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A review of the methods for studying biotic interactions in phenological analyses 

Rubén de la Torre Cerro1, 2*and Paul Holloway1,2 

1. Department of Geography, University College Cork, Cork, Ireland 1 

2. Environmental Research Institute, University College Cork, Cork, Ireland 2 

Abstract: 3 

1. Phenological events play a key role modulating ecosystem services; however, the complex and 4 

interlinked nature of ecosystems means interactions among different taxa during 5 

phenological events can have consequences for the entire ecosystem. Currently, there is a 6 

lack of a unified criteria on the methodologies studying phenology and biotic interactions.  7 

2. We performed an extensive integrative review of works evaluating phenology and biotic 8 

interactions. We identified four broad categories of studies that have explored biotic 9 

interactions within phenology research: 1) spatial and temporal asynchronies, 2) biotic factors 10 

as covariates, 3) simulation studies, and 4) interaction indices.  11 

3. We found that spring phenology has received much more attention than any other seasons, 12 

while mutualistic and obligated interactions, as well as trophic interactions and networks have 13 

been explored more routinely than facilitation or competition. Authors tend to interpret co-14 

existence among species as biotic interactions without any direct measurement of these, 15 

particularly in spatial and temporal asynchrony studies, but this also occurs to a certain extent 16 

in all categories. We also found a lack of formal examination in most studies exploring 17 

phenological mismatches in response to climate change. 18 

4. We propose a conceptual framework for the inclusion of phenology in the study of biotic 19 

interactions that apportions research into the conceptualisation and modelling of biotic 20 

interactions. Conceptualisation explores phenological data, types of interactions, and the 21 

spatiotemporal dimensions, which all determine the representation for biotic interactions 22 

within the modelling framework, and the type of models that are applicable.  23 



5. Finally, we identify emerging opportunities to investigate biotic interactions in phenology 24 

research, including spatially and temporally explicit species distribution models as proxies for 25 

phenological events and the combination of novel technologies (e.g., acoustic recorders, 26 

telemetry data) to quantify interactions. 27 

Resumen: 28 

1. Los eventos fenológicos juegan un papel fundamental regulando los servicios ecosistémicos, la 29 

naturaleza compleja e interconectada de los ecosistemas conlleva que las interacciones entre 30 

diferentes taxones durante eventos fenológicos puedan tener consecuencias sobre el ecosistema 31 

en su conjunto. Actualmente no existe un criterio unificado sobre las metodologías de estudio de 32 

la fenología y las interacciones bióticas. 33 

2. Hemos desarrollado una revisión integrativa extensiva sobre artículos cuyo objetivo era evaluar 34 

fenología e interacciones bióticas. Hemos desarrollado cuatro amplias categorías en las que se 35 

pueden agrupar los estudios que han explorado interacciones biológicas en estudios fenológicos: 36 

1) asincronías espaciales y temporales, 2) factores bióticos como covariables, 3) estudios de 37 

simulaciones, 4) índices de interacciones. 38 

3. Nuestra revisión muestra que los eventos fenológicos que tienen lugar durante la primavera han 39 

recibido mucha más atención que la fenología de ninguna otra estación, así como el hecho de que 40 

las interacciones y redes tróficas han sido exploradas más frecuentemente que interacciones de 41 

facilitación o competencia. Los investigadores tienden a interpretar coexistencia entre especies 42 

como una interacción biótica, sin que haya una medición directa de dicha interacción, en especial 43 

en los estudios de asincronías espaciales y temporales, aunque ello también ocurre a cierto nivel 44 

en el resto de las categorías. Además, también hemos encontrado una falta de examinación formal 45 

en la mayoría de estudios que exploraron desajustes entre eventos fenológicos en respuesta al 46 

cambio climático. 47 



4. Proponemos un marco conceptual para la inclusión de la fenología en el estudio de las 48 

interacciones bióticas que divide dicho estudio entre la conceptualización y el modelado de las 49 

interacciones bióticas. La conceptualización explora el tipo de datos fenológicos, tipo de 50 

interacciones y las dimensiones espacial y temporal, todo ello determina la representación de las 51 

interacciones bióticas a lo largo del modelado, así como el tipo de modelos aplicables. 52 

5.  Por último, también identificamos oportunidades emergentes para la investigación de 53 

interacciones bióticas en fenología, incluyendo modelos de distribución de especies temporal y 54 

espacialmente explícitos usados como representaciones de eventos fenológicos, así como el uso 55 

combinado de nuevas tecnologías (por ejemplo: grabadores acústicos o datos procedentes de 56 

telemetría) para cuantificar interacciones.     57 

Keywords: biotic factors, coexistence, mismatch, phenology, species interactions 58 

1. Introduction 59 

Phenology is the study of cyclic and seasonal phenomena in organisms, such as leaf unfolding and 60 

senescence, flowering of plants, migration events, and timing of the breeding season (Forrest & Miller-61 

Rushing, 2010; Mayor et al., 2017). The outstanding impacts that phenology exerts in the functioning 62 

of  ecosystems and their services are well established and have fostered much research in recent 63 

decades (van Schaik, Terborgh & Wright, 1993; Peñuelas & Filella, 2001; Peñuelas, Rutishauser & 64 

Filella, 2009; Timberlake, Vaughan & Memmott, 2019; Duchenne et al., 2020). Some of these main 65 

phenological impacts include the carbon sequestration potential of ecosystems (Le Quéré et al., 2017) 66 

with variations in net carbon uptake (Keenan et al., 2014) and carbon regulation (Richardson et al., 67 

2009; Brzostek et al., 2014). Thus, phenology plays a key role in modulating ecosystem processes.  68 

The complex and interlinked nature of ecosystems means that changes in the abiotic components 69 

(e.g., climate), might alter the cues that phenological events follow (e.g.,  temperature or 70 

photoperiod), which could lead to advanced or delayed phenological events in one or more interactor 71 

species (Forrest & Miller-Rushing, 2010). Shifting phenologies among different taxa can display direct 72 



or indirect impacts on biotic interactions (Wolf, Zavaleta & Selmants, 2017). For example, earlier 73 

flowering time that overlaps with other plant species could expose plants to lower pollinator activity 74 

(i.e., direct impact) as a result of competition, while also resulting in reduced herbivory pressure, 75 

which has a subsequent effect on fruit onset (i.e., indirect impact) (Vilela, Del Claro, Torezan-Silingardi 76 

& Del-Claro,  2018). The sensitivity of biotic interactions and interaction networks to climate change 77 

means that many species and ecological networks could experience decoupling or losses of 78 

interactions, which could have potentially long-standing  consequences for the entire ecosystem and 79 

its services (Oliver et al., 2015).  80 

The phenological response to climate change drivers has been explored for many taxa, particularly for 81 

plants. Earlier flowering and leaf unfolding in spring as a result of climate change are well documented  82 

(Primack, Higuchi & Miller-Rushing, 2009; Rafferty & Ives, 2011; Mayor et al., 2017; Mohandass, 83 

Campbell , Chen & Li, 2018). However, not all organisms respond in the same way. For example, within 84 

a plant community some species might experience noticeably earlier flowering as a response to 85 

variations in climatic factors, whereas other species might show low impact or remain unchanged 86 

(Vilela et al., 2018). This can result in phenological mismatches at different trophic levels (Fig. 1a,d,  87 

e.g. flowering time and pollinator activity; bird migration and insect development), thus threatening 88 

biodiversity because of differences in phenological sensitivity to climate (Thackeray et al., 2016; 89 

