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Nonlinearization and waves in bounded media: old

wine in a new bottle

Michael P Mortell1 and Brian R Seymour2

Abstract. We consider problems such as a standing wave in a closed straight tube, a
self-sustained oscillation, damped resonance, evolution of resonance and resonance between
concentric spheres. These nonlinear problems, and other similar ones, have been solved by a
variety of techniques when it is seen that linear theory fails.

The unifying approach given here is to initially set up the appropriate linear di erence
equation, where the di erence is the linear travel time. When the linear travel time is replaced by
a corrected nonlinear travel time, the nonlinear di erence equation yields the required solution.

1 Department of Applied Mathematics, University College, Cork, Ireland
2 Department of Mathematics, University of British Columbia, Vancouver, Canada

E-mail: m.mortell@ucc.ie, seymour@math.ubc.ca

1. Introduction
The series of problems discussed here all involve small amplitude, one-dimensional, nonlinear
hyperbolic waves in a medium of Þnite extent, and thus inherently involve wave reßections from
the boundaries. Guided by experiments such as in Saenger & Hudson [1], our fundamental
hypothesis is that, for small amplitude disturbances, the interaction of these nonlinear waves is
negligible in calculating the main features of the ßow, such as the presence of shocks. Then we
can frame the hypothesis as: "the motion consists of non-interacting simple waves."

In all examples presented here linear theory fails; for unforced standing waves linear theory
fails in the long term as it fails to predict a singularity, and for forced periodic oscillations linear
theory fails to give a bounded periodic solution at resonance. The presence of shocks in the
ßows is central to the observations.

We consider standing waves, a self-sustained oscillation, periodic resonance and its evolution,
all in the context of a gas contained in a long straight tube. Similar resonance problems between
concentric spheres and cylinders are also considered, making use of nonlinear geometric acoustics
approximations. These problems have been solved previously by a variety of techniques. The
contribution made here is a simple observation that allows for a simpler method of solution to
each problem: "correct the travel time in linear theory by an appropriate nonlinear travel time,"
when allied to "the motion consists of non-interacting simple waves."

The genesis of this idea goes back to Whitham [2] who considered the supersonic ßow past a
projectile. He introduces "the fundamental hypothesis that linearized theory gives a valid Þrst
approximation to the ßow everywhere provided that in it the approximate characteristics are
replaced by the exact ones, or at least a su ciently good approximation to the exact ones."
This is referred to as Whitham’s nonlinearization technique, see Whitham [3], Landau [4] and
Lighthill [5].
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We extend these ideas to reßected waves in a bounded medium by using approximate
nonlinear characteristics to calculate the nonlinear travel time, which depends on the signal
carried, to replace the linear travel time, i.e., the time for a wave to complete a round trip in the
bounded medium. This calculation is carried out on the basis that the motion in the medium is
the superposition of two non-interacting simple waves.

These observations allow us to propose a simple and uniÞed approach to the solution of the
various problems.

2. Basic equations
The oscillations of a polytropic gas in a closed tube are described in terms of the equations of
conservation of mass and momentum relating the velocity ( ) and density ( ). In Eulerian
coordinates they are:

+ ( ) = 0 + + 1 = 0 (1)

Pressure and density are measured from their values in a reference state ( 0 0), so that

0
= (

0

) = (1 + ) = 1 + +
( 1)

2
2 + (2)

where ( ) = 0 1 is the condensation, and 0 =
q

0

0
the associated sound speed

Linear Theory
When | | ¿ 1 and | | ¿ 0 the corresponding linear equations are

+ = 0 and + 2
0 = 0 (3)

Eliminating satisÞes the linear wave equation:

2

2
2
0

2

2
= 0 (4)

Velocity, pressure and density are nondimensionalized with respect to ( 0 0
2
0 0), and ( )

are considered as functions of length and time ( 1
0 ), where is the tube length. Then

equation (4) becomes
2

2

2

2
= 0 0 1 0 (5)

