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ABSTRACT
A changing microbiome has been linked to biological aging in mice and humans,
suggesting a possible role of gut flora in pathogenic aging phenotypes. Many bat
species have exceptional longevity given their body size and some can live up to ten
times longer than expected with little signs of aging. This study explores the anal
microbiome of the exceptionally long-lived Myotis myotis bat, investigating bacterial
composition in both adult and juvenile bats to determine if the microbiome changes
with age in a wild, long-lived non-model organism, using non-lethal sampling. The anal
microbiome was sequenced using metabarcoding in more than 50 individuals, finding
no significant difference between the composition of juvenile and adult bats, suggesting
that age-related microbial shifts previously observed in other mammals may not be
present in Myotis myotis. Functional gene categories, inferred from metabarcoding
data, expressed in the M. myotis microbiome were categorized identifying pathways
involved in metabolism, DNA repair and oxidative phosphorylation. We highlight
an abundance of ‘Proteobacteria’ relative to other mammals, with similar patterns
compared to other bat microbiomes. Our results suggest that M. myotis may have a
relatively stable, unchanging microbiome playing a role in their extended ‘health spans’
with the advancement of age, and suggest a potential link between microbiome and
sustained, powered flight.

Subjects Evolutionary Studies, Microbiology, Zoology
Keywords Microbiome, Aging, Bats,Myotis myotis, Metabolism, Proteobacteria, Comparative
Biology

INTRODUCTION
The importance of the gut microbiome, the collection of microflora or microbiota
inhabiting various regions of the gastro-intestinal tract, has become apparent in recent
years. It is known to facilitate the fermentation of nutrients, such as carbohydrates,
into short chain fatty acids (e.g., butyrate) for use by the host (Flint et al., 2012). Many
vitamins are also synthesized by the microbiome such as vitamin B7, B12 and Vitamin A,
which may be otherwise unavailable (O’Hara & Shanahan, 2006). In addition to nutrition,
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more evidence is accumulating pointing to ‘‘microbiome-wide associations’’ with health
and disease in humans and other hosts (Gilbert et al., 2016), and the composition of the
mammalian gut microbiome has been linked to the process of biological aging (Biagi et
al., 2016; Mello et al., 2016). Aging is characterized by the progressive decline of function,
increased frailty and an increase in chronic disease (López-Otín et al., 2013). Studies of the
humanmicrobiome have reported shifts in microbial composition across different stages of
life, with a high degree of variability at the two extremes of infancy and old age (Saraswati
& Sitaraman, 2015). A shift from a microbiome that deals exclusively with breast milk
in nursing infants to a more diverse microbiome that can metabolize a wider range of
nutrition (Yatsunenko et al., 2012) is observed in early to middle stages of life. In later life,
a reduction of lactobacilli and an increase of potentially pathogenic Enterobacteriaceae
have been observed in frail individuals (Van Tongeren et al., 2005). This accumulation of
pathogenic flora has been associated with a range of clinical problems such as infection,
cancer and deficiencies in immune response (Atarashi et al., 2013; Saraswati & Sitaraman,
2015). Similar microbial shifts are observed in mice, such as the decrease in bacteria that
synthesize vitamin B12 in older age cohorts, leading to overall changes in microbiome
composition and function in age related frailty (Langille et al., 2014) implying a general
trend in the aging gut. The question of whether or not such microbial shifts are a symptom
rather than a driver of aging has yet to be conclusively answered.

Bats are exceptional mammals not only because of their capability of powered flight but
also due to the diverse range of life histories they exhibit, with exceptional longevity
being of particular interest (Austad, 2010). Within bats, a number of species in the
family Vespertilionidae demonstrate extreme longevity, living up to ten times longer
than expected given their body size (Austad, 2010; Shen et al., 2010). Surviving in the wild
requires maintaining agility; speed and high frequency hearing to capture prey on a daily
basis. Therefore, a long lifespan in bats coincides with a long health-span. Elucidating the
changes that occur in microbial composition over time in these exceptionally long-lived
organisms will shed light on the role of the microbiome in extended health-spans. While
previous studies of bat microbiomes have focused on the effects of phylogeny and diet, this
is the first bat microbiome study to focus on aging.

