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Abstract
We propose a method to create higher orbital states of ultracold atoms in the Mott regime of an
optical lattice. This is done by periodically modulating the position of the trap minima (known as
shaking) and controlling the interference term of the lasers creating the lattice. These methods
are combined with techniques of shortcuts to adiabaticity. As an example of this, we show
specifically how to create an anti-ferromagnetic type ordering of angular momentum states of
atoms. The specific pulse sequences are designed using Lewis–Riesenfeld invariants and a four-
level model for each well. The results are compared with numerical simulations of the full
Schrödinger equation.

Keywords: shortcuts to adiabaticity, higher orbital states, optical lattice

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical lattices have proven to be highly versatile systems for
investigating quantum many body physics [1, 2] and building
quantum simulators [3, 4]. One of the first notable results was
the observation of the phase transition between a superfluid
and a Mott-insulator state [5–8], which was achieved for
atoms trapped in the lowest band of the optical lattice.
However, in the solid state, the orbital degree of freedom also
plays an important role in many of the complex phases. For
instance, many models in high temperature superconductivity
involve higher orbital occupations [9–11]. As a result, there
has been a lot of interest recently in the physics of higher
bands of optical lattices [12, 13]. The bosonic Hubbard model
describing the lowest band has been extended to incorporate
higher Bloch bands [14] and Bose–Einstein condensation

with nonzero orbital momenta has been studied [15, 16].
Many exotic phases have been predicted to occur due to the
interplay of interactions and the higher bands [17].

Recently, first experiments have been performed realising
multiorbital systems with ultracold atoms [18, 19] where the
lifetimes of atoms in the excited state have been long enough
to observe tunnelling dynamics. In particular, the formation of
a superfluid in the higher bands has been experimentally
achieved [20, 21]. The condensate formation in the higher
bands has been used to investigate topologically induced
avoided band crossing [22].

Engineering quantum states in higher bands is therefore
of great interest and several techniques have been developed
to manipulate the state of atoms in an optical lattice [13]. One
example of this is periodic modulation of the lattice ampli-
tudes in order to induce controlled transitions to higher orbital
states [23] or transitions to motional eigenstates [24]. Higher
orbitals have also been populated by stimulated Raman
transitions [19].

Another possibility is to shake the lattice in one direction,
i.e., a periodic modulation of the position of the trap minima
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[25, 26]. The idea of shaking a single trap has been previously
used for a variety of other tasks such as vibrational state
inversion of a condensate in a trap [27] and Ramsey inter-
ferometry using the motional states of the condensate [28].
Shaking of an optical lattice in one direction has been
explored theoretically for applications in quantum computing
[29], to create artificial gauge fields [30] and to create higher
orbital states in the lattice [31–33]. The latter has also been
realised experimentally [34–36]. Recently there has been
work which combines both amplitude and position modula-
tion of the lattice potential using optimal control in order to
transfer atoms between different vibrational states [37].

The goal of this paper is to further develop the idea of
shaking an optical lattice in order to create exotic states. This
will be done by combining lattice shaking with techniques
known as ‘Shortcuts to Adiabaticity’ [38]. In general, per-
forming fast and stable state preparation of quantum systems
is very demanding. Adiabatic techniques are a common
choice but have the drawback of needing extremely long
times [39]. This has motivated the development of shortcuts
to adiabaticity, which are protocols which reach fidelities of
adiabatic processes in significantly shorter times. For a review
of these see [40, 41]. An important advantage of these
methods is that they possess a certain freedom to optimise
against noise, systematic error or unwanted transitions to
higher levels [42–46]. In the following, we will show that
combining optical lattice shaking with shortcut techniques
can lead to schemes that are experimentally feasible (only
requiring control over the relative phase and the polarisation
of the lasers) and still have the freedom to be further opti-
mised against the most relevant experimental noise sources.
In particular, we will choose a staggered order angular
momentum state as our target state, which has many physi-
cally interesting properties [14, 16, 17, 47]. This non-trivial
state has an anti-ferromagnetic type ordering, which consist of
each potential well being occupied by a single atom, carrying
alternating angular momentum » (see figure 1). We will
propose a method which, starting from a Mott-insulator state,
prepares such an anti-ferromagnetic type ordering by shaking
the lattice. The state we create can be seen as a stepping stone
towards more complex higher band states and the method we
present is readily extendible to generate other states. It should
be noted that shortcuts have been suggested previously for the
creation of angular momentum in ultracold atom sys-
tems [48, 49].

