard cost). Certain inventory carrying costs are based on these charges – interest
on investment and risk of obsolescence – and they are accruedfrom the time an order is placed to
the manufacturing division. On the other hand other inventory carrying costs are accrued from the
time the finished part is delivered to the warehouse (warehousing costs). The author suggests that
a precise expression for the inventory carrying costs whichreflected all these consideration would
be very complex. Therefore, when interest and risk of obsolescence comprise a large portion of
the total carrying cost, using a model which incurs carryingcost from the time an order is placed
rather then from the time is delivered may be the correct choice
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distribution of the demand in each period; the probability mass function of the lead

time, which is assumed to be the same for all the periods; and the required service

level. In order to enforce this constraint we consider everygroup of consecutive

replenishment cycles that cover at leastL + 1 periods (that is the one of interest

plusL former periods). Each group must have the smallest possiblecardinality in

term of replenishment cycle number. Obviously, to identifythis group of cycles,

we have to wait that a subset of consecutiveδt variables is assigned. Then, in

order to verify if the service level constraint is satisfied for the last period in this

group, we check that for each replenishment cycle in the group identified at least

one decision variablẽPt is assigned. If this is the case the partial policy for the

span is completely defined and, by recalling thatRt = P̃t + d̃t, its feasibility can

be checked by using the condition in Eq. 3.53. If the condition is not satisfied we

backtrack. Notice that such a condition involves only the periods we identified

in the group defined, this means that our constraint is able todetect infeasibility

of partial assignments. A high level pseudo-code for the propagation logic of the

global chance-constraint described is presented in Algorithm 4. Note that to keep

the description of the algorithm simple we assume here a stochastic lead time

l with probability mass functionf(l) in every period. The maximum lead time

length isL. It should be also emphasized that, during the search, any CPsolver

will be able to exploit constraint propagation and detect infeasible or suboptimal

assignments with respect to other constraints in the model.Furthermore many

infeasible or suboptimal solutions may be pruned by using respectively dedicated

forward checkingtechniques like the one described in [98] orcost-based filtering

methods [31, 87].

Example 3.6.1.We assume an initial null inventory level and a normally dis-

tributed demand with a coefficient of variationσt/d̃t = 0.3 for each periodt ∈
{1, . . . , 5}. The expected values for the demand in each period are:{36, 28, 42,

33, 30}. The other parameters area = 1, h = 1, v = 0, α = 0.95(zα=0.95 =

1.645). We consider for every periodi in the planning horizon the following

lead time probability mass functionfi(t) = {0.3, 0.2, 0.5}, which means that we

receive an order placed in periodi after t ∈ {0, . . . , 2} periods with the given

probability (0 periods: 30%;1 period: 20%;2 periods: 50%). It is obvious that

in this case we will always receive the order at most after2 periods. In Table
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Algorithm 4 : propagate

input : δ1, . . . , δN , P̃1, . . . , P̃N , α, d1, . . . , dN , l, L, N

begin
cycles← {};
pointer ← 1;
periods← 0;
for each period i in 2, . . . , N do

if δi is not assignedthen
cycles← {};
periods← 0;
pointer = −1;

else ifδi is assigned to1 then
if pointer 6= −1 then

cycle← a replenishment cycle over{pointer, ..., i− 1};
addcycle to cycles;

if periods ≥ L then
checkBuffers();

pointer ← i;
periods← periods + 1;

else
periods← periods + 1;

if pointer 6= −1 then
cycle← a replenishment cycle over{pointer, ..., N};
addcycle to cycles;

if periods ≥ L then
checkBuffers();

end

3.1 (Fig. 3.1) we show the optimal solution found when our chance constraint

is used to dynamically generate buffer stock levels. We now want to show that

order-up-to-positions computed in this example by using condition 3.53 satisfy

every service level constraint in the model. We assume that for the first2 periods

no service level constraint is enforced, since it is not possible to fully control the

inventory in the first 2 periods. Therefore we enforce the required service level

on period3, 4 and5, that is constraint 3.53 fort = 3, . . . , N . Let us verify that

the given order-up-to levels satisfy this condition for each of these three periods.
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ProcedurecheckBuffers

begin
cycle← the last element incycles, a replenishment cycle over
{i, . . . , j};
if no decision variableP̃i, . . . , P̃j is assigned then

return;
counter ← 1;
for each period t covered bycycle do

formerCycles← cycles;
removecycle from formerCycles;
coveredPeriods← the number of periods covered by cycles in
formerCycles;
head← first element informerCycles;
headLength← periods covered byhead;
if counter < L then

while coveredPeriods− headLength + counter ≥ L do
removehead from formerCycles;
head← first element informerCycles;
headLength← periods covered byhead;

else
formerCycles← {};

condition← true;
for each cyclec in formerCycles do

let {m, . . . , n} be the periods covered byc;
if no decision variableP̃m, . . . , P̃n is assigned then

condition← false;

if conditionthen
if Eq. 3.53 for period t in cycle and former replenishment
cycles informerCycles is not satisfied then

backtrack();

counter ← counter + 1;

end

Since we know the probability mass functionf(·) for each period in the planning

horizon we can easily compute the probabilityPr(ωt) for each scenarioωt ∈ Ωt.

We have four of these scenarios for each periodt ∈ {3, . . . , N}, since we are
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Figure 3.1: Optimal policy under stochastic lead time,fi(t) = {0.3, 0.2, 0.5}.

Policy cost:356
Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 125 124 129 87 55
δt 1 1 1 1 1
Shortage probability − − 5% 5% 5%

Table 3.1: Optimal solution.

placing an order in every period:

• S1, Pr{S1} = 0.15 = (0.3 + 0.2)0.3; in this scenario at periodt all the

orders placed are received. That is the order placed in period t−1 is received

immediately (probability0.3), or after one period (probability0.2), while

the order placed in periodt is received immediately (probability0.3)

• S2, Pr{S2} = 0.35 = (0.3 + 0.2)(0.2 + 0.5); in this scenario at periodt

we don’t receive the last order placed in periodt. That is the order placed

in periodt−1 is received immediately (probability0.3), or after one period

(probability0.2), while the order placed in periodt is not received immedi-

ately, therefore it is received after one period (probability 0.2), or after two

periods (probability0.5)

• S3, Pr{S3} = 0.35 = 0.5(0.2 + 0.5); in this scenario at periodt we don’t

receive the last two orders placed in periodst andt − 1. That is the order

placed in periodt−1 is received after two periods (probability0.5), and the

order placed in periodt is not received immediately, therefore it is received

after one period (probability0.2), or after two periods (probability0.5)

116



• S4, Pr{S4} = 0.15 = 0.5 · 0.3; in this scenario at periodt we don’t receive

the order placed in periodt− 1 and we observe order-crossover. That is the

order placed in periodt − 1 is received after two periods (probability0.5),

and the order placed in periodt is received immediately (probability0.3)

In the described scenarios every possible configuration is considered. We do this

without any loss in generality. In fact if some of the configurations are unrealistic

(for instance if we assume that order-crossover may not takeplace) we just need

to set the probability of the respective scenario to zero. Now it is possible to write

condition 3.53 for each periodt ∈ {3, . . . , N}. Let us consider period3:

Pr{S1} ·G
(

129− 42

0.3
√

422

)
+ Pr{S2} ·G

(
124− (28 + 42)

0.3
√

282 + 422

)
+

Pr{S3} ·G
(

125− (36 + 28 + 42)

0.3
√

362 + 282 + 422

)
+

Pr{S4} ·G
(

125 + (129− 124)− (36 + 42)

0.3
√

362 + 422

)
= 94.60% ∼= 95%

(3.65)

whereG(·) is the standard normal distribution function. This means that the com-

bined effect of order delivery delays in our policy, all possible scenarios taken

into account, gives a no stock-out probability of about95% for period3. Let us

consider period4:

Pr{S1} ·G
(

87− 33

0.3
√

332

)
+ Pr{S2} ·G

(
129− (42 + 33)

0.3
√

422 + 332

)
+

Pr{S3} ·G
(

124− (28 + 42 + 33)

0.3
√

282 + 422 + 332

)
+

Pr{S4} ·G
(

124 + (87− 129)− (28 + 33)

0.3
√

282 + 332

)
= 94.89% ∼= 95%.

(3.66)
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Period (t) 1 2 3 4 5 6 7 8

d̃t 15 18 13 33 30 18 23 15

Table 3.2: Forecasts of period demands.

Let us consider period5:

Pr{S1} ·G
(

55− 30

0.3
√

302

)
+ Pr{S2} ·G

(
87− (33 + 30)

0.3
√

332 + 302

)
+

Pr{S3} ·G
(

129− (42 + 33 + 30)

0.3
√

422 + 332 + 302

)
+

Pr{S4} ·G
(

129 + (55− 87)− (42 + 30)

0.3
√

422 + 302

)
= 94.53% ∼= 95%.

(3.67)

We showed that the given solution satisfies the required service level for every

periodt ∈ {3, . . . , N}. �

3.7 Experiments

In this section we will solve to optimality an 8-period inventory problem under

stochastic demand and lead time. Different lead time configurations are con-

sidered. The stochastic, deterministic and zero lead time cases are compared.

As in the previous example we assume an initial null inventory level and a nor-

mally distributed demand with a coefficient of variationσt/d̃t = 0.3 for each

period t ∈ {1, . . . , 8}. The expected values{d̃t} for the demand in each pe-

riod are listed in Table 3.2. The other parameters area = 30, h = 1, v = 0,

α = 0.95(zα=0.95 = 1.645). Initially we consider the problem under stochastic

demand and no lead time, an efficient CP approach to find policyparameters in this

case was presented in [87, 92]. Obviously our approach is general and can provide

solutions for this case as well, although less efficiently. The optimal solution for

the instance considered is presented in Fig. 3.2, details about the optimal policy

are reported in Table 3.3. We observe5 replenishment cycles, policy parameters

are: cycle lengths= [1, 2, 1, 2, 2] and order-up-to-positions= [72, 42, 49, 65, 52].

The shortage probability is at most5%, therefore the service level is met in ev-
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Figure 3.2: Optimal policy under no lead time.

E{TC}: 303 Average Inventory Level:18.5
Period (t) 1 2 3 4 5 6 7 8
Rt 22 42 24 49 65 35 52 29
δt 1 1 0 1 1 0 1 0
Shortage probability 5% 0% 5% 5% 0% 5% 0% 5%

Table 3.3: Optimal policy under no lead time.

ery period. TheE{TC} is 303 and the average inventory level for the policy,

computed by simulating demands and lead times according to the given probabil-

ity distribution function and probability mass function respectively, is18.5 units.

Since we will consider a lead time of at most2 periods in our examples, in order to

make comparisons meaningful between different instances,for the deterministic

lead time cases we computed the average inventory level over6 periods starting

from periodL + 1, whereL is the lead time length, for the stochastic lead time

cases we computed again the average inventory level over6 periods, but starting

from periodL̃ + 1, whereL̃ is the average lead time length.

We now consider the same instance, but with a deterministic lead time of

one period. The optimal solution is presented in Fig. 3.3, details about the

optimal policy are reported in Table 3.4. We observe now only4 replenish-

ment cycles, policy parameters are: cycle lengths= [2, 1, 2, 3] and order-up-to-

positions= [59, 64, 105, 72]. Again the shortage probability is at most5% in every

period, which means that the service level constraint is met. TheE{TC} is 456

and the average inventory level for the policy is25.7 units. Therefore we observe

now an expected total cost that is50.5% higher than the zero lead time case. The

replenishment plan is significantly affected by the lead time both in term of re-
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Figure 3.3: Optimal policy under deterministic one period lead time.

E{TC}: 456 Average Inventory Level:25.7
Period (t) 1 2 3 4 5 6 7 8
Rt 59 44 64 105 72 72 54 31
δt 1 0 1 1 0 1 0 0
Shortage probability − 0% 5% 5% 0% 5% 0% 5%

Table 3.4: Optimal policy under deterministic one period lead time, notice that
the service level in the first period can obviously not be controlled.

plenishment cycle lengths and order-up-to-positions. Theaverage inventory level

observed is higher than the one in the zero lead time case.

When a deterministic lead time of two periods is considered,as the reader

may expect, we observe again higher costs and a different replenishment pol-

icy. The optimal solution is presented in Fig. 3.4, details about the optimal

policy are reported in Table 3.5. The number of replenishment cycles is now

again 5, policy parameters are: cycle lengths= [1, 1, 2, 1, 3] and order-up-to-

positions= [59, 84, 119, 92, 72]. The service level constraint is met in every pe-

riod. TheE{TC} is 602 and the average inventory level for the policy is23.2
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Figure 3.4: Optimal policy under deterministic two periodslead time.
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E{TC}: 602 Average Inventory Level:23.2
Period (t) 1 2 3 4 5 6 7 8
Rt 59 84 119 106 92 72 54 31
δt 1 1 1 0 1 1 0 0
Shortage probability − − 5% 5% 0% 5% 5% 5%

Table 3.5: Optimal policy under deterministic two periods lead time.

Lead Time Ĩ EĨ{TC}
0 18.5 261.0
1 25.7 274.2
2 23.2 289.2

Table 3.6: Deterministic lead time. Average inventory levels and respective ex-
pected total cost.

units. This means that we observe a cost98.6% and32.0% higher than respec-

tively the zero lead time case and the one period lead time case. The replenishment

plan is again completely modified as a consequence of the leadtime length. The

average inventory level observed is slightly lower than in the former cases. This

is due to the fact that in this replenishment plan we schedule5 orders, while in the

optimal replenishment plan under a deterministic lead timeof one period only4

orders are planned.

In Table 3.6 we report the expected total costEĨ{TC} computed with respect

to the average inventory levelĨ for the three cases presented so far.

We now concentrate on two instances where a stochastic lead time is consid-

ered and we compare results with the former cases. Firstly weanalyze a stochastic

lead time with probability mass functionfi(t) = {0.2(0), 0.6(1), 0.2(2)}. That

is an order is received immediately with probability0.2, after one period with

probability0.6, and after two periods with probability0.2. The optimal solution

is presented in Fig. 3.5, details about the optimal policy are reported in Table

3.7. The number of replenishment cycles is again5 as in the two period lead

time case, policy parameters are: cycle lengths= [1, 1, 2, 1, 3] and order-up-to-

positions= [50, 72, 101, 79, 72]. Therefore we see that the number and the length

of replenishment cycles does not change from the deterministic two period lead
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Figure 3.5: Optimal policy under stochastic lead time,fi(t) =
{0.2(0), 0.6(1), 0.2(2)}.

E{TC}: 532 Average Inventory Level:32.8
Period (t) 1 2 3 4 5 6 7 8
Rt 50 72 101 88 79 72 54 31
δt 1 1 1 0 1 1 0 0
Shortage probability − − 5% 5% 3% 5% 5% 5%

Table 3.7: Optimal policy under stochastic lead time,fi(t) =
{0.2(0), 0.6(1), 0.2(2)}, in periods{1, 2} the inventory cannot be controlled.

time case, although we observe lower order-up-to-positions as we may expect

since the lead time is in average one period therefore lower than in the former

case. Also the cost reflects this, in fact it is11.6% lower than in the two period

deterministic lead time case. On the other hand we observed an average inventory

level of 32.8, obviously affected by the uncertainty now associated withthe lead

time. It should be noted that the uncertainty of the lead timeplays a significant

role, in fact although the average lead time is one period, the structure of the pol-

icy resembles much more the one under a two period deterministic lead time than

the one under a deterministic one period lead time. Moreoverthe expected total

cost is16.6% higher than in this latter case.

We finally consider a different probability mass function for the lead time:

fi(t) = {0.5(0), 0.0(1), 0.5(2)}, which means that we maintain the same aver-

age lead time of one period, but we increase its variance. Theoptimal solution

is presented in Fig. 3.6, details about the optimal policy are reported in Table

3.8. The number of replenishment cycles is still5, policy parameters are: cycle

lengths= [1, 1, 2, 1, 3] and order-up-to-positions= [50, 72, 101, 79, 72]. Although

the average lead time is still one period, order-up-to-positions are slightly higher
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Figure 3.6: Optimal policy under stochastic lead time,fi(t) =
{0.5(0), 0.0(1), 0.5(2)}.

E{TC}: 562 Average Inventory Level:35.5
Period (t) 1 2 3 4 5 6 7 8
Rt 53 79 107 94 87 72 54 31
δt 1 1 1 0 1 1 0 0
Shortage probability − − 5% 5% 0% 5% 5% 5%

Table 3.8: Optimal policy under stochastic lead time,fi(t) =
{0.5(0), 0.0(1), 0.5(2)}.

Lead Time Ĩ EĨ{TC}
fi(t) = {0.2(0), 0.6(1), 0.2(2)} 32.8 346.8
fi(t) = {0.5(0), 0.0(1), 0.5(2)} 35.5 363.0

Table 3.9: Stochastic lead time. Average inventory levels and respective expected
total cost.

than in the former case where the variance of the lead time waslower. Also

the cost reflects this, in fact it is5.6% higher than in the former case, but still

lower than the expected total cost of the two period deterministic lead time case.

Moreover we observed an average inventory level of35.5, again affected by the

uncertainty associated with the lead time.

In Table 3.9 we report the expected total costEĨ{TC} computed with respect

to the average inventory levelĨ for the two cases where the lead time is stochastic.

To summarize, in our experiments we saw that supplier lead time uncertainty

may significantly affect the structure of the optimal (Rn,Sn) policy. Comput-

ing optimal policy parameters constitutes a hard computational and theoretical
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challenge. Under different degrees of lead time uncertainty, when other input pa-

rameters for the problem remain fixed, order-up-to-positions and reorder points in

the optimal policy change significantly. Realizing what theoptimal decisions are

for certain input parameters is a counterintuitive task. Our approach provides a

systematic way to compute these optimal policy parameters.

3.7.1 Analyzing the cost associated with a set of optimal policy

parameters

From the experiments presented interesting insights can beobtained by observ-

ing the behavior of the expected total cost and of the averageinventory level for

different lead time configurations. Let us firstly observe how the expected to-

tal cost changes when the lead time changes. For a deterministic lead time, as

we increase its value, the cost increases significantly whenthe objective function

considers the expected inventory position. Intuitively this is due to the fact that

every replenishment cycle covering periodsi, . . . , j has to cope not only with the

uncertainty associated with periodsi, . . . , j, but also with the variability of the de-

mand overj + 1, . . . , j + L− 1, whereL is the lead time length. In fact the order

placed in periodj + 1 will be received only afterL periods. When the expected

inventory level is considered, the increase ratio is lower,since we only pay the

cost of the uncertainty associated with the increased buffers and we do not charge

holding cost on the outstanding orders. When the lead time isstochastic and the

expected inventory position is considered, the optimal policy cost is affected by

the expected value of the lead time and by its variability. Infact in the last two

examples presented the stochastic lead time has the same expected value of one

period, but in the second example the variability is obviously higher. This directly

translates into a cost difference where the lead time with probability mass function

{0.5(0), 0(1), 0.5(2)} results5.6% more costly than the one with probability mass

function{0.2(0), 0.6(1), 0.2(2)}. Nevertheless in both the cases the cost observed

is lower than the one observed when the lead time is deterministic and its value

is two. This can be explained by the fact that the buffers required to guarantee a

given service level under a deterministic two period lead time represent a worst

case scenario for every instance where the lead time is stochastic and its length
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can be at most two periods. More formally this directly follows from Eq. 3.24,

which determines the minimum expected inventory position required at the end

of each replenishment cycle to guarantee the given service level. Although, when

holding cost is charged on the expected inventory position,the behavior of the

expected total cost is quite intuitive and it easily followsfrom the formulas pre-

sented, a dedicated reasoning must be given to explain the behavior of the average

inventory level and of the expected total cost when holding cost is charged on the

expected inventory level.

In the examples presented the reader may observe that a stochastic lead time

distributed as follows,{0.2(0), 0.6(1), 0.2(2)}, produces an expected total cost

E{TC} lower than the one produced by a deterministic lead time of two periods.

In contrast, the average inventory levelĨ — as well as the respective expected

total costEĨ{TC} — associated with the optimal policy computed for such a

stochastic lead time is higher than the one obtained for a deterministic lead time

of two periods. The reason for this is that, when we consider the expected in-

ventory level, under a deterministic lead time we keep high buffer stocks, but

we do not charge holding cost on outstanding orders, therefore the impact on the

holding cost will be limited to the increase in the required buffer stocks. Under

a stochastic lead time, the expected inventory level is affected by the increased

buffer stocks in a similar manner, but it is also directly affected by the lead time

expected value and by its variability. In fact, whenever an order has associated

a short lead time, this will produce a high inventory level carried over to next

periods. These scenarios may obviously affect the average inventory level of the

optimal policy, while their effect on the expected inventory position is limited

to the increased buffer stock levels, since the holding costin this case is always

charged also on outstanding orders. For instance a stochastic lead time distributed

as follows,{0.5(0), 0(1), 0.5(2)}, produces the highest average inventory level —

and expected total costEĨ{TC}— among all the instances we considered in our

set of examples. This can be explained by noticing that undera more variable lead

time we will keep higher buffer stocks, and often, when the realized lead time is

low, a high inventory level is accumulated and carried over to next periods before

being consumed by the demand.

In conclusion we emphasize that, given a certain lead time (deterministic or
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stochastic), it may be relevant for certain firms to optimizethe holding cost on the

expected inventory position rather than on the expected inventory level. Never-

theless if we are interested in comparing the optimal policycost for different lead

time lengths and lead time probability mass functions, thenwe should note that

the costs obtained with these two formulations do not followthe same trend, and

it is necessary to compare optimal costs obtained with the specific formulation we

wish to analyze. For instance if we optimize in terms of the expected inventory

position (E{TC}) the instance with a deterministic lead time of two periods and

the one with a stochastic lead time distributed as follows,{0.5(0), 0(1), 0.5(2)},
our model suggests that a deterministic lead time of two periods is more costly.

In contrast, since both the optimal policies place the same number of orders, by

analyzing the average inventory level computed for the two instances, it is easy to

notice that, when the cost is computed with respect to the expected inventory level

(EĨ{TC}), then the stochastic lead time results more costly.

3.8 Conclusions

A novel approach to compute (Rn,Sn) policy parameters under stochastic lead

time has been presented. We have also showed how to model sucha problem

when a dynamic deterministic lead time is considered. The assumptions under

which we developed our approach for the stochastic lead timecase proved to be

less restrictive than those commonly adopted in the literature for complete meth-

ods. In particular we faced the problem of order-crossover,which is a very active

research topic as Riezebos show in [68] and [69]. Our approach merged well

known concepts such as deterministic equivalent modeling of chance-constraints

[18] and scenario based approach [91] in order to produce an effective way of

solving (Rn,Sn) policy under stochastic lead time. Since we are employing CP to

implement our approach we may benefit from special purpose constraint propa-

gation techniques and cost based filtering methods that can certainly speed up the

search process. Therefore in our future research we aim to develop specific filter-

ing algorithms able to significantly speed up the search for the optimal (Rn,Sn)

policy parameters under stochastic lead time.
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Chapter 4

Paper III: Cost-based filtering for

stochastic constraint programming

R. Rossi, S. A. Tarim, B. Hnich and S. Prestwich

Abstract

Cost-based filtering is a novel approach that combines techniques from Operations
Research (OR) and Constraint Programming (CP) to filter fromdecision variable
domains values that do not lead to better solutions [32]. Stochastic Constraint
Programming is a framework for modeling combinatorial optimization problems
that involve uncertainty [98]. In this work, we show how to perform cost-based
filtering for certain classes of stochastic constraint programs. Our approach is
based on a set of known inequalities borrowed from stochastic programming —
a branch of OR concerned with modeling and solving problems involving uncer-
tainty. We discuss bound generation and cost-based domain filtering procedures
for a well known problem in the stochastic programming literature, the static
stochastic knapsack problem. We also apply our technique toa stochastic se-
quencing problem. Our results clearly show the value of the proposed approach
over a pure scenario based stochastic constraint programming formulation both in
terms of explored nodes and run times.
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4.1 Introduction

Constraint Programming (CP) [1] has been recognized as a powerful tool for

modeling and solving combinatorial optimization problems. CP provides global

constraints offering concise and declarative modeling capabilities and efficient

domain filtering algorithms. These algorithms remove combinations of values

which cannot appear in any consistent solution. Cost-basedfiltering is an elegant

way of combining techniques from CP and Operations Research(OR) [32]. OR-

based optimization techniques are used to remove from variable domains values

that cannot lead to better solutions. This type of domain filtering can be combined

with the usual CP-based filtering methods and branching heuristics, yielding pow-

erful hybrid search algorithms. Cost-based filtering is a novel technique that has

been the subject of significant recent research.

Stochastic constraint programming (SCP) [98] is an extension of CP, in which

there is a distinction between decision variables, which weare free to set, and

stochastic (or observed) variables, which follow some probability distribution.

SCP is meant to deal with problems where uncertainty comes into play. Uncer-

tainty may take different forms: data about events in the past may not be known

exactly due to measuring or difficulties in sampling, data about events in the future

may simply not be known with certainty.

In this work we propose a novel approach to perform cost-based filtering for

certain classes of stochastic constraint programs. Our approach is based on a

well known inequality borrowed from stochastic programming [11], a branch of

OR that is concerned with modeling constraint satisfaction/optimization problems

under uncertainty. We implemented this approach for two problems in which

uncertainty plays a role. In both cases we obtained significant improvements with

respect to a pure stochastic constraint programming formulation both in terms of

explored nodes and run-times.