In this study, we have used DNA metabarcoding of the 16S rRNA gene and high-
throughput sequencing to characterize the structure and function of the anal microbiome
from 52 wild, exceptionally long–lived insectivorousMyotis myotis bats (maximum lifespan
(MLS) 37 years Gaisler et al., 2003) using a non-lethal sampling method. M. myotis makes
an ideal comparison to current mouse microbiome models as these bats are similar in body
size but can live up to 32 years longer. We show that there is no obvious shift in bacterial
composition between juvenile and the early stages of adulthood in M. myotis, as has been
observed in other mammals. We find that the highest number of pathways expressed in bat
metagenomes are involved in metabolism, energy consumption, DNA repair and oxidative
phosphorylation, all reactions that may play a role in the use of powered flight and aging,
suggesting a potential interaction between long-term microbiome stability, lifespan and
powered flight. Amicrobiome that does not change over timemay have profound effects on
age-related infections and immune deficiencies, opening up new avenues of microbiome
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research in non-model organisms. Finally, we compare the relative abundance of major
bacterial phyla in M. myotis with those of other bats and mammals, highlighting the high
abundance of ‘Proteobacteria’ in Chiroptera relative to other mammals.

MATERIALS AND METHODS
Sample collection
All field procedures were carried out in accordance with the ethical guidelines and permits
delivered by ’Arrêté’ by the Préfet du Morbihan, Bretagne awarded to Eric Petit, Frédéric
Touzalin and Sébastien Puechmaille for the time period 15 June-15 September 2013–2017.
Full ethics approval and permission (AREC-13-38-Teeling) for capture and field sampling
was awarded by the University College Dublin ethics committee. M. myotis were sampled
in western France, (Brittany), July 2013, from four large roost locations: Béganne (Beg),
Férel (Fer), La Roche-Bernard (LRB) and Noyal-Muzillac (NM). The maximum distance
between any of the four sites is roughly 24 km. Bats were caught in custom harp traps while
leaving their roost (hence typically before foraging/feeding) and were initially placed in
individual cloth bags (Huang et al., 2016). Each bat was identified by a unique transponder
inserted under the skin when the bat was first captured. If captured and transponded
as a juvenile (∼<6 weeks old), indicated by the lack of fused finger bones, the exact age
at recapture was known. Validated weaning status could not be determined for juvenile
bats, however the sampled juveniles were capable of flight, suggesting that the majority
were partially weaned, but opportunistic suckling cannot be ruled out. If caught and
transponded for the first time as an adult, years since first capture was noted and a plus
sign indicated the individual was older than age estimated from first capture. For each bat,
a Copan FLOQSwabTM swab was gently inserted into the anus and removed. The swab
was then placed into an Eppendorf and immediately flash frozen in liquid nitrogen. Swabs
were subsequently place in ethanol during transport for sequencing.

Categorical datasets
Sample age cohorts ranged from ‘0 years’ to ‘ 4+ years’, with individuals whose exact
age was unknown but minimum age could be determined denoted by ‘+’. To investigate
differences in anal flora between juvenile and adult bats, samples were categorized into
a number of age data sets. Age dataset 1 contained known ages only (n= 29). When
comparing adults and definitive juveniles, age dataset 2 categorized bats that were 1 or
more years old as adults (n= 33), while 0 year olds were considered juvenile (n= 19). In
age dataset 3, the cut–off for juvenile was increased from 0 to 1 year (juvenile n= 27),
to investigate if the microbiome of a 1 year old M. myotis bat transitioning from juvenile
to adult had an influence on any age associated microbial shifts that might be observed.
For age dataset 3, ‘ 1+’ individuals were excluded. Finally, age dataset 4 contained all ages
as individual categories (Table 1). Juvenile to adult age ranges cover the entire lifespan
of a mouse or similar sized mammal (0–4 years). In addition to age, bat samples were
categorized based on gender and location of collection (sample site was not catalogued for
two individuals, MMY247 andMMY51, which were instead referred to as ‘site undefined’).
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Table 1 Sample information. Sample (MMY+ sample number) metadata describing different numerical and categorical variables are displayed.
The number of reads sequenced for each sample, and subsequent alpha diversity measures (PDWhole tree and observed OTUs) are counted. Age
datasets were used to compare individual ages and to compare juveniles and adults.

