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Supplementary Materials for Direct Measurement of Room Temperature Non-
diffusive Thermal Transport Over Micron Distances in a Silicon Membrane 
Si Membrane Fabrication 
Freestanding Si membranes were fabricated in a nominally undoped, silicon-on-
insulator (SOI) wafer using Si MEMS processing techniques (see Fig. S1). In this 
process, the underlying Si substrate and buried oxide layer are removed through a 
combination of dry and wet etching techniques to leave a top layer of suspended 
silicon. 

 
FIG. S1. Process flow for the fabrication of freestanding Si membranes: (a) Original 
SOI wafer. (b) Oxidation process to reduce thickness of Si layer. (c) Deposition of 
Si3N4, photolithography of the etching window, including spin-coating, exposure, and 
development of the resist layer, and RIE of the Si3N4 and SiO2 layers. (d) Wet etching 
of the Si substrate using KOH, until approximately 1 µm of Si remains. (e) Finishing 
of the etching of the substrate with TMAH, followed by removal of the Si3N4 by RIE. 
(f) Final wet etching using HF to remove the top protective oxide and the buried oxide 
layers, releasing the freestanding Si membrane. 

The initial SOI wafer was 625 µm thick in total, with a top Si layer thickness of ~1.5 
µm and a ~1 µm buried oxide layer. The target thickness of the top Si layer was 
achieved through oxidation of the wafer; as the thermal oxide incorporates silicon 
during growth, the thickness of the top Si layer is reduced. For every unit thickness of 
Si consumed, 2.27 unit thickness of oxide is grown. The oxidation was performed at a 
temperature of 1100 °C in an atmosphere of water vapor in two steps to achieve fine 
control over the growth process, due to the large initial thickness of the top Si layer. 
Oxidation was continued until approximately 400 nm of Si remained on the top layer, 
and the thermal oxide was left as a protective layer, as illustrated in Fig. S1(b), until 
the final stage of the process.  

A silicon nitride layer was deposited to act as a mask during the subsequent wet 
etching of the Si substrate and the freestanding areas of the membranes were 
determined through photolithography on the backside of the wafer, involving spin-
coating of a photoresist, exposure, and development. The remaining photoresist was 
then used as a mask for Reactive Ion Etching (RIE) to open etching windows in the 
Si3N4 and SiO2 (see Fig. S1(c)). 
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A wet etching process with potassium hydroxide (KOH) and tetramethylammonium 
hydroxide (TMAH) was used to remove the Si substrate. The selectivity of TMAH is 
better when using a Si3N4 or SiO2 mask for the etching of Si, though the etch rate is 
slower. The layer of Si3N4 was deposited to improve the etch selectivity compared to 
the SiO2, and the Si substrate was etched with KOH until approximately 1 µm of Si 
substrate remained (Fig. S1(d)). The etching of the substrate was finished with 
TMAH, and the Si3N4 was then removed by RIE. (Fig. S1(e)).  The etching occurs 
preferentially in the <100> direction with an etching angle of 54.7 degrees, thus the 
areas of the membranes are substantially smaller than the original patterns on the 
backside of the wafer. The reduction in length of one side can be calculated 
approximately by xf = xi – 2dsub, where dsub is the thickness of the Si substrate, xi is the 
initial length on the backside of the wafer, and xf is the final length on the topside of 
the wafer. This relaxes the resolution requirements for the photolithography, and 
allows the photolithography masks to be produced from inexpensive, disposable 
acetate in place of quartz.  

After the wet etching process of the Si substrate, the top, bottom, and buried oxides 
were removed by a wet etch of hydrofluoric acid (HF) to release the freestanding Si 
membranes (Fig. S1(f)).  Measurements were conducted on two membranes with 
400×400 µm2 freestanding area and thicknesses, determined by optical reflectometry, 
of 400±10 nm.  Both membranes looked identical by visual inspection under a 
microscope. 

