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Abstract 

This thesis estimates the impact of visual inspection prior to its implementation in a 

Bridge Management System (BMS) using Value of Information (VoI). Visual 

inspection is the principal assessment method for bridge structures, whereby a 

condition rating is assigned reflecting the structural condition of a bridge, based on 

the judgements of a trained inspector. The impact of data collected from visual 

inspection is contingent on its ability to guide towards optimal maintenance 

decisions throughout the lifecycle to maximise network performance. The VoI 

concept from Bayesian pre- posterior analysis is defined as the quantification of the 

reduction of uncertainty in a decision-making problem, after new information is 

received. This concept has seen multifaceted applications in the optimisation of 

Structural Health Monitoring techniques, typically focussing on the ability to 

monitor a specific parameter to determine the degradation rate and condition of a 

single asset. The merits of visual inspection data have been largely overlooked thus 

far. This work outlines and applies a framework to put a measure on the impact that 

visual inspection provides to infrastructure asset managers operating a BMS, and to 

illustrate how this is influenced by the underlying uncertainties of the model 

parameters. 
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1 Introduction 

1.1 Background 

Successful infrastructure management is fundamental to economic growth and 

international competitiveness (ASCE, 2013). Managing and maintaining these assets, 

ensuring both their reliability and consistency of service is an integral element in 

delivering a prosperous economy and ensuring safety for all users. Bridges age over 

time, often exceed their design life and have a much longer service life than typical 

national assets. Inadequate and poorly planned maintenance actions can lead to an 

accumulation of unnecessary costs over a bridges’ lifecycle. It is essential for bridge 

management agencies to extend the useful life of a bridge, while maintaining a high 

standard of safety. Thus, devising a Bridge Management System (BMS) that 

provides value in balancing the cost of inspection and maintenance against the risk 

of failure is necessary to enable the user to plan for, and reduce the impact of such 

events. Comprehensive BMSs facilitate owners in inspecting, maintaining and 

rehabilitating deteriorating bridge stock within the limitations of financial resources 

(Mirzaei et al., 2014). A BMS refers to a set of decisions, in relation to design, 

construction, maintenance; and structural intervention, made by infrastructure 

management over time, to maximise performance (Sánchez-Silva et al., 2016). 

Uncertainties of either epistemic or aleatory nature complicate such decision 

problems and may lead to suboptimal actions or even actions with catastrophic 

consequences (Der Kiureghian and Ditlevsen, 2007). Information is fundamental to 

reduce uncertainties; information about the state of bridges and its components, and 

about the consequences of various decision alternatives (Konakli et al., 2015).  
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Information gathering practices (O'Brien et al., 2005) are central to the 

success of a BMS, and can be broadly categorised under three main levels - visual 

inspection; principal inspection; and special inspection. Visual inspection is typically 

the first step in a BMS, whereby each bridge is visually evaluated and assigned a 

pre-defined condition rating, providing a condition assessment of the selected stock 

of bridges (Chase et al., 2016). These condition ratings can be and are often used to 

predict the future condition state of elements (Zanini et al., 2016), to determine if 

maintenance or structural intervention is to be carried out, commonly using the 

Markovian deterioration model (Wellalage et al., 2014, Li et al., 1996). Otherwise, 

condition ratings are simply used to identify areas for future evaluation; either 

through structural assessment (Saydam et al., 2013) or further inspection via 

principal inspection (NRA, 2008), special inspection (Browne et al., 2010, Duffy, 

2004) or emerging technologies (Vaghef et al., 2011, Washer and Fuchs, 2015, Zink 

and Lovelace, 2015). In this regard, a risk-based metric can be adopted. While 

principal inspections refer to visual assessments, special inspections (O'Connor et al., 

2012) can involve significant mechanical and chemical testing of the structure as per 

the requirements. Additionally, the cost of special inspections can be significantly 

higher than principal inspections and variable based on the requirement of tests and 

the size of the bridge. 

Effective and reliable condition assessment is an important part in evaluating 

and maintaining bridge structures. Visual inspection is the predominant method of 

inspection for bridges worldwide. It is likely that a hybrid inspection technique that 

adopts both visual inspection and other non-destructive testing could optimise 

efficiency of condition assessment and ultimately lead to better decision making 
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would lead to more appropriate and economical decision making regarding the 

possible rehabilitation or replacement of bridge members or the entire structure 

(Weninger-Vycudil et al., 2015). To get this process moving forward, the Value of 

Information (VoI) that both visual inspection and other non-destructive testing 

provides must be determined, so that the correct balance of their use can be deduced. 

The two methods are distinct but not mutually exclusive and each method has 

specific capabilities and challenges. Both methods provide different information of 

varying accuracy and have various associated costs. By evaluating the VoI that they 

contribute, the most appropriate method or combination of inspection methods can 

be determined. VoI provides a mathematical framework, to quantify the benefit of 

collecting additional information to reduce uncertainty in a decision-making 

problem. It enables a decision maker to choose what information they require, if any, 

and to rank alternative information gathering strategies based on a common utility 

metric (Raiffa, and Schlaifer, 1961). Research has been conducted on the value of 

other non-destructive testing methods such as Structural Health Monitoring 

technologies (Straub 2014, Straub, 2009, Pozzi and Der Kiureghian, 2011). However, 

the value of visual inspection information has yet to be investigated in a BMS 

context. 

There is a lack of understanding of the estimated benefit of visual inspection 

information since explicit information regarding the mechanical properties of the 

material or structural components is unavailable. Empirical attempts have been made 

with limited success to use visual inspection results to update reliability analysis of 

bridges using conservative assumptions (Estes et al., 2004, Wang, 2010). Visual 

inspection data can be incomplete and is uncertain in comparison to testing and 
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monitoring involving emerging technologies. A specific defect or parameter is 

usually updated by monitoring at optimum time intervals and can be used to directly 

update the reliability of a structure (Luque and Straub, 2015). Assigning a 

quantitative value to the reduction of uncertainty via condition rating information is 

essential in bridge management to ensure that there is a correct basis for allocating 

resources (Weninger- Vycudil et al., 2015) to visual inspection strategies (Deshmukh 

and Sanford Bernhardt, 2000). Srinivasan and Kumar (2013) provided a 

methodology to compare the merits of different condition monitoring approaches, 

one being visual inspection, for underground tunnels. However, in bridge 

management, focus has centred on the accuracy of visual inspection data, rather than 

benefit estimates (Graybeal et al., 2002, Moore et al., 2001). Probabilistic models 

exist for condition rating (Attoh-Okine and Bowers, 2006, Gattulli and Chiaramonte, 

2005, Pozzi et al., 2010, Rafiq et al., 2015) but the VoI concept is significantly 

unexplored. 
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1.2 Aim of Study 

The aim of this paper is to addresses the gap in the knowledge that exists, which is to 

provide an organised representation of the value of visual inspection, measured 

through the VoI within a BMS framework. The VoI concept, is a key concept in pre-

posterior analysis, which represents the difference between expected benefits 

evaluated with and without a piece of information (Konakli et al., 2015). This 

concept has been used extensively in determining the value of monitoring and 

inspection in the field of infrastructure management, as it allows the decision maker 

to determine the expected value an inspection strategy will provide prior to its 

implementation (Pozzi and Der Kiureghian, 2011, Straub, 2014, Thöns et al., 2015). 

A significant number of operational bridges have been used in this paper to provide a 

useful representation. The impact of the variation in inspection accuracy and 

precision have been considered. The impact of the current bridge state and the 

variations that occur from using different BMS have also been considered. 

Collectively, the results assess visual inspection for an individual BMS and allow 

infrastructure managers of other BMSs to assess their bridge stock and take decisions 

on inspection based on their method, accuracy and precision – thereby ensuring the 

portability of the method and findings to a range of disparate situations.   

A graphical framework is proposed to quantify the VoI of visual inspection by 

use of Bayesian networks and influence diagrams (Jensen and Nielsen, 2007, Koller 

and Friedman, 2009). Bayesian networks are efficient and intuitive graphical tools 

for the representation and assessment of systems under uncertainty. They provide a 

framework for updating and the assessment of component/system performance in 

light of uncertain information. Bayesian networks can be extended with utility and 
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decision nodes in the form of an influence diagram, thus providing a decision tool 

for ranking alternatives based on expected utility, allowing for an ideal platform for 

linking interdisciplinary modules to provide a comprehensive decision support 

framework (Bensi, 2010). A cohort of bridges is often comprised of deterministic 

and random factors that interact with each other; dependencies occur naturally and 

are important to account for (Biondini and Frangopol, 2016). Although a 

probabilistic model is a logical format, where the state of an infrastructure system is 

represented via a joint distribution, even in the simplest case, the explicit solution of 

this joint distribution is unmanageable due to computational demands and statistical 

data requirements (Koller and Friedman, 2009). Bayesian networks can represent 

high dimensional distributions by exploiting conditional independence, (Koller and 

Friedman, 2009) and can be quantified through physical variables linked to the 

degradation process in an intuitive way through expert judgement combined with 

field measurements. Firstly, the condition-based maintenance strategies must be 

modelled, taking into account the decision alternatives and associated utilities in the 

form of an influence diagram. This model must describe the condition- based 

deterioration and allow for updating based on a sample of visual inspection results 

(Memarzadeh and Pozzi, 2015), so that a revised expected life-cycle management 

cost (after inspection results are observed) can be deduced. Bayesian inference 

allows updating of the probabilities when observations, such as bridge condition 

ratings, become available (Bensi et al., 2013, Kosgodagan et al., 2015a). Dynamic 

Bayesian networks, Bayesian networks with a time-indexed sequence of nodes, can 

be used to analyse problems with time-varying domains, including inspection and 

monitoring (Bensi et al., 2013, Straub, 2009). The type of deterioration examined in 

this study, relating to concrete and masonry arch bridges, is more varied and is 



 

7 

 

commonly assessed through condition indicators, which have complex 

interdependencies. Attoh-Okine & Bowers (2006) and Rafiq et al. (2015) have 

presented condition based deterioration models of such bridge structures, using both 

Bayesian network and dynamic Bayesian network models. 