#Sample ID Sex Age
dataset 1

Age
dataset 2

Age
dataset 3

Age
dataset 4

Site # Reads PD
whole tree

Observed
OTUs

MMY1028 F 0 Juvenile Juvenile 0 LRB 75,913 7.81 77
MMY144 F NA Adult Adult 4+ Beg 30,005 25.03 242
MMY18 M NA Adult NA 1+ LRB 136,568 28.16 421
MMY19 M NA Adult NA 1+ LRB 243 26.59 352
MMY21 F NA Adult Adult 2+ LRB 684 29.75 446
MMY230 F 3 Adult Adult 3 Fer 43,623 15.28 184
MMY231 M NA Adult Adult 3+ Fer 1911 17.65 183
MMY233 F NA Adult Adult 3+ Fer 52,169 18.68 289
MMY247 F NA Adult Adult 4+ Site undefined 58,855 25.07 322
MMY272 F 1 Adult Juvenile 1 Fer 275 31.98 470
MMY329 F 1 Adult Juvenile 1 Fer 140,485 33.53 411
MMY332 M 0 Juvenile Juvenile 0 Fer 97 17.14 182
MMY387 M NA Adult Adult 2+ NM 107,414 36.85 560
MMY388 F NA Adult NA 1+ NM 104,612 19.21 280
MMY391 M NA Adult Adult 2+ NM 42,732 10.92 114
MMY51 F NA Adult NA 1+ Site undefined 66,819 7.61 103
MMY519 F NA Adult NA 1+ NM 49,322 30.86 489
MMY52 F NA Adult NA 1+ LRB 10,971 15.55 141
MMY524 M 1 Adult Juvenile 1 NM 52,755 22.97 313
MMY540 F NA Adult NA 1+ NM 586 32.86 441
MMY573 F NA Adult Adult 4+ Beg 134 27.65 350
MMY583 F 0 Juvenile Juvenile 0 Beg 76,738 23.03 368
MMY589 F 0 Juvenile Juvenile 0 Beg 128,039 21.09 179
MMY729 M 1 Adult Juvenile 1 Fer 85,598 15.35 213
MMY730 F 1 Adult Juvenile 1 Fer 165,854 14.01 108
MMY731 F NA Adult Adult 2+ Fer 305 23.40 315
MMY732 F NA Adult Adult 3+ Fer 1,173 10.60 136
MMY736 M 3 Adult Adult 3 Fer 52 30.48 428
MMY750 M NA Adult NA 1+ Fer 46,504 7.55 163
MMY780 F 0 Juvenile Juvenile 0 NM 34,536 27.65 399
MMY781 M 0 Juvenile Juvenile 0 NM 44,487 18.57 165
MMY808 M NA Adult Adult 2+ NM 79,976 38.83 554
MMY810 M NA Adult Adult 2+ NM 498 17.23 202
MMY835 M 1 Adult Juvenile 1 LRB 91,311 9.32 84
MMY840 M NA Adult Adult 2+ LRB 55,681 10.791 137
MMY841 F 0 Juvenile Juvenile 0 LRB 44,925 20.93 267
MMY860 F 1 Adult Juvenile 1 NM 39,929 26.58 361

(continued on next page)
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Table 1 (continued)

#Sample ID Sex Age
dataset 1

Age
dataset 2

Age
dataset 3

Age
dataset 4

Site # Reads PD
whole tree

Observed
OTUs

MMY863 M 0 Juvenile Juvenile 0 NM 106,015 21.11 312
MMY864 F NA Adult Adult 2+ NM 9,608 25.91 302
MMY865 M 0 Juvenile Juvenile 0 NM 62,705 25.22 353
MMY883 F 0 Juvenile Juvenile 0 NM 59,037 47.05 747
MMY887 F 0 Juvenile Juvenile 0 LRB 99,393 7.81 77
MMY893 F NA Adult NA 1+ NM 56,760 25.03 242
MMY894 M 0 Juvenile Juvenile 0 NM 82,872 28.16 421
MMY930 M 0 Juvenile Juvenile 0 LRB 83,416 26.59 352
MMY932 M 0 Juvenile Juvenile 0 LRB 191,120 29.75 446
MMY937 M 1 Adult Juvenile 1 NM 12,983 15.28 184
MMY942 M 0 Juvenile Juvenile 0 NM 60,449 17.65 183
MMY943 F 0 Juvenile Juvenile 0 NM 15,264 18.68 289
MMY946 F 0 Juvenile Juvenile 0 NM 118,085 25.07 322
MMY987 M 0 Juvenile Juvenile 0 NM 25,295 31.98 470
MMY990 F 0 Juvenile Juvenile 0 NM 93,196 33.53 411

16S rRNA library preparation and sequencing
Total microbial genomic DNA from each swab sample was extracted using MO BIO’s
PowerLyzerTM PowerSoil R© kit, following Earth Microbiome (http://earthmicrobiome.org)
standards and recommendations. Following extractions, DNA quality was checked via
agarose gel electrophoresis. Purity of the 16S rRNA amplicons after adding barcodes was
determined via a 2200 TapeStation Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA), while quantity of each DNA (4 pM of each sample) was measured with a Qubit 2.0
flourometer (Life Technologies, Carlsbad, CA, USA) prior to eachMiSeq run. The protocol
detailed in Caporaso et al. (2012), using the V4 hyper-variable region primers 515F/806R
for paired-end 16S rRNA sequencing was strictly followed.

