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Abstract

This thesis describes the development of an open-source system for

virtual bronchoscopy used in combination with electromagnetic in-

strument tracking. The end application is virtual navigation of the

lung for biopsy of early stage cancer nodules. The open-source plat-

form 3D Slicer was used for creating freely available algorithms for

virtual bronchscopy.

Firstly, the development of an open-source semi-automatic algorithm

for prediction of solitary pulmonary nodule malignancy is presented.

This approach may help the physician decide whether to proceed with

biopsy of the nodule. The user-selected nodule is segmented in order

to extract radiological characteristics (i.e., size, location, edge smooth-

ness, calcification presence, cavity wall thickness) which are combined

with patient information to calculate likelihood of malignancy. The

overall accuracy of the algorithm is shown to be high compared to in-

dependent experts’ assessment of malignancy. The algorithm is also

compared with two different predictors, and our approach is shown to

provide the best overall prediction accuracy.

The development of an airway segmentation algorithm which extracts

the airway tree from surrounding structures on chest Computed To-

mography (CT) images is then described. This represents the first

fundamental step toward the creation of a virtual bronchoscopy sys-

tem. Clinical and ex-vivo images are used to evaluate performance

of the algorithm. Different CT scan parameters are investigated and

parameters for successful airway segmentation are optimized. Slice

thickness is the most affecting parameter, while variation of recon-

struction kernel and radiation dose is shown to be less critical. Airway

segmentation is used to create a 3D rendered model of the airway tree

for virtual navigation.

Finally, the first open-source virtual bronchoscopy system was com-

bined with electromagnetic tracking of the bronchoscope for the devel-

opment of a GPS-like system for navigating within the lungs. Tools for
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pre-procedural planning and for helping with navigation are provided.

Registration between the lungs of the patient and the virtually recon-

structed airway tree is achieved using a landmark-based approach. In

an attempt to reduce difficulties with registration errors, we also im-

plemented a landmark-free registration method based on a balanced

airway survey. In-vitro and in-vivo testing showed good accuracy for

this registration approach.

The centreline of the 3D airway model is extracted and used to com-

pensate for possible registration errors. Tools are provided to select

a target for biopsy on the patient CT image, and pathways from the

trachea towards the selected targets are automatically created. The

pathways guide the physician during navigation, while distance to

target information is updated in real-time and presented to the user.

During navigation, video from the bronchoscope is streamed and pre-

sented to the physician next to the 3D rendered image. The electro-

magnetic tracking is implemented with 5 DOF sensing that does not

provide roll rotation information. An intensity-based image registra-

tion approach is implemented to rotate the virtual image according

to the bronchoscope’s rotations. The virtual bronchoscopy system is

shown to be easy to use and accurate in replicating the clinical set-

ting, as demonstrated in the pre-clinical environment of a breathing

lung method. Animal studies were performed to evaluate the overall

system performance.
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1. P. Nardelli, R. S. J. Estépar and P. Cantillon-Murphy, “Semi-

automated Airway Segmentation for Lung CT Datasets”, Com-

puter Assisted Radiology and Surgery (CARS), Heidelberg, 2013.
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Chapter 1

Introduction

1.1 Overview

This chapter provides an introduction to the research work presented in this

thesis. It explains the motivation for this work and the relevant background

information. It presents the objectives of the thesis as well as the thesis structure.

Introduction to Bronchoscopy

Endoscopy is the descriptive term for a minimally invasive medical procedure used

to directly look inside hollow organs or cavities of the body using an endoscope,

that is a flexible and relatively thin catheter with a small camera and a light at the

tip. The images captured by the camera are trasmitted in real-time to a screen

that allows examination of areas of interest [1]. The term bronchoscopy refers to a

particular endoscopic technique used to visualize the inside of the airways and the

lungs for diagnostic and therapeutic purposes. In this case, the instrument used

is called a bronchoscope (Figure 1.1); this is similar in function to an endoscope,

having a smaller outer diameter (ranging 4-8 mm). A bronchoscopy procedure is

performed with the patient sitting or in supine position, and inserting the tube

through the mouth or nose to the trachea and from this into the bronchial area.

When the bronchoscope is at the desired point, medical instruments can be in-

serted through a small channel (usually 2-4 mm in diameter) of the bronchoscope

and biopses or foreign objects can be extracted or removed. Biopsy is currently

the gold standard for diagnosis of lung cancer.
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1. INTRODUCTION

Figure 1.1: Example of a standard bronchoscope.

Imaging for Lung Cancer

Before the bronchoscopy procedure a method to identify the correct location of

possible cancer nodules/lesions as well as a system to map a correct 3-dimensional

(3D) path to the region of interest are required. For this reason, all patients

undergo a computed tomography (CT) scan hours or days before the procedure,

and this has to be properly analysed by the physician. In fact, first results from

the lung cancer screening trial data show that around one third of smokers that

undergo a CT scan have lung nodules that may require guided bronchoscopy and

biopsy [2]. Once the analysis is completed and the physician has identified the

path to follow to reach the region of interest, the bronchoscopy procedure can be

performed.

Problems with Current Approaches

One drawback of the bronchoscopy procedure is the bronchoscope’s diameter

which does not allow access to deeper regions of the lung where the bronchi

become narrow. This is a major problem, as these locations are where many

early stage cancer develop [3,4]. Moreover, a CT scan typically consists of several

2D images, the analysis of which may require a tedious inspection of individual

slices in search of possible signs of disease. The performance of this method

alone has a low accuracy of only 14% [5]. To help the physician overcome these

problems new methods have been proposed. Among them, fluoroscopy-guided

bronchocopy is one of the most widely known and remains the standard of care

for lung guidance [6, 7]. With this system the physician is provided with a real-

time x-ray image on a screen that is coupled with the bronchoscopic video in order

to identify the position of the bronchoscope within the lung. However, fluoroscopy
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1.1 Overview

provides only 2D images of the inside of the body, causing possible overlapping

of the different structures (see Figure 1.2). Moreover, a c-arm fluoroscope is

Figure 1.2: A typical chest fluoroscopy 2D image. Overlap of different structures

appears evident.

required during the procedure, exposing both the patient and the clinicians to

significant levels of radiations. Therefore, in recent years a new system called

electromagnetic navigation bronchoscopy (ENB) has been proposed.

Virtual Bronchoscopy and Navigation

Electromagnetic (EM) tracking helps to determine both the position and orien-

tation of an object using magnetic fields. It usually uses low frequency magnetic

fields (< 100 kHz) which can pass freely through human tissue without significant

attenuation [8]. EM tracking can be coupled with the 3D CT scan of the patient

by means of a EM sensor at the tip of the bronchoscope, helping the physician

to see the exact position of the bronchoscope both within the lung through the

camera and in the 3D view represented by the CT image. Alignment (registra-

tion) of the patient with the CT image is required, and no radiation exposure is

necessary [9–16]. Unfortunately, the minimum size of even the latest generation

ultrathin bronchoscopes is around 2 mm, still too big to reach deepest peripheral

sites. Hence, a new tool called virtual bronchoscopy (VB) has been proposed

to further help the physician during the procedure. VB refers to a virtual 3D

representations of bronchial tree and surrounding structures in which the physi-

cian can move and explore the inner part of the airway [17–24]. VB is used in

conjunction with electromagnetic navigation bronchoscopy (ENB), so that the

tip of the bronchoscope can be seen both on the CT image and inside the 3D
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model of the airway. This method can provide the physician with an automati-

cally constructed virtual pathway to the region of interest; a sort of GPS system

for the lung [24, 25]. This system have been shown to be useful in reducing the

examination time when coupled with ENB [18]. To date, there are two commer-

cially available VB systems using ENB: SuperDimension iLogic System [26] and

Veran SPINDrive [27]. On the other hand, LungPoint (Broncus Medical, Moun-

tain View, CA, USA) is the only commercially available system for VB [28]. High

costs and CT resolution as well as high sensitivity to external magnetic fields,

such as those that could be used as a steering mechanism or imaging (e.g., in

MRI), limit these systems.

1.2 Thesis Objectives

This research had five main objectives:

• Development of a system to automatically detect probability of malignancy

of suspect nodules and helps the physician decide whether to proceed with

bronchoscopy.

• Development of a system that automatically reconstructs the best pathway

to the target nodule and provides guidance during bronchoscopy.

• Development of a VB system to reproduce a virtual reconstruction of the

inside and outside of the airways starting from CT, converts the tracked

position of the catheter into a position in the virtual environment and guides

the physician during bronchoscopy.

• Development of an open-source algorithm for airway segmentation that al-

lows direct comparison with other methods and modifications according to

personal needs and is reliable across multiple CT platforms and parameters.

• Development of a VB system that is similar to commercial ones, less cost

effective, more general in terms of CT characteristics, and that reduces

manual interaction as much as possible.
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1.2 Thesis Objectives

The primary end of this research thesis is to provide physicians with a first

version of an open-source virtual navigation system for the lung to be coupled

with an automatic or semi-automatic robotic ENB system. This navigation plat-

form will automatically recognise malignancy level of possible nodules prior the

procedure, determine the pathways to the nodules and provide real-time virtual

navigation within the airways. At the moment, when a suspect tumour is iden-

tified, the physician visually analyses the patient’s CT image to identify possible

indicators of nodule’s malignancy and decide whether to proceed with biopsy.

However, recent studies showed that 85-90% of biopsied lung cancer nodules are

benign [29]. For this reason, having a system that automatically detects lung

tumours on a CT image and extracts nodule’s characteristics to determine prob-

ability of malignancy is absolutely essential to save time for the physician, money

for the hospital, and most of all to avoid the patient an unnecessary operation.

To this end, one of the goals of the research was the development of a system

that automatically determines probability of malignancy of suspect nodules and

helps the physician decide whether to go ahead with the procedure.

Once the nodule is identified and considered worth of biopsy, the physician

analyses the CT image to mentally reconstruct the best pathway from the trachea

to the region of interest. This is a long and tedious operation, that requires the

physician to also memorize the pathway to follow during bronchoscopy. For this

reason, the development of a system that automatically reconstructs the best

pathway to the target nodule and provides guidance during the procedure, as a

type of GPS system for the airways, might be of great help for the physicians.

Currently, two commercial systems of this type are available; superDimension [26]

and Veran SPINDrive [27]. However, these systems have high costs, have specific

requirements, such as the type of CT image that has to be used, and require a

long training, due to the high user interaction necessary, before the physicians

can use them. Therefore, the main goal of the research was the development of a

system similar to commercial ones, but less cost effective, more general in terms

of CT characteristics, and that reduces manual interaction as much as possible.

At University College of Cork (UCC), a novel electromagnetic (EM) tracking

platform to identify position and orientation of the bronchoscope in real-time

during the procedure has been developed. In this context, the main goal of
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the presented research was the development of a VB system that reproduces

a virtual reconstruction of the inside and outside of the airway starting from

CT, automatically reconstructs the pathway towards the targets, converts the

tracked position of the catheter into the corresponding position in the virtual

environment, and guides the physician during bronchoscopy.

The first step towards the creation of a VB method is represented by the

creation of a 3D virtual model of the airway. To this end, the chest CT image of

the patient is analysed in order to identify and isolate the airways from the rest

of the lung. This process is referred to as segmentation. Several systems have

been developed for airway segmentation. However, these systems are usually

tested only on personal datasets, so that direct comparison is not possible, and

the effect of varying parameters of the CT image have never been considered.

For this reason, a final goal of the research was the development of an open-

source algorithm for airway segmentation that allows direct comparison with

other methods and modifications according to personal needs and is reliable across

multiple CT platforms and acquisition parameters.

1.3 Thesis Structure

This thesis is divided into five main chapters which investigate the different as-

pects of the work.

Chapter 2 describes the background and the context to the research. A small

introduction to lung and airway anatomy as well as to computed tomography

is first presented. Then, the open-source platform 3D Slicer used throughout

the research is described and a previously developed [30] EM tracking system

introduced.

Chapter 3 describes the algorithm implemented to identify the likelihood of

malignancy of lung nodules. Each sub-algorithm necessary to determine the

important metrics that lead to a probability are detailed and a method for testing

and evaluation is described.

Chapter 4 details the design and implementation of the airway segmentation

algorithm. The method used to develop the algorithm as well as the theory
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to support the implementation are described and the approach for testing and

evaluation of the algorithm considered.

Chapter 5 covers all aspects of the virtual navigation system starting from

the 3D airway model. Each part of the system, including pathway creation and

image registration, is described in detail in terms of implementation and theory

to support the design.

In Chapter 6, testing and evaluation of the VB system both in ex-vivo and

in-vivo experiments was demonstrated. For ex-vivo testing, a plasticised pig lung

is used as a phantom. This was navigated by nine different physicians in the field

of respiratory medicine. The in-vivo study was conducted on two pigs, whose

lungs were navigated to biopsy tumour models.

In Chapter 7, the key findings of the thesis are reviewed and recommendations

for future work are presented.

1.4 Key Contributions

The key contributions of the presented thesis are here summarised:

• The design of a novel open-source algorithm for nodule malignancy predic-

tion (Chapter 3). Only nodule location has to be specified. The system

automatically defines nodule characteristics, such as size, location, edge

shape, wall thickness and calcification presence to determine probability of

malignancy. The system represents a first fundamental step for the devel-

opment of a platform for automatic identification and classification of lung

nodules.

• The first open-source algorithm for airway segmentation starting from chest

CT images (Chapter 4). The method can be used for both human and

animal (porcine, canine) images and provides a frame of reference for com-

parison of results using local datasets.

• The first study of effect of variation of CT parameters (slice thickness, radia-

tion dose, convolution kernel, and level of inflation) on airway segmentation

(Chapter 4).
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• Development of a novel method to evaluate leakage presence on segmented

airways (Chapter 4). This can be easily reproduced by other teams, thus

providing a general evaluation system to compare results.

• A novel open-source virtual bronchoscopy system for image-guided navi-

gation (Chapter 5). This system has a modular structure and has been

optimized for usage with the electromagnetic tracking system developed at

UCC.

• The VB system provides different tools for helping during pre-procedure

and navigation steps. Compared to commercial systems, it generalizes the

type of CT images to be used, and reduces manual interaction as well as

cost (Chapter 5).

• A new method for landmark-free registration between real and virtual en-

vironment has been proposed and validated (Chapter 5). The method im-

proves performance of registration and drastically reduces user interaction.

8



Chapter 2

Background

2.1 Overview

In this chapter, a description of the research context for this work is presented.

The main goal of the research was to develop a system for virtual navigation

within the lung, to eventually be used by physicians during biopsy of suspect

lung cancer nodules. For this reason, a brief introduction to human lung and air-

way anatomy is first presented, followed by characterization of lung cancer and

lung diseases. For the development of a system for VB, CT images are used as a

starting point. X-ray CT is described, including its main characteristics and op-

erating principles. The open-source platform 3D Slicer, used for the development

of the VB system, is then introduced, and, finally, the electromagnetic navigation

platform developed at University College Cork (UCC) which is coupled with the

VB to create a complete ENB system is briefly described.

2.2 Human Lung and Airways Tree

The human lungs are a pair of spongy, air-filled organs which allow for the ex-

change of air with the external environment. They are located within the thoracic

cavity of the chest, both having a conical shape and similar in appearance. How-

ever, the right lung is divided into three lobes (upper, middle, and lower) by two

inter-lobular fissures (oblique and horizontal), and it is also shorter by about 2.5
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cm than the left one, which is instead divided into two lobes (upper and lower)

separated by one inter-lobular oblique fissure. The lungs are surrounded by a thin

layer of tissue, called pleura, and they are connected by means of the trachea,

a tube that conducts inhaled air into the two lungs through its branches, called

bronchi (Figure 2.1). The bronchi then split into smaller branches (bronchioles)

and end in the alveoli, a cluster of small sacs where the gas exchange takes place.

The main function of the lungs is to provide oxygen to capillaries in order to oxy-

Figure 2.1: The human respiratory system [31].

genate the bloodstream. At the same time, through the alveoli the lungs transfer

carbon dioxide, a waste product of metabolism, to the atmosphere.

The set of tubes that allows for inhalation and exhalation of the air is referred

to as the pulmonary airways tree, or respiratory tract. The mouth and the nose

are the normal entry and exit ports through which the air enters the body, and

from here it is conducted to the trachea through the pharynx. The trachea is

the biggest tube of the respiratory tract with a diameter of about 25 mm and

a length of 10-16 cm. It represents the first part of the respiratory tract and

it then splits into the two main branches, the right and left bronchi, in an area

called the carina. The main bronchi enter the right and left lungs and progres-

sively subdivide into two or more smaller “child” branches until the alveoli. Each
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division point is called a generation and the human airway tree consists on aver-

age of 23 generations, for a total of approximately 2400 km of airways. Bronchi

are typically airways surrounded by cartilaginous walls. The amount of cartilage

in the walls of bronchi progressively decreases and eventually disappears by the

time the bronchi divide into airways of about 1 mm diameter (after generations

12-14). The smaller airways that lack cartilage are called bronchioles [32]. The

respiratory tract functions as a piping system for the air and is protected by the

rib cage, spinal cord, and sternum bone.

2.3 Lung Cancer and Diseases

The term lung cancer refers to an uncontrolled growth of abnormal cells in tissues

of one or both lungs. When the abnormal cells divide and form larger tumours,

the ability to provide the bloodstream with oxygen may be undermined. The

most common symptoms of lung cancer are coughing, weight loss, shortness of

breath, and chest pains [33]. Despite improvements in surgical, radiotherapeutic,

and chemotherapeutic approaches in the last three decades, lung cancer is still the

leading cause of cancer-related death and the long-term survival rate remains low

[34]. According to GLOBOCAN, there were 1.8 million new global cases of lung

cancer in 2012 (12.9% of the total cancer incidence). In the United States, lung

cancer is the second most common cancer diagnosed cancer in men and women

[35]. Other than cancer there are also several pathologies, such as airway related

disease (e.g., asthma and chronic bronchitis) or chronic obstructive pulmonary

disease (COPD), that can alos affect the lung function. According to the World

Health Organization (WHO) between 100 and 150 million people around the

globe suffer from asthma and deaths from this condition have reached over 180,000

annually [36], while emphysema (one of the two main forms of COPD) is projected

to be the third leading cause of death worldwide by 2020 [37].

When a lung tumour is identified, the first step is to determine whether the

tumour is malignant or benign. Malignant tumours are the most dangerous and

they usually spread to different parts of the body either through the bloodstream

or the lymphatic system. These tumours take oxygen and nutrients from healthy

cells and they destroy or reduce the ability of normal tissues to function. Typical
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Figure 2.2: This figure shows an axial CT image of a patient presenting a malig-

nant nodule (red arrow).

malignant tumours are usually large (> 2 cm), located in upper or middle lobes,

with big internal cavities, low calcification and with spiculated edges [38, 39].

An example of a typical malignant lung tumour can be seen in Figure 2.2. On

the other hand, benign tumours are not cancerous, so they will not spread to

other parts of the body and they grow slowly or they might even stop growing

or shrink. Usually they do not need to be removed, as they will not invade,

destroy, or replace other tissues. Automatic and early recognition of probability

of malignancy of a lung tumour may help the physicians decide whether to go

ahead with a procedure such as bronchoscopy to biopsy or remove the tumour

itself.