The rest of the paper is structured as follows. In Section 4.2we give the

necessary formal background. In Section 4.3 we review relevant inequalities for

stochastic programming. In Section 4.4, we introduce global optimization chance

constraints. We describe our empirical results in Section 4.5 and review related

works in Section 4.6. We conclude and outline our future workin Section 4.7.
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4.2 Formal Background

A Constraint Satisfaction Problem(CSP) [1] is a triple〈V, C, D〉, whereV =

{V1, . . . , Vn} is a set of decision variables,D is a function mapping each element

of V to a domain of potential values, andC is a set of constraints stating allowed

combinations of values for subsets of variables inV . A solutionto a CSP is an

assignment to every variable of a value in its domain, such that all of the con-

straints are satisfied. We may also be interested in finding a feasible solution that

maximizes (minimizes) the value of a given objective function over a subset of the

variables. With no loss of generality, we restrict our discussion to maximization

problems.

Optimization-oriented global constraintsembed an optimization component,

representing a proper relaxation of the constraint itself,into a global constraint

[32]. This component provides three pieces of information:(a) the optimal solu-

tion of the relaxed problem; (b) the optimal value of this solution representing an

upper bound on the original problem objective function; (c)a gradient function

grad(V ,v), which returns for each couple variable-value (V ,v) an optimistic eval-

uation of the profit obtained ifv is assigned toV . These pieces of information are

exploited both for propagation purposes and for guiding thesearch.

In [98], astochastic CSPis defined as a 6-tuple〈V, S, D, P, C, θ〉, whereV is

a set of decision variables andS is a set of stochastic variables,D is a function

mapping each element ofV and each element ofS to a domain of potential val-

ues. A decision variable inV is assigneda value from its domain.P is a function

mapping each element ofS to a probability distribution for its associated domain.

C is a set of constraints. A constrainth ∈ C that constrains at least one variable

in S is achance-constraint. θh is a threshold value in the interval[0, 1], indicating

the minimum satisfaction probability for chance-constraint h. Note that a chance-

constraint with a threshold of1 (or without any explicit threshold specified) is

equivalent to a hard constraint. A stochastic CSP consists of a number ofdecision

stages. A decision stage is a pair〈Vi, Si〉, whereVi is a set of decision variables

andSi is a set of stochastic variables. In anm-stage stochastic CSP,V andS are

partitioned into disjoint sets,V1, . . . , Vm andS1, . . . , Sm, and we consider multi-

ple stages,〈V1, S1〉, 〈V2, S2〉, . . . , 〈Vm, Sm〉. To solve anm-stage stochastic CSP
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an assignment to the variables inV1 must be found such that, given random values

for S1, assignments can be found forV2 such that, given random values forS2, ...,

assignments can be found forVm so that, given random values forSm, the hard

constraints are satisfied and the chance constraints are satisfied in the specified

fraction of all possible scenarios. The solution of anm-stage stochastic CSP is

represented by means of apolicy tree[91]. A policy tree is a set of decisions

where each path represents a different possible scenario and the values assigned

to decision variables in this scenario. LetS denote the space of policy trees rep-

resenting all the solutions of a stochastic CSP. We may be interested in finding a

feasible solution, i.e. a policy trees ∈ S, that maximizes the value of a given

objective functionf(·) over the stochastic variablesS (edges of the policy tree)

and over a subset̂V ⊆ V of the decision variables (nodes in the policy tree). A

Stochastic COPis then defined in general asmaxs∈S f(s). In [98] a policy based

view of stochastic constraint programs is proposed. Such anapproach has been

further investigated in [5]. An alternative semantics for stochastic constraint pro-

grams comes from a scenario-based view [11, 91]: this solution method consists

in generating a scenario-tree that incorporates all possible realizations of discrete

stochastic variables into the model explicitly.

4.3 Value of Stochastic Solutions

Let Ξ be a discrete stochastic (vector) variable whose realizations correspond to

the various scenarios. Recall that in the policy based view of stochastic CP a

scenario is a set of edges in the policy tree connecting the root to a leaf. Define

P = max
x∈S

z(x, ξ)

as the optimization problem associated to one particular scenarioξ ∈ Ξ, whereS

is afiniteset, andz(x, ξ) is a real valued function of two (vector) variablesx and

ξ. Note that in what follows the discussion is dual for minimization problems. In

order to simplify the notation used we will here use the same notation for referring

to a problem and to the value of its optimal solution. The one or the other meaning

will be made clear by the context.
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The functionz(x, ξ) can be seen as a payoff table that for a given decision

x provides the profit with respect to a given scenarioξ having probabilityPr{ξ}.
We may be then interested in computing the optimal solution value to therecourse

problem[11] RP(P)= maxx∈S

∑
Ξ Pr{ξ}z(x, ξ). This can be expressed, by using

the expectation operatorE, as

RP(P) = max
x∈S

Ez(x, Ξ),

with an optimal solutionx∗.

Theexpected value problem, the deterministic problem obtained by replacing

all the stochastic (vector) variables by their expected values, is defined as

EV(P) = max
x∈S

z(x, E[Ξ]).

Let us denote bŷx an optimal solution of the expected value problem, called

the expected value solution. Anyone familiar with stochastic programming or

realizing that uncertainty is a fact of life would feel a little insecure about taking

decisionx̂. Indeed, unless such a decision is independent ofΞ, there is no reason

to believe that this decision is in any way close to the optimal solution of the

recourse problem.

For any stochastic maximization (minimization) program, under the assump-

tions that (i)z(x, Ξ), the profit function, is a concave† (convex) function ofΞ and

(ii) maxx∈S z(x, Ξ) (minx∈S z(x, Ξ)) exists for allΞ,

PROPOSITION 1. EV(P) - RP(P)≥ 0 (EV(P) - RP(P)≤ 0).

Proof. A proof is given in [4].

It directly follows that EV(P)≥RP(P) (EV(P)≤RP(P)). On this inequality we

will base our cost-based filtering strategies.‡ Assumption (i) restricts the form of

the cost function. Many real life applications exhibit sucha behavior in the profit

†A real-valued functionf is convexif for anyx1, x2 in the domain and anyλ ∈ [0, 1], λf(x1)+
(1− λ)f(x2) ≥ f(λx1 + (1− λ)x2) [16]. f is concaveif −f is convex.

‡Other inequalities are discussed in [11], pp. 140–141. Effective relaxations can be also built
on these other inequalities.
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(cost) function. Nevertheless, often it is possible to encounter stochastic con-

straint programs whose objective exhibits a generalized non-convex dependence

on the stochastic variables. Note that, although the classical Jensen (Proposition

1) and Edmundson-Madansky type bounds [11], which we will employ in the

following sections, or their extensions are generally not available for such prob-

lems, tight bounds may still be constructed under mild regularity conditions as

discussed in [57]. Assumption (ii) states that Proposition1 can be applied only

when a feasible solution exists and its existence is not affected by the distribution

of the stochastic variables. As suggested in [11], also thisassumption is realis-

tic. In fact, in stochastic programs people usually tend to associate a high cost,

rather than an infeasibility to decisions that are poor withrespect to the random

outcomes. Assumption (ii) is typically not respected in problems where chance-

constraints appear. We will not discuss how to handle generic chance-constraints

and how to produce deterministic equivalent reformulations for them in EV(P),

the reader may refer to [19]. In this work we will consider only examples on

stochastic COPs that satisfy assumptions (i) and (ii). In particular, to comply with

assumption (ii), we will consider problems for which a feasible solution always

exists and for which the chance-constraints are “hard” (θ = 1). Note that “hard”

chance-constraints in RP(P) become deterministic in EV(P).

4.4 Global optimization chance-constraints

Solving stochastic constraint programs is computationally a challenging task. In

[98], the computational complexity — membership in PSPACE —of these mod-

els is discussed. In [91], the authors proposed a standard way of compiling down

these models into conventional (non-stochastic) constraint programming models

that can be solved by any available commercial software. This approach employs

a scenario-based [11] modelling strategy for representingstochastic variables. Of

course this approach has a price since the number of scenarios that need to be

considered in order to fully represent the problem grows exponentially with the

number of decision stages in the problem. A possible way to overcome this dif-

ficulty is to reduce the number of scenarios considered by sampling them, but

this obviously affects the completeness of the model. Another possibility con-
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sists instead in developing specialized and efficient filtering strategies. For this

purposeglobal chance-constraintshave been proposed in [75]. These constraints

differ from conventional global constraints in the fact that they represent relations

among a non-fixed number of decision variables and stochastic variables.

In this work, by creating a parallel with [32], we presentoptimization-oriented

global chance-constraintsas a way to enhance the solving process of stochas-

tic constraint programs. Conventional optimization-oriented global constraints

perform cost-based filtering by encapsulating in global constraints optimization

components representing suitable relaxations of the constraint itself. Similarly

optimization-oriented global chance-constraints also encapsulate suitable relax-

ations of the constraint considered, but in contrast to conventional optimization-

oriented global constraints this relaxation may involve stochastic variables.

A global optimization chance-constraintprovides the same three pieces of

information provided by optimization-oriented global constraints. What differs is

the fact that in a global optimization chance-constraint wefind two stages of relax-

ations. At the first stage of relaxation, we are mainly involved with the stochastic

variables and we exploit well known inequalities such as theone in Proposition 1

to replace stochastic variables in our stochastic programswith deterministic quan-

tities and to yield a valid relaxation that is a deterministic problem. This determin-

istic problem, however, may still be computationally very challenging (NP-Hard

in general). Therefore, a second stage of relaxation may be needed to produce a

further relaxation that is computationally more tractable. Finally, as we will see,

a global optimization chance-constraint may also provide avalid, and possibly

good, solution at each node of the search tree.

In this section and in the following ones we will refer to a running example

and we will employ the following problem to better understand the concepts ex-

plained. Consider theStatic Stochastic Knapsack Problem(SSKP) [56]: a subset

of k items has to be chosen, given a knapsack of sizeq into which to fit the items.

Each itemi has an expected reward ofri. The sizeWi of each item is not known at

the time the decision has to be made, but we assume that the decision maker has an

estimate of the probability distribution ofW = (W1, . . . ,Wk). A per unit penalty

of c has to be paid for exceeding the capacity of the knapsack. By modeling this

problem as a one-stage Stochastic COP, the recourse problemRP(SSKP) can be
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Objective:

max

{∑k
i=1 riXi − cE

[∑k
i=1 WiXi − q

]+}

Decision variables:
(1) Xi ∈ {0, 1} ∀i ∈ 1, . . . , k

Stochastic variables:
Wi → item i weight

Figure 4.1: RP(SSKP). Note that[y]+ = max{y, 0}. E denotes the expectation
operator.

formulated as shown in Fig. 4.1. The objective function maximizes the trade off

between the reward brought by the objects selected in the knapsack (those for

which the binary decision variableXi is set to1) and the expected penalty paid

for buying additional capacity units in those scenarios where the low cost capacity

q is not sufficient.

Example 4.4.1.Consider5 items, item rewardsri are{10, 15, 20, 5, 25}. The

discrete probability distribution functionsf(i) for the weight of itemi = 1, . . . , 5

are respectively,f(1) = {10(0.5), 8(0.5)}, f(2) = {10(0.5), 12(0.5)}, f(3) =

{9(0.5), 13(0.5)}, f(4) = {4(0.5), 6(0.5)}, f(5) = {12(0.5), 15(0.5)}. The fig-

ures in parenthesis represent the probability that an item takes a certain weight.

The other problem parameters arec = 2, q = 30. The optimal solution of the

recourse problem selects items{2, 3, 5} and has a value of RP(SSKP)=49. �

This solution can be obtained by solving a deterministic equivalent conven-

tional constraint program obtained by employing a scenariobased representation

[91]. LetWj
i be the realized weight of objecti in scenarioj. We hand-crafted

a deterministic equivalent model DetEquiv(RP(SSKP)) for RP(SSKP) following

the guidelines in [91]. This model is shown in Fig. 4.2. Constraint (1) states that

Zj, total excess weight in scenarioj, must be greater than the sum of the weights

of the objects selected in this scenario minus the low cost capacityq. Constraint

(2) declares the decision variablesXi’s. Xi is equal to1 iff item i is selected in the

knapsack. Constraint (3) fixes an upper bound forZj; this upper bound is the sum

of the weights of all thek objects in scenarioj. The objective function maximizes

the trade off between the total reward brought by the objectsselected and the sum

of penalty costs — weighted by the respective scenario probability — paid for
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Objective:

max
{∑k

i=0 riXi − c
[∑n

j=1 Zj Pr{j}
]}

Constraints:
(1) Zj ≥

∑k
i=1 W

j
i Xi − q ∀j ∈ 1, . . . , n

Decision variables:
(2) Xi ∈ {0, 1} ∀i ∈ 1, . . . , k

(3) Zj ∈ [0,
∑k

i=1 Wj
i ] ∀j ∈ 1, . . . , n

Figure 4.2: DetEquiv(RP(SSKP)).Pr{j} is the probability of scenarioj ∈
{1, . . . , n}. Note that

∑n
j=1 Pr{j} = 1.

those scenarios where the low cost capacityq is not sufficient.

4.4.1 Expectation-based relaxation for stochastic variables

The first step in our cost-based filtering strategy consists in applying a relaxation

involving the stochastic variables. By applying Proposition 1, if the profit (re-

spectively cost for minimization problems) function satisfies the two assumptions

discussed, an upper (lower) bound for the cost of an optimal solution to RP(P)

can be obtained by solving EV(P), that is the deterministic problem where all the

stochastic variables are replaced by their respective expected values.

Lemma 4.4.1.The profit function forRP (SSKP ) is concave inW.

Proof. When proving concavity w.r.t.W we can ignore the constant term
∑k

i=1 riXi.

What remains isf(W) = −cE
[
W

T ·X − q
]+

, where “·” is the inner product and

WT
is vectorW transposed. We now prove that−f(W) = cE

[
WT ·X − q

]+
is

convex inW . By recalling that a maximum of convex functions is convex [16],

this function is clearly convex w.r.t. each element of vectorW and it is therefore

convex inW . This implies that−f is concave inW.

Obviously, in RP(SSKP), it is always possible to find a feasible assignment

for decision variables, therefore both the assumptions aresatisfied for this prob-

lem. The expected value problem EV(SSKP) can be obtained by replacing every

random variableWi in RP(SSKP) with the respective expected valueE[Wi], thus

obtaining a fully deterministic model.
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Example 4.4.2.We here solve the problem where the weights of the objects

are deterministic and equal to the respective expected weights§: bE[f(1)]c = 9,

bE[f(2)]c = 11, bE[f(3)]c = 11, bE[f(4)]c = 5, bE[f(5)]c = 13. This prob-

lem provides the first two pieces of information needed by ourcost-based filtering

method, that is (a) the optimal solution of the relaxed problem and (b) the opti-

mal value of this solution, which represents, according to Proposition 1, an upper

bound for the original problem objective function. In our running example this

solution selects items3, 4, 5 and has a value of EV(SSKP)= 50. �

4.4.2 Relaxing the expected value problem

It should be noted that, although the expected value problemis easier than the

recourse problem, it may still be difficult to solve (NP-Hard). For this reason we

can further relax the expected value problem in order to obtain a valid bound by

solving an easier problem. Let R(EV(P)) be a generic relaxation of EV(P), then in

a maximization problem EV(P)≤ R(EV(P)), therefore R(EV(P)) provides a valid

bound for the recourse problem.

In SSKP, for instance, instead of solving to optimality the deterministic (NP-

Complete) knapsack problem obtained for the expected valuescenario, we may in-

stead solve in linear time its continuous relaxation, thus obtaining Dantzig’s upper

bound, DUB(EV(SSKP)), for it [63]. DUB(EV(SSKP))≥ EV(SSKP) and there-

fore DUB(EV(SSKP))≥ RP(SSKP). DUB(EV(SSKP)) is a valid upper bound for

our recourse problem.

Example 4.4.3.To obtain DUB(EV(SSKP)) we order items for profit over ex-

pected weight:{25/13, 20/11, 15/11, 10/9, 5/5}, and we insert items until the

first that does not fit completely into the remaining knapsackcapacity. Of this

last item we take a fraction of the profit proportional to the capacity available.

Therefore DUB(EV(SSKP))= 25 + 20 + (6 ∗ 15/11) = 53.18. �

Obviously now at any node of the search tree it is possible to solve the ex-

pected value problem taking into account decision variables already assigned and

§Since the problem is here a maximization one, the expected weight of each object is rounded
down to the nearest integer (b c) in order to keep optimistic the bound provided by the relaxation.
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exploit this new bound obtained in order to exclude part of the tree that cannot

lead to a better solution.

In [32] the authors discuss filtering strategies based on reduced costs (RC).

As we shall see in the next section a similar technique can be adopted for SSKP

as well, provided that an efficient way of obtaining bounds isavailable for the

expected value problem.

4.4.3 Cost-based filtering

In order to perform cost-based filtering, as in RC-based filtering, we need agra-

dient functiongrad(V ,v), which returns for each couple variable-value (V ,v) an

optimistic evaluation of the profit obtained ifv is assigned toV .

This function is obviously problem dependent, but regardless of the strategy

adopted in the former section — i.e. whenever we are using a relaxation for

the expected value problem or we are solving this problem to optimality — it is

possible to specify it and use it to filter provably suboptimal values.

In what follows we present a gradient function for SSKP. At each node of the

search tree, in order to compute this function, we use a continuous relaxation on

the expected value problem similar to the one proposed by Dantzig for the well

known 0-1 Knapsack Problem [63]. We will now define the gradient function

for SSKP by reasoning on the expected value problem. Assume that a partial

assignment for decision variables is given. LetK be the set of all the items in the

problem,|K| = k. Let S be the set of items for which a decision has been fixed,

with |S| < k. Let q∗ be the sum of the expected weights of the elements inS

that are part of the knapsack. The profitr associated to this assignment is equal

to the sum of the profits of the items in the knapsack minus the eventual expected

penalty costc(q∗−q), if q−q∗ is negative. Now we consider an elementi ∈ K/S.

There are two possible options: taking it or not into the knapsack. If we take it,

we increase the profit byri minus any eventual expected penalty cost we pay if

the expected residual capacity is already or becomes negative. Finally for every

other element inK/S we check if the balance between its profit and the eventual

expected penalty gives an overall positive profit and, if so,we include it into the

knapsack. This procedure requires at mostO(k) steps for each element for which
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a decision has not been taken yet, therefore it can be appliedat each node of the

search tree to compute a valid upper bound associated to a certain decision on an

item, which therefore may be filtered if suboptimal.

Example 4.4.4.We now consider the case in which items2 and 3 have been

selected in the knapsack and item4 is not selected. We still have to decide on

items 1 and 5. The total capacity used isc∗ = 11 + 11 = 22. The profit r

brought by items2 and3 is 35. We consider the set of the remaining items for

which a decision must be taken,K/S ≡ {1, 5}. Let us reason on item1: this

is a critical item, in fact if taken in the knapsack it will usemore capacity than

the residual30 − 22 = 8 units. If we consider the option of taking this item,

then the expected profit isr1 = 10 − 2 ∗ (30 − 22 − 9) = 8, there is no more

residual capacity and item5 is therefore excluded in the bound computation since

25 − 4 ∗ 13 ≤ 0. The computed bound is35 + 8 = 43. The reasoning is similar

for item 5. If we consider the option of taking this item, then the expected profit

is r5 = 25 − 2 ∗ (30 − 22 − 13) = 15, there is no more residual capacity and

item1 is therefore excluded in the bound computation since10− 4 ∗ 9 ≤ 0. The

computed bound is35 + 15 = 50. Assume now that the current best solution has

a value of46, corresponding to a knapsack that contains elements3, 4 and5: then

element1 can be excluded from the knapsack. �

Obviously, as discussed in [32] the information provided bythe relaxed model

(expected value problem), i.e. expected weights, gradientfunction etc., can be also

used to define search strategies. For instance in SSKP we may branch on variables

according to a decreasing profit over expected weight heuristic, or selecting the

one for which the chosen gradient function gives the most promising value.

4.4.4 Finding good feasible solutions
In CP, it is critical, in order to achieve efficiency, to quickly obtain a good feasi-

ble solution so that cost-based filtering can prune provablysuboptimal nodes as

early as possible. In Stochastic COPs the EV(P) solution canbe often used as a

good starting solution in the search process. If such a solution is feasible with

respect to RP(P) — in our examples assumption (ii) guarantees this — we can

easily compute EEV(P), that isthe expected result of using the EV(P) solution in
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the recourse problem RP(P). Furthermore, at every node of the search tree it is

possible to adopt a variable fixing strategy and compute the EV(P) solution with

respect to such a node, that is the best possible EV(P) solution incorporating the

partial decisions represented by the given node of the search tree. This provides

a full assignment for decision variables in RP(P) at each point of the search. By

using this assignment, we can again easily compute EEV(P). In this case EEV(P)

is the cost of a feasible, and possibly good, solution for RP(P) incorporating the

partial assignment identified by the current node explored in the search tree.

Example 4.4.5.In our SSKP example the solution of the expected value problem,

EV(SSKP), selects items3, 4 and5 in the optimum knapsack. This solution is

clearly feasible for RP(SSKP). We can therefore compute EEV(SSKP)= 46. This

is, of course, a good lower bound for the objective function value. �

4.5 Experimental results

In this section we report our computational experience on two one-stage stochastic

COPs, the SSKP and the Stochastic Sequencing with Release Times and Dead-

lines (SSEQ). In our experiments we used Choco 1.2, an open source solver

written in Java [58]. We ran our experiments on an Intel(R) Centrino(TM) CPU

1.50GHz with 2Gb of RAM.

4.5.1 Static Stochastic Knapsack Problem

We created a Choco CP model for DetEquiv(RP(SSKP)), and we implemented for

it a global optimization chance-constraint incorporatingthe filtering discussed in

the former sections. To recall, within this constraint at each node of the search tree

the stochastic variables are replaced by their respective expected values. Then,

after fixing decision variables according to the partial solution associated to the

given search tree node, EV(SSKP) is solved and the bound obtained is used to

prune suboptimal parts of the search tree. Furthermore cost-based filtering is per-

formed as explained in Section 4.4.3. Finally EEV(P), theexpected result of us-

ing the EV(P) solution in the recourse problem, is computed at each node of the

search tree and used as a valid lower bound (profit of a feasible solution). In
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fact RP(SSKP) satisfies assumption (ii) for Proposition 1, therefore the solution

of EV(SSKP) is feasible for RP(SSKP).

In our experiments we adopted a randomly generated test bed similar to the

one proposed in [56]. There are three sets of instances considered: the first set has

k = 10, the second set hask = 15 and the third hask = 20 items. For all the

instances, item random weights,Wi, from which scenarios are generated, are inde-

pendent and normally distributed with probability distribution functionN(µi, σi).

The expected weights,µi, are generated from the uniform (20,30) distribution,

and the weight standard deviations,σi, are generated from the uniform (5,10) dis-

tribution. Rewardsri are generated from the uniform (10,20) distribution. The

per unit penalty isc = 4, while the available low cost capacity isq = 250 for

20 items,q = 187 for 15 items, andq = 125 for 10 items. We randomly gen-

erated, using simple random sampling, sets of scenarios having different sizes:

{100, 300, 500, 1000}. Scenarios are equally likely in terms of probability. The

variable selection heuristic branches first on items with lower profit over expected

weight ratio. The value selection tries first not to insert anitem into the knapsack.

In Table 4.1 we report our computational results. In all the instances considered

our approach outperforms a pure SCP model in terms of explored nodes: the max-

imum improvement reaches a factor of 576.5. Run times are also shorter in our

approach for almost all the instances. An exception is observed for the smallest

instance, where the cost of filtering domains is not compensated by the payoff in

terms of reduction of the search space. The maximum speed-upobserved for run

times reaches a factor of 90.5.

4.5.2 Stochastic sequencing with release times and deadlines

We consider a specific sequencing problem similar to the one considered by Hooker

et. al [47]. Garey and Johnson [37] also mention this problemin their list of

NP-Hard problems and they refer to it as “Sequencing with Release Times and

Deadlines” (SSEQ). An optimization version of this scheduling problem was also

described in [50]. The problem consists in finding a feasibleschedule to process

a setI of k orders (or jobs) using a setM of n parallel machines. Processing

an orderi ∈ I can only begin after the release dateri and must be completed at
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Instance Time Nodes
k Scenarios SCP SCP-OO SCP SCP-OO
10 100 0.4 0.5 916 100
10 300 1.3 0.5 2630 59
10 500 2.4 0.2 4237 8
10 1000 7.2 2.4 6227 120
15 100 2.5 0.3 4577 11
15 300 15 2.3 10408 252
15 500 33 1.1 9982 75
15 1000 150 6.3 16957 222
20 100 70 10 102878 1024
20 300 250 13 85073 953
20 500 860 9.5 129715 225
20 1000 3200 240 134230 7962

Table 4.1: Experimental results for SSKP. Comparison between a pure SCP ap-
proach (SCP) and an SCP model enhanced with optimization-oriented global-
chance constraints (SCP-OO), times are in seconds. In each line we indicated
in bold the best performance in terms of run time and explorednodes.

the latest by the due datedi. Orderi can be processed on any of the machines.