Libraries were generated for all 52 samples using the Illumina Nextera XT dual primer
protocol and 16S metagenomic library prep guide. Blank extractions containing no DNA,
and tested with barcoded and non-barcoded index primers, were used as a negative
control to investigate potential contamination during laboratory procedures. Samples
were sequenced using the MiSeq platform and 250bp paired end chemistry. Taxonomic
analysis was carried out using the Quantitative Insights into Microbial Ecology (QIIME)
suite of software, version 1.9.1 (Caporaso et al., 2010). Paired end reads were filtered
using a phred score threshold of 30, and chimeric sequences were removed using the
QIIME ‘split_libraries_fastq.py’ and ‘filter_fasta.py’ scripts. Reads from each sample were
then overlapped, joining the forward and reverse reads, using the fastq-join method as
implemented in QIIME.

OTU Picking and diversity analyses
Overlapped sequences from each bat sample were used for Operational Taxonomic Unit
(OTU) picking. OTU picking involves the process of aligning sequences found in each
sample to a reference database and assigning them to an OTU (a cluster of similar reads
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representing a bacterial phyla, genera or species, depending on level of resolution). For this
study, the Greengenes annotated 16S reference database (DeSantis et al., 2006) and PyNast
aligner was used, with a minimum sequence clustering identity of 97% (Caporaso et al.,
2010). Greengenes was chosen as our reference database as it has been previously used to
characterize other bat microbiomes, which are included in our study (Phillips et al., 2012;
Carrillo-Araujo et al., 2015). The method of ‘open OTU picking’, where reads that do not
map to a reference database are subsequently clustered de novo, was applied.

The mean OTU abundance within each sample was calculated as alpha diversity in
QIIME. Samples were rarefied to 8,000 reads, removing possible biases introduced due
to uneven sequencing depth, using the ‘core_diversity_analysis.py ’ script, with parameter
‘–e’ set to 8,000. This minimum was chosen to include as many samples as possible while
also providing enough depth to get a good representation of the microbiome. Despite
potentially reduced statistical power (McMurdie & Holmes, 2014), rarefaction was chosen
as the ideal means of data normalization given the range of reads across samples (Weiss
et al., 2017), resulting in abundances comparable to other mammalian microbiomes (see
below). A change in alpha diversity has previously been used to differentiate between young,
mature and old mammals (Yatsunenko et al., 2012; Frese et al., 2015), hence alpha-diversity
was calculated across each pre-defined age dataset, in addition to gender and location of
collection. The mean phylogenetic diversity (PD), a measure of alpha diversity accounting
for phylogenetic differences between bacterial species (Faith, 1992), was calculated for
each sample and metadata category. This was compared to the gut flora of previously
characterized members of Vespertilionidae (Phillips et al., 2012) to determine if the anal
flora is representative of the gut microbiome, further implying the utility of our sampling
method. Beta diversity (abundance between samples) was also calculated across all samples
before and after rarefactionusing bothweighted andun-weightedUnifrac distancematrices,
which are based on differences between samples using phylogenetic information (Lozupone
& Knight, 2005). Hierarchical clustering, using Ward’s method (Ward Jr, 1963), based on
number of OTUs detected was applied to samples using R to visualize any separation based
on age, sex or location that could be observed. The core microbiome was computed as
bacterial species present in at least a ‘user-specified’ percentage of samples. Minimum
thresholds ranging from 50–80% were investigated across each age dataset, gender and
location.

Statistical analysis
PCoA plots were generated based on the weighted Unifrac distance matrices of beta-
diversity for each different categorical variable. These plots were visualized to determine
if linear separation existed between ages, gender and location of sample collection.
Additionally, Analysis of Similarity (ANOSIM) was applied to the weighted Unifrac
distance matrices to determine if a statistically significant difference existed for each data
category. ANOSIM is non-parametric and was made distribution-free by using a number
of permutations (9,999).