2.4 X-ray Computed Tomography (CT)

The most common imaging modality for lung diseases recognition is x-ray com-

puted tomography (CT), a non-invasive system which allows a doctor to have a

three-dimensional (3D) view of the patient’s lung, including the complex branch-

ing structure of the airway tree [40, 41]. During a CT scan, several x-ray images

of the body are taken from different angles. Digital image processing combines all

the different images (defined as “slices”), to create a single 3D image. Virtually

every patient with a suspect lung disease undergo a CT scan. In fact, CT is

highly sensitive to pulmonary nodules and it may help better characterize COPD
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due to tissue loss or changes in airway dimensions. First results from the lung

cancer screening trial data show that around one third of smoking people that

undergo a CT scan have lung nodules that may require guided bronchoscopy and

biopsy [2]. Images aquired with a CT scan are provided as a set of 2D images

that can be scrolled through in three different planes, that is axial, coronal, and

sagittal plane. This helps the clinician examine the same region of interest from

three different points of views, allowing a better analysis of possible abnormal-

ities. Figure 2.3 shows an example of a chest CT image. Although a CT scan

Figure 2.3: A reconstructed CT image as shown to physicians. Axial (red),

saggital (yellow), and coronal (green) views of the same patient are shown.

requires the patients to be exposed to a certain radiation dose, advances in CT

technology have made high-resolution images possible with a single breath hold

at acceptable levels of radiation exposure. However, a CT scan can not be used

alone for diagnosis, as false-positive findings are likely to appear [42]. Therefore,

to date a histological confirmation is absolutely essential for good diagnosis. This

includes biopsy at the point of interest.

2.4.1 Historical Background

X-ray computed tomography, was proposed for the first time in 1972 by G. N.

Hounsfield and A. Cormack, who were later awarded the Nobel Peace Prize for

their contributions to medicine and science [43]. CT can be considered as the

first modern “slice-imaging” modality and to date is the gold standard for lung

imaging. The first CT scanners were dedicated to head imaging only, but a “whole

body” system was developed a few years later (1976). By 1980 CT scanners
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became widely available and at present about 30,000 scanners are installed in

hospitals and private clinics worldwide. The first CT scanner was extremely slow,

taking days to reconstruct a single image of a patient. New generation scanners

can reconstruct a 512 × 512 image from millions of data points in less than a

second. For example, an entire chest (around five hundred 2 mm slices) can now

be scanned in fifteen to twenty seconds, allowing the acquisition of full 3D images

in a single patient breath-hold [44]. In the last two decades, CT technology

has made great improvements in speed, patient comfort, and resolution. More

anatomy of the body can now be scanned in a faster time that also helps eliminate

possible image artifacts due to breathing and other motion. Typical CT scanners

allow for the detection of bronchi up to a level between the 5th and 9th generation,

with dimensions between 3.5 and 1.3 mm in luminal diameter, depending on the

scan parameters chosen.

2.4.2 Operating Principles

The underlying basis of CT lies in the different levels of absorption of x-ray beams

by the internal structures of the body. This depends on thickness, chemical

composition, density and other features of the structure itself. This determines

different contrast in the image between the different tissues and structures. Based

on how much a structure attenuates the x-rays, a different shade of a greyscale

colourmap is assigned to each pixel. As an example, bones efficiently absorbs

x-rays, resulting in a strong white colour level in a CT image, while soft tissue

hardly absorbs any x-ray. Current scanners include an x-ray source, in which

single or multiple tubes rotate around the patient emitting an x-ray beam, and an

opposite array of detectors which collect the transmitted radiation (Figure 2.4).

This way, a set of 1D projections are acquired at different angles, discretized,

and used to generate a 2D image through a back-projection method based on

the Radon transform [46]. The multiple images generated from adjacent slices

are then combined to reconstruct the 3D volume. Image quality provided by CT

scan has reached a very high level. This quality can vary based on several CT

parameters which can be modified according to diagnostic needs and to patient

characteristics. Typical parameters are slice thickness, image spacing, convolution
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Figure 2.4: A representation of a CT scanner with x-ray source and detectors

shown in three different positions [45].

kernel, and radiation dose. Radiation dose represents one of the most important

parameters. High doses of ionizing radiation can increase cancer risk as well as

other problems. Therefore, this limits the total radiation dose per year to which

a patient can be subjected [47,48].

CT Image Reconstruction

Throughout the years, several approaches have been considered to reduce CT

radiation doses. A newer technique has recently become commercially available

for all major CT vendors and consists in optimisation of CT image reconstruc-

tion. Currently, the most widely used reconstruction technique is filtered back-

projection (FBP), an algorithm which assumes that the acquired data are free

of noise. FBP is an adequate approach, but it might produce noisy images in

case of low doses or obese patients [49]. Therefore, an alternative method, re-

ferred to as iterative reconstruction (IR) has been proposed [49]. With IR, dose

reduction can be achieved without compromising on image quality. Different IR

methods are available. However, these are vendor-specific solutions and are only

provided as “black boxes” with very little information on algorithmic principles

and details [50]. In general, all IR methods consist of three major steps which

are repeated iteratively; a forward projection of the volumetric object estimate

to create artificial raw data; the created raw data are compared to the real mea-

sured raw data in order to compute a correction term; finally, the correction

term is back projected onto the volumetric object estimate [50]. As an example,
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GE Healthcare provides two IR techniques: adaptive statistical iterative recon-

struction (ASIR) and model-based iterative reconstruction (MBIR). The ASIR

technique models just the photon and electronic noise statistics [51], while MBIR

methods try to model the acquisition process as accurately as possible [50]. How-

ever, sufficient information on the underlying the algorithms is mostly missing.

Figure 2.5 shows a block-diagram indicating the main steps and parameters for

the creation of a CT image.

Figure 2.5: Block-diagram of the main steps for the creation of a CT image.

Parameters that can be modified at every step are specified. FOV stands for field of

view, FBP for filtered back-projection, while IR is used for iterative reconstruction.

2.4.2.1 X-ray Source and Detector

The x-ray slice image of a CT is generated using an x-ray source that rotates

around the body. The x-ray beam goes through the body and reaches the x-

ray detectors positioned on the opposite side of the x-ray source. The detectors

16



2.4 X-ray Computed Tomography (CT)

collect the non-absorbed rays and determine the different levels of contrast of the

structures.

The x-ray source is composed of a vacuum tube containing a negatively

charged cathode, that is a filament of tungsten with a diameter of ∼ 200 µm,

coiled to form a spiral of ∼2 mm in diameter and less than 1 cm in height. When

a current passes through the cathode, the wire is heated up to approximately

2200◦C. This makes the tungsten atoms able to absorb enough energy to liberate

a small number electrons [52]. These “free” electrons are attracted by a positively

charged anode, which contains a metal target, creating the accelerated beam of

electrons. Once the accelerated electrons reach the anode, they penetrate into the

metal target generating x-rays via two mechanisms: “Bremsstrahlung” or gen-

eral radiation and characteristic radiation [52]. The general radiation produces

about 80% of the total x-rays and it is created when an electron passes near to

a tungsten nucleus and loses kinetic energy by being deflected by the attractive

force of a positively charged nucleus of tungsten. Hence, this lost energy is emit-

ted as an x-ray. The second mechanism, the characteristic radiation, produces

the remaining 20% of x-rays and occurs when electrons are accelerated from the

cathode and collide with a tightly bound electron in the innermost “shell” of

a tungsten atom. In this case, the bound electron is ejected and the resulting

“hole” is filled by another electron from an outer shell. This causes a loss of

energy due to different binding energies of the inner and outer shells, which is

transformed in a new x-ray. By controlling the current within the x-ray source

and the potential difference between cathode and anode, it is possible to control

the amount of emitted x-rays.

The second fundamental device in a CT scanner is the x-ray detector, an

electronic sensor able to detect and recognize the energy of a radiation beam.

The detector is connected to a computer to which it transmits the obtained data.

Modern scanners use detectors placed all around the patient’s body, allowing

the use of a wide beam of radiation to acquire more information in a single

step (see Figure 2.4). X-ray detectors are characterized by three fundamental

features: capture efficiency, absorption efficiency, and conversion efficiency. The

capture efficiency indicates the capacity for receiving photons by the detectors

and depends mainly on detector size and distance between detectors. Absorption
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efficiency represents the ability of the detector to interact with x-ray photons

actually captured and depends on size and thickness of the detector itself. Finally,

the conversion efficiency is how well the detector converts the absorbed photon

information to a digital signal for the computer. The most common detectors for

CT scanners are usually xenon-filled ionization chambers. Xenon has an atomic

number of 66, assuring a high probability of photoelectric interactions between

the gas and the incoming x-rays [52].

2.4.2.2 Absorption and Hounsfield Unit

When the x-ray beam goes through the body, three main effects of distortion can

take place. Some tissues, such as lung tissue or soft tissues in general, absorb

little or no radiation which can pass through the body with no distortion. These

x-rays are referred to as “primary radiation”. Certain tissues, instead, can alter

the trajectory between the source and the detector, undergoing a phenomenon

called “scattering”. Such x-rays are described as “secondary radiation”. Finally,

x-rays can be absorbed completely in tissue and not reach the detector at all. This

constitutes the “absorbed radiation”. Based on the degree of radiation absorp-

tion, a different contrast is created in a CT image between different structures. A

computer receives the x-ray converted into a digital signal by the detector, anal-

yses the data, and forms the final image shown to the clinician. As a first step,

the linear attenuation coefficient for each voxel is converted into the Hounsfield

Unit (HU) scale. On this scale, the radio density of distilled water at standard

pressure and temperature is defined as 0 HU, while the radio density of air at

standard pressure and temperature has a value of -1000 HU. Table 2.1 shows the

typical HUs calculated for various structures of the body.

Considering the linear attenuation coefficient µx of a voxel, the corresponding

HU value is computed by equation (2.1).

HU = K × µx − µwater

µwater

(2.1)

In (2.1) µwater is the linear attenuation coefficient of the water and K is a con-

stant, usually standardized as 1024 [43]. According to (2.1), a change of 1 HU
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Table 2.1: This table shows the typical Hounsfield values of some body tissues

and substances.

Tissue HU

Air -1000

Lung -500

Fat -84

Water 0

Soft Tissue +40

Blood +40 to +80

Bone +700 to +3000

represents a change of 0.1% of the attenuation coefficient of water since the atten-

uation coefficient of air is zero. Images coming from a CT scanner are generally

outputted in digital imaging and communication in medicine (DICOM) format.

This is a standard for handling, storing, printing, and transmitting information

in medical imaging. It includes a file format definition and a network communica-

tions protocol. The communication protocol is an application protocol that uses

TCP/IP to communicate between systems. DICOM also enables the integration

of scanners, servers, workstations, printers, and network hardware from multiple

manufacturers into a picture archiving and communication system (PACS). The

National Electrical Manufacturers Association (NEMA) holds the copyright to

this standard.

2.4.2.3 Parameters

CT image quality depends on different parameters that can be set prior to a scan.

Among them, those of most importance are slice thickness, radiation dose, and

reconstruction kernel (see Table 2.2).

Slice thickness represents the width of each slice of the image and can be

changed after the image acquisition according to specific user needs. Narrow slice

thickness leads to better edge definition, better high resolution contrast (meaning

that small objects and details can be differentiated from surrounding structures

with a high accuracy), and less partial volume effects (a phenomenon that causes
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Table 2.2: This table shows the typical parameters of a CT scan.

Parameter Units Effect

Slice Thickness mm Edge definition and resolution contrast

Radiation Dose mA Image quality and noise presence

Convolution Kernel \ Edge definition and noise

a blurring effect across boundaries due to a loss of apparent intensity in small

objects or regions because of the limited resolution), at the cost of a higher signal

noise and poorer low contrast resolution (the ability to define objects and details

which can be differentiated from surrounding structures with very little density

difference). On the other hand, large thickness leads to less noise on the image

and better low dose contrast, but it also results in poorer edge definition, worse

high resolution contrast, and a higher presence of partial volume effects.

Radiation dose refers to the amount of x-rays emitted during the acquisition

and has to be set before the scan starts. It is measured in mA as it represents

the level of current within the x-ray source. The higher the current, the higher

the amount of x-rays emitted and, thus, the dose. High radiation doses allow for

better quality images, with more detail and less noise, but expose the patient to

higher risks. Therefore, a good trade-off between radiation exposure to the patient

and image quality which is useful for diagnostic purposes has to be considered.

The reconstruction kernel, known also as convolution kernel, is the filter or

algorithm applied on the acquired data to reconstruct the final scan image. It has

a significant impact on spatial frequency and noise characteristics of an image, and

different scanner brands may have different kernels. In general, a reconstruction

kernel varies in a range soft to sharp, with a soft kernel leading to smooth edges

and reduced image noise, whereas a sharp kernel will enhance the edges at the cost

of a higher image noise [53, 54]. There is no a perfect choice for CT parameters,

and physicians tend to change them dependent on different patients.
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2.5 3D Slicer

The main goal of the research was to develop a free open-source tool for virtual

bronchoscopy. For this reason, the freely-available and easily extendible open-

source package, 3D Slicer, has been used. 3D Slicer is a software package for

visualization (including volume rendering) and image analysis (including image

registration and segmentation), natively designed to be available on multiple

platforms, including Windows, Linux and Mac OS X. It also supports multi-

modality imaging including, MRI, CT, US, nuclear medicine, and microscopy, and

standard image file formats, such as DICOM. The application integrates interface

capabilities to biomedical research software and image informatics frameworks.

3D Slicer was initiated as a master’s thesis project between the Surgical Plan-

ning Laboratory (SPL) at the Brigham and Women’s Hospital and the MIT

Artificial Intelligence Laboratory in 1998. Since then it has been continuously

improved and in 2007 a completely re-architected version was released. The cur-

rent version is Slicer 4.5 which was released in December 2015. To date, Slicer

has been downloaded by thousands of users and developers worldwide and has

enabled hundreds of academic publications. Slicer’s users and developers are also

part of a community (through two different mailing lists) that provides help and

suggestions when problems occur.

3D Slicer consists of more than one million lines of code, mostly C++ and

Python, and is distributed under a Berkeley Software Distribution (BSD) license.

However, while available for clinical research, it is not FDA approved for di-

agnosis [55–57]. Permissions and compliance with applicable rules are the re-

sponsibility of the user. 3D Slicer is built on a set of powerful and widely used

software components, such as Tool Command Language (Tcl/Tk) [58], Visual-

izaion Toolkit (VTK) [59], and Insight Segmentation and Registration Toolkit

(ITK) [60–62] to which is added an application layer, incorporating a graphical

user interface (GUI) which makes the system easily usable for non-programmer

end-users. The main Slicer’s feature is its powerful plug-in capabilities for adding

and modifying new algorithms and applications. In fact, along with the standard

and basic algorithms available, Slicer provides a type of free App Store, called Ex-

tensions Manager, from which it is possible to download, use or modify the Slicer
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extensions, new algorithms added to Slicer from developers around the world in

the same way as applications for a smartphone. More than 50 extensions and

packages of extensions are currently available and these are in continuous im-

provement. The Extensions Manager also allows for upload of new extensions to

Slicer, so that these can be used and tested by the community and feedback can

be obtained. Thanks to the modularity of Slicer, developers can focus on their

area of expertise without extensive knowledge of the larger platform. In advance

of this thesis, Slicer did not provide any system for virtual bronchoscopy, as it is

used mainly for brain imaging. Beside 3D Slicer, there exist other freely avail-

able imaging processing platforms. Among them, Osirix [63] and MITK [64] are

probably the most popular.

Osirix and MITK

Osirix is a software dedicated to DICOM images which has been specifically

designed for navigation and visualization of multimodality and multidimensional

images. It supports a complete plug-ins architecture that allows for the expansion

of the capabilities of Osirix according to personal needs, but it currently does not

provide many tools for image processing operations. Moreover, Osirix is currently

available only for Apple Mac OS computers.

On the other hand, the Medical Imaging Interaction Toolkit (MITK) is an

open-source platform for medical image analysis which aims at providing support

for an efficient software-development of methods and applications dealing with

medical images. As well as 3D Slicer, MITK is available on Windows, Mac OS

X, and Linux. It is based on ITK and VTK classes, and it is not FDA approved.

However, being more recent than 3D Slicer, MITK contains less basic tools for

medical image processing. 3D Slicer has been chosen for the present research as

a new project is currently being developed at SPL in order to create a branch of

Slicer exclusively dedicated to chest imaging. This is referred to as Slicer Chest

Imaging Platform, or SlicerCIP, and it is still under development, with a future

release in mind.
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2.6 Electromagnetic Navigation Systems

At present, two commercially available systems for electromagnetic navigation

coupled with VB are available: Superdimension iLogic System and Veran SPIN-

Drive. Here, the two different systems are briefly described. At University College

Cork, a novel low-cost system for EM tracking is currently being developed. This

system will be briefly described here, as it is the tracking system used for the

research.

2.6.1 Superdimension iLogic System

The iLogic system was developed by SuperDimension Ltd (Hertzilya, Israel) and

is an example of an FDA approved electromagnetic tracking system for use in lung

bronchoscopy. The basic operation of this system relies on a flat field generator

board (47cm×56cm×1cm) placed beneath the patient. A low frequency magnetic

field is emitted by the board and a 6-DOF pick-up coil (1 mm in diameter and

8 mm long) placed at the tip of the instrument is used to detect the emitted

field [12]. The transmitter board is shown in Figure 2.6 [26]. The tracked position

is then incorporated into the preoperative CT scan of the patient, while a virtual

representation of the airways is used for the navigation. The system has been

reported to have a registration error of 6.12± 1.7 mm, while it can be considered

relatively safe, having rates of pneumothorax reported as low as 3.5-7.5% [12].

Figure 2.6: The SuperDimension transmitter board [65].
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(a) (b)

Figure 2.7: (a) EM transmitter and (b) working station of the Veran SPINDrive

system [67].

2.6.2 Veran SPINDrive

The second example of FDA-approved electromagnetic tracking system for use in

lung navigation is the Veran SPINDrive [27]. The magnetic field is generated by

a transmitter held above the patient, as shown in 2.7(a) [66]. Specific catheters

and biopsy needles containing built in EM sensors that detect the transmitted

magnetic field have to be used with SPINDrive. These are provided by Veran,

whose work-station is shown in Figure 2.7(b). The smallest sensor for the system

measures 0.43 mm in diameter with a length of 8 mm. Secondary sensors are

placed on the patient for registration and to record motion due to breathing.

2.6.3 Electromagnetic Navigation at University College

Cork

At University College Cork (UCC), a new catheter navigation platform using EM

fields to track the position of a catheter is currently being developed [8]. Cur-

rently, there exists a number of commercial EM tracking systems. However, all

have high prices (> e10, 000) and limitations, such as high sensitivity to exter-

nal magnetic fields. For this reason, a new platform, comparable in performance

but cheaper in cost has been implemented. The system uses planar magnetic
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Figure 2.8: The tracking system as developed at University College Cork.

coils transmitting low frequency magnetic fields (< 30 kHz) and implemented on

printed circuit board (PCB), as well as a miniature pick-up coil, or sensor, placed

at the distal end of a catheter. An array of magnetic sources induces a voltage

at various frequencies in the pick-up coil and its position and orientation can be

determined by measuring this induced voltage and by solving a non-linear sys-

tem of equations. An example of the hardware system is shown in Figure 2.8. It

consists of multiple small transmitting coils, an 8 mm receiver coil and associated

amplifiers. Software implemented in MATLAB then filters and demodulates the

input signals and calculates the position and orientation. The sensor voltage as

well as the current in each transmitting coil is recorded using a National Instru-

ment USB DAQ card. Two channels were used with a sampling rate of 100 kS/s

per channel.