Kharouba et al., 2018). These phenological mismatches  have been proven to be particularly important 90 

for supressing specialized interactions, where higher trophic levels depend on a reduced number of 91 

species in the lower levels (Both, Van Asch, Bijlsma, Van Den Burg & Visser, 2009).  92 

The interactions between plant and pollinator are usually asymmetric, where a plant species depends 93 

strongly on an animal species (pollinator), but the animal depends weakly on the plant (and vice versa) 94 

(Bascompte, Jordano & Olsen, 2006). Asymmetric interactions usually occur within (predominantly) 95 

nested networks, allowing both generalist and specialist plants to interact with both generalist and 96 

specialist pollinators and thus maintain the ecosystem (Schweigher et al., 2010). Therefore, in the case 97 



of (local or global) extinction of one of the interactors or asynchronies between partners, the network 98 

could buffer the effect of such events, but there would be uncertainties related to how resilient 99 

species might be to such changes (Fig. 1b,e). Moreover, many species initiate phenological events 100 

based on species interactions, with many aphid species initiating migration based on the senescing of 101 

host plants (Dixon & Glen 1971; Watt & Dixon 1981), which may or may not be captured by changes 102 

in the abiotic conditions alone (Holloway, Kudenko & Bell, 2018). In addition, the effect of climate 103 

change can disrupt biotic interactions in many ways, for example, turning from a favourable scenario 104 

of facilitation to competitive exclusion or competence (Blois, Zarnetske, Fitzpatrick & Finnegan, 2013) 105 

or by advancing or delaying phenology of species that exhibit changes in their interaction types 106 

through ontogeny, which is where species shift their relationship from competition to predation, 107 

facilitation to competition or herbivory to mutualism during their life cycle (Yang & Rudolf, 2010), 108 

illustrated in Fig. 1c,f. Despite the complex network of interactions operating in ecosystems, the role 109 

of phenological shifts on species interactions, and vice versa, remain poorly understood (Sargent & 110 

Ackerly, 2008; Varpe, 2017). In a recent study, Morente-López, Lara-Romero, Ornosa and Iriondo 111 

(2018) documented a great variation of within-season interactions in a plant-pollinator network in 112 

which modularity (strength of groups of interacting species) was greatly influenced by species 113 

phenology. Thus, evaluating the role of phenology in species interactions is vital for a better 114 

understanding of biotic interactions and ecological networks. 115 



 116 

Figure 1. Conceptualisation of biotic interactions under normal conditions, i.e. matching phenologies, among different trophic levels (a,b,c) 117 

vs phenological mismatches (d,e,f) caused by an imbalance in the ecosystem, i.e., climate change or fragmentation. a) Species (A, B, C, D) 118 

interaction through the trophic network, where A interacts with B, who interacts with C, who in turn interacts with D. b) Representation of 119 

obligated interactions (A+B), (B+C) where species A depends on B and species D depends on C. c) Species A favouring through facilitation, 120 

under favourable conditions or a particular stage of its ontogeny, by providing nutrients, refugia or resources, the occurrence of species B, 121 

C, D and E. d) Interaction decoupling as C and D advanced their phenology while B delayed it and A remained constant as result of a 122 

perturbation, i.e. temperature rise. e) A+B interaction lost after a perturbation, i.e. habitat modification or climate change, hence A now 123 

depends on C, exerting pressure on both C and D. f) Facilitation turned into competition in where A excluded all species and reduced available 124 

space for B through competition. 125 

There are several challenges when incorporating biotic interactions in phenology research, which may 126 

have impeded its development. Firstly, there is a lack of information regarding many species 127 

interactions, and even when information is available there is often a lack of replication that makes it 128 

difficult to extrapolate the methodologies and results across species, environments, and models 129 

(Baselaga & Aráujo, 2009). The high complexity of biotic interactions and the mechanisms involved in 130 

the build-up of interaction networks, makes it difficult to model them statistically, being typically 131 

parameterised in models as proxies of presence-absence of interactor partners (Palacio & Girini, 132 

2018). Similarly, many interactions are unknown, hindering evaluation of biotic interactions for many 133 

species (Atauchi, Peterson & Flanagan, 2018; Morente-López et al., 2018), and furthers the use of 134 



subjectively defined proxies. Finally, biotic interactions are also dynamic in nature; however, they have 135 

typically been evaluated during just one part of the life cycle (e.g., spring), assuming that interactions 136 

are static in space as well as time (Bateman, Van Der Wal, Williams & Johnson, 2012).  137 

Therefore, biotic interactions have been relatively neglected in phenology research (Elzinga et al., 138 

2007; Morente-López et al., 2018) despite the important role they play in life cycle events. 139 

Consequently, developing a generalised framework for the incorporation of biotic interactions in 140 

phenology research has been difficult, meaning studies addressing interactions among different 141 

species and trophic levels are rare. While methods have been proposed to investigate species 142 

interactions in phenology research, these have often arisen in disparate fields, with a predominant 143 

focus on quantifying temporal mismatches in relation to the abiotic conditions. By not implementing 144 

measures of biotic interactions in phenology research, models ignore one of the most important 145 

ecological processes that can modify, disrupt, or decouple phenological events across ecosystems.  146 

In this review we aim to investigate the methodologies used to evaluate the effect of phenological 147 

change in biotic interactions and address the main challenges derived from the study of these complex 148 

relations. This review aims to identify important gaps of knowledge, explore different approaches of 149 

studying biotic interactions within phenology research and provide future directions, all pivot 150 

questions for integrative reviews (Sayer, 2018).  Details of the methodology used to undertake the 151 

review and the list of studies within an initial Web of Science keyword search are presented in 152 

Supplementary Information 1. Studies that have explored biotic interactions within phenology can be 153 

broadly grouped into four main categories: 1) spatial and temporal asynchronies, 2) biotic factors as 154 

covariates, 3) simulation studies, and 4) interaction indices. Through this we review, we aim to create 155 

a generalised framework for the incorporation of biotic interactions in phenological research. Finally, 156 

we end our review by exploring emerging opportunities that could be employed to investigate biotic 157 

interactions within phenology research, and subsequent challenges arising from these new methods. 158 

 159 



2. Spatial and Temporal Asynchronies  160 

Asynchrony among species in phenology research has predominantly focused on variations in climatic 161 

factors (e.g., temperature, precipitation) that are the common drivers of phenological events of many 162 

taxa, consequently leading to spatial and temporal mismatches between interlinked species (Yang & 163 

Rudolf, 2010; Thackeray et al., 2016; Mayor et al., 2017). Most studies investigating temporal 164 

mismatches in phenological events have focused on monitoring climatic induced changes of a single 165 

species or an array of species over an extended temporal period (e.g., 30 years) that are usually linked 166 

through the trophic network (Gordo & Sanz, 2006; Jones & Creswell, 2010; O’Neil et al., 2012; Dunn 167 

& Moller, 2014). For example, fluctuations in bird migration trends, arrival dates, and laying dates 168 

have all been documented in relation to decades of variation in temperature and precipitation in 169 

wintering grounds and spring breeding areas (Gordo & Sanz, 2006; Jones & Creswell, 2010; Dunn & 170 

Moller, 2014). However, studies typically rely on the assumption that earlier emergence or arrival to 171 

breeding grounds will result in the mismatch of interactions that are not evaluated or quantified in 172 

any way. 173 

Advancements on incorporating biotic interactions within studies investigating temporal mismatches 174 

have systematically modelled the relationship between species (Gordo & Sanz 2005; Burkle, Marlin & 175 