The general solution to equation (5) is

( ) = ( ) + ( ) = ( ) ( ) (6)

where and are arbitrary functions and

= = + 1 (7)

are the linear characteristics. Note that = on = 0; = on = 1
Nonlinear Theory
The sound speed is ( ) = (1 + )( +1) 2 so that, in dimensionless variables, when | | ¿ 1

( ) = 1 +
+ 1

2
+ 0( 2) (8)
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For an wave traveling to the right, with no wave, = ( ) by (6) and

1
= | = 1

+ 1

2
+ 0( 2)

= 1
+ 1

2
( ) +

Integrating:

= +
+ 1

2
( ) +

with = on = 0 Hence the approximate right-traveling nonlinear characteristic, = const.,
is given by

= +
+ 1

2
( ) + (9)

Similarly, the approximate left-traveling nonlinear characteristic, = const., is given by

= + ( 1) +
+ 1

2
( 1) ( ) + (10)

with = on = 1
The fundamental assumption in the calculations for the nonlinear characteristics and in

(9) and (10) is that the and waves do not interact to this order of approximation.

3. Standing wave in a closed tube
For a standing wave in a closed tube, the boundary conditions are

(0 ) = 0 (1 ) = 0 (11)

In linear theory, using (6) and (7) in the boundary conditions (11) implies that ( ) = ( 1)
and ( ) = ( 1) so satisÞes the linear di erence equation

( ) ( 2) = 0 (12)

Then and have period 2 in time and maintain their initial form given at = 0 This
contradicts the results from Lax [6] who showed from the exact equations that a singularity
must arise.

Consider a wave that leaves = 1 at time = 0 is reßected at = 0 at time = 1 and
arrives back at = 1 at time = 2 At each reßection the boundary condition is = 0 hence
from (6) at each boundary = The travel time down the tube and back is 2 0
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Characteristics between 0 and 2

Nonlinear Travel Time
For the characteristic = 0 leaving = 1 (10) and (11) imply that on = 0

0 = 1 1
+ 1

2
( 0) and ( 1) = ( 0) (13)

For the characteristic = 1 leaving = 0 (9) and (11) imply that on = 1

1 = 2 1 +
+ 1

2
( 1) and ( 1) = ( 2) (14)

Hence

2 = 0 + 2 +
+ 1

2
[ ( 0) + ( 2)] and ( 2) = ( 1) = ( 0) (15)

Hence the corrected nonlinear travel time is

2 0 = 2 + ( + 1) ( 0) (16)

Substituting this into the linear di erence equation (12) gives

( ) ( + 2 + ( + 1) ( )) = 0 (17)

This represents a simple wave signal distortion on the boundary = 1 A smooth initial function
( ) will break to give a shock, agreeing with Lax [6]; see also Mortell & Varley [7].

4. Damped standing wave in a closed tube
While the end = 1 is again kept Þxed, so (1 ) = 0 and ( ) = ( 1) energy is allowed
to radiate out through the surface at = 0 via the interface condition

(0 ) = (0 ) (18)

This implies that at = 0

( ) = ( 1) =
1

+ 1
0 (19)
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where ( 1 1) is the reßection coe cient. Then (12) becomes the linear di erence
equation

( ) ( 2) = 0 (20)

that implies | ( )| 0 as The signal is attenuated geometrically like | |
Nonlinear Travel Time
Using (19) the nonlinear travel time (16) becomes

2 0 = 2 + (1 + )
( + 1)

2
( 0) (21)

producing the nonlinear di erence equation

( ) = ( ) = + 2 + (1 + )
( + 1)

2
( ) (22)

Consider the initial value problem:

( 0) = ( 0) 0 0 2 (23)

where ¿ 1 is the Mach number. Then (22) implies

( +1) = ( ) = +1 ( 0) (24)

where

+1 = 0 + 2 +
+ 1

1
[1 +1]

( + 1)

2
] ( 0)

A shock forms when ( +1)

+1
But (24) implies that

( +1)

+1
= +1 0( 0)

0

+1

so that a shock will form when +1

0
0 or

0 =
+1

0
= 1 +

+ 1

1
[1 +1]

( + 1)

2
0( 0) (25)

For a shock to form when | | 1 we require

¯̄
¯̄( + 1)

2
0( 0)

¯̄
¯̄

¯̄
¯̄1
1 +

¯̄
¯̄ = (26)

for some 0 with 0 0 2. This says that there is a critical initial acceleration level,¯̄
0( )

¯̄
= 2 ( + 1) and a shock will only form for an initial acceleration above this level.