There are different electromagnetic tracking methods described previously.

However, these are typically prohibitively expensive and are also susceptible to

magnetic interference [68]. Many magnetic tracking methods make use of the

dipole approximation to simplify the required calculations [69, 70] and other re-

search has investigated methods to improve this approximation [71]. However,

significant errors can occur when using this approximation. These errors were
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mitigated and accuracy was increased at UCC by directly calculating the exact

magnetic fields with a filamentary conductor-based method [72]. Moreover, the

use of PCB coils for position tracking had never been documented previously.

Its use in position tracking has the advantage that the coils can be easily mass

produced almost identically, much more than a similar set of coils wound in tra-

ditional methods. The exact position of each track can easily be determined,

allowing for very accurate prediction of the generated magnetic fields with an-

alytical methods. Finally, the sensor used at UCC is a commercial 5 degree of

freedom (DOF) device. This does not allow the computation of the axial rotation

angle, as the flux does not vary with rotation, but allows for navigation in smaller

branches. The system accuracy has been extensively tested both ex-vivo, using

a specifically built breathing pig lung model (Figure 2.9), and in-vivo through

animal trials [73]. The position error from the system was found to be less than

2 mm, while system accuracy, found in the range of 1-1.5 mm, has been shown

to be comparable to both commercial and research tracking systems. This level

of accuracy is well suited for its application in virtual bronchoscopy [8].

Figure 2.9: The breathing pig lung model as used in our research.

This system paves the way for the development of a new semi-automatic robotic

catheter steering platform for easier navigation within the airways and which,

eventually, will allow to reach peripheral areas of the airways that are currently

inaccessible. Currently, on reaching smaller branches, the clinicians navigates

“blindly”. For this reason, a system of VB to be coupled with the electromagnetic

navigation is of great importance. The benefits are twofold. Firstly, the physician
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is led in real-time to the correct region of interest through the best route, with

no need to plan a priori the pathway to follow. Secondly, when reaching areas

too narrow for the camera on the tip of the bronchoscope, the physician can

continue the navigation following only the reconstructed model of the airways.

This way, lung nodules that are unlikely to be reached with current technology,

can be analysed and treated. The electromagnetic navigation platform at UCC

has been used in validating the VB system developed in this thesis. Beside being

prohibitively expensive, the VB systems of SuperDimension and Veran SPINDrive

have specific requirements. Specific parameters for the CT images used for VB

are required, and a long training is necessary for the physicians before they can

start using the system, due to the high level of manual interaction with the

system. Therefore, the main goal of the research is to develop a novel platform

that reduces the manual input for the user, improves accuracy and robustness of

the system, does not require specific CT characteristics and reduces costs.
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Chapter 3

Solitary Pulmonary Nodules

Malignancy1

3.1 Overview

In this chapter, the design and development of the first version of a semi-automated

algorithm for recognition of malignancy of solitary pulmonary nodules (SPN) is

presented. As with the other algorithms described, the method is implemented

as an extension of 3D Slicer [55–57,74,75]. The relevant background literature is

briefly discussed while each subsystem composing the complete algorithm is ex-

plored and described in detail. Finally, testing methods and results are discussed.

The main aspects of the algorithm presented in this chapter include:

• The first open-source algorithm entirely dedicated to determine SPN malig-

nancy starting from a chest CT image. This allows for future modifications

and improvements when new information will be available.

• At present, several calculators of probability of malignancy for SPN are

available. However, they all require the physician to analyse in detail the

CT image in order to input nodule characteristics, such as size, location,

calcification presence, etc. This is not always an easy task. The algorithm

1This chapter is based on P. Nardelli, J. Pahl, S. P. Power, K. O’Regan, M. P. Kennedy, P.

Cantillon-Murphy “Open-source algorithm for solitary pulmonary nodule malignancy predic-

tion.” Medical Image Analysis (2015) [Under Review]
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Figure 3.1: Example of nodule shown on a axial CT image. The nodule is

indicated by the yellow arrow.

proposed requires little user interaction. The nodule to be analysed has

to be selected, and patient information has to be given as input to the

system. Then, the algorithm automatically computes nodule characteristics

and returns a probability of malignancy.

• The algorithm helps the physician determine whether to proceed with biopsy

through bronchoscopy or other systems, avoiding an invasive procedure

when not strictly necessary.

• The system paves the way for potential future work aimed at automatic

identification and classification of lung nodules. The sub-systems of the

algorithm may be utilized as pre-processing steps for nodule identification

and classification algorithms.

3.2 Introduction

Pulmonary nodules are small (≤ 3 cm in diameter), often round- or oval-shaped

lesions that grow in the lung. On CT scans, a nodule appears as a rounded

or irregular opacity, well or poorly defined [76]. Figure 3.1 shows an example of

nodule on an axial CT image. Nodules are potential manifestations of lung cancer

and their identification, classification, and inspection is essential for diagnosis of

the disease.
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3. SOLITARY PULMONARY NODULES MALIGNANCY

3.2.1 Nodule Classification

The main feature that indicates lung cancer is the growth rate of lung nodules.

Based on their level of x-ray attenuation, soft tissue nodules may be classified

as ground-glass (or non-solid), part-solid (or semi-solid) or solid. Ground-glass

nodules are determined by a hazy increased attenuation in the lung that does

not obliterate the bronchial and vascular margins. On the other end, a solid

nodule presents a homogeneous attenuation of the soft tissue attenuation, while

a part-solid nodule consists of both non-solid and solid soft tissue attenuation

components [76].

Based on their position in the lung and proximity to other structures, four

classes of pulmonary nodules are identified: well-circumscribed (or solitary),

juxta-vascular, with pleura tail or juxta-pleural. Solitary nodules are well-marginated

and completely surrounded by lung parenchyma. Juxta-vascular nodules are con-

nected to vessels, while juxta-pleural are in contact with the pleura for more than

50% of their diameter. Finally, if the nodules are connected with less than 50%

of their diameter to the pleura, they are considered to have a pleural tail. When

analysing lung nodules, radiologists look for changes in image intensities of tis-

sues and abnormalities, and, oftentime, use shape, texture and size as measures

to discriminate between a healthy structure and malignant abnormalities.

3.2.2 Computer-aided Detection

In recent years, several systems to support radiologists in this recognition process

and enhance the quality of the diagnosis have been developed. These systems

are defined as computer-aided detection (CAD) methods and try to automati-

cally identify, segment and classify nodules in CT images. However, for different

reasons this is not an easy task. In particular, some nodules may have very low

CT HU values and low contrast, whereas many other may have values similar to

those of blood vessels and airways, which might be included as possible nodule

candidate in systems for nodule identification. For this reason, the development of

CAD methods for identification and classification of pulmonary nodules is of great

interest for researchers. On the other hand, several tools have recently become

available to help radiologists determine probability of malignancy of pulmonary
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nodules based on different clinical and radiographic characteristics [77–80]. These

methods are mainly for SPNs and require the radiologists to provide all the needed

information. As an example, Chest X-Ray [77] requires to specify size, location,

edge smoothness, growth rate, cavity wall thickness and calcification present in

the nodule, along with clinical characteristics, such as age of the patient, smoking

level, previous history of malignancy, and presence of hemoptysis, to determine

probability of malignancy [38,39].

Our goal was to develop a system for semi-automatic determination of ma-

lignancy of pulmonary nodules, requiring as little user interaction as possible.

Although mainly working with SPNs, the system is not restricted to this type of

nodules, and paves the way for the development of a complete open-source CAD

system for the identification and classification of nodules. The method automat-

ically extracts size, location, edge smoothness, growth rate, cavity wall thickness

and calcification of the analysed nodule and uses these features, combined with

clinical indications, to calculate the probability of malignancy, as in [38,39]. The

algorithm has a modular structure and consists of four different steps that are ex-

ecuted sequentially: automatic segmentation of the lungs region, semi-automatic

segmentation of the nodule of interest, automatic segmentation of lung lobular

fissures, automatic segmentation of lungs’ lobes.

3.3 Solitary Pulmonary Nodule

A solitary pulmonary nodule is described as a well-margined, rounded nodule

with a diameter of less than or equal to 3 cm that is completely surrounded

by lung parenchyma and does not touch other lung structures, such as vessels,

airways or pleura. The causes of SPN are many, from lung cancer and metastases

to scar formation, infections, and other benign lesions. Several studies showed

a prevalence of SPN on CT images from 8% to 51% [81–86] and a prevalence of

malignancy from 1.1% to 12% [29]. For this reason, a good distinction between

benign from malignant nodules is very important to avoid unnecessary biopsy. To

this end, specific morphological characteristics of SPNs may help. In this section,

a few SPN radiographic features that can be used for the distinction of benign

nodules from malignant ones [87] is described.
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3. SOLITARY PULMONARY NODULES MALIGNANCY

Size

Size represents the first feature to be taken into consideration when evaluating

the nodule. The likelihood of malignancy in a SPN increases with the nodule

diameter, and lesions larger than 3 cm (usually defined as pulmonary masses) are

more likely to be malignant. However, a small size does not exclude malignancy

[88,89].

Location

If a SPN is located in the upper lobes of the lung, it is more likely to be malignant.

This is due to the fact that cigarette smoking determines a higher presence of

inhaled carcinogens in the upper lobes [90,91].

Edge Characteristics

Edges of SPNs can be divided into three main categories: smooth, lobulated,

and spiculated. Benign margins suggest a higher probability of a benign lesion,

although this is not always certain. On the other hand, a spiculated margin

is highly predictive of malignancy. A lobulated margin suggests uneven growth

and a likelihood of malignancy that lies between that of smooth and spiculated

SPNs [90–92].

Growth Rate

Growth of the SPN over time is another possible indicator of malignancy. Usu-

ally, volume of malignant solid nodules doubles in 20-400 days, with a majority

doubling in less than 100 days. A doubling time higher than 400 days indicates

slow growth, whereas a volume that doubles in less than 20 days indicates very

rapid growth, usually due to infectious processes [93,94].

Cavity Wall Thickness

Cavity wall thickness represents the presence of possible cavities inside the SPN.

Cavitations can be found both in malignant and benign SPNs. However, a cavity

wall thickness < 5 mm points toward a benign etiology, whereas irregular cavities

> 16 mm are usually indicators of malignant lesions [95,96].
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Calcification

Calcification refers to possible calcification present within the SPN. Specific pat-

terns of calcification, such as diffuse, central, laminated or popcorn (see Figure

3.2) suggest a benign pattern. However, no specific pattern has been considered

specific to malignancy [97].

Figure 3.2: Scheme of benign calcification patterns.

3.4 Literature Review

CAD systems for detection, segmentation and classification of pulmonary nodules

may be of great help for the physician in order to decide whether to proceed with

a biopsy test. A complete CAD system should be able to detect the nodule,

classify it based on its location and connection to other structures, and ideally

determine whether it is malignant or not. Despite significant progress in this area,

it is difficult to find an optimal and widely used CAD scheme for lung nodule

detection and classification. This is due to the great diversity in shape, size,

intensity, etc., of pulmonary nodules. Moreover, connection to lung structures

as well as possible noise patterns can greatly affect performance and robustness

of CAD systems. Here, some of the methods proposed in the last decade are

briefly introduced. Some algorithms focus only on the automatic detection of the

nodule, while others are more concentrated on the segmentation of nodules. Many

algorithms focus on classification of nodules, whereas there exists algorithms that

try to combine all the aspects in order to develop an automatic CAD system. The

final goal of the work begun in this chapter is the development of a complete CAD

system for nodule classification and analysis. To this end, the presented method
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3. SOLITARY PULMONARY NODULES MALIGNANCY

represents a first important step. Here some CAD systems proposed to date

are first presented. This is helpful for future work toward the development of a

complete CAD system. Next, some methods aiming at determining probability of

malignancy of lung nodules and that are more related to the presented method,

are introduced.

3.4.1 CAD Methods

Okada et al [98] presented a semi-automated method able to segment both solid

and non-solid lesions. Starting from a marker indicating the lesion location, the

algorithm uses a model-based and multi-scale approach. In particular, nodules are

approximated by ellipsoids using anisotropic Gaussian fitting. Then a volumetric

measurement is accomplished from the volume of the ellipsoid. The method is

promising especially for its ability to segment both solid and non-solid nodules,

but it has a potential drawback in the case of nodules which are not elliptical.

De Nunzio et al [99] outlined a method for automatic detection of juxta-

pleural pulmonary nodules. As a first step, the lung region is segmented and

extracted exploiting the idea that in this segmented region, juxta-pleural nodules

appear as small cavities. A surface of the segmented region is then obtained

through triangularization, and a surface mapping algorithm is applied to map

the segmented region to a sphere. High curvature regions are finally marked on

the surface, indicating suspected pleural nodules.

In [100], Li et al outlined an algorithm for detection of pulmonary nodules.

The key idea behind this method is the application of a multiscale selective nodule

enhancement filter that enhances nodules and removes other anatomical struc-

tures, such as blood vessels and airways. After a first lung segmentation, the

enhancement filter is applied to the segmented region and nodule candidates are

segmented using a simple region growing approach. Several features of the seg-

mented nodule are then extracted and an automated rule-based classifier is used

to reduce the number of false positives.

Another approach for lung nodule detection is proposed by Ye et al [101].

This algorithm is meant for solid, part-solid, and non-solid nodules. First, the

lung region is extracted. Then, local Gaussian and mean curvatures are used
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to create a shape index map, whereas the eigenvalues of a Hessian matrix are

exploited to create a “dot” map. This enhances objects having a specific shape

with high spherical elements, and determines the initial nodule candidates. The

candidates are then segmented by applying an adaptive thresholding and modified

expectation-maximization methods. To reduce false positives, a rule-based filter

followed by a weighted support vector machine (SVM) are finally employed.

Messay et al [102] presented a fully automated algorithm for detection of

pulmonary nodules. The lungs are first extracted. Next, intensity thresholding

and morphological process are combined to detect and segment nodules simulta-

neously. Finally, 245 features are extracted, and an optimal subset of features

created to be used is a simple Fisher linear discriminant (FLD) classifier that

detects nodules.

In [103], Farag et al try to determine the type of nodules (solitary, juxta-

pleural, juxta-vascular, or with pleura-tail), using a scale invariant feature trans-

form (SIFT) and an adaptation to Daugman’s Iris Recognition algorithm [104].

Kumar at al [105] presented a system that automatically detects and classifies

lung nodules into malignant or benign. The algorithm is based on two main

stages; in the first step, the image is pre-processed and the nodule region in

segmented using a modified region growing method. Then, a fuzzy interference

system (FIS) based on the area and brightness of the nodule region is used for

the diagnosis.

Kuruvilla et al [106] presented a CAD system for lung nodule classification

using artificial neural networks. Firstly, the entire lung is segmented and param-

eters, such as mean, standard deviation, skewness, kurtosis, fifth central moment

and sixth central moment, are extracted and used for the classification. This is

accomplished by using feed forward and feed forward back propagation neural

networks.

Finally, Orozco et al [107] outlined a nodule classification method based on a

different steps approach. First, a region of interest is extracted and a multiscale

discrete wavelet transform (DWT) applied. Eleven features are then selected and

combined in pairs and given as inputs to a support vector machine (SVM), which

distinguishes CT images containing cancerous nodules.
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3.4.2 Systems for Probability of Malignancy

Goal of the presented study was the development of a system for computation of

probability of malignancy of lung cancer nodules. This system can be considered

as a starting point for the future development of a complete CAD system. At

present, only two previous studies aiming at automatically determine probability

of malignancy of lung nodules have been found.

In [108], Way et al described a semi-automated system to classify benign and

malignant lung nodules starting from a user-selected nodule location. First, a

modified 3D active contour method is applied to segment the nodules. Then,

morphological and gray-level features are extracted from the segmented image,

and features from the texture around the nodule are derived using a rubber

band straightening transform (RBST). The extracted features are finally used to

determine malignancy of the nodule. This system showed an accuracy of 83%

considering 96 lung nodules.

Anand et al [109] presented another method to predict malignancy. First, the

image is filtered with a non-linear total varying denoising filter to remove random

noise, and the lung region is extracted. Then, the nodules are segmented with

a region growing approach and textural and geometrical features are extracted.

These features are the input of a back propagation neural network classifier which

determines whether the nodule is malignant or benign. The system shows an

accuracy of 86.3%, but it has been tested using only 2D jpeg CT images.

In this research, a novel algorithm to automatically extract nodules charac-

teristics to determine nodule’s malignancy was developed. Characteristics to be

extracted have been chosen based on the work of Gurney et al [38,39]. Gurney’s

method requires visual analysis of the nodule, to extract nodule characteristics

which then need to be manually specified to compute nodule’s malignancy. This

is a long and tedious work and has a high risk of wrong analysis and diagnosis.

The main requirement for the implementation of the algorithm is the limited

user interaction. For this reason, the idea is to exploit Gurney’s method high

reliability, while removing visual inspection of the nodule and reducing manual

interaction as much as possible.
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3.5 Algorithm Implementation

3.5.1 Overview

This section describes the algorithm which was implemented for determining the

likelihood of SPN nodule malignancy. The idea underlying the proposed method

comes from the availability of calculators of probability of malignancy which re-

quire the physician to manually specify clinical characteristics of the patient and

the nodule’s characteristics to compute malignancy [38,39,90,110]. Manual inter-

action and accuracy of the methods might be improved if nodule’s characteristics

can be automatically determined. The method proposed by Gurney at al. [38,39]

proved one of the most reliable and was used as a base for the development of the

proposed approach. The work presented here represents an important starting

point for the development of a complete system which is able to automatically

identify, classify and diagnose suspect lung nodules.

The system has a modular structure, described in subsequent sections, with

four sub-algorithms that help automatically determine the characteristics of the

nodule under inspection. Lung segmentation is the first step and helps to exclude

unwanted structures from the analysis and to identify the location of the nodule;

a nodule segmentation is then implemented to extract size, shape, wall thickness,

and calcification presence; lung fissures are then identified by means of a lung

fissure segmentation module; finally, starting from the identified fissure, the lobes

are segmented by using a lobe segmentation method (as described in Section

3.5.5.1). These modules are joined together by a Python interface that requires

the user to input a few clinical details of the patient and to specify with a simple

mouse click the location of the nodule to analyse.

The module returns a probability of malignancy of the SPN. Figure 3.3 shows

a scheme representing the algorithms involved in the nodule diagnosis extension

while Table 3.1 illustrates the different modules and their main functions. Al-

though mainly meant for SPNs, the proposed method is not strictly restricted to

this type of nodule. The power of the modular structure of the system is that the

separate sub-algorithms can also be used independently in different applications.
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The following sections detail the four different sub-algorithms and the Python

interface that represent the complete system.

Figure 3.3: Modularity scheme of nodule diagnosis extension. The different tools

are executed individually.