1.3 Dissertation Overview 

Chapter 2 presents a background on the VoI concept and its applications with focus 

on the bridge network management domain. The mathematical framework is 

presented in Chapter 3, which outlines the characteristics and challenges of using 

Bayesian networks and influence diagrams. This is followed by an application of the 

VoI of visual inspection for an individual decision maker managing a single bridge 

in Chapter 4. This is extended to the value that visual inspection provides to 

infrastructure asset managers operating a BMS using Irish and Portuguese datasets 

for a regional road area (Chapter 5). Numerical investigations demonstrate how the 

decision problem is influenced by the assumed probabilistic models. The thesis 

concludes with a summary of the main findings and a discussion in Chapter 6. 

1.4 Research Output 

The following publication represents the primary dissemination of the research 

contained in this thesis: 

Quirk, L., Matos, J., Murphy, J., Pakrashi, V. (2017). Visual Inspection and Bridge 

Management. Journal of Structures and Infrastructure Engineering, 13:1-13. 
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2 Literature Review 

Decision theory provides a rational framework for solving an extensive range of 

decision problems in civil engineering. In bridge network management examples 

include choice of maintenance, rehabilitation and replacement actions; type of 

inspection to be carried out; timing of inspections; and the priority of such actions. 

All of these options have an associated cost and benefit. For example, costs 

associated with replacing a bridge structure include design, management, labour, 

materials, along with the indirect costs of route detours and traffic disruption. The 

benefit of the bridge replacement decision is a longer service life. Decision theory is 

essential to provide the decision maker with a rational framework for weighing the 

costs and benefits for a set of decision alternatives (Koller and Friedman, 2009). 

However, in bridge network management, the costs and benefits associated with 

decision alternatives are not deterministic. For example, a bridge pier can be 

replaced after it has been undermined by scour, however there is no guarantee that 

that this pier will not also be subject to scour damage at a future date. Decision 

making in the field of bridge network management is carried out under uncertainty. 

Several theories provide solutions to decision making under uncertainty, of which 

the common consensus is that the optimal decision is the one which provides the 

maximum expected utility. This is in line with the VoI theory, which will be utilised 

in this study. The VoI concept quantifies the benefit a decision maker obtains from 

acquiring more information before making a decision (Raiffa and Schlaifer, 1961). 

VoI (Lindley, 1956, Raiffa and Schlaifer, 1961, DeGroot, 1984), typically 

calculated as the difference between the prior and pre-posterior analysis and 
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represented in terms of maximum expected utility (Von Neumann and Morgenstern, 

1953), is a powerful tool for assessing the merits of an inspection technique prior to 

implementation, and for choosing the optimal inspection strategy among possible 

alternatives (Pozzi and Der Kiureghian, 2012). The VoI concept was derived from 

Bayesian statistical decision theory and was first introduced in the seminal work of 

Lindley (1956), later formalised by Raiffa and Schlaifer (1961), and DeGroot (1984). 

The concept proceeded to have vast applications in the scientific community in the 

field of artificial intelligence (Russell and Norvig, 2003), informatics (Krause and 

Guestrin, 2009), economics (Eeckhoudt and Godfroid, 2000), medical decision- 

making (Strong and Oakley, 2013), geoscience (Bhattacharjya et al., 2010) and 

environmental risk management (Yokota and Thompson, 2004). 

In the late 1970s, the VoI was introduced in the field of civil and structural 

engineering (Benjamin and Cornell, 1970, Ang and Tang, 1975). Tang (1973) was 

one of the earliest to realise the potential of the VoI in optimising decision making 

practices in the field of engineering. He studied Bayesian updating of probabilistic 

models with inspection results, which provided the basis to optimise inspections via 

pre-posterior analysis in aircraft and offshore structures subject to fatigue 

deterioration (Madsen et al., 1989, Sørensen and Thoft-Christensen, 1986). This was 

one of the primary examples, whereby the VoI was used to optimise information 

gathering practices in industry. A similar method based on Markovian deterioration 

models was employed in the transportation infrastructure management (Madanat, 

1993). 

In the last 20 years, the explicit use of the VoI concept has increased in 

popularity in the optimization of bridge network management, generating optimal 
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strategies for inspection and prediction of deterioration rates. Recent research has 

focussed on the value of deterministic information, albeit imperfect or uncertain, and 

the ability of this information to directly update the prior belief of the degradation 

state or reliability of a structural component or system (Konakli et al., 2015). As a 

result, visual inspection, being uncertain in nature has been mostly overlooked thus 

far. In the field of civil engineering, especially in relation to bridge management, the 

VoI theory has had applications in terms of structural reliability methods, structural 

health monitoring and in the field of natural hazards. 

Structural reliability methods can be used to effectively model the VoI 

(Straub, 2014) by measuring the evolution of structural performance as a support to 

maintenance interventions (Pozzi and Der Kiureghian, 2011, Goulet et al., 2015, 

Straub and Faber, 2005). 

In the optimisation of structural health monitoring practices, VoI analysis has 

had widespread applications (Malings and Pozzi, 2015, Pozzi et al., 2010, Goulet 

and Smith, 2013, Thöns et al., 2015), such as the optimization of sensor placement 

(Krause, 2008), investigating the benefit of long term structural health monitoring 

(Pozzi and Der Kiureghian, 2011) and the comparison of alternative structural health 

monitoring methods (Pozzi and Der Kiureghian, 2012). The impact of structural 

health monitoring on decision making, in economic terms, has also been quantified 

(Zonta et al., 2014). In the field of geotechnical engineering, which is heavily 

dependent on monitoring, the quality of information gathered, has been investigated 

with the VoI concept (Zhang et al., 2009). 

In the area of natural hazards, the VoI has had extensive applications. It has 

been utilised to prioritise post-earthquake bridge inspections (Bensi et al., 2015, 
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Bensi, 2010). De Leon et al. (2015) used the VoI to develop economic strategies to 

reduce the expected number of fatalities and losses for bridge sites exposed to 

hurricane risk. The VoI has also been used for quantifying the value of improved 

climate models in the design of offshore structures, especially those exposed to 

extreme wave loads (Garrè and Friis-Hansen 2014). 

The decisions regarding maintenance and management for an individual bridge 

or bridge network are guided by safety and commercial decisions. As safety aspects 

are mandatory, the commercial decisions provide variation while respecting the 

safety constraints (Pakrashi et al., 2011). Thus, a quantification of the VoI for 

different inspection, testing or intervention options is important. Bridge maintenance 

and management is a hierarchical process (O’Connor et al., 2012) and information is 

available at different qualities, amounts and precision at different levels (Pakrashi et 

al., 2012). Therefore, the VoI of bridge visual inspection is a relevant aspect to 

investigate and the interest around this topic is growing.  

There is limited information on the estimated benefit of visual inspection 

information since definitive information regarding the mechanical properties of the 

material or structural components are unattainable. Empirical attempts have been 

made to use visual inspection results to update reliability analysis of bridges using 

conservative assumptions with limited success (Estes et al., 2004; Wang, 2010). 

Visual inspection data can be incomplete and is uncertain when compared to testing 

and monitoring involving emerging technologies. A specific defect or parameter is 

usually updated by monitoring at optimum time intervals and can be used to directly 

update the reliability of a structure (Luque & Straub, 2015). 
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However, in bridge maintenance and management, the emphasis is on the accuracy 

of visual inspection data, rather than the benefit (Graybeal et al., 2002; Moore et al., 

2001). Probabilistic models exist for condition rating (Attoh-Okine & Bowers, 2006; 

Gattulli & Chiaramonte, 2005; Pozzi et al., 2010; Rafiq et al., 2015) but the VoI 

concept is significantly unexplored.  

Existing research has focused on determining the value of monitoring or 

inspecting a particular parameter to determine the degradation rate and condition of a 

bridge. For example, the viability of monitoring stress and vibration using sensors 

(Oukhellou et al., 2008, Malings and Pozzi, 2015, Papadimitriou, 2000). 

