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Abstract 18 

The repair of critical bone defects remains a significant therapeutic challenge. While the 19 

implantation of drug-eluting scaffolds is an option, a drug with the optimal pharmacological 20 

properties has not yet been identified. Agents acting at sphingosine 1-phosphate (S1P) 21 

receptors have been considered, but those investigated so far do not discriminate between the 22 

five known S1P receptors. This work was undertaken to investigate the potential of the 23 

specific S1P1/5 modulator siponimod as a bone regenerative agent, by testing in vitro its 24 

effect on cell types critical to the bone regeneration process.  25 

hFOB osteoblasts and HUVEC endothelial cells were treated with siponimod and other S1P 26 

receptor modulators and investigated for changes in intracellular cyclic AMP content, 27 

viability, proliferation, differentiation, attachment and cellular motility. 28 

Siponimod showed no effect on the viability and proliferation of osteoblasts and endothelial 29 

cells, but increased osteoblast differentiation (as shown by increased alkaline phosphatase 30 

activity). Furthermore, siponimod significantly increased endothelial cell motility in scratch 31 

and transwell migration assays.  32 

These effects on osteoblast differentiation and endothelial cell migration suggest that 33 

siponimod may be a potential agent for the stimulation of localised differentiation of 34 

osteoblasts in critical bone defects. 35 

Keywords: Siponimod, Sphingosine 1-phosphate, S1P1 Receptors, Osteoblasts, HUVEC 36 

  37 



1. Introduction 38 

The restoration of tissue function after damage, involves complex interactions between 39 

various cell types, local tissue matrix, and chemical mediators, in various combinations. 40 

The creation of new vasculature via angiogenesis is essential for the regeneration of any 41 

tissue, and in the case of bones, regeneration also involves the recruitment of osteoblast and 42 

osteoclast precursors to the defect area, their differentiation into their mature phenotypes as 43 

well as interaction between the two cell types, with bone-forming osteoblasts stimulating the 44 

maturation of bone resorbing osteoclasts, which in turn stimulate osteoblast recruitment and 45 

maturation. 46 

Sphingosine 1-phosphate (S1P) is a lipid mediator that modulates many biological processes, 47 

including calcium signalling, cell growth, differentiation, survival, motility and cytoskeleton 48 

organization (Spiegel and Milstien, 2000). It acts via 5 known G Protein-Coupled Receptors 49 

(S1P1-5), which are widely expressed throughout the body (Hla, 2004). The role of S1P in 50 

promoting angiogenesis is well-established (Waeber, 2013). This, taken together with the 51 

pleiotropic effects of S1P on bone cells (Sartawi et al., 2017), suggests that modulating S1P 52 

signalling may promote bone repair. However, systemic administration of S1P agents did not 53 

improve fracture healing in a murine femoral defect (Heilmann et al., 2013), indicating that 54 

more localised approaches of delivering S1P and related analogues may be needed (Das et al., 55 

2014b).   56 

The pharmacological characterization of the various S1P-mediated responses, in bone and 57 

other tissues, has been hampered by the lack of well-characterized specific agents (Salomone 58 

and Waeber, 2011).  S1P itself (with or without receptor antagonists), as well as the S1P 59 

receptor modulator fingolimod (aka FTY720 or Gilenya®) have been investigated in in vitro 60 

and in vivo models of bone repair (Sartawi et al., 2017), but these agents do not discriminate 61 



between the 5 different receptor subtypes. Fingolimod, used clinically for the management of 62 

relapsing remitting multiple sclerosis, is a potent agonist at all S1P receptor subtypes except 63 

S1P2 (Brinkmann et al., 2010). Its mechanism of action relies, at least in part, on the 64 

redistribution of lymphocytes to secondary lymphoid tissues following fingolimod-induced 65 

S1P1 receptor internalization, resulting in their depletion from the peripheral blood and 66 

immunosuppression. Although fingolimod is relatively safe, activation of S1P3 receptors by 67 

this agent may be associated with adverse effects (Cugati et al., 2014; DiMarco et al., 2014). 68 

Although the role of S1P3 receptors in cardiac side effects may be unique to rodents (Gergely 69 

et al., 2012), these off-target effects led to the discovery and development of the S1P1/S1P5 70 

selective agonist siponimod (aka BAF312, or Mayzent®) (Behrangi et al., 2019). In addition 71 

to its improved selectivity profile, siponimod is not a pro-drug (fingolimod must first be 72 

phosphorylated by sphingosine kinase 2) and has a shorter half-life that still allows once-73 

daily oral dosing but enables rapid recovery of lymphocyte counts upon treatment cessation.  74 

The effects of S1P and of fingolimod on cells relevant to bone repair have been extensively 75 

investigated (Sartawi et al., 2017), but far less is known on the effect of siponimod on these 76 

cells. The goal of these studies was therefore to test the effect of siponimod on the viability, 77 

proliferation, differentiation, and chemotactic behaviour of osteoblast and endothelial cells, 78 

with the aim of better understanding the potential of selective modulation of S1P1 (or S1P5) 79 

receptors via localised delivery to repair critical bone defects. 80 

2. Material and methods 81 

Siponimod and fingolimod were kindly gifted from Novartis. D-erythro-Sphingosine 1-82 

phosphate was acquired from Enzo Life Sciences. Dulbecco’s Modified Eagle’s 83 

Medium/Nutrient Mixture F-12 Ham, foetal bovine serum (FBS), L-Glutamine, penicillin-84 

streptomycin, Thiazolyl Blue Tetrazolium Bromide (MTT), dimethyl sulfoxide (DMSO), 85 



neutral buffered formalin (NBF), Fast Blue BB and Naphthol AS-MX phosphate, Roche 86 

Bromodeoxyuridine cell proliferation kit were acquired from Sigma-Aldrich. Endothelial 87 

cells (HUVEC) and endothelial cell growth medium (ECGM) with associated supplements 88 

were acquired from PromoCell. Pierce™ PNPP Substrate Kit was acquired from Thermo 89 