Experimental Details 

A short-pulsed excitation laser beam was derived through the frequency doubled 
output (λe = 515 nm) of an amplified Yb:KGW laser system (HighQ femtoRegen, set 
to 1 kHz repetition-rate).  Although the laser is designed to output pulses as short as 
300 fs in duration, to avoid sample damage and unwanted nonlinear optical effects 
from high peak powers, we have bypassed the compressor to obtain ~60 ps pulses. As 
depicted in Fig. S2, the pump beam was split with a custom diffractive optic (a binary 
phase mask pattern) into two beams which were passed through a two-lens telescope 
(with 2:1 imaging by achromatic doublets) and were focused and crossed within the 
membrane, with 3.6 µJ per pulse and the spot size radius 300 µm at 1/e intensity 
level.  The CW probe beam, derived from the output of a single-longitudinal-mode, 
intracavity frequency-doubled Nd:YAG laser at 532 nm, followed an almost identical 
optical path as depicted in Fig. S2 and was focused into a spot of 150 µm 1/e radius 
aligned with the center of the excitation spot.  To reduce sample heating, an electro-
optic modulator was used in conjunction with a delay generator to chop the probe 
beam into 64 µs rectangular pulses synchronized with the pump pulses.  An 
absorptive neutral density filter was used to attenuate the 5.2 mW reference beam 
power by a factor of 1000 to avoid detector saturation.  The heterodyne phase was 
controlled by small angle adjustments of a highly parallel fused silica plate placed in 
the probe beam path.  The co-propagating reference and diffracted probe beams were 
directed to a Hamamatsu C5658 silicon avalanche photodiode with 1 GHz bandwidth 
and the signal traces were recorded on an oscilloscope with 4 GHz bandwidth.  Traces 
of 40,000 averages were subsequently downloaded to the computer for data analysis.  
The measurements were conducted in air and the temperature in the lab varied 
between 296 and 298 K.  
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FIG. S2. Schematic illustration of transient thermal grating experiment.  A diffractive 
optic, a binary phase-mask (PM), splits pump and probe into ±1 diffraction orders.  
Pump beams are crossed in the silicon membrane, generating the transient thermal 
grating.  Diffracted probe light is combined with a reference beam attenuated by a 
neutral density filter (ND) and directed to a fast detector.  The relative phase 
difference between probe and reference beams is controlled by adjusting the angle of 
a glass slide (Phase Adjust) in the probe beam path.  

The Probing Process and Heterodyne Detection 
The excitation processes and resulting material responses described above lead to 
time-dependent, spatially periodic changes in both the complex refractive index of 
silicon and the thickness of the membrane; the dynamics of these induced transient 
grating responses will be encoded in the diffracted probe light that is directed to a 
detector. The optical fields of the probe and reference beams incident on the sample 
are approximated, respectively, as plane waves  
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where E0p is the incident probe amplitude, tr is the attenuation factor for the reference 
beam, q is the transient grating wavevector, kp is the optical wavevector magnitude, 
ωp is the optical frequency, and φp and φR are the phases of probe and reference beams 
respectively.   

The diffracted field can be obtained by multiplying the input field by the complex 
transfer function (S1) for an absorbing slab (S2).  The transfer function depends on 
the complex refractive index and the thickness, both of which are functions of 
temperature.  Assuming the temperature grating to be a small perturbation, the 
transfer function can be represented as 
t = t0 [1+a(Tu+Tgcos(qx)] ,       (S3) 
where the temperature perturbation is comprised of a spatially uniform component Tu 
and the grating component Tg, t0 is the transmission of the slab in the absence of 
temperature perturbations, and a is the magnitude of the temperature-induced 
transmission change  taking into account changes in the complex refractive index 
and the sample thickness d,    
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where α is the thermal expansion coefficient. Derivatives  and  can be 
obtained from the known expression for the transmission amplitude of a slab (S2).  
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For example, for normal incidence we get 
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     (S5) 

In our case, the incidence angle of the probe beam on the sample does not exceed 6°, 
therefore Eq. (S5) yields a very reasonable approximation. At any rate, knowing the 
value of amplitude factor a is not essential because our study is based on measuring 
the temporal dynamics of the signal rather than its magnitude.   