The processing time of orderi ∈ I on machinem ∈ M is Pim. The model just

described is fully deterministic, but we will now consider ageneralization of this

problem to the case where some inputs are uncertain. For convenience we will

just consider uncertain processing timesPim for orderi ∈ I on machinem ∈M .

Instead of simply finding a feasible plan we now aim to minimize the expected

total tardiness of the plan (the deterministic version of this problem is known as

“Sequencing to minimize weighted tardiness” [37] and it is NP-Hard). A solu-

tion for our SSEQ problem consists in an assignment for the jobs on the machines

and in a total order between jobs on the same machine. In such aplan, a job

will be processed on its release date if no other previous jobis still processing, or

as soon as the previous job terminates. The recourse problemRP(SSEQ) can be

formulated as a one-stage Stochastic COP. This is shown in Fig. 4.3.

Decision variableXim takes value 1 iff jobi is processed on machinem, deci-

sion variableSab takes value1 iff job a is processed before jobb. Constraints (1)

and (2) enforce a total order among jobs on the same machine. Constraint (3) en-

forces that each job must be processed on one and only one machine. Constraint

(4) states that the (stochastic) completion time,Ci, of a jobi minus its (stochastic)

durationPim on the machine on which it is processed must be greater than orequal

to its release dateri, whereCi is an auxiliary variable used for simplifying nota-

tion. Let Im ≡ {J1m,J2m, . . . ,Jqm} ⊆ I be the ordered set of jobs assigned to
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Objective:

min
{∑k

i=1 E [Ci − di]
+
}

Constraints:
(1) Sab + Sba ≤ 1 ∀a, b ∈ 1, . . . , k, a 6= b
(2) Xam + Xbm ≤ Sab + Sba + 1 ∀a, b ∈ 1, . . . , k, a 6= b, ∀m ∈ 1, . . . , n
(3)

∑n
m=1 Xim = 1 ∀i ∈ 1, . . . , k

(4) Ci −
∑n

m=1 PimXim ≥ ri ∀i ∈ 1, . . . , k
(5) Sab = 1 → Cb ≥ Ca +

∑n
m=1 PbmXbm ∀a, b ∈ 1, . . . , k, a 6= b

Decision variables:
(6) Xim ∈ {0, 1} ∀i ∈ 1, . . . , k, ∀m ∈ 1, . . . , n
(7) Sab ∈ {0, 1} ∀a, b ∈ 1, . . . , k, a 6= b

Stochastic variables:
Pim: processing time of jobi on machinem
Auxiliary variables:
Ci: stochastic completion time of jobi.

Figure 4.3: RP(SSEQ). Note that[y]+ = max{y, 0}. E denotes the expectation
operator.

machinem. CJqm
is defined recursively asCJqm

= max{rJqm
, CJ(q−1)m

}+PJqmm,

andCJ0m
= 0. Constraint (5) states that if two jobsa andb are processed on the

same machine and ifa is processed beforeb, that isSab = 1, then the (stochastic)

completion time of joba plus the (stochastic) duration of jobb on the machine

on which it is processed must be less or equal to the (stochastic) completion time

of job b. Finally, the objective function minimizes the sum of the expected tardi-

ness of each job. The tardiness is defined asmax{0, Ci − di}. The cost function

that has to be minimized can be easily proved to be convex in the random job

durations. The expected total tardiness is in fact minimized for n machines. Job

completion times on different machines are independent, therefore if we prove

convexity for machinem ∈ M , then it directly follows that the cost function of

the problem is also convex¶. The cost function for machinem can be expressed

asE
[∑

i∈Im
(Ci − di)

+
]
.

Lemma 4.5.1.The expected total tardiness for machinem is convex in the uncer-

tain processing timesPim.

Proof. Maximum of convex functions is convex.CJ1m
= rJ1m

+PJ1mm is convex:

it follows that Ci for any i ∈ Im is convex, since function “max” is a convex

function. Therefore the objective function is convex.

¶Note that the sum of convex functions is convex [16].
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Objective:

min
{∑k

i=1

∑w
v=1 Pr{w}

[
Cv

i − di

]+}

Constraints:
(1) Sab + Sba ≤ 1 ∀a, b ∈ 1, . . . , k, a 6= b
(2) Xam + Xbm ≤ Sab + Sba + 1 ∀a, b ∈ 1, . . . , k, a 6= b, ∀m ∈ 1, . . . , n
(3)
∑n

m=1 Xim = 1 ∀i ∈ 1, . . . , k
and∀v ∈ 1, . . . , w
(4) Cv

i −
∑n

m=1 Pv
imxim ≥ ri ∀i ∈ 1, . . . , k

(5) Sab = 1 → Cv
b
≥ Cv

a +
∑n

m=1 P
v
bm

Xbm ∀a, b ∈ 1, . . . , k, a 6= b
Decision variables:
(6) Xim ∈ {0, 1} ∀i ∈ 1, . . . , k, ∀m ∈ 1, . . . , n
(7) Sab ∈ {0, 1} ∀a, b ∈ 1, . . . , k, a 6= b
(8) Cv

i ∈ {0, maxi=1,...,k ri+∑k
t=1(maxm=1,...,n πv

tm)} ∀i ∈ 1, . . . , k, ∀v ∈ 1, . . . , w

Figure 4.4: DetEquiv(RP(SSEQ)). Note that[y]+ = max{y, 0}. Pr{v} is the
probability of scenariov ∈ {1, . . . , w}. Note that

∑w
v=1 Pr{v} = 1.

In RP(SSEQ) a feasible solution can be found for any given setof stochas-

tic job lengths, therefore both the assumptions are satisfied for this problem.

We hand-crafted a deterministic equivalent model DetEquiv(RP(SSEQ)) shown

in Fig. 4.4 for the RP(SSEQ) following the guidelines of scenario-based approach

described in [91]. In this model,Pv
im is the deterministic length of jobi on ma-

chinem in scenariov andCv
i is the deterministic completion time of jobi in

scenariov.

Finally, as discussed for SSKP, we can obtain the expected value problem

EV(SSEQ) by replacing every stochastic variablePim in RP(SSEQ) with the re-

spective expected valueE[Pim]. Since all the chance-constraints in RP(SSEQ) are

“hard”, they are retained in EV(SSEQ) and they become deterministic.

We implemented DetEquiv(RP(SSEQ)) in Choco and we coded an optimization-

oriented global chance-constraint which exploits the expected value problem both

in order to generate valid bounds at each node of the search tree and to filter

provably suboptimal values from decision variable domains. At each node of the

search tree, we consider the associated partial assignmentfor decision variables

Xim andSab and we fix decision variables in EV(SSEQ) according to it. Then

we solve EV(SSEQ) with respect to the remaining decision variables that have

not been assigned. This provides a lower bound for the cost ofa locally optimal

solution associated to the node considered. This bound can be used for pruning
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Instance Time Nodes
Jobs Machines Scenarios SCP SCP-OO SCP SCP-OO
3 2 10 0.3 0.3 203 48
3 2 30 1.3 0.6 701 133
3 2 50 3.2 1.1 927 418
3 2 100 12 3.5 1809 838
7 3 10 180 866 57688 1723
7 3 30 1800 880 186257 5293
7 3 50 3300 1100 212887 6586
7 3 100 14000 1200 277804 8862

Table 4.2: Experimental Results for SSEQ. Comparison between a pure SCP ap-
proach (SCP) and an SCP model enhanced with optimization-oriented global-
chance constraints (SCP-OO), times are in seconds. In each line we indicated
in bold the best performance in terms of run time and explorednodes.

suboptimal nodes. Furthermore at any given node, after performing variable fixing

in EV(SSEQ) for every variableXim andSab already assigned, all the remaining

binary variablesXim that have not been assigned yet can be forward checked one

by one by fixing the respective value to 1, by solving EV(SSEQ)with this new

decision fixed, and by employing the new bound provided.

In order to generate instances for our experiments, we adopted release times,

deadlines and deterministic processing times from the firsttwo “hard” instances

proposed in [47], the one with 3 jobs and 2 machines and the onewith 7 jobs and 3

machines. In each scenario, we generated processing times uniformly distributed

in [1, 2 ∗ Jim], whereJim is the deterministic processing time required for jobi

on machinem for the instance considered. We considered different number of

scenarios in{10, 30, 50, 100}. Scenarios are equally likely in terms of probability.

The variable selection heuristic branches first on binary decision variables. The

value selection tries increasing values in the domain. In Table 4.2 we report the

results observed with and without the improvement brought by our cost-based

filtering approach.

It should be noted that in this case, in contrast to the approach employed for

SSKP, we only relax stochastic variables and we do not employa relaxation for

the deterministic equivalent problem, which therefore remains NP-Hard. Recall

that in SSKP we adopted Dantzig’s relaxation to efficiently obtain a bound for the

deterministic equivalent problem. A direct consequence ofthis is that, while in

the SSKP example the improvement is significant both in termsof explored nodes

and run times for all the instances, in this example the run time improvement starts
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to be significant (a factor of 11.6) only for the largest instance (7 jobs and 3 ma-

chines) and for a high number of scenarios (100 scenarios). This is due to the fact

that at every node of the search tree we solve a difficult problem (although far eas-

ier than the original stochastic constraint program) to obtain bounds and perform

cost-based filtering. In terms of explored nodes, however, we obtain a significant

improvement for every instance considered — the maximum improvement factor

is of 32.3 — since the bounds generated are tight.

4.6 Related works

This paper extends the original work by Focacci et al. [32] onoptimization-

oriented global constraints. It also extends the original idea of global chance-

constraints [75] to optimization problems. It should be noted that dedicated cost-

based filtering techniques for stochastic combinatorial optimization problems have

been presented in [88], but these techniques are specialized for inventory control

problems, while those here presented can be applied to a wider class of stochastic

constraint programs. On the other hand this work also buildson known inequali-

ties borrowed from stochastic programming [4, 11] usually exploited for relaxing

specific classes of stochastic programs and obtaining good bounds or approximate

solutions. Nevertheless stochastic programming models are typically formulated

as dynamic programs or MIP models. In both cases these boundsare not exploited

for filtering decision variable domains as in our approach and they cannot be used

for guiding the search.

4.7 Conclusions

We proposed a novel strategy to perform cost-based filteringfor certain classes of

stochastic constraint programs, under the assumptions that (i) the objective func-

tion is concave or convex in the stochastic variables, and (ii) the existence of a

feasible solution is not affected by the distribution of thestochastic variables. This

strategy is based on a known inequality borrowed from stochastic programming.

We applied this technique to two combinatorial optimization problem involving

uncertainty from the literature. Our results confirm that orders-of-magnitude im-

provements in terms of explored nodes and run times can be achieved. In the
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future, we aim to apply cost-based filtering to multi-stage Stochastic COPs, de-

fine strategies to handle generic chance-constraints, which are currently ruled

out by our assumptions, extend the approach to other valid inequalities such as

Edmundson-Madansky [11] or to suitable inequalities for non-convex problems

[57]. Finally, we plan to exploit the information provided by optimization-oriented

global chance-constraints to define search strategies.
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Chapter 5

Paper IV: Cost-based Filtering

Techniques for Stochastic Inventory

Control under Service Level

Constraints

S. A. Tarim, B. Hnich, R. Rossi and S. Prestwich

Abstract

This paper considers a single product and a single stocking location production/inventory
control problem given a non-stationary stochastic demand.Under a widely-used
control policy for this type of inventory system, the objective is to find the optimal
number of replenishments, their timings and their respective order-up-to-levels
that meet customer demands to a required service level. We extend a known CP
approach for this problem using three cost-based filtering methods. Our approach
can solve to optimality instances of realistic size much more efficiently than pre-
vious approaches, often with no search effort at all.†

†This paper is an extended version of the work presented in [87].
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5.1 Introduction

Inventory theory provides methods for managing and controlling inventories un-

der different constraints and environments. An interesting class of production/inventory

control problems is the one that considers the single-location, single-product case

under non-stationary stochastic demand. Such a problem hasbeen widely studied

because of its key role in practice.

We consider the following inputs: a planning horizon ofN periods and a

demanddt for each periodt ∈ {1, . . . , N}, which is a random variable with prob-

ability density functiongt(dt). In the following sections we will assume without

loss of generality that these variables are normally distributed. We assume that the

demand occurs instantaneously at the beginning of each timeperiod. The demand

we consider is non-stationary, that is it can vary from period to period, and we also

assume that demands in different periods are independent. Afixed delivery costa

is considered for each order and also a linear holding costh is considered for each

unit of product carried in stock from one period to the next. Demands occurring

when the system is out of stock are assumed to be back-orderedand satisfied as

soon as the next replenishment order arrives. We assume thatit is not possible to

sell back excess items to the vendor at the end of a period. Ouraim is to find a

replenishment plan that minimizes the expected total cost,which is composed of

ordering costs and holding costs, over theN-period planning horizon, satisfying

the service level constraints. As a service level constraint we require that, with a

probability of at least a given valueα, at the end of each period the net inventory

will be non-negative.

We decided to ignore in this model the linear production costp, incurred for

each unit produced. The logic behind this simplification of the problem is as fol-

lows. In the deterministic production planning problem, since all the demand has

necessarily to be met, any optimal solution is independent of the given production

cost. The production cost is therefore a constant of the problem. This is also true

for the stochastic production planning problem under infinite horizon, provided

that demands occurring when the system is out of stock are back-ordered and sat-

isfied as soon as the next replenishment order arrives. Againthe justification is

that when time tends to infinity, under a demand back-ordering assumption, all the
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realized demand will be necessarily satisfied and the production cost will become

a constant of the problem. When the planning horizon is finite, as in our case,

the production cost may have an impact on the structure of an optimal solution,

as in an optimal solution we will tend to clear up stocks when we approach the

end of the planning horizon. This may therefore affect the length of some replen-

ishment cycles at the end of the planning horizon. In fact we may have a shorter

final cycle in order to keep less buffer stocks at the very lastperiod, especially

if the production cost is high. On the other hand the proposedmodel has to be

considered within the more general picture of inventory control. Typically a finite

planning horizon assumption is made because forecasts cannot look too far ahead

in time. This does not mean that production will stop at the end of the planning

horizon: rather, a new optimization will often occur at thatpoint, which considers

new forecast information that has become available. This process is common in

inventory control and it is known as arolling horizon[81] approach. It is obvious

that, under a rolling horizon approach and a demand back-ordering assumption,

again in the long run we will tend to satisfy all the realized demand and the pro-

duction cost will again become a constant of the problem as inthe infinite horizon

case. Moreover it should be noted that in this case considering a production cost

p may even lead to suboptimal solutions, in fact we may schedule more replenish-

ment cycles than strictly needed in order to keep unsold stocks low at the end of

the given finite horizon. But since the production does not stop at the end of the

finite horizon this will give no real cost benefit and will instead increase the total

fixed delivery cost in the long run. For this reason we ignore such a cost compo-

nent as Bookbinder and Tan do in their heuristic approach [15]. On the other hand

extending the results in this paper to consider a productioncostp is easy, and in

Appendix 5.7.1 we will describe how this can be done. Different inventory con-

trol policies can be adopted for the described problem. A policy states the rules

to decide when orders have to be placed and how to compute the replenishment

lot-size for each order. For a discussion of inventory control policies see [81].

One of the possible policies that can be adopted is the replenishment cycle

policy, (R, S).

Under the non-stationary demand assumption this policy takes the form(Rn, Sn)

whereRn denotes the length of thenth replenishment cycle andSn the order-up-
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Figure 5.1: (Rn,Sn) policy. Rn denotes the set of periods covered by thenth
replenishment cycle;Sn is the order-up-to-level for this cycle;̃Qn is the expected
order quantity;d̃i + d̃i+1 + . . . + d̃j is the expected demand;b(i, j) is the buffer
stock required to guarantee the required service levelα

to-level for replenishment (Fig. 5.1). In this policy a wait-and-see strategy is

adopted, under which the actual order quantityQn for replenishment cyclen is

determined only after the demand in former periods has been realized. The order

quantityQn is computed as the amount of stock required to raise the closing in-

ventory level of replenishment cyclen − 1 up to levelSn. In order to provide a

solution for our problem under the(Rn, Sn) policy we must populate both the sets

Rn andSn for n = {1, . . . , N}.
There is a large literature on deterministic production planning. This problem

has been mentioned by Garey and Johnson [37]. In [30] Florianet. al. gave an

overview for the complexity of this problem. In particular they established NP-

hardness for this problem under production cost (composed of a fixed cost and a

variable unit cost), zero-holding cost and arbitrary production capacity constraint.

They also extended this result by considering other possible cost functions and

capacity constraints. Polynomial algorithms are discussed in the same paper for

a few specific cases. Among these they cited Wagner and Whitin’s [96] work,

where the infinite capacity deterministic production planning problem is solved in

polynomial time.

In contrast the respective stochastic formulation for thisproblem has been

solved to optimality only recently, due to the complexity involved in the model-
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ing of uncertainty and of the policy-of-response. Early works in this area adopted

heuristic strategies such as those proposed by Silver [80],Askin [3] and Book-

binder & Tan [15]. Under some mild assumptions the first complete solution

method for this problem was introduced by Tarim & Kingsman [89], who pro-

posed adeterministic equivalentMixed Integer Programming (MIP) formulation

for computing(Rn, Sn) policy parameters. Empirical results showed that such

a model is unable to solve large instances, but Tarim & Smith [92] introduced

a more compact and efficient Constraint Programming (CP) formulation of the

same problem that showed a significant computational improvement over the MIP

formulation. Astochastic constraint programming[91] approach for computing

(Rn, Sn) policy parameters is proposed in [75]. In this work the authors drop the

mild assumptions originally introduced by Tarim & Kingsmanand compute op-

timal (Rn, Sn) policy parameters. Of course there is a price to pay for dropping

Tarim & Kingsman’s assumptions, in fact this latter approach is less efficient than

the one in [92].

This paper extends Tarim & Smith’s work, which builds on Tarim & Kings-

man’s assumptions. We retain their model and we augment sucha model with

threecost-based filteringmethods to enhance domain pruning. One of these tech-

niques, based on a relaxation proposed by Tarim [86] and solved by means of

dynamic programming, has been already presented in [87]. Inthis work we pro-

vide two additional cost-based filtering techniques and we extend the discussion

on Tarim’s relaxation and on the implementation of the respective cost-based fil-

tering method.

Cost-based filtering is an elegant way of combining techniques from CP and

Operations Research (OR) [28, 31]. OR-based optimization techniques are used

to remove values from variable domains that cannot lead to better solutions. This

type of domain filtering can be combined with the usual CP-based filtering meth-

ods and branching heuristics, yielding powerful hybrid search algorithms. Cost-

based filtering is a novel technique that has been the subjectof significant re-

cent research, but to the best of our knowledge it has not previously been applied

to stochastic inventory control. In the following sectionswe will show that it

can bring a significant improvement when combined with the state-of-the-art CP

model for stochastic inventory control. It should be noted that while the technique
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based on Tarim’s relaxation can easily be recognized as a classiccost-based filter-

ing method, the two additional techniques here presented are not based on bounds

obtained through a relaxation. Instead, as we will see, theyexploit reasoning on

the problem cost structure to prune values in the domains of decision variables that

cannot lead to optimal solutions. Our experimental resultsshow the efficiency ob-

tained by the combined used of these three filtering techniques during the search

for an optimal solution.

The paper is organized as follows. Section 5.2 describes theCP model and

the pre-processing techniques introduced by Tarim & Smith.Section 5.3 firstly

extends one of Tarim and Smith’s pre-processing techniquesto cost-based filtering

method, allowing it to be applied at every search tree node. Secondly it proposes a

general approach for applying any sound pre-processing technique at every search

tree node in a cost-based filtering fashion. Section 5.4 describes a relaxation that

can be efficiently solved by means of a shortest path algorithm, and produces tight

lower bounds for the original problem which is used to perform further cost-based

filtering. Section 5.5 evaluates our methods. Section 5.6 draws conclusions and

discusses future extensions.

5.2 A CP model

In this section we review the CP formulation for the(Rn, Sn) policy proposed

by Tarim & Smith [92]. First we provide some formal background related to

stochastic programming.

Stochastic programming[11] is a well known modeling technique that deals

with problems where uncertainty comes into play. Problems of optimization un-

der uncertainty are characterized by the necessity of making decisions without

knowing what their full effect will be. Such problems appearin many area of ap-

plication and present many interesting conceptual and computational challenges.

Stochastic programming needs to represent uncertain elements of the problem.

Typically random variables are employed to model this uncertainty to which prob-

ability theory can be applied. For this purpose such uncertain elements must have

a known probability distribution. The typical requirementin stochastic programs

is to maintain certain constraints, calledchance constraints[18], satisfied at a
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prescribed level of probability. The objective is typically related to the minimiza-

tion/maximization of some expectation on the problem costs. There are several

different approaches to tackle stochastic programs. A firstmethod dealing with

stochastic parameters in stochastic programming is the so-calledexpected value

model [11], which optimizes the expected objective function subject to some

expected constraints. Another method,chance-constrained programming, was

pioneered by Charnes and Cooper [18] as a means of handling uncertainty by

specifying a confidence level at which it is desired that the stochastic constraint

holds. Chance-constrained programming models can be converted into determin-

istic equivalents for some special cases, and then solved bysome solution methods

of deterministic mathematical programming. A typical example for this technique

is given by the Newsvendor problem [81]. However it is almostimpossible to

do this for complex chance-constrained programming models. A third approach

employs scenarios, which are particular representations of how the future might

unfold. Each scenario is assigned a probability value, thatis its likelihood. An

appropriate probabilistic model or simulation is used to generate a batch of such

scenarios. The challenge then, is how to make good use of these scenarios in

coming up with an effective decision.

The stochastic programming formulation for the general multi-period produc-

tion/inventory problem with stochastic demand can be expressed as finding the

timing of the stock reviews and the size of the respective non-negative replenish-

ment orders with the objective of minimizing the expected total costE{TC} over

a finite planning horizon ofN periods. The model is given below,

min E{TC} =

∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(aδt + h ·max(It, 0))

g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN)

(5.1)
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subject to, fort = 1 . . .N

δt =

{
1, if Qt > 0

0, otherwise
(5.2)

It = I0 +

t∑

i=1

(Qi − di) (5.3)

Pr{It ≥ 0} ≥ α (5.4)

It ∈ Z, Qt ≥ 0, δt ∈ {0, 1}. (5.5)

Each decision variableIt represents the inventory level at the end of periodt. The

binary decision variablesδt state whether a replenishment is fixed for periodt

(δt = 1) or not (δt = 0). If an order is placed in periodt, constraint (5.2), decision

variableQt denotes the size of the respective non-negative replenishment order.

Chance constraint (5.4) enforces the required service level, that is the probability

α that the net inventory will not be negative at the end of each time period. The

objective function (5.1) minimizes the expected total costover the given planning

horizon.

In [89] the authors assume that negative orders are not allowed, so that if the

actual stock exceeds the order-up-to-level for that period, this excess stock is car-

ried forward and not returned to the supply source. However,such occurrences

are regarded as rare events and accordingly the cost of carrying the excess stock

and its effect on the service level of subsequent periods is ignored. Under these

assumptions the chance-constrained problem can be expressed by means of ade-

terministic equivalentmodel where buffer stocks for each possible replenishment

cycle are computed independently.

We now recall some basic notions aboutconstraint programming. A Con-

straint Satisfaction Problem(CSP) [1, 17] is a triple〈V, C, D〉, whereV is a set

of decision variables each with a discrete domain of valuesD(Vk), andC is a

set of constraints stating allowed combinations of values for subsets of variables

in V . Finding a solution to a CSP means assigning values to variables from the

domains without violating any constraint inC. We may also be interested in find-

ing a feasible solution that minimizes (maximizes) the value of a given objective

function over a subset of the variables. Constraint solverstypically explore par-
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tial assignments enforcing a local consistency property using either specialized or

general purpose propagation algorithms. Such propagationalgorithms in general

exploit some structure of the problem to prune decision variable domains in more

efficient ways.

The following CP formulation of thedeterministic equivalentmodel for the

(Rn, Sn) policy is proposed in [92]:

min E{TC} =
N∑

t=1

(
aδt + hĨt

)
(5.6)

subject to, fort = 1 . . . N

Ĩt + d̃t − Ĩt−1 ≥ 0 (5.7)

Ĩt + d̃t − Ĩt−1 > 0⇒ δt = 1 (5.8)

Ĩt ≥ b

(
max

j∈{1,...,t}
j · δj, t

)
(5.9)

Ĩt ∈ Z+ ∪ {0}, δt ∈ {0, 1}, (5.10)

whereb(i, j) is defined by

b(i, j) = G−1
di+di+1+...+dj

(α)−
j∑

k=i

d̃k.

Constraint (5.9), originally proposed by Tarim and Smith, can be implemented by

means of the following set of constraints, fort = 1 . . . N

Yt ≥ j · δj j = 1, . . . , t (5.11)

element (Yt, b(·, t), Ht) (5.12)

Ĩt ≥ Ht (5.13)

Ĩt, Ht ∈ Z+ ∪ {0}, δt ∈ {0, 1}, Yt ∈ {1, . . . , N}. (5.14)

The element(X, list[], Y ) constraint [45] enforces a relation such that variable

Y represents the value of element at positionX in the given list.Gdi+di+1+...+dj
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is the cumulative probability distribution function ofdi + di+1 + . . . + dj . It is

assumed thatG is strictly increasing, henceG−1 is uniquely defined.