Method Functionality

Lung Segmentation Identify and separate lungs from surrounding

structures and background air

Nodule Segmentation Segment selected nodule and extract

nodule characteristics

Lung Fissures Segmentation Identify and segment lung fissure from the

other structures of the lung region

Lung Lobe Segmentation Separate the lung label map according

to the main lung lobes

Python Interface Execute the previous methods

and determine probability of malignancy

Table 3.1: List of the single algorithms composing the method to determine

probability of malignancy.

3.5.2 Lung Segmentation

Lung segmentation consists in separating the lungs parenchyma from the sur-

rounding tissues and thorax. Thanks to the ability to select and extrapolate the
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lung tissue in chest CT images, lung segmentation has become a fundamental step

in several CAD systems. In fact, having a system that automatically identifies

the lung region helps to reduce computational time, as subsequent operations are

restricted to this region and not to the whole volume, thus reducing the number of

false positives. For this reason, systems having lung segmentation as a first step

include nodule detection and segmentation algorithms [102], lung parenchyma

density analysis [111], airways analysis [112], emphysema analysis [113], lung fis-

sures detection [114], and so forth. Methods usually use a thresholding process

as a first segmentation step, followed by different strategies to separate the two

lungs, when necessary. Here, some of the works related to lung segmentation are

briefly introduced. Implementation of the proposed method is then detailed.

3.5.2.1 Related Work

A large amount of research has been done in the field of lung segmentation,

and a variety of methods for automatic segmentation using different strategies is

currently available.

Hu et al [115] proposed a method based on three main steps. First, an optimal

threshold is automatically detected and gray-level thresholding is applied. Then,

anterior and posterior junctions between left and right lungs are identified on

2D axial slices and the two lungs separated. Finally, morphological operations

are applied to smooth irregular boundaries. The innovative part of this work is

the automatic detection of an optimal threshold to define the initial lung region.

Although efficient, this technique is quite slow (23 min required to segment a

512X512X120 data set), making it not an optimal approach as a first step for

other segmentation techniques (as in the case of nodule segmentation).

Leader et al [116] presented a method that removes background pixels through

an image pre-processing operation, followed by a thresholding to identify the lung

tissue. Finally, the initial segmented region is refined to prune incorrectly detected

airways and separate fused right and left lungs. Although this approach provides

flexibility, its robustness in terms of processing CT scan of other types of lung

diseases remains to be determined.

39



3. SOLITARY PULMONARY NODULES MALIGNANCY

In their method for nodule detection, Li et al [100] implemented a lung seg-

mentation method that first employs an interpolation technique to have size of

voxels equal to 1 mm in all three dimensions. Then, a thresholding strategy that

considers all the pixels between -1000 HU and - 400 HU as part of the lung region

is applied. Finally, all points of the contour are checked in a clockwise fashion

to close the lung region and include nodules connected to the pleura. The main

drawback of this approach is the selection of a fixed threshold, that may leave

out some pixels belonging to the lung. At the same time, the approach is not

required to be optimal for lung segmentation as used as a first step of a nodule

detection algorithm.

Yee et al [101] also utilized a lung segmentation process as a first step to a

nodules detection method. This approach is based on two main steps. First, a

3D adaptive fuzzy thresholding that chooses a threshold from histogram analysis

is used to obtain the segmentation. Then, a 2D post-refinement of the lung

contour is applied to obtain the final mask. Although in a slightly different

implementation, the idea of analysing the image histogram to determine the initial

threshold for lung segmentation is exploited in the presented work. However, a

different approach is used to accomplish the following refinement.

Van Rikxoort et al [117] outlined a hybrid method that combines a first con-

ventional lung segmentation based on [115], an automatic error detection method

(based on comparison with a set of statistics of correct lung segmentations and

a shape consistency check), and a more sophisticated algorithm, based on multi-

atlas segmentation. This method requires a seed point to start lung segmentation,

while the final multi-atlas segmentation requires training of the algorithm with

manually segmented images. Therefore, this approach cannot be used as first

step of (semi-)automatic nodule segmentation.

Park et al [118] introduced a method for the separation of right and left lungs.

The lungs are first segmented using a 2D based adaptive segmentation method

and a 3D based region growing process. Then, the lungs are separated with a

three-step strategy that detects connected areas in 2D slices, separates them using

a guided dynamic programming process and finally classifies the two separated

regions into left or right lung. This method proved efficient and reliable and was

used as a basis for the presented method.

40



3.5 Algorithm Implementation

Figure 3.4: Block diagram of the different steps involved in lung segmentation.

In their CAD system for pulmonary nodule detection, Messay et al [102] use

a method for lung segmentation based on [115] and [116]. However, they use

a fixed threshold (-500 HU) combined with some morphological and topological

analysis to produce the preliminary segmentation of the lung region.

Finally, Korfiatis et al [119] introduced a method that employs a first 3D

thresholding that uses a minimum error technique. This is combined with a

wavelet pre-processing step to deal with the lung boundary challenges, such as

anterior or posterior junction lines and juxta-pleural nodules. A 3D morphological

closing is finally applied to refine segmentation. The processing time required by

this method to segment a scan consisting of 50 slices is approximately 3 min. This

makes this approach not optimal as a starting point for nodule segmentation.

3.5.2.2 Algorithm Description

The algorithm proposed here implemented and combined different commonly used

techniques for lung segmentation. Figure 3.4 shows the different steps that are

executed sequentially to obtain the final lung segmentation. A pre-processing

operation to remove noise is followed by a thresholding operation to extract the
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Figure 3.5: Typical histogram of a chest CT image (size 512× 512× 480).

first region of the lungs. Then, the main bronchi are extracted and removed from

the label, and the 2D axial slices of the lungs label are analysed in case of possible

connection of the two lungs. The last step consists in a morphological closing to

include nodules within the final segmentation. Each of these steps is described

in detail in the following paragraphs.

Lung Extraction

The goal of this step is to separate the voxels corresponding to lung tissue from

the surrounding voxels belonging to other anatomical structures or to the air

surrounding the whole patient. To remove random noise from the image, a pre-

processing step is executed. Therefore, a median filter with a 3 × 3 × 3 kernel

is used. Then, the first step toward the lung extraction process involves a bi-

narization process by means of a thresholding segmentation. Instead of using a

fixed threshold for each case, a method that selects an optimal threshold for each

single case is here proposed.

This approach takes into account possible variations in intensity values across

different subjects. To this end, the image histogram is automatically analysed,

starting from the idea presented in [101]. As shown in Figure 3.5, the histogram

of a CT image presents two main peaks; the first one is usually around -1024 HU

and represents the air voxels; the second peak is due to fat, muscles, vascular tree,

and other structures of the lung with higher HU values. For this reason, a mean
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value of these two peaks is selected as an optimal threshold for the binarization

process.

All the values between -1024 HU and the determined threshold are given a

value of 1, while all the others are set to 0. However, the lungs are surrounded

by background air, which is included in the first binarization along with possible

air in other anatomical structures, such as the bowel. These parts need to be

removed from the segmented lungs. For this purpose, a connected component

label is used to identify the lung voxels, and the regions that are connected to

the border of the image, as well as small disconnected regions, are discarded.

Since lung segmentation is often used for analysis in which it is important

to distinguish the two lungs, these have to be labelled separately. To this end,

the next step in lung extraction involves using the trachea segmentation method

described in Chapter 3. First, the trachea location is searched in one of the

first axial slices of the binarized image as the region with minimum diameter and

maximum roundness. This is used as the seed point for the region growing process

that segments the trachea. The obtained label is then dilated and inverted using

a pixel-wise NOT operation, and a pixel-wise AND operation is executed between

the lung and the inverted trachea images. This way, the trachea and the main

bronchi are discarded. In some cases this operation guarantees that the right

and left lungs are separated. However, in many cases the two lungs result still

connected and require a further operation for separation.

Right and Left Lung Separation

As shown in Figure 3.6(a), when viewed on axial slices, the right and left lungs

may have a very thin separation in the anterior and posterior junctions. This

may result in very low contrast separation between the two lungs, which causes

the lung extraction operation to segment the two lungs as one (see Figure 3.6(b)).

Therefore, these connection lines have to be identified and the two lungs sepa-

rated.

Following the concept proposed in [118], a 2D axial search is executed to find

the connection points. In particular, the idea behind the technique relies on the

fact that, on two adjacent axial images, the lung regions are similar in size and

shape. Hence, when the current slice is detected to contain connected lungs, the

43



3. SOLITARY PULMONARY NODULES MALIGNANCY

closest point between the two lungs in the previous image can be searched and

used as the point in which connection is most likely.

The connection point is identified by first extracting the boundaries of the

two lungs. Then, moving pixel by pixel in the horizontal x direction on the axial

slice (see Figure 4.8), when any pixel belonging to the boundary of one lung faces

a pixel belonging to the boundary of the opposite lung, the distance between the

two pixels is computed. This operation is executed for every line of pixels and

the position of the mean point between the closest opposite pixels is considered.

This position is used as the central point of a region of 50× 80× 1 pixels, which

is extracted from the current image in order to remove the connection; first, an

erosion process is iteratively applied to the region, with a spherical structuring

element that begins with a size of 7× 7× 1 pixels and that increases by 2 pixels

(along x and y) until the two regions are separated. This operation is followed

by dilation of the two separated labels, with a spherical structuring element of

the same size as the one used for the erosion. This dilates the two labels without

re-connecting them.

The region with the two separated labels is finally pasted onto the original

lung slice. A second control is here executed to make sure that the two lungs

are effectively separated. In fact, in some cases, a connection may appear both

on the anterior and the posterior part of the lung (as shown in Figure 3.6). If

this is the case, the same operations are executed again, excluding the region

just separated. This way, the “new” minimum distance between the two labels

is considered, and the process is repeated.

Rough Lobes Subdivision

Once the two lungs have been segmented and separated, a final morphological 2D

closing operation is applied to close holes within the lung labels. Then, a rough

operation of subdivision is applied to the label. This is helpful for possible fu-

ture operations of lobe segmentation (see 3.5.5.1). First, a connected component

labeling is used to give the two lungs a different label value and classify them as

right or left lungs. Assuming that the scan is supine, head-first, the component

value corresponding to the smallest x index will be the left lung and the other

major component will be the right lung. If this is not the case, the image is
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(a) (b)

Figure 3.6: An example of thin lung separation in the anterior and posterior junc-

tions. a) Shows the anterior (blue square) and posterior (orange square) junctions

on a axial CT image. In b) the result after lung segmentation (green) of the same

image is presented. As shown, when the junctions are thin, segmentation might

consider the two lungs as one.
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Figure 3.7: Example of lung label map as roughly divided into thirds.

first flipped, and the same operation computed. At this point, the two labels are

divided into thirds and a different label value is assigned to each third, according

to the CIP convention (see 3.5.5.1). Figure 3.7 shows an example of the lung

label map divided into thirds.

3.5.3 Nodule Segmentation

Nodule segmentation represents the most important step towards the creation of

a CAD system for nodule classification and diagnosis. Segmentation allows for

recognition of nodules and for extraction of characteristics that can be used as

indicators of malignancy. Nodule size is an important feature to be considered in

nodule volumetric analysis [120], but other characteristics, such as edge shape,

cavity wall thickness, and calcification may be very important [38, 39]. Due to

their importance, several methods for nodule segmentation have been proposed

in recent years for nodule segmentation. Usually, these methods are introduced

as part of more complex CAD system for nodule classification. Many methods

ask the radiologist to select the nodule to analyse, while other methods try to

automatically identify the nodules. However, pulmonary nodule segmentation is

still a major challenge in medical imaging, due to the variety of nodules and CT

image quality. Here, some of the methods developed to date are introduced. The

propose method is then described in detail.
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3.5.3.1 Related Work

Many different techniques and strategies have been proposed for pulmonary nod-

ule segmentation.

Zhao et al [121] proposed a system that uses density and morphology to

segment small nodules. An optimal threshold to separate the nodule from its

surroundings using a surface gradient applied to the nodule candidates, detected

at different thresholds, is determined. Then, morphological operators are used to

remove vessels. The method has been validated using only 12 pulmonary nodules.

Also, the choice of an appropriate threshold level step is quite complicated and

often requires post-processing operations to help disconnect structures connected

to the nodule.

Xu et al [122] introduced a method that works on a slice-per-slice basis to first

extract 2D contours of the nodule using a dynamic programming-based algorithm

that starts from a circle drawn around a user-specified point. An Expectation

Maximization process is then implemented to classify and remove calcification.

The main drawback of the system is the necessity of a pre-processing operation

to grow a circle on each 2D slice around the user-selected nodule. This opera-

tion requires about 5 seconds per slice, making the algorithm computationally

expensive.

In [123], Mullally et al extended the method described in [121] by automati-

cally selecting the region of interest containing the nodule. Based on their atten-

uation levels, the regions were extracted and segmented, even when nodules were

composed partially or completely of other structures. However, the task of iden-

tifying the nodules among the segmented objects has to be performed manually,

increasing the risk of false positives.

Okada et al [98] focus on volumetrical and geometrical characterization of the

nodules based on a model-based approach. The model is chosen as an anisotropic

(non spherical) Gaussian function, which is more flexible than a spherical one.

Through a multiscale analysis, a set of mean and covariance estimates are ex-

tracted and a Jensen-Shannon divergence is evaluated over multiple scales to

choose the best fit for the corresponding scale-space image. The main issue of

this approach is a bias due to an ellipsoidal approximation of the nodule which
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limits the segmentation to approximation of true tumour boundary and can be

biased when the tumour possesses an irregular surface.

Diciotti et al [124] proposed a semi-automatic segmentation algorithm for

solitary and juxta-vascular nodules. A volume of interest (VOI) around a nodule

candidate selected by the user is first extracted. Then, a multi-scale approach

is used within this VOI to detect blob-like structures, which represent nodule

candidates. At this point the user is ask to select, for each candidate, whether

it represents a nodule, a surrounding pulmonary structure, or an object to dis-

card. Finally, a region growing approach based on a geodesic distance is used

to segment the nodules. This method requires great manual interaction to clas-

sify all candidates in the VOI. Since goal of the research was to keep manual

interaction as low as possible, this method was found not appropriate for nodule

segmentation.

Dehmeshki et al [125] presented a method for segmenting different types of

nodules using two different region growing approaches; fuzzy connectivity and

contrast based region growing. In particular, starting from a seed point on the

nodule specified by the user, a local adaptive segmentation is exploited to identify

the nodule region. Then, a fuzzy connectivity map is constructed by applying

fuzzy connectivity region growing, and this map is used for a sphericity-oriented

contrast based region growing to get the final segmentation.

Li et al [100] proposed a method that starts from an image enhanced by

means of a multi-scale filter. This helps identify nodule candidates, and for each

of them an iterative region growing technique that uses the mean and standard

deviation of the CT values as an inclusion criteria is performed. In the presented

research, Li’s method has been modified to apply the multi-scale approach only in

a region of interest surrounding the user-selected nodule. This way, false positive

are drastically reduced, as is computational complexity.

Ye et al [101] proposed a combination of adaptive thresholding and a mod-

ified expectation-maximization (MEM) algorithm to segment the nodules. The

former determines a first coarse segmentation that is then refined with the latter

considering the nodules’ neighbouring intensities. The main issue of this method

is that nodules could be missed if they do not include local spherical elements
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or if the sizes of the elements are too small. Also, noisy images might lead to

inaccurate calculation of the local shape feature.

Chen et al [126] presented a method to separate blood vessels and nodules

by using Hessian matrix based line structure enhancement (LSE) and blob-like

structure enhancement (BSE) filters across multiple scales. The segmentation is

then performed by a front surface propagation (FSP) procedure based on a fast

marching method. This method is meant for juxta-vascular nodules, while the

method here described focuses on solitary pulmonary nodules.

Tan et al [127] proposed a method for segmentation of lung nodules that

combines marker-controlled watershed, geometric active contours, and Markov

random field (MRF) methods in a region of interest selected by the user. A

preliminary segmentation is accomplished by the watershed algorithm. Then, the

active contour evolution method refines the segmentation, that, in case of part-

or non-solid nodules, is followed by a MRF and morphological closing operations

to obtain the final segmentation. However, the applied active contours method

is a local optimization method that is sensitive to the initial contour. When the

watershed surface is far from the lesion boundary, the active contour is often

attracted by local minimums rather than lesion boundary.

Farag et al [128] outlined an automatic algorithm that uses a variational level

set approach to module the nodule image information. Next, an ellipse model

represented by a signed distance map is considered and evolved to include the

nodule core. This method is affected by the choice of the initialization parameters

to construct the initial prior shape model. This initialization is currently executed

manually.

Qiang et al [129] presented a two stage method; in the first step a freehand

sketching (performed in 2D imaging slices) analysis is performed to infer infor-

mation of the nodule (e.g., mass centre, density, and size); as a second step, a

principal curvature analysis is used with a convex constraint to segment the nod-

ule. The use of a freehand sketching, which requires great user interaction makes

this method not appropriate for the approach presented.

Finally, Tsou et al [130] introduced an anatomy packing with hierarchical

segments (APHS) method for segmentation of pulmonary nodule segmentation.

The algorithm consists of two main steps; a first hierarchical segmentation tree
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(HST) construction is followed by anatomy packing that localizes individual ob-

ject instances by optimizing the hierarchy conditional random field (CRF) model

based on the HST. Two main aspects of this approach still need to be considered;

automation of the initialization process and 3D volume measurements.

3.5.3.2 Algorithm Description

As the lung segmentation module, the nodule segmentation algorithm consists in

different steps that are executed sequentially and that combines different tech-

niques available in the literature. The steps composing the algorithm are shown

in Figure 3.8. First, the user is required to place a seed point to indicate the

Figure 3.8: Steps involved in nodule segmentation. RG stands for region growing,

where ROI is the region of interest.

nodule to analyse. For this reason, the method is referred to as semi-automatic.

The region around the selected point is cropped from the original image and this

region is used for the following analysis. The analysis starts by enhancing the

blob-like structures inside the region and then separating candidate nodule from

the other anatomical structures. Then, a method similar to [100] is performed

to exploit mean and standard deviation as inclusion criteria for a region growing
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process. This method was chosen for its proved reliability and reproducibility,

as well as for the little user interaction required. Finally, a closing operation is

implemented to remove possible small holes in the label. Once the segmenta-

tion is completed, nodule characteristics are extracted. In particular, nodule size,

cavity wall thickness, boundary shape, and calcification are evaluated. Here, the

different steps involved in the method are outlined.

Region Extraction

The first step of the algorithm involves the extraction of the lung region, to

exclude the thorax and background air from the analysis. To this end a masking

operation that sets the non-lung structures to -1024 HU (which is lower than

nodule intensity values) is employed. Then, a cropping of the original CT image

around the nodule selected by the user is completed. This will help to drastically

decrease computational costs for nodule segmentation, and will reduce the risk of

false positives. Pulmonary nodules are invariably smaller than 3 cm. Therefore,

starting from the user specified point, a cubic region of 4×4×4 cm is cropped from

the original CT image. This ensures that the whole nodule under inspection will

be included in the segmentation. Figures 3.9(a,b) show an example of a region

cropped around the user-selected nodule.