The remainder of this paper is structured as follows. In
the subsequent section, we outline our model for the shaken
optical lattice. In section 3, we review the method of Lewis–
Riesenfeld invariants. In section 4, we outline the different
schemes used in order to prepare the angular momentum
state. In section 5, we perform numerical simulation of the
full Schrödinger equation for a single atom in one site of an
optical lattice in order to verify our assumptions. In section 6,
we remark on some experimental considerations. Finally in
section 7, we discuss our results.

2. Model

2.1. Optical lattice

We consider a two-dimensional optical lattice (in the x–y
plane) generated by two pairs of counter-propagating laser
beams. We assume a strong confinement in the z direction
such that only dynamics in the x–y plane are relevant. We also
assume that the atoms are in the Mott insulator regime i.e.
each site is occupied by a single atom which is effectively
independent of all the others. One can enter such a regime by
having a large lattice depth so that tunnelling rates are small.
While this means it is sufficient to consider each atom sepa-
rately in the following, it is important to note that all the
operations presented here are global and will affect all the
atoms/sites simultaneously.

The complex amplitude of the electric field of the laser
beams generating the two-dimensional optical lattice is

 



= -

+ -r-

 


x y t k x r t

k y r t

, , sin

i e sin , 1

x

t
y

0

0
i

( ) { [ ( )]}
{ [ ( )]} ( )( )

where rx(t) and ry(t) define the position of the minimum of the
central trap, and can be controlled by a time-dependent phase
difference between the pair of laser beams in each direction.
When these are modulated periodically, it results in a shaking
of the lattice. We will see below that this shaking alone is
insufficient to create the desired quantum state. Therefore, we
assume in addition that the polarisation vectors in the two
directions have an equal amplitude 


0, but with a slowly

varying relative phase r t( ).

Figure 1. Diagram of final state of each atom in the lattice. Each site
contains one atom in state ñ∣ with angular momentum »  .
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The potential felt by an atom in the two-dimensional
optical lattice is given by [2]

*


m=
D

 
V x y x y t,

1

4
, , , 22( ) ∣ · ( )∣ ( )

where m

is the transition dipole moment of the atom and Δ

(assumed to be large) is the detuning of the laser with respect
to the atomic transition frequency. Defining the lattice depth
as

*
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V
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4
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the potential can be written as

= - + -
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where r=rV t V t2 sin0( ) [ ( )] is the amplitude of the inter-
ference term, restricted to the interval - V V2 , 20 0[ ]. Without
any loss of generality, we assume that the laser is blue
detuned (D > 0) so that V0 is positive.

We now change from the lab frame to the lattice frame
(see appendix A for details), where the Hamiltonian takes the
form

= +H t H H t , 5lattice 0 1( ) ( ) ( )


= -  + +H
m

V kx V ky
2

sin sin , 60

2
2

0
2

0
2( ) ( ) ( )

= + + rH t mr t x mr t y V t kx ky¨ ¨ sin sin . 7x y1( ) ( ) ( ) ( ) ( ) ( ) ( )

It is worth noting that without the Vρ term, the Hamiltonian
would be separable in x and y coordinates and therefore be
unable to produce an angular momentum state (which is not
separable in x and y). We will assume the shaking of the
lattice to be of the form

w
w

=-
=

r t g t t

r t g t t

cos ,

sin , 8
x x x

y y y

( ) ( ) ( )
( ) ( ) ( ) ( )

where g tx y, ( ) are the time-dependent amplitudes and wx y, are
the frequencies. By assuming that g tx y, ( ) vary slowly with
time, H t1( ) simplifies to

= + + rH t f t x f t y V t kx kysin sin , 9x y1( ) ( ) ( ) ( ) ( ) ( ) ( )

where

w w=f t m g t tcos , 10x x x x
2( ) ( ) ( ) ( )

w w= -f t m g t tsin . 11y y y y
2( ) ( ) ( ) ( )

In this case the shaking in the y direction is p 2 out of phase
with the shaking in x direction.