Knight, 2013). For example, Gordo and Sanz (2005) used a temporal series of phenological events of 176 

plants and pollinators including date of flowering and pollinator emergence over a 50-year period in 177 

order to infer decoupling of plant-pollinator interactions. Climate induced changes in plant phenology 178 

were estimated using dimension reduction models (e.g., two dynamic factor analyses) to identify 179 

common temporal patterns within plant phenological events. Advancing on this, the authors 180 

employed regression analyses to determine patterns of change on the timings of phenological events 181 

(e.g., insect emergence, bird migration) showing advancement on insect emergence related to 182 

advanced flowering but the interaction among both was not explicitly analysed. Figure 2a highlights a 183 

hypothetical visualisation of such results, with the fitted line representing a linear model for showing 184 



the trend on timing (asynchronies) of two phenological events, plant flowering and insect emergence. 185 

The dotted line represents documented differences in Julian days between the two studied 186 

phenological events, extracted from independent datasets, and evidences the lack of direct method 187 

for the evaluation of biotic interactions in previous research. 188 

Biotic interactions are frequently inferred as species co-occurrence in time rather than documenting 189 

them directly in the field. However, Rafferty and Ives (2011) evaluated the timing of flowering blooms 190 

using t-tests to determine significant advancements on flowering over time, categorising plants into 191 

two groups; advanced flowering and unchanged due to climate change. By recording presence of 192 

flowering and visitation, they tested whether phenological mismatches among plants and pollinators 193 

could be a limiting factor on pollination for both groups of plants. Visualisation of these records using 194 

a contingency table (Fig. 2b) provides a clear representation of which species are (significantly) 195 

mutualistically interacting.  196 

Thus, temporal mismatches in phenological events are frequently used as proxies of biotic 197 

interactions, i.e. egg laying date and peak abundance of main food source as proxies for predator-prey 198 

interactions (Visser, Holleman & Gienapp 2006; Mayor et al., 2017). Usually those changes in 199 

phenology or interactions are then statistically tested by the application of linear regression models 200 

where the explanatory variables are the interaction between two species, measured as the 201 

coexistence of interactor partners over time and space, i.e. presence or absence of species A and B in 202 

a place during a particular time period, or a phenology event of one or more species. For example, 203 

studies have regressed differences in the timing for which phenological events of mutualistic or 204 

obligated interactors occur during a given period (Hegland, Nielsen, Lázaro, Bjerknes & Totland, 2009; 205 

Saino et al., 2009; Rafferty & Ives 2011; Bartomeus et al., 2011). For instance, Mayor et al. (2017) 206 

investigated how the phenological intervals between green-up and bird migrant arrival changed for 207 

48 breeding passerine species in North America, identifying both positive and negative changes in 208 

phenology (Fig. 2c). Interestingly, they highlighted instances where positive values of the phenological 209 



interval were given because migrants arrived earlier, tracking advances in vegetation phenology. 210 

Conversely, negative values in phenological intervals corresponded to migrants showing advanced or 211 

unchanged phenology while vegetation phenology was delayed. Surprisingly, they found that even 212 

when migrants arrived earlier following trends in green up, they did not keep pace adequately with it. 213 

Additionally, the phenological interval varied throughout ecoregions, suggesting the important role 214 

geography may play in phenology.   215 

 216 

Figure 2. Different approaches to modelling biotic interactions from proxies. A) Modelled elapsed days between date of insect emergence 217 

and flowering date for an insect and its main flower resource, showed in calendar days (Y axis), over a decade (X axis), adapted from Gordo 218 

and Sanz (2005). Black dots represent positive or negative differences between timing on phenologies of the two taxa, dotted line reflects 219 

trends in variations of temporal asynchronies, fitted line represents a linear model of the tendency of these asynchronies. B) 220 

Conceptualization of an experimental network of plant-pollinator interactions over time in which an assemblage of plants (species A, B, C, 221 

D and E) was manipulated to evaluate the role of changed vs unchanged flowering timing, adapted from Rafferty and Ives (2011). i.e. A, and 222 

B manipulated to flower earlier than their current mean flowering date, C and D manipulated for a delayed flowering and E remained 223 

unchanged according its current flowering date. Pollinator visits (species 1 to 5) are documented over time, light grey squares represent 224 

plant-pollinator interactions and dark grey squares represent low rate pollinator visitation. C) Trends of phenological change, in comparison 225 

to mean (0), estimated by number of calendar days per year (Y axis) for three phenological events: green up (green dots), date of arrival of 226 

a migrant bird species (orange dots) and date of an insect emergence (purple dots), over a decade (X axis), bars indicate standard error. 227 



Phenological advance corresponds with positive values over the mean while delay in these events are represented by negative ones, adapted 228 

from Mayor et al. (2017).   229 

Application of temporal asynchronous analysis requires long-term time-series data, and due to the 230 

resources required to collect such data, this research is often restricted spatially to very localised sites. 231 

Subsequently, studies are beginning to use species distribution models (SDMs) to quantify spatial and 232 

temporal asynchrony in phenology. SDMs use information regarding the locations of organisms 233 

together with geospatial environmental parameters to identify species-environment relationships and 234 

use these to extrapolate habitat suitability into novel space and time (Elith & Leathwick, 2009). While 235 

phenology has not been a traditional application of SDM research, in part due to their static 236 

representation of a species niche (Peterson et al., 2011), studies are beginning to emerge (Porfirio,  237 

Harris, Stojanovic, Webb & Mackey 2016; Yun, Lee & Yoo, 2020). For example, Yun et al. (2020) 238 

modelled the distribution of the cuckoo (brood parasite) and 12 passerine birds (host species) to 239 

ascertain the amount of spatial overlap in their distributions under changing climates. By quantifying 240 

the difference in spatial area, the authors identified a decrease in suitable habitat for all species, but 241 

also a decrease in the amount of overlap between cuckoos and their hosts, subsequently impacting 242 

breeding phenology.  243 

Therefore, the need for a spatial consideration in any phenological research investigating asynchrony 244 

among species is key, as changes in timing may occur differently across ecoregions, ranges, and 245 

altitudes. For example, Benadi, Hovestadt, Poethke and Blüthgen (2014) used an altitudinal gradient 246 

as proxy for expected climate change over time, to evaluate the degree of synchrony between 247 

specialised flower visitors and their main plant resource. By modelling plant-insect phenological shifts 248 

among different altitudes with linear mixed-effects models, the authors demonstrated that 249 

consistency of specialised pollinators and phenological synchrony with their main source was not 250 

maintained at different altitudes. 251 

Studies investigating spatial and temporal mismatches among species have generally focused on 252 

spring phenology (Visser et al., 2006; Primack et al., 2009; Mayor et al., 2017; O’Neill et al., 2012; 253 



Bartomeus et al., 2011; Phillimore, Leech, Pearce-Higgins & Hadfield, 2016), while studies addressing 254 

autumn phenology are scarcer (Gordo & Sanz, 2005; Gordo & Sanz, 2006;  Gallinat, Primack & Wagner, 255 

2015). Although evidence of advanced spring phenology is widespread (Heghland et al., 2009; O’Neill 256 

et al., 2012; Phillmore et al., 2016), this trend is unclear for autumn phenology and the lack of 257 

comparative studies makes it difficult to discriminate patterns during this season (Gordo & Sanz, 258 

2005). Moreover, in many of the aforementioned studies, interactions were considered to be static 259 

among species, as well as expected to change linearly with the abiotic conditions. The expected linear 260 

change in such cases is realistic until some point, but species will not advance their phenology 261 

endlessly. Thus, the nature of relationships, such as type and strength, might change along with abiotic 262 

conditions, meaning the selection of parameters need to be appropriate to the system under study in 263 

order to account for such factors (e.g., non-linear relationships - Austin, 2007). Consequently, under 264 

the current climate change scenarios (IPCC, 2018), phenological mismatches have the potential to 265 

deeply impact biotic interactions, therefore long-term spatially and temporally explicit phenological 266 

studies could help to improve management actions to preserve the integrity of interaction networks.  267 