Each decision variablẽIt represents the expected inventory level at the end of

periodt. Eachd̃t represents the expected value of the demand in a given periodt

according to its probability density functiongt(dt). The binary decision variables

δt state whether a replenishment is fixed for periodt (δt = 1) or not (δt = 0). The

objective function (5.6) minimizes the expected total costover the given planning

horizon. The two terms that contribute to the expected totalcost are ordering costs

and inventory holding costs. Constraint (5.7) enforces a no-buy-back condition,

which means that received goods cannot be returned to the supplier. As a conse-

quence of this the expected inventory level at the end of period t must be no less

than the expected inventory level at the end of periodt − 1 minus the expected

demand in periodt. Constraint (5.8) expresses the replenishment condition.We

have a replenishment if the expected inventory level at the end of periodt is greater

than the expected inventory level at the end of periodt − 1 minus the expected

demand in periodt. This means that we received some extra goods as a conse-

quence of an order. Constraints (5.9) enforce the required service levelα. This is

done by specifying the minimum buffer stock required for each periodt in order

to assure that, at the end of each and every time period, the probability that the net

inventory will not be negative is at leastα. These buffer stocks, which are stored

in matrix b(·, ·), are pre-computed following the approach suggested in [89]. In

this approach the authors transformed a chance-constrained model, that is a model

where constraints on some random variables have to be maintained at prescribed

levels of probability, in a completely deterministic one. For further details about

chance-constrained programming see [18].

5.2.1 Domain pre-processing

In [92] the authors showed that a CP formulation for computing optimal(Rn, Sn)

policies provides a more natural way of modeling the problem. In contrast to the

equivalent MIP formulation the CP model requires fewer constraints and provides

a neater formulation. However, the CP model has two major drawbacks. Firstly, in

order to improve the search process and quickly prove optimality, tight bounds on
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the objective function are needed. Secondly, even when it ispossible to compute

a priori the maximum values that such variables can be assigned to, these values

(and therefore the domain sizes of theĨt variables) are large. The domain size

value is equal to the amount of stock required to satisfy subsequent demands till

the end of the planning horizon, meeting the required service level when only a

single replenishment is scheduled at the beginning of the planning horizon.

To address the domain size issue, Tarim & Smith proposed two pre-processing

methods in order to reduce the size of the domains before starting the search

process, by exploiting properties of the given model and of the (Rn, Sn) policy.

Method I computes a cost-based upper bound for the length of each possible re-

plenishment cycleT (i, j), starting in periodi, for all i, j ∈ {1, . . . , N}, i ≤ j.

Note thatT (i, j) denotes the time span between two consecutive replenishment

periodsi andj +1. Method I therefore identifies sub-optimal replenishment cycle

lengths allowing a proactive off-line pruning, which eliminates all the expected

inventory levels that refer to longer sub-optimal replenishment cycles. Method

II employs a dynamic programming approach, by considering each period in an

iterative fashion and by taking into account in each step twopossible courses of

action: either an order with an expected size greater than zero is placed, or no

order (equivalently an order with a null expected size) is placed in the considered

period within our planning horizon. The effects of these possible actions in each

step are reflected in the decision variable domains by removing values that are not

produced by any course of action.

5.3 From pre-processing to cost-based filtering

In the previous section we described a CP formulation for the(Rn,Sn) policy. In

[92] the authors discussed the advantages of such a formulation when it is com-

pared to the MIP formulation proposed in [89]. CP not only performs faster than

MIP and provides a neater formulation, it also allows us to build dedicated filter-

ing algorithms for pruning infeasible and/or suboptimal values for the domains of

decision variables during the search.

In Section 5.3.1 we extend the first of the two pre-processingmethods pro-

posed in [92] in order to exploit partial assignments of decision variables in the
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model to prune suboptimal values from the domains of the remaining decision

variables still unassigned at any point of the search process.

In Section 5.3.2, we describe a generic approach to applyingpre-processing

techniques not only in a proactive way, before the search process starts, but also

during the search, by exploiting partial information whichderives from the cur-

rent decision variable assignments. We emphasize that thisapproach may be used

in conjunction with any sound pre-processing method developed for our inven-

tory/production problem and it is not limited to the two pre-processing methods

proposed in [92].

A running example is given to show that the two methods proposed are incom-

parable in term of domain reduction achieved.

5.3.1 Tighter upper bounds for optimal replenishment cycle

lengths

We now present a filtering method that is a natural extension of pre-processing

method I in [92]. This method prunes variable domains, when apartial solution is

given, by enforcing tighter upper bounds for optimal replenishment cycle lengths

than those proposed by Tarim and Smith. When no partial solution is provided this

filtering method realizes the same domain reduction performed by the respective

pre-processing method.

Firstly let R(i, j) = b(i, j) +
∑j

t=i d̃t be the required minimum opening in-

ventory level in periodi, i ∈ {1, . . . , N}, to meet demand until periodj + 1. The

cycle costc(i, j), when a variable holding costht (t ∈ {1, . . . , N}) is considered,

can be expressed as

c(i, j) = a +

j∑

t=i

htb(i, j) +

j−1∑

t=i

ht

j∑

k=t+1

d̃k. (5.15)

The cost (5.15) of a replenishment cycle is the sum of two components. A fixed

ordering costa, that is charged at the beginning of the cycle when an order is

placed, and a variable holding costht charged at the end of each time period

within the replenishment cycle and proportional to the amount of stocks held in
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inventory. In [92], for each periodi ∈ {1, . . . , N} over the planning horizon

N , an upper bound for the length of an optimal replenishment cycleT (i, p)∗ that

starts in such a period is proposed. The authors computea priori this bound for

every periodi and derive from it a superset of all candidate opening-inventory-

levels for any period in the planning horizon. Let us refer tothis bound asB (Fig.

5.2 - a), and letj = i + B. Then the last periodp of an optimal replenishment

cycleT (i, p)∗ satisfiesi ≤ p ≤ j. j = i + B can be computed as the minimum

i j

(a)

p

B+1

i jk

(b)

p

B�+1

B+1

di ¹ 0 dk +1 = 1

Figure 5.2: Bound tightening when a partial solution is given: (a) since it is not
optimal to cover more thanB + 1 periods with a single replenishment ini, the
optimal policy lies in the gray area; (b) the boundB can be tightened toB′ when
an order is scheduled in periodk + 1, i ≤ k < j

j satisfying the following conditions described in [92], which formally identify

boundB

c(i, k) + c(k + 1, j) > c(i, j) ∨ b(i, k) > R(k + 1, j) (5.16)

for all k ∈ {i, . . . , j − 1}, and

c(i, k) + c(k + 1, j + 1) ≤ c(i, j + 1) ∧ b(i, k) ≤ R(k + 1, j + 1) (5.17)

159



for somek ∈ {i, . . . , j}, given that∀p ∈ {j + 2, . . . , N} such ak satisfies

−
p∑

t=j+2

(k + 1− i)d̃t + (p− k)b(k + 1, p)− (j − k + 1)b(k + 1, j + 1) ≤

(p− i + 1)b(i, p)− (j − i + 2)b(i, j + 1).

(5.18)

A proof for these conditions is given in Appendix 5.7.2.

When a partial solutionS is given, it is possible to tighten the boundB by

using the following observations:

• if δi is assigned to0 then no replenishment cycle starts in periodi.

• if δi is not assigned to0 and∃k ∈ {i, . . . , i + B − 1} such thatδk+1 = 1,

then B can be tightened to the smallestk − i valueB′ (Fig. 5.2 - b)

In order to compute the tighter boundB′ for a given periodi ∈ {1, . . . , N} when

a partial solutionS is given we introduce the following Lemma.

Lemma 5.3.1. If there exists somek ∈ S such thatδk+1 = 1 andi ≤ k < j, then

B can be tightened toB′ = j′ − i where

j′ = min
(
{k| δk+1 = 1, k ∈ {i, . . . , j − 1}}

⋃
{j}
)

.

Proof. Trivially the replenishment scheduled in periodk + 1 rules out the chance

of covering periodsi, . . . , j wherej > k with a single cycle.

By means of the described tighter boundB′ we can now obtain smaller su-

persets of all candidate opening-inventory-levels than those described in [92].

For convenience in what follows we will refer to the expectedclosing-inventory-

levels, that is opening-inventory-level minus expected demand in the period con-

sidered.

A first reduction in the size of the super-sets is due to the fact that if δi is

assigned to zero, no replenishment cycle starts in periodi. Therefore no value

that is a candidate expected closing-inventory-level for any replenishment cycle

starting in periodi is feasible with respect to the given partial solution. Otherwise

candidate values can be computed as described in the following:

160



Lemma 5.3.2.Whenδi is not assigned to0, a sufficient but not necessary condi-

tion that identifies candidate expected closing-inventory-level values inDom(Ĩm),

m ∈ T (i, j′) for a replenishment cycle starting in periodi is defined as follows

(see Fig. 5.3):

Dom(Ĩm) ⊇
{

τ

∣∣∣∣∣ τ = R(i, l)−
m∑

t=i

d̃t, l ∈ {m, . . . , j′}
}

. (5.19)

Proof. As shown in [92], equation (5.19) considers inDom(Ĩm) for eachm ∈
T (i, j′) every value that is feasible if there is a replenishment cycle starting in

periodi. In fact if p denotes the final period of the optimum length replenishment

cycle for periodi, δk = 0, k = {i + 1, . . . , p}, the optimum expected closing

inventory level for periodm, wherei ≤ m ≤ p, isR(i, p)−∑m
t=i d̃t. The domain

of possible values is therefore obtained by lettingp range fromm to j. Tightening

j to j′ is correct because, when a partial solution is given, this ignores values

related to every infeasible replenishment cyclesT (i, r), wherej′ < r ≤ j and

δj′+1 = 1, if any exists.

i j�

B�+1

di ¹ 0

m

Figure 5.3: Subset of candidate optimal expected closing-inventory-levels for pe-
riod m, m ∈ {i, . . . , j′}. These values can be computed as stated in Lemma
5.3.2. The whole set of candidate levels shown in the picturemay be computed
by rangingm from i to j′

The former condition is only sufficient because there may exist other candidate

values that should be inDom(Ĩm) as we did not take into accountnegative order

quantityscenarios. Such situations arise when for somem ∈ T (i, j′), c(i, m) +
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c(m+1, j′) ≤ c(i, j′) andb(i, m) > R(m+1, j′) (Fig. 5.4 - a). In this case, since

(c)

(b)

di ¹ 0 dm+1 ¹ 0

i wmi j�m

(a)

di ¹ 0

dm+1 ¹ 0

i vm

dm+2,...,v ¹ 1

Figure 5.4: (a) Negative order quantity scenario. Additional values, computed
by Lemma 5.3.3, to be considered in the subset of candidate optimal expected
closing-inventory-levels for each periodp when (b) an order with expected size
greater than zero is scheduled in periodm + 1, p ∈ {m + 1, . . . , h′}, (c) an order
with expected size zero is scheduled in periodm+1, p ∈ {m+1, . . . , w}. In both
casesδm+1 6= 0 since it must be possible to schedule an order in periodm + 1

the replenishment policy expects a negative order and is infeasible, an optimal

policy can be either the one that schedules a new order in period m + 1 with an

expected lot-size greater than zero (Fig. 5.4 - b) or an expected lot-size of zero

(Fig. 5.4 - c). Lemma 5.3.3 and 5.3.4 characterize which additional values have

to be considered when a negative order quantity scenario arises.

Lemma 5.3.3.If δm+1 = 0, Eq. (5.19) is a necessary and sufficient condition that

identifies candidate expected closing-inventory-level values inDom(Ĩm), m ∈
T (i, j′) for a replenishment cycle starting in periodi.

Proof. In [92] it is stated that, ifi is a replenishment period and we want to cover

subsequent periods up tom, in a feasible policy a replenishment should then be

scheduled inm + 1. Sinceδm+1 = 0, it is not feasible to cover periods fromi to
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m with a single order ini because to do so we would need an additional order in

periodm + 1 that is ruled out by the partial assignment.

Lemma 5.3.4. If δm+1 is not assigned to zero, every further candidate expected

closing-inventory-level value for a replenishment cycle starting in periodi can be

identified by considering two possible courses of action:

• a new order is scheduled for periodm + 1 and its expected size is greater

than zero, (Fig. 5.4 - b). In this case, ifδk 6= 1 for k = {m + 2, . . . , v}, we

also consider the following candidate expected closing-inventory levels

Dom(Ĩn) ⊇
{

τ

∣∣∣∣∣ τ = R(m+1,v) −
n∑

t=m+1

d̃t

}
, (5.20)

for n = {m+1, . . . , v}, wherev = min
{

l
∣∣∣b(m + 1, l) +

∑l
t=m+1 d̃t ≥ b(i, m)

}
.

• a new order is scheduled for periodm+1 and its expected size is zero, (Fig.

5.4 - c). In this case we also consider the following candidate expected

closing-inventory levels

Dom(Ĩn) ⊇
{

τ

∣∣∣∣∣ τ = b(i,m) −
n∑

t=m+1

d̃t

}

, (5.21)

for n ∈ {m + 1, . . . , w}, where

w = max

{
l

∣∣∣∣∣∃q ∈ {m + 1, . . . , l}, b(q, l) +
l∑

t=m+1

d̃t ≤ b(i, m)

}
.

Proof. As shown in [92], equation (5.20) adds toDom(Ĩn) every further feasible

values by considering the option of placing an order whose expected lot-size is

bigger than zero. In fact if we assume that the high levels of opening inventory

carried from periodm satisfy the service-level constraint for the followingv − 1

consecutive periods, then the remaining inventory is not enough to satisfy this

constraint for periodv. To comply with the service level constraint in periodv,

the order quantity must be at leastb(m + 1, v) +
∑v

t=m+1 d̃t − b(i, m). Hence
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this replenishment covers the periods until the end ofv, wherev = min{l|b(m +

1, l) +
∑l

t=m+1 d̃t ≥ b(i, m)}. If an order has been scheduled for a periodt ∈
{m + 2, . . . , v}, then by definition the remaining inventory at the end of period

m is enough to satisfy demands in periods{m + 1, . . . , t}, therefore the optimal

expected order quantity for periodm + 1 is zero.

Equation (5.21) adds toDom(Ĩn) every further feasible values by consider-

ing the option of placing an order whose expected lot-size iszero. In this case,

since the replenishment expects a zero order quantity, the excess stock may affect

subsequent periods regardless of the orders placed. Therefore we look forward

in the planning horizon up to the point where no following replenishment cycle

may be affected by the excess stock carried on from the current one. Hence, the

farthest period that may be affected isw = max{l|∃q ∈ {m + 1, . . . , l}, b(q, l) +
∑l

t=m+1 d̃t ≤ b(i, m)}.

Theorem 5.3.1.When a partial solution is given, by rangingi from1 to N , equa-

tions (5.19, 5.20, 5.21) identify the feasible subset of values within the current

Dom(Ĩk), for k ∈ {1, . . . , N}.

Proof. Directly follows from Lemmas 5.3.1, 5.3.2, 5.3.3 and 5.3.4.

Example 5.3.1.We now present a running example where the planning horizon

is N = 24 periods and the initial stock level is equal to zero. The demand is

normally distributed in each periodt ∈ {1, ..., N} with a constant coefficient of

variationσt/d̃t = 1/3, whereσt is the standard deviation of the demand in period

t. The demand forecasts (mean value for each period) are listed in Table 5.1. The

other parameters for the problem are:a = 200, h = 1, α = 0.95. The optimal so-

lution for the CP model when former inputs are considered is shown in Table 5.2.

The (Rn, Sn) policy parameters, that is replenishment cycle lengths andorder-

up-to-levels, for this instance can be easily computed fromthe solution of the CP

model. We applied the described filtering method without considering a given

partial solution, the domain reduction achieved is therefore equivalent to the one

performed by pre-processing method I introduced in [92]. This way we computed

the reduced domainsDom(It) for the decision variablesIt, t ∈ {1, ..., N}. These

reduced domains are shown in Table 5.3. We now consider the partial solution

shown in Table 5.4. Table 5.5 shows the reduced domains obtained when we en-

164



i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d̃i 73 0 128 116 92 180 28 164 28 161 37 57 181 62
i 15 16 17 18 19 20 21 22 23 24

d̃i 34 161 2 10 40 192 17 190 163 32

Table 5.1: Demand forecasts

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
δi 1 0 1 1 0 1 0 1 0 1 1 0 1 1

Ĩi 40 40 70 173 81 128 100 119 91 88 94 37 99 73
i 15 16 17 18 19 20 21 22 23 24
δi 0 1 1 0 0 1 0 1 1 0

Ĩi 39 88 86 76 36 123 106 104 123 91

Table 5.2: Optimal solution

i Dom(Ĩi) i Dom(Ĩi)
1 {40} 13 {99, 167}
2 {0, 40, 198} 14 {34, 37, 73, 105}
3 {70, 211} 15 {19, 39}
4 {64, 95, 173} 16 {88, 90, 100, 143}
5 {50, 81} 17 {1, 16, 73, 86, 88, 98, 141, 350}
6 {99, 128} 18 {5, 6, 63, 76, 78, 88, 131, 340}
7 {15, 71, 100} 19 {22, 23, 36, 38, 91, 300}
8 {90, 119} 20 {105, 108, 123}
9 {15, 62, 91} 21 {9, 88, 106}
10 {88, 128} 22 {104}
11 {20, 51, 91, 94} 23 {89, 123}
12 {31, 37} 24 {18, 57, 91}

Table 5.3: Reduced domains after applying our filtering method when no partial
solution is given. The reduction achieved is equivalent to the one provided by
pre-processing method I in [92]. Underlined figures are closing inventory levels
of the optimal policy

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
δi 1 0 1 − 0 1 0 1 0 − − 0 1 −
i 15 16 17 18 19 20 21 22 23 24
δi 0 1 1 0 0 1 0 1 − 0

Table 5.4: Partial solution. A ”–” means that the variable has not been assigned
yet

force tighter upper bounds for optimal replenishment cyclelengths considering

the partial solution in Table 5.4. From Theorem 5.3.1 it directly follows that the

filtering is performed by removing from decision variables domains (Table 5.3)

values that do not appear in Table 5.5, which contains the computed reduced do-
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mains with respect to the partial solution given.

We shall now see in details how feasible expected closing-inventory-levels in

the reduced domains (Table 5.5) are computed for the first5 periods. In the given

partial solution we place an order in period1 but not in period2. An order is

placed in period3 therefore a replenishment cycle over periods{1, 2} is uniquely

defined. BoundB′ for period1 is 2 periods. The demand in the first period is

73 while in the second is0. The buffer stock required at the end of period1 is

70 · 1.645 · 0.3 ' 40. By iterating Lemma 5.3.2 over periods{1, 2} we obtain

an expected closing-inventory-level of40 for period1 and again of40 for period

2. Negative order quantity scenarios do not arise sinceδ2 = 0. We do not iterate

Lemma 5.3.2 for period2, sinceδ2 = 0 and no replenishment cycle may start in

this period. In period3 a replenishment is scheduled. The replenishment decision

in period4 is still unassigned while in period5 no replenishment is scheduled.

We apply Lemma 5.3.2 to period3. The boundB′ is 2 periods. Therefore ei-

ther we may cover only the current period with a replenishment, which yields a

closing inventory level of70, or we may cover both the periods with a single re-

plenishment, in which case the required expected closing-inventory-level is211

in period3 and95 in period4. Negative order quantity scenarios do not arise. In

period4 the boundB′ is again2. Therefore we may cover only one period with an

expected closing-inventory-level of64, or we may cover two periods by keeping

respectively an expected closing-inventory-level of173 at the end of period4 and

of 81 at the end of period5. Negative order quantity scenario again do not arise.

δ5 is assigned to0 therefore no replenishment cycle starts in this period.

We now consider a set of periods where negative order quantity scenarios arise.

We refer to periods{10, 11, 12}. In period10, B′ is 2 periods. Therefore the

two candidate expected closing inventory levels computed by Lemma 5.3.2 are

{88, 128}. 88 is the expected closing-inventory-level required if only one period

is covered by the replenishment scheduled in period10, 128 is the level required

to cover period10 and11 with a single replenishment. In this case the respective

expected closing-inventory-level at the end of period11 is 91. If an order is placed

in period10 and also in period11 the overall cost is higher than that incurred by

covering both the periods with a single replenishment. On the other hand the

order-up-to-level for period11 in this case is lower than the expected closing-

166



i Dom(Ĩi) i Dom(Ĩi)
1 {40} 13 {99, 167}
2 {40} 14 {34, 37, 73, 105}
3 {70, 211} 15 {39}
4 {64, 95, 173} 16 {88}
5 {81} 17 {1, 16, 73, 86}
6 {99, 128} 18 {6, 63, 76}
7 {100} 19 {23, 36}
8 {90, 119} 20 {105, 123}
9 {91} 21 {106}
10 {88, 128} 22 {104}
11 {20, 51, 91, 94} 23 {89, 123}
12 {37} 24 {91}

Table 5.5: Enforcing tighter upper bounds for optimal replenishment cycle lengths
- Partial solution in Table 5.4, underlined figures are closing inventory levels of
the optimal policy

inventory-level in period10. This generates a negative order quantity scenario.

As stated in Lemma 5.3.4, either we cover period11 only by scheduling an order

with expected size zero. In this case the candidate level51 = 88 − 37 must

be considered for period11. Otherwise we try to cover more periods with the

candidate level94. By doing so we will cover subsequent periods till12, therefore

we add the candidate level37 = 94− 57 to period12. The other value in the table

for period11 is 20 that refers instead to the case in which we order in this period

and we cover only1 period with the order. This value is computed by applying

Lemma 5.3.2 to this period. Sinceδ12 = 0 no replenishment cycle may start in

this period. �

5.3.2 Merging adjacent non-replenishment periods

One of the limits of the domain reduction methods proposed in[92] is that they can

only be applied before the search process starts. Thereforethey do not take into

account information regarding partial assignments for decision variables that may

become available during the search process. In this sectionwe aim to overcome

this limitation with a general approach that may be applied to any pre-processing

method.

We consider a given partial solution in which some decision variablesδi are set

to zero. The key idea is to transform the original problem instance into a smaller
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one by merging adjacent non-replenishment periods into a single new period with

new expected demand and variance values. Since the demand ineach period is

assumed to be independent from the previous and the following demands, these

new characteristics for the demand distribution in the new merged time span can

be easily computed by exploiting properties of the chosen probability distribution.

Once we have the smaller instance fully defined, we can apply any sound pre-

processing methods, for instance one of those presented in [92], and then we can

reflect the pruning achieved in the smaller instance back onto the original one.

It should be noted that the following reasoning can be applied to any reduction

method for the presented CP model, and it is not limited to those presented in

[92]. We propose a three-step procedure to apply any pre-processing method not

only at the root node, but at every node of the search tree.

Step 1 By considering a partial solutionS for the original problem instanceP,

we construct a reduced problem instanceR. R will be described by a list of

M ≤ N expected demand values and standard deviations and it will be built as

follows. If δk = 0 for all k ∈ {i + 1, . . . , j} andδi = 1 or δi is unassigned, then

instead of periods{i, . . . , j} we introduce a new periodk∗ that represents such a

span with an expected demand of

d̃k∗ =

j∑

t=i

d̃t

and a standard deviation of

σk∗ =

√√√√
j∑

t=i

σ2
t .

These two expressions are well known properties of the normal distribution. The

holding cost for periodk∗ can be expressed ash·(j−i+1)Ik∗+
∑j

l=i+1(l−i)d̃l, and

since the second term is constant the new holding cost coefficient will be hk∗ =

h ·(j− i+1). For any other period inP we introduce a duplicate period inR with

the same expected demand, variance and holding cost. To avoid confusion, we

will refer to the decision variables denoting the closing inventory level at period

i in problemR asĨ ′
i, to the binary variables asδ′i, for all i ∈ {1, . . . , M} and to
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the demands as̃d′
i, for all i ∈ {1, . . . , M}.

Step 2 In this step we apply a sound pre-processing method to the reduced prob-

lem instanceR defined in the previous step.

Step 3 In this step we reflect the pruning done in the reduced instance back to

the original instance. For each periodp ∈ {1, . . . , M} of R that is the result of

merging adjacent periods{i, . . . , j}, i < j of P, we can update the domains ofĨt

for all i ≤ t ≤ j by enforcing the following constraints:

Ĩt =

{
Ĩ ′
p if t = j,

Ĩ ′
p + d̃j + d̃j−1 + . . . + d̃t−1 if i ≤ t < j.

(5.22)

For any other periodp ∈ R that does not represent merged periods and its corre-

sponding periodt in P, we enforce that

Ĩt = Ĩ ′
p. (5.23)

These three steps compose the core of our algorithm. The following Theorem

shows that such a filtering algorithm is sound.

Theorem 5.3.2.We are given a problem instanceP and a partial solutionS for it,

where∃δi, i ∈ {1, . . . , N} such thatδi = 0. By applying a sound pre-processing

method (Step 2) to the reduced problem instanceR, obtained as described in

Step 1, and by computing feasible values for decision variables Ĩt in the original

problemP, as stated in Step 3, no value that is part of any optimal solution S∗

with respect to the given partial assignments inS is pruned in the domain of̃It,

t ∈ {1, . . . , N}.

Proof. We will now show that, under the given partial solutionS, the reduced

problem instanceR is equivalent to the original problemP and that the reduction

in the number of decision variables and constraints is a direct consequence of

the linear dependencies induced by the current partial assignment forδt variables.