2.2. Four-level approximation

Our aim is to derive the control schemes, i.e., the time
dependence of the functions rx(t), ry(t) and rV t( ), which will
lead to a desired final state. To do this we will now derive a
simplified model of the system by concentrating on a single
atom in a single well of the lattice defined by  -ℓ x ℓ and

 -ℓ y ℓ, where p=ℓ k2 is the lattice constant. The

situation where the neighbouring lattice potential wells can be
neglected is very well realised in the Mott insulator regime.

Furthermore, we assume that the dynamics can be
effectively described by a four-level approximation, con-
sidering only the four most relevant eigenstates of H0 loca-
lised in the central site, ñ ñ ñ ñ00 , 10 , 01 , 11{∣ ∣ ∣ ∣ } (see figure 2).
The validity of this and all subsequent approximations will be
checked later by comparing with the numerical integration of
the full Schrödinger equation. In coordinate representation,
these basis states are given by

á ñ = G G

r ij x y , 12i j∣ ( ) ( ) ( )

where G x0( ) and G x1( ) are, respectively, the localised ground
and first excited states of a one-dimensional unperturbed
optical lattice site. Note that this is only possible because H0

is separable in x and y. Their respective energies are
w=Eij ij, where < = <E E E E00 01 10 11.

Let us now define a unitary transformation of the form

= ñá + ñá

+ ñá + ñá

w w w w w

w w
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under which the Hamiltonian changes as
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Figure 2. Energy level diagram for the four chosen energy
eigenstates of H0 and the various couplings between them.
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where we have defined

òg = G G
-
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Note that the symmetry of the unperturbed lattice gives
w w w= -211 10 00.

We now assume that the shaking of the lattice in both
directions is done on resonance, i.e., w w w= = -x y d . This
allows to write the four-level Hamiltonian as


= W + ñá
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with the couplings
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By making a rotating wave approximation, where the terms
containing we t2i d average to 0, we arrive at our final four-
level Hamiltonian (see figure 2)

⎛
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where we have used the following representation of the states
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It is important to note that state ñ11∣ can not be neglected and
should be included in the approximation, as it is resonantly
coupled to ñ01∣ and ñ10∣ .

2.3. Initial and target states

Our goal is to perform a state transfer from the ground state
ñ00∣ to an angular momentum state of the form

ñ = ñ  ñ
1

2
10 i 01 . 24∣ (∣ ∣ ) ( )

If the harmonic approximation holds, ñ∣ are eigenvectors of

the z component of the angular momentum operator Lz with
eigenvalues  .

One can see that the interference term in (7), which
includes rV , alternates sign at each lattice site in a checker-
board pattern. In the case where W = 0y , this can be seen as a
change of basis ñ  - ñ01 01∣ ∣ and ñ  - ñ11 11∣ ∣ and hence
one obtains either +ñ∣ or -ñ∣ in alternating sites, leading to the
pattern in figure 1. For our schemes we will assume that
W = 0y , although more general schemes might be derived in a
similar way.

In the following, we will use the technique of Lewis–
Riesenfeld invariants to derive shortcut schemes to implement
the state transfer ñ  - ñ00∣ ∣ . An advantage of this method
is that one still has a certain freedom to optimise the stability
of the schemes against the most relevant error sources in a
specific setting [42–46].

3. Lewis–Riesenfeld invariants for the four-level
system

One possible technique to derive shortcuts to adiabaticity is
based on Lewis–Riesenfeld invariants [50]. A Lewis–
Riesenfeld invariant for a Hamiltonian H(t) is a Hermitian
operator I(t) which satisfies



¶
¶

+ =
I

t
H I

i
, 0. 25[ ] ( )

Since I(t) is a constant of motion it can be shown that it has
time-independent eigenvalues and that a particular solution of
the Schrödinger equation

 y y
¶
¶

ñ = ñ
t

t H t ti , 26n n∣ ( ) ( )∣ ( ) ( )

can be written as

y fñ = ñbt te . 27n
t

n
i n∣ ( ) ∣ ( ) ( )( )