3. Biotic Factors as Covariates 268 

Despite their relevance, biotic factors have been relatively neglected in phenological studies, 269 

particularly when compared to the historical use of abiotic drivers (Thackeray et al., 2016; Wolf et al., 270 

2017); however, studies have begun to incorporate them as additional explanatory variables or 271 

covariates in statistical models. Biotic variables are often included in the models to investigate the role 272 

of species interactions on phenological events, predominantly using data obtained from manipulative 273 

field studies (e.g., visual identification among transects, capture-recapture, and monitoring of nests - 274 

Visser et al., 2006). Generally, interactions through trophic levels are documented more often since 275 

impacts on one of the interactors of these obligated or specialised networks, in which one species 276 

directly depends on other as a food source, will lead to a response on the other partner. For example, 277 

by evaluating differences in the onset of forage species (either herbivores or predators), the impact 278 



of any phenological mismatch in the reproductive success of forager populations can be estimated 279 

(Visser et al., 2006; Post & Forchhammer, 2008). These manipulations aim to account for the effect of 280 

temporal or spatial changes in environmental conditions, phenological events or biotic interactions. 281 

For example, Martin and Maron (2012) tested the effect of reduction in snow cover, given a 25-year 282 

period of snowfall decline, as a factor influencing bird and plant population declines through increased 283 

herbivory and nest predation. The authors studied changes in plant assemblages for herbivory-284 

prohibited (i.e., simulated snow cover) and herbivory-exposed sites finding that reduction in snow 285 

cover exposed plant assemblages to higher herbivory pressure, leading to declines in bird populations 286 

due to increased nest predation. However, an increase in plant and bird populations (including a 287 

reduced nest predation) was documented in herbivory-prohibited areas.  288 

Research has also addressed the importance of the spatial dimension of phenological shifts. For 289 

example, larger shifts in phenology (e.g., longer mismatches in Julian days) have been related to higher 290 

latitudes and elevations, which act as a proxy for increases in global temperature (Chmura et al., 2019).  291 

Altitudinal gradients serve to illustrate climate change effects as conditions in upward populations are 292 

usually associated to pre-climate change scenarios while downward populations serve as example of 293 

the conditions that upward populations would experience in the future (Alexander, Diez & Levine 294 

2015). Although some of the reviewed studies monitored biotic parameters, there is still a marked 295 

importance of abiotic factors, with studies typically testing several within models i.e. factors such as 296 

temperature increase and nutrient enrichment on specialised trophic interactions (Lu, Siemann, Shao, 297 

Wei & Ding, 2013; de Souza Laurindo, Gregorin & Tavares, 2017; Terraube, Villers, Poudré, Varjonen, 298 

& Korpimäki, 2017). For example, Terraube et al. (2017) showed the importance of climate factors and 299 

forest management on the foraging success of an owl species by using field data and GLMMs. The 300 

authors documented a trend of decreased prey biomass stored in nests related to increasing rainy 301 

days and days with frost, which in turn is expected to affect the biomass and fitness of the target owl 302 

species. However, despite the importance of incorporating both abiotic and biotic factors on 303 

interactions, few experimental studies have actually tested this within a phenology context.  304 



Alexander et al. (2015) exposed plants to different treatments of abiotic conditions and presence of 305 

expected interactor species in order to determine if competition or facilitation would dominate plant 306 

assemblages under predicted climate change. By using mixed-effect models and GLMs, the effect of 307 

presence of competitors on the transplanted individuals was estimated, showing that under warmer 308 

conditions the identity of the competitor had a significant effect on the transplanted individuals’ 309 

success. Wolf et al. (2017) carried out experiments manipulating biodiversity of plant assemblages to 310 

reflect random or realistic biodiversity loss, in terms of the number and identity of species. Their aim 311 

was to test for the effect of biotic interactions on the timing of flowering peak (highest flower 312 

abundance per species and plot were used as a surrogate variable for time of flowering) of each 313 

species. In this case, plots with low plant diversity showed earlier flowering, while flowering peaks 314 

between species were more dispersed in high diversity treatment plots than in monocultures. Other 315 

studies have begun to test both abiotic and biotic factors in experimental settings (Bresson, 316 

Varoquaux, Bontpart, Touraine & Vile, 2013; Koyama & Tsyuzaki, 2013), with studies manipulating 317 

environmental conditions useful to determine changes in phenology and the evolution of specialized 318 

interactions under predicted climate change conditions. Moreover, experimental works manipulating 319 

abiotic and biotic conditions in order to evaluate phenological response and adaptive success are 320 

performed by translocating individuals (usually plants) to new areas (within and beyond) their 321 

distributional range, or through lab manipulation (Lau & Lennon 2012). Thus, the inclusion of biotic 322 

interactions in phenology research could change the statistical response, effect, and importance of 323 

abiotic variables. 324 

Despite these advancements, many studies lack any direct measurement of biotic interactions. For 325 

example, Merrill et al. (2008) documented the distributional range shift of a butterfly related to 326 

elevation on its lower distributional limit and to the absence of host plants at their upper distributional 327 

limit. Since the target butterfly needed the presence of any of the host plants for completing different 328 

stages of their life cycle (i.e., phenology), the lack of host plants at higher elevations was assumed to 329 

be responsible for determining the butterfly’s upper distributional limit, despite there being no direct 330 



measurement of their biotic interaction, taking host plant presence as a proxy. Similarly, Kass et al. 331 

(2020) used presence of resource and refugia providing plants at a monthly resolution, aiming to 332 

capture the importance of plant phenology on the distribution of the monarch butterfly during 333 

autumn migration, with co-existence records serving as a proxy to infer suitable habitat for the 334 

butterfly.  335 

Conversely, there is usually a lack of replication in most field or manipulative studies. For example, 336 

even when biotic interactions are statistically proven to be one of the main explanatory variables 337 

within a system, the lack of replication over time and the scarcity of comparative studies might lead 338 

to misinterpretations. For instance, Theobald, Gabrielyan and Hillerislambers (2016) demonstrated 339 

the importance of pollinator-mediated seed production of a montane plant species. The authors tried 340 

to investigate the role of pollinators for determining the range limit of the plant (through pollen 341 

limitation), suggesting the importance of different pollinator groups for reproductive success; 342 

however, factors determining the species’ range limit could not be separated from plant interannual 343 

variations. Further, some studies evaluate small populations which highlight the fact that small sample 344 

sizes might mask the effect of other possible factors and lead to erroneous interpretations (Post & 345 

Forchhammer, 2008; Benadi et al., 2014). Furthermore, although most of these experimental studies 346 

include environmental variables, given the scale and dimension of these open mesocosm experiments, 347 

there might be environmental variables that are not considered and could explain some of the 348 

statistical variation found in them (Wolf et al., 2017), compounding our ability to interpret such biotic 349 

interactions within these models.  In addition, most of the studies address spring phenological events 350 

monitoring weather conditions during the growing season neglecting winter climate change 351 

conditions that are of great importance for the phenology of plant and pollinators (Makoto et al., 352 

2014).  353 

 354 

 355 



4. Simulation models 356 

Simulation models are statistical models where one or more parameters are manipulated in order to 357 

elicit predictions in the response of the ecological factor under consideration (Chuine & Régnière, 358 