Additionally, the majority of research determines the VoI at the component level, 

rather than at bridge level or bridge network level (Straub, 2004). Condition rating 

data and the data that visual inspection provides at a network level, has been largely 

overlooked thus far. 
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3 Value of Information (VoI) Analysis 

This chapter presents an outline of VoI analysis. A key concept in pre-posterior 

analysis is the VoI, which provides a mathematical framework, to quantify the 

benefit of collecting additional information to reduce uncertainty in a decision 

making problem (Raiffa and Schlaifer, 1961). The VoI concept enables a rational 

decision maker to choose what information to acquire, if any, and to rank alternative 

information gathering strategies based on a common utility metric (Von Neumann 

and Morgenstern, 1953). The optimal information gathering strategy i.e. inspection 

strategy or monitoring system, is the one that maximises the VoI minus the cost of 

the strategy. To illustrate this concept, consider a classical decision problem under 

uncertainty where (i) the action alternative chosen will depend on the state of an 

uncertain variable, (ii) the true state is unknown, but (iii) it is possible at a cost to 

obtain information about the state of the uncertain variable through an information 

gathering strategy (Raiffa and Schlaifer, 1961), where 

• 𝑎 ∈ 𝐴 is an action chosen from space A 

• 𝑥 ∈ 𝑋 is an uncertain variable in space X 

• 𝑦 ∈ 𝑌 an observed sample composed of n observations {𝑦!, … , 𝑦"} 

• 𝑢(𝑎, 𝑥) is the utility function of a and x 

According to the principles of decision theory, the optimal action is the one that 

maximises the expected utility (Von Neumann and Morgenstern, 1953). Ex denotes 

the expectation with respect to X. Argmax is an operation that finds the argument that 
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gives the maximum value. The action a which a rational agent should choose is that 

which maximises the agent’s expected utility. and is given by 

       (3.1)

The corresponding expected utility is given by 

        (3.2) 

Information can be gathered prior to making a decision in the form of an information 

gathering (inspection) strategy, s. The revised decision problem is to find the 

combination of information gathering strategies s and action alternatives a, that 

maximise utility. To provide an overview, consider the following three cases of 

engineering decision analysis: 

1. Prior analysis: the optimal decision is chosen based on existing knowledge of 

the system prior to the acquisition of any additional information; represented 

as a prior probability distribution p(x). 

2. Posterior analysis: the optimal decision is determined by updating 

probabilities based on information received from an inspection strategy i.e. 

information is known before making a decision. The posterior distribution is 

defined as the probability of an unknown parameter conditional on the 

information obtained, given as p(x | y) = p(y | x) p(x). This directly contrasts 

with the likelihood function, which is the probability of the information y 

given the parameter x, p(y | x). The two functions are related via Bayes rule, 

given as 

)],([maxarg XauEa X
Aa
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)],([ XauEU optX=



 
 

15 

 

        (3.3) 

Where   

3. Pre-posterior analysis: the optimal decision is determined by updating 

probabilities based on expected information prior to implementation of an 

inspection strategy. In pre-posterior analysis, the potential of additional 

information to improve decision making is assessed before the inspection 

strategy is carried out. This is fundamentally different to posterior analysis, 

where the benefit of additional information to improve decision making is 

assessed after the information has been received. The pre-posterior 

distribution is defined as the distribution for future expected information 

based on the information that has already been seen. It does not depend on 

the unknown parameter as in the posterior case, as the unknown parameter 

has been integrated out. The pre-posterior distribution is given as p(y), the 

denominator in Eq. (3.3). 

3.1 Value of Information (VoI) Theory 

3.1.1 Prior Analysis 

In the prior analysis, the optimal decision is determined based on existing knowledge 

of the system i.e. with no information from inspection (Raiffa and Schlaifer, 1961), 

given by 

    (3.4)

)(
)()|()|(
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ò= dxxpxypyp )()|()(

ò
ÎÎ

==
X

X
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X
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Where 𝑓#(𝑥) is the prior probability density function (PDF) of X and 𝑢	(𝑎, 𝑥) is the 

utility associated with a given set of actions a and realizations x. EX denotes the 

expectation with respect to X. Argmax is an operation that finds the argument that 

gives the maximum value. The corresponding prior expected utility is given by 

     (3.5) 

3.1.2 The Value of Perfect Information 

Data is considered as perfect, if it is directly informative of the parameter of interest. 

A decision problem with perfect information is the unrealistic situation, in which 

there is no uncertainty on X. For a given x, the decision maker can always choose the 

optimal action, denoted as 

        (3.6) 

3.1.2.1 Conditional Value of Perfect Information 

The conditional value of perfect information (CVPI) is the value of an information 

gathering strategy, after the information has been received. This is a form of 

posterior analysis, as the CVPI can be evaluated only conditionally, or after the fact 

(Raiffa & Schlaifer, 1961). The CVPI is a measure of the value contained in x 

computed as the difference between the posterior and prior expected utilities given as 

      (3.7) 

The CVPI is always greater than or equal to zero.  

3.1.2.2 Expected Value of Perfect Information 
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A-priori, the true value of X is not known. However, it is possible to calculate the 

expected value of perfect information (EVPI) before the fact. The EVPI is the 

expected increase in utility that the decision maker obtains from gaining access to a 

sample of perfect observations, before making a decision. This is a form of pre-

posterior analysis, defined as the expected value of the CVPI (Raiffa and Schlaifer, 

1961). 

   (3.8) 

      (3.9)

The EVPI is the difference in expected utility with perfect information a-priori and 

the expected utility in the prior case. This measure represents the upper bound of the 

value that any information gathering strategy can have. Thus, if the cost of an 

inspection strategy is greater than is EVPI, the strategy is deemed inefficient. 

3.1.3 The Value of Imperfect Information 

If data is measured with noise, it is considered imperfect. Information gathering 

strategies, such as visual inspection, provide imperfect information on the true state 

X. In the posterior analysis, imperfect information is received and stored in the 

vector y (Raiffa and Schlaifer, 1961). The probabilistic description of X is updated 

based on this information. The optimal action is given by 

   (3.10) 
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Where 𝑓#|%(𝑥|𝑦) is the joint PDF of X conditioned on y (posterior PDF) obtained 

from Bayes’ rule. The corresponding posterior expected utility is a function of y, 

given as 

       (3.11) 

3.1.3.1 Conditional Value of Imperfect Information   

The difference between the posterior and prior expected utility is a measure of the 

VoI contained in y, termed the conditional value of imperfect information (CVII) and 

denoted by 

       (3.12) 

The 𝐶𝑉𝐼𝐼	(𝑦) is zero if the posterior optimal decision 𝑎&'(% is the same as the prior 

optimal decision 𝑎&'( and positive otherwise. In the context of a BMS, the 𝐶𝑉𝐼𝐼	(𝑦) 

has limited benefits. Once an observation y is made i.e. through an inspection 

strategy, it is futile to compare 𝑈'&)(*+,&+(𝑦) to the results of the original prior utility 

𝑈'+,&+, which only answers questions after the fact, such as ‘What was the least 

expensive maintenance strategy employed last year?’ The interest of this paper is in 

the VoI contained in y, before the imperfect information is received i.e. before a 

costly inspection strategy is implemented. This is known as the expected value of 

imperfect information (EVII). 

3.1.3.2 Expected Value of Imperfect Information 

The expected value of imperfect information (EVII) is the expected value of the 

CVII with respect to all possible measurements outcomes. The information is 

]},[{)( | XauEyU yoptXposterior =
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modelled via a random vector Y, where the pre-posterior distribution 𝑓%(𝑦) defines 

all measurement outcomes.  

     (3.13) 

Substituting in values for 𝑈'+,&+ and 𝑈'&)(*+,&+	(𝑦) gives 

    (3.14) 

    (3.15) 

As mentioned previously, the EVPI will provide the upper bound for the EVII. The 

expected VoI is always greater than or equal to zero. Therefore, a rational decision 

maker will choose to undertake an information gathering strategy, with a cost Cs if 

the following is fulfilled 

          (3.16) 

The optimal inspection strategy {𝑠 ∈ 𝑆} will be the one that has the minimum cost 

       (3.17) 

Pre-posterior analysis is inherently different from prior and posterior analysis; in the 

latter, the decision maker decides on different maintenance strategies, whereas in the 

former, the decision maker decides on the opportunity to acquire additional 

information in order to aid decisions on maintenance strategies. Pre-posterior 

analysis evaluates the potential of additional information to improve decision making 

before the inspection or monitoring is carried out; it puts a measure on information 
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gathering to see if it is worthwhile, or would it be less costly to rely on prior 

estimates. 

3.2 Modelling the VoI: Bayesian Networks and Influence 

Diagrams  

Vol pre-posterior decision analysis problems can be graphically modelled through a 

Bayesian network - influence diagrams framework. A brief overview is given below 

for completeness. 

3.2.1 Bayesian Network 

A Bayesian network is a compact graphical representation of a probability 

distribution via conditional independence and can be used for near-real-time 

inference, under an evolving state of information (M. Bensi et al., 2015). Bayesian 

networks can be broken down into a qualitative and quantitative part: 

3.2.1.1 Qualitative 

A Bayesian network is as a probabilistic graphical model characterised by a directed 

acyclic graph, with chance nodes representing random variables, which can be 

discrete or continuous, and may or may not be observable, and directed arcs (from 

parent to child) representing causal or influential relationships between variables 

(Figure 3.1). Chance nodes have a finite set of mutually exclusive states. Each 

variable A in the model, is associated with a conditional probability distribution that 

specifies a distribution over the values of A, given each possible joint assignment of 

values to its parents 𝐵!, … , 𝐵" such that 𝑃(𝐴|𝐵!, … , 𝐵"). For a node with no parents, 

termed a root node, the conditional probability distribution turns into an 

unconditional (marginal) distribution P(A). 
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3.2.1.1.1 Conditional Independence 

Causality is not a structural requirement of Bayesian networks. However, the model 

must provide a realistic representation of the conditional independence properties of 

the variables in the network. A Bayesian network is completely determined once the 

graph and the entailed dependence structure, are specified for the qualitative part. 