Here f ñtn∣ ( ) is an instantaneous eigenstate of I(t) and


òb f f= á ¶ - ñt s H s s s

1
i d 28n

t

n s n
0

( ) ( )∣[ ( )]∣ ( ) ( )

is the Lewis–Riesenfeld phase. Hence a general solution to
the Schrödinger equation can be written as

åy yñ = ñt c t , 29
n

n n∣ ( ) ∣ ( ) ( )

where the cn are independent of time.
The idea behind inverse engineering is that instead of

following the instantaneous eigenstate of the Hamiltonian (as
in the adiabatic case), one follows the instantaneous eigen-
state of the invariant (up to the Lewis–Riesenfeld phase).
Demanding that the invariant and the Hamiltonian commute
at the start and the end of the process i.e.,

= =I H I T H T0 , 0 , 0[ ( ) ( )] [ ( ) ( )] , one ensures that the
eigenstates of the invariant and the Hamiltonian coincide at
initial and final times. This leaves the freedom to choose how
the state evolves in the intermediate time and then use (25) to
determine how the Hamiltonian should vary with time to
ensure such a state evolution.
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In the following we will derive the invariant for the
Hamiltonian in (22) with W = 0y . For a more detailed review
of Lewis–Riesenfeld invariants for four level systems see
[51]. Following the general method proposed in [52, 53], we
start with a closed Lie algebra G G G G, , ,1 2 3 4{ } of Hermitian
operators
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This algebra was chosen so that the 4-level Hamiltonian and
the associated Lewis–Riesenfeld invariant can now be written
as a linear combination of these operators
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where a Îti ( ) . Inserting this into (25), we get that the
coupling strengths are given by

a
a

W = -t
t

t
, 33x

2

3
( ) ˙ ( )

( )
( )

a
a

W =r t
t

t

2
, 341

3
( ) ˙ ( )

( )
( )

and that

a x a a a= - + +t C t t C t2 , 353 2 1
2

2
2

1 2( ) [ ( ) ( )] ( ) ( )

a a= -t C t , 364 1 2( ) ( ) ( )

where ÎC1,2 are constants, x = 1 and a at t,1 2( ) ( ) are
still arbitrary functions.

In order to be useful it is important to know the eigen-
values ki and eigenvectors f ñti∣ ( ) of the invariant, i.e.
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where we have defined
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Note that ÎQ B, and * = -+ -D D . We also assume a
nonzero Q so that none of the above quantities diverge.

Finally, the Lewis–Riesenfeld phases [50] are given by
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t t t t

t t t t

, ,

, , 42
1 2

3 4

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

where we have defined

ò

c

a a a a
a x a a a
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+   + +

 - + - -
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2
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2
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2
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[ ( ) ]

( ) [ ( ) ]
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4. Shaking schemes for preparing an angular
momentum state

In this section, we present two schemes which allow us to
prepare our target state. In order to design the scheme we start
by constructing a solution to the Schrödinger equation as a
linear combination of two of the eigenvectors of the invariant

y f f

f f

ñ = - ñ + ñ

= - ñ + ñ

b b

b b-

t t t

t t

1

2
e e

1

2
e e . 44

t t

t t

1
i

4
i

1
i

4
i

1 4

4 4

∣ ( ) [ ∣ ( ) ∣ ( ) ]

[ ∣ ( ) ∣ ( ) ] ( )

( ) ( )

( ) ( )

The initial and final state of the system are fixed as

y ñ = ñ0 00 , 45∣ ( ) ∣ ( )

y ñ = - ñT , 46∣ ( ) ∣ ( )

which leads to the boundary conditions

a a= = -C Q0 0, 0 2, 471 2 1( ) ( ) ( ) ( )

a a b= = + =T T C Q T0, 2, 0, 481 2 1 4( ) ( ) ( ) ( ) ( )

in the limits t 0 and t T .
We also demand that Wx, Wr and their first derivatives

with respect to time are zero at the start and the end of the
process. This requires that all the derivatives of a t1( ) and
a t2 ( ) up to fourth order are zero at t=0 and t=T, which
gives 10 constraints to be fulfilled by a t1( ) and also 10
constraints for a t2 ( ).
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4.1. Polynomial scheme