Assuming that the sample is located at z = 0, for the +1 diffraction order of the probe 
beam one obtains 
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and for the zero order reference beam 
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The two beams are collinear and their interference gives an intensity 

€ 

Is =
1
2
I0p t0

2 tr
21+ aTu

2
+ a 2Tg

2 + trTg ae
iφ + a*e−iφ( ) + 2tr a

2TuTg cosφ[ ] ,  (S8) 

where I0p is the intensity of the probe beam, a* is the complex conjugate of a, and 
φ = φp-φR is the heterodyne phase.  The heterodyne phase is well defined and easily 
adjusted by rotating the thin glass plate in the probe beam path (Fig. S2).  Neglecting 
terms quadratic with respect to the temperature perturbation, we get 

€ 

Is =
1
2
I0p t0

2 tr
2 1+ 2TuRea( ) + 2trTg Reacosφ + Imasinφ( )[ ] .   (S9) 

We collect the signal for two values of the heterodyne phase φ separated by π and 
calculate the difference equal to 

€ 

Idiff = tr t0
2 I0pTg Reacosφ + Imasinφ( )  .     (S10)  

The dynamics of this difference signal are entirely determined by the amplitude of the 
temperature grating Tg.  The heterodyne phase is adjusted to maximize the signal; the 
exact value of the phase does not affect the signal shape.  Taking the difference of the 
signals measured at two opposite heterodyne phases also helps suppress spurious 
signals, such as Pockels' cell interference, that are not sensitive to the heterodyne 
phase. 

Besides the temperature grating, laser excitation also initially creates a grating of the 
photoexcited carriers concentration which modulates both the refractive index and the 
membrane thickness (the latter changes due to strain induced via deformation 
potential [S3]). Including this effect in the analysis is straightforward: the perturbed 
transfer function t = t0 [1+aT+bN] now depends on both the temperature perturbation 
and photoexcited carrier concentration N, comprised, again, of a uniform and 
“grating” components, N=Nu+Ngcos(qx). Repeating the steps leading to Eq.(S10) we 
get the following result, reflecting the fact that in the small perturbation case thermal 
and electronic effects must be additive,  

€ 

Idiff = tr t0
2 I0p Tg Reacosφ + Imasinφ( ) + Ng Rebcosφ + Imbsinφ( )[ ][ ]  . (S11)  
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If the decay of Tg and Ng occurred on the same time scale, isolating the temperature 
dynamics would be very difficult.  However, as will be shown below, the carrier 
grating decays much faster because the ambipolar carrier diffusion coefficient in Si is 
much larger than the thermal diffusion coefficient. After the photoexcited carrier 
grating is washed away by carrier diffusion and relaxation, we are left with a purely 
thermal grating whereby the signal is described by Eq. (S10). 

Electronic Decay and Data Analysis 
Even though the carrier dynamics in Si at these length and time scales have been well 
studied and are not the focus of the current study, a basic understanding of the 
electronic response is important for two reasons: 1) as mentioned above, if the decay 
of Tg and Ng occur on the same time scale, isolating the temperature dynamics would 
be difficult, and 2) could the excited carrier population in some way influence the 
phonon MFPs to account for the effects we observe?  The electronic response is 
expected to follow a diffusion equation similar to the thermal response, which is 
given by [S4]: 

€ 

dN x, t( )
dt

= −N τ − BN 2 − γN 3 +Da
∂ 2

∂x 2
N

     
(S12) 

where N(x,t) is the carrier concentration, τ is the band-edge carrier lifetime through 
single carrier decay channels, B is the radiative recombination coefficient, γ is the 
Auger recombination coefficient, and Da is the ambipolar diffusivity.  The diffusion 
term gives the wavevector dependence of the electronic decay.  Due to the ambipolar 
diffusion coefficient in Si being much larger than the thermal diffusivity (5 cm2/s or 
greater for carriers, depending on the carrier concentration [S4], and 0.86 cm2/s for 
diffusive thermal transport in bulk Si at 300K [S5]), the electronic and thermal 
transient grating signal decay components will always be well separated in time.  The 
fact that carrier relaxation through various channels also affects the carrier 
concentration dynamics alters the expected diffusive q2 decay, particularly for low q, 
to help speed the electronic decay, making the separation between electronic and 
thermal decays only larger, and our isolation of thermal dynamics easier. An earlier 
transient grating study on bulk Si [S6] also found that carrier diffusion occurs much 
faster than thermal diffusion and that electronic and thermal relaxation dynamics are 
well separated.    