Blob-like Structure Enhancement

Once the region is extracted, structures having a blob-like shape are enhanced

following the method introduced by Li et al [131]. In fact, it is easier to identify

the nodule in the nodule-enhanced image than in the original image. Enhance-

ment filters are usually used to enhance objects with a plate-like, a blob-like,

or a tube-like structure in radiographs and CT images. These filters examine

the multiscale second order structure of the image, called Hessian, to analyse

the local behavior of the image, enhance the different objects, remove noise and

background. It can be viewed as a pre-processing step for medical imaging meth-

ods. A common example of a filter of this type is the vessels enhancement filter,

described for the first time by Frangi et al [132], that allows for enhancement of

vessels in medical images. The idea behind the enhancement filter is to exploit

the gray-scale curvature information of the different objects. These curvatures

51



3. SOLITARY PULMONARY NODULES MALIGNANCY

(a)

(b)

(c)

Figure 3.9: Example of region of interest extraction and enhancement. a) The

nodule is selected by the user on the CT image (red point). b) A region of 4×4×4

cm including the whole nodule is extracted. c) The extracted region is enhanced

using a blob-like multiscale enhancement.
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are determined using the eigenvalues of the Hessian matrix. When analysing the

local behavior of an image, f(x), a common approach is to consider the second

order Taylor expansion of f(x) about a point x = x0 = (x0, y0, z0):

f(x) ≈ f(x0) + ∆f |x0(x− x0) +
1

2
H(f)|x0(x− x0)2 (3.1)

where ∆f |x0 represents the gradient vector of the image computed at x0 and

given by (3.2):

∆f =
[
∂f
∂x

∂f
∂y

∂f
∂z

]
(3.2)

while H(f)|x0 is the Hessian matrix of the image computed at x0 for the six (for

3D images) independent second order derivatives:

H(f) =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

 =

Lxx Lxy Lxz
Lyx Lyy Lyz
Lzx Lzy Lzz

 (3.3)

Another important aspect to consider is that objects may have different sizes on

an image. For this reason, a measurement scale which varies within a certain

range can be considered for a multiscale analysis. This way, the differentials

are computed at all the different scales and the maximum response is usually

considered. Therefore, using the concepts of linear scale space theory [133, 134],

differentiation is defined as a convolution with derivatives of Gaussian kernels:

∂

∂x
f(x, σ) = sγf(x) ∗ ∂

∂x
G(x, σ) (3.4)

where σ is the scale level, and γ is used to define a family of normalized derivatives

[135]. The Gaussian function (with mean µ = 0) is defined by (3.5).

G(x, σ) =
1

σ
√

2π
e−
‖x‖2

2σ2 (3.5)

The second derivative of the Gaussian kernel at a scale σ generates a new kernel

that measures the contrast between the two regions (inside and outside) deter-

mined by the range [−σ, σ] in the direction of the derivative. This justifies the use

of the Hessian matrix in the multiscale enhancement filters. The eigenvalue anal-

ysis of the Hessian is performed by extracting the principal directions in which

the local second order structure of the image can be decomposed. If λk represents
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λ0 λ1 λ2 Structure

Low Low Low No noticeable structure

Low Low High (Neg) Plate-like structure (bright)

Low Low High (Pos) Plate-like structure (dark)

Low High (Neg) High (Neg) Tube-like structure (bright)

Low High (Pos) High (Pos) Tube-like structure (dark)

High (Neg) High (Neg) High (Neg) Blob-like structure (bright)

High (Pos) High (Pos) High (Pos) Blob-like structure (dark)

Table 3.2: Possible structures enhancement based on the Hessian eigenvalues λ0.

Neg/Pos indicates if the eigenvalue has a negative or positive value.

the eigenvalue of kth normalized eigenvector, ûk, of the Hessian H0 (computed at

x0), from the definition of eigenvalues come (3.6) and (3.7).

H0ûk = λkûk (3.6)

ûTkH0ûk = λk (3.7)

From (3.7), it is clear that the eigenvalue decomposition extracts three orthonor-

mal directions which are invariant to a scaling factor when mapped by the Hes-

sian matrix. Therefore, different filters can be constructed based on the curvature

characteristics (or eigenvalue) of the objects that have to be enhanced. Consid-

ering the relation |λ0| ≤ |λ1| ≤ |λ2|, Table 3.2 reports the relations between the

eigenvalues of the Hessian to be considered when different structures are to be

detected (the sign is an indicator of brightness/darkness). The singular directions

of the structures are represented by the respective eigenvectors: û0 indicates the

direction with minimum intensity variation, while û1 and û2 form a base for the

orthogonal plane. As an example, ideally a tubular object has a low eigenvalue in

the parallel direction, and two strong eigenvalues in the direction perpendicular to

the object. Based on this idea, various filters have been proposed for enhancement

of different structures. In the proposed approach, the multi-scale Hessian-based

nodule enhancement filter as described by Li et al [131] is implemented. Li’s filter
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is described by (3.8).

ϕ(λ0, λ1, λ2) =

{
|λ1|2
|λ3| if λ0,λ1,λ2 < 0

0 otherwise
(3.8)

This filter is executed for each pixel at every specified scale, σ, and for each pixel

the final output S is the maximum value from the single output at each scale, as

in (3.9).

S = arg max
σ

(ϕσ(λ0, λ1, λ2)) (3.9)

The number of scales and the range [−σ, σ] are determined empirically. N = 5

scales, with a range of values [1, 6] was empirically found as adequate for nodule-

structures enhancement. Figure 3.9(c) shows an example of a nodule in a region,

cropped as describe above, enhanced using the Hessian-based nodule enhance-

ment filter just described.

Region Growing Segmentation

As shown in Figure 3.9(c), the multi-scale enhancement process may enhance

other round structures that can be found in the region and that usually belong

to vessels or airways. For this reason, initial thresholding of the enhanced region

is used, with a threshold of 40 (as described in [100]) to separate the nodule from

other anatomical structures. Then, a 3D connected component filter is used to

maintain only objects with a Feret diameter > 1 [136] and closest to the placed

seed point. The remaining object is considered as the nodule candidate.

As shown in Figure 3.9(c), the nodules in the enhanced region appear smaller

than in the original image. Therefore, an iterative region growing technique,

similar to that described in [100], is employed for each nodule candidate.

First, an operation to exclude all the voxels with an intensity lower than -

500 HU (likely to belong to air) is employed. This ensures that possible cavities

within the nodule are not included into the segmented region. To this end,

initial thresholding is used, followed by a pixel-wise AND operation with the

object region. Then, the mean and standard deviation of CT values for voxels

of the original cropped region and those belonging to the enhanced objects are

calculated. Next, a region growing approach using the seed point placed by the

user as a starting point, and the mean µ and standard deviation σ as inclusion
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criteria is completed. In particular, voxels are added to the segmented region if

their CT values are within the range [µ− 2σ, µ+ 2σ].

At this point, µ and σ in the new region are computed and the same process

is repeated for a maximum of 10 iterations or until (µ − 2σ > −300) and (µ +

2σ < 250). These two values have been empirically validated. Finally, a closing

operation with a spherical structuring element with a 3 × 3 × 3 pixel volume is

employed to remove small holes. Figure 3.10 shows an example of the segmented

nodule starting from a chest CT image.

Figure 3.10: Example of nodule segmentation results. On the three CT views,

the nodule label is represented in light blue and is imposed on the nodule. As

shown, the cavity of the nodule is preserved (axial view). The CT image is the

same as in Figure 3.9

Characteristics Extraction

Once the segmentation process is completed, the characteristics related to the

nodule label (size, edge smoothness, cavity wall thickness, and calcification pres-

ence) are extracted. The size is computed as the label equivalent radius of the

label, whereas the edge smoothness is determined by the label roundness. To

calculate cavity wall thickness, holes within the nodule label are searched. Then,

the minimum euclidean distance between the nodule boundary and the holes

boundary is considered. To determine the presence of benign calcification within

the nodule, the concept that calcification will appear as a bright region inside the

nodule [137] is considered. For this reason, voxels with an intensity value higher

than (µ + σ) or higher than 50 HU (belonging to solid structures) are identi-

fied. This approach follows the idea from [131]. Then, to discriminate whether
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the calcification has a benign pattern the number of calcification objects, their

roundness, and their position is computed. This will allow to determine if the cal-

cification has a diffuse, central, laminated, or a popcorn pattern. The computed

characteristics are finally made available to the user.

3.5.4 Lung Fissures Segmentation

Nodule segmentation allows for the extraction of some important characteristics

of the lesion under analysis. Another important feature that has to be taken

into account in the process of determining whether a nodule is malignant is its

location. Therefore, it is important to discriminate whether the nodule is located

in the upper/middle lobe of the lung, or in the lower lobe. As described in Section

3.5.5.1, a method for lobe segmentation is part of the CIP classes. However, this

method requires the user to manually select the lobe fissures, placing various

seed points on each one. This may result in a very long and tedious process.

For this reason, a method to automatically identify and segment the fissures

may be considered as a first and very important step towards lobe segmentation.

Before describing the algorithm, some of the methods for fissure recognition and

segmentation that have been developed to date are here introduced.

3.5.4.1 Previous Work

Lung fissures recognition for lobe segmentation has been the subject of many

studies in recent years, but still remains a big challenge. This is due to the fact

that fissures may not always be visible on CT images or pathological abnormalities

may affect the composition of the fissures.

To overcome these issues, in their method for lobe segmentation Kuhnigk

et al [138] proposed to exploit the structural knowledge of the lung anatomy

and consider the fact that no vascularity is present at fissures. Therefore, vessel

segmentation is first completed and the Euclidean distance from the vessels is

used to enhance areas which show an absence of larger vessels. This information

is then used for subsequent lobe segmentation, but the work focused on enhancing

the fissures, rather than identifying them.
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Wiemker et al [139] compared the use of two different 3D filters to enhance

plate-like structures that represent lung fissures on CT images; the first one ex-

ploits the first derivatives information of the image gray values and utilizes the

eigenvalues of the local structure sensor; the second filter is based on the eigen-

value analysis of the Hessian matrix. Both filters are reported to perform equally

well, with the Hessian approach being slightly faster. The idea of enhancing

fissures as plate-like structures was exploited in the presented work, using the

Hessian approach as shown faster.

Van Rikxoort et al [140–142] presented a method to segment fissures and other

segments that can be found inside the lung area. Once the lungs region has been

extracted, a supervised enhancement filter is used. This technique requires input

of positive (fissures present) and negative voxels. Therefore, fissures in several

images are manually segmented and their voxels used as positive examples. Neg-

ative voxels are taken in equal number from the remainder of the lung. Then, for

each voxel a multiscale eigenvalue analysis of the Hessian matrix is performed to

extract 9 features that are used to train a k-nearest neighbour classifier (KNNC)

to be able to assign to unseen voxels a probability that they belong to a fissure.

Then, fissures are segmented by means of a thresholding followed by grouping

of neighbouring voxels based on their likelihood of being part of the same plane.

Since goal of the research was to reduce manual interaction with the system, this

method was not appropriate.

Pu et al [143,144] outlined an automatic method that uses a marching cubes

algorithm, Laplacian smoothing, and extended Gaussian image pyramids to en-

hance the surface shaped structures within the lung volume. Then, an anisotropic

morphological filter is used for fissure surface smoothing and hole repairing. A

progressive shape decomposition algorithm is used for individual fissure iden-

tification, and finally an anatomy knowledge-based fissure type classification is

employed to estimate the complete fissures.

In [145], Lassen et al outlined a method for fissure segmentation based on fis-

sure enhancement that uses an eigenvalue analysis of the Hessian matrix followed

by thresholding that combines the contrast and structure information with the

voxel intensity. The approach for fissure enhancement and segmentation was ex-
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ploited in the presented approach, with some modifications to make the method

more general and reliable.

Appia at al. [146] implemented a semi-automated method that uses a minimal

path approach on CT images for fissure segmentation. Starting from a few points

defined by the user on a single sagittal slice, a 2D energy function is computed

using intensity, distance to the vasculature, curvature in 2D, and continuity in

3D. In this energy domain, the fissure is identified by the infimum energy path

between a point on the fissure and the nearest lung boundary point. This system

proved efficient and reliable, but requires a long and tedious work of manually

placing the seed points on sagittal slices.

Finally, Qi et al [114] proposed a method that handles each feature separately.

Potential fissure regions are first localized on sagittal slices of the image using

sagittal adaptive fissure scanning (SAFS). A line enhancement filter based on

the Hessian matrix analysis followed by uniform cost search (UCS) is used to

extract the complete fissure line. Finally, implicit surface fitting based on radial

basis functions is employed to extract the final fissure surface. The robustness of

this algorithm was validated using only 14 datasets, and the approach uses a few

parameters that have to be determined empirically, and might be not suitable for

other datasets.

3.5.4.2 Algorithm Description

For the fissure segmentation algorithm, a pre-processing step is first used to mask

the lung region in order to consider only the parenchyma and to exclude other

anatomical structure in the CT image. A sequence of three steps is then executed:

(i) enhancement of plate-like structures by means of an eigenvalue analysis, (ii)

fissure candidate segmentation considering direction and position of the voxels,

(iii) final 2D fissure refinement to exclude small regions not belonging to the

fissures. A block diagram of the steps involved in the algorithm is shown in

Figure 3.11. The method implemented can be considered a good trade-off between

complexity and reliability for lobe segmentation. Here, the different steps involved

in the fissure segmentation algorithm are described.
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Figure 3.11: Steps involved in fissure segmentation.

Fissure Enhancement

Fissure enhancement represents the first important step for fissures segmenta-

tion. Fissures on a CT image have a plate-like structure that goes through the

entire image. Therefore, structures of this type inside the parenchyma can be en-

hanced using a multiscale Hessian eigenvalue analysis. Details about eigenvalue

analysis for structures enhancement are given in Section 3.5.3. In the proposed

approach, a method similar to that described in [145] was implemented, as it is

automatic and proved a good trade-off between computational complexity and

reliability. According to this method, a single scale (σ = 1) is sufficient for fis-

sure enhancement and considering the plate-like structure of the fissures, these

can be modelled as objects with a large eigenvalue parallel to the structure and

two other small eigenvalues (see Figure 3.12). Therefore, the following structure

and sheet functions are introduced (with |λ0| ≤ |λ1| ≤ |λ2|) in (3.10) and (3.11),

respectively.

Fstruc =

{
e
−(λ2−α)

6

β6 if λ2 < 0

0 otherwise
(3.10)

Fsheet = e
−λ61
γ6 (3.11)
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Figure 3.12: Representation of the eigenvalues of plate-like structures [147].

Fstruct rates the strength of the image structure. In [145], α and β have been

empirically set at α = 50 and β = 35. Unlike [145], a value of |λ2| was found

as more appropriate than λ2 in the definition of Fstruct. The requirement for

λ2 < 0 is necessary because only bright structures on a dark background (and

vice versa) can be considered as fissures (see Table 3.2). On the other hand,

Fsheet allows for the discrimination of a sheet structure from other anatomical

structures with a high λ1 value, such as nodules and vessels. γ is empirically set

to 25, as determined in [145]. The two functions are then combined in (3.12) to

obtain the overall fissure similarity measure, Sfissure.

Sfissure = FstructFsheet (3.12)

Sfissure will enhance plate-like structures on the CT image, removing objects

with other structures. Figure 3.13 shows an example of a sagittal slice (a) before

and (b) after enhancement. The right fissures are clearly visible. However, as

shown in Figure 3.13, other small regions may also appear in the fissure-enhanced

image. Therefore, another step is necessary to ensure that only voxels belonging

to fissures are included and to exclude the others.

Fissure Segmentation

The first step for fissure segmentation involves the removal of voxels that are
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Figure 3.13: An example of fissure enhancement as it appears on a sagittal CT

slice. The right fissures are clearly visible on the enhanced image (right). However,

other structures are also still present in the enhanced image. The thorax is excluded

using the lung label map previously segmented as a mask prior to the enhancement.

clearly not fissure candidates. To this end, the Sfissure information and the inten-

sity of voxels in the original image are combined. Thus, voxels are considered as

possible fissure voxels candidates if Sfissure > 0.1 and −900 HU < pixel intensity

< −300 HU, which is a typical range of intensities for lung fissures. Next, a

method similar to [141,142] is employed to discard voxels that are not discarded

with the previous operation and do not belong to a plate-like structure. In par-

ticular, the idea is that, as the curvature of a fissure is low, adjacent fissure voxels

have a similar eigenvector corresponding to the largest eigenvalue. In fact, this

shows the orientation of a structure. For this reason, neighbouring voxels (in a

7×7×7 pixel volume) are considered to be on the same plate if they have similar

direction and are not on two parallel plate structures. To check whether two vox-

els have similar direction, the inner product between the normalized eigenvector

of the two voxels has to be close to 1.0 (inner product ≥ 0.985). On the other

hand, to make sure that the two voxels are not on two different parallel plates,

the outer product between the eigenvector of one voxel and the normalized dif-

ference vector between the locations of the two voxels is considered. This outer

product has to be close to 1.0 (outer product ≥ 0.985) to consider two voxels as
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belonging to the same plate. The result of this operation is a binarized image in

which all the voxels that satisfy these two conditions are assigned a value of 1,

while the remaining voxels are set to 0. Finally, a 3D connected component filter

is employed to only retain objects with a size of at least 2000 pixels.

Final Fissure Refinement

Although the segmentation method is able to successfully identify the main lung

fissures, in some cases small objects can still be included in the segmentation

result. For this reason, a final refinement may be necessary. To this end, the

binarized image is analysed by moving through 2D axial slices. On these slices

fissures have a linear shape, although they may be visible as a cluster of small

lines, due to small holes within the fissures. Therefore, for each slice a connected

component filter is computed and all the objects with a roundness higher than 0.5

and a total of pixel count lower than 50 are removed. All the remaining objects

are then merged together and a final 3D closing operation is employed to remove

holes within the fissures. An example of fissures segmented with the described

method is shown in Figure 3.14.

Figure 3.14: Example of a fissure segmentation result. The fissures label is

imposed on the three views of the CT image in a light blue colour.

3.5.5 Lung Lobes Segmentation

Once the lobe fissures are determined, the lobes of the lung can be segmented

starting from the lung label. For this purpose, the method described by Ross et
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al [148] was used as a basis. This method proved reliable in segmenting lobes

starting from a lung label map. However, it requires the user to place a few

fiducial points on each fissure to obtain the final lobe segmentation. Since the

algorithm should be automatic, a method to automatically distinguish the right

horizontal and oblique fissures, as well as the left oblique fissure from the fissure

segmentation approach described above was implemented. Points of these fissures

are then used as starting inputs for lobe segmentation.

3.5.5.1 Lobe Segmentation Algorithm

At the Surgical Planning Laboratory (SPL) of Brigham & Women’s Hospital, in

Boston, a tool for semi-automated lobe segmentation has been developed [149].

The tool requires minimal user interaction (i.e., semi-automatic) and it allows the

user to quickly, easily, and accurately generate segmentations of the left upper

and lower lobes and right upper, middle, and lower lobes. As well as loading

the HRCT dataset and the corresponding lung label map, the user is asked to

scroll through the HRCT data and place fiducials along the three major fissures

of the lung: left oblique, right oblique, and right horizontal. The algorithm uses

a thin plate splines (TPS) method [150] that provides an interpolation scheme

whereby a minimally curved surface is defined such that it passes through all the

user-selected points. The tool has been demonstrated to be reliable over several

HRCT datasets with different disease states and results are usually generated

within five to six minutes, including time for seed placement. The tool is available

as part of the Chest Imaging Platform (CIP) [74], a group of classes and method

for chest imaging under development at SPL.