A convenient choice of ansatz for a t1( ) and a t2 ( ) which
fulfills all the constraints is given by polynomials of the form

a

a

= - + - + - +

= - + -

+ - +

sT W s s s s s s

sT C Q Qs Qs

Qs Qs Qs

1024 5 10 10 5 ,
1

2
70 315

540 420 126 , 49

1
10 9 8 7 6 5

2 1
9 8

7 6 5

( ) ( )

( ) ( )

( )

where s = t/T. To avoid the trivial solution a =sT 01( ) we
also demand a = ¹T W2 01( ) . We are now allowed to
arbitrarily pick =C 101 and =C 112 so that ¹Q 0 and a t3 ( )
is real for all times. We also set x = +1 and then numerically
calculate W (» -2.74) so that b =T 04 ( ) . The coupling
strengths W tx ( ) and Wr t( ) can be calculated from
equations (33) and (34), and are shown in figure 3 (dashed
lines).

Let us underline again that this is just one possible choice
for the auxiliary functions a t1( ) and a t2 ( ) (and the constants
C1 and C2). The advantage of this inverse-engineering ansatz
is that it provides a lot of freedom in choosing these functions
which can be used for further optimisations [42].

4.2. Piecewise scheme

The second example we introduce to generate our target state
is a simple piecewise scheme. The idea is to first perform a π
pulse in Wx (of duration tS) which transfers all the population
from ñ00∣ to ñ10∣ , followed by a p 2 pulse in Wr (of duration
T − tS) which leads to the superposition -ñ∣ . This method has
the advantage that the state ñ11∣ is never populated, which
reduces the chance of losing population to higher levels. The
amplitudes of the couplings are determined by tS and are

given by (see figure 3 (solid lines))

⎪
⎪

⎪

⎪

⎧
⎨
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⎧
⎨
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Since Wx and Wr are a π pulse and p 2 pulse respectively, we

have that ò pW =t td
T

x0
( ) and ò pW =r t td 2

T

0
( ) .

This can be seen as a particular case of schemes derived
using invariant-based inverse engineering. In this case a t1( )
and a t2 ( ) are given by

⎧
⎨⎪
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⎤
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⎤
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t
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2

2

1

2 1 1
2

2
2

0

1

2 1 1
2

2
2

S

( ) ( )

( )

( )

( ) ( )

and x = -1. Inserting equations (51) in equations (33) and
(34) gives back equations (50). The required boundary con-
ditions of a1 and a2 are fulfilled in the limit   +0 .

5. Numerical simulations of the shaking schemes

The presented schemes result in the desired state transfer
exactly in the framework of the four-level Hamiltonian. In
order to check the validity of all the approximations we have
made to reach this model, we present below simulations of the
full Schrödinger equation with Hamiltonian (5) in coordinate
space for an atom initially in the ground state of a single
lattice site.

The evolution is performed by means of the Fourier split-
operator method [54], where the initial ground state is found
by imaginary-time evolution. In order to make all plots

dimensionless we define w = V k

m

2 0
2

, which is the frequency

of the harmonic oscillator potential which approximates each
well of the optical lattice. Note that the previously defined
w w w= -d 10 00 converges to ω for increasing lattice depth
V0. The rotating wave approximation and the slowly–varying
shaking amplitude approximation can be combined in the
condition w w»- -T d

1 1.
As we have assumed to be in the Mott-insulator regime,

we restrict our simulations to the dynamics of an atom in a
single well. We have checked the validity of this approx-
imation by simulating our schemes in a 3×3 lattice. With
the typical parameters used below, the shaking causes only

Figure 3. Coupling strengths against time for the two different
schemes. Polynomial scheme:Wx (blue, dashed line) and Wr (orange,
dashed line). Piecewise scheme ( =t T0.75S ): Wx (blue, solid line)
and Wr (orange, solid line).
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about a 1% leakage of occupation probability into the
neighbouring traps.