Fisher Scientific. cAMP-Glo™ Max Assay was acquired from Promega. Cell culture 90 

plasticware was acquired from Sarstedt Ltd. Human foetal osteoblasts (hFOB 1.19 (ATCC® 91 

CRL-11372™)) cell line was acquired from ATCC. 92 

2.1. Cell culture 93 

hFOB were maintained in DMEM/F12 supplemented with FBS (10%), L-glutamine (1%), 94 

and penicillin-streptomycin (1%). Incubation was at 34 °C and 5% CO2. HUVEC were 95 

maintained in supplemented ECGM as per supplier’s instruction at 37 °C and in 5% CO2. 96 

Although this medium contains only 2% serum, some HUVEC experiments were performed 97 

under reduced serum conditions (1/10th standard cell culture supplement) to rule out an effect 98 

of endogenous S1P (Hanel et al., 2007).  99 

2.2. Siponimod solution 100 

Siponimod was dissolved in DMSO and then diluted in PBS as required. DMSO 101 

concentration were limited to <0.5% v/v in cell culture experiments. The potential toxicity of 102 

exceeding this concentration of DMSO was explored using hFOB and HUVEC cells (2.5*104 103 

cell/well in 24 well plates) incubated with increasing concentrations of DMSO (0.32 - 3.2% 104 

in cell culture medium) for two and three days respectively. Thereafter, resazurin 60 µl of a 105 

560 µM stock solution was added to wells for 3.5 hrs before acquiring fluorescence at 106 

excitation 488 nm/emission 595 nm. 107 



2.3. Viability and proliferation 108 

To estimate the effect of siponimod on cellular viability, cells were seeded at a density of 109 

2.5*104 cells per well in 24-well plates, the following day test drugs (100 nM siponimod or 110 

PBS vehicle) were added to cell culture medium. Following two- and three-days incubation 111 

(HUVEC and hFOB, respectively), 60 μl MTT solution (5 mg/ml stock) was added directly 112 

to wells and incubated for 2 h away from light. Wells were then rinsed with PBS. Formazan 113 

crystals were dissolved with DMSO and absorbance acquired at 570 nm using a Wallac 114 

Victor 2 plate reader (Perkin Elmer). 115 

To determine the effect of siponimod on cellular proliferation, cells were seeded in 24-well 116 

plates at a density of 2.5*104 cells per well. Siponimod (100 nM) or PBS vehicle were added 117 

to the cell culture medium for two- and three-days (HUVEC and hFOB, respectively). 118 

Thereafter, cells were detached using trypsin-EDTA 0.25%, diluted with cell culture medium, 119 

and individual well cell numbers manually counted using a haemocytometer. Additional cell 120 

counting experiments were conducted using hFOB cells maintained over 7 days (see section 121 

2.4 for details)   122 

As an additional measure of proliferation, cells were seeded in 96-well plates at densities of 123 

1*104 per well. Increased concentrations of siponimod, fingolimod, and S1P (all 1000 nM) 124 

were added the following day with fresh medium, and incubation continued for a further two 125 

days. Following treatment, BrdU was diluted in fresh medium and added to cells for 24 h. 126 

Thereafter cells were fixed for 30 min, then incubated for 90 min in a BrdU antibody 127 

solution, rinsed thoroughly with PBS followed by incubation with anti-BrdU substrate until 128 

sufficient colour development for plate reading at 405 nm. 129 



2.4. Osteogenic differentiation 130 

2.4.1. Para-nitrophenylphosphate 131 

Alkaline phosphatase (ALP) is an early marker of osteoblast differentiation. In vitro 132 

osteoblast differentiation was estimated using para-nitrophenylphosphate (pNPP) as a 133 

substrate of alkaline phosphatase that is dephosphorylated into a yellow product (p-134 

nitrophenol), detectable by absorbance at 405 nm. 135 

hFOB cells (5*104) were seeded in 24-well plates and treated on day 0, 2, 4, and 6 with 1000 136 

nM of either siponimod, fingolimod or S1P, with PBS vehicle as a control. Test agents were 137 

added directly to standard hFOB medium. As a positive differentiation control, cells were 138 

treated with osteogenic medium containing 50 μg/ml ascorbic acid and 7.5 mM β-139 

Glycerophosphate. After 7 days, cells were detached with 100 µl trypsin-EDTA 0.25%, 140 

diluted with 200 μl fresh medium and counted using a haemocytometer. The cells were then 141 

transferred to 1.5 ml tubes and centrifuged at 3000 g for 5 min. Medium was aspirated from 142 

each tube and replaced with 100 μl pNPP substrate solution, allowing 30 min for yellow 143 

colour development. Absorbance was recorded at 405 nm using a Wallac Victor 2 plate 144 

reader (Perkin Elmer). The absorbance value of each sample was divided by its respective 145 

cell count, to normalize for differences due to cell numbers. Data are presented relative to the 146 

positive osteogenic medium control in each independent replicate. 147 

2.4.2 Fast blue staining 148 

Because the pNPP-based assay above does not allow the determination of the fraction of 149 

differentiating cells, as a complimentary measure of ALP, staining was performed using Fast 150 