2017).  These factors could include the presence or abundance of a species, the spatial or temporal 359 

changes of a particular phenological event, and the persistence of a biotic interaction. These models 360 

have been used to explore a wide array of phenological events, such as co-occurrence of interactor 361 

species influencing pollination interactions (CaraDonna et al., 2017), the role of plant-pollinator 362 

synchrony in community assemblages (Bartomeus et al., 2013) and the role of changing phenology on 363 

population trends (Dunn & Moller, 2014). Although simulations exploring the responses of species 364 

under climate change are common in ecology (Keith et al., 2008; Virkkala, Heikkinen, Leikola & Luoto, 365 

2008; Dullinger et al., 2012), during the development of this review we found very few papers where 366 

simulations investigated the effect of climate change on phenological events or biotic interactions 367 

(Memmott, Craze, Waser & Price, 2007; Araújo, Rozenfeld, Rahbek & Marquet, 2011; Roberts, Tansey, 368 

Smithers & Phillimore, 2015; Bateman et al., 2016; Goberville et al., 2016; Schleuning et al., 2016).   369 

Simulation models have been used to predict the evolution of ecological networks, by modelling 370 

predicted phenological mismatches among interactor partners, as well as extracting interactor species 371 

from modelled networks to determine extinction effects when one or more species are removed 372 

(Memmott, Waser & Price, 2004; Memmott et al., 2007). By modelling extinctions in mutualistic 373 

networks, species sensitivity to climate change driven coextinctions can be estimated. For example, 374 

Schleuning et al. (2016) modelled the effects of climate change on ecological networks, and 375 

subsequently simulated secondary species extinction as a consequence of the sequential loss of plant 376 

and animal species. Network sensitivity was then quantified ranging from no secondary species going 377 

extinct to all species. Simulations showed that specialized animals would suffer greater impact than 378 

plants from secondary extinctions in mutualistic networks due to climate change. Moreover, 379 

applications of simulation models can be used to construct networks of co-occurrences that serve as 380 



proxies of interactions or to infer biotic interactions from co-occurrence patterns (Araújo et al., 2011; 381 

Araújo & Rozenfield, 2014). For instance, Araújo and Rozenfield (2014) created a point-process model 382 

from co-occurrences to infer biotic interactions and to evaluate their relevance at different spatial 383 

scales. Spatial overlap (attraction or repulsion) together with probability of occurrence of interactors 384 

in space was interpreted as a signal of biotic interactions that were scored according to the number 385 

of times species co-occurred within cells in order to estimate their spatial importance. Their results 386 

suggested that the effect of negative interactions was clearer at fine scales and diluted at coarse scale 387 

whereas positive interactions (mutualism, commensalism) and those related to consumer-resources 388 

were scale independent. 389 

Simulations have also been useful to model species distributional limits and probability of survival 390 

beyond geographical ranges. For example, Benning, Eckhart, Geber and Moeller (2019) used field 391 

experiments to train simulations on plant fitness in the presence and absence of herbivory. 392 

Simulations were tested by exploring the impact of herbivory on the fitness and survival of a 393 

Californian annual plant species, investigating delayed phenology and the probability of survival 394 

beyond its geographic range. When climate conditions were advantageous (i.e. higher precipitation) 395 

simulations showed that probability of survival and fitness of the species at their range limit and 396 

beyond was much higher when the effect of herbivory was moderate than when this antagonistic 397 

biotic relationship was excluded, although not high enough to support population establishment and 398 

growth. While this study explored antagonistic interactions, mutualistic interactions within networks, 399 

such as pollination, were addressed the most frequently across all simulation studies (Memmott et 400 

al., 2004; 2007; Bartomeus et al., 2013; Schleuning et al., 2016).  401 

Few studies employed mechanistic models such as physiologically based weather-driven demographic 402 

models (PBDMs) aiming to incorporate phenology and biotic interactions while also accounting for 403 

abiotic parameters and multitrophic population dynamics (Ponti, Cossu & Gutiérrez, 2009; Ponti et al., 404 

2013). Further, recent approaches using simulations to explore phenology have shown that such 405 



models can be used to predict the probability of detecting pairwise biotic interactions through the use 406 

of occurrence data and detectability of species, estimation of probability of interactions, and 407 

connection of interaction networks (Graham & Weinstein, 2018).  408 

However useful simulations are, these approaches face similar challenges, such as the lack of robust 409 

data on interaction networks, as well as sensitivity to the lack of knowledge about rare interactions 410 

(Olito & Fox, 2015). In many cases, the lack of basic knowledge on species biology and biotic 411 

interactions could lead to erroneous predictions or interpretations that under- or over-estimate the 412 

power of these models (Memmott et al. 2007).  Additionally, considering a network of interactions as 413 

a sealed system is often a caveat of these methodologies. For example, when modelling species 414 

extinctions, these models are performed assuming that no new interactions are entering the system, 415 

which can undermine the power of the model as this is not entirely realistic. Moreover, despite the 416 

importance of phenology structuring networks of interactions (Morante- López et al., 2018), studies 417 

modelling biotic interactions frequently ignored the phenological dimension of these (Araújo et al., 418 

2011; Araújo & Rozenfield, 2014; Schleuning et al., 2016). Although there are some advances in the 419 

field of predictive models of biotic interactions, in particular the novel approach of Graham and 420 

Weinstein (2018) to develop models predicting species interactions, the lack of a robust methodology 421 

on this topic limits the use to elaborate predictions on species interactions. 422 

5. Interaction Indices  423 

Interaction indices have been used to measure the degree of interaction among species, with research 424 

focusing on synchrony among interactor species (Donoso, Stefanescu, Martínez-Abraín & Traveset, 425 

2016; Oleques, Overbeck & de Avia, 2017), interactions within communities (Buxton, Brown, Sharman, 426 

Gabriele & McKenna, 2016; Molina-Venegas et al., 2016; Oliver et al., 2018), and interactions as a 427 

network (Junker et al., 2013; Robinson, Losapio & Henry, 2018). For example, Benadi et al. (2014) 428 

evaluated local specialisation of insect on flower morphology, calculating two indices (d’) and (H2’) to 429 

estimate the level of specialisation on pairwise and interaction networks, respectively. Both indices 430 



compared the number of visits of a pollinator (later pooled to taxonomic groups) to a plant species, 431 

and then further comparing visits to total flower resources and a null model of expected visits. The 432 

authors demonstrated different degrees of specialisation among taxonomic groups of pollinators and 433 

the importance of floral traits (tube length) rather than plant species identify.  434 

Novel advances on field monitoring of phenology, particularly using new technology, are leading to 435 

the development of community interaction indices (Buxton et al., 2016; Oliver et al., 2018). For 436 

example, Buxton et al. (2016) used a novel acoustic index, developed by Pieretti, Farina and Morri 437 

(2011), to monitor spring and winter phenology of songbirds. The acoustic complex index (ACI) 438 

measures the vocalizations produced on an avian community and poses as an important tool for the 439 

study of phenological events at large spatiotemporal scales. This index is calculated as the differences 440 

in sound pressure level among adjacent seconds of the recorded period divided by the total value of 441 

sound pressure level for the recorded band. Acoustic recorders were placed in different areas in order 442 

to acquire different ACI values over a three-year period. ACI values were compared with species-443 

specific acoustic analyses to determine changes in the acoustic landscape produced by the arrival of 444 

migrant birds. Further, the relationship between species beta-diversity and ACI was documented with 445 

differences in values among seasons calculated through Bayesian change point analyses and GLMMs. 446 

Abrupt changes in phenology were recorded in spring, but these were not as prominent during the 447 

autumn season, partially due to extreme weather events obscuring the acoustic data. Thus, potential 448 

of acoustic recorders to continually monitor the phenological landscape offers a unique insight in 449 

measuring how phenology (and subsequent biotic interactions) change over time (Deichmann et al., 450 