OTU frequencies between juvenile and adult samples were compared using a Kruskal–
Wallis analysis of variance to identify bacteria whose abundance was significantly different
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across categories, using the ‘group_significance.py ’ script in QIIME, with Bonferroni
correction applied across all results. Additionally, Similarity Percentage (SIMPER;
Clarke, 1993) analysis, a method to assess taxa responsible for the overall observed
similarity/dissimilarity between groups, was carried out on the pooled OTU abundance
counts for each location both before and after rarefaction. SIMPER was carried out using
the PAST software (Hammer, Harper & Ryan, 2001).

Predictive characterization of microbiomes (PICRUSt)
Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt; Langille et al., 2013) was used to predict genes/ pathways thatmight be expressed
in bacteria found in the anus of M. myotis. Based on bacterial species whose protein
coding genes are described in the KEGG and COG databases, PICRUSt attempts to infer
genes expressed in each OTU using phylogenetic similarity to a previously characterized
species. As per its operational requirements, PICRUSt was used on a normalized biom
table generated using the ‘closed OTU picking’ method in QIIME, excluding reads that
could not be mapped to a reference OTU cluster. To investigate if metagenomic changes
occurred between juvenile and adult microbiomes, functional analysis was conducted
using the methodologies described by Phillips et al. (2017), implemented in the R package
‘FunkyTax ’. This analysis was used to identify if predicted metagenomic function remained
the same, were enhanced (increase in abundances of contribution across age groups) or
divergent (significantly different composition across ages for a predicted function).

Phylogenetic comparison to other mammals
The average relative abundances of nine bacteria phyla in M. myotis were compared
to available microbiome data from other mammals, focusing specifically on the gut,
rectal or faecal samples, to investigate if closely related taxa shared similar composition.
Bacterial abundances were compared under the assumption that, while based on different
experimental conditions and research goals, eachmammalianmicrobiome study represents
an accurate abundance calculation for that species given the experimental setup. The
relative abundances of 35 additional bat species (Phillips et al., 2012; Carrillo-Araujo et
al., 2015), cow rectum (Mao et al., 2015), dolphin rectum (Bik et al., 2016), dog faecal
sample (Swanson et al., 2011), human and mouse faecal sample (Krych et al., 2013), gorilla
faecal sample (Gomez et al., 2015) and Tasmanian devil faecal samples (Cheng et al., 2015)
were compared using principal component analysis (PCA). K -means clustering, with the
optimum k number of clusters decided using the elbow criterion, was carried out in R
and used to identify if any ‘bat-specific’ clusters were present, and if species clustering
resembled phylogeny (Datzmann, Helversen & Mayer, 2010; Meredith et al., 2011; Phillips
et al., 2012).

RESULTS
QIIME analyses
Across all 52 samples, 2,947,977 read pairs were overlapped and used for downstream
analyses (Table 1). No spurious amplifications were detected in the negative controls. A
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Table 2 Phylogenetic diversity within theMyotis myotismicrobiome.Mean Phylogenetic Diversity (PD) for each category, representing the range
of bacterial species present, are shown for each data category.

Age dataset 1 0 years 1 year 3 years Unknown
19.36 21.24 26.58 26.14
Adults Juveniles

Age dataset 2
24.67 19.36
Adults Juveniles Unknown

Age dataset 3
24.01 19.88 28.94
0 Years 1 Year 1+ Years 2+ Years 3 Years 3+ Years 4+ Years

Age dataset 4
19.36 21.24 28.94 23.90 26.59 29.75 20.15
Male Female

Gender
20.4 23.85
Beg Fer LRB NM

Site
14.52 23.89 18.00 24.67

Table 3 Core microbiomes. Bacteria phyla and the number of OTUs present in a range of core micro-
biome percentage thresholds forM. myotis are displayed.

Core 50% Core 60% Core 70% Core 80% Core 90%

Number of OTUs 47 29 20 13 7
% Proteobacteria 57.45% 55.17% 50% 38.46% 42.86%
% Actinobacteria 17.02% 17.24% 20% 15.38% 14.28%
% Firmicutes 17.02% 20.69% 30% 46.16% 42.86%
% Cyanobacteria 4.25% 3.45% 0% 0% 0%
% Chlamydiae 2.13% 0% 0% 0% 0%
% Tenericutes 2.13% 3.45% 0% 0% 0%

rarefying threshold of 8,000 sequences reduced the final number of M. myotis samples to
41 individuals. The number of unique OTUs per sample ranged from 77 to 747 (mean
= 299). No age, sex or location-specific clusters were observed across samples using
hierarchical clustering (Fig. S1). Mean alpha diversity (diversity per sample; PD) for
M. myotis was 22.34. Similar PD values were found between male (20.4) and female (23.85)
and between juveniles and adults (Figs. 1A and 1B; Table 2), with neither comparison
showing significant differences (Kruskal–Wallis test, p> 0.05). Mean PD values for each
data category are displayed in Table 2, with additional bacterial abundances displayed in
Fig. S2 and Table S1.