Blue BB and Naphthol AS-MX phosphate. hFOB cells (5*104) were seeded in 24-well plates 151 

and treated every other day with siponimod (10-1000 nM), PBS, or osteogenic medium for 7 152 

days. Thereafter, cells were equilibrated in an alkaline buffer followed by incubation with 153 



fast blue dye for 60 min. Using a BX51 microscope (OLYMPUS), three images were 154 

acquired per well (with a 4x objective). Using ImageJ analysis software, the number of 155 

stained cells and total cells was manually counted and expressed as a percentage of the total 156 

cell number. 157 

2.5. Migration 158 

Cell migration assays were conducted for HUVEC and hFOB cells using the same techniques 159 

but using cell type specific media.  160 

2.5.1. Wound healing (scratch) assay 161 

Cells were seeded at 1*105 cells/well in 24-well plates and grown overnight to produce a 162 

nearly confluent monolayer. A linear scratch was created by hand using a 1 ml pipette tip, 163 

wells were rinsed with PBS to remove debris and the cell culture medium was replaced as 164 

follows: for hFOBs, DMEM/F12 supplemented with 0.1% FBS was used to reduce serum 165 

bioactive lipid effects. Likewise, for HUVEC cells ECGM was supplemented with 1/10th the 166 

usual supplement. Siponimod and S1P (delivered in 20 µl PBS) were then added directly to 167 

cell culture medium. Brightfield images (4x objective) were acquired immediately and after 8 168 

h  using a BX51 microscope (OLYMPUS). Using the associated software, Stream 169 

(OLYMPUS), the distance between the edges of the scratch wound was measured and the 170 

change over time attributed to cellular migration into the empty space.  171 

2.5.2 Transwell migration 172 

Transwell migration was conducted to assess chemotactic activity of S1P agents. Cells were 173 

seeded at 5*104 cells in 100 μl of medium in the upper chamber of 8 µm pore poly ethylene 174 

terephthalate transwell inserts. Siponimod, S1P, or fingolimod (delivered in 20 µl PBS) were 175 

then added to the bottom chamber of the transwell system, which contained 600 μl of 176 



medium. After 4, 8, or 24 h of incubation, culture medium was aspirated from the upper 177 

chamber, inserts were fixed with 10% NBF for 15 min at room temperature, then stained with 178 

0.5% crystal violet for 30 min at room temperature. Thereafter inserts were rinsed with water 179 

to remove excess dye and the top side of the membrane was wiped with a cotton bud to 180 

remove non-migrated cells. Finally inserts were dried on the bench, before the membrane was 181 

visualized by light microscopy (BX43 microscope (OLYMPUS)). Five brightfield images per 182 

insert were acquired (10x objective), stained cells were manually counted using imageJ 183 

analysis software. 184 

2.6. Cell attachment 185 

The influence of siponimod on HUVEC attachment was investigated by seeding 5*104 cells 186 

in 24 well plates using ECGM that was supplemented with 1/10th standard supplement to 187 

reduce serum lipid effects. Siponimod and S1P (delivered in 20 µl PBS) were then added 188 

immediately to wells. After 4 h incubation, non-attached cells were removed by washing with 189 

PBS. Remaining cells were fixed with 10% NBF for 15 min, followed by staining with 190 

crystal violet 0.5% w/v for 30 min. Three brightfield images per well were acquired (10x 191 

objective), with stained cells manually counted using imageJ analysis software. 192 

2.7. Cyclic AMP assay 193 

The effect of siponimod on intracellular cAMP levels was determined using the cAMP-Glo™ 194 

Max Assay (Promega). hFOB cells were seeded at 2*104 cells per well in 96 well plates and 195 

cultured overnight. Cells were washed with PBS, then treated with forskolin, siponimod, 196 

forskolin & siponimod combined, and a control containing the DMSO vehicle (concentration 197 

0.32 %) for 1 h. All conditions included 500 µM IBMX to inhibit phosphodiesterases. 198 

Luminescence was measured and cAMP concentrations calculated using a standard curve as 199 

per the manufacturer’s protocol. 200 



2.8. Statistical analysis 201 

Results were expressed as mean ± standard deviation (S.D.), unless otherwise stated. 202 

Determining statistical significance was performed using one-way analysis of variance 203 

(ANOVA) followed by Bonferroni post-test for multiple comparisons. Differences were 204 

considered significant at P < 0.05. We used extra-sum-of-squares F tests as previously 205 

described (Waeber and Moskowitz, 1995) to determine whether drug responses were 206 

concentration-dependent (with the null hypothesis that data points were best fitted with a 207 

horizontal line, i.e. showed no concentration dependence).  208 



3. Results 209 

3.1. Siponimod solution 210 

Siponimod was applied to cells in in vitro experiments as an aqueous solution of PBS 211 

containing a small concentration of DMSO as a cosolvent (0.32 % v/v). In order to determine 212 

whether the use of DMSO as a cosolvent would negatively impact hFOB and HUVEC cells 213 

used throughout this work, increasing concentrations of DMSO were applied to cells and 214 

their viability determined by resazurin assay (Fig 1). For hFOB cells there was no statistically 215 

significant change in cell viability when using 0.32 % DMSO compared to PBS control (91.5 216 

± 24.2 % compared to 100 ± 26.7 %). With increasing concentration of DMSO, cell viability 217 

trended downwards albeit without achieving statistical significance until a DMSO 218 

concentration of 3.22 % produced a significant fall in hFOB viability compared to PBS 219 

control and the 0.32 % condition (4.8 ± 2.7 % compared to 100 ± 26.7 % and 91.5 ± 24.2 %, 220 

P < 0.05). For HUVEC cells incubated with a concentration of 0.32 % DMSO there was no 221 

statistically significant change in cell viability over the experimental duration compared PBS 222 

control (99.4 ± 9.3 % compared 100 ± 4.2 %). As before DMSO showed a statistically 223 

significant reduction in cell viability at increased concentrations of 3.22 % compared to PBS 224 

and the 0.32 % condition (25.0 ± 12.1 % compared to 100 ± 4.2 % and 99.4 ± 9.3 %, P < 225 

0.05)  226 

Fig 1. 227 

3.2. Viability and proliferation 228 

Siponimod effect on cell viability and proliferation was investigated using hFOB and 229 