The conditional independence statements between the nodes are captured through the 

directed arcs using the rules of d-separation (Pearl, 1988). Two distinct variables A 

and B in a causal network are d-separated, if for all paths between A and B, there is 

an intermediate variable V (distinct from A and B) such that either, the connection is 

serial or diverging, and V is instantiated; or the connection is converging, and neither 

V nor any of V’s descendants have received evidence (Jensen and Nielsen). For 

example, consider Figure 3.1, which represents a diverging connection, encoding the 

conditions that ‘deck condition rating’ and ‘support condition rating’ are independent 

given ‘bridge condition rating’, but are not independent marginally. 

 

Figure 3.1 A simple Bayesian network describing the overall bridge condition rating (CR), which is a 

parent to the major element condition ratings - deck CR and support CR. 

3.2.1.2 Quantitative 

From a quantitative perspective, a Bayesian network can be described as an efficient 

representation of a joint probability distribution. In accordance with the chain rule of 



 

22 

 

probability, the multidimensional joint distribution of the Bayesian network is given 

as the product of all conditional probability distributions: 

     (3.18) 

Where 𝑃𝑎(𝐴,) represents the parents of node Ai and n is the number of random 

variables in the Bayesian network (Jensen & Nielsen, 2007).  

3.2.1.2.1 Prior Probability Distribution and Variable Elimination 

The prior probability distribution of any variable (i.e. probability of a variable 

without evidence) can be calculated by marginalising other variables out of the joint 

probability function in Equation (3.18) through the process of variable elimination 

(Jensen and Nielsen, 2007). 
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3.2.1.2.2 Inserting Evidence 

An attractive feature of Bayesian network is the ability to insert evidence e.g. visual 

inspection results regarding the condition state of a bridge. The prior distribution is 

updated in the presence of evidence via Bayes rule and a posterior marginal 

distribution is calculated. Given a set of observations/evidence, ej, where 𝑗 = 1,… ,𝑚  

regarding variables in the Bayesian network, the joint probability distribution of 

Equation (3.18) becomes: 

      (3.19) 

And the updated probability for any variable A, given the evidence, e, is: 

         (3.20) 

This process is called inference and provides the ability to update predictions based 

on information from observations. However, this operation can soon become 

intractable in terms of computational demand.  

3.2.1.3 Dynamic Bayesian Networks 

A Dynamic Bayesian Network can be used to model domains that evolve over time 

(Koller and Friedman, 2009). A dynamic Bayesian network is a sequence of identical 

Bayesian networks connected by temporal links and indexed by a discretized time 

line. Each time slice contains a set of time-indexed random variables representing 

the state of the dynamic Bayesian network at a particular point in time. To be 

classified as a dynamic Bayesian network, the structure of the time slices must be 

identical and the temporal links must stay the same. 
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3.2.1.4 Discrete Bayesian Networks 

For a discrete Bayesian network, the nodes represent discrete random variables. Each 

variable is associated with a marginal distribution for root nodes and a conditional 

probability table for child nodes. The conditional probability tables can be 

constructed by using accessible data or exploiting structured expert judgement 

methods (Kosgodagan et al., 2015b). For discrete Bayesian networks, discrete 

Bayes’ rule is invoked in order to perform and propagate inference, when evidence is 

inserted into the model. 

3.2.1.5 Constructing Bayesian Networks 

Bayesian networks are constructed taking into consideration the following: 

• Defining the graphical model which represents the probabilistic dependence 

structure of the problem (see d-separation above). 

• Construction of the conditional probability tables that define the joint 

distribution over all random variables in the Bayesian network. 

• Care must be taken to ensure that the model constructed is not misleading, 

unverifiable, unnecessarily complex or computationally intractable. 

3.2.2 Influence Diagrams 

Influence diagrams extend Bayesian networks with decision nodes and utility nodes, 

symbolised by rectangles and diamonds, respectively, to model decision problems 

under uncertainty (Figure 3.2). An influence diagram is a directed acyclic graph over 

chance nodes, decision nodes and utility nodes, such that the utility nodes have no 

children. The objective of an influence diagram is to find an optimal strategy (set of 

decisions) based on the principal of maximum expected utility (Von Neumann and 
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Morgenstern, 1953) and the updated state of information. Decision variables 

correspond to alternative choices available to the decision maker. In principle, there 

are two types of decision alternatives: action alternatives, e.g., shut down a bridge; 

and test alternatives, e.g., inspect a bridge. Test alternatives facilitate the gathering of 

information prior to making a final decision. An arc coming from a chance node into 

a decision node indicates that the decision maker knows the state of that random 

variable at the time of making the decision, whereas an incoming arc from another 

decision node indicates that the decision is made with knowledge of the selected 

alternative of that preceding decision node (Bensi et al., 2015). Utility variables 

represent the decision maker’s utility/loss as additive components of the joint utility 

function. Chance nodes and decision nodes have a finite set of states; utility nodes 

have no states. An influence diagram is determined if, for each chance node, X, there 

is an associated conditional probability distribution, 𝑃(𝑋|𝑝𝑎(𝑋)) and each utility 

node, U, is associated with a real valued function over 𝑝𝑎(𝑈). 

 

Figure 3.2 A simple influence diagram outlining a BMS whereby the cost (utility node) of maintaining 

a bridge is dependent on the bridge state (chance node) and the maintenance action chosen (decision 

node). 

3.2.2.1 Partially Observed Markov Decision Process and Limited Memory 

Influence Diagrams 
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Partially observable Markov decision process (POMDP) have significant uses in 

infrastructure maintenance decision problems due to their ability to model complex 

decision problems in stochastic domains, in which the states of the system are 

observable only indirectly, through a set of imperfect observations. Partial 

observability and the ability to model and reason with information-gathering actions, 

are the main features that distinguish the POMDP from the fully-observable Markov 

decision process (Hauskrecht, 2000). The POMDP framework represents the two 

cases of uncertainty in the problem: stochasticity of the underlying controlled 

process (e.g. deterioration of bridge structures in a network) and imperfect 

observability of condition states via a set of observations (e.g. condition ratings from 

visual inspection) (Hauskrecht, 2000).  

 

Figure 3.3 POMPD Model, shaded nodes represent observed variables e.g.: condition ratings from 

visual inspection. 

The complexity of POMDP algorithms, grows quickly over time. This is due to the 

‘no forgetting’ assumption of the classical influence diagram framework. The 

Limited Memory Influence Diagram (LIMID) introduced by Lauritzen and Nilsson 

(2001), explicitly pinpoints which variables are remembered when taking a particular 

decision, thereby dropping the ‘no-forgetting’ assumption. Only nodes that are 
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explicitly represented as parents to a decision node are known when a decision is 

made. The advantage of LIMIDs is that they allow you to work with decision 

policies with smaller domains (Lauritzen & Nilsson, 2001). A LIMID is solved via 

Single Policy Updating which, computes the probability distribution and expected 

utility function over the states of each chance and decision node in the LIMID The 

algorithm finds the globally optimal policies and its associated maximum expected 

utility. Vol analysis will be applied outside of the LIMID structure to determine the 

difference in value between the prior LIMID and the pre-posterior LIMID. 

3.3 Conclusions 

In this study, the VoI that visual inspection provides in a BMS is investigated. For 

this specific decision problem, maintenance actions are chosen based on the bridge 

condition state. Associated with these maintenance actions are costs. The following 

characteristics make influence diagrams well-suited for the proposed application: 

• They are efficient graphical tools for the representation and assessment of 

systems under uncertainty, such as a BMS. 

• They provide an efficient framework for probabilistic updating and the 

assessment of bridge/network performance in view of uncertain and evolving 

information i.e. bridge visual inspection results (condition rating data). 

• They are extended to include utility and decision nodes, thus providing a 

decision tool for ranking decision alternatives based on expected utility, such 

as maintenance actions.  
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• The graphical interface of influence diagrams, provides an ideal platform for 

interaction with and use by end users. 

• Influence diagrams are a more compact representation of a decision problem 

in comparison to decision trees. 

The limitations of using influence diagrams to solve decision problems is that the ‘no 

forgetting’ assumption, which states that values of observed variables and decisions 

that have been taken are remembered at all later times, can sometimes result in an 

intractable sum. The LIMID algorithm, as outlined above, relaxes the ‘no forgetting’ 

assumption and will be used in this study (Lauritzen & Nilsson, 2001). 
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4 Value of Visual Inspection Information to an 

Individual Decision Maker Managing a Single Bridge 

To illustrate the methodology described in Section 3, an application is presented in 

this chapter, in which the VoI is computed both through the classical mathematical 

framework and graphically using influence diagrams solved via the LIMID 

algorithm. It considers a simple influence diagram as described in Figure 4.1. This 

example looks at decision making at bridge level, whereby the bridge can be in one 

of three condition states: good, degraded or poor. There are three maintenance 

actions which can be taken: do nothing, repair or major rehabilitation. The decision 

to carry out major rehabilitation, which would entail shutting down the bridge or 

reducing its capacity for a period of time, is made under competing objectives: on 

the one hand the bridge owner does not want to lose revenue by unnecessarily 

carrying out major works or unnecessarily shutting done the bridge, conversely the 

owner does not want to incur a liability by making an unsafe decision, keeping a 

bridge in operation that may have sustained serious damage and could be at risk of 

failure. To reduce the uncertainty surrounding bridge level decision making, a bridge 

inspection strategy is implemented for a bridge cohort. Bridge inspectors carry out 

visual inspections as set out in the elected BMS, incurring a certain cost that will 

yield information about the condition state of the bridge. The decision to carry out 

major rehabilitation or not is then made after gaining information from the visual 

inspection. To design the influence diagram for the bridge level decision making, 

two scenarios were considered: (a) carry out the maintenance action decision 

knowing the state of the bridge with certainty i.e. with perfect information and (b) 
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make the maintenance action decision with imperfect information gained from a 

visual inspection of the bridge. The costs associated with visual inspection are 

neglected for the purpose of this illustration. 