This will establish the fact that any sound pre-processing method applied toRwill
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produce a sound domain reduction inP when reflected by means of the proposed

mapping that is built on these linear dependencies.

Let us consider the model above for our problemP that is defined by Eqs. 5.6,

5.7, 5.8, 5.9 and 5.10.

ConsiderP and a partial solution where∃k ∈ {1, ..., N} s.t. δk is set to

0. Let us consider the implications of this assignment in our model P. This

assignment affects theinventory conservation constraints5.7 and obviously the

replenishment decisions5.8, theconstraints that enforce buffer stocks5.9 and the

objective function5.6.

Effects on the replenishment decision and on the inventory conservation

constraints. Sinceδk = 0, constraint 5.7 fort = k can be tightened because of

Eq. 5.8 as follows:

Ĩk + d̃k − Ĩk−1 = 0, (5.24)

then, by using̃Ik−1 + d̃k−1 − Ĩk−2 ≥ 0 (that is constraint 5.7 fort = k − 1) and

Eq. 5.24, we have

Ĩk + d̃k + d̃k−1 − Ĩk−2 ≥ 0. (5.25)

Notice that constraint 5.8 fort = k is now redundant, since we assume thatδk = 0.

Furthermore by following a reasoning similar to the one usedto derive Eq. 5.25,

Eq. 5.8 fort = k − 1 can be replaced by the following constraint

Ĩk + d̃k + d̃k−1 − Ĩk−2 > 0→ δk−1 = 1. (5.26)

Effects on the constraints that enforce buffer stocks. Let us consider now

the implications of constraint 5.24 on the buffer stock levels. Whent = k − 1 in

constraint 5.9 we can write

Ĩk + d̃k ≥ b

(
max

j∈{1,...,k−1}
j · δj , k − 1

)
. (5.27)

Also notice that fort = k

Ĩk ≥ b

(
max

j∈{1,...,k}
j · δj, k

)
(5.28)
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and sinceδk = 0, Eq. 5.28 can be rewritten as

Ĩk ≥ b

(
max

j∈{1,...,k−1}
j · δj, k

)
. (5.29)

Since the buffer stock levelb(i, j) is an increasing function of the number of peri-

ods as shown in [92], it is easy to see that

Ĩk ≥ b

(
max

j∈{1,...,k−1}
j · δj , k

)
≥ b

(
max

j∈{1,...,k−1}
j · δj , k − 1

)
, (5.30)

it follows that Eq. 5.27 (that is constraint 5.9 fort = k − 1) becomes redundant.

Effects on the objective function. We now consider the implications of con-

straint 5.24 on the objective function. Sinceδk = 0 the fixed ordering cost com-

ponent for periodk is zero. By applying constraint 5.24 we obtain the following

new objective function

min E{TC} =

N∑

t=1,t6=k

aδt +

N∑

t=1,t6=k−1

hĨt + h(Ĩk + d̃k). (5.31)

We can see that we no longer have a holding cost component for period k − 1,

while the holding cost for periodk is now doubled, since we can ignore the con-

stant termh · d̃k.

Every implication of Eq. 5.24 in the whole model has been considered, there-

fore we can rewrite

hd̃k + min E{TC} =

N∑

t=1,t6=k

aδt +

N∑

t=1,t6=k−1

hĨt + hĨk (5.32)
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subject to,

Ĩt + d̃t − Ĩt−1 ≥ 0 t = 1, . . . , N ; t 6= k − 1; t 6= k

(5.33)

Ĩk + d̃k + d̃k−1 − Ĩk−2 ≥ 0 (5.34)

Ĩt + d̃t − Ĩt−1 > 0⇒ δt = 1 t = 1, . . . , N ; t 6= k − 1; t 6= k

(5.35)

Ĩk + d̃k + d̃k−1 − Ĩk−2 > 0⇒ δk−1 = 1 (5.36)

Ĩt ≥ b

(
max

j∈{1..t}
j · δj , t

)
t = 1, . . . , N ; t 6= k − 1 (5.37)

Ĩt ∈ Z+ ∪ {0} t = 1, . . . , N ; t 6= k − 1 (5.38)

δt ∈ {0, 1} t = 1, . . . , N ; t 6= k. (5.39)

To summarize, we showed that constraint 5.7 fort = k − 1 andt = k can be

expressed by Eq. 5.25, and similarly constraint 5.8 fort = k−1 andt = k can be

expressed by Eq. 5.26. Both these new constraints (5.25,5.26) are independent of

Ĩk−1. Constraint 5.9 fort = k−1 becomes redundant. The new objective function

(Eq. 5.31) reflects the consequences of constraint 5.24 and is independent of

decision variablẽIk−1. Therefore the whole model is now independent of decision

variableĨk−1, whose value is a function of̃Ik (Eq. 5.24).

Since the last model is independent ofĨk−1 andδk, we now reduce it to an

(N − 1)-period modelR through a change of variables, by merging periodsk− 1

andk and realizing the whole demand̃d′
k∗ = d̃k + d̃k−1 in the new periodk∗,

wherek∗ covers the span{k − 1, k}. In such a new modelR the demand̃d′
t in

the other periodst ∈ {1, ..., k∗ − 1, k∗ + 1, ..., N − 1} is mapped as follows:

d̃′
t =

{
d̃t, t ∈ {1, ..., k − 2}
d̃t+1, t ∈ {k, ..., N − 1}.

Since the demand in periodsk andk − 1 of P is assumed to be normally dis-

tributed, the variance for the demand in the new periodk∗ ofR is

σ′
k∗ =

√
σ2

k + σ2
k−1.
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Ĩ ′
k∗ in R, that is the closing inventory levels in the new model, can berelated to

the respective closing inventory levels of periodsk andk−1 in P usingĨk = Ĩ ′
k∗

andĨk−1 = Ĩ ′
k∗ + d̃k, which follow from Eq. 5.24 and the definition ofk∗. The

other closing inventory levels are mapped as follows:

Ĩ ′
t =

{
Ĩt, t ∈ {1, ..., k − 2}
Ĩt+1, t ∈ {k, ..., N − 1}.

Notice that we only assumedδk = 0, soN − 1 binary decision variables are still

unassigned. Therefore we haveδ′k∗ = δk−1 (Eq. 5.26) and the following mapping

for the remaining variables:

δ′t =

{
δt, t ∈ {1, ..., k − 2}
δt+1, t ∈ {k, ..., N − 1},

whereδ′t are the binary decision variables inR. Eq. 5.31 states that in order to get

a model equivalent to the initial one, we must apply a holdingcost of2h for the

new periodk∗ in the objective function.

The last model presented can be therefore rewritten in termsof the new deci-

sion variables defined by this mapping. The resulting problem instance isR

E{TC} = hd̃k + min
N−1∑

t=1

aδ′t +
N−1∑

t=1

hĨ ′
t + hĨ ′

k∗ (5.40)

subject to

Ĩ ′
t + d̃′

t − Ĩ ′
t−1 ≥ 0 t = 1, . . . , N − 1 (5.41)

Ĩ ′
t + d̃′

t − Ĩ ′
t−1 > 0⇒ δ′t = 1 t = 1, . . . , N − 1 (5.42)

Ĩ ′
t ≥ b

(
max

j∈{1..t}
j · δ′j , t

)
t = 1, . . . , N − 1 (5.43)

Ĩ ′
t ∈ Z+ ∪ {0}, δ′t ∈ {0, 1} t = 1, . . . , N − 1. (5.44)

It is trivial to recursively extend this reasoning to the case of consecutive pe-

riods withδk set to zero. This process necessarily ends when we reach ani < k

whereδi = 1 or δi ∈ {0, 1}. Furthermoreδ1 = 1, since without loss of gener-

ality we assume an initial null inventory and an initial demand greater than zero,
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t 1 2 3 4 5 6 7 8 9
i, . . . , j 1, 2 3 4, 5 6, 7 8, 9 10 11, 12 13 14, 15

d̃t 73 128 208 208 192 88 94 181 96
σt 24.3 42.6 49.3 60.6 55.4 29.3 22.5 60.3 23.5
ht 2 1 2 2 2 1 2 1 2

t 10 11 12 13 14
i, . . . , j 16 17, 18, 19 20, 21 22 23, 24

d̃t 88 52 209 190 195
σt 29.3 13.7 64.2 63.3 55.3
ht 1 3 2 1 2

Table 5.6: Reduced problem instance built as described in Step 1. For every period
t in the new instanceR, i, . . . , j denotes the span covered in the original problem
P

i Dom(Ĩ′i) i Dom(Ĩ′i)
1 : {1, 2} {40} 8 : {13} {99}
2 : {3} {70} 9 : {14, 15} {39}
3 : {4, 5} {81} 10 : {16} {88, 143}
4 : {6, 7} {100} 11 : {17, 18, 19} {23, 36, 91}
5 : {8, 9} {91} 12 : {20, 21} {106}
6 : {10} {88} 13 : {22} {104}
7 : {11, 12} {37} 14 : {23, 24} {91}

Table 5.7: Effect of pre-processing method I in [92] on the smaller instance with
merged periods, underlined figures are closing inventory levels of the optimal
policy

therefore we always fix a replenishment in the first period.

Example 5.3.2.We now refer to the same instance analyzed for the example in

Section 5.3.1. When the partial solution given in Table 5.4 is considered, a reduced

problem instance can be built as described in Step 1. This instance is shown in

Table 5.6. We applied pre-processing method I in [92] to thisinstance as stated

in Step 2. Note that this is equivalent to applying our cost-based filtering method

presented in Section 5.3.1 when in the given partial solution no decision variable

has been assigned to a value. The reduced domains are shown inTable 5.7. From

the reduced domains in Table 5.7, by applying Step 3, we can compute the reduced

domain for the original problem instance. These domains areshown in Table 5.8.

The two presented methods are incomparable, in fact this method prunes more

values in period 6 while the former one prunes more values in period 16. �
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i Dom(Ĩi) i Dom(Ĩi)
1 {40} 13 {99}
2 {40} 14 {73}
3 {70} 15 {39}
4 {173} 16 {88, 143}
5 {81} 17 {73, 86, 141}
6 {128} 18 {63, 76, 131}
7 {100} 19 {23, 36, 91}
8 {119} 20 {123}
9 {91} 21 {106}
10 {88} 22 {104}
11 {94} 23 {123}
12 {37} 24 {91}

Table 5.8: Reduced domains of the original instance obtained through the map-
ping proposed, underlined figures are closing inventory levels of the optimal pol-
icy

5.4 Cost-based filtering by relaxation

The CP model as described so far suffers from a lack of tight bounds on the ob-

jective function. In this section we recall a relaxation forour model originally

proposed by Tarim in [86]. By means of this relaxation we willintroduce a novel

approach to compute a locally optimal solution or a valid lower bound at each

node of the search tree.

It should be noted that the relaxation as presented in [86] does not take into

account a given partial solution if this is available. As we will show this exten-

sion is not trivial, especially if we aim to take into accounta partial assignment

involving bothδt andĨt decision variables.

Given a problem instance, Tarim’s approach adopts a greedy algorithm to

solve a relaxed problem instance. This way a replenishment plan (assignment for

theδt andIt variables) is generated. Once this replenishment plan is available, it

is possible to characterize if it is also feasible with respect to the original problem.

If so, the respective computed cost is optimal for the original problem. Otherwise,

if the replenishment plan is infeasible with respect to the original problem, the

computed cost is a valid lower bound for the optimal solutioncost of the original

problem.
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5.4.1 Tarim’s relaxation

We shall now describe Tarim’s relaxation in details. The core observation con-

sists in the fact that the CP model proposed in Section 5.2 canbe reduced to a

shortest path problem if we relax inventory conservation constraints (5.7,5.8)

for replenishment periods only. That is for each possible pair of replenishment

cycles〈T (i, k − 1), T (k, j)〉 wherei, j, k ∈ {1, . . . , N} andi < k ≤ j, we do

not consider the relationship between the opening inventory level of T (k, j) and

the closing inventory level ofT (i, k − 1). This corresponds to allowing negative

replenishments (Fig. 5.4 - a), or the ability to sell stock back to the supplier. Since

the inventory conservation constraint is now relaxed between replenishment cy-

cles, each replenishment cycle can be now treated independently and its cost can

be computeda priori. In fact, given a replenishment cycleT (i, j), we recall that

b(i, j), as defined above, denotes the minimum buffer stock level required to sat-

isfy a given service level constraint during the replenishment cycleT (i, j). It

directly follows thatĨj = b(i, j). Furthermore for each periodt ∈ {i, . . . , j − 1}
the expected closing-inventory-level is̃It = b(i, j) +

∑j
k=t+1 dk. Since all the

Ĩt for t ∈ {i, . . . , j} are known it is easy to compute the expected total cost for

T (i, j), which is by definition the sum of the ordering cost and of the holding cost

components,a + h
∑j

t=i Ĩt. We now have a setS of N(N + 1)/2 possible differ-

ent replenishment cycles and the respective costs. Our new problem is to find an

optimal setS∗ ⊂ S of consecutive disjoint replenishment cycles that covers our

planning horizon at the minimum cost.

It should be noted that, from the characterization of the optimal policy for the

deterministic inventory/production problem given by Wagner and Whitin [96],

the optimal solution of this relaxation is always feasible for the original problem

if buffer stocks are all zero and therefore we are solving a deterministic problem.

In fact we recall that, as stated in [96] in the search for the optimal policy for the

deterministic production/inventory problem it is sufficient to consider programs

in which at periodt one does not both place an order and bring in inventory (i.e.

zero-inventory ordering property). It directly follows that every relaxed inventory

conservation constraint is trivially satisfied under a deterministic setting, as in an

optimal solution the closing inventory level at the end of each replenishment cycle
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must be zero.

5.4.2 Tarim’s relaxation as a shortest path problem

We shall now show that the optimal solution to this relaxation is given by the

shortest path in a graph from a given initial node to a final node where each arc

represents a replenishment cycle cost. IfN is the number of periods in the plan-

ning horizon of the original problem, we introduceN+1 nodes. Since we assume,

without loss of generality, that an order is always placed atperiod1, we take node

1, which represents the beginning of the planning horizon, asthe initial node.

NodeN + 1 represents the end of the planning horizon. For each possible replen-

ishment cycleT (i, j − 1) such thati, j ∈ {1, . . . , N + 1} andi < j, we introduce

an arc(i, j) with associated costc(i, j − 1). Since we are dealing with a one-way

temporal feasibility problem [96], wheni ≥ j, we introduce no arc. The connec-

tion matrix for such a graph, of sizeN × (N + 1), can be built as shown in Table

5.9. By construction the cost of the shortest path from node1 to nodeN + 1 in

1 2 . . . j . . . N + 1
1 − c(1, 1) . . . c(1, j − 1) . . . c(1, N)
... − − . . .

...
. . .

...
i − − − c(i, j − 1) . . . c(i, N)
... − − − − . . .

...
N − − − − − c(N, N)

Table 5.9: Shortest Path Problem Connection matrix

the given graph is a valid lower bound for the original problem, as it is a solution

of the relaxed problem.

Solution mapping. It is easy to map the optimal solution for the relaxed prob-

lem, that is the set of arcs participating to the shortest path, to a solution for the

original problem by noting that each arc(i, j) represents a replenishment cycle

T (i, j−1). By the definition of replenishment cycleT (i, j−1), δi = 1 andδt = 0,

for t = i + 1, . . . , j − 1. The set of arcs in the optimal path uniquely identifies a

set of disjoint replenishment cycles, that is a replenishment plan (assignment for
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δt decision variables). Furthermore for each periodt ∈ {i, . . . , j − 1} in cycle

T (i, j − 1) we already showed that all the expected closing-inventory-levels Ĩt,

t ∈ {i, . . . , j − 1}, are known. This produces a complete assignment for deci-

sion variables in our model. The feasibility of such an assignment with respect

to the original problem can be checked by verifying that it satisfies every relaxed

constraint, that is no negative expected order quantity is scheduled.

Shortest path algorithm. To find a shortest path in the given graph we use

a modified Dijkstra’s algorithm that finds a shortest path inO(n2) time, where

n is the number of nodes in the graph. Details on efficient implementations of

Dijkstra’s algorithm can be found in [77]. Usually Dijkstra’s algorithm [77] does

not apply any specific rule for labeling when ties are encountered in sub-path

lengths. This non-deterministic labeling may produce a loss of optimal solutions

if decision variable domains are pre-processed as described in [92]. In fact pre-

processing Method I in [92] relies upon an upper-bound for optimal replenishment

cycle length. When a replenishment periodi ∈ {1, ..., N} is considered, it looks

for the lowestj ∈ {i, . . . , N} after which it is no longer optimal to schedule the

next replenishment. This means that, if more policies that share the same expected

cost exist, only the one that has shorter, and obviously more, replenishment cycles

will be preserved by Method I. Therefore, when the algorithmis implemented in

this filtering approach, we need to introduce a specific rule for node selection in

order to make sure that, when more optimal policies exist, our modified algorithm

will always find the one that has the highest possible number of replenishment

cycles (i.e. the shortest path with the highest possible number of arcs). Since there

is a complete order among nodes, we can easily implement thisrule in the labeling

action by always choosing as ancestor the node that minimizes the distance from

the source and that has the highest index. The pseudo-code for the proposed

modified Dijkstra’s algorithm can be found in Appendix 5.7.3.

5.4.3 Cost-based filtering

So far we described a known possible way to relax the CP model proposed in

Section 5.2. We also proposed a novel Dijkstra’s algorithm implementation that
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makes the relaxation in [86] compatible with the pre-processing methods in [92].

The relaxation described can be seen as a state space relaxation, where we define a

new problem with a number of states polynomially bounded in the original prob-

lem input. A lower bound for the optimal solution cost is thenobtained by solving

a Shortest Path Problem in the state space graph. We will now show a novel ap-

proach to exploit this lower bound in anoptimization oriented global constraint.

A detailed discussion on state space relaxation and optimization oriented global

constraints can be found in [33].

Partial assignments forδk decision variables

δk = 0: Let us consider the graph built as described in Tarim’s relaxation. If in

a given partial solution a decision variableδk, k ∈ {1, . . . , N} has been already

set to0, then we can remove from the graph every inbound arc to nodek and

every outbound arc from nodek. This prevents nodek from being part of the

shortest path, and hence prevents periodk from being a replenishment period. By

applying Dijkstra’s algorithm to this modified graph the cost of the shortest path

will provide a valid lower bound for the cost of an optimal solution incorporating

the decisionδk = 0. Furthermore, as seen above, Dijkstra’s algorithm will also

provide an assignment for decision variables. If this assignment is feasible for the

original problem, then it is optimal with the respect to the decisionδk = 0.

δk = 1: On the other hand, if in a given partial solution a decision variableδk,

k ∈ {1, . . . , N} has been already set to1, then we can remove from the graph

every arc connecting a nodei to a nodej, wherei < k < j. This forces the short-

est path to pass through nodek, and hence forces periodk to be a replenishment

period. By applying Dijkstra’s algorithm to this modified graph the cost of the

shortest path will provide a valid lower bound for the cost ofan optimal solution

incorporating the decisionδk = 1. Furthermore, as seen above, Dijkstra’s algo-

rithm will also provide an assignment for decision variables. If this assignment is

feasible for the original problem, then it is optimal with the respect to the decision

δk = 1.

We have shown how to act when each of the possible cases,δk = 1 andδk = 0,
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is encountered. It is now possible at any point of the search in the decision tree to

apply this relaxation and compute a valid lower bound or a solution that is optimal

with respect to the given partial assignment.

Partial assignments forĨk decision variables

It is also possible to extend this cost-based filtering method by considering not

only theδk variable assignments, but also theĨk variable assignments. In fact,

when the cost of a given replenishment cycleT (i, j − 1) (arc(i, j) in the matrix)

is computed, it is also possible to consider the current assignments for the closing

inventory levelsĨk in the periods of this cycle. Since all the closing inventory

levels of the periods within a replenishment cycle are linearly dependent (δk =

0 → Ĩk + d̃k − Ĩk−1=0), given an assignment for a decision variableĨk we can

easily compute all the other closing inventory levels in thecycle by using̃Ik−d̃k−
Ĩk−1 = 0, which is the inventory conservation constraint when no order is placed

in periodk. When the closing inventory levels in a replenishment cycleT (i, j−1)

are known it is easy to compute the overall cost associated tothis cycle as seen

above. We can therefore associate to arc(i, j) the highest cost that is produced

by a current assignment for the closing inventory levelsĨk, k ∈ {i, . . . , j − 1}.
If no variable has been assigned yet, we simply use the minimum possible cost

c(i, j − 1) which we defined above.

5.5 Experimental results

This section is organized as follows. Firstly we will consider a particularly hard

instance built by adding random elements on a seasonal demand. We will use

this instance to gauge the effectiveness of each filtering method we proposed.

Furthermore we will also analyze how the proposed methods perform when they

are combined together. Secondly we will compare our method with the state-

of-the-art results presented in [92]. Thirdly we will present extensive tests to

show the effectiveness of our domain filtering methods with respect to a pure

CP approach enhanced with the pre-processing methods presented by Tarim and

Smith.
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All experiments presented here were performed on an Intel(R) Centrino(TM)

CPU 1.50GHz with 500Mb RAM. The solver used for our test is Choco [58], an

open-source solver developed in Java.

The heuristic used for the selection of the variable is the usual min-domain/max-

degree heuristic. Decision variables have different priorities in the heuristic: the

δk have higher priority than thẽIk. The value selection heuristic chooses values

in increasing order of size.

In what follows we will refer to the filtering methods presented as follows:

Method I (Section 5.3.1), Method II (Section 5.3.2), MethodIII (Section 5.4).

Since Method II can be in principle applied in conjunction with any sound do-

main reduction method, in all the experiments here presented the domain reduc-

tion applied with Method II is pre-processing method II presented in Tarim and

Smith [92]. We only apply one pre-processing method since experimentally no

improvement was noticed in term of explored nodes and running time when both

the methods were used in conjunction as shown in [92].

5.5.1 Effectiveness of filtering methods

A single problem is considered and the period demands are listed in Figure 5.5.

In each test we assume an initial null inventory level and a normally distributed
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Figure 5.5: Expected demand values

demand for every period with a coefficient of variationσt/d̃t = 1/3 for each

t ∈ {1, . . . , N}, whereN is the length of the planning horizon considered. The

ordering cost ranges in the following set{40, 80, 160, 320}. The holding cost is

1. Our tests consider two different service levelsα = 0.95 (zα=0.95 = 1.645)
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No Filt. Method I Method II Method III Combined
α a Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

0
.9

5 40 127 1.85 96 1.64 96 1.43 120 1.30 70 1.12
80 2994 30 1449 16 2586 23 82 1.02 63 0.97
160 – – – – – – 133 1.81 108 1.65
320 – – – – – – 4 0.09 4 0.09

0
.9

9 40 261 3.27 198 4.24 202 2.52 253 2.84 165 2.57
80 1234 11 611 7.54 1138 10.7 317 2.66 221 2.61
160 – – – – – – 168 2.15 84 1.31
320 – – – – – – 1 0.09 1 0.10

Table 5.10: Filtering methods compared in terms of explorednodes (“Nod”) and
run time in seconds (“Sec”). Symbol “–” means that an optimalsolution has not
be found within the given limit of60 secs

andα = 0.99 (zα=0.99 = 2.326). In Table 5.10 we compare the effectiveness

of each filtering method, when used to augment the CP model enhanced by the

pre-processing methods in [92]. The performances achievedby the CP approach

enhanced with the pre-processing methods are shown in column “No Filt.”. The

performances achieved when the filtering methods are all added to the model are

shown in column “Combined”. In the presented table we can seethat Method I

and Method II do not perform well when they are used alone. This is again due

to the lack of good bounds during the search process. Method III instead is very

effective even when it is used alone and especially for high ordering costs, when

the contribution of the filtering due to the computed bounds is critical. Neverthe-

less when the three methods are combined for all the eight instances presented

performances are improved both in terms of running time and explored nodes.

5.5.2 Comparison with state-of-the-art results

In this section we compare results obtained with our approach with the state-of-

the-art results presented in [92].

A single problem is considered and the period demands are generated from

seasonal data with no trend:d̃t = 50[1 + sin(πt/6)]. In addition to the “no trend”

case (P1) we also consider three others:

(P2) positive trend case,̃dt = 50[1 + sin(πt/6)] + t

(P3) negative trend case,d̃t = 50[1 + sin(πt/6)] + (52− t)
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a = 400 a = 800
Filt. Tarim & Smith Filt. Tarim & Smith

Horizon Nod Sec Nod Sec Nod Sec Nod Sec

P1

50 1 0.30 – – 3 0.10 – –
48 1 0.09 – – 3 0.10 30795352 10100
46 1 0.09 43721791 12200 3 0.09 8763280 2840
44 1 0.09 36976882 9700 3 0.01 6896956 2110

P2

44 1 0.09 – – 4 0.10 – –
42 1 0.09 – – 4 0.10 60884565 15600
40 1 0.29 – – 4 0.17 22281926 5590
38 1 0.09 35848309 6820 4 0.10 7978185 1880

P3

42 1 0.09 – – 3 0.10 – –
40 1 0.09 – – 3 0.10 55138095 13300
38 1 0.09 61438266 11300 3 0.10 19600638 4510
36 1 0.09 24256921 4150 3 0.10 6501541 1510

P4

44 1 0.09 – – 4 0.09 – –
42 1 0.10 – – 4 0.11 39668737 10700
40 1 0.09 – – 4 0.10 18004555 4690
38 1 0.09 32076069 6680 4 0.09 6093007 1520

Table 5.11: Comparison with the state-of-the-art results in [92] (“Tarim &
Smith”). “Filt.” indicates that Tarim & Smith’s model is augmented with our
filtering methods. Symbol “–” means that an optimal solutionhas not been found
within the given limit of5 hours

(P4) life-cycle trend case,̃dt = 50[1 + sin(πt/6)] + min(t, 52− t)

In each test we assume a coefficient of variationσt/d̃t = 1/3 for eacht ∈
{1, . . . , N}, whereN is the length of the considered planning horizon. As in

Tarim and Smith tests are performed using two different ordering cost values

a ∈ {400, 900}. The holding cost used in these tests ish = 1 per unit per pe-

riod. Our tests consider a service levelsα = 0.95 (zα=0.95 = 1.645).