HUVEC cells. MTT assays were used to determine cell viability, with results presented as 230 

absorbance at 570 nm expressed as a percentage of positive control (for hFOBs, fully 231 

supplemented DMEM/F12, for HUVEC fully supplemented ECGM). Manual cell counting 232 



was used to determine cell proliferation, with data presented as average cell numbers 233 

expressed as a percentage of positive control. Viability of  hFOB cells treated with 100 nM 234 

siponimod were not significantly different to those treated with PBS vehicle (42.1 ± 7.6 % 235 

compared to 36.9 ± 8.6 %, ns), this lack of effect was also seen in manual cell counting 236 

experiments comparing 100 nM siponimod and PBS vehicle (49.1 ± 4.1 % compared to 44.9 237 

± 0.8 %, ns) (Fig 2 A & B). For HUVEC 100 nM siponimod produced no significant 238 

difference in viability compared to PBS vehicle (80.9 ± 8.8 % compared to 74.9 ± 8.2 %, ns). 239 

There was similarly no statistically significant change in manual cell count results between 240 

100 nM siponimod and PBS vehicle (68.1 ± 12.7 % compared to 59.1 ± 12.7 %, ns) (Fig 2 C 241 

& D). Additionally, BrdU assay confirmed the absence of a proliferative effect for 1000 nM 242 

siponimod on both the hFOB cells and HUVEC (Fig 2 E & F). The BrdU assays also showed 243 

that there was no discernible effect on proliferation for either S1P or fingolimod (1000 nM). 244 

Over a 7-day experimental duration (Fig 2 G), none of siponimod, fingolimod or S1P (all 245 

1000 nM) led to any statistically significant change in hFOB cell count compared to PBS 246 

control (87.9 ± 16.5 % for siponimod, 88.7 ± 10.3 % for fingolimod, and 72.5 ± 18.7 % for 247 

S1P compared to 100 ± 37.1 % for PBS control). Likewise, increasing concentrations of 248 

siponimod (10-1000 nM (Fig 2 H)) did not show any statistically significant changes in cell 249 

number compared to PBS control (91.2 ± 5.0 % for 10 nM, 95.8 ± 15.5 % for 100 nM, and 250 

82.2 ± 24.2 % for 1000 nM compared to 100 ± 14.7 % for PBS control). 251 

Fig 2.  252 

3.3. Osteogenic differentiation 253 

3.3.1. Para-nitrophenylphosphate 254 

hFOB cells were incubated in medium containing equal concentrations (1000 nM) of either 255 

siponimod, fingolimod, or S1P (Fig 3). Absorbance values for the ALP product p-nitrophenol 256 



were normalised according to manual cell counts. Data is expressed as a percentage of the 257 

osteogenic medium positive control across each replicate. Fig 3 A shows the results of the 258 

comparison between the three investigated drugs (siponimod, fingolimod, and S1P). Whereas 259 

1000 nM fingolimod showed no significant difference compared to PBS vehicle (44.8 ± 2.7 260 

% compared to 39.8 ± 9.5 %), siponimod (1000 nM) increased absorbance/count compared to 261 

PBS vehicle (68.4 ± 9.7 % compared to 39.8 ± 9.5 %, P < 0.05). This increase was not 262 

significantly different from that induced by 1000nM S1P (78.1 ± 10.3 % compared to 39.8 ± 263 

9.5 % for PBS vehicle, P < 0.05) and the response to siponimod ranging from 10-1000 nM 264 

was concentration dependent (F statistic = 11.46; P = 0.0069) (Fig 3 B). 265 

Fig 3. 266 

3.3.2. Fast blue staining 267 

Alkaline phosphatase staining (Fig 4) was performed to complement the pNPP-based 268 

assessment above. Results represent the number of stained cells divided by the total number 269 

of cells, expressed as a percentage. hFOB cells were incubated with three concentrations of 270 

siponimod (10, 100, and 1000 nM). The concentrations 100 nM and 1000 nM resulted in an 271 

increased fraction of stained cells (100 nM siponimod 3.7 ± 0.6 (P < 0.05), and 1000 nM 272 

siponimod 4.2 ± 0.8 % (P < 0.05) compared to PBS vehicle 1.9 ± 0.6 %) and the response 273 

was concentration dependent (F statistic = 6.53; P = 0.038). 274 

Fig 4.  275 

3.4. Migration 276 

3.4.1. Wound healing (scratch) assay 277 

Scratch assays were performed to investigate whether the migratory response of hFOB and 278 

HUVEC cells was increased by siponimod. While hFOB cells did not respond to 100 nM 279 

siponimod after 8 h (Fig 5 A), HUVEC cells scratch wound closure was doubled in the 280 



presence of 100 nM siponimod compared to PBS vehicle (45.8 ± 4.0 % compared to 22.5 ± 281 

6.0 %, P < 0.05) (Fig 5 B). The concentration responsiveness of the effect was examined in a 282 

separate series of experiments; while all siponimod concentrations (1, 10, and 100 nM) 283 

produced a statistically significant increase in scratch wound closure compared to PBS 284 

vehicle (40.9 ± 5.0 %, 42.3 ± 3.5 %, and 45.9 ± 2.9 % compared to 22.7 ± 7.2 %, P < 0.05) 285 

(Fig 5 C), this response was found to not be concentration dependent (F statistic = 2.82; P = 286 

0.14). The migratory response of HUVEC to 100 nM S1P was qualitatively similar to the 287 

effect of siponimod (Fig 5 D); 40.6 ± 3.6 % for S1P compared to 18.1 ± 3.5 % for PBS, P < 288 

0.05. However, these experiments were conducted independently, precluding a direct 289 

comparison. 290 

Fig 5.  291 

3.4.2. Transwell migration 292 

Following the data obtained from scratch wound assays, transwell migration assays were 293 

conducted to test the hypothesis that siponimod-enhanced migration of HUVEC was due to a 294 

chemotactic effect. Due to lack of scratch assay effect, hFOB cells were not investigated. 295 