To measure the decay rate of the thermal grating, one could exclude the initial fast 
electronic response and fit the rest of the signal to a single exponential decay.  
However, this could introduce a small systematic error depending on the position of 
the fit starting point.  Thus we chose to account for the electronic response directly by 
fitting the signal to a bi-exponential form as illustrated in Fig. S3(a) for the signal 
waveform obtained at L=10 µm. Single-exponential components of the fit function 
corresponding to the electronic and thermal components of the signal are shown as 
well; one can see that the two components are well separated in time. Figure S3(b) 
shows good agreement between the data and bi-exponential fit for four representative 
grating periods (note the logarithmic time scale chosen to show both electronic and 
thermal dynamics at different grating periods).  Oscillations present in the 2.4 µm 
signal are due to the detector response to the fast initial electronic signal.
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FIG. S3. (a) Data trace for the 10 µm transient grating period showing the bi-
exponential fit (dashed line) in tandem with fast electronic and slower thermal 
exponential decays (dotted lines).  (b) Full traces of 2.4, 4.9, 10, and 18 µm transient 
grating periods with accompanying bi-exponential fits (dashed lines). 

In Figure S4, we see the measured electronic decay, extracted from the bi-exponential 
fit as a function of q2.  We clearly see that electronic and thermal decay rates are 
significantly different for all measured wavevectors. 

 
FIG. S4.  Measured electronic (open triangles) and thermal (filled squares) decay 
rates vs q2.  We see that for all wavevectors the electronic and thermal decay rates are 
well separated, allowing unambiguous determination of the thermal decay rate. 

We have shown that in the transient grating signal, sensitive to the periodic carrier 
and temperature distributions, electronic and thermal responses are well separated at 
all grating periods, making unambiguous determination of the thermal dynamics 
possible.  In indirect-band gap silicon, even though the electronic diffusion is fast, 
complete carrier relaxation still may take some time.  For the carrier concentrations 
relevant to the current measurements, Auger recombination is the dominant electronic 
decay mechanism, and therefore, according to Eq. (S12), the electronic dynamics 
depend strongly on the initial carrier concentration.  We measured the complete 
relaxation dynamics as a function of pump pulse energy, which varies the initial 
carrier concentration.  For the different pump energies, with initial carrier 
concentrations varying according to our estimates from 5×1018 to 2×1019 cm-3, 
revealed no change in the thermal dynamics; the thermal decay rates were identical, 
indicating that excited carriers do not interact strongly with heat carrying phonons to 
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significantly reduce the MFPs and suggesting that there is no connection between our 
observations and the excited carrier concentration. 

 
Thermal Grating Relaxation in a Thin Membrane in Ambient Medium 
 
We consider thermal grating relaxation in a thin membrane of thickness 2h in an 
ambient medium (i.e., air). Due to symmetry, this problem is equivalent to that of a 
film of thickness h on a substrate occupying a half-space z>0. Heat transport in the 
substrate is described by the heat diffusion equation 

€ 

∂T
∂t

= αS
∂ 2T
∂x 2

+
∂ 2T
∂z2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟         (S13) 

where αS is the thermal diffusivity of the substrate. For a thermally thin film, the film 
temperature is assumed to be uniform over the film thickness and equal to the 
substrate temperature at z = 0. The heat transport equation for the film incorporating 
heat exchange with the substrate and the laser heating source Q(t,x) can then be 
written as 