A total of 47 OTUs were present in 50% of all samples consisting of the
Actinobacteria, Chlamydiae, Cyanobacteria, Firmicutes, Proteobacteria and Tenericutes
phyla highlighting some inter-individual OTU diversity (Fig. S3), with Proteobacteria
and Chlamydiae/Tenericutes having the highest and lowest abundance of OTUs,
respectively. When increasing this core microbiome threshold, 13 OTUs, containing
Ureibacillus (Firmicutes), Corynebacterium (Actinobacteria), Enterococcus (Firmicutes)
and Pseudomonas (Proteobacteria; Table 3, Table S2, Fig. S4), were found present in 80%
of all bats.
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Figure 1 Rarefaction curves of bat microbiomes. Read data was rarefied to 8,000 OTUs, and measured
using phylogenetic diversity. (A) The alpha diversity of bat samples were clustered based on gender to in-
vestigate differences in bacterial abundance between males and female. (B) Reads were clustered based on
age datasets, with age dataset 2 displayed (0 yrs considered juvenile, ≥1 yr considered adult).

Full-size DOI: 10.7717/peerj.4174/fig-1
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Statistical analyses
Principal coordinate analysis showed no clear observable separation of samples based
on age, gender or collection site for both un-weighted and weighted Unifrac distances.
Weighted Unifrac distances explained a greater percentage of variance using three principal
coordinates both before rarefaction (55.27% variance, Figs. S5, S6) and after rarefaction
(60.59% variance, Figs. 2A, 2B; Fig. S7). Using ANOSIM, no significant differences were
found after Bonferroni correction, reflected in the low R test-statistics (R≤ 0.14; Chapman
& Underwood, 1999) in all cases. A Kruskal–Wallis non-parametric ANOVA found no
significant differences between male and female bats, ruling out gender as a mode of
microbial diversity. OTUs were also compared between adult and juveniles (age dataset 2,
3) using a Kruskal–Wallis test revealing four OTUs from the common GI-inhabiting family
Helicobacteraceae showing differential abundances after Bonferroni correction (p< 0.05)
in age dataset 2, and no differentially represented OTUs observed between juvenile and
adult bats for age dataset 3.

When comparing the percentage dissimilarity of OTU abundance between sites, the
average dissimilarity across sites for phyla present was 52.68% and 53.79% before and
after rarefaction, respectively. At this taxonomic level, the phyla that contributed most to
the overall dissimilarity were Firmicutes (mean dissimilarity 15.09% before and 16.68%
after rarefaction) and Proteobacteria (mean dissimilarity 14.83 before and 16.45% after
rarefaction). Dissimilarity increased for each taxonomic level, with 80.42% and 85.3%
dissimilarity at the family level (Table S3). This dissimilarity may reflect the absence of
specific OTUs in one site relative to another, however such dissimilarity did not have a
strong affect overall when comparing Unifrac distances, as site-specific clusters could not
be determined using PCoA (Figs. S6, S7). Only one OTU, from the phylum Actinobacteria,
showed differential abundances between locations (ID: 179312; p= 0.0002) suggesting that
the collection site did not have a significant effect on microbial composition.

PICRUSt and phylogenetic comparison to other mammals
Across all samples, PICRUSt inferred a total of 41 KEGG pathways present in theM. myotis
anal flora (Table S4; Fig. 3). Of these 41 pathways, the majority of genes and their top two
pathways belonged tomembrane transport (14.24%; ‘transporters’ and ‘ABC transporters’),
carbohydrate transport (10.51%; ‘amino sugar and nucleotide sugar metabolism’ and
‘glycolysis/gluconeogenesis’), amino acidmetabolism (9.35%; ‘amino acid related enzymes’
and ‘arginine and proline metabolism’), replication and repair (7.62%; ‘DNA repair and
recombination proteins’ and ‘chromosome’) and energy metabolism (5.21%; ‘oxidative
phosphorylation’ and ‘carbon fixation pathways in prokaryotes’).