In transwell migration assays conducted under standard endothelial growth medium 296 

conditions (2 % v/v serum), 100 nM siponimod added to the bottom chamber of the transwell 297 

system resulted in a reduction in the number of migrated cells detected on the bottom side of 298 

the membrane compared to PBS vehicle (26.9 ± 7.4 % compared to 71.6 ± 10.3 %, P < 0.05) 299 

(Fig 6 A). 300 

The concentration of S1P in serum is in the submicromolar range, i.e. sufficient to activate 301 

S1P receptors (Thuy et al., 2014). In contrast, much lower S1P concentrations are detected in 302 

tissues; this S1P gradient controls the trafficking of immune  and hematopoietic stem 303 

progenitor cells (Liu et al., 2011). To test the hypothesis that the “repulsive” effect of 304 



siponimod added to the bottom chamber under high serum concentrations was due to 305 

siponimod-induced receptor internalization, thereby blocking serum-induced cell migration, 306 

we tested the effects of S1P and siponimod added to the bottom chamber under reduced 307 

serum conditions (0.2% v/v serum). Under these conditions, 100 nM siponimod produced no 308 

statistically significant change in the number of migrated cells compared to PBS vehicle after 309 

4 h (40.3 ± 11.0 % compared to 33.8 ± 10.1 %, ns) (Fig 6 B). S1P (100 nM) alone resulted in 310 

an increased number of migrated cells compared to PBS vehicle after 4 h (111.5 ± 19.5 % 311 

compared to 36.2 ± 16.7 %, P < 0.05) (Fig 6 C). When S1P was administered in combination 312 

with 100 nM siponimod, the number of migrated cells was significantly reduced (20.4 ± 22.8 313 

% compared to 111.5 ± 19.5 %, P < 0.05) (Fig 6 C). 314 

We then performed transwell migration assays over 8 h to more closely match scratch assay 315 

conditions. Here 100 nM siponimod produced a statistically significant increase in the 316 

number of migrated cells compared to PBS vehicle (34.7 ± 7.9 % compared to 10.8 ± 3.3 %, 317 

P < 0.05) (Fig 6 D). As in the 4 h experiment, 100 nM S1P increased the number of migrated 318 

cells compared PBS vehicle (106.3 ± 11.9 % compared to 10.8 ± 3.3 %, P < 0.05), an effect 319 

that was antagonised by 100 nM siponimod (106.3 ± 8.0 % compared to 16.8 ± 7.3 %, P < 320 

0.05) (Fig 6 D). 321 

Migration over 24 h was investigated (Fig 6 E) and showed a substantial fall in the overall 322 

number of migrating cells compared to experiments conducted at 4 and 8 h. 323 

Fig 6.  324 

3.5. Cell attachment 325 

To further rule out the possibility that the siponimod-induced reduction of HUVEC migration 326 

(Fig 6 A) was caused by an effect on cell attachment, we examined the effect of various test 327 

agents on this parameter. Alone, 100 nM siponimod resulted in no statistically significant 328 



change in cell attachment compared to PBS vehicle (67.0 ± 0.6 % compared to 58.6 ± 5.0 %, 329 

ns). S1P (100 nM) resulted in a statistically significant increase in cell attachment compared 330 

to PBS vehicle (88.4 ± 6.4 % compared to 58.6 ± 5.0 %, P < 0.05). This effect was 331 

antagonised when 100 nM siponimod was added with 100 nM S1P (88.4 ± 6.4 % attachment 332 

for S1P compared to 51.3 ± 2.7 % for siponimod/S1P, P < 0.05). Attachment in the presence 333 

of siponimod and S1P was not statistically different from attachment in the PBS vehicle 334 

condition (51.3 ± 2.7 % compared to 58.6 ± 5.0 %, ns).  335 

Fig 7. 336 

3.6. Cyclic AMP assay 337 

Intracellular cAMP was quantified in an attempt to confirm the identity of the S1P receptor 338 

involved and to examine potential signalling mechanisms involved in the response to 339 

siponimod. Results showed that after 1 h, siponimod significantly inhibited forskolin-340 

stimulated increases in intracellular cAMP (30.0% ± 22.9% for 1 µM forskolin + 100 nM 341 

siponimod compared to 100 % ± 11.5 % for 1 µM forskolin, P < 0.05) (Fig 8). Siponimod 342 

alone did not lead to any significant change in baseline cAMP (12.6 ± 8.6 % for 100 nM 343 

siponimod compared to 10.2 ± 10.1 % for untreated control). 344 

Fig 8. 345 

4. Discussion 346 

The overall aim of these studies was to assess the suitability of siponimod as a potential bone 347 

regenerative agent, to be eluted by a localised delivery device to stimulate repair in critical 348 

bone defects. With this goal in mind, we investigated the effect of siponimod on osteoblast 349 

and endothelial cells proliferation, differentiation and migration. Primarily, it was necessary 350 

to show that solutions of siponimod, prepared using DMSO as a co-solvent, did not 351 



negatively impact cell viability. Therefore, experiments were conducted showing that the 352 

concentration of DMSO used (0.32 %) was non-toxic in both hFOB cells and HUVEC. This 353 

concurs with the literature, that a concentration less than 0.5 % should not impact cell 354 

viability (Shah et al., 2019). Shifting focus to the viability assays proper, S1P is well 355 

established in promoting endothelial cell proliferation, viability and survival, likely via the 356 

S1P1 or S1P3 receptors (Kwon et al., 2001; Lee et al., 2000; Lee et al., 1999; Rikitake et al., 357 

2002; Wang et al., 1999). Therefore, the lack of proliferative effect herein, as well as 358 

siponimod’s selectivity for receptors 1 and 5 may indicate that the S1P3 receptor plays the 359 

more important role. Another possibility is that siponimod is behaving like fingolimod, which 360 

at concentrations below 250 nM has no effect on HUVEC viability but exhibits toxicity 361 

above 250 nM (Schmid et al., 2007). Siponimod also had no effect on osteoblast 362 

proliferation, perhaps explained by a possible role for siponimod in osteoblast differentiation, 363 

pushing the cells towards a post-mitotic phase precluding extensive proliferation (Long, 364 