4.1 VoI Calculation 

For calculation of the VoI, consider the influence diagram in Figure 4.1, considering 

the decision of whether or not to repair bridge i in a bridge network. The chance 

node, Bridge_statei indicates the true condition state of the (ith) bridge which can 

take on three possible values: good (G), degraded (D) or poor (P). The ‘poor’ state is 

assumed to lead to certain failure. The decision node, Actioni consists of three 

maintenance action alternatives: do nothing (DN), repair (R) and major rehabilitation 

(MR). The utility node, Costi is a child of Bridge_statei and Actioni. For simplicity, 

the utility node Costi measures the total cost in monetary terms. It assigns a cost 

value to every combination of the states of its parent nodes. A bridge condition 

rating is assigned based on the finding of a trained bridge inspector through a visual 

inspection but human factors remain in variations of such a rating. This imperfect 

observation is represented by the chance node CRi, which can take three possible 

values: CR1, CR2 or CR3, corresponding to ‘good’, ‘degraded’ or ‘poor’ state, 

respectively. The ‘degraded’ state is assigned to have a 15% probability of failure, 

the ‘poor’ state is assumed to lead to certain failure. The notable cost values are as 

follows: cost of repair CR = €25,000, cost of major rehabilitation CMR = €50,000, 

and cost of bridge failure CF = €250,000. The values are chosen after considering 

several representative commercial cases available to the authors. The variables: 

Bridge_state, Action, Cost and Condition Rating (CR) are represented in figure 4.1. 
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Figure 4.1 Influence Diagrams modelling the repair decision for a bridge i, in a bridge network: (a) no 

information; (b) perfect information; (c) imperfect information about the condition state of bridge i. 

In the influence diagram in Fig. 4.1(a), representing the prior case, the decision is 

made with no information on the bridge state (there is no incoming arc into the 

decision node). The direction of the arcs indicate that the value of the utility node 

depends on the bridge state and the selected maintenance action. Hence, if the bridge 

is ‘good’ state and the decision is made to repair the bridge, there will be a loss due 

to the cost of unnecessary repair. Whereas, if the bridge is ‘poor’ state and the 

decision is to do nothing, there will be a loss associated with the liability of bridge 

failure. The cost of each action alternative is represented via a cost matrix as shown 

in Table 4.1. 

Table 4.1 Cost matrix for maintenance action alternatives (represented in multiples 

of €1000) 

 Xi 
 Good Degraded Poor 
Ai Do nothing 0 37.5 250 

Repair 25 25 250 
Major Repair 50 50 50 
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The influence diagram in Fig. 4.1(b), includes an arc from the bridge state node Xi 

into the decision node Ai. In this case, the decision is made with perfect information 

regarding the bridge state. This is an unrealistic situation; condition state data is 

always affected to some degree by noise. The decision maker knows the exact state 

of the bridge before making a decision e.g. the decision maker will only ‘do nothing’ 

if the bridge is in the ‘good’ state. The influence diagram in Fig. 4.1(c) represents the 

case, where the decision is made on the basis of imperfect information. An imperfect 

observation of the bridge state is made through a visual inspection of the bridge, 

which is represented by a chance node Yi. The conditional probability table of node 

Yi is commonly referred to as the test likelihood matrix, as the likelihood of the 

observation Yi is conditional on the bridge state Xi. The likelihood matrix is shown in 

Table 4.2. This observation does not directly affect the utility node.  

Table 4.2 Likelihood matrix 

 

 

 

4.1.1 Prior Analysis 

In the prior analysis, the optimal decision is determined based in existing knowledge 

of the bridge i.e., with no information from inspection. See Figure 4.1(a), which 

models the case that no information is available before a decision is made. The prior 

probability is set as the vector [𝑃(𝐺)	𝑃(𝐷)	𝑃(𝑃)] = [0.5		0.35		0.15]. The minimum 

expected cost in the prior case is given as 

 Yi 
 Condition 

Rating 1 
Condition 
Rating 2 

Condition 
Rating 3 

Xi Good 0.8 0.1 0.1 
Degraded 0.2 0.7 0.1 
Poor 0.1 0.1 0.8 
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       (4.1) 

Where 𝑝(𝑥) is the prior probability density function (PDF) of X and c(x, a) is the 

cost associated with a given set of actions a and realizations x. 

 

(4.2) 

      (4.3) 

         (4.4) 

Which is an average cost value. The optimal action is to ‘major rehabilitation’ in the 

prior case, as it is the action with the minimum expected cost. 
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4.1.2 Calculating the Value of Perfect Information 

Figure 4.1(b) represents the case where perfect information is available regarding the 

condition state of the bridge. Having perfect information implies the optimal 

decision is made for any outcome of Bridge_statei.  

       (4.5) 

  (4.6) 

        (4.7) 

The optimal strategies are as follows: i) ‘do nothing’ when the bridge is in the ‘good’ 

state; ii) ‘repair’ when the bridge is in the ‘degraded’ state and iii) ‘major 

rehabilitation’ when the bridge is in the ‘poor’ state. It follows that the value of 

obtaining perfect information, VOPI, is 

      (4.8) 

This represents a €33,750 expected cost saving with perfect information. The actual 

value in terms of monetary units is subject to assumptions related to the original 

values on savings and how utility is converted to such monetary units. 

4.1.3 Calculating the Value of Imperfect Information 

To calculate the value of imperfect information, consider the prior probabilities and 

utility values outlined above. Also, consider the test likelihood matrix as outlined in 

Table 4.2.  

      (4.9) 
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 (4.10) 

        (4.11) 

The optimal strategies are as considered for perfect information in this case and the 

value of obtaining imperfect information, VOII, is  

      (4.12) 

This represents a €22,246 expected cost saving with imperfect information. 

Graphical Solution of the VoI  

The graphical computation of the VOPI and the VOII is solved via the LIMID 

algorithm using the Bayes Net Toolbox in MATLAB (Murphy, 2001). The VOII is 

the maximum expected utility of the prior case subtracted from the maximum 

expected utility of the pre-posterior case and the results are shown in Table 4.3.  For 

no information, the optimal strategy is to ‘do nothing’. In the case of perfect and 

imperfect information, the optimal strategy is to ‘do nothing’ when the bridge is in 

the ‘good’, ‘repair’ when the bridge is in the ‘degraded’ state and to carry out ‘major 

rehabilitation’ when the bridge is in the ‘poor’ state. If a visual inspection strategy is 

implemented that yields imperfect information regarding the bridge state, the 

decision maker should expect to receive a cost saving of approximately €22,250. The 

VOPI of €33,750 represents the upper bound in the decision problem. A rational 

agent will decide to undertake a visual inspection strategy s, only if the cost of the 

strategy is less than €22,250 i.e. . 
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Table 4.3 LIMID outputs for each case. 

Case Optimal Strategy E[C]  
(€) 

VoI (€) 

No Information 
(prior) 

Major rehabilitation -50,000 - 

Perfect Information Do nothing if in the good state; repair if in the 
degraded state; and major rehabilitation if in 
the poor state. 

-16,250 33,750 

Imperfect 
Information  

Do nothing if in the good state; repair if in the 
degraded state; and major rehabilitation if in 
the poor state. 

-27,750 22,250 

 

The outcome of Eqns. 3.5, 3.9, and 3.15 depend on the specific values assigned to 

the prior probability of the bridge state; the likelihood of inspector assigned 

condition ratings; and the cost values of the action alternatives. Figures 4.2 and 4.3 

outline two numerical examples to examine how the accuracy of condition rating 

data and the prior probability of the bridge state affect the value provided by visual 

inspection. In Figure 4.2, the accuracy of visual inspection is varied with the other 

parameters in the model remaining constant. This figure outlines the importance of 

the accuracy of information on the value that the information provides. As the 

accuracy increases, the expected cost of gathering condition rating data decreases. A 

visual inspection with 0% accuracy and 100% accuracy is identical to a visual 

inspection with no information and perfect information respectively. At an accuracy 

level of 12%, the value of imperfect information equals the visual inspection cost 

(Figure 4.3). 
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Figure 4.2 Expected cost of imperfect information conditional on the accuracy of visual inspection. 

 

Figure 4.3 Expected value of imperfect information (VoII) conditional on the accuracy of visual 

inspection. 
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In Figure 4.4, the prior probability of the ‘poor’ bridge state, which is the same as the 

prior probability of failure PF is varied from 0 to 1.0, with the other two bridge 

states, ‘good’ and ‘degraded’, fixed respectively. Three different scenarios (70% 

accuracy, 80% accuracy, and 90% accuracy) of visual inspection are suggested. 