Otherwise the signal is damped out before a shock can form. When = 1 ( = 0) there is always
a shock; see Mortell & Varley [7].
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5. A self-sustained oscillation
For the case | | 1 the signal is ampliÞed geometrically. This is an example of a system that
is linearly unstable to perturbations about the initial state. However, within nonlinear theory
a shock always forms. Since shocks dissipate energy, this raises the possibility of a balance
between the energy ßowing in across the boundary and the shock dissipation.

As in the previous section, the linear solution satisÞes the di erence equation ( ) = ( 2)
so that in linear theory

( + 2 ) = ( ) 1 (27)

Hence grows like and is linearly unstable.
Within nonlinear theory the solution is governed by (22). Shocks form and the signal will

eventually evolve to an wave, or a series of waves, so will have a linear slope passing
through the zeros of ( ). The solution is found through the use of critical points of the nonlinear
di erence equation, see Seymour & Mortell [8] for details. We deÞne a critical point, = =
as a location where ( ) = ( ); here ( ) = 0 If (22) is di erentiated with respect to and
evaluated at = we obtain a quadratic equation for = 0( ):

(
2( 1)

( + 1)( + 1)
) = 0 (28)

The root = 0 yields the trivial solution ( ) = 0, while the nonzero root gives the periodic
solution

( ) =
2( 1)

( + 1)( + 1)
( ) ( + 2) = ( ) (29)

with the mean condition
R 1
0 ( ) = 0 Substitution of (29) into (22) shows that this is an exact

solution of the di erence equation. The Þnal periodic state is therefore piecewise linear, passing
through alternate zeros of the initial signal function and joined by shocks which are of constant

strength, 4( 1)
( +1)( +1) see Chu [9] and Mortell & Seymour [10].

6. Damped resonance in a closed tube
The general solution is

( ) = ( ) + ( ) = ( ) ( ) (30)

where in linear theory = = + 1 The boundary condition at = 0 corresponding
to an outßow of energy ( 0), is

(0 ) = (0 ) (31)

so that

( ) = ( 1) =
1

+ 1
0 1 (32)

At = 1 there is periodic forcing
(1 ) = ( ) (33)

where is periodic with unit period,
R 1
0 ( ) = 0 and is the Mach number. From the

equations of motion, for a periodic response we require
R 1
0 ( ) = 0

Linear di erence equation
Let = then ( ) satisÞes

( ) ( ) = ( ) = + 2 (34)
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At = 1
2 this becomes

( ) ( 1) = ( ) (35)

so there is no solution with unit period when = 1 To consider problems at frequencies around

resonance, deÞne the detuning from resonance 1
2 by

=
1

2
(1 + ) (36)

then
( ) ( ) = ( ) = + 1 + (37)

and the nonlinear travel time is

= + 1 + + (1 + )
( + 1)

2
( ) (38)

We deÞne ( ) and ( ) as

( ) = + (1 + )
( + 1)

2
( ) = + (1 + )

( + 1)

2
(39)

where 0 = 1 1 and now
R 1
0 ( ) =

Then the nonlinear di erence equation is

( ) ( ) = ( ) = + ( ) (40)

on noting ( + 1) = ( ) This is the Dissipative Standard Mapping.
Assuming ¿ 1 | | ¿ 1 and | 0| ¿ 1, (40) reduces to the o.d.e.

( ) 0( ) + ( ) = ( ) (41)

subject to Z 1

0
( ) = ( + 1) = ( ) (42)

since
R 1
0 ( ) = 0, to determine the solution, see Seymour & Mortell [11] and Chester [12].