2011). 365 

ALP is commonly used as a marker of osteoblast differentiation. Here we show that exposure 366 

to siponimod (but not to fingolimod) increased ALP activity, an effect equivalent to that seen 367 

with the same concentration of S1P. Complementary ALP staining showed a corresponding 368 

siponimod-induced increase in the number of stained cells. S1P and fingolimod have 369 

previously been shown to increase markers of osteoblast differentiation as well as stimulating 370 

the osteogenic differentiation pathway of osteoblasts (Brizuela et al., 2014; Lotinun et al., 371 

2013; Matsuzaki et al., 2013; Sato et al., 2012) and mesenchymal stems cells (Hashimoto et 372 

al., 2016; Hashimoto et al., 2015; Marycz et al., 2016; Pederson et al., 2008), but it is unclear 373 

whether S1P1, S1P3 or both receptor subtypes mediate these effects. Studies of S1P on 374 

osteoblast differentiation with receptor antagonists have shown an exclusive role for S1P3 in 375 

osteoblast maturation (Brizuela et al., 2014), whereas S1P1 receptors were shown to mediate 376 



the effect of S1P and fingolimod on osteoblast differentiation, when used in conjunction with 377 

bone morphogenetic protein 2 (Sato et al., 2012). There is conflicting evidence regarding the 378 

effect of fingolimod, which has recently been shown to reduce markers of bone formation 379 

(including ALP) in osteoblasts and chondrocytes (El Jamal et al., 2019). This study, which is 380 

more in line with our findings with fingolimod, taken together with the effects presented 381 

herein for siponimod, an S1P1/5 selective modulator, and the lack of detectable S1P5 receptor 382 

mRNA expression in pre-osteoblasts and osteoblasts (Roelofsen et al., 2008), suggest that 383 

S1P1 receptor stimulation is sufficient to induce osteoblast differentiation. 384 

S1P is known to stimulate the migration of osteoblast precursors, osteoclasts, and endothelial 385 

cells (Lee et al., 2000; Lee et al., 1999; Ohmori et al., 2001; Pederson et al., 2008; Roelofsen 386 

et al., 2008; Ryu et al., 2002). Here we found that siponimod had no effect on the migration 387 

of hFOB osteoblasts. This lack of effect suggests that previously reported effects of S1P on 388 

osteoblast migration were mediated by a receptor other than S1P1 or S1P5, or that this effect 389 

was dependent on the differentiation stage. While both S1P1 and S1P2 receptors have been 390 

shown to regulate the migration of cells of the osteoblast lineage, they only did so in MC3T3-391 

E1 pre-osteoblasts (Roelofsen et al., 2008). Upon reaching cell confluence, cultures of hFOB 392 

cells express high levels of phenotypic markers associated with osteoblast differentiation 393 

(Harris et al., 1995). It is therefore possible that the cells used in our studies were more 394 

differentiated than the pre-osteoblasts known to migrate in response to S1P, although the 395 

relatively small fraction of cells expressing ALP in our studies, even after one-week exposure 396 

to osteogenic medium, would seem to argue against this explanation, leaving open the 397 

possibility that species differences may account for the discrepant migration response in 398 

hFOB (of human origin) and in murine MC3T3-E1 cells.  Our studies did however show a 399 

significant effect on endothelial cell migration, doubling HUVEC cell motility in scratch 400 

assays. The effect of siponimod was found to be similar to that of S1P (Lee et al., 2000; Lee 401 



et al., 1999; Ohmori et al., 2001; Ryu et al., 2002). However, the extent of this response did 402 

not seem to depend on siponimod’s concentration (1-100 nM). It is possible that a 403 

concentration response relationship may have emerged with further independent experiments. 404 

Alternatively, the effect may already have been maximal at 1 nM siponimod, reaching a 405 

plateau thereafter. Indeed, siponimod is a potent and efficacious S1P1 agonist, with 406 

subnanomolar EC50 in [35S]GTPγS binding assays (Gergely et al., 2012; Lukas et al., 2014). 407 

However, while siponimod is often tested at 100 nM in published functional cell culture 408 

experiments (Gentile et al., 2016; Lupino et al., 2019), we found only two reports showing a 409 

concentration response curve in such preparations, in which siponimod mediated a response 410 

with an EC50 of 15.8 nM (Gergely et al., 2012) and only showed a non-significant trend at 1 411 

nM (O'Sullivan et al., 2016). 412 

In transwell assays designed to test whether the effect of siponimod in the scratch assay was 413 

due to increased chemokinesis or to chemotaxis, siponimod decreased the migration of 414 

endothelial cells under standard growth medium conditions (2% v/v serum). We hypothesized 415 

that siponimod may have internalized S1P receptors, blocking the effect of S1P present in the 416 

growth medium. Indeed, when transwell assays were conducted under low serum conditions 417 

(0.2% v/v serum), siponimod had no significant effect on cell migration, and S1P stimulated 418 

endothelial cell migration in a siponimod-sensitive manner and as effectively as serum. 419 

To understand how siponimod interfered with S1P-mediated transwell migration, cell 420 

attachment studies performed under similar conditions to the transwell assays showed that 421 

siponimod interfered with S1P-mediated increases in cell attachment over 4 h. It is therefore 422 

possible that decreased cell attachment may have contributed to the reduced transwell 423 

migration observed after 4 h. Given that the effect of siponimod in scratch assays was 424 

determined over 8 hr, additional 8 hr transwell assays were conducted and showed that while 425 

siponimod still antagonised S1P mediated migration, it also induced a statistically significant 426 



increase in cell migration when added on its own, albeit with an effect 3-fold weaker than the 427 

effect of S1P. This may be due to persistent signalling after internalisation of the S1P1 428 

receptor (Mullershausen et al., 2009), which may only lead to migration after long exposure 429 