In Table 5.11 we can observe the improvement of several orders of magnitude

brought by our domain filtering techniques. Experiments in [92] employed OPL

Studio 3.7 (ILOG Solver 6.0, ILOG Cplex 9.0) used with its default settings. Note

that the hardware used for these experiments is comparable to the one used for

ours.

5.5.3 More extensive tests

In this section we show the effectiveness of our approach by comparing the com-

putational performance of the state-of-the-art CP model with that obtained by our

approach.
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We refer again to (P1), (P2), (P3) and (P4) as defined above. Weperformed

tests using four different ordering cost valuesa ∈ {40, 80, 160, 320} and two

differentσt/d̃t ∈ {1/3, 1/6}. The planning horizon length takes even values in

the range[24, 50] when the ordering cost is40 or 80 and[14, 24] when the ordering

cost is160 or320. The holding cost used in these tests ish = 1 per unit per period.

Our tests also consider two different service levelsα = 0.95 (zα=0.95 = 1.645)

andα = 0.99 (zα=0.99 = 2.326).

In our test results a time of0 means that the Dijkstra algorithm proved optimal-

ity at the root node. A header “Filt.” means that we are applying our cost-based

filtering methods, and “No Filt.” means that we solve the instance using only the

CP model and the pre-processing methods. Tables 5.12, 5.13,5.14 and 5.15 com-

pare the performance of the state-of-the-art CP model, implemented in Choco,

with that of our new methods.
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σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 28 0.9 106 2.9 38 0.8 249 6.4 34 0.7 574 16 10 0.1 192 6.4
42 28 0.6 95 2.8 38 0.8 233 5.9 34 0.7 582 14 10 0.1 196 5.4
44 29 0.6 133 4.9 47 1.1 266 8.3 35 0.7 884 25 11 0.2 285 9.0
46 30 0.6 192 7.8 64 1.6 484 18 45 1.0 3495 120 13 0.2 813 30
48 43 0.9 444 19 72 2.1 1024 41 53 1.1 5182 190 13 0.2 1208 47
50 43 1.0 444 20 72 2.2 1024 44 53 1.2 4850 200 13 0.2 1208 51

80

40 43 0.8 1742 78 13 0.2 557 15 16 0.2 9316 300 16 0.3 11276 440
42 43 0.9 1703 60 13 0.2 530 13 17 0.3 17973 530 17 0.3 22291 690
44 48 1.1 4810 210 14 0.2 980 25 19 0.4 38751 1400 20 0.4 50805 1600
46 49 1.3 6063 340 16 0.3 2122 78 20 0.3 103401 4300 20 0.4 111295 4100
48 67 2.0 20670 1400 17 0.3 5284 210 21 0.4 237112 12000 21 0.5 321998 15000
50 67 2.2 18938 1300 17 0.4 5284 230 21 0.4 251265 13000 21 0.5 358174 17000

160

14 1 0.0 141 3.0 23 0.1 156 2.5 1 0.0 112 2.6 1 0.0 116 2.4
16 1 0.0 277 9.0 35 0.2 182 5.1 1 0.0 238 6.7 1 0.0 235 6.8
18 1 0.0 673 18 41 0.4 393 10 1 0.0 799 23 1 0.0 603 15
20 1 0.0 3008 81 51 0.6 1359 21 1 0.0 2887 86 1 0.0 2820 75
22 1 0.0 10620 260 57 0.6 7280 70 1 0.0 14125 380 1 0.0 10739 270
24 1 0.0 61100 1500 153 1.8 31615 310 1 0.0 70996 1800 1 0.0 59650 1500

320

14 1 0.0 149 4.0 1 0.0 181 4.1 1 0.0 109 3.0 1 0.0 128 3.0
16 1 0.0 335 11 1 0.0 361 12 1 0.0 246 8.7 1 0.0 284 9.3
18 1 0.0 813 27 1 0.0 831 27 1 0.0 764 26 1 0.0 700 24
20 1 0.0 2602 93 1 0.0 2415 81 1 0.0 2114 78 1 0.0 2291 82
22 1 0.0 7434 260 1 0.0 7416 260 1 0.0 7006 260 1 0.0 6608 230
24 1 0.0 49663 1600 1 0.0 49299 1500 1 0.0 39723 1400 1 0.0 43520 1500

Table 5.12: Test set P1

1
8
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σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 4 0.1 7 0.1 7 0.1 8 0.1 12 0.2 23 0.4 4 0.1 12 0.2
42 4 0.0 7 0.1 7 0.2 8 0.1 12 0.2 23 0.4 4 0.1 10 0.1
44 4 0.1 7 0.1 7 0.2 8 0.1 12 0.2 23 0.5 4 0.1 10 0.2
46 4 0.1 7 0.1 7 0.3 8 0.2 12 0.2 23 0.5 4 0.1 10 0.2
48 4 0.1 7 0.2 7 0.2 8 0.2 12 0.3 23 0.5 4 0.1 10 0.2
50 4 0.1 7 0.2 7 0.2 8 0.2 12 0.3 23 0.6 4 0.1 10 0.2

80

40 18 0.3 4592 14 15 0.3 275 8.3 37 0.7 2565 63 32 0.7 1711 44
42 18 0.4 4866 13 15 0.4 283 6.7 37 0.8 3027 67 32 0.7 2043 47
44 18 0.4 5091 15 15 0.4 280 7.9 40 0.9 6024 160 37 0.9 4299 120
46 23 0.5 5291 45 17 0.5 545 16 47 1.3 14058 410 39 1.1 10311 290
48 23 0.6 5544 51 17 0.5 545 17 47 1.4 14058 440 39 1.2 10311 310
50 23 0.6 5850 51 17 0.5 545 18 47 1.5 14079 470 39 1.3 10347 330

160

14 1 0.0 166 3.6 19 0.1 84 1.0 1 0.0 148 2.9 1 0.0 171 3.4
16 30 0.2 154 4.3 19 0.1 65 1.2 1 0.0 329 8.6 1 0.0 383 10
18 58 0.4 485 11 34 0.3 174 2.9 1 0.0 948 23 1 0.0 1056 27
20 37 0.3 2041 35 37 0.4 707 7.9 1 0.0 4228 110 1 0.0 4730 120
22 48 0.4 9534 120 32 0.3 2954 28 1 0.0 20438 500 1 0.0 23675 530
24 65 0.7 30502 360 41 0.4 7787 87 1 0.0 71514 1800 1 0.0 83001 1900

320

14 1 0.0 238 5.6 1 0.0 278 6.4 1 0.0 166 3.7 1 0.0 191 4.5
16 1 0.0 505 17 1 0.0 423 13 1 0.0 387 11 1 0.0 452 14
18 1 0.0 1447 49 1 0.0 1208 40 1 0.0 1100 34 1 0.0 1268 40
20 1 0.0 4792 156 1 0.0 4219 150 1 0.0 3992 130 1 0.0 4476 150
22 1 0.0 20999 660 1 0.0 20417 610 1 0.0 15983 520 1 0.0 18663 600
24 1 0.0 102158 3200 1 0.0 90398 2600 1 0.0 75546 2500 1 0.0 88602 2800

Table 5.13: Test set P2

1
8
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σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 2 0.0 5 0.0 2 0.0 4 0.0 6 0.1 9 0.2 2 0.0 5 0.0
42 2 0.0 5 0.0 2 0.0 4 0.0 6 0.1 9 0.2 2 0.0 5 0.0
44 3 0.0 7 0.1 3 0.0 6 0.1 7 0.1 14 0.3 3 0.0 7 0.1
46 4 0.1 15 0.3 6 0.1 13 0.3 11 0.2 40 1.1 4 0.1 14 0.3
48 4 0.1 15 0.3 6 0.1 13 0.3 14 0.3 56 1.8 4 0.1 25 0.6
50 4 0.1 15 0.3 6 0.2 13 0.3 14 0.4 56 1.9 4 0.1 25 0.5

80

40 22 0.4 349 10 6 0.1 55 1.2 19 0.3 722 19 9 0.2 310 8.7
42 22 0.4 354 8.6 6 0.1 53 1.2 22 0.4 1436 35 9 0.2 315 7.5
44 24 0.6 571 17 7 0.1 88 2.4 27 0.6 3461 110 13 0.3 1053 31
46 29 0.8 2787 90 9 0.2 258 8.1 36 0.9 10612 360 16 0.4 2881 94
48 38 1.1 6803 240 9 0.2 385 12 47 1.3 28334 1100 22 0.6 7790 280
50 38 1.1 6575 240 9 0.2 385 13 47 1.6 26280 1100 22 0.6 7371 280

160

14 7 0.0 23 0.2 8 0.0 16 0.1 15 0.1 53 0.6 9 0.0 29 0.3
16 7 0.0 19 0.2 8 0.0 18 0.2 15 0.1 52 0.8 9 0.0 26 0.4
18 9 0.1 42 0.5 10 0.0 30 0.3 21 0.1 149 2.2 12 0.1 87 1.2
20 11 0.1 137 1.3 11 0.1 70 0.7 25 0.2 512 6.1 16 0.2 310 3.5
22 21 0.2 376 4.0 21 0.2 221 2.3 31 0.4 1848 17 17 0.2 938 9.4
24 32 0.4 995 11 30 0.4 543 6.3 43 0.5 4784 54 23 0.2 2471 30

320

14 1 0.0 253 4.2 1 0.0 232 3.8 1 0.0 310 4.4 1 0.0 217 3.4
16 1 0.0 518 10 1 0.0 518 10 1 0.0 707 13 1 0.0 465 8.5
18 1 0.0 1475 35 1 0.0 1170 26 1 0.0 1995 43 1 0.0 1416 33
20 1 0.0 5342 140 1 0.0 4059 95 1 0.0 6678 160 1 0.0 5232 140
22 1 0.0 21298 550 1 0.0 18065 440 1 0.0 25522 640 1 0.0 21756 560
24 1 0.0 86072 2300 1 0.0 70969 1800 1 0.0 101937 2800 1 0.0 91358 2400

Table 5.14: Test set P3

1
8
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σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 5 0.1 21 0.3 10 0.2 24 0.5 25 0.5 89 1.8 5 0.1 33 0.5
42 5 0.1 18 0.3 10 0.2 21 0.4 25 0.5 91 2.0 5 0.1 31 0.5
44 6 0.1 32 0.7 11 0.2 37 0.9 28 0.6 152 3.6 6 0.1 51 1.0
46 7 0.1 83 2.0 16 0.4 93 2.4 42 1.0 474 12 7 0.1 126 2.8
48 7 0.1 83 2.2 16 0.4 93 2.6 50 1.2 735 20 7 0.2 188 4.5
50 7 0.1 83 2.3 16 0.4 93 2.8 50 1.4 735 22 7 0.2 188 4.9

80

40 39 0.7 1372 39 16 0.4 433 12 40 0.7 5098 130 33 0.7 2133 54
42 39 0.8 1673 39 16 0.4 438 10 46 1.0 11452 270 33 0.8 2513 58
44 43 1.0 2907 74 17 0.5 716 22 56 1.4 27184 780 46 1.3 8776 240
46 51 1.3 13306 380 21 0.6 2178 73 75 1.9 77332 2600 55 1.6 22582 690
48 69 1.8 32709 1000 21 0.6 3223 120 100 2.8 202963 7500 73 2.2 60115 2000
50 69 1.9 31547 1100 21 0.7 3223 130 100 2.9 191836 7600 73 2.4 58171 2100

160

14 1 0.0 166 3.6 19 0.1 84 1.5 1 0.0 148 3.0 1 0.0 171 3.4
16 30 0.2 154 4.3 19 0.1 65 1.6 1 0.0 329 8.7 1 0.0 383 10
18 58 0.4 485 11 34 0.3 174 4.0 1 0.0 948 24 1 0.0 1056 27
20 37 0.3 2041 34 37 0.4 707 11 1 0.0 4228 110 1 0.0 4730 120
22 48 0.4 9534 120 32 0.3 2954 40 1 0.0 20438 510 1 0.0 23675 540
24 65 0.7 30502 360 41 0.4 7787 130 1 0.0 71514 1800 1 0.0 83001 1900

320

14 1 0.0 238 5.5 1 0.0 278 8.7 1 0.0 166 3.7 1 0.0 191 4.5
16 1 0.0 505 17 1 0.0 423 17 1 0.0 387 11 1 0.0 452 13
18 1 0.0 1447 48 1 0.0 1208 57 1 0.0 1100 33 1 0.0 1268 40
20 1 0.0 4792 160 1 0.0 4219 200 1 0.0 3992 130 1 0.0 4476 150
22 1 0.0 20999 660 1 0.0 20417 860 1 0.0 15983 520 1 0.0 18663 600
24 1 0.0 102158 3200 1 0.0 90398 3700 1 0.0 75546 2700 1 0.0 88602 2800

Table 5.15: Test set P4

1
8
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Whena=320, and often whena=160, the Dijkstra algorithm proves optimality

at the root node so the other reduction methods are not exploited during search.

This is a direct consequence of the fact that under high ordering cost values it

is extremely rare that a solution for the relaxed problem violates some inventory

conservation constraint. In fact since placing an order is expensive the optimal so-

lution will try to cover several periods with a single order.Such an order requires a

high order-up-to-level that typically exceeds the expected closing-inventory-level

of the previous replenishment cycle. Therefore the solution of the relaxed prob-

lem solved by means of dynamic programming is usually feasible with respect to

the original problem.

Whena ∈ {40, 80} Dijkstra is often unable to prove optimality at the root

node, since the solution of the relaxed problem can easily violate inventory con-

servation constraints in the original problem under low ordering costs. This is due

to the fact that the order-up-to-level for a replenishment cycle may easily be lower

than the buffer stock levels held at the end of the former cycle. The main contribu-

tion brought by our relaxation in this situation consists incomputing lower bounds

during the search. Therefore in this case the domain reduction achieved with the

other two filtering methods developed is critical in reducing the number of fea-

sible values in the domain of expected closing-inventory-level decision variables.

As shown in the experiments our approach can easily solve instances with up to

50 periods, both in terms of explored nodes and run time, for every combination

of parameters we considered. In contrast, for the CP model both the run times

and the number of explored nodes grow exponentially with thenumber of peri-

ods, and the problem becomes intractable for instances of significant size. In all

cases our method explores fewer nodes than the pure CP approach, ranging from

an improvement of one to several orders of magnitude. Apart from a few trivial

instances on which both methods take a fraction of a second, this improvement is

reflected in the run times.

5.6 Conclusions

It was previously shown [92] that CP is more natural than mathematical program-

ming for expressing constraints for lot-sizing under the(Rn, Sn) policy, and leads
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to more efficient solution methods. This paper further improves the efficiency of

the CP-based approach by exploiting three forms of cost-based filtering. The wide

test bed considered shows the effectiveness of our approachunder many different

parameter configurations and demand trends. The improvement reaches several

orders of magnitude in almost every instance we analyzed. Weare now able to

solve to optimality problems of a realistic size, in times ofless than a second and

often without search, since the bounds produced by our DP relaxation proved to

be very tight in a large amount of instances. In future work weaim to extend our

model to new features such as lead-time for orders and capacity constraints for the

inventory.

5.7 Appendix

5.7.1 Considering a unit production costp

The stochastic programming formulation given can be extended to consider a unit

production costp as follows

min E{TC} =

∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(aδt + h ·max(It, 0) + p ·Qt)

g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN)

(5.45)

subject to Constraint (5.2), (5.3), (5.4) and (5.5), fort = 1, . . . , N . The given

objective function (5.45) can be rewritten as

E{TC} = p ·K + min
∫

d1

∫

d2

. . .

∫

dN

p · IN +

N∑

t=1

(aδt + h ·max(It, 0))

g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN)

(5.46)

whereK =
∫

d1

∫
d2

. . .
∫

dN

∑N
t=1 dt g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN).

For further details on this transformation the reader may refer to [71, 90], where a

similar transformation is described in details for the stochastic inventory control
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problem under a penalty cost scheme. Intuitively, objective function (5.46) shows

that the effect of the unit production costp can be decomposed in a constant factor

p ·K and in a variable factorp ·IN that depends on the very last closing-inventory-

level planned. The deterministic equivalent CP approach is

E{TC} = p
N∑

t=1

d̃t + min

[
p · ĨN +

N∑

t=1

(
aδt + hĨt

)]
(5.47)

subject to Constraint (5.7), (5.8), (5.9) and (5.10), fort = 1 . . .N . It directly

follows that the variable effect of the unit production costp is reflected only on

the cost of the very last replenishment cycle scheduled. Thecost-based filter-

ing method presented in Section 5.3.2 is independent of the considerations pre-

sented here. It remains sound under a unit production cost ifthe associated pre-

processing method can consider this cost. The pre-processing methods in [92] and

the cost-based filtering method in Section 5.3.1 can be extended to consider a unit

production costp by replacing the definition given in Eq. (5.15) for the costc(i, j)

of a replenishment cycleT (i, j) as follows:

ĉ(i, j) =

{
c(i, j) if j 6= N

p · b(i, j) + c(i, j) if j = N.
(5.48)

The cost-based filtering in Section 5.4 in a similar manner applies to the case

where a unit production costp is considered if, when the connection matrix for

the graph constructed is built,c(i, j) is replaced bŷc(i, j) as just described.

5.7.2 Proof: Replenishment cycle length bound

By using the definition ofc(i, j) we can rewrite Eq. 5.17 as

a + h(k − i + 1)b(i, k) + h

k∑

t=1

(t− i)d̃t + a + h(j − k + 1)b(k + 1, j + 1)+

h

j+1∑

t=k+1

(t− k − 1)d̃t ≤ a + h(j − i + 2)b(i, j + 1) + h

j+1∑

t=i

(t− i)d̃t

(5.49)
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which can be simplified to

a

h
−

j+1∑

t=k+1

(k + 1− i)d̃t ≤ (j − k + 1) [b(i, j + 1)− b(k + 1, j + 1)]+

(k − i + 1) [b(i, j + 1)− b(i, k)] .

(5.50)

We now want to prove that ifp > j + 1, then∃k + 1 ∈ {i + 1, j} s.t. c(i, k) +

c(k + 1, p) ≤ c(i, p) ∧ b(i, k) ≤ R(k + 1, p). We can rewrite this condition as we

did before and therefore obtain an expression similar to Eq.5.50, that is

a

h
−

p∑

t=k+1

(k+1−i)d̃t ≤ (p−k) [b(i, p)− b(k + 1, p)]+(k−i+1) [b(i, p)− b(i, k)] .

(5.51)

We now subtract both the left and the right term of Eq. 5.50 from Eq. 5.51. Thus

we get

−
p∑

t=j+2

(k + 1− i)d̃t + (j − k + 1) [b(i, j + 1)− b(k + 1, j + 1)]+

(k − i + 1) [b(i, j + 1)− b(i, k)] ≤ (p− j − 1) [b(i, p)− b(k + 1, p)]+

(j − k + 1) [b(i, p)− b(k + 1, p)] + (k − i + 1) [b(i, p)− b(i, k)] ,

(5.52)

by omitting the term−∑p
t=j+2(k + 1 − i)d̃t to save space and rearranging the

other terms we obtain

(j − k + 1) [b(k + 1, p)− b(k + 1, j + 1)] ≤
(j − i + 2) [b(i, p)− b(i, j + 1)] + (p− j − 1) [b(i, p)− b(k + 1, p)] ,

(5.53)

we change name to the coefficients

A · b(k + 1, p)− A · b(k + 1, j + 1) ≤
B · b(i, p)−B · b(i, j + 1) + C · b(i, p)− C · b(k + 1, p)

(5.54)

and finally

(A+C)·b(k+1, p)−A·b(k+1, j+1) ≤ (B+C)·b(i, p)−B ·b(i, j+1), (5.55)
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whereA + C = p− k andB + C = p− i + 1. Reinserting the omitted term we

obtain Eq. 5.18. Sinceb(i, k) ≤ R(k + 1, j + 1), it also follows thatb(i, k) ≤
R(k+1, p). Therefore, under the given conditions, it is never optimalto cover the

span{i, . . . , p}, p > j by using a single replenishment cycleT (i, p). Hence the

optimum periodk+1 for the next replenishment after the one scheduled in period

i lies in the span{i + 1, . . . , j + 1} and it cannot be afterj + 1.

5.7.3 Modified Dijkstra’s Shortest Path Algorithm

We will use a modified implementation of Dijkstra’s ShortestPath Algorithm in

order to enhance performances and make our relaxation compatible with Method

I in [92]. Dijkstra’s strategy relies on the following well known Shortest Path

Theorem, which holds for any directed acyclic graph

Theorem 5.7.1(Shortest Path Theorem). If P is the shortest path from nodeu to

nodev and ifP passes through nodez, thenP is made up by the shortest pathQ1

fromu to z and by the shortest pathQ2 fromz to v.

Since we are solving a problem that implies a one-way temporal feasibility, as

Wagner and Whitin notice in [96], half of our connection matrix will be set to∞.

Therefore any instance of sizeN can be solved inN(N + 1)/2 steps taking this

fact into account during the computation as we will see.

Let G be a directed acyclic graph〈V, A〉, whereV is a set ofN numbered

vertices{v1, ..., vN} andA is a set of arcs among these nodes. LetW be a square

matrix representing the cost related to each arc that appears in A. Let v1 be the

source we are computing shortest paths from. Letd[vi] be a label for any vertex

vi ∈ V , anda[vi] the index of the ancestor of nodevi ∈ V in the shortest path. At

the end of the computationd[vi] represents the shortest distance from the source

v1 to the vertexvi. It is also possible to find every vertex in the shortest path from

vi to v1 following in a recursive fashion the chain of indexes that starts witha[vi].

In particular we will be interested in the shortest path fromvN to v1, which is the

one that covers our planning horizon. The complete code is shown in Algorithm

6. In order to reduce steps toN(N + 1)/2 we introducedj > i as a precondition

for the execution of ProcedureRelax(vi,vj,W ). Notice also that in order to make
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the algorithm compatible with filtering methods in [92] somechecks on vertex

indexes have been introduced. In particular in ProcedureRelax(vi,vj ,W ) when

two or more paths exist with the same distance fromv1 we always choose the

ancestorvi that has the highest indexi. The reason we do this is related to the way

pre-processing Method I in [92] filters values in decision variables domain. In

fact, when a replenishment periodi, i ∈ {1, ..., N} is considered, such a method

looks for the lowestj s.t. j ≥ i after which it is not longer optimal to schedule the

next replenishment. This means that, if more policies that share the same expected

cost exist, only the one that has shorter, and obviously more, replenishment cycles

will be preserved by Method I, while values that are feasiblewith respect to other

policies equally costly may be pruned. So we introduced the described checks on

vertex indexes in order to make sure that, when more optimal policies exist, our

modified algorithm will always find the one that has the highest possible number

of replenishment cycles (i.e. the shortest path with the highest possible number of

arcs).
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Algorithm 6 : Modified Shortest Path Algorithm
input : G, W , v1

output: d, a

begin
Initialize(G, v1)
Let d[vi] be the shortest path fromvi to v1

Insert all vertices inG in a priority queueQ
while Q is not emptydo

extractvi s.t.d[vi] is minimum
for each vertexvj adjacent tovi s.t. j > i do

Relax(vi, vj, W )

end

ProcedureInitialize(G,v1)

begin
for each vertexvi in G do

setd[vi] to W (v1, vi)
seta[vi] to 1

setd[v1] to 0
end

ProcedureRelax(vi,vj ,W)

begin
if d[vj] > d[vi] + W (vi, vj) then

setd[vj ] equal tod[vi] + W (vi, vj)
seta[vj ] equal toi

else
if d[vj ] == d[vi] + W (vi, vj) AND i > a[vj ] then

seta[vj ] equal to i

end
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Chapter 6

Paper V: Constraint Programming

for Stochastic Inventory Systems

under Shortage Cost

R. Rossi, S. A. Tarim, B. Hnich and S. Prestwich

Abstract

One of the most important policies adopted in inventory control is the (R,S) pol-
icy (also known as the “replenishment cycle” policy). Underthe non-stationary
demand assumption the (R,S) policy takes the form (Rn,Sn) whereRn denotes
the length of thenth replenishment cycle, andSn the corresponding order-up-to-
level. Such a policy provides an effective means of damping planning instability
and coping with demand uncertainty. In this paper we developa constraint pro-
gramming approach able to compute optimal (Rn,Sn) policy parameters under
stochastic demand, ordering, holding and shortage costs. We use the optimal so-
lutions to analyze the quality of the solutions provided by an existing approximate
mixed integer programming approach that exploits a piecewise linear approxima-
tion for the cost function. Furthermore we show how in our model it is possible to
exploit the convexity of the cost-function during the search to dynamically com-
pute bounds during the search and perform cost-based filtering.†

†This paper is an extended version of the work presented in [71]
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6.1 Introduction

Much of the inventory control literature concerns the computation of optimal re-

plenishment policies under demand uncertainty. One of the most important poli-

cies adopted is the (R,S) policy (also known as thereplenishment cyclepolicy). A

detailed discussion on the characteristics of (R,S) can be found in (de Kok [22]).