7. Evolution of damped resonance
The canonical equation is (40), where is the Mach number of the input. For ¿ 1 we write

= 1 1
1 2 and =

1

2
(1 + 1 2

1) (43)

so that (40) becomes

( ) (1 1
1 2) ( ) = ( ) = + 1 + ( ) (44)

We assume a long-time multiple scale expansion of the form

( ) = 1 2
0( ) + 1( ) + = 1 2 (45)

then at ( 1 2)

0( + 1 ) 0( ) = 0 (46)
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At ( ) to eliminate growth terms, 0 satisÞes the nonlinear kinematic wave equation with
no secular growth:

0( )
+ 0( )

0( )
+ 1 0( ) = ( ) (47)

with 0( 0) = 1.
If 1 = 0 the linear equation gives

( ) = 1 2
0( ) = 1 2 ( ) = ( ) (48)

which predicts initial linear growth. So the p.d.e. (47) is uniformly valid, see Cox & Mortell
[13].

8. Resonance between concentric spheres
We consider sound waves in a spherical shell, generated by a periodically pulsating
boundary at with period We nondimensionalize length with = , time with 0

where 0 =
p

0 0 is the ambient sound speed, and particle velocity with 0 Then deÞne
= and = so = 1
The dimensionless governing equations are:

+ + 1 = 0 + + ( + 2 ) = 0 (49)

where = ( 0) ( ) is the particle velocity, ( ) is the (dimensionless) sound speed and
= ( 1) 2 is a constant.

The rigid shell boundary condition on = is

( ) = 0 (50)

while the oscillating boundary condition on = is

( ) = sin(2 ) (51)

where = 0 0 is the Mach number of the input.
The spherical wave general solution in linear theory is

=
1
[ ( ) + ( )] = ( ) = + ( ) (52)

Following a wave leaving = at time = 0 reßected from at = 1 and then again at
= at = 2 the linear characteristics give the linear travel time

2 0 = 2 (53)

The boundary conditions then imply that

( 2) ( 0) = sin(2 2) (54)

This is exactly as a straight tube with replaced by
The nonlinear travel time, found by a nonlinear geometric acoustics expansion for the

characteristics, see Whitham [3], with the restriction ¿ 1 or 1 ¿ 1 is

2 0 = 2 + ( 0) ln( )(1 + ) (55)
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The geometry enters through the term ln( ) and the result (55) should be compared with
(16) for a straight tube.

Then (54) and (55) determine the nonlinear resonant oscillations when lies in the
neighbourhood of resonance, = 1

2 At resonance

( ) 0( ) =
1 +

ln( ) sin( ) (56)

( + 2) = ( ) and

Z 2

0
( ) = 0 (57)

determine the solution, see Seymour, Mortell & Amundsen [14] and Galiev & Panova [15].

9. Resonance between concentric cylinders
We consider sound waves in a cylindrical shell, generated by a periodically
pulsating boundary at with period In this case the linear geometric acoustics
approximation, ¿ 1 produces the linear solution

=
1
[ ( ) + ( )] (58)

This is used to calculate the linear di erence equation and the nonlinear characteristics from
which the nonlinear travel time is calculated. Hence the corrected nonlinear characteristics are

= ( ) + ( )[ ](1 + ) + = on = (59)

= + ( ) + ( )[ ](1 + ) + = on = (60)

where = ( 1) 2 see Whitham [3].
The boundary conditions are

( ) = 0 ( ) = sin(2 ) ¿ 1

Then the linear di erence equation is

( 2) ( 0) = sin(2 2) (61)

where 2 0 = 2 is the linear travel time. This is exactly as the previous linear (straight tube)
equation with replaced by There is no periodic solution for = 1 2 the resonant
frequency.

The approximate nonlinear characteristics give the nonlinear travel time as

2 0 = 2 + 2 ( 0)[ ](1 + ) (62)

which can be compared with (16) for a straight tube.
The nonlinear solution is found from (61) and (62) as in (56) and (57), see Seymour, Mortell

& Amundsen [14].
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