(8 h) to siponimod, but not after 4 h, and may also indicate that siponimod behaves similarly 430 

to fingolimod, which has been shown to induce cellular motility in scratch assays 431 

(Mullershausen et al., 2009) but impede HUVEC migration across a membrane (Ho et al., 432 

2005; LaMontagne et al., 2006; Tanaka et al., 2013). The same experiments were conducted 433 

over 24 h, however the substantial drop in the number of cells migrating indicated that the 434 

extended experimental duration under low serum conditions may have impacted HUVEC 435 

viability. 436 

The role of intracellular cAMP in bone remodelling and bone cell differentiation has long 437 

been known (Rodan et al., 1975), but the relationship is complex. While some early studies 438 

have shown that parathyroid hormone stimulate the in vitro differentiation of osteoblasts via 439 

intracellular cAMP production (Nakatani et al., 1984), other reports show that the influence 440 

of cAMP on ALP expression changes depending on the stage of osteoblast differentiation, 441 

and parathyroid hormone may preferentially inhibit the differentiation of more mature 442 

osteoblasts (Isogai et al., 1996). Expanding on the complexity of the relation between cAMP 443 

and osteoblast differentiation markers, increasing levels of cAMP have been shown to result 444 

in decreased ALP but increased osteocalcin expression (Romanello et al., 2001). More 445 

recently, increasing cAMP levels have been shown to suppress osteoblast mineralisation 446 

(Nishihara et al., 2018).  Forskolin-induced cAMP is known to be inhibited by both 447 

sphingosine 1-phosphate and fingolimod after 1 h incubation (Mullershausen et al., 2009), 448 

with results similar to those shown for siponimod. This effect is most likely associated with 449 

the inhibitory Gi protein coupled to the S1P1 receptor, which is the mechanism through 450 

which S1P and fingolimod produce the same inhibitory effect. Based on the somewhat 451 



contradictory existing literature, it is not straightforward to provide a mechanism linking the 452 

adenylate cyclase inhibiting effect of siponimod on our hFOB osteoblasts and the effects of 453 

this agent on hFOB cell differentiation. However, we hypothesize that siponimod may 454 

maintain a chronically low level of intracellular cAMP through its interaction with S1P1 455 

receptors, resulting in increased ALP activity, indicative of increased osteoblast 456 

differentiation.      457 

Fingolimod, and now siponimod, both antagonise the chemotactic effect of S1P on 458 

endothelial cells. Fingolimod has shown proangiogenic effects in vivo, ultimately improving 459 

recovery of bone defects (Huang et al., 2012; Li et al., 2019). Therefore, given siponimod’s 460 

effect on osteoblast differentiation, it may be useful to incorporate siponimod into a localised 461 

delivery device to investigate the effects of siponimod in vivo towards the same end.       462 

One of the limitations of the current study is that it does not consider osteoclasts, or the 463 

coupling between osteoblasts and osteoclasts (Pederson et al., 2008). This communication is 464 

known to involve S1P receptors and would likely impact significantly on healing outcomes in 465 

any potential in vivo studies. Also, our ALP staining studies showed that the total fraction of 466 

stained cells was relatively small, being less than 10% of the total number of cells. This may 467 

be due to the use of a relatively early time point for analysis (7 days). Conducting the 468 

experiment over a longer duration, more consistent with the effect of a drug eluting scaffold 469 

(Das et al., 2014a; Das et al., 2014b)  may have led to a more meaningful effect on 470 

differentiation. 471 

5. Conclusion 472 

The aim of this work was to investigate the potential of siponimod in a bone regenerative 473 

context, ultimately towards its use in conditions of critical bone defects, as part of a localised 474 

delivery device, but improving on the specificity of the eluted drug (Das et al., 2014a; Das et 475 



al., 2014b; Huang et al., 2012; Li et al., 2019). These studies add to the relatively small 476 

amount of literature on the functional effects of siponimod in cell culture models. In the 477 

context of bone repair, the differentiation effect of siponimod on osteoblasts, taken together 478 

with its effects on endothelial cells suggest that this selective S1P1 modulator may be useful, 479 

particularly in conditions of critical defects that remain a significant therapeutic challenge. 480 

However, more robust in vivo experiments would be the next step before making any 481 

determinative conclusions. 482 

  483 
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Fig 1. Viability assay for hFOB and HUVEC cells incubated with increasing concentrations 

of DMSO. (A) hFOB resazurin assay after 72 h, (B) HUVEC resazurin assay after 48 h. Data 

is expressed as a percentage of PBS control and is presented as mean ± S.D. from 3 

independently repeated experiments (with 3 technical replicates). For hFOB cells, increasing 

DMSO concentrations were added to cell culture medium containing 1/10th standard serum 

supplement. For HUVEC, DMSO concentrations were added to cell culture medium 

containing 1/3rd standard supplements. Statistical analysis was performed by one-way 

ANOVA. There was no statistically significant difference between any group except for 

3.22% DMSO, which was statistically different from all other groups (***: P < 0.001). 

Fig 2. Viability and proliferation assays for hFOB and HUVEC cells. (A & B) hFOB MTT 

assay and cell count after 72 h, n=3 (4 technical replicates) (C & D) HUVEC MTT assay and 

cell count after 48 h, n=3 (4 technical replicates) (E & F) hFOB and HUVEC BrdU assay, 

n=3 (4 technical replicates) (G & H) hFOB cell count after 7 days incubation, n=4 (3 

technical replicates). For A-F, data is expressed as a percentage (positive control set to 

100%), for G & H data is expressed as a percentage of PBS control. For hFOB cells (in A-F), 

factors were added to cell culture medium containing 1/10th standard serum supplement, with 

standard growth medium (DMEM/F12) acting as positive control. For HUVEC (in A-F), 

factors were added to cell culture medium containing 1/3rd standard supplements, with 

standard growth medium (ECGM, containing 2% serum) acting as positive control. In G & H 

growth medium supplement was not altered. ‘’n=’’ represents the number of independently 

repeated experiments. Data is presented as mean ± S.D., statistical analysis by one-way 

ANOVA. NS: No statistical significance. *: P < 0.05. **: P < 0.01. ***: P < 0.001. 