When comparing predicted metagenomic function between juvenile and adult bats, it
was found that out of 2,330 KEGG pathways analyzed, 1,713 predicted functional categories
were ‘enhanced’ between juvenile and adult bats for age dataset 2, with a large number of
‘metabolic processes’ in both the enhanced (726) and divergent (246) classification across
age groups (Table S5A). Enhanced categories indicate that the functional frequency, rather
than the contributing microbiome community, differs across age while divergence implies
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Figure 2 Principal components analysis of beta diversity. Similarity based on diversity between sam-
ples was explored using PCoA after rarefaction, explaining 60.59% variance. (A) Beta diversity of male and
female samples using weighted Unifrac distances are displayed. (B) Beta diversity using weighted Unifrac
distances between adults and juveniles in age dataset 2 are displayed.

Full-size DOI: 10.7717/peerj.4174/fig-2
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Figure 3 KEGG pathways present in the bat anal microbiota. PICRUSt analyses of the bat anal microbiota identified a number of different KEGG
gene pathways present.

Full-size DOI: 10.7717/peerj.4174/fig-3

both the function and contributing community are different. Only enhanced functions were
found for age dataset 3, the majority of which were involved in metabolism (Table S5B).

A comparison of 44 mammal microbiomes, including M. myotis, highlighted high
abundances of Proteobacteria, but lower abundances of Bacteroidetes in bats compared to
terrestrial mammals (Fig. 4). These data were analyzed and visualized using a PCA plot to
investigate if closely related species shared similar microbial composition (76.8% variance;
Table S8). Using a k value of 4, two clusters composed almost exclusively of bats (Table S6)
were identified. Separation between bats and other mammals was apparent, with a large
number of bat samples driven by the presence of Proteobacteria (Cluster 3; Table S6),
despite differing diets (Fig. 4).

DISCUSSION
When analyzing the anal microbiome of Myotis myotis, phylogenetic diversity was slightly
higher (22.34) than the PDof the gutmicrobiome previously established inVespertilionidae
(19.055; Phillips et al., 2012). As these data were obtained through non-lethal sampling,
this approach will allow re-sampling of the same individual each year. It is therefore an
extremely useful tool for longitudinal microbiome studies. The mean number of observed
OTUs was similar between 0 and 1 year olds (age dataset 1) and did not reflect increases
observed for similar ages in humans (Yatsunenko et al., 2012). An increase in gut flora
diversity between nursing and weaning juveniles has also been observed in pigs (Frese et
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Figure 4 Phylogenetic comparison of microbiome bacterial abundance. The most abundant bacterial phyla expressed in a range of diverse mam-
malian gut microbiome samples are compared and displayed using an established mammalian phylogeny. Bat samples from Carrillo-Araujo et al.
(2015) are identified with ‘2015’. Dietary niches are also displayed.

Full-size DOI: 10.7717/peerj.4174/fig-4

al., 2015). It was not possible to determine weaning/nursing status of juvenile bats sampled
in this study, however, as all juveniles were flying, there were likely partially weaned.

In their study of the aging mouse microbiome, Langille et al. (2014) observed a clear
and statistically significant separation between young (0.48 years), middle (1.61 years)
and old-aged (2.35 years) mice based on gut flora. Using human data, Yatsunenko et
al. (2012) and Biagi et al. (2016) identified clustering patterns based on a variety of age
ranges, spanning 0–83 and 22–109 years old, implying a general trend in aging. Using
similar methods, despite some variability across individuals, we were unable to identify any
clear separation between juvenile and adults in 41 M. myotis bats, suggesting an element
of stability in microbial diversity. The oldest definitive age in our sample cohort is 4
years, representing the MLS of a mouse, a similar sized mammal. The lack of samples
representing the late stages of the 37-year lifespan precludes inferences about microbiome
composition in the oldest M. myotis bats relative to juvenile and adult bats. However, if
the microbiome of M. myotis remains stable or static throughout their life, it is expected
that the abundances of flora in ‘old’ individuals will be similar to the juveniles and adults
described here, further implying microbiome stability as they age. This would emphasize
the importance of microbiome stability in longer health-spans, resembling the fine tuned
level of microbiome homeostasis regulating host aging in C. elegans (Han et al., 2017).
Our intention in future studies is to involve older M. myotis bats to further elucidate the
potential role of the microbiome in exceptional longevity and to what extent microbial
variability between samples affects global microbiome patterns in bats.
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The finding of dominant and variable abundances of Firmicutes and Actinobacteria is
consistent with previous mammalian microbiome profiles (Ley et al., 2008). The genera
identified in 80% of samples belong to families with many pathogenic species. As these taxa
could not be identified to species or strain level, no conclusions can be drawn regarding
their presence in the core M. myotis microbiome. Despite differences in OTUs found
across sites, no significant effect of locality and thus roost specificity could be established.
Bacteria from the genera Citrobacter, Enterobacter, Escherichia, Klebsiella, Proteus and
Streptococcus were found present in a number of samples, and have previously been
documented in the feces of M. myotis in Italy (Di Bella et al., 2003). A study of the anal
microflora in M. myotis in Poland identified species from the Lactobacillus, Enterococcus,
Serratia, Corynebacterium and Pseudomonas genera (Rózalska et al., 1998), all of which are
represented in samples included here, indicating a common core of flora, independent of
location. A common microbial core is similar to that observed in ruminants (Henderson et
al., 2016), and contrasts to the social effects of microbial diversity observed in wild baboons
(Tung et al., 2015).