Figure 4.4 Expected cost conditional on the probability of failure, PF. 

As the prior probability of failure increases, the cost of inspection also increases. The 

expected cost of inspection is equivalent to the cost of major rehabilitation CMR for 

PF = 0.4, 0.6, and 0.7 for accuracies of 70%, 80% and 90%, respectively. This 

observation is reinforced in Figure 4.5, where the expected VoI reduces to 0 for the 

above probabilities and inspection accuracy scenarios. In Figure 4.5, the expected 

VoI peaks at PF = 0.2, which is due to the fact that in the case of ‘no information’, 

the optimal maintenance action is: ‘do nothing’ when PF < 0.1, ‘repair’ when
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, and ‘major rehabilitation’ when . The shift of the expected 

cost of ‘no information’ between PF = 0.1 and PF = 0.2 results in a higher expected 

VoI at PF = 0.2. 

 

 

Figure 4.5 Expected VoI conditional on the probability of failure, PF. 

This example indicates that a rational assessment of the VoI of visual inspection 

requires a full decision model, including an accurate assessment of the prior 

probability of the bridge states, the likelihood of inspector assigned condition ratings 

and the economic setting surrounding the maintenance action alternatives. If any of 

these elements are excluded from the decision model, an objective estimate of the 

VoI cannot be determined. The principal method of bridge inspection is carried out 

using visual means and determining the value it provides has the potential of 

2.01.0 <³ FP 2.0³FP
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widespread applications to infrastructure asset managers in optimising inspection 

practices within different BMS.



 

38 

 

4.2 Conclusions 

In this chapter, a background has been presented on the use of VoI to determine the 

value of data gathering strategies in a BMS, whereby the data has been obtained 

through visual inspection. The value of no information, perfect information and 

imperfect information have been calculated and the merits of each calculation 

outlined. Graphical tools in the form of Bayesian networks and IDs have 

demonstrated how condition rating data can be modelled and the VoI calculated via a 

concise and methodical process. Two numerical investigations were carried out to 

determine the effect of (1) the accuracy of visual inspection and (2) the prior 

probability of the bridge state, on the VoI of visual inspection. It was shown that the 

accuracy increases, the expected cost of gathering condition rating data decreases. It 

was concluded that in this demonstrative example, the value of imperfect 

information equals the visual inspection cost at an accuracy level of 12%. It was also 

demonstrated that as the prior probability of failure increases, the cost of inspection 

also increases. The expected cost of inspection is equivalent to the cost of major 

rehabilitation for PF = 0.4, 0.6, and 0.7 for accuracies of 70%, 80% and 90%, 

respectively. This chapter looked at the VoI that condition rating data provides to a 

bridge owner operating a single bridge, the value that visual inspection provides to 

local authorities when operating a BMS for a network of bridges will be presented in 

the following chapter.
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5 Value of Visual Inspection to Infrastructure Asset 

Managers Operating a BMS for a Bridge Network 

This application considers the value that visual inspection provides to local 

authorities when operating a BMS for a network of bridges with a specific focus on 

regional and local roads in Ireland. The hierarchy of roads in the Republic of Ireland 

comprises Motorways, National roads, Regional roads, and Local roads. Non-

national regional and local roads in Ireland account for 94% of the country’s roads 

and carry approximately 54% of all road traffic (DTTAS, 2016). These roads provide 

mobility within and between local areas driving local economic activity. They also 

provide vital links to Ireland’s strategic national roads, ports, and airports, linking 

Ireland with the wider European economy and have an importance social value. The 

maintenance of these infrastructure systems is essential from an economic, social and 

political perspective with €7.7million of state grants allocated to local authorities to 

carry out bridge rehabilitation works on regional and local roads in 2015 (O'Brien, 

2015). 

Table 5.1 Condition rating descriptions (NRA, 2008). 

Condition 
Rating (CR) 

Description 

0 No or insignificant damage. 
1 Minor damage but no need of repair. 
2 Some damage, repair needed when convenient.  Component is still 

functioning as originally designed.  Observe the condition development. 
3 Significant damage, repair needed very soon. i.e. within next financial year 
4 Damage is critical and it is necessary to execute repair works at once, or to 

carry out a detailed inspection to determine whether any rehabilitation 
works are required. 

5 Ultimate damage. The component has failed or is in danger of total failure, 
possibly affecting the safety of traffic. It is necessary to implement 
emergency temporary repair work immediately or rehabilitation work 
without delay after the introduction of load limitation measures. 
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Data for 449 bridges on regional roads and 828 bridges on local roads in County 

Cork, Ireland was considered for this section of study. These bridges are managed by 

a local authority operating the Eirspan BMS (Duffy, 2004). Additionally, data for 85 

bridges for a bridge stock around Dublin is also considered. For each bridge, a visual 

inspection was carried out by a trained bridge inspector and a general condition 

rating was assigned as per Table 5.1. The cost of maintenance and repair works 

undertaken on each bridge in relation to the condition rating assigned is also 

provided. The distribution of condition ratings for three separate regions from which 

the bridge stocks are selected, is shown in Table 5.2. It can be seen that 7%, 29% and 

26% of bridges were assigned a condition rating of 3 and over for the South Dublin; 

Cork regional; and Cork local road area respectively, suggesting that the Cork region 

is in significant need of investment in terms of bridge rehabilitation works. 

Table 5.2 Distribution of condition ratings. 

  CR0 CR1 CR2 CR3 CR4 CR5 
South Dublin local and regional roads (n = 85) 0.11 0.54 0.28 0.06 0.01 0 
Cork regional roads (n = 449) 0.06 0.19 0.46 0.22 0.06 0.01 
Cork local roads (n = 828) 0.02 0.11 0.60 0.18 0.05 0.03 

 

In this decision problem, the bridge condition state can take on six possible values, 

fixed by the BMS employed. The prior analysis will be based on a time-based 

maintenance strategy, whereby there is no information from inspections on the 

bridge state. A condition based maintenance strategy represents the pre-posterior 

case. The objective of a condition-based maintenance strategy is to provide 

information, in this case through visual inspection, regarding the condition state of a 

bridge. This information is combined with an existing prior belief on the degradation 

level of the bridge, to deliver a better estimate of the ‘true’ bridge state. The decision 
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maker can then use this information to make informed decisions as set out in the 

BMS guidelines. The VoI provided by visual inspection is defined as the difference 

in the maximum expected utility of the condition- based maintenance strategy and 

the time-based maintenance strategy. It is a common perception that a condition-

based maintenance strategy provides a greater value that a time-based maintenance 

strategy, as a better estimate of the bridge state, should lead to improved 

maintenance decisions. However, the benefit that visual inspection information 

provides is heavily dependent on an accurate description of the model parameters. A 

measure on the merits that visual inspection offers to infrastructure asset managers 

operating a BMS is provided here. How this value is influenced by the accuracy and 

precision of inspector assigned condition ratings, the prior probability of the bridge 

state and uncertainties in the condition rating scale are also illustrated. The time-

based and the condition-based maintenance strategy are specified as the prior case 

(Fig. 5.1(a)) and the pre-posterior case (Fig. 5.1(b)), respectively. 

 

Figure 5.1 IDs modelling maintenance strategies for a bridge i, in a bridge network: (a) Time-based 

maintenance strategy which portrays the prior case; (b) Condition-based maintenance strategy which 

portrays the pre-posterior case.  
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5.1 Variables Involved in the Model 

The IDs are solved using the LIMID algorithm. The conditional probability 

distribution of each node is given as a conditional probability table. The Cork 

regional road area is chosen for the ‘typical case’ in the analysis. 

5.1.1 Bridge State 

The change in bridge state over time is represented by , where n is 

the number of possible condition states. The degradation over time is represented by 

the stochastic process , where Xt describes the state of the bridge at 

time t. It is assumed that a bridge deteriorates sequentially between the condition 

states, with 0 being the best state. The probability that the bridge is in state i at time t 

is represented by the following probability distribution: . The bridge 

state vector is defined as ; ; ; 

, where  describes the probability distribution of the bridge state at 

time t (Srinivasan, 2013). At time , the decision maker’s belief  characterises 

the prior knowledge regarding the condition of the bridge before the beginning of the 

decision-making period. In this analysis, the condition rating data from the Cork 

regional road dataset is used to define a prior probability vector for the bridge state, 

given as, π = [0.063 0.192 0.458 0.219 0.058 0.011]. 