In this policy a replenishment is placed everyR periods to raise the inventory

position to the order-up-to-levelS. This provides an effective means of damping

planning instability – deviations in planned orders, also known asnervousness(de

Kok and Inderfurth [23], Heisig [44]) – and coping with demand uncertainty. As

pointed out by (Silver et al. [81], pp. 236–237), (R,S) is particularly appealing

when items are ordered from the same supplier or require resource sharing. In

these cases all items in a coordinated group can be given the same replenishment

period. In (Janssen and de Kok [51]) a two-supplier periodicmodel is discussed

where one supplier delivers a fixed quantity while the amountdelivered by the

other is governed by an (R,S) policy. In (Smits et al. [82]) a production-inventory

problem with compound renewal item demand is considered. The model consists

of stock-points, one for each item, controlled according to(R,S)-policies and one

machine which replenishes them. Periodic review also allows a reasonable predic-

tion of the level of the workload on the staff involved, and isparticularly suitable

for advanced planning environments and risk management (Tang [85]). For these

reasons (R,S) is a popular inventory policy.

As pointed in (Graves [40]) one major theme in the continuingdevelopment

of inventory theory is to incorporate more realistic assumptions about product de-

mand into inventory models. In most industrial contexts, demand is uncertain and

hard to forecast. Many demand histories behave like random walks that evolve

over time with frequent changes in their directions and rates of growth or decline.

Furthermore, as product life cycles get shorter, the randomness and unpredictabil-

ity of these demand processes have become even greater. In practice, for such de-

mand processes, inventory managers often rely on forecastsbased on a time series

of prior demand, such as a weighted moving average. Typically these forecasts are

predicated on a belief that the most recent demand observations are the best pre-

dictors for future demand. An important class of stochasticproduction/inventory
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control problems therefore assumes a non-stationary demand process. Under this

assumption the (R,S) policy takes the non-stationary form (Rn,Sn) whereRn de-

notes the length of thenth replenishment cycle andSn the corresponding order-

up-to-level (Fig. 6.1). To compute thenearoptimal policy parameters, (Tarim and

Kingsman [90]) propose a mixed integer programming (MIP) formulation using a

piecewise linear approximation to a complex cost function.

This paper focuses on the work of Tarim and Kingsman, in whicha finite-

horizon, single-installation, single-item (Rn,Sn) policy is addressed. They assume

a fixed procurement cost each time a replenishment order is placed, whatever the

size of the order, and a linear holding cost on any unit carried over in inventory

from one period to the next. Instead of employing a service level constraint —

the probability that at the end of every time period the net inventory will not be

negative is at least a certain value (see Bookbinder and Tan [15], Tarim and Kings-

man [89] for (Rn,Sn) under a service level constraint) — their model employs

a penalty cost scheme. They propose a certainty-equivalentformulation of the

above problem in the form of a mixed integer programming (MIP) model. So far

no constraint programming (CP) approach has been proposed for (Rn,Sn) under a

penalty cost. In fact, as shown in (Tarim and Kingsman [90]),the cost structure is

complex in this case and it differs significantly from the oneunder a service level

constraint. (Tarim and Smith [92]) proposed a CP model undera service level

constraint. In this paper it was shown that not only CP is ableto provide a more

compact formulation than the MIP one, but that it is also ableto perform faster

and to take advantage of dedicated pre-processing techniques that reduce the size

of decision variable domains. Moreover dedicated cost-based filtering techniques

were proposed in (Tarim et al. [87]) for the same model, thesetechniques are able

to improve performances of several orders of magnitude.

In this paper, we give anexactformulation of the (Rn,Sn) inventory control

problem via constraint programming, instead of employing apiecewise linear ap-

proximation to the total expected cost function. This exactCP formulation pro-

vides an optimal solution to (R,S) policy. Our contribution is two-fold: we can

now obtain provably optimal solutions, and we can gauge the accuracy of the

piecewise linear approximation proposed by Tarim and Kingsman. Furthermore

we propose a dedicatedcost-based filteringmethod (Focacci and Milano [31]) to
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improve performances of the search. The experiments presented show the effec-

tiveness of our approach.

6.2 Problem definition and(Rn, Sn) policy

The demanddt in period t is considered to be a normally distributed random

variable with known probability density function (PDF)gt(dt), and is assumed to

occur instantaneously at the beginning of each period. The mean rate of demand

may vary from period to period. Demands in different time periods are assumed

to be independent. A fixed holding costh is incurred on any unit carried over

in inventory from one period to the next. Demands occurring when the system

is out of stock are assumed to be back-ordered and satisfied assoon as the next

replenishment order arrives. A fixed shortage costs is incurred for each unit of

demand that is back-ordered. A fixed procurement (ordering or set-up) costa is

incurred each time a replenishment order is placed, whatever the size of the order.

In addition to the fixed ordering cost, a proportional directitem costv is incurred.

For convenience, and without loss of generality, the initial inventory level is set

to zero and the delivery lead-time is not incorporated. It isassumed that negative

orders are not allowed, so that if the actual stock exceeds the order-up-to-level for

that review, this excess stock is carried forward and does not return to the supply

source. However, such occurrences are regarded as rare events and accordingly

the cost of carrying the excess stock is ignored. The above assumptions hold for

the rest of this paper.

The general multi-period production/inventory problem with stochastic de-

mands can be formulated as finding the timing of the stock reviews and the size of

non-negative replenishment orders,Xt in periodt, minimizing the expected total

cost over a finite planning horizon ofN periods:

min E{TC} =
∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(
aδt + vXt + hI+

t + sI−
t

)
g1(d1) . . . gN(dN)d(d1) . . .d(dN)

(6.1)
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subject to

Xt > 0⇒ δt = 1 (6.2)

It =
t∑

i=1

(Xi − di) (6.3)

I+
t = max(0, It) (6.4)

I−
t = −min(0, It) (6.5)

Xt, I
+
t , I−

t ∈ Z+ ∪ {0}, It ∈ Z, δt ∈ {0, 1} (6.6)

for t = 1 . . . N , where

dt : the demand in periodt, a normal random variable with PDFgt(dt),

a : the fixed ordering cost,

v : the proportional direct item cost,

h : the proportional stock holding cost,

s : the proportional shortage cost,

δt : a{0,1} variable that takes the value of 1 if a replenishment occurs in

periodt and 0 otherwise,

It : the inventory level at the end of periodt,−∞ < It < +∞, I0 = 0

I+
t : the excess inventory at the end of periodt carried over to the next period,

0 ≤ I+
t ,

I−
t : the shortages at the end of periodt, or magnitude of negative inventory

0 ≤ I−
t ,

Xt : the replenishment order placed and received in periodt, Xt ≥ 0.

The proposed non-stationary (R,S) policy consists of a series of review times

and associated order-up-to-levels. Consider a review schedule which hasm re-

views over the N period planning horizon with orders arriving at{T1, T2, . . . , Tm},
Tj > Tj−1. For convenienceT1 = 1 is defined as the start of the planning hori-

zon andTm+1 = N + 1 the period immediately after the end of the horizon. In

(Tarim and Kingsman [90]), the decision variableXTi
is expressed in terms of a

new variableSt ∈ Z, whereSt may be interpreted as the opening stock level for

periodt, if there is no replenishment in this period (i.e.t 6= Ti andXt = 0) and

the order-up-to-level for thei-th review periodTi if there is a replenishment (i.e.
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t = Ti andXt > 0). According to this transformation the expected cost function,

Eq. (6.1), is written as the summation ofm intervals,Ti to Ti+1 for i = 1, . . . , m,

definingDt1,t2 =
∑t2

j=t1
dj:

min E{TC} =

m∑

i=1

(

aδTi
+

Ti+1−1∑

t=Ti

E{CTi,t}
)

+

vIN + v

∫

D1,N

D1,N × g(D1,N)d(D1,N),

(6.7)

The termv
∫

D1,N
D1,N×g(D1,N)d(D1,N) is constant and can therefore be ignored

in the optimization model.E{CTi,t} of Eq. (6.7) is defined as:

∫ STi

−∞

h (STi
−DTi,t) g(DTi,t)d(DTi,t)−

∫ ∞

STi

s (STi
−DTi,t) g(DTi,t)d(DTi,t).

(6.8)

As stated in (Tarim and Kingsman [90]),E{CTi,t} is the expected cost function

of a single-period inventory problem where the single-period demand isDTi,t.

SinceSTi
may be interpreted as the order-up-to-level for thei-th review periodTi

andSTi
−DTi,t is the end of period inventory for the “single-period” with demand

DTi,t, the expected total subcostsE{CTi,t} are the sums of single-period inventory

costs where the demands are the cumulative demands over increasing periods.

By dropping theTi andt subscripts in Eq. (6.8) we obtain the following well-

known expression for the expected total cost of a single-period newsvendor prob-

lem:

E{TC} = h

∫ S

−∞

(S −D)g(D)d(D)− s

∫ ∞

S

(S −D)g(D)d(D) (6.9)

where we consider two cost components: holding cost on the positive end of pe-

riod inventory and shortage cost for any back-ordered demand. Let G(·) be the

cumulative distribution function of the demand in our single-period newsvendor

problem. A known result in inventory theory (Hadley and Whitin [41]) is con-

vexity of Eq. (6.9). The so-calledCritical Ratio, s
s+h

, can be seen as the service

level β (i.e. probability that at the end of the period the inventorylevel is non-
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negative) provided when we fix the order-up-to-levelS to the optimal valueS∗

that minimizes expected holding and shortage costs (Eq. (6.9)). By assuming

G(·) to be strictly increasing, we can compute the optimal order-up-to-level as

S∗ = G−1
(

s
s+h

)
.

6.2.1 Stochastic cost component in single-period newsvendor

We now aim to characterize the cost of the policy that ordersS∗ units to meet

the demand in our single-period newsvendor problem. Such a problem has been

widely studied in the inventory control literature (Silveret al. [81]). Since the

demandD is assumed to be normal with meanµ and standard deviationσ, then

we can writeD = µ + σZ, where Z is a standard normal random variable. Let

Φ(z) = Pr(Z ≤ z) be the cumulative distribution function of the standard normal

random variable. SinceΦ(·) is strictly increasing,Φ−1(·) is uniquely defined. Let

zβ = Φ−1(β), sincePr(D ≤ µ+zβσ) = Φ(zβ) = β, it follows thatS∗ = µ+zβσ.

The quantityzβ is known as the safety factor andS∗ − µ = zβσ is known as the

safety stock. It can be shown (Hadley and Whitin [41]) that

∫ ∞

S∗

(S∗−D)g(D)d(D) = E{D−S∗}+ = σE{Z−zβ}+ = σ[φ(zβ)−(1−β)zβ ]

(6.10)

whereφ(·) is the PDF of the standard normal random variable. LetE{S∗−D}+ =
∫ S

−∞
(S −D)g(D)d(D), it follows

E{TC(S∗)} = h ·E{S∗ −D}+ + s · E{D − S∗}+ =

h · (S∗ − µ) + (h + s)E{D − S∗}+ =

hzβσ + (h + s)σE{Z − zβ}+ =

hzβσ + (h + s)σ[φ(zβ)− (1− β)zβ] =

(h + s)σφ(zβ)

(6.11)

The last expression(h+ s)σφ(zβ) holds only for the optimal order-up-to-levelS∗

that provides the service levelβ =
(

s
s+h

)
computed from thecritical ratio (CR).
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Instead, expression

hzασ + (h + s)σ[φ(zα)− (1− α)zα] (6.12)

can be used to compute the expected total cost for any given level S such that

α = Φ
(

S−µ
σ

)
. In Fig. 6.2 we plot this cost for a particular instance as a function

of the opening inventory levelS.

6.2.2 Stochastic cost component in multiple-period newsven-

dor

The considerations in the former sections refer to a single-period problem, but

they can be easily extended to a replenishment cycleR(i, j) that covers the pe-

riod spani, . . . , j. In (Levi et al. [59]) it is possible to find a discussion on

multi-period newsvendor problems and a sampling-based heuristic approach to

find near-optimal solutions. In contrast the approach we propose is exact. The de-

mand in each period is normally distributed with PDFgi(dj), . . . , gj(dj). The cost

for the multiple periods’ replenishment cycle, when ordering costs are neglected,

can be expressed as

E{TC} =

j∑

k=i

(
h

∫ S

−∞

(S − di,k)gi,k(di,k)d(di,k)− s

∫ ∞

S

(S − di,k)gi,k(di,k)d(di,k)

)

(6.13)

Since demands are independent and normally distributed in each period, the term

gi,j(di,j) (that is the p.d.f. for the overall demand over the period span {i, . . . , j})
can be easily computed (Fortuin [34]) once the demand in eachperioddi, . . . , dj

are known. It is easy to apply the same rule as before and compute the second

derivative of this expression:

d2

dS2
E{TC} =

j∑

k=i

(h · gi,k(S) + s · gi,k(S)) (6.14)
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Figure 6.1: (Rn,Sn) policy. d̃i + d̃i+1 + . . . + d̃j is the expected demand overRn;
Ĩj = Sn − d̃i + d̃i+1 + . . . + d̃j is the expected closing inventory level forRn.

Figure 6.2: Single-period holding and shortage cost as a function of the opening
inventory level S. The demand is normally distributed with mean200 and standard
deviation20. Holding cost is1, shortage cost is10.
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which is again a positive function ofS, sincegi,k(S) are PDFs and both hold-

ing and shortage cost are assumed to be positive. The expected cost of a single

replenishment cycle therefore remains convex inS regardless of the periods cov-

ered. Unfortunately it is not possible to compute the CR as before, using a simple

algebraic expression to obtain the optimalS∗ which minimizes the expected cost.

But since the cost function is convex, it is still possible tocomputeS∗ efficiently.

Eq. (6.12) can be extended in the following way to compute thecost for the re-

plenishment cycleR(i, j) as a function of the opening inventory levelS:

j∑

k=i

(
hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k))− (1− α(i, k))zα(i,k)]

)
(6.15)

whereGi,k(S) = α(i, k) andzα(i,k) = Φ−1(α(i, k)). Therefore we havej − i + 1

cost components: the holding and shortage cost at the end of periodi, i+1, . . . , j.

In Fig. 6.3 we plot this cost for a particular instance as a function of the opening in-

ventory levelS. For each possible replenishment cycle we can efficiently compute

Figure 6.3: Three periods holding and shortage cost as a function of the opening
inventory level S. The demand is normally distributed in each period with mean
respectively150, 100, 200, the coefficient of variation is0.1. Holding cost is1,
shortage cost is10.

the optimalS∗ that minimizes such a cost function, using gradient based methods

for convex optimization such as Newton’s method. Notice that the complete ex-

pression for the cost of replenishment cycles that start in period i ∈ {1, ..., N}
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and end in periodN is

N∑

k=i

(
hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k))− (1− α(i, k))zα(i,k)]

)
+

v

(

S −
N∑

k=i

dk

) (6.16)

In fact for this set of replenishment cycles we must also consider the unit cost

component. OnceS∗ is known, by subtracting the expected demand over the

replenishment cycle we obtain the optimal expected buffer stock levelb(i, j) re-

quired for such a replenishment cycle in order to minimize holding and shortage

cost. Notice that every other choice for buffer stock level will produce a higher

expected total cost forR(i, j).

6.2.3 Upper-bound for opening inventory levels

We now propose anupper boundfor the value of the opening inventory level in

each periodt ∈ {1, ..., N}. Firstly we ignore the direct item costv, in fact from

Eq. (6.7) it is trivial to see thatv may only decrease the opening inventory level

for the last replenishment cycle scheduled. We consider a single replenishment

cycle covering the whole planning horizon. If we relax the original problem for-

mulation and we ignore holding and shortage cost componentsat the end of each

periodt ∈ {1, ..., N−1}, the resulting model will reflect a single period newsven-

dor problem. In this problem we incur holding and shortage cost only at the end

of the last periodN and the stochastic demand is given by the sum of the de-

mand distributions in each period of our planning horizon. The optimal buffer

stockb(1, N) required to optimize the convex cost for this problem can be easily

computed, as seen, by means of the critical ratio. It is easy to see that, since we

relaxed holding and shortage costs for each periodt ∈ {1, ..., N − 1}, then for

each periodt ∈ {1, ..., N}, max(St) =
∑N

t d̃t+b(1, N). In fact, since we assume

a shortage cost higher than holding cost, opening inventorylevels for this replen-

ishment cycle may only be decreased by the additional cost components in the

original model. Moreover the upper bounds computed are still valid if the plan-
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ning horizon is covered by more than a single replenishment cycle. The reason

is the following. If the planning horizon is covered by a number of replenish-

ment cycles, again it is possible to apply a similar reasoning and it is possible to

reduce each replenishment cycleRk covering periods{i, . . . , j} to a single pe-

riod newsvendor problem, by ignoring holding and shortage costs for each period

t ∈ {i, . . . , j−1} and by considering only the cost component of the last periodj.

Then for each replenishment cycleRk we will easily obtain a buffer stockb(i, j),

by means of the critical ratio. Sinceb(i, j) is increasing, that isb(i, j) ≤ b(i, j+1),

as shown in (Tarim and Smith [92]), obviously opening inventory levels computed

in this case will be lower than those computed for the former case where a single

replenishment cycle covers the whole planning horizon. Furthermore we recall

that also in this case opening inventory levels may only be decreased when the ad-

ditional holding and shortage cost components for other periods are reintroduced

in the model. It directly follows that the upper bounds computed are valid for the

original model.

6.2.4 Lower-bound for expected closing inventory levels

A lower boundfor the value of the expected closing inventory level in eachperiod

t ∈ {1, ..., N}, that is opening inventory level minus expected demand, canbe

computed by considering every possible buffer stockb(i, j) required to optimize

the convex cost of a single replenishment cycleR(i, j), independently of the other

cycles that are planned. The lower bound will be the minimum value among all

these possible buffer values forj ∈ {1, ..., N} andi ∈ {1, ..., j}.

6.3 Deterministic equivalent CP formulation

Building on the considerations above it is easy to constructadeterministic equiv-

alentCP formulation for the non-stationary(Rn, Sn) policy under stochastic de-

mand, ordering cost, holding and shortage cost. (For a detailed discussion on

deterministic equivalent modeling in stochastic programming see Birge and Lou-

veaux [11]).

In order to correctly compute the expected total cost for a replenishment cycle
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R(i, j) with opening inventory levelSi, we must build a special-purpose constraint

objConstraint(·) that dynamically computes such a cost by means of an extended

version of Eq. (6.15)

C(Si, i, j) = a +

j∑

k=i

(
hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k))− (1− α(i, k))zα(i,k)]

)

(6.17)

that considers the ordering cost. Then the expected total cost for a certain replen-

ishment plan will be computed as the sum of all the expected total costs for replen-

ishment cycles in the solution, plus the respective ordering costs.objConstraint(·)
also computes the optimal expected buffer stock levelb(i, j) for every replenish-

ment cycleR(i, j) identified by a partial assignment forδk∈{1,...,N} variables. A

deterministic equivalentCP formulation is

min E{TC} = C (6.18)

subject to

objConstraint
(
C, Ĩ1, . . . , ĨN , δ1, . . . , δN , d1, . . . , dN , a, h, s

)
(6.19)

and fort = 1 . . . N

Ĩt + d̃t − Ĩt−1 ≥ 0 (6.20)

Ĩt + d̃t − Ĩt−1 > 0⇒ δt = 1 (6.21)

Ĩt ∈ Z, δt ∈ {0, 1} (6.22)

Each decision variablẽIt represents the expected closing inventory level at the

end of periodt; bounds for the domains of these variables can be computed as

explained above. Each̃dt represents the expected value of the demand in a given

periodt according to its PDFgt(dt). The binary decision variablesδt state whether

a replenishment is fixed for periodt (δt = 1) or not (δt = 0).

Eq. (6.20) enforces a no-buy-back condition, which means that received goods

cannot be returned to the supplier. As a consequence of this the expected inventory

level at the end of periodt must be no less than the expected inventory level at the
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end of periodt − 1 minus the expected demand in periodt. Eq. (6.21) expresses

the replenishment condition. We have a replenishment if theexpected inventory

level at the end of periodt is greater than the expected inventory level at the end of

periodt− 1 minus the expected demand in periodt. This means that we received

some extra goods as a consequence of an order.

The objective function (6.18) minimizes the expected totalcost over the given

planning horizon.objConstraint(·) dynamically computes buffer stocks and it

assigns toC the expected total cost related to a given assignment for replenish-

ment decisions, depending on the demand distribution in each period and on the

given combination for problem parametersa, h, s. In order to propagate this con-

straint we wait for a partial assignment involvingδt, t = 1, . . . , N variables. In

particular we look for an assignment where there exists somei s.t. δi = 1, some

j > i s.t. δj+1 = 1 and for everyk, i < k ≤ j, δk = 0. This will uniquely iden-

tify a replenishment cycleR(i, j) (Fig. 6.4). There may be more replenishment

R(i,j)

i j

di=1 dj+1=1

dkÎ{i+1,...,j}= 0

Figure 6.4: A replenishment cycleR(i, j) is identified by the current partial as-
signment forδi variables.

cycles associated with a partial assignment. If we considereachR(i, j) identified

by the current assignment, it is easy to minimize the convex cost function already

discussed, and to find the optimal expected buffer stockb(i, j) for this particular

replenishment cycle independently on the others. By doing this for every replen-

ishment cycle identified, two possible situations may arise: the buffer stock con-

figuration obtained satisfies every inventory conservationconstraint (Eq. (6.20)),

or for some couple of subsequent replenishment cycles this constraint is violated

(Fig. 6.5). Therefore we observe an expected negative orderquantity. If the latter

situation arises we can adopt a fast convex optimization procedure to compute a

feasible buffer stock configuration with minimum cost. The key idea is to iden-

tify two possible limit situations: we increase the openinginventory level of the
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stocks

period

R(i,k) R(k+1,j)

b(i,k) b(k+1,j)

E{TC} E{TC}

i        k           j

Figure 6.5: The expected total cost of both replenishment cycles is minimized, but
the inventory conservation constraint is violated betweenR(i, k) andR(k + 1, j)

second cycle, thus incurring a higher overall cost for it, topreserve optimality of

the first cycle (Fig. 6.6 - a). Or we decrease the buffer stock of the first replen-

ishment cycle, thus incurring a higher overall cost for it, to preserve optimality

of the second cycle cost (Fig. 6.6 - b). A key observation is that, when negative

stocks

period

R(i,k) R(k+1,j)

b(i,k) b(k+1,j)

E{TC} E{TC}

i        k           j

a stocks

period

R(i,k)
R(k+1,j)

b(i,k) b(k+1,j)

E{TC} E{TC}

i        k           j

b

Figure 6.6: Feasible limit situations when negative order quantity scenarios arise

order quantity scenarios arise, at optimality the expectedclosing inventory levels

of the first and the second cycle lie in the interval delimitedby the two situations

described. This directly follows from the convexity of boththe cost functions.

Moreover the expected closing inventory level of the first cycle must be equal to

the opening inventory level of the second cycle. In fact, if this does not hold,

then either the first cycle has an expected closing inventorylevel higher than the

opening inventory level of the second cycle and the solutionis not feasible (Fig.

6.7 - a), or the first cycle has an expected closing inventory level smaller than the

opening inventory level of the second cycle. In the latter case we can obviously

decrease the overall cost by choosing a smaller opening inventory level for the

second cycle (Fig. 6.7 - b). The algorithm for computing optimal buffer stock

configurations in presence of negative order quantity scenarios simply exploits
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stocks

period

R(i,k) R(k+1,j)

b(i,k) b(k+1,j)

E{TC} E{TC}

i        k           j

a stocks

period

R(i,k)
R(k+1,j)

b(i,k) b(k+1,j)

E{TC} E{TC}

i        k           j

b

Figure 6.7: Infeasible (a) and suboptimal (b) plans realized when the opening
inventory level of the second cycle doesn’t equate the expected closing inventory
level of the first cycle

the linear dependency between the opening inventory level of the second cycle

and the expected closing inventory level of the first cycle. Due to this dependency

the overall cost is still convex inb(i, k) (or equivalently inb(k + 1, j), since they

are linearly dependent) and we can apply any convex optimization technique to

find the optimal buffer stock configuration. Notice that thisreasoning still holds

in a recursive process. Therefore we can optimize buffer stock for two subsequent

replenishment cycles, then we can treat these as a new singlereplenishment cycle,

since their buffer stocks are linearly dependent, and repeat the process in order to

consider the next replenishment cycle if a negative order quantity scenario arises.