2018), and while several novel challenges are associated with the technology (Shonfield & Bayne, 451 

2017) their use offers a means to establish a holistic monitoring system that can integrate both local 452 

and global data to phenology research (Buxton et al., 2016). 453 

Junker et al. (2013) investigated plant pollinator networks using two interaction indices to account for 454 

functional individual traits (Si) and multiple traits (Vi) structuring pollinator niche-breadth while also 455 



evaluating the effect of plant phenology. They expected that individual flower traits of different plants 456 

visited by the same taxon would have lower Euclidean distance between them than those that do not 457 

share visitors. To investigate this hypothesis the authors calculated the individual trait width index (Si) 458 

that employed distance matrices, weighted means, and random distances (among other parameters). 459 

Simultaneously they created the trait volume index (Vi) exploring groups of flower traits that could 460 

influence pollinator preferences, calculated as the product of all individual Si of each tray by each 461 

volume Vi for each taxon as a measure of taxon specialisation. The authors demonstrated that 462 

specialist pollinators showed no restrictive morphological traits to access nectar resources and were 463 

influenced by plant phenotypes, whereas generalist pollinators showed no preferences across a suite 464 

of traits.  465 

6. Proposed conceptual framework 466 

Phenology has developed within disparate fields, including ecology, geography, physiology, chrono-467 

biology and genetics, meaning there has been a wide variety of viewpoints in how to address this 468 

phenomenon (Visser, Caro, van Oers, Schaper & Helm, 2010; Pau et al., 2011). Moreover, biotic 469 

interactions are complex; they change over time, assemble and decouple by processes such as 470 

turnover, and depend on many factors such as modularity (strength of sets of interactions), climate 471 

change, local extinctions and presence of invasive species (Schweiger et al., 2010; Schleuning et al., 472 

2016; CaraDonna et al., 2017; Morante-López et al., 2018). In addition, interaction type, strength, and 473 

effect (positive or negative) is expected to vary with species ontogeny (development of organisms 474 

within their lifespan), for example, herbivores turning into pollinators or alternating predation-475 

competition. Thus, including the broad scope of interactions within the lifespan of species would be 476 

more accurate than focusing on seasonal ones (Yang & Rudolf, 2010). Despite some efforts to provide 477 

frameworks for the study of phenology (Visser et al., 2010) and the shifts of phenology-ontogeny (Yang 478 

& Rudolf, 2010), there is a need to define a common framework for research addressing biotic 479 

interactions within phenology. Here we propose a framework for the inclusion of biotic interactions 480 



within phenology (Fig. 3), apportioning this into two interconnected factions where research is aimed 481 

towards 1) conceptualising biotic interactions and 2) modelling biotic interactions.  482 

Conceptualising the biotic interactions within phenology depends on the data, type of interaction, and 483 

spatiotemporal dimension of the research. As identified throughout this review, there has been a wide 484 

range of data used, including Julian day of phenological events and the presence and/or abundance 485 

of species at a given location. This data represents various inter- and intra-species interactions that 486 

include information on facilitated, obligated, and trophic relationships. Finally, the temporal and 487 

spatial dimensions of these data and interactions are imperative for the methodologies implemented, 488 

as this determines whether research focuses on a particular moment of the life cycle of a species or 489 

across an extended time period (Yang & Rudolf, 2010). All this information is fundamental for 490 

specifying whether the biotic interaction is measured directly through field or experimental research 491 

or indirectly through the use of biodiversity proxies or co-existence records.  492 

The consideration of co-existence as a biotic interaction or as a proxy of a biotic interaction has 493 

received a renewed discussion among ecologists recently (Dormann et al., 2018; Blanchet, Cazelles & 494 

Gravel, 2020; Peterson, Soberón, Ramsey & Osorio-Olvera, 2020). In the recent review by Blanchet et 495 

al. (2020), the authors emphasise that co-existence records are a poor proxy for biotic interactions, 496 

providing a detailed discussion arguing that very extensive (and rarely available) datasets would be 497 

needed to test this, but more importantly the biotic interaction must exert a greater signal before it 498 

can be inferred within co-existence records. Building on this foundation and the research incorporated 499 

in this review, we agree with the premise and propose that studies that use historical temporal 500 

datasets of multiple individual species or spatial datasets of multiple species presence-absence must 501 

be considered co-existence studies rather than biotic interactions. This is due in part to the fact that 502 

these studies often have different data collection methods for taxa and seldom directly record 503 

interactions in the field. When coupled with the limitations identified in the statistical models in 504 

section 2 (e.g., Austin, 2007), any signal of biotic interaction must be treated with caution.  505 



Modelling of biotic interaction or co-existence is dependent on the variable representation. We have 506 

identified three common categories of variable representation; a) activity length (e.g., Julian days or 507 

mismatch indices - Mayor et al., 2017), biodiversity parameters (e.g., presence-absence, abundance, 508 

functional traits, richness gradients) and c) interaction rates (e.g., herbivory rate, predation rates, 509 

etc.). We have also identified that research addressing biotic interactions within phenology often 510 

considers the importance of abiotic factors. Subsequently, there is often a need to select both, which 511 

includes the type of abiotic parameters relevant to the question at hand. Selection of abiotic 512 

parameters is well established in phenology, but it remains important to consider the representation 513 

of variables (e.g., mean, max, min) and the appropriate spatial and temporal resolution (van de Pol et 514 

al., 2016; Holloway et al., 2018; Simmonds, Cole & Sheldon 2019). From these variables, the modelling 515 

approaches identified through Sections 2-5 should then be selected according to the most appropriate 516 

data, interaction, spatiotemporal dimension, and biotic representation. Importantly, not all 517 

representations are suitable for all methods, highlighted in Fig 3. Such a framework should foster 518 

discussion among researchers investigating co-existence and biotic interactions within phenology 519 

research and provide signposts for researchers aiming to begin initial work in this discipline.  520 
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Figure 3. Framework illustrating the conceptualisation and modelling of biotic interactions in phenology research. Conceptualisation occurs 549 

during points 1 to 4, in which researchers need to identify the type of event (1), which refers to the phenological event of study, e.g. flowering 550 

time, emergence time, first flight, bud burst, etc., then the interactions of interest (2), e.g., pairwise or network, inter or intra-specific, and 551 

type of interaction i.e. trophic (herbivory, predation, etc.), positive (facilitation, mutualism, commensalism), negative (competence, 552 

amensalim) or neutral. Then researchers must consider the dimension (3) of study, which accounts for the different spatial and temporal 553 

extent of the variables that will shape the modelling process. Finally, this will lead to the measurement of biotic interactions (4), in which 554 

we discriminate between indirect (4a-b) and direct (4c-e) measurements. Indirect measurements include those that have been quantified 555 

from co-existence records (4a) or parameters that use proxies or covariates (4b), including presence-absence and functional traits. Direct 556 

measurements include parameters directly monitored in the field (4c), including pollinator visitation, parameters from experimental 557 

treatments (4d), including manipulated vs non-manipulated individuals, and estimates (rates) as covariates (4e), including predation or 558 

herbivory rates. We propose that indirect measurements should proceed as co-existence studies, while direct measures should proceed as 559 

interaction studies. The modelling of biotic interactions and co-existence studies occurs during points 5-7. There are three main ways in 560 

which the study variables are often represented (5): Activity length (purple box) i.e. differences in arrival date, emergence date, flowering 561 

time, typically measured in Julian or calendar days. Parameters (green box), when variables of study are ecological measurements such as 562 