5.1.2 Condition Rating 

A trained inspector conducts a visual inspection on a bridge and assigns a condition 

rating as per Table 5.1 based on his assessment of the structure. This process is 

represented as  with a finite observation space , where 
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m is the number of condition states. In order to relate the information received from 

visual inspection to the state of the asset, an information matrix describing the error 

associated with visual inspection must be defined. Visual inspection is highly 

subjective and can lead to variable results that depend on multiple factors (Moore et 

al., 2001). To accurately define an information matrix, a study could be completed, 

in which multiple bridge inspectors inspect bridges of each condition rating, whereby 

the condition rating has previously been deterministically defined through an in-

depth expert-level inspection. This data could then be used to accurately define 

probability distributions of assigning the correct condition rating given the ‘true’ 

bridge state (Moore et al., 2001). As this data is not available here and for most 

bridge stock under practical conditions, it is assumed that the probability of an 

inspector assigning a correct condition rating follows a normal distribution  

with mean μ and unit standard deviation  over the finite outcome space 

 (Graybeal et al., 2002). This normal distribution describes the error 

(area underneath the curve) in the ability of an inspector to assign the correct 

condition rating. On the basis of this, an  information matrix, , , 

, is assigned, where yik represents the conditional probability of receiving 

condition rating k, given that the current state is i, i.e.,

(Srinivasan, 2013). The information matrix is given as, 

Y = 

),( sµN

1=s

}5,4,3,2,1,0{=CR

mn´ ][ ikyY = mkÎ

niÎ

)|Pr( iXKCRy ttik ===

0.3989 0.242 0.054 0.0044 0.0001 0 
0.242 0.3989 0.242 0.054 0.0044 0.0001 
0.054 0.242 0.3989 0.242 0.054 0.0044 
0.0044 0.054 0.242 0.3989 0.242 0.054 
0.0001 0.0044 0.054 0.242 0.3989 0.242 
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It is based on limited and existing information on the topic. From the early days of 

treating uncertainties around human effects on decisions on infrastructure in a 

systematic manner (Stewart et al., 1992) to date (Malings and Pozzi, 2016), the 

importance of field data and the lack of it have been highlighted, At this stage, most 

databases available to the authors are not mature enough to develop benchmarked 

information matrices, although over time this situation is expected to be improved. 

5.1.3 Decision Alternatives 

The decision space for the decision node Di is defined first. Let  be 

the decision process to control the evolution of the bridge state, where  

indicates the maintenance decision made at time t. For the BMS in this study,

 where d0 = ‘do nothing’, d1 = ‘minor remedial works’, d2 = 

‘minor repair works’, d3 = ‘minor repairs and preventative measures’, d4 = 

‘extensive repairs’, and d5 = ‘replacement/extensive rehabilitation’.  

5.1.4 Cost Matrix 

The utility node is represented in terms of cost, which is a function of the bridge 

state and the decision alternative chosen. The cost function  represents the 

cost incurred when the asset is in state i and the decision d is taken. Given prior πt 

the expected immediate cost incurred at time t is . 

The cost matrix is defined based on the following assumptions: 

{ },...2,1,0, =tDt

tDdÎ

},,,,,{ 543210 ddddddD =

),( diC
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N
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0 0.0001 0.0044 0.054 0.242 0.3989 
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The cost of each decision alternative is defined as the mean repair cost conditional 

on the condition rating assigned, i.e. if a bridge is assigned a condition rating of 

CR2, the mean repair cost is €11,690. 

The probability of bridge failure for each bridge state is given by the following 

vector PF = [0 0.1 0.2 0.5 0.75 1]. Thus, if a bridge is defined as being in the worst 

state x5, it is assumed to lead to sure failure. This probability assignment is for 

demonstrative purposes only. 

The cost of bridge failure is taken as a reference value of €250,000 

The cost of a visual inspection strategy is €500/bridge 

The cost matrix for the analysis is given as, 

 

Indirect costs can vary significantly (Pakrashi et al., 2011) and thus a consideration 

of such variation can make the comparison for inspection uninterpretable. Under 

such circumstances, for this example, the relative contributions of indirect costs are 

assumed to be of similar level. 

5.2 Results 

The results for the typical case using the Cork regional road data are given in Table 

5.3. As anticipated, a perfect inspection has the lowest expected cost of €12,339. An 

inspection strategy is only worth undertaking if it costs less than its VoI and in this 

C = PF = 0 PF = 0.1 PF = 0.2 PF = 0.5 PF = 0.75 PF = 1 
x0 2030 27030 52030 127030 189530 250000 
x1 4480 4480 544800 129480 191980 250000 
x2 11690 11690 11690 136690 199190 250000 
x3 16480 16480 16480 16480 203980 250000 
x4 31530 31530 31530 31530 31530 250000 
x5 50760 50760 50760 50760 50760 50760 
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case, the estimated value is €6,876, which is related to the case of imperfect 

information. 

Table 5.3 LIMID outputs 

Case Optimal Strategy E[C] 
(€) 

VoI (€) 

No Information (prior) d3 29,972 - 
Perfect Information  (x0, d0), (x1, d1), (x2, d2), (x3, d3), (x4, d4), (x5, d5) 12,339 17,633 
Imperfect Information  
 

(x0, d2), (x1, d3), (x2, d3), (x3, d3), (x4, d4), (x5, d4) 23,096 6,876 

 

In the case of no information the strategy with the minimum expected cost is d3. 

With perfect information regarding the condition state, the optimal strategy takes the 

form of an identity matrix (Table 5.3). Imperfect information via visual inspection 

deduces a change in the above identity matrix, with the following strategy 

DImperfect_information = [(x0, d2), (x1, d3), (x2, d3), (x3, d3), (x4, d4), (x5, d4)] giving 

the lowest expected cost. As a result, visual inspection may not be suitable for 

certain databases and conditions, which will be investigated in the next section. 

These ratings can be improved in real situations by sharing more databases, which 

has started gaining popularity. Such information can also be related to capacities and 

this allows clustering of bridges (Hanley and Pakrashi, 2015) or transition of ratings 

over time (Reale and O’Connor, 2012), both of which are signatures of the collective 

performance of a bridge stock. 

5.3 Factor Influencing the Value Provided by Visual Inspection 

5.3.1 Condition Rating Accuracy and Precision 

Accuracy is a measure of how close an assigned condition rating value is to the 

actual ‘true’ bridge state. One of the key challenges with visual inspection is that 
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bridge inspectors grade the degradation differently based on their perception of the 

level of degradation. For example, one inspector may have an optimistic perception 

and grade a bridge as CR3, while another may be more pessimistic and grade the 

same bridge as CR4. In order to understand the impact of accuracy, the parameter 

CR was varied, from a pessimistic view to an optimistic view by varying the mean of 

the normal distribution with constant unit standard deviation over the finite outcome 

space CR = {0,1,2,3,4,5} . The mean is shifted from the true value, in both the 

positive and negative direction, characterising, to varying degrees, a pessimistic and 

optimistic inspector, respectively. The amount of the shift represents the accuracy of 

the measurement. For example, in the analysis, a pessimistic inspector would assign 

a condition rating to a bridge in state x1 as N (1.9, 1) in the worst case of pessimism, 

where N is a normal distribution with mean and standard deviation as the two 

arguments respectively. Figure 5.2 estimates VoI as a function of visual inspection 

accuracy. As the inspector becomes more pessimistic, the expected VoI decreases 

linearly. In the most optimistic case the expected VoI is € 8,375, which decreases to 

€6,876 for a neutral inspector and further decreases to €5,071 in the most pessimistic 

case. For the most optimistic inspector the optimal strategy Doptimistic = [(x0, d2), (x1, 

d2), (x2, d3), (x3, d3), (x4, d3), (x5, d4)] is risk-seeking while the optimal strategy 

for a pessimistic inspector is more risk-adverse, corresponding to Dpesimistic = [(x0, 

d3), (x1, d3), (x2, d3), (x3, d4), (x4, d5), (x5, d5)]. It was observed optimistic 

inspection results in a higher VoI than a pessimistic inspection and more optimistic 

inspections lead to relatively more risk-seeking optimal maintenance strategies. The 

prior perception of an inspector on the degradation of an asset significantly affects 

the value provided.  
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Precision refers to the closeness of two or more measurements to each other. In relation 

to visual inspection, precision is a measure of the repeatability of inspection. Poor 

precision results from random errors which results in poor repeatability. Precision is 

independent of accuracy and can be described by varying the standard deviation of the 

distribution for each condition rating. The standard deviation defines the width of the 

distribution, describing how much variation can occur between successive 

measurements. Figure 5.2 describes the estimated VoI as a function of visual 

inspection precision σ. The trend is monotonic but not linear, indicating that the worse 

the precision the lower the VoI. A high value of €17,633 is associated to the value of 

perfect information, whereby maintenance decisions are made with perfect 

information on the condition state of the asset, and diminishes towards zero as the 

precision of visual inspection degrades to σ = 9.5. The break-even precision value 

occurs at σ = 4.7 (Figure 5.3). Only a visual inspection strategy presenting a VoI higher 

than the cost of visual inspection (€500) is rationally suitable for implementation. 

Figure 5.2 Investigation of the VoI as a function of visual inspection accuracy 
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However, given the significantly high values related to lack of precision at which the 

VoI becomes less than the cost indicates that in this case an inspection is almost always 

beneficial. This may not be necessarily at the same level for other bridge stocks and 

the VoI may be lower than the visual inspection cost for particularly challenging set 

of bridges with access and equipment aspects, where the design of inspection 

programme will be of importance. For practical applications, very high standard 

deviation will not be expected from inspections and consequently the comparison will 

be relevant within the sharply decreasing part of the bar-chart of Figure 5.3. As 

precision decreases, the value delivered by visual inspection decreases monotonically, 

but nonlinearly. A visual inspection strategy presenting a VoI higher than the cost of 

visual inspection is rationally suitable for implementation in a Bridge Management 

System. 
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Figure 5.3 Investigation of the VoI as a function of visual inspection precision 

5.3.2 Prior Bridge State 

Depending on the prior condition state of a bridge stock, visual inspection may give 

rise to different results for VoI. To examine the effect that the prior bridge state has 

on the VoI of visual inspection, the analysis was run whereby the prior state took on 

each possible distribution in Table 5.4. The likelihood of assigned condition ratings 

and the cost matrix were kept constant. 