Fig 3. Alkaline phosphatase activity as an early marker of differentiation in hFOB cells. (A) 

Effect of siponimod, fingolimod, and S1P (1000 nM) after 7 days, n=4 (3 technical 

replicates) (B) Siponimod concentration response over 10-1000 nM after 7 days, n=4 (3 



technical replicates). For A & B, data represents pNPP absorbance at 405 nm divided by cell 

count, relative to the positive control (osteogenic medium containing 50 µg/ml ascorbic acid 

& 7.5 mM β-glycerophosphate) in each independent replicate. ‘’n=’’ represents the number 

of independently repeated experiments. Data is presented as mean ± S.D., statistical analysis 

by one-way ANOVA. NS: No statistical significance. *: P < 0.05. **: P < 0.01. ***: P < 

0.001.  

Fig 4. Alkaline phosphatase (ALP) staining as an early marker of differentiation in hFOB 

cells. (A) Response to 10-1000 nM siponimod after 7 days, n=4 (3 technical replicates). Data 

represents the average number of manually counted Fast blue-stained cells divided by the 

total cell number. Osteogenic medium (containing 50 µg/ml ascorbic acid & 7.5 mM β-

glycerophosphate) was used as a positive control. ‘’n=’’ represents the number of 

independently repeated experiments. Data is presented as mean ± S.D. Statistical analysis 

was done using one-way ANOVA. NS: No statistical significance.  *: P < 0.05. **: P < 0.01. 

***: P < 0.001. The percentage of ALP-stained cells in the presence of osteogenic medium 

was significantly different from the percentage of stained cells in all other conditions (P < 

0.001). B, C, and D are representative brightfield photomicrographs of hFOB  cells exposed 

to PBS (B), 100 nM siponimod (C), and osteogenic medium (D); blue cells are cells with 

higher alkaline phosphatase activity, and hence a higher level of differentiation. Scale bar is 

500 µm. 

Fig 5. Wound healing (scratch) assay for hFOB and HUVEC cells. (A) Effect of 100 nM 

siponimod on hFOB cells, n=4 (3 technical replicates), (B) Effect of 100 nM siponimod on 

HUVEC cells, n=7 (3 technical replicates), (C) Siponimod concentration response over 1-100 

nM on HUVEC cells, n=3 (3 technical replicates); (D) Effect of 100 nM S1P on HUVEC, 

n=2 (3 technical replicates). Data represents the percentage closure of the scratch wound after 

8 h. ‘’n=’’ represents the number of independently repeated experiments. Data is presented as 



mean ± S.D., statistical analysis by one-way ANOVA. *: P < 0.05. **: P < 0.01. ***: P < 

0.001. E-J: Representative photomicrographs for the experiment shown in (B) are shown at 0 

and 8 h: (E,H) vehicle (PBS) control, (F, I) positive control (FBS), and (G, J) 100 nM 

siponimod. The white arrowheads at the top and bottom of each photomicrograph show the 

edge of the manually created scratch wound. Images were acquired using a 4x objective, 

scale bars are 500 µm.  

Fig 6. Transwell migration assay for HUVEC cells. (A) Effect of 100 nM siponimod under 

standard growth medium conditions (2 % serum) over 4 h, n=4 (3 technical replicates) (B) 

Effect of 100 nM siponimod under reduced serum conditions (1/10th standard cell culture 

supplement containing 0.2 % serum) over 4 h, n=5 (3 technical replicates) (C) Effect of 100 

nM S1P alone and combined with 100 nM siponimod under reduced serum conditions for 4 

h, n=3 (3 technical replicates) (D) Effect of 100 nM siponimod under reduced serum 

conditions over 8 h, n=5 (2 technical replicates) (E) migration over 24 h, n=3 (2 technical 

replicates. Data, presented as mean ± S.D., represents the number of cells counted on the 

bottom side of a transwell membrane, expressed as a percentage (positive control set to 

100%). ‘’n=’’ represents the number of independently repeated experiments. Statistical 

analysis by one-way ANOVA; ns: No statistical significance. **: P < 0.01. ***: P < 0.001. 

(F-I) Representative photomicrographs for experimental conditions shown in (D): FBS (F), 

PBS (G), 100 nM siponimod (H) and 100 nM siponimod + 100 nM S1P (I). Scale bar: 500 

µm. 

Fig 7. Cell attachment assay for HUVEC cells. Effect of siponimod, S1P, and siponimod + 

S1P (all 100 nM) on cell attachment after 4 h incubation under reduced serum conditions, 

n=3 (2 technical replicates. Data, presented as mean ± S.D., represents the number of cells 

attached to the well, expressed as a percentage (positive control set to 100%). ‘’n=’’ 

represents the number of independently repeated experiments. Statistical analysis by one-way 



ANOVA. NS: No statistical significance. ***: P < 0.001). (B-E) Representative images for 

experimental conditions shown in cell attachment assay: FBS (B), PBS (C), 100 nM 

siponimod (D) and 100 nM siponimod + 100 nM S1P (E). Scale bar: 500 µm. 

Fig 8. Effects of siponimod on intracellular cAMP in hFOB cells. The effect of 100 nM 

siponimod alone and in combination with 1 µM forskolin, n=4 (3 technical replicates). Cells 

were incubated in the presence of the indicated drugs for 1 h. Data, presented as mean ± S.D., 

represents the concentration of intracellular cAMP, expressed relative to 1 µM forskolin. 

‘’n=’’ represents the number of independently repeated experiments. Statistical analysis by 

one-way ANOVA. ***: P < 0.001.  
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