The control parameters in our system are the shaking
function in the x direction, rx(t) (as stated above, we keep

=r t 0y ( ) ), and the relative phase between the polarisation
vectors in the x and y directions, r t( ). They relate to the
couplings as



w g
w= - Wr t

m
t tcos , 52x

d
x x2

1

( ) ( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟


r

g
= Wrt

V
tarcsin

4
. 53

0 2
( ) ( ) ( )

The resulting functions for both the polynomial process and
the piecewise process are shown in figure 4. One can see that
the required amplitude of the shaking is only a small fraction
of the lattice constant.

The results of the numerical simulation of both schemes
are shown in figure 5, together with the ideal populations
based on the four-level Hamiltonian in (22). Using the
polynomial scheme, even for a short (relative to the time scale
of the inverse trap frequency) total time w= -T 100 1

(figure 5(a)), the final population in the desired state is already
greater than 90%, with about 5% of population leaking to
states outside of the four-level model. For a longer total time
T (figure 5(b)), the agreement between the four-level

Hamiltonian and the full dynamics is almost perfect, ending
up with nearly 100% in the desired state.

Similarly for the piecewise scheme, the dynamics for a
short total time (figure 5(c)) leads to oscillations and a non-
perfect population of the target state, and approximately a
10% population of higher lying states. However, for longer T
(figure 5(d)), the final fidelity is nearly 100%. Note that since
the second pulse Wr in this scheme does not require the
rotating wave approximation, it is beneficial to give the first
pulse a longer duration. Hence the choice of =t T0.75S .

The fidelity of both schemes for different total times T
and different lattice depths V0 is shown in figure 6; the lattice
constant p=ℓ k2 is varied in such a way that the trapping

frequency w = V k

m

2 0
2

is kept fixed. From this we can see

again how for a larger T we achieve higher fidelities, which is
consistent with the rotating wave approximation and the
slowly varying shaking amplitude approximation becoming
more valid. We can also see that the fidelities decrease for
deeper lattices because as the well becomes deeper it becomes
more harmonic and hence has equally spaced energy levels.
This leads to resonant coupling to higher energy levels (see
appendix B for details).

In the following, we want to examine the stability of the
schemes. In figure 7(a), we show the resonance curve for both
processes, i.e., the fidelity against the detuning of the shaking
frequency with respect to the frequency difference of the first
two levels. We compare the four-level model (not assuming
w w= -x d) against the full Schrödinger equation dynamics.
As expected, one achieves high fidelity when the shaking
frequency is on resonance. Perhaps surprisingly one can note
that the highest fidelity of the full dynamics is achieved for a
slightly off resonant shaking frequency. This is not true in the
four-level model, as the corresponding curves have their
maximum at resonance. The reason for this is the presence of
an off resonant coupling to the state ñ20∣ (which is not present
in the four-level model). By slightly increasing the detuning
of Wx with respect to the ñ « ñ00 10∣ ∣ transition, an even
greater detuning in the coupling between ñ10∣ and ñ20∣ is
created, leading to less leakage to these higher states. We can
verify this by considering a six-level model (see appendix B),
which can be seen to agree with the full Schrödinger equation
dynamics (see figure 7(b)).

Finally, we remark once again that in the case of more
lattice sites, each containing a single atom, the schemes would
result in the pattern in figure 1. As a brief aside, we now
consider a single atom whose initial state is now a super-
position of all ground states of all 9 wells of a 3×3 lattice;
the single atom is delocalised across the entire lattice.
Applying here the piecewise shaking scheme, one reaches the
final state represented in figure 8. It can be clearly seen that a
checkerboard pattern of left- and right-handed angular
momentum states is produced, similar to figure 1. Note that
we have adjusted the (physically irrelevant) global phase such
that the branch cut is horizontal in this representation of the
wave function. In this case, we have produced a final state for
a single atom in which its position is entangled with the sign
of the angular momentum in each well.