Table 5.3 Probability distributions for prior bridge state. 

 

 
CR0 CR1 CR2 CR3 CR4 CR5 

Prior state probability distribution over the 
finite outcome space CR = {0, 1, 2, 3, 4, 5} N (0, 1) N (1,1) N (2,1) N (3,1) N (4, 1) N (5,1) 
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Figure 5.4 Impact of the prior bridge state on the VoI. 

It is observed from Figure 5.4, that visual inspection provides the greatest VoI for 

CR3. The VoI is lowest for CR5 as the cost of perfect information 

Cperfect_information_CR5 = €41,208 converges to the cost of major rehabilitation 

CMajor_rehabilitation = €50,760. Bridge stocks, in reality, exhibit different prior state 

probability distributions depending on the type of road, bridge age, exposure 

conditions, state investment in bridge rehabilitation works etc. The analysis was 

repeated using prior probability distributions for four different road types as outlined 

in Table 5.5. For this purpose, a significantly larger stock with 32250 bridges in 

Portugal was considered with real distributions of bridge conditions. 

Table 5.4 Distribution of condition ratings for different road types. 

  CR0 CR1 CR2 CR3 CR4 CR5 
Cork regional roads (n = 449) 0.06 0.19 0.46 0.22 0.06 0.01 
Cork local roads (n = 828) 0.02 0.11 0.60 0.18 0.05 0.03 
South Dublin local and regional roads (n = 85) 0.11 0.54 0.28 0.06 0.01 0 
Portuguese roads (n = 32250) 0.08 0.56 0.30 0.05 0.01 0.001 
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Figure 5.5 indicates the value that visual inspection provides is heavily dependent on 

the prior probability distribution of the bridge stock. Visual inspection provides the 

greatest benefit for bridge stocks with a high proportion of bridges with a CR2 rating 

such as the Cork regional and local roads. The VoI for the Dublin and Portuguese 

roads, which both had a high proportion of bridges with a CR1 rating was 

significantly lower, but still economically viable for a visual inspection strategy at a 

cost of €500. It also indicates how the proposed method can be applied to different 

bridge stocks of disparate sizes and how they can be compared in terms of the 

estimated value of their visual information. 

 

 

Figure 5.5 Effect of the prior bridge state on the estimates of VoI for different bridge stocks 
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5.3.3 Uncertainty in the Condition Rating Scale 

Due to the nature of bridges in Ireland, a trend emerges in terms of the distribution of 

bridge condition states for local and regional roads. Ireland has an aging bridge stock 

and limited investment is available for bridge rehabilitation. As a result, the majority 

of bridges fall into the category of CR1, CR2 and CR3. It is investigated in Figure 

5.6 if value is added to a visual inspection strategy where there is a finer resolution 

in the condition rating scale for various combinations of CR1, CR2, CR3 and CR4. 

For each application, the prior bridge state has equal probability of being in each 

state along the condition rating scale i.e. for the typical case πt = [0.167 0.167 

0.167 0.167 0.167 0.167]. The cost matrix is altered based on the precision level 

achieved in visual inspection. The likelihood of inspector assigned condition ratings 

follows the same format as outlined in this study but the matrix is contracted or 

expanded based on the precision level of the condition rating scale. 

 

Figure 5.6 Effect of condition rating scale on VoI 
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A negative impact on value was observed when CR1 was removed from the 

condition rating scale. A small drop in value was also observed when an additional 

rating was added between CR3 and CR4. The value improved from the typical case 

for all other cases with the greatest improvement in value observed when two 

additional ratings were added between CR1 and CR2. This coincides with Figure 

5.6, whereby the greatest VoI was shown for bridge stocks with a high proportion of 

bridges in the CR2 category. In addition to assessing the actual effect on the 

condition rating scale on VoI, this study also provides demonstrative evidence to 

adapt the proposed method for practical assessment and integration of varied bridge 

stocks with different inspection ratings.
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6 Conclusions 

In this study, the value of implementing a visual inspection strategy in a BMS was 

estimated employing the VoI methodology and several insights into visual inspection 

based decision making for bridge maintenance were investigated through analysis of 

various scenarios. Several real bridge stocks and related data were used in this 

regard. The estimated VoIs of no information, perfect information and imperfect 

information were calculated with County Cork in Republic of Ireland as a case study. 

The change in the optimal strategy based on perfect information and imperfect 

information from the prior state was also illustrated. The analysis is dependent on the 

characterisation of the parameters in the model, including the assumed probabilistic 

models of the prior bridge state, the likelihood of inspector assigned condition 

ratings and the economic setting surrounding the cost matrix for maintenance 

decision alternatives. The effect that the underlying uncertainties of the parameters 

have on the benefit provided by visual inspection was highlighted through numerical 

investigations. The following presents the main findings of the study. 

It was found that an optimistic inspection results in a higher VoI than a pessimistic 

inspection and more optimistic inspections lead to relatively more risk-seeking 

optimal maintenance strategies. As an inspector becomes more pessimistic, the VoI 

reduces and the optimal maintenance strategy becomes more risk-adverse. The 

additional information must have enough accuracy to alter that belief, else the 

decision maker has the potential to make wrong choices or will be better off with a 

preventive maintenance strategy. The prior perception of an inspector on the 

degradation of an asset significantly affects the value provided and information from 
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multiple inspectors inspecting the same bridge could offer value in terms of reducing 

bias. 

Analysing the precision of visual inspection regarding the value it provided, it was 

found that as precision decreases the value delivered by visual inspection decreases 

monotonically, but in a nonlinear fashion. A visual inspection strategy presenting a 

VoI higher than the cost of visual inspection is rationally suitable for implementation 

in a BMS. 

Analyses on the prior state distribution indicate that the greatest value is provided for 

bridge stocks with specific priors, given the rating method is known. By analysing 

real bridge stocks, it was observed that the greatest benefit was provided for bridges 

in local and regional roads, which had a high proportion of bridges in the CR2 

condition state. In contrast, a lower value was seen for the Dublin and Portuguese 

datasets, whose prior distribution had the majority of bridges in the CR1 state. 

Where a high proportion of bridges are in the CR3 or CR2 condition state, the 

benefit is observed to be greatest by adopting a visual inspection strategy. This was 

looked at further by investigating if value is added to visual inspection if the 

condition rating scale is presented in a different resolution. A negative impact on 

value was shown when the condition rating scale was narrowed by removing CR1. 

The highest increase in value was observed when two additional ratings were added 

in between CR1 and CR2, where the VoI increased significantly from the typical 

scenario. The applicability of VoI for visual inspections of bridges depend on the 

input parameters like the prior degradation model, the prior bridge state distribution, 

the likelihood of inspector assigned condition ratings and the economic setting 

surrounding the cost values of the maintenance action alternatives. Accurate 
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determination of these parameters obtained from several bridge stocks over an 

appropriately representative length of time can provide better estimates and 

stabilities around such values. 

6.1 Limitations 

The use of the VoI methodology has been shown to have significant potential in the 

field of visual inspection and condition rating data. The limitations of determining 

the VoI of visual inspection lies in the ability to gain accurate information in relation 

to; 

• Cost data 

• The accuracy of inspection assigned condition ratings 

In terms of cost data, the databases could potentially already exist in the field. The 

cost of visual inspections should be accurately calculated for the individual BMS in 

operation. Additionally, the cost of maintenance, repair and replacement strategies 

that have been implemented because of a visual inspection and condition rating 

assigned, should be accurately logged. In relation to the accuracy of inspector 

assigned condition ratings, a data collection strategy could be carried out, whereby: a 

group of inspectors trained in the BMS in operation, carry out inspections on many 

bridges with predetermined condition ratings assigned in advanced by a trained 

engineer. The variance in condition ratings assigned to each bridge, could give a 

guideline value in relation to inspector bias. Accurate data sets could dramatically 

increase the usefulness of the VoI in determining the role that visual inspection 

should pay in a BMS. 
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6.2 Opportunities for Further Work 

Based on the ideas presented in this thesis, there are several further research areas 

which logically follow; which include, but are not limited to: 

• Analysis into benchmarking how human error affects the VoI and how this 

error varies for different bridge types, the condition rating, and how the 

consequences are defined. 

• Determining a formal relationship between condition ratings and the 

reliability index and how this relationship could guide decision making in a 

BMS. 

• What is the VoI of visual inspection for different BMSs in operation 

worldwide? 

• What is the VoI of visual inspection in comparison with the other levels of 

bridge inspection? The current framework connecting the multilevel 

hierarchical inspection and testing of bridges could be investigated and the 

value of information received from each type of inspection determined. 

Analysis could then be undertaken to determine the revised hierarchy that 

would provide the greatest value for bridge asset managers. 

This thesis is presented as a first step from which to exploit the vast landscape of 

large data-sets being created by BMSs in operation worldwide to further investigate 

the value that visual inspection provides in managing the global bridge stock. As it 

stands, visual inspection is the predominant method by which bridges are assessed, it 

is imperative that the value of the information received is defined and the value cut-
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off determined, so that visual inspection can find its rightful place in the overarching 

bridge management context. 
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