3.5.5.2 Fissure Points Extraction

To distinguish the three different fissures both the subdivided lung label map

as sub-divided into the three sub-parts (as described in Section 3.5.2) and the

fissure label positions are exploited. In particular, all the fissure points that

correspond to the upper, middle or lower left lung in the lung label map are

considered as part of the left oblique fissure. On the other hand, distinction

between the two right fissures is more complex. As shown in Figure 3.13, these
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two fissures appear on sagittal slices as a sort of two pronged pitchfork, with the

upper “prong” belonging to the horizontal fissure, and the lower one belonging

to the oblique fissure. Therefore, if a point corresponds to the area of the right

upper lobe in the lung label map, it is considered as a horizontal fissure point.

If it lies in the right lower part, it is assigned to the right oblique fissure. For

points corresponding to the right middle lobe, 2D sagittal slices are considered.

Distances from the horizontal and oblique fissure points in the z direction (see

Figure 4.8) are computed and the point is assigned to the closest point. The

number of points for each fissure may be very high. Having too many points per

fissure may affect the lobe segmentation, since lobe segmentation was developed

to work with a relatively small number of points (selected by the user). Therefore,

for the left fissure, a maximum of 100 points was selected, while a maximum of

200 points for each of the two right fissures is used. The three groups of points

are finally passed as input to the lobe segmentation method which will create

the final lobe segmentation. Figure 3.15 shows an example of lobe segmentation

starting from the segmented fissures.

Figure 3.15: Example of a lobe segmentation result. The three different lobes are

assigned a different label. Blue, red, and green represent the right upper, middle,

and lower lobes, respectively. Light blue and yellow are the colour used for the

labels of the left upper and lower lobes, respectively.

3.5.6 Nodule Diagnosis

To compute probability of malignancy of lung nodules, the user is only required to

specify location of the nodule (through a seed point), a few clinical characteristic,
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such as number of cigarettes smoked per year, hemoptysis, and presence/absence

of history of malignancy, as well as a prior probability of malignancy, based

on visual inspection. Age is automatically acquired from the DICOM informa-

tion of the CT image. Then, radiographic characteristics of the selected nodule,

namely size (in cm), location, edge smoothness, cavity wall thickness, and calcifi-

cation pattern are automatically computed along with the calculated probability

of malignancy of the nodule. While size, edge smoothness, cavity wall thickness

and calcification are determined by the nodule segmentation algorithm, the lo-

cation is determined based on the position of the nodule on the lobe label map.

The method to determine the probability of nodule malignancy is based on the

Bayesian method described by Gurney et al [38, 39]. However, Gurney’s method

requires visual inspection of the CT image and manual input, while the developed

method starts from CT images and is automatic. In particular, the likelihood ra-

tio for each radiographic and clinical characteristic was computed by (3.13).

Ratio =
Prob. of finding in subjects with malignancy

Prob. of finding in subjects with benignity
(3.13)

=
Test sensitivity

1-Test specificity
(3.14)

=
True positive fraction

False positive fraction
(3.15)

Table 3.3 reports the likelihood ratios as found by Gurney et al [38]. From the

likelihood ratios, the odds of cancer are given by (3.16).

Odds of Cancer = Prior Odds× Likelihood Ratios (3.16)

Prior Odds can be subjectively estimated or based on the prevalence of malig-

nancy of the population under analysis, and are computed using (3.17).

Prior Odds =
Prev. of malignancy

1− Prev. of malignancy
(3.17)

Finally, the probability P of malignancy is given by (3.18).

P =
Odds of Cancer

Odds of Cancer + 1
(3.18)
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Characteristics Likelihood Ratio Confidence

for Malignancy Interval

Size

0-1.0 cm 0.52 0.43-0.62

1.1-2.0 cm 0.74 0.66-0.82

2.1-3.0 cm 3.67 3.46.-3.87

> 3 cm 5.23 5.11-5.34

Edge

Smooth 0.30 0.20-0.41

Spiculated 5.54 5.46-5.63

Cavity Wall

Thickness

≤ 4 mm 0.07 0.03-0.14

5-15 cm 0.72 0.50-1.03

≥ 16 cm 37.97 13.07-110.30

Calcification

Benign Pattern 0.01 0.0-0.03

Non-Calcified 2.20 2.14-2.26

Location

Upper/Middle Lobe 1.22 0.91-1.64

Lower Lobe 0.66 0.49-0.89

Age (years)

20-29 0.05 0.01-0.09

30-39 0.24 0.14-0.35

40-49 0.94 0.87-1.01

50-59 1.90 1.73-2.07

60-69 2.64 2.44-2.83

≥ 70 4.16 3.97-4.35

Smoking (Packets/Years)

Never Smoked 0.17

< 30 0.75

30-39 2.0

> 40 3.7

Hemoptysis

Present 5.08 3.55-7.27

Previous Malignancy

Present 4.95 4.13-5.93

Table 3.3: Likelihood ratios for malignancy in SPNs as found in [38].
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3.6 Algorithm Performance

3.6.1 Overview

In this section, the methods used to test the performance of the nodule segmen-

tation and classification algorithms are described. One of the main issues when

developing a system for automatic evaluation of malignancy probability is that

performance of the algorithm is often evaluated on local datasets and results are

difficult to compare. Most of the databases for lung image analysis do not report

nodule follow-up. As an example, in 2009 van Ginneken et al [151] introduced

the ANODE’09 challenge to compare the various methods available for automatic

detection of pulmonary nodules in thoracic CT scans. Training and testing data

are available, so that different methods can be compared. However, this dataset

is for algorithms that aim at detecting nodules. No indication of nodule location

or follow-up are provided.

The lung image database consortium (LIDC) [152] provides a wide range of

lung CT data. Numerous scans are available online, but a limited number of

cases report diagnosis at nodule level. Therefore, performance of the described

algorithm was tested on a combination of LIDC images available online and local

datasets provided by CUH. However, as the software is available online, results of

different algorithms tested on local datasets can be compared with those described

here. In this section, the datasets used are first described and the evaluation

method implemented is then detailed. Finally, the results obtained are presented

and the conclusion are drawn.

3.6.2 CT Datasets

For testing the algorithm, two different groups of datasets were used. The first

group consisted of a selected number of images from the LIDC database. This

database is intended to be a common dataset for the development of CAD systems

and for comparison of performance. For each scan used from the LIDC database,

annotations by four expert radiologists (each from a different institution) have

been included. The radiologists drew complete outlines of all nodules between

3 and 30 mm in diameter and identified some of the specified characteristics
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(subtlety, internal structure, calcification, sphericity, texture), on a 1 to 5 scale. A

“blinded” and “unblinded” reviewing procedure was established. In the “blinded”

stage, each radiologist individually marked the lesions. In the unblinded phase,

each radiologist re-examined the cases with the additional information of the

annotation of the other radiologists, although no forced consensus was imposed.

For each marked nodule bigger than 3 mm, the four radiologists also provided

a subjective assessment of likelihood of malignancy, on a 1 to 5 scale, with 1

indicating a nodule highly unlikely to be malignant and 5 representing a high

likelihood of malignancy.

In order to evaluate probability of malignancy, radiologists were asked to

assume that patients were 60 years old male smokers. At present, 1012 CT scans

are available via the website of the National Biomedical Imaging Archive (NBIA)

of the National Cancer Institute (NCI) [153]. Follow-up diagnosis, obtained at

nodule level, has been provided for a total of 120 nodules from 107 separate scans.

Diagnosis of the nodules has been obtained with one of four possible methods; (i)

further review of radiological images, (ii) biopsy, (iii) surgical resection, or (iv)

progression (response). However, no indication of which nodule was considered for

follow-up is provided. Some images provide several nodules, making recognition

of the diagnosed nodule complicated.

From the LIDC database, 95 images with a total of 108 nodules were extracted.

To this end, a specific SQL database was developed. The images have varying

resolution and slice thickness, with reconstruction interval ranging from 0.75 to

3 mm. This group of nodules was split into two different sets, LIDC.A and

LIDC.B, for separate tests. LIDC.A consisted of 80 nodules with a consistent

assessment of malignancy among the four radiologists. Of these 80 nodules, 10

were considered highly unlikely to be malignant (score = 1) by the 4 radiologists,

15 moderately unlikely (score = 2), 10 had an indeterminate likelihood (score =

3), 25 moderately suspicious for cancer (score = 4), and the last 20 cases were

considered highly suspicious for cancer (score = 5). LIDC.B was extracted from

120 cases with follow-up. To properly identify the analysed nodules, all images

with two or more nodules were first excluded. Then, only nodules that were bigger

than 3 mm and which were identified by all four radiologists were considered. A
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total of 28 nodules, 12 benign and 16 malignant, were extracted from the LIDC.B

dataset.

The second group of images was provided by the Cork University Hospital

(CUH) in compliance with an approved ethical protocol by the Cork Research

Ethics Committee. This group contained 67 nodules (40 malignant, 27 benign)

from 67 patients that were acquired using different scan machines and various

reconstruction parameters. For each image, location of the nodule and follow-up

diagnosis were provided.

3.6.3 Algorithm Testing Approach

To evaluate performance of the algorithm, three different tests were applied, one

for each set of nodules. First, the probability of malignancy computed by the

algorithm was compared to the radiologists’ assessment, using the 80 nodules

from LIDC.A. These nodules were assessed with equal probability of malignancy

by all four radiologists. This approach gives a frame of reference to prove re-

liability of the algorithm. The developed algorithm computes a percentage for

the probability of malignancy. To compare results to those from the radiologists,

the percentages were divided into the LIDC 5-point scale (1-20% = 1, 21-40% =

2, 41-60% = 3, 61-80% = 4, 81-100% = 5). Radiologists’ and algorithm results

were normally distributed, as shown by probability plot, histogram analysis, and

Shapiro-Wilk test [154] (p = 0.984 and p = 0.923 for radiologists’ and algorithm

results, respectively). An unpaired Student’s t-test to assess the ability of the

algorithm to match the radiologist’s diagnosis was applied. To better match the

radiologists’ diagnosis conditions, prior probability of malignancy was set to 50%,

age to 60, and the smoking parameter to 30-39 pk/year.

For the second test, the ability of the algorithm to predict nodule malignancy,

as compared to the radiologists’ assessment, was evaluated on the 28 cases from

the LIDC.B database. A receiver-operating characteristic (ROC) curve analy-

sis [155] was used, with the estimated area under the ROC curve (AUC) used

as the parameter for algorithm accuracy. Results were compared by means of

the DeLong test [156]. This approach allowed for evaluation of accuracy of the

algorithm, compared with radiologists’ assessment.
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A final test was then performed using the CT images provided by CUH.

Results obtained with the described approach were compared to similar methods

applied by Swensen [90] and McWilliams [110] using ROC analysis. Swensen’s

method requires to specify age, smoking status and history of cancer, and to

indicate presence of spiculation. Probability of malignancy is then computed

using (3.19).

Probability = (0.0391× Age) + (0.7917× Smoker) + (1.3388× Cancer History)+

(0.1274× Nodule Diameter) + (1.0407× Spiculation)+

(0.7838× UpperLobe)− 6.8272

(3.19)

Conversely, McWilliams’ approach assigns a value to the user-specified age, sex

(0.6011), family cancer history (0 or 0.2961), emphysema (0 or 0.2953), nodule

size, nodule type (-0.1276 for non-solid, 0.377 partially solid, and 0 for solid), nod-

ule count, nodule in the upper lobe (0.6581) and spiculation (0.7729). Probability

of malignancy is computed by (3.20) and (3.21).

LogOdds = (0.0287× (Age− 62)) + Sex + Lung Cancer Hx + Emphysema−

(5.3854× ((
Nodulesize

10
)− 0.5− 1.58113883)) + Nodule Type+

Upper Lung− (0.0824× (Nodulecount− 4)) + Spiculation− 6.7892

(3.20)

Probability = 100× eLogOdds

1 + eLogOdds
(3.21)

At present, nodule type is not determined by the presented algorithm, but is

manually specified in equation 3.20 after visual inspection of each nodule.

For ROC curve analysis, the true positive rate (sensitivity) is plotted in func-

tion of the false positive rate (1-specificity). Sensitivity indicates the probability

that a test result will be positive when the disease is present, while specificity

determines the probability that a test result will be negative when the disease

is not present. In the ROC curve, the sensitivity (true positive rate) is plotted

in function of the false positive rate for different cut-off points. Each point on

the ROC curve represents a sensitivity/specificity pair corresponding to a par-

ticular decision threshold. Therefore, for every possible threshold (cut-off point)
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selected to discriminate between the two populations, there will be some cases

with the disease correctly classified as positive (true positive fraction), but some

cases where the disease will be classified negative (false negative fraction). On the

other hand, some cases without the disease will be correctly classified as negative

(true negative fraction), but some cases without the disease will be classified as

positive (false positive fraction).

3.6.4 Results

Prediction of nodule malignancy was obtained for all 175 cases considered (LIDC.A

+ LIDC.B + CUH) with an average time of 3.55 minutes on a 2.40 GHz, 12 GB

RAM PC. As shown in Table 3.4, lung and fissure segmentation were the longest

processes, with an average time of 2.03 minutes and 1.23 minutes, respectively.

Lung and nodule segmentations were accomplished for all nodules, whereas in

twenty cases the algorithm failed fissure and lobe segmentation, for one or both

lungs. This was due to presence of lung diseases, such as diffuse emphysema,

which affect the structure of the fissures. In eleven cases, lobe segmentation

failed in the lung not containing the nodule, so that correct nodule localization

was still possible. In the remaining nine cases, nodule location was computed

based on the corresponding third of the lung label map.

Results from the algorithm on the 80 LIDC.A nodules proved not statistically

different from subjective diagnosis of the four radiologists (Student’s t-test, p

= 0.34). For five cases, the described method provided high (> 3) or low (<

Process Average Time (seconds)

Lung Segmentation 123± 15.71

Nodule Segmentation 3± 0.98

Fissure Segmentation 83± 20.12

Lobe Segmentation 25± 5.25

Malignancy Computation 1± 0.25

Table 3.4: Average times to compute the different steps for prediction of likelihood

of malignancy for 175 cases.
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Method AUC 95% CI

Radiologist 1 0.701 0.512-0.889

Radiologist 2 0.859 0.735-0.983

Radiologist 3 0.784 0.6150-0.952

Radiologist 4 0.776 0.612-0.940

Algorithm 0.885 0.775-0.996

Table 3.5: Comparison of prediction performance of radiologists and algorithm

from the LIDC.B dataset.

Figure 3.16: ROC curves comparing the different results from the four radiologists

and the described algorithm from the LIDC.B dataset.

3) probability, while radiologists gave an undetermined reading. Unfortunately,

since these nodules did not have follow-up diagnosis, evaluation of these five

results was not possible.

Table 3.5 shows the comparison of prediction accuracy obtained by the radi-

ologists and by the algorithm on the 28 LIDC.B nodules with follow-up. The test

ROC curves for the various predictors are shown in Figure 3.16. The cut-off

points are shown, while the individual ROC outcomes for the different threshold
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Rad1 Rad2 Rad3 Rad4 Alg.

T SN SP SN+SP SN SP SN+SP SN SP SN+SP SN SP SN+SP SN SP SN+SP

1 0.875 0.250 1.125 1.000 0.250 1.250 0.938 0.250 1.188 1.000 0.083 1.083 1.000 0.167 1.167

2 0.688 0.583 1.271 0.813 0.750 1.563 0.750 0.5 1.250 0.938 0.417 1.354 0.875 0.750 1.625

3 0.375 0.917 1.292 0.438 1.000 1.438 0.625 0.917 1.542 0.688 0.667 1.354 0.500 1.000 1.500

4 0.313 1.000 1.313 0.250 1.000 1.250 0.438 1.000 1.438 0.313 1.000 1.313 0.250 1.000 1.250

5 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

Table 3.6: Individual ROC outcomes for the first ROC curve analysis (LIDC.A).

T stands for threshold, SN for sensitivity (true positive rate), and SP for specificity

(1 - false positive rate).

are presented in Table 3.6. Considering the radiologist who provided the highest

accuracy (radiologist 2), ROC analysis showed an area under the curve (AUC) of

0.859 (95% CI, 0.735-0.983) for radiologist 2, and 0.885 (95% CI, 0.775-0.996) for

the described algorithm. Although similar to radiologist 2 (p < 0.05), the algo-

rithm had a higher accuracy. In one case, the algorithm predicted low probability

of malignancy, while follow-up indicated malignancy of the nodule, whereas in a

second case high likelihood was predicted by the algorithm for a benign nodule.

In nine cases, the algorithm provided an undetermined likelihood (score = 3) to

the analysed nodules.

The last tests evaluated accuracy of the algorithm on the 67 local cases with

follow-up provided by CUH. ROC analysis results showed an AUC of 0.795 (95%

CI, 0.712-0.877) for the described approach, 0.738 (95% CI, 0.648-0.828) for

Swensen’s method, and 0.759 (95% CI, 0.671-0.846) for McWilliams’. Results

are summarised in Table 3.7, while ROC curves are presented in Figure 3.17.

The cut-off points are shown, while the individual ROC outcomes for the dif-

ferent threshold are presented in Table 3.8. In 24 cases the proposed algorithm

provided uncertain probability of malignancy (score = 3). In general, these re-

sults confirm the high accuracy of the described approach, as compared to other

methods.

3.6.5 Discussion

In this section, performance of the proposed method for nodule malignancy pre-

diction was evaluated. Three sets of chest CT images composing 175 nodules have
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Method AUC 95% CI

Swensen 0.738 0.648-0.828

McWilliams 0.759 0.671-0.846

Algorithm 0.795 0.712-0.877

Table 3.7: Comparison of the performance of the algorithm, compared to

Swensen’s [90] and McWilliams’ [110] methods using the CUH dataset.

Figure 3.17: ROC curves comparing results from the algorithm compared to

Swensen’s and McWilliams’ methods for the CUH dataset.

Swensen McWilliams Alg.

T SN SP SN+SP SN SP SN+SP SN SP SN+SP

1 0.919 0.298 1.218 0.935 0.263 1.199 0.935 0.263 1.199

2 0.790 0.667 1.457 0.823 0.649 1.472 0.806 0.737 1.543

3 0.435 0.842 1.278 0.516 0.860 1.376 0.565 0.895 1.459

4 0.274 0.877 1.151 0.274 0.877 1.151 0.274 0.912 1.186

5 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

Table 3.8: Individual ROC outcomes for the second ROC curve analysis

(LIDC.B). T stands for threshold, SN for sensitivity, and SP for specificity.
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been used for separate testing. Comparison with four radiologists’ subjective as-

sessment showed that the implemented algorithm is comparable to radiologists’

performance. This test cannot be considered accurate to evaluate reliability of

the algorithm, as no follow-up was provided for the images. Therefore, 28 im-

ages with clinical follow-up from the LIDC dataset were selected to assess the

capability of the described approach in predicting nodule malignancy, and the al-

gorithm’s results were compared to the radiologists’ subjective assessment. ROC

analysis showed that the described method is accurate and improves radiologists’

diagnosis. However, the data sample was small, and a larger dataset should be

used in order to proper evaluate performance of the algorithm and compare it to

radiologists’ diagnosis. The last test showed that the described method predicts

likelihood of malignancy with accuracy higher than two methods available in the

literature. For the approach proposed by McWilliams et al [110], results might

have been biased by visual classification of the nodule as solid, non-solid, and

semi-solid. A method which computes automatic classification of the nodules

may improve results obtained with this approach.