Figure 4. Shaking function rx(t) with w w= -x d (thin, blue line) and
relative phase between the polarisation vectors r t( ) (thick, orange
line) versus time for (a) the polynomial scheme and (b) the piecewise
scheme ( =t T0.75S ). w=V 30 , w= -T 500 1 and p=ℓ k2 is the
lattice constant.
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Figure 5. Populations against time calculated using the four-level approximation (dashed lines) and the full Schrödinger equation (solid lines)
with w=V 30 for the polynomial process with (a) w= -T 100 1 and (b) w= -T 500 1 and the piecewise process ( =t T0.75S ) with (c)

w= -T 100 1 and (d) w= -T 500 1. Colours correspond to: yá ñt 00 2∣ ( )∣ ∣ (red), yá ñt 10 2∣ ( )∣ ∣ (blue), yá ñt 01 2∣ ( )∣ ∣ (green), yá ñt 11 2∣ ( )∣ ∣ (orange),
yá -ñt 2∣ ( )∣ ∣ (purple), and populations of higher levels, i.e., y- å á ñ= t ij1 i j, 0

1 2∣ ( )∣ ∣ (black).

Figure 6. Fidelity yá -ñT 2∣ ( )∣ ∣ against total time T for different lattice depths V0 for a fixed trapping frequency ω. Points joined with lines:
w=V 20 (red circles), w=V 2.50 (blue squares), w=V 30 (green diamonds) and w=V 3.50 (black triangles); (a) polynomial scheme, (b)

piecewise scheme ( =t T0.75S ).
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6. Experimental considerations

There are several options for experimentally implementing
such a system depending on how one creates the two counter
propagating beams for each direction. One option is to use a
beam and a retro-reflecting mirror, in which case one can
induce the shaking by mounting the mirror on a piezo-electric
actuator which will then oscillate according to rx(t) [55–57].
In the case where the beam is split in two, one can introduce a
small frequency difference nD t( ) between the beams by
using acousto-optic modulators to make the lattice move
with a velocity n lD t 2( ) , where λ is the wavelength of the
laser [57, 58]. The shaking is then given by =r tx ( )

ò Dl t

2 0
n t td( ) .

Parameter values of w =V 30 ( ) and w =T 300 could
for example be reached using 133Cs atoms with l = 1064 nm
lasers and a lattice depth of E36 r, where

=Er
k

m2

2 2

is the
recoil energy. The shaking frequency required would be
w p »2 14 kHzd ( ) and the total time required for the
operation would be »T 3 ms. Under the assumption that
V Er0 (i.e. that the well is deep), one can approximate the

ground state tunnelling rate J0 as [1, 59]

⎛
⎝⎜

⎞
⎠⎟p

» -J
E V

E

4
e . 54r

r

V E
0

0
3 4

2 r0 ( )

For our scheme to work, the operation must be performed
much faster than this tunnelling time, i.e, we want

 »T J 589 ms0 for the parameter values above. If one
calculates the tunnelling rates using exact band structure
calculations [14], one obtains a ground state tunnelling time
of  »J 600 ms0 and an excited state tunnelling time of
 »J 17 ms1 . Being in the Mott insulator ground state (for
133Cs) corresponds to a potential depth of about E22 r [6] or
greater. Being in the Mott state for both the ground state and
the first excited state (i.e. atoms are localised in one well,
regardless of being in the ground or first excited state) will not
be affected by the shaking, as it has been shown both theo-
retically [60] and experimentally [61] that the shaking
effectively reduces the tunnelling strength to the neighbouring
wells. In addition, the anharmonic nature of the potential
inhibits first order decay processes whereby two atoms in the
first excited state collide, promoting one to the second excited
state and the other to the ground state [14].

7. Conclusions

We have developed two schemes to prepare an exotic lattice
state, namely a staggered order angular momentum state,
starting from a Mott insulator state in an optical lattice. Both
of these use shaking of the optical lattice together with a

Figure 7. Fidelity yá -ñT 2∣ ( )∣ ∣ against the deviation from resonant shaking w w w+x d( ) for w=V 30 and w= -T 300 1 (resonant shaking
corresponds to w w= -x d). Polynomial scheme (red) and piecewise scheme with =t T0.75S (blue). Points correspond to the full Schrödinger
equation, dashed lines to the 4-level model and lines to the 6-level model (B.2).