richness, functional traits, distribution of interactors, presence - absence data, etc., and Rates (blue box), when the variables are estimated 563 

as a measurement of a biotic interaction, e.g. predation rate, parasitism rate, pollination success. The selected variables together with the 564 

abiotic variables of interest are then modelled (6) using the approaches applicable for the study of biotic interactions, leading to (7) the four 565 

identified categories where coloured quadrats (purple, blue and green) in the lower box symbolize the type of variable representation 566 

typically incorporated in the different modelling approaches. 567 

7 Emerging Opportunities and Challenges 568 

7.1 Spatial Modelling through SDM 569 

Accounting for the complexity that phenological events pose at both spatial and temporal scales is 570 

difficult. With advances in data collection, SDMs (as described in section 2) are now being 571 

parameterised more readily with temporally explicit variables (e.g., normalized difference vegetation 572 

index (NDVI) for the date closest to the timestamped species observation). This removes some of the 573 

uncertainty in projecting seasonal distributions (Holloway & Miller, 2017), with the distribution 574 

projections being used as estimates for phenological events. For example, Gschweng, Kalko, Berthold, 575 

Fiedler, and Fahr (2012) matched telemetry data with meteorological and habitat data to project 576 

monthly distributions of the Eleonara’s falcon in Madagascar, identifying seasonal patterns of 577 

distributions, and relating this to the timing of migration events. Distribution projections could 578 



theoretically be generated at finer (e.g., daily, weekly, or monthly) timescales, which may capture 579 

important information regarding the relationship between phenological events and species 580 

distributions. Figure 4 provides an illustrative example of SDM projections for the migratory barn 581 

swallow within the island of Ireland parameterized on spatially and temporally explicit observations 582 

and environmental data. The increase in habitat suitability for barn swallows in April aligns with their 583 

migration, and supports the premise that SDMs parameterised on averaged climate variables (e.g., 584 

mean temperature) have often failed to capture the actual variability that species experience in short 585 

time periods which drive changes in the spatial distributions across the life cycle (Eyre, Rushton, Luff 586 

& Telfer, 2005). 587 
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 595 

Figure 4. Example of monthly habitat suitabiltiy of a migrant bird, Barn Swallow, in Ireland, projected using temporally explicit temperature 596 

data and presence data using a generalised linear model (GLM). Barn swallow data extracted from 2018 presence records of eBird (2017) 597 

dataset (Sullivan et al., 2009), temperature data, monthly max and min values, extracted from Worldclim 2.0 database (Fick & Hijmans, 598 

2017). 599 

Several recent and thorough reviews within SDM explore the role of biotic interactions in model 600 

parameterisation using both correlative and joint-SDM (e.g., Wisz et al., 2013; Dormann et al., 2018; 601 



Peterson et al., 2020), and as such it is not our aim to duplicate efforts. Instead, we highlight challenges 602 

and frontiers of incorporating biotic interactions within SDM and identify where phenological research 603 

could learn from this burgeoning field. The inclusion of biotic parameters (representing interactions 604 

or co-existence) in SDMs generally leads to improvement of predictive power of the models (Atauchi 605 

et al., 2017; Palacio & Girini, 2018), however, the fact that a model integrates  biotic parameters does 606 

not always increase model accuracy (e.g., Holloway, 2018). In some cases when the considered biotic 607 

interactors are highly correlated to abiotic parameters, for example climatic conditions that determine 608 

presence of a particular species, the inclusion of biotic factors in model parameterisation might result 609 

in multicollinearity or show no improvements of SDMs due to the overarching influence of abiotic 610 

conditions (Silva et al., 2014). Recently, Raath, Le Roux, Veldtman and Greve (2018) compared four 611 

methods of incorporating biotic factors, by using different representations of host-plant distributions 612 

in SDMs of two silk moth species in sub-Saharan Africa. They found that inclusion of moth-host plant 613 

interactions in SDM greatly affected the predictive ability of the models, yet there was inconsistency 614 

among biotic representation. The inclusion of temporally explicit quantified biotic factors in SDM is 615 

rare (although note Mezquida, Svenning, Summers & Benkman (2018) who recorded the spatial 616 

timings of seed fall for European Scots pine and included this as a covariate in an SDM projecting the 617 

European distribution of crossbills), meaning studies have to rely on proxies for interactions within 618 

SDM. Thus, relevance of interactions and how interactions are represented in model parameterisation 619 

can shape the resulting outputs. With biotic representation a key component of our conceptual 620 

framework (Fig. 3), this subsequently warrants further research to investigate whether such patterns 621 

exist across multiple interactors and trophic levels within phenology.  622 

7.2 Quantifying Interactions from New Technology 623 

The use of new technology (e.g., acoustic recorders and telemetry data) has also been shown to 624 

provide novel insights for quantifying intra- and inter-species interactions (Isbell & Binder, 2016). 625 

Telemetry data acquires precise spatial and temporal animal position and movement data 626 



(Hebblewhite & Haydon, 2010), having been used to capture information on phenological interactions, 627 

such as mating, boundary patrolling, and hunting (Long & Nelson 2013; Benhamou, Valeix, Chamaillé-628 

Jammes, Macdonald & Loveridge, 2014 ; Long, Nelson, Weeb & Gee, 2014). Despite this advancement 629 

in technology, similar issues relating to the direct estimate of intra- and inter-species-specific 630 

interactions persists. For example, Miller (2012; 2015) tested several commonly implemented indices 631 

of dynamic interactions for brown hyenas in Botswana alongside a null model of movement. The 632 

results suggested that the use of ‘expected’ values in their generation produced inconsistent results, 633 

which led to both Type I and II errors in the model interpretation. The general consensus has been 634 

that such indices perform well at identifying no interaction between individuals; however, the majority 635 

of these models use proximity in space and time (i.e. co-existence) to infer interaction, meaning similar 636 

issues of interaction contextualisation persist. However, indirect interactions through smell or sight 637 

that impact movement behaviours (e.g., leading, following) are difficult to model due to the 638 

hierarchical nature of the processes, and may be considered as ‘no interaction’ in established indices 639 

due to the spatial and temporal asynchrony. New methods that consider the potential path area of 640 

movement trajectories in temporally asynchronous space are being developed that allow for such 641 

interactions to be quantified (Hoover, Miller & Long 2020).   642 

Similarly, camera traps have also been used to capture information on phenology (e.g., Graham, 643 

Riordan, Yuen, Estrin & Rundel, 2010; Tape & Gustine 2014; Alberton et al., 2017), allowing the 644 

examination of community structures and interspecific interactions (Steinmetz, Seuaturien & 645 

Chutipong, 2013; Jachowski, Katzner, Rodrigue & Ford, 2015; Buxton et al., 2016; Camargo-Sanabria 646 

& Mendoza 2016). For example, Jachowski et al. (2015) used over 2.5 million images from over 180 647 

camera traps to investigate interactions among raptor species (i.e. bald and golden eagle) in eastern 648 

continental USA in relation to their migration phenology and subsequent interactions. By analysing 649 

the presence of raptors in more than 2.5 million images, the authors found that bald and golden eagles 650 

were positively associated with each other, with the presence of golden eagles 55% more likely if a 651 

bald eagle was also sighted on the same day, suggesting a possible mutualistic interaction. The ability 652 



of camera traps to capture observed interactions is a primary advantage to the technology. However, 653 