In the method proposed here, nodules’ shape was classified as smooth or

spiculated only, with no characterization for nodule lobulation. Future work

might include the development of a method for automatic definition of nodule

lobulation to help improve accuracy of the algorithm.

At present, the algorithm was tested on a limited number of images. A larger

database of images providing follow-up and assessment from different radiologists

should be considered for future evaluation. Assuming a study power of 80%, with

a significance level of 5%, a sample size n = 1072 nodules is necessary for a proper

ROC curve analysis to evaluate whether the algorithm improves the radiologists’

assessment. In general, the obtained results are positive and indicate that the

algorithm is reliable and accurate at predicting probability of malignancy and

improving radiologists’ assessment and different methods’ accuracy.

The described system requires user interaction in order to identify the nodules

to analyse. Automatic nodule identification and classification should be investi-

gated in the future to provide the physician with a complete and reliable CAD

system to determine whether to proceed with biopsy of the nodule.
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3.7 Summary

3.7 Summary

In this chapter, a new method for prediction of solitary pulmonary nodule malig-

nancy starting from chest CT was described. The primary results are as follows:

• The algorithm has a modular structure, being composed of different seg-

mentation methods that can be used independently for individual needs.

• Simple user interaction is required from the user, who has to select the nod-

ule under analysis. Lungs, nodule, fissures, and lobes are then automatically

segmented.

• Nodule radiological characteristics are automatically computed and com-

bined with radiological features, and probability of malignancy is computed

based on the method introduced by Gurney et al [38,39].

• The algorithm determines probability of malignancy with high accuracy

when compared to other methods available in the literature and to radiol-

ogists’ assessment.

• Improvements need to be implemented to make the algorithm more ro-

bust against affecting factors, such as lung disease. Also, tests with larger

datasets should be performed.

• The algorithm is easily modified and extended, and it is a good starting

point for a complete CAD system.
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Chapter 4

Airway Segmentation∗

4.1 Overview

This chapter details the design and development of a semi-automated algorithm

for airway segmentation starting from chest CT images. The algorithm is imple-

mented as an extension of the open-source software 3D Slicer [74], and can be

freely downloaded, used, and modified according to personal needs. Some of the

most common techniques for medical image segmentation, the background the-

ory, and the relevant literature are briefly discussed, while the implementation of

the algorithm is explored in detail. The results obtained testing the algorithm on

several human and animal CT images are then discussed. In particular, reliability

of the algorithm in terms of CT scanner parameters is shown. Key contributions

presented in this chapter include:

• The first open-source algorithm entirely dedicated to airway segmentation.

This increases extendibility of the algorithm and allows for easier compari-

son with other algorithms.

• The algorithm requires minimal interaction by the user. One click selec-

tion at the patient trachea (easily recognizable on a CT image) is required,

∗This chapter is based on P. Nardelli, K. A. Khan, A. Corvò, N. Moore, M. J. Mur-

phy, M. Twomey, O. J. O’Connor, M. P. Kennedy, R. S. J. Estépar, M. M. Maher and P.

Cantillon-Murphy “Optimizing parameters of an open-source airway segmentation algorithm

using different CT images.” Biomedical Engineering Online 14, no. 1 (2015): 62.
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making the algorithm amenable to a vast range of researchers, from physi-

cians that need specific analysis of the airways to engineers that can use

the software as a starting point for other applications.

• Although not yet capable of segmenting all the airways on a CT image due

to limits on CT resolution, the results obtained using the algorithm show

that the method is comparable with other results.

• Unlike other algorithms present in the literature, the airway segmentation

method presented here proved reliable across different types of CT scanners

and parameters. Moreover, the algorithm can be easily modified, adding

new options as new datasets become available.

4.2 Medical Image Segmentation

In computer vision, image segmentation is the process of partitioning an image

into salient and non-overlapping regions to help identify, classify, analyse or sim-

ply recognize objects or other relevant information. The idea underlying this

process is to assign a specific label to pixels that share a certain characteris-

tic [157]. In this way, all the pixels with similar characteristics, such as colour,

texture or intensity can be gathered into different regions in order to analyse, in

an easier manner, an object of interest or a part of the image. In fact, adjacent re-

gions can be significantly different with respect to some characteristics [158,159].

This technique is widely used in the field of medical imaging, as the resulting

labels can be combined to create 3D reconstructions of the regions of interest,

using algorithms that reconstruct new data points starting from a discrete set of

known points, called interpolation algorithms. An example of an interpolation

algorithm is the marching cubes algorithm [160], which forms an imaginary cube

taking eight neighbour locations at a time. The algorithm then determines what

polygon is necessary to represent the part of the isosurface passing through this

cube. The individual polygons are then fused into the desired surface.

In the last three decades, several automated image segmentation techniques

have been developed. An important aspect to bare in mind is that an optimal

segmentation method does not exist, and each situation may require a different
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technique. In particular, the technique to be used for segmentation is specific

to application, imaging modality and type of body part to be studied. As an

example, brain segmentation requires methods that are different from those re-

quired in the thorax. Also, another important aspect to consider when selecting

a segmentation algorithm is the possible presence of noise on the image, which

my be due to partial volume effects, motion or ring artefacts, and noise related

to sensors and electronic systems. Here, some of the most common techniques

for segmentation used in medical imaging are briefly presented [161].

4.2.1 Thresholding

Thresholding represents the simplest method of image segmentation. It consists

in applying an intensity threshold value and adding all the pixels with an intensity

above or below this threshold. This way, the intensities of the image are binarized

into two classes, with all the pixels above the threshold grouped in one class and

the remaining pixels in another class [162]. This threshold can be chosen by

analysing the histogram of the image, a graphical representation of the image

intensities distribution. This method is suitable to segment regions or objects

with intensities that stand out from the rest of the image. The main issue with

this technique is that usually it not simple to choose a single threshold to label a

region and, therefore, it often requires user interaction (i.e., the threshold value

has to be chosen and evaluated by the user). Therefore, thresholding is often

used as a first step in more complicated segmentation techniques, in order to

have a first approximate separation. A typical example of usage of this technique

is as the first step in lung segmentation from CT images. This way, the soft

tissue of the lung can be roughly separated from the surrounding chest structures

with higher HU values (see Table 2.1) [163]. However, simple thresholding can

not be used in operation such as airway segmentation, as image noise and the

high number of voxels with intensities similar to air in the lung tissue (as in

patients with emphysema) would not allow a proper distinction of airways from

the surrounding tissues.
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4.2.2 Edge Based Segmentation

Edge based segmentation is a method based on the identification of boundaries

which separate the different regions. To this end, discontinuities in grey level close

to uniform grey level regions are considered edges of the region itself. Edge based

algorithms use edge detecting operators based on gradient (derivative) functions,

such as Prewitt, Sobel, Roberts (1st derivative), and Laplacian (2nd derivative).

Problems with this technique are the possible presence of noise or weak edges

that can greatly affect the segmentation results [161]. For this reason, edge-based

algorithms, like thresholding techniques are often used in conjunction with other

techniques for complete segmentation. Examples of edge based segmentation

algorithms are edge relaxation [164] and Hough transform based [165].

4.2.3 Region Growing Segmentation

Region growing algorithms involve extracting pixels within an image region that

are connected based on some predefined criteria [161]. The segmentation starts

from an initial “seed region” (one or more pixels) and check a neighbourhood re-

gion of pixels to assess whether these neighbours satisfy the predefined condition.

For 3D images, two approaches can be used to check neighbours; face connectivity

and full connectivity. With a face connectivity approach, 6 neighbours connected

to the seed pixels are considered (four pixels surrounding the seed on the same

slice and two pixels corresponding to the seed on the previous and next slices),

while with full connectivity, the 26 pixels surrounding the seed are checked. Pix-

els that satisfy the condition are added to the initial region and their neighbours

are checked in turn. The process continues as long as new pixels are added to

the region. A representation of region growing segmentation is included in Figure

4.1. There exists several region growing segmentation techniques depending on

(i) the selected criteria to add a pixel to the growing region, (ii) the connectivity

indicating the neighbourhood size, and (iii) the strategy used to add neighbouring

pixels. The main disadvantage of this method is that, oftentimes, the seed region

and the inclusion criteria have to be set manually. Moreover, if several regions

need to be extracted, different region seeds must be selected. Examples of region

growing segmentation methods are the “Threshold Connected”, which evaluates
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(a) (b)

Figure 4.1: Region growing segmentation scheme. (a) A seed pixel (red) is se-

lected and the algorithm starts checking neighbouring pixels (blue arrows). (b)

The pixels around the grown region (red) are assessed.

if the pixels’ intensity value is inside a specific interval, and “Otsu segmentation”,

which tries to minimize the error of misclassification of the pixels by finding a

threshold that classifies the image into two clusters. Otsu segmentation seeks to

minimize the area under the histogram due to one cluster which lies on the other

cluster’s side of the threshold [61]. For the development of the described airway

segmentation method, a region growing technique was chosen for the simple ini-

tialization process, the little user interaction required, as well as the good results

showed in the literature.

4.2.4 Level Set Segmentation

The level set segmentation approach was proposed for the first time in 1988 [166]

and refers to a numerical technique that tracks the evolution of contours and

surfaces in an image. It uses and solves a partial differential equation (PDE)

to facilitate the segmentation. In particular, a contour is embedded as the zero

level set of a higher dimensional function called the level-set function, which is

then evolved under the control of the PDE. At any time, the evolving contour

can be obtained by extracting the zero level-set function from the output. This

technique is widely used in medical image segmentation because of its capacity

for modelling and handling complex shapes and topological changes, as well as

its computational efficiency in 3D images. In a typical approach, a contour is
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initialized by the user and is then evolved until it fits the form of an anatomical

structure in the image. The main problem of level set methods is that choos-

ing a proper initialization contour (speed function) may be complicated in some

applications. As well as in region growing segmentation, many different imple-

mentations and variants of the level set segmentation have been proposed [167].

A typical example of a level set segmentation method is the fast marching algo-

rithm, that starts from an initial position on the front, and systematically moves

the front forward one grid point at a time, successively solving the Eikonal equa-

tion [168]. In the case of airway segmentation, a fast marching approach requires

the definition of a very complicated speed function, as shown in Schlathölter et

al [169], that can highly increase the computational complexity of the system.

4.2.5 Atlas Based Segmentation

A fourth approach to medical image segmentation is to exploit the anatomical

features of the structures or region of interest with a repetitive form or geometry,

using atlas based segmentation methods. If an atlas or template is available,

these techniques can be very useful. The atlas is usually generated by comparing

images of several subjects in order to extract a model explaining the variation

in the shape of the structure itself. This generated model is then used as a

reference frame for the segmentation of new images [162]. However, the creation

of the atlas needs registration of all the images from several patients as well as a

probabilistic representation of the registered data. Moreover, due to anatomical

variability, an accurate construction of the atlas can be quite complex and expert

knowledge is often required in building the database to be used for the atlas

construction. Therefore, atlas based segmentation methods are generally used

for the segmentation of structures that tend to remain stable over the population

of study. An example of this technique lies in magnetic resonance (MR) brain

imaging for different types of segmentation [170].
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4.3 Airway Segmentation Methods: Background

4.3.1 Overview

Over the last two decades, several methods for airway segmentation starting

from chest CT images have been developed. Several techniques, both automatic

and semi-automatic, aiming at obtaining a segmentation which is as complete as

possible, have been proposed. However, the problem of airway segmentation still

represents a big challenge for researchers around the world. Here the principal

issues that limit image segmentation and that researchers are trying to overcome

are examined. A brief introduction to different published methods for airway

segmentation are then presented.

4.3.2 Principal Limitations of Airway Segmentation

The lung airways tree presents a complex anatomy. In fact, starting from the

trachea, with a diameter of about 25 mm, the bronchi continuously split into

two (or more) smaller branches until the most distal bronchioles, after around

23 generations. Unlike the bronchi, which have rings of cartilage that serve to

keep them open, the bronchioles are lined with muscular walls and they can be

as small as 0.3-0.5 mm in diameter. This represents the first main issue when

trying to segment the airways as, when bronchi are so small and with only soft

muscular tissue to surround them, it becomes very difficult to distinguish them

on a CT image.

The airway wall separates the inside space of the airway, or lumen, from

the surrounding lung tissue. Since the airway contains air, this should appear

with a low intensity on a CT image (around - 1000 HU), whereas the wall is

supposed to have a higher intensity, causing a high contrast between the two

regions. Furthermore, vessels usually run parallel to airways branches and they

appear substantially brighter than the lung tissue. Therefore, on a CT image,

airways can usually be recognized as a strong black part surrounded by a white

contour and close to a uniform white circular region. Figure 4.2 shows an example

of typical airways (red arrows) and vessels (yellow arrow) on a axial chest CT

image. However, when the bronchi narrow and the airway walls become thinner
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Figure 4.2: Example of airways (red arrows) and vessels (yellow arrow) on a axial

chest CT image.

and less recognizable from the lung tissue (due to similar HU value of muscular

and soft tissue), a partial volume effect is more likely to appear. This leads to a

blurring of the airway wall and decreases the contrast between the lumen, wall,

and lung tissue. For this reason, one of the biggest risks in airway segmentation

is the phenomenon referred to as leakage. This phenomenon is characterized by

an “explosion” of the segmentation outside the airway tree into the lung tissue,

due to similar intensity HU values in nearby tissues (see Figure 4.3). Over the

Figure 4.3: Example of leakage on a axial chest CT image. The segmentation

(pink) “explodes” including pixels of the lung tissue surrounding the airways.

last two decades, several attempts to find a good method to segment as many
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airway branches as possible, while avoiding leakage, have been proposed.

Another main issue in the field of airway segmentation is the difficulty in com-

paring results from different researchers. Algorithms are commonly tested only

on specific image types and their reliability is usually not proven across images

acquired using different characteristics, such as slice thickness, reconstruction

kernel and radiation dose. Furthermore, algorithms are normally not freely avail-

able, making comparison with other methods particularly complicated. For this

reason, in 2009 a new challenge aiming to compare different algorithm perfor-

mance using the same database was launched [171]. This challenge is referred to

as the EXACT’09 challenge and consists of a total of 40 CT chest images publicly

available. Among them, 20 cases have to be used for training of the algorithm,

and the remaining 20 cases can be used for testing. The challenge is still open

and authors can compare results with those of the other teams that took part in

the challenge.

At the moment, results from 15 different teams are available online. To eval-

uate and compare results, a reference segmentation was constructed using all the

correctly segmented branches of all teams as a “gold standard”. However, since

2009 this gold standard has never been made publicly available, so individual

results have to be sent to the EXACT’09 authors, making a direct comparison

quite complicated. Moreover, only the results of teams who took part in the

challenge in 2009 are available online, while those of other teams that evaluated

the performance of their software on the EXACT’09 database are not published

online.

Finally, the gold standard was constructed considering only the results of the

15 initial team that presented the results in 2009 and it has not been updated

since then. This gives rise to difficulties when a new method may outperform all

the other 15 teams of the challenge. In this case, the new segmented branches

would be detected as incorrect branches or considered as leakage, since they were

not included within the original gold standard.
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4.4 Background

Here, some of the different methods for airway segmentation starting from CT

images that have been developed in the last two decades which rely on the un-

derlying techniques discussed in Section 4.2 are examined. Computerized airway

segmentation techniques are usually classified into two categories; automated and

semi-automated methods. Automated methods require no user interaction and

automatically try to identify the airways, whereas semi-automated algorithms

may need the user to undertake some simple action before the segmentation itself

initiates. As an example, in most of the semi-automated methods the user is

asked to simply place a seed point inside the trachea (easily recognisable) of the

CT image.

Many airway segmentation techniques rely on a region-growing approach, a

fast method that requires no prior knowledge of the structure of the airway,

and uses a seed voxel and an intensity threshold to separate air from tissue voxels

[169,172–175]. The main problem with this technique is leakage, caused by voxels

misclassified as air voxels.

To address this problem, several solutions have been proposed. One of the

first methods, proposed by Mori et al. [172], used a 3D painting algorithm to di-

rectly extract the inside of the airway tree automatically increasing the intensity

threshold until leakage occurs. This approach is able to stop the segmentation be-

fore leakage occurs, but is not able to segment peripheral branches. This method

represents the basis of most of the methods using a region growing approach,

with modifications to improve segmentation. The method proposed here is an

improved version of Mori’s approach.

Schlathölter et al [169] implemented a fast marching algorithm in which wave-

front propagation is used in conjunction with an anatomical model of the airway

tree to implement a region growing algorithm, which ends when leakage occurs

in all the directions of propagation. The main disadvantage of this method is the

complexity of the specific speed function and the high computational complexity

that make the algorithm not a good candidate for airway segmentation to be used

with VB.
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A good trade-off between computational complexity, leakage presence and seg-

mentation results is absolutely essential. Therefore, Lo et al [176, 177] proposed

an algorithm where an airway appearance model is used in combination with

a vessel tree segmentation to develop a classifier able to automatically discern

between airways and surrounding tissue voxels using local descriptors. This ap-

proach provides good results, but requires the user to find an accurate training

dataset which has to be large enough to be able to create the airway appearance

model and properly classify the pixels.

Kiraly et al [178] proposed an algorithm using a 3D region growing method

based on Mori’s algorithm to segment larger airways, combined with specific mor-

phologic operators to improve the segmentation. To avoid leakage an empirically

found maximum number of allowed voxels is used. This is not an optimal solu-

tion, due to the different CT reconstruction paramaters and lungs dimensions.

Moreover, the algorithm is tested only on personal dataset, that are not publicly

available, so that a proper comparison of results is not possible. The method pre-

sented here starts from Kiraly’s idea to avoid leakage, but instead of considering

a fixed maximum number of allowed voxels, this is identified based on trachea

dimensions and scan parameters.

Salito et al [179] applied a simple 3D region growing, similar to Mori’s al-

gorithm, on healthy subjects and patients with severe emphysema, to evaluate

the effect of emphysema on airway segmentation. This method is used to only

confirm that a region growing approach is not optimal in case of patients with

emphysema and can not be used for real applications, as the development of a

VB system.

Graham et al [180–183] proposed a method in which a first adaptive region

growing method similar to [172] is applied. An empirically found maximum num-

ber of allowed voxels is used. Afterwards, branch segments are identified consid-

ering tube-like structures. Finally, neighbouring branch segments are connected

by smooth interpolated surfaces. Despite the great results obtained, this method

was tested only on 23 personal cases and manual interaction is required to improve

results.

Irving et al [184] extended the morphology based method proposed by Pisupati

et al [185], by including a three dimensional morphological filtering and leak

88



4.5 Airway Segmentation: Implementation

removal using 3D dilation. Recently, a further extension of this approach has been

presented [186], which proposes integration of the airway tree topology and branch

shape to help identify and segment missing branches. However, this method is

applicable only as a second step for airway segmentation, following an initial

rough segmentation.