€ 

σ
∂T
∂t

=σα f
∂ 2T
∂x 2

+ λS
∂T
∂z

+Q t,x( ) , z = 0     (S14) 

where σ is the specific heat per unit area of the film, σ = ρfCfh, with ρf and Cf being 
the density and the specific heat of the film material, and λs = ρsCsαs is the substrate 
thermal conductivity. Let us model the laser source as Q(t,x) = δ(t)cos(qx) and seek a 
solution for the substrate temperature in the form T(t,z)cos(qx). After applying this 
ansatz and performing a Fourier transform with respect to time, the thermal diffusion 
equation in the substrate takes the form  
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−iω ˜ T = −αSq
2 ˜ T +αS

∂ 2 ˜ T 
∂z2        (S15) 

with the following boundary condition at z=0: 
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−iωσ ˜ T = −q2σα f
˜ T + λS

∂T
∂z

+1 , z = 0     (S16) 

where  is the Fourier transform of T(z,t) with respect to time. From Eq. (S15) 
we get  
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˜ T = ˜ T 0 exp −βz( ) , 
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        (S17) 

where the branch of the square root should be chosen as to ensure the positive real 
part of β. Now from Eq.(S16) we get 

€ 
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−iω +σα f q
2 + βλS

       (S18) 

The temperature of the film will be given by the inverse Fourier transform: 
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FIG. S5. Diffusive thermal decay of a silicon membrane in air (Eq. (S19), dashed 
lines) versus in vacuum (Eq. (1), heavy solid lines) for three representative grating 
periods: 2, 7, and 25 microns from left to right. 
 
Figure S5 shows a comparison between numerical solutions to Eq. (S19) and 
exponential decay with the decay rates given by Eq.(1) for a silicon membrane in air. 
One can see that that the effect of the heat exchange with ambient air on the thermal 
grating relaxation is negligible. We found that one needs to increase the thermal 
conductivity of air in the model by a factor of 100 in order to get a noticeable effect.    

 
Details of the effective thermal conductivity calculations  
By changing the integration variable in Eq. (2), thermal conductivity can be 
represented as an integral over MFP, 

€ 

k = kΛdΛ0

∞

∫  ,         (S20) 

with the differential thermal conductivity  readily found from 

the thermal conductivity accumulation data with respect to MFP presented by Henry 
and Chen [S7].The effective thermal conductivity in the transient grating geometry is 
found by multiplying the integrand by the correction factor, 
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keff = A qΛ( )kΛdΛ0

∞

∫  .       (S21) 

The above equation was used to calculate the solid curve in Fig. 3(b). 

For a thin membrane, we need to account for the effect of boundary scattering. In 
Fuchs-Sondheimer theory, the effective MFP reduced due to diffuse scattering at the 
surfaces of the membrane is given by [S8] 
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where d is the membrane thickness. The correction factor Φ behaves similarly to the 
factor A in that it approaches unity in the limit of small MFP (Λ<<d) and drops off 
when the MFP exceeds d.  
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Equation (S22) can be modified to allow for partially specular reflections [S7]. 
However, using the specular reflection probability as a free parameter introduces 
considerable arbitrariness in the data analysis; moreover, the commonly used model 
with a constant “specularity parameter” independent of both frequency and incidence 
angle [S8] is rather unphysical.  Most studies of thermal conductivity in thin films use 
the “diffuse scattering” model, with satisfactory results [S9-S11].  

To account for the combined effect of the heat transfer distance in the transient 
grating measurement and the boundary scattering in the membrane we take the MFP 
reduced by the boundary scattering from Eq. (S22) and plug it into Eq. (S21), which 
yields the following result:  

€ 

keff = A qΛΦ( )kΛΦdΛ0

∞

∫  .        (S23) 

This equation, with kΛ from Henry and Chen [S7], was used to produce the theoretical 
curves for thin membranes in Fig. 3. Note that the wavevector dependence in Eq. 
(S23) is only present in the correction factor A resulting from non-diffusive transport.  
Equation (S23) is of course an approximation. For a rigorous analysis, one would 
need to solve the non-equilibrium thermal transport problem anew with appropriate 
boundary conditions at the surfaces of the membrane, which would be much harder 
than the analysis for an unbounded medium [S12].  
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