Figure 8. Final state after applying the piecewise process with
w=V 30 , w= -T 300 1 and =t T0.75S . Shown is

Y Yx y T x y T, , arg , ,∣ ( )∣ · [ ( )], with the black dots indicating the
minima of the lattice wells.
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modulation of the interference term. The flexibility of the
invariant-based approach makes it possible to extend the
scheme presented in multiple directions. For instance, one
could further optimise it to combat the most relevant errors in
a given experimental implementation [42]. Since the atoms
are in the Mott-insulator regime the effects of atoms tunnel-
ling into neighbouring wells and atom–atom interactions have
been neglected. Nevertheless, these effects could possibly
play a role in lattices with imperfect filling factors. It would
be beneficial to generalise our scheme to become insensitive
to such imperfections.

This work could be extended in several interesting
directions. One possibility would be to prepare a state with
equal angular momentum per lattice site. This could be done
by additionally shaking the lattice in the y direction resulting
in a nonzero Wy term. Another would be to apply the process
we describe above to a single delocalised atom, which would
result in an entangled state where the well position is entan-
gled with the sign of the angular momentum. Finally, atoms
with angular momentum have recently been shown to be
useful for generating complex tunnelling frequencies [62].
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Appendix A. Transformation into lattice frame

To transform our Hamiltonian in the lab frame

= + -
  

H t
p

m
V r R t t

2
, , A.1lab

2

0( ) ( ( ) ) ( )

to the lattice frame we follow the procedure outlined in [57].
The relationship between the two Hamiltonians is given by a
unitary transformation ,

   = - ¶H t H i , A.2tlattice lab( ) ( )† †

which can be expressed as three separate unitary operators
 = U U U3 2 1. These are a translation operator

⎡
⎣⎢

⎤
⎦⎥

=
 

U R t pexp
i

, A.31 0 ( ) ( )

a momentum shift operator

⎡
⎣⎢

⎤
⎦⎥

= -
 

U mR t rexp
i

, A.42 0
˙ ( ) ( )

and an operator that removes a time-dependent energy shift
from the Hamiltonian

⎡
⎣⎢

⎤
⎦⎥ ò= - ¢ ¢


U

m
t R texp

i

2
d . A.5

t

3
0

0
2˙ ( ) ( )

From this we arrive at the Hamiltonian in the lattice frame

= + +
   

H t
p

m
V r t mR t r

2
, ¨ . A.6lattice

2

0( ) ( ) ( ) ( )

We impose that = =
 
R R T0 00 0( ) ( ) and =


R 00
˙ ( )

=

R T 00
˙ ( ) , such that  becomes the identity (up to a global
phase) at the initial and final times.

Appendix B. Six-level approximation

If one were to include more levels to approximate the
Hamiltonian (5), the natural choice would be ñ20∣ and ñ02∣ . A
six-level Hamiltonian to describe our system can be obtained
following a derivation similar to the one presented in
section 2.2, but using the unitary operator

= ñá + ñá

+ ñá

+ ñá + ñá

+ ñá

w w w

w w w

w w

w

- - +

- + -

- -
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U t e 10 10 e 00 00

e 01 01
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e 02 02 B.1

t t

t

t t

t

i i

i

i i

i

x

x y

10 10

10

11 20

02

( ) ∣ ∣ ∣ ∣
∣ ∣

∣ ∣ ∣ ∣
∣ ∣ ( )

( )

( )

and setting W = 0y . One then arrives at the Hamiltonian

⎛

⎝
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⎞
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in the ordered basis ñ ñ ñ ñ ñ ñ10 , 00 , 01 , 11 , 20 , 02{∣ ∣ ∣ ∣ ∣ ∣ },
where

⎛
⎝⎜

⎞
⎠⎟q

w
w

= + w 1 e , B.3x
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d

t
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2i x( ) ( )
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- -x kx x xsin d
1
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2
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One can see that for deep (i.e. harmonic) potential wells
w w w- = - d10 20 and w w=20 11. For w w= -x d and in the
rotating-wave approximation, one gets

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
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W W W
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W W

W W W

W W
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0 0 2 0

0 0 0 0 0
0 0 0 0

0 0 0 2 2
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. B.6L

x x

x

x

x

x

6 ( )

This clearly shows that for deep lattices a strong resonant
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coupling to levels ñ20∣ and ñ02∣ exists, and therefore the four-
level approximation becomes invalid in this limit.
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