Koike et al. (2012) used camera traps to investigate herbivory by mammals of fruit produced by trees 654 

in Japan, and while the authors concluded that the animals visited the trees, the images did not 655 

necessarily confirm that the animals actually ate the fruit. Therefore, despite the potential of such 656 

technology, issues related to the quantification of the biotic interaction persist. Fig. 5 illustrates 657 

examples where camera traps, acoustic recorders, and telemetry data capture co-existence in space 658 

and time as well as direct interactions. New methods of quantifying these interactions, through image 659 

analysis, acoustic signals, and movement parameters will subsequently be needed to ascertain in what 660 

instances interactions can be recorded. 661 

 662 

Figure 5. Illustration of co-existence between species versus biotic interactions using technology including camera traps, acoustic recorders, 663 

and telemetry data. Image captured from a camera traps in the Ghanzi region of Botswana, showing presence of black-back jackal and 664 

hooded vultures a) in the same location at same time, not interacting and b) an interaction (competition) between two individuals. Photo 665 

credit Thoralf Meyer. Audiograms from acoustic recorders (AudioMoth) (Hill et al., 2018) in Cork, Ireland, showing waveforms of recorded 666 

calls (green line), blue lines are the fragment of the calls analysed identifying vocalization, with SoundID (Boucher, 2014), c) illustrating co-667 

existence, vocalizations of various individuals of two different corvidae species, jackdaw and rook, where no apparent interaction was taking 668 

place and d) illustrating interaction (competition) between jackdaws and rooks, with the audiogram reporting corresponding patterns for 669 

alarm and territorial calls. Global positioning system (GPS) of Burchill’s zebra in Botswana, showing e) coexistence and f) interaction (herding) 670 

between individuals over a 24-hour period. Zebra data from Bartlam-Brooks et al. (2013a,b) via Movebank (2013), visualised in DYNAMO-671 

Vis (Dodge, Xavier & Wong, 2018).  672 



Remote sensing has also been widely used in phenology research, primarily to document phenological 673 

events for vegetation, such as start-of-season or end-of-season (O’Connor, Dwyer, Cawkwell & 674 

Eklundh, 2012; Barrett et al., 2014; Misra, Buras, Heurich, Asam & Menzel, 2018) or through the use 675 

of active sensors (e.g., radar) to monitor animal migration events (e.g., Diehl, Larkin & Black 2003; 676 

Schmaljohan, Liechti, Bächler, Steuri & Bruderer, 2008; Nilsson et al., 2018). These phenological 677 

indicators (e.g., start-of-season, first-flight) are then used to identify spatial or temporal asynchronies 678 

between interactor species or used as spatial representations of biotic factors in statistical models 679 

(Morellato et al., 2016). UAV footage can be monitored to quantify interactions between individuals, 680 

with Schofield, Katselidis, Lilley, Reina and Hays (2017) investigating whether departure of male turtles 681 

from breeding sites was driven by changes in the receptiveness of females or the probability of 682 

successful mating attempts, quantifying this through the sex ratio of all individuals within the footage. 683 

Subsequently, drones offer a (relatively) non-invasive method to monitor phenological events of 684 

inaccessible species.  Remote sensing has also been used successfully to monitor species invasions 685 

(Rocchini et al., 2015) through the reflectance properties of vegetation to classify different species to 686 

identify competition among native and non-native species (e.g., Carter et al., 2009) and to identify 687 

pest or disease emergence (e.g., He, Chen, Potter & Meentemeyer, 2019), with interactions inferred 688 

through these indirect observations. Challenges associated with novel methods of classifying 689 

hyperspectral images to delineate among plant species or identify pest-induced plant stress have been 690 

identified as perhaps being more important than challenges associated with the resolution of such 691 

data (Rocchini et al., 2015), which would allow for an improved species-level monitoring of 692 

phenological events. However, the question of how to directly record inter-species interactions 693 

through remote sensing remains, in part due to the relatively coarse-level data obtained from remote 694 

sensing compared to the scale many biotic interactions occur at, suggesting a need for integration of 695 

multiple technologies to address such challenges. 696 

Integration of multiple technologies will provide new forms data on interactions among individuals, 697 

populations, and species, which will then require novel methodologies for analysis. For example, Isbell 698 



and Bidner (2016) used a combination of camera traps, acoustic recorders, and telemetry data to 699 

investigate the interactions between vervet monkeys and leopards in Kenya. Alarm calls recorded 700 

through the acoustic recorders revealed that these occurred most frequently at dusk and dawn, while 701 

camera traps revealed that leopards approached vervets most frequently at night when alarm-calls 702 

were initiated less. Telemetry data then identified the direction of movement of leopards associated 703 

with corresponding alarm calls from the acoustic devices, finding that when alarm calls were present, 704 

leopards moved quickly away up to 200m. Such a novel study identifies a successful framework for 705 

overcoming the individual limitations of each of the technologies, allowing interactions to be 706 

confirmed. However, the authors did not generate any quantification of these interactions, providing 707 

a qualitative description of the measurements. Such approaches could be extended to explore 708 

interactions directly related to phenological events, such as breeding success for prey species. Reviews 709 

are emerging that explore the utility of combining acoustic recorders with camera traps (Buxton et al., 710 

2016), and technological advancements are combining GPS collars with remote cameras to provide 711 

context to interaction (Hebblewhite & Haydon 2010). The International Cooperation for Animal 712 

Research Using Space (ICARUS) has also recently launched, aiming to utilise satellite and tracking 713 

technology to observe the movement of small animals, providing a global approach to animal 714 

movement, which will undoubtedly provide new insights informing phenology and biotic interactions. 715 

Marion et al. (2020) provide an up-to-date review of methods for studying human-wildlife interactions 716 

using camera traps and telemetry data, with recommendations potentially applicable to studying 717 

biotic interactions in phenology research. It is evident that such interdisciplinary approaches are 718 

needed in this emerging research field. 719 

8. Concluding remarks  720 

Our review summarizes the current state of the art for methods employed for the evaluation of 721 

phenology and biotic interactions. We document a noticeable imbalance among both topics; 722 

phenology and biotic interactions, despite the important role biotic interactions have in phenological 723 



processes, and vice versa. While studies investigating biotic interactions in phenology are relatively 724 

scarce, several studies across disparate disciplines have undertaken research, and can be broadly 725 

grouped into four main categories: 1) spatial and temporal asynchronies, 2) biotic factors as 726 

covariates, 3) simulation studies, and 4) interaction indices. Spatial and temporal mismatch studies 727 

have typically used historical datasets to infer changes in biotic interactions that are not measured 728 

from co-occurrence records (Gordo & Sanz, 2005) or SDM projected into future space and time to 729 

investigate changes in distributions among interactor species (Yun et al., 2020). Biotic factors as 730 

covariates studies have focused on trophic or obligated interactions since any change in one interactor 731 

is expected to have impact on the other (Post & Forchamer, 2007). However, experimental studies 732 

testing both abiotic and biotic factors are still rare (Alexander et al., 2015). Simulation studies of 733 

phenological events and biotic interactions are rare and have mainly been developed to test for 734 

changes in phenological events under different climatic scenarios (Bateman et al., 2016) or to evaluate 735 

changes in ecological networks by removing biotic components (Schleuning et al., 2016). Novel 736 

approaches developing interaction indices can help to develop new methodologies to document 737 

phenological events at broad regional scales (Buxton et al., 2016) as well as providing new insights for 738 

the monitoring of biotic interactions. Finally, we introduce a new framework that apportions biotic 739 

interactions into two interconnected factions where research is aimed towards 1) conceptualising 740 

biotic interactions within phenology and 2) modelling biotic interactions within phenology. Such a 741 

framework should provide researchers and practitioners with a basis to investigate interactions and 742 

co-existence successfully and robustly within the wider field of phenology.  743 
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