The characterization and comparison of metagenomic content in the anal microbiome
determined that the frequency of a number of known functional categories, of which a
large proportion were involved in general metabolism, were enhanced from juveniles to
adults. There was some divergence observed for age dataset 2, implying some difference
in functional abundances across certain samples (1 year old). Other categories involved
in energy consumption, DNA repair and oxidative phosphorylation were also present
and enhanced and may imply a role of bat gut flora in enabling them to counteract
the deleterious effects of metabolically costly powered flight (Shen et al., 2010). Studies
of metabolism in insectivorous bats have determined that flight is fuelled directly by
ingested prey (insects from the families Carabidae, Orthoptera, Diptera and Arachnida
in M. myotis (Di Bella et al., 2003)) immediately after consumption, implying extremely
rapid metabolism (Voigt et al., 2008; Voigt, Sörgel & Dechmann, 2010). This has also been
observed in nectivorous and frugivorous bats (Voigt & Speakman, 2007;Amitai et al., 2010).
A high abundance of bacteria producing enzymes involved in energy-related pathways
might contribute to the overall managing of, and coping with, by-products of such high
metabolism in M. myotis. If this is the case, a relatively stable microbial community, as
observed between adults and juveniles, may not only be involved in extended longevity,
but also play an important role in sustained flight.

By comparing microbiome content across 44 mammals, certain ‘bat-specific’ clustering
was observed. However, without longitudinal data, investigating if the abundance of
bacteria in other bats species changes with age, like humans and mice, is not possible at
this time. An abundance of ‘Proteobacteria’ was observed in multiple different bat species,
including M. myotis. Interestingly, Proteobacteria also show high abundances in birds
(Hird et al., 2015), suggesting this phylum or the metabolic by-products it produces, may
have a putative role in flight and its metabolic costs rather than aging. As the abundances of
the bacteria phyla in the M. myotis microbiome appear similar to other bat compositions,
it is possible that similar gene pathways are expressed across Chiropteran metagenomes,
implicating a putative role of the microbiome in dealing with the energetic demands of
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flight. Terrestrial, non-chiropteran species had a much larger abundance of Bacteroidetes
relative to bats. The reported low abundance of the Bacteroidetes phylum in the bat gut is
consistent with the same results from bat skin (Avena et al., 2016).

CONCLUSION
Previous studies investigating the role of the microbiome in aging have focused on human
and mice samples, and have demonstrated correlations between microbial changes and
a pathogenic aging phenotype. Given the exceptional long life and health-span observed
in certain species of bats given their body size, we have investigated the microbiome of
the long-livedM. myotis using juvenile and early adulthood samples, covering the lifespan
range of a similar sized mouse, acquired using a non-lethal mode of sampling. Consistent
with earlier studies of bat gut flora, we find a high level of Proteobacteria and Firmicutes,
with the microbiome possibly contributing to metabolism, DNA replication/repair and
oxidative phosphorylation. Despite some variability across samples, distinct differential
abundances in bacterial composition between adult and juvenile bats were not found,
contrasting to patterns observed in humans and mice. Instead we observe an element
of microbiome stability between juvenile and adult M. myotis bats. Given the KEGG
pathways present in the anal bat flora, it is possible that metabolites produced by the
bat microbiome enable them better tolerate the damaging by-products of flight and may
increase metabolic efficiency, with downstream affects on aging. Future studies of olderM.
myotis age cohorts will determine whether patterns observed here continue into old age,
and to what extend inter-individual variability affects global microbiome patterns in bat
species. Such comparative microbiome studies will help further elucidate bacterial phyla
that may contribute to healthier aging.
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