Once buffer stocks are known we can apply Eq. (6.17) to the opening inven-

tory levelSi = d̃i + . . . + d̃j + b(i, j) and compute the costC(Si, i, j) associated

with a given replenishment cycle. Since the cost function inEq. (6.17) is convex

and we handle negative order quantity scenarios, a lower bound for the expected

total cost associated with the current partial assignment for δt, t = 1, . . . , N vari-

ables is now given by the sum of all the cost componentsC(Si, i, j), for each

replenishment cycleR(i, j) identified by the assignment. Furthermore this bound

is tight if all theδt variables have been assigned.objConstraint(·) exploits this

property in order to incrementally compute a lower bound forthe cost of the cur-

rent partial assignment forδt variables. When everyδt variable is ground, since

such a lower bound becomes tight, buffer stocks computed foreach replenishment

cycle identified can be assigned to the respectiveIt variables. Finally, in order to

consider the unit variable costv we must add the termv · IN to the cycle cost

C(Si, i, N) for i ∈ {1, ..., N}. Therefore the complete expression for the cost of
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Period 1 2 3 4 5 6 7 8

d̃t 200 100 70 200 300 120 50 100

Table 6.1: Expected demand values

replenishment cycles that start in periodi ∈ {1, ..., N} and end in periodN is:

C(Si, i, N) = a +
N∑

k=i

(
hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k))− (1− α(i, k))zα(i,k)]

)

+v

(

Si −
N∑

k=i

dk

)

(6.23)

6.4 Comparison of the CP and MIP approaches

(Tarim and Kingsman [90]) proposed a piecewise linear approximation of the cost

function for the single-period newsvendor type model underholding and shortage

costs, which we analyzed above. Thus they were able to build aMIP model ap-

proximating an optimal solution for the multi-period stochastic lot-sizing under

fixed ordering, holding and shortage costs. They gave a few examples to show

the effect of higher noise levels (uncertainty in the demandforecasts) on the or-

der schedule. Using the same examples we shall compare the policies obtained

using our exact CP approach with their approximation. Depending on the num-

ber of segments used in the piecewise approximation, the quality of the solutions

obtained can be improved. We shall consider approximationswith two and seven

segments. The forecast of demand in each period are given in Table 6.1. We as-

sume that the demand in each period is normally distributed about the forecast

value with the same coefficient of variationτ . Thus the standard deviation of

demand in periodt is σt = τ · d̃t. In all cases, initial inventory levels, delivery

lead-times and salvage values are set to zero.

In Fig. 6.8–6.12 optimal replenishment policies obtained with our CP ap-

proach are compared for four different instances, with respect toτ , v, a ands, with

the policies provided by the 2-segment (PW-2) and 7-segment(PW-7) approxima-

tions. For each instance we compare the expected total cost provided by the exact
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method with the expected total cost provided by the policiesfound using approx-

imate MIP models. Since the cost provided by PW-2 and PW-7 is an approxima-

tion, it often differs significantly from the real expected total cost related to policy

parameters found by these models. It is therefore not meaningful to compare the

cost provided by the MIP model with that of the optimal policyobtained with our

CP model. To obtain a meaningful comparison we computed the real expected

total cost by applying the exact cost function (Eqs. 6.17, 6.23) discussed above to

the (Rn,Sn) policy parameters obtained through PW-2 and PW-7. It is then possi-

ble to assess the accuracy of approximations in (Tarim and Kingsman [90]). Fig.

Figure 6.8:h = 1, a = 250, s = 10, v = 0, τ = 0.0

6.8 shows the optimal replenishment policy for the deterministic case (τ = 0.0).

The direct item cost (v) is taken as zero. Four replenishment cycles are planned.

The (Rn,Sn) policy parameters areR = [3, 1, 3, 1] andS = [370, 200, 470, 100].

The total cost for this policy is1460. Fig. 6.9 shows an instance where we con-

Figure 6.9:h = 1, a = 250, s = 10, v = 0, τ = 0.1

sider low levels of forecast uncertainty (τ = 0.1). In this case both PW-2 and
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PW-7 perform well compared to our exact CP solutions. Since forecast uncer-

tainty must be considered, all the models introduce buffer stocks. The optimal

(Rn,Sn) policy parameters found by our CP approach areR = [3, 1, 2, 2] and

S = [384, 227, 449, 160]. The PW-2 solution is1.75% more costly than the exact

solution, while the PW-7 solution is slightly more costly than the exact solution.

Fig. 6.10 shows that as the level of forecast uncertainty increases (τ = 0.2), the

Figure 6.10:h = 1, a = 250, s = 10, v = 0, τ = 0.2

quality of the PW-2 solution deteriorates, in fact it is now3.62% more costly than

the exact solution. The optimal (Rn,Sn) policy parameters found by our CP ap-

proach areR = [3, 1, 2, 2] andS = [401, 253, 479, 170]. In contrast the PW-7

solution is still only slightly more costly than the exact solution. As noted in

Figure 6.11:h = 1, a = 350, s = 50, v = 0, τ = 0.3

(Tarim and Kingsman [90]) the quality of the approximation decreases for high

ratioss/h. In Fig. 6.11 we considers/h = 50 and a different demand pattern.

The forecast of demand in each period are given in Table 6.2. Now the PW-2

solution is6.66% more costly than the exact approach, while the PW-7 solution
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Period 1 2 3 4 5 6 7 8

d̃t 200 100 70 200 300 120 200 300

Table 6.2: Expected demand values

is 1.03% more costly. The optimal (Rn,Sn) policy parameters found by our CP

approach areR = [3, 1, 2, 1, 1] andS = [483, 324, 592, 324, 486]. In Fig. 6.12 we

consider the same instance but a direct item cost is now incurred (v = 15). The

buffer stock held in the last replenishment cycle is affected by this parameter, and

is decreased from186 to 63. The PW-7 policy is now0.84% more costly than the

exact one. For these instances seven segments usually provides a solution with a

Figure 6.12:h = 1, a = 350, s = 50, v = 15, τ = 0.3

cost reasonably close to optimal. In terms of running times,for all these instances

both the MIP approximations and the CP model perform very quickly. In our

experiments we used ILOG OPL Studio 3.7 to solve the MIP models of (Tarim

and Kingsman [90]), and Choco ([58] an open source solver written in Java) to

implement our CP model. All experiments were performed on anIntel Centrino

1.5 GHz with 500Mb RAM. Since the planning horizon is short (8periods), we

were able to solve any instance in less than a second. As the planning horizon

length increases the pure CP model becomes slower than the MIP one. This is due

both to the size of decision variable domains and to the lack of good bounds in the

search.

In the following sections we will discuss how it is possible to incorporate in

our CP model a dedicated cost-based filtering method (Focacci and Milano [31])

based on adynamic programming relaxation(Tarim [86]) that is able to generate
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good bounds during the search. Such a technique has been already employed

under a service level constraint (Tarim et al. [87]). It should be noted that due

to the non-linearity of the cost function induced by the shortage cost scheme, the

version of the problem we consider is significantly more complicated than the one

under a service level constraint. Nevertheless, despite the non-linearity of the cost

function, we will see that the convexity of the cost functioncan be exploited to

define a relaxation similar to the one proposed in (Tarim et al. [87]).

6.4.1 Cost-based filtering by relaxation

Cost-based filtering is an elegant way of combining techniques from CP and Op-

erations Research (OR) (Fahle and Sellmann [28], Focacci and Milano [31]). OR-

based optimization techniques are used to remove values from variable domains

that cannot lead to better solutions. This type of domain filtering can be combined

with the usual CP-based filtering methods and branching heuristics, yielding pow-

erful hybrid search algorithms.

In (Tarim et al. [87]) the authors adopt a relaxation proposed by (Tarim [86])

for the CP model that computes (Rn,Sn) policy parameters under service level

constraints. When the relaxed model is solved it provides good bounds for the

original problem. Furthermore the relaxed problem is a Shortest Path Problem

that can be solved in polynomial time. Therefore it is easy toobtain good bounds

at each node of the search tree. In the same work the authors also explain how it

is possible to take into account a partial assignment for replenishment decisions

δ1, . . . , δN and for expected closing inventory levelsĨ1, . . . , ĨN when the relaxed

problem is constructed, so that the effect of these assignments is reflected on the

bound that is obtained by solving the relaxed problem. As shown in (Tarim et

al. [87]), the CP model proposed for computing (Rn,Sn) policy parameters under

service level constraints can be reduced to a Shortest Path Problem if the inven-

tory conservation constraint and the replenishment condition constraint, that is

constraint 6.20 and 6.21 in our model under shortage cost scheme, are relaxed

for replenishment periods. That is for each possible pair ofreplenishment cycles

〈R(i, k − 1), R(k, j)〉 wherei, j, k ∈ {1, . . . , N} andi < k ≤ j, the relationship

between the opening inventory level ofR(k, j) and the expect closing inventory
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level ofR(i, k − 1) is not considered. The same approach can be translated to the

CP model for (Rn,Sn) under shortage cost scheme.

In the former sections we provided a general functionC(i, j, Ĩj) to compute

the expected total cost of replenishment cycleR(i, j), when an expected closing

inventory levelĨj is held in periodj. Furthermore we proved that this function

is convex inĨj (Fig. 6.13). If we consider each replenishment cycleR(i, j) in-

dependently, we can efficiently compute the optimal expected closing inventory

level that minimizes the expected total cost associated with such a cycle using

gradient based methods for convex optimization. This way weobtain a setS of

N(N +1)/2 possible replenishment cycles and respective order-up-to-levels. Our

new problem is to find an optimal setS∗ ⊂ S of consecutive disjoint replenish-

ment cycles that covers our planning horizon at the minimum cost. In (Tarim et

al. [87]) it was shown that the optimal solution to this relaxation is given by the

shortest path in a graph from a given initial node to a final node where each arc

represents a specific cost. We now adapt their approach to ourmodel that employs

a shortage cost scheme.

If N is the number of periods in the planning horizon of the original problem,

we introduceN + 1 nodes. Since we assume, without loss of generality, that an

order is always placed at period1, we take node1, which represents the beginning

of the planning horizon, as the initial one. NodeN + 1 represents the end of the

planning horizon. For each possible replenishment cycleR(i, j − 1) such that

i, j ∈ {1, . . . , N + 1} andi < j, we introduce an arc(i, j) with associated cost

Q(i, j) = C(i, j − 1, Ĩ∗
j−1), (24)

whereĨ∗
j−1 is the expected closing inventory level that minimizes the convex cost

of replenishment cycleR(i, j−1). Since we are dealing with a one-way temporal

feasibility problem (Wagner and Whitin [96]), wheni ≥ j, we introduce no arc.

The connection matrix for such a graph, of sizeN × (N + 1), can be built as

shown in Table 6.3.

The cost of the shortest path from node1 to nodeN + 1 in the given graph

is a valid lower bound for the original problem, as it is a solution of the relaxed

problem. In fact the expected total cost function for each replenishment cycle is
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Figure 6.14: The optimal expected closing inventory level for replenishment cycle
Rn considered alone isa, this minimizes the convex cost associated with replen-
ishment cycleRn. In order to meet the inventory conservation constraint forthe
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1 2 . . . j . . . N + 1
1 − Q(1, 2) . . . Q(1, j) . . . Q(1, N + 1)
... − − . . .

...
. . .

...
i − − − Q(i, j) . . . Q(i, N + 1)
... − − − − . . .

...
N − − − − − Q(N, N + 1)

Table 6.3: Shortest Path Problem Connection matrix

convex in the expected closing inventory level held at the end of the cycle. There-

fore in order to meet the violated inventory conservation constraints, if any exists,

we will incur an overall higher expected total cost for a given group of replen-

ishment cycles (Fig. 6.14). Furthermore it is easy to map theoptimal solution

for the relaxed problem, that is the set of arcs participating to the shortest path,

to a solution for the original problem by noting that each arc(i, j) represents a

replenishment cycleR(i, j − 1). The feasibility of such a solution with respect

to the original problem can be checked by verifying that it satisfies every relaxed

constraint. If no inventory conservation constraint is violated, it is easy to see that

the computed cost is optimal for the given replenishment plan.

We will now show how to exploit thislower boundin anoptimization oriented

global constraint able to dynamically produce good bounds when a partial solution

is provided. A detailed discussion on optimization oriented global constraints can

be found in (Focacci and Milano [33]).

Cost-based filtering can be performed by simply noticing that the costs stored

in the connection matrix can be adjusted to reflect the current partial assignment

for decision variablesδt and Ĩt exactly the way shown for the service level con-

strained model (Tarim et al. [87]). More specifically:

δk = 0: If in a given partial solution a decision variableδk, k ∈ {1, . . . , N} has

been already set to0, then we can remove from the graph every inbound arc to

nodek and every outbound arc from nodek. This prevents nodek from being

part of the shortest path, and hence prevents periodk from being a replenishment

period. In this modified graph, the cost of the shortest path will provide a valid
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lower bound for the cost of an optimal solution incorporating the decisionδk = 0.

Furthermore, an assignment for decision variables is associated with the shortest

path. If this assignment is feasible for the original problem, then it is optimal with

the respect to the decisionδk = 0.

δk = 1: On the other hand, if in a given partial solution a decision variableδk,

k ∈ {1, . . . , N} has been already set to1, then we can remove from the graph

every arc connecting a nodei to a nodej, wherei < k < j. This forces the short-

est path to pass through nodek, and hence forces periodk to be a replenishment

period. In this modified graph, the cost of the shortest path will provide a valid

lower bound for the cost of an optimal solution incorporating the decisionδk = 1.

Furthermore, an assignment for decision variables is associated with the shortest

path. If this assignment is feasible for the original problem, then it is optimal with

the respect to the decisionδk = 1.

Ĩt assigned: If a given Ĩt, t ∈ {i, . . . , j − 1}, is assigned a value, the expected

closing inventory level (̃Ij−1) for the replenishment cycleR(i, j−1), which covers

periodt, is uniquely determined and therefore the expected total cost for such a

replenishment cycle — that is the cost of arc(i, j) — can be directly computed

from C(i, j − 1, Ĩj−1), provided that the current partial assignment forδt decision

variables uniquely identifiesR(i, j − 1).

6.5 Experimental Results

In this section we show the effectiveness of our approach. A single problem is con-

sidered and the period demands are generated from seasonal data with no trend:

d̃t = 50[1 + sin(πt/6)]. In addition to the “no trend” case (P1) we also consider

three others:

(P2) positive trend case,̃dt = 50[1 + sin(πt/6)] + t

(P3) negative trend case,d̃t = 50[1 + sin(πt/6)] + (52− t)

(P4) life-cycle trend case,̃dt = 50[1 + sin(πt/6)] + min(t, 52− t)
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In each test we assume an initial null inventory level and a normally distributed de-

mand for every period with a coefficient of variationσt/d̃t for eacht ∈ {1, . . . , N},
whereN is the length of the considered planning horizon. We performed tests us-

ing four different ordering cost valuesa ∈ {50, 100, 150, 200} and two different

σt/d̃t ∈ {1/3, 1/6}. The planning horizon length takes even values in the range

[20, 38]. The holding cost used in these tests ish = 1 per unit per period. Our

tests also consider two different shortage cost valuess = 15 ands = 25. Di-

rect item cost isv = 2 per unit produced. All the experiments were performed

on an Intel(R) Centrino(TM) CPU 1.50GHz with 500Mb RAM. The solver used

is Choco [58], an open-source solver developed in Java. The cost-based filter-

ing techniques presented are implemented as dedicated constraints within Choco.

The same variable and value selection heuristics used in (Tarim et al. [87]) are em-

ployed. Tables 6.4 and 6.5 show the performance (in seconds)of our CP model

enhanced with the cost-based filtering described in the former section. In our test

results ”−−” means that within the time limit of5 seconds the CP approach could

not find an optimal solution. When the cost-based filtering method we proposed is

not used, the pure CP approach is never able to provide an optimal solution within

the given running time limit for every instance. Finally it should be also noted

that the worst case running time of our approach over the whole test bed was6, 77

minutes. Therefore even in the few cases where an optimal solution is not found

in a less than a second, our cost-based filtering techniques provides a reasonable

running time.

6.6 Conclusions

We presented a CP approach that finds optimal (Rn,Sn) policies under non-stationary

demands. Using our approach it is now possible to evaluate the quality of a pre-

viously published MIP-based approximation method. Using aset of problem in-

stances we showed that a piecewise approximation with sevensegments usually

provides good quality solutions, while using only two segments can yield solu-

tions that differ significantly from the optimal. Furthermore we exploited convex-

ity of the cost function to dynamically generate bounds during the search. The

cost-based filtering technique we presented is able to speedup the search for opti-
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Test Set P1 Test Set P2
σt/d̃t = 1/3 σt/d̃t = 1/6 σt/d̃t = 1/3 σt/d̃t = 1/6

a N s = 15 s = 25 s = 15 s = 25 s = 15 s = 25 s = 15 s = 25

50

20 0, 150 0, 030 0, 020 0, 020 0, 030 0, 040 0, 050 0, 050
22 −− −− 0, 020 0, 030 0, 040 0, 030 0, 060 0, 060
24 0, 031 0, 040 0, 030 0, 030 0, 060 0, 040 0, 080 0, 070
26 0, 040 0, 070 0, 040 0, 040 0, 060 0, 050 0, 120 0, 120
28 0, 050 0, 080 0, 060 0, 050 0, 070 0, 060 0, 170 0, 121
30 0, 080 0, 090 0, 060 0, 050 0, 080 0, 081 0, 161 0, 161
32 0, 100 0, 090 0, 070 0, 081 0, 120 0, 141 0, 180 0, 150
34 −− −− 0, 060 0, 070 0, 140 0, 080 0, 180 0, 160
36 0, 210 0, 111 0, 080 0, 081 0, 161 0, 090 0, 230 0, 180
38 0, 171 0, 100 0, 090 0, 080 0, 140 0, 120 0, 210 0, 241

100

20 0, 030 5, 949 0, 020 0, 030 0, 040 0, 030 0, 020 0, 020
22 0, 030 0, 030 0, 030 0, 030 0, 040 0, 030 0, 031 0, 030
24 0, 030 0, 040 0, 040 0, 030 0, 040 0, 041 0, 040 0, 030
26 0, 040 0, 040 0, 040 0, 040 0, 080 0, 050 0, 050 0, 050
28 0, 060 0, 070 0, 050 0, 050 0, 060 0, 071 0, 060 0, 051
30 0, 061 0, 060 0, 060 0, 060 0, 071 0, 080 0, 061 0, 080
32 0, 080 −− 0, 070 0, 070 0, 081 0, 090 0, 071 0, 070
34 0, 070 0, 060 0, 070 0, 070 0, 090 0, 080 0, 231 0, 070
36 0, 080 0, 101 0, 071 0, 071 0, 101 0, 100 0, 090 0, 090
38 0, 080 0, 101 0, 090 0, 091 0, 110 0, 120 0, 100 0, 101

150

20 0, 020 0, 020 0, 030 0, 021 0, 030 0, 020 0, 020 0, 030
22 0, 030 0, 030 0, 030 0, 020 0, 030 0, 030 0, 030 0, 030
24 0, 040 0, 040 0, 030 0, 030 0, 040 0, 040 0, 040 0, 030
26 0, 040 0, 040 0, 040 0, 040 0, 040 0, 050 0, 050 0, 061
28 0, 050 0, 050 0, 050 0, 041 0, 060 0, 061 0, 050 0, 050
30 0, 070 0, 071 0, 050 0, 061 0, 070 0, 070 0, 060 0, 070
32 0, 070 4, 306 0, 060 0, 071 0, 080 0, 080 0, 070 0, 070
34 0, 070 0, 070 0, 060 0, 070 0, 100 0, 080 0, 070 0, 071
36 0, 080 0, 080 0, 070 0, 080 0, 090 0, 110 0, 080 0, 090
38 0, 090 0, 100 0, 100 0, 080 0, 110 0, 120 0, 110 0, 121

200

20 0, 030 0, 030 0, 030 0, 020 0, 031 0, 040 0, 030 0, 020
22 0, 030 0, 220 0, 030 0, 030 0, 030 0, 041 0, 030 0, 030
24 0, 030 0, 040 0, 030 0, 040 0, 040 0, 040 0, 030 0, 041
26 0, 040 0, 040 0, 040 0, 040 0, 050 0, 051 0, 041 0, 050
28 0, 050 0, 050 0, 051 0, 060 0, 080 0, 060 0, 060 0, 050
30 0, 070 0, 060 0, 060 0, 060 0, 070 0, 070 0, 070 0, 070
32 0, 080 0, 080 0, 060 0, 060 0, 080 0, 090 0, 070 0, 070
34 0, 070 −− 0, 070 0, 070 0, 090 0, 080 0, 080 0, 081
36 0, 080 0, 081 0, 070 0, 070 0, 110 0, 101 0, 090 0, 110
38 0, 100 0, 090 0, 091 0, 090 0, 121 0, 100 0, 110 0, 110

Table 6.4: Test Set P1, P2.

mal (Rn, Sn) policy parameters under a shortage cost scheme. Our experimental

results prove that such a technique brings a significant improvement in the ef-

ficiency of the pure CP approach for this problem. We are now able to solve

problems over a planning horizon up to forty periods, typically in a fraction of a

second and in the worst case in a few minutes. This means that our approach can

be now applied to problems of a realistic size.
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Test Set P3 Test Set P4
σt/d̃t = 1/3 σt/d̃t = 1/6 σt/d̃t = 1/3 σt/d̃t = 1/6

a N s = 15 s = 25 s = 15 s = 25 s = 15 s = 25 s = 15 s = 25

50

20 0, 321 0, 170 0, 330 0, 160 0, 070 0, 030 0, 050 0, 061
22 0, 480 0, 300 0, 370 0, 341 0, 030 0, 040 0, 060 0, 060
24 0, 581 0, 310 0, 531 0, 421 0, 050 0, 040 0, 110 0, 071
26 1, 222 0, 501 0, 791 0, 531 0, 070 0, 060 0, 090 0, 090
28 2, 224 0, 661 1, 142 0, 741 0, 140 0, 070 0, 120 0, 160
30 2, 013 0, 722 1, 052 0, 751 0, 100 0, 060 0, 130 0, 170
32 1, 812 0, 941 1, 182 0, 801 0, 121 0, 080 0, 180 0, 140
34 1, 883 0, 862 1, 312 0, 952 0, 120 0, 090 0, 190 0, 150
36 2, 093 0, 981 1, 472 1, 152 0, 121 0, 110 0, 210 0, 180
38 3, 636 1, 131 1, 803 1, 512 0, 120 0, 100 0, 251 0, 200

100

20 0, 030 0, 040 0, 060 0, 070 0, 040 0, 030 0, 030 0, 020
22 0, 040 0, 040 0, 070 0, 071 0, 040 0, 030 0, 030 0, 030
24 0, 040 0, 050 0, 090 0, 080 0, 050 0, 030 0, 040 0, 040
26 0, 050 0, 281 0, 100 0, 100 0, 050 0, 050 0, 050 0, 040
28 0, 070 0, 070 0, 131 0, 120 0, 061 0, 060 0, 060 0, 060
30 0, 070 0, 070 0, 140 0, 130 0, 070 0, 070 0, 070 0, 060
32 0, 080 0, 080 0, 150 0, 160 0, 080 0, 080 0, 070 0, 070
34 0, 090 0, 090 0, 161 0, 210 0, 090 0, 081 0, 080 0, 070
36 0, 100 0, 110 0, 240 0, 180 0, 090 0, 090 0, 090 0, 080
38 0, 141 0, 130 0, 211 0, 250 0, 100 0, 100 0, 110 0, 100

150

20 0, 040 0, 030 0, 060 0, 060 0, 030 0, 030 0, 030 0, 030
22 0, 040 0, 040 0, 071 0, 070 0, 030 0, 030 0, 030 0, 030
24 0, 050 0, 041 0, 140 0, 080 0, 040 0, 030 0, 040 0, 030
26 0, 060 0, 050 0, 100 0, 160 0, 060 0, 040 0, 050 0, 040
28 0, 070 0, 070 0, 120 0, 170 0, 060 0, 060 0, 060 0, 050
30 0, 070 0, 070 0, 130 0, 140 0, 070 0, 060 0, 070 0, 060
32 0, 090 0, 090 0, 160 0, 220 0, 080 0, 080 0, 070 0, 070
34 0, 091 0, 090 0, 171 0, 170 0, 080 0, 090 0, 080 0, 080
36 0, 100 0, 110 0, 181 0, 250 0, 100 0, 100 0, 090 0, 090
38 0, 140 0, 120 0, 220 0, 260 0, 100 0, 101 0, 100 0, 100

200

20 0, 071 0, 030 0, 060 0, 070 0, 040 0, 030 0, 030 0, 030
22 0, 090 0, 070 0, 070 0, 120 0, 030 0, 030 0, 030 0, 030
24 0, 090 0, 130 0, 080 0, 080 0, 050 0, 040 0, 030 0, 040
26 0, 110 0, 110 0, 100 0, 171 0, 050 0, 050 0, 051 0, 050
28 0, 130 0, 170 0, 181 0, 130 0, 070 0, 070 0, 060 0, 050
30 0, 210 0, 150 0, 150 0, 151 0, 060 0, 070 0, 070 0, 060
32 0, 210 0, 090 0, 150 0, 221 0, 070 0, 070 0, 070 0, 080
34 0, 210 0, 241 0, 180 0, 160 0, 080 0, 080 0, 080 0, 081
36 0, 250 0, 210 0, 241 0, 190 0, 090 0, 100 0, 080 0, 090
38 0, 221 0, 271 0, 260 0, 210 0, 140 0, 110 0, 100 0, 131

Table 6.5: Test Set P3, P4.
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