Rudyanto et al [187] presented an airway posterior probability model that

exploits a novel multi-scale wallness measure to develop a probabilistic map that

may help to optimize the cost function for region growing or fast marching-based

algorithms. However, this algorithm was applied and tested only on 2D images

and application to 3D images resulted difficult and computationally expensive.

Finally, Xu et al [188] proposed a hybrid multi-scale approach that combines

intensity-based region growing with a morphology-based method using a multi-

scale vesselness to try to segment peripheral branches while avoiding leakage.

The main drawback of this system is the impossibility to compare results, as the

algorithm was tested only on personal cases.

In the presented research, a novel semi-automatic algorithm for airway seg-

mentation that uses an iterative region growing approach with voxel intensity

as criteria to avoid leakage is presented. The method starts from Mori’s region

growing approach, improving it by modifying the stopping criteria. Unlike previ-

ous works, trachea, right and left lungs are cropped and segmented individually

so that segmentation of one part does not affect the other. In order to stop

the segmentation before leakage appears, a novel method to identify a maximum

number of voxel based on CT and patients characteristics is introduced. More-

over, the algorithm is publicly available, facilitating comparison of results on

personal datasets, and a novel study on the effect of CT parameters on airway

segmentation has been accomplished.

4.5 Airway Segmentation: Implementation

4.5.1 Introduction

For the development of the algorithm used here, the freely available and easily

extendible software platform, 3D Slicer, has been used [55–57,75]. The algorithm
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has been mostly written in C++ and Python, exploiting the functionality of the

ITK [60, 61] and VTK [59] classes. The described algorithm is available as an

extension of Slicer and can be downloaded and tested on personal datasets. The

source code is also freely available online, so that it can be modified according to

different needs. The method is based on a modified 3D region growing algorithm

that uses an intensity threshold as an inclusion criteria. In particular, only voxels

having an intensity value below a certain threshold are considered as part of

the segmented airways. To avoid leakage due to possible noise from various

sources that may blur some airway walls, the threshold is iteratively modified

and optimised until leakage appears. Other parameters, such as the number of

voxels included in the segmented region at each iteration, have been optimised

based on robustness of results across all datasets.

When using a single threshold for the segmentation, the approach might stop

the segmentation too early, causing peripheral airways to be excluded from the

segmented region. For this reason, the lung volume is first subdivided into three

different parts; trachea, right and left lungs. This way, the three parts can be

segmented individually, using three different thresholds, each of which will be

specific and optimal for each airways part. Previous methods [178,182,189] sought

to stop the segmentation before leakage appears based on an empirically pre-

defined maximum number of voxels that can be included in the segmentation.

This greatly limits the segmentation, especially considering the great variability

in airway size and anatomy among different patients and CT images. For this

reason, the proposed method determines the maximum number of voxels for the

two lungs based on the number of voxels included in the trachea region.

4.5.2 Overview of Algorithm Versions

The airway segmentation algorithm underwent three different iterations over the

course of the implementation process, which involved modifications and improve-

ments in order to obtain better results and more reliability. Reviews and questions

from several users around the world helped to fix possible bugs and improve the

software performance. Each version is detailed below in order of online appear-

ance and a summary of the versions is reported in Table 4.1.
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Version 1.0

In the first version of the algorithm, the user was required to place three seed

points on the CT image; one within the trachea, and the other two inside the

two main bronchi. The points’ positions were used to split the volume into the

three different parts and as starting points for the three different segmentation

processes. Also, a pre-defined maximum number of voxels was used in order

to prevent leakage in the right and left lungs. The algorithm used the Slicer

interface for common language interface (CLI) modules. This way, beside the

three seed points, the user needed to also select the input and the label volumes

to be used for the airways identification. This version of the algorithm was tested

on the EXACT’09 cases, and while it showed good results in terms of leakage,

the performance was not optimal in terms of segmented branches when compared

to other methods [190]. Placing the two fiducials in the main bronchi was not

always an easy task. Figure 4.4(a) shows an example of mode of operation of the

first version of the algorithm.

(a) (b)

Figure 4.4: Airway segmentation algorithm interface of (a) version 1.0 and (b)

version 1.2. In (a) seeds, input and label volumes had to be created and selected.

With the new version (b) Only input volume and seed point have to be selected.

In both cases the label value can be manually changed (default = 2).

Version 1.1

For the second version, the aim was to use only one seed point to be placed in the
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trachea for starting the segmentation and to obtain better results in terms of seg-

mented branches. This was achieved exploiting the anatomical knowledge of the

trachea, which can be separated from the rest of the lung volume considering the

seed point position. Two segmentations of the trachea were then implemented.

A first segmentation is obtained from the cropped trachea volume. Then, the

point in which the trachea splits into the two main bronchi is searched and used

to refine the cropping of the trachea volume. The central point of the two main

bronchi labels is then used as starting point for the left and right lungs segmen-

tation. Also, the maximum number of voxels was determined as a percentage

of the number of voxels of the segmented trachea. While maintaining low leak-

age appearance, this version also showed good segmentation results. However,

the algorithm still used a CLI interface and was not generalized for different CT

scanner types and parameters.

Version 2.1

For the final version, a new interface for the module was implemented in Python

(see Figure 4.4(b)). This way, the only action required of the user is to place

one seed point within the trachea and trigger the algorithm. Moreover, this

new version has been extended and adapted to different types of CT scanners

and parameters. The algorithm reads the DICOM metadata of the images to

automatically identify kernel and slice thickness used to reconstruct the CT image

and determine an optimised maximum number of voxels to avoid leakage. At

the end of the segmentation process, a 3D model of the airway is automatically

reconstructed and visualised on the 3D view panel of Slicer. In this way the

user does not have to manually create a 3D model of the airway every time a

new case is analysed and segmented. This version was tested on several clinical

and ex-vivo cases, including the EXACT’09 cases, showing good results in terms

of both leakage and segmented branches. Details of the implementation of this

version are reported below.
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Version User Interaction Interface Max Number of Voxels Generalized

1.0 3 seed points CLI Empirically pre-determined No

1.1 1 seed point CLI Based on trachea voxel count No

1.2 1 seed point Python Based on trachea voxel count Yes

Table 4.1: Airway segmentation algorithm versions.

4.5.3 Algorithm Implementation

4.5.3.1 Overview

The airway segmentation method belongs to the group of methods referred to

as semi-automated, as it requires the user to manually place a seed within the

trachea, which is easily recognizable in an axial CT image. Different approaches,

such as De Nunzio et al [191], automatically find the trachea in the first slices of

the CT scan. However, these systems work only for the human trachea, while the

system described here is intended to be as general as possible, considering non-

human images as well. As an example, in airways which have a branch leaving the

trachea above the carina, as in the case of a pig airways (see Figure 4.5), the seed

point has to be placed between this branch and the carina. Therefore, manual

placement of the seed point cab be considered as a good trade-off between versa-

tility and automation. Figure 4.6 shows the steps involved in the implementation

of the algorithm. The different steps are here detailed.

Figure 4.5: Coronal CT image showing a pig lung. The additive bronchus coming

out of the trachea above the carina is indicated in the red circle.
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Figure 4.6: Scheme of the steps involved in airway segmentation.

4.5.3.2 Volume cropping

The algorithm’s first step involves cropping the whole volume in order to extract

the trachea. In version 1.0, the volume was cropped exploiting the placement of

the three seed points. In particular, a fixed rectangular area that extended from

the seed point in one bronchus to the next and that included the whole trachea

was cropped. Figure 4.7 shows how the cropping was implemented in version 1.0.

However, the placement of the points was not always easy and could hugely affect

the results of the segmentation. In fact, different positions of the two points in the

main bronchi in some cases could yield different results, and, in some cases, part

of the trachea could be cropped out inadvertently (Figure 4.7). Therefore, the

placement of only one fiducial and automatic cropping was absolutely necessary

for the new versions. To this end, an average trachea length (with a safe margin),

the whole volume width, and a height given by the whole volume minus a small

portion of volume itself are considered starting from the seed point (for definition

of depth, width and length in a 3D volume see Figure 4.8). Using this cropped

volume, the initial segmentation of the trachea starting from the placed seed
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Figure 4.7: Example of volume cropping in version 1.0 of the algorithm. The

seeds point are represented by the circles, while the trachea volume as it would be

cropped by the approach is showed on the blue rectangle. In this case, due to the

seeds’ position the entire trachea is included in the cropped volume, but a slightly

different position of the purple seed might exclude some part.

Figure 4.8: Representation of length, width and heigth in a 3D volume as utilised

in this approach.

point is accomplished. Details of how trachea segmentation is performed are

reported in Section 4.5.3.3. Once this first segmentation is completed, the second

step involves using the obtained trachea label to improve the cropping of the

trachea volume. To achieve this, the carina position is computed automatically,

by scanning from the fiducial position and moving slice by slice towards the carina
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(a) (b)

Figure 4.9: CT axial slice showing (a) the carina slice as found by the presented

approach and (b) seed points representation (red circles) of seed points as auto-

matically identified and placed on the main bronchi.

along the axial slices. The algorithm recognises the carina as the point in which

the segmented label splits into two different parts, representing the two main

bronchi. As an example, Figure 4.9(a) shows the carina position as found on an

axial CT image after the first trachea segmentation. The algorithm’s third step

uses the carina position to compute the maximum height of the trachea, and the

volume is cropped accordingly. Simultaneously with this third step, the cropping

size is also updated in length, to take into account possible bends in the trachea.

This is achieved by moving slice by slice along the z axis and identifying points

in which the label touches the side borders of the previously cropped volume,

in which case the cropping is extended in length. The fourth step involves a

second and final trachea segmentation of the new cropped volume. Once the

trachea label is finalised, the carina position within the trachea label is used to

automatically define the seed points for the segmentation of the right and left

lungs.

4.5.3.3 Trachea Segmentation

Figure 4.10 shows the block diagram of the implementation of trachea segmen-

tation. The seed point placed by the user is exploited as starting point for the

segmentation of the trachea. Starting from a value of −900 HU, the threshold is

iteratively and automatically increased until it either reaches the maximum value
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Figure 4.10: Block diagram of the implementation of trachea segmentation. T

stands for threshold, CL and PCL for coronal length and previous coronal length,

while AW and PAW are used for axial width and previous axial width. Finally, V

stands for volume.
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of −800 HU or leakage occurs as outlined presently. At the initial threshold the

volume is segmented and the width of the obtained trachea’s label is computed.

To this end, a small region of the axial section of the label around the seed point’s

position is extracted and the width is calculated. Simultaneously, a small set of

coronal images of the label is also extracted and its length computed. As a check

on the subsequent automatic segmentation of the trachea, these computed values

are compared with the entire cropped volume of the trachea. If the label has a

coronal length of less than two thirds of the whole cropped volume and an axial

width less than one quarter of the whole cropped volume, it is assumed that no

leakage has occurred and the two label sizes are stored. Otherwise, the threshold

is repeatedly decreased in increments of 20 HU until leakage is no longer evident.

On the other hand, if −900 HU is not high enough as an initial threshold to

obtain trachea segmentation, voxels around the seed point are first evaluated as

new possible starting points, and if none of the 26 touching voxels gives a seg-

mentation, the threshold is increased in increments of 50 HU and the previously

described process repeated.

At this point, the threshold is iteratively increased to check whether it is

possible to obtain improved segmentation (i.e., segmentation of more peripheral

branches without leakage appearance). Again, if no leakage has occurred in the

previous step, 50 HU is added to the threshold. If leakage has previously occurred

10 HU is added. Hence, a new segmentation is computed and the old and new

labels are subtracted. In this way, differences referring to how much trachea label

has been added using the new threshold can be calculated. Width and length of

these differences are computed and compared with the previously stored values.

This process is repeated until either the size of the added labels is larger than

the memorized sizes or the height of the label is less than one third of the height

of the trachea volume. If the previous conditions on size of the added label are

not satisfied, leakage is likely to occur. In this case, the threshold is repeatedly

decreased in increments of 10 HU until a label with no leakage is obtained.

4.5.3.4 Right and Left Airways Segmentation

The right and left lungs have to be separated and segmented. In order to do so,

the algorithm uses half of the trachea label obtained to “mask” the trachea in
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the original CT volume. In particular, the half trachea distal from the lung to

be segmented is considered. In the original image the intensity value of all the

“masked” voxels inside the trachea is set to 0 HU, which is a value much higher

than the threshold that will be used for the airway segmentation. In this way, it is

not necessary to crop the volume again and only one lung at the time is iteratively

segmented. Figure 4.11 illustrates how the left half of the trachea is “masked” to

segment the right lung. The yellow part represents voxels that have been given

Figure 4.11: Example of “masking” as it appears on a sagittal slice. Half trachea

label is used to turn values where the half trachea overlays to 0 HU (yellow voxels).

In the picture, the left part of the trachea is masked, to allow segmentation of the

right lung. A closing process is also used to make sure that no spreading within

the left lung is obtained.

a 0 HU value. As shown in the picture, a method to “close” the opposite main

bronchus has also been implemented, so that segmentation of one lung does not

spread within the other one. Using half of the trachea label to mask the trachea

at this stage facilitates segmentation of animal lungs, such as the pig lung, where

a tracheal branch may be present above the carina. Obviously, this branch is

not segmented during the trachea segmentation, due to the volume cropping, as

this would lead to an incomplete segmentation. With the proposed method, the

segmentation is spread into part of the trachea itself allowing the segmentation

of any possible branch above the carina position. As the starting points to be

used for segmentation, two seed points are automatically defined on the axial slice

containing the carina. The seed points represent the respective centre points of

the two parts into which the label splits, as shown in Figure 4.9(b). As was the

case for the trachea, segmentation of the right and left lungs uses a 3D region
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growing method with an iteratively increased threshold. However, in this case

leakage occurrence is controlled by two approaches, based on Tschirren et al [189].

Firstly, any sudden increase in the number of voxels between segmentations with

two consecutive thresholds is considered leakage. Secondly, a maximum number

of allowed voxels for the segmentation is also defined. In order to define when

the increase between two successive segmentation steps is large enough to lead to

leakage, the parameter g of (4.1) is defined.

g =
Nvox

Nvox−1
(4.1)

In 4.1, Nvox is the number of voxel of the actual segmentation, while Nvox−1

represents the number of segmented pixel of the previous segmentation. g is

computed and compared to gmax = 1.6, as in [189]. A value of Nvox max = 500,000

for the maximum number of voxels allowed in the segmentation is proposed in

[189], while in other works maximum volumes Ve = 50,000 mm3 [178] and Ve =

75,000 mm3 [182] were defined.

Since only part of the lung is considered, a novel idea is that Nvox max be re-

lated to the number of voxels of the trachea. In particular, a specific percentage

of the number of trachea voxels is used, based on the size of the trachea. This per-

centage can be optimised according to the different characteristics of the dataset

under inspection. Table 4.2 summarizes the optimised percentages depending on

the CT characteristics, such as reconstruction kernel and slice thickness. These

values have been empirically calculated from the datasets available to date. Also,

a general percentage for not yet inspected datasets is provided. In this sense,

since datasets acquired with all the possible combination of parameters were not

available, percentages have been optimised for the types of datasets available.

However, since the system is open-source, parameters may be continuously up-

dated and optimised when new datasets are considered.

As showed in the results section, the chosen percentage values are quite ap-

propriate to achieve a good trade-off between leakage and accurate segmentation

of branches and provide a reliable method across different CT scan images ac-

quired with various parameters. Finally, once the right and left lungs’ labels are

obtained, they are merged with the trachea’s segmentation to create a unique in-

separable airway label. In some cases, the label might present some disconnected
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# of Slices (S) # of Voxels (N) Percentage

STD, B20f, B30f, B, C, FC10, FC12

S ≤ 300

N > 5× 104 0.5

2× 104 < N ≤ 5× 104 0.75

N ≤ 2× 104 0.9

300 < S ≤ 400

N > 105 0.5

8.5× 104 < N ≤ 105 0.75

N ≤ 8.5× 104 0.9

S > 400

N > 17× 104 0.5

14× 104 < N ≤ 17× 104 0.75

N ≤ 14× 104 0.9

LUNG, B50f, FC50, FC52

S ≤ 300

N > 8.5× 104 0.2

7.5× 104 < N ≤ 8.5× 104 0.3

3.5× 104 < N ≤ 7.5× 104 0.35

104 < N ≤ 3.5× 104 0.5

N ≤ 104 0.8

300 < S ≤ 400

N > 12× 104 0.2

105 < N ≤ 12× 104 0.35

8.5× 104 < N ≤ 105 0.5

N ≤ 8.5× 104 0.7

S > 400

N > 14× 104 0.2

11.5× 104 < N ≤ 14× 104 0.35

8× 104 < N ≤ 11.5× 104 0.5

N ≤ 8× 104 0.75

B60f, B70f, B70s, D

S ≤ 300

N > 9× 104 0.35

6× 104 < N ≤ 9× 104 0.5

3× 104 < N ≤ 6× 104 0.6

N ≤ 3× 104 0.8

S > 300

N > 12× 104 0.25

8× 104 < N ≤ 12× 104 0.4

5× 104 < N ≤ 8× 104 0.6

N ≤ 5× 104 0.8

Any other Kernel

S ≤ 300

N > 9× 104 0.35

4× 104 < N ≤ 9× 104 0.55

N ≤ 4× 104 0.8

S > 300

N > 13× 104 0.3

7× 104 < N ≤ 13× 104 0.55

N ≤ 7× 104 0.8

Table 4.2: Percentage of trachea voxels used for different reconstruction kernels

and slice thicknesses. S is used to take into account the different slice thicknesses.

(a) Kernels: GE Medical System Standard, Siemens B20f and B30f, Philips B and

C, Toshiba FC10 and FC12; (b) Kernels: GE Medical System Lung, Siemens B50f,

Toshiba FC50 and FC52; (c) Kernels: Siemens B60f, B70f and B70s, and Philips

D; (d) Any other kernel.
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parts. Therefore, as a final step a morphological closing and a hole filling step

are used to connect these potentially disconnected parts.

4.5.3.5 Binary Image Closing

The airways label obtained from the previous steps can be considered as a binary

image in which all the voxels identified as airways have a non-zero value and

all the remaining have a value of zero. This binary image may contain some

imperfections, such as small holes due to noise in the CT image (see Figure 4.12).

For this reason, a morphological image processing step may help to improve

Figure 4.12: Example of small holes on the aiwarys label due to noise. The label

(pink) is showed overlaid on an axial CT image zoomed on the area of interest.

the quality of the image. Morphological image processing is a technique for

the analysis and processing of images, which is mostly applied to binary images

[192]. It consists of a collection of non-linear operations related to shape, or

morphology, of the features in an image. In particular, these techniques utilise a

small template called a structuring element, or kernel, which is “compared” with

all the neighbouring voxels to the voxel under investigation in the image using a

set operator (intersection, union, inclusion, complement). The voxels that pass

the test are assigned a non-zero value. The basic operators of morphological

image processing are dilation and erosion and all the other operators such as

opening and closing, are a combination of these two operators. Dilation usually
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uses the structuring element to gradually enlarge the boundaries of regions of

non-zero voxels. Therefore, the area of the region is expanded, and holes within

that region become smaller. Conversely, erosion is usually used to shrink the

boundaries of regions with non-zero values. This way, the area of the region is

reduced and holes become larger. Closing is another important morphological

operator and, like its dual operator, opening, it is derived by a combination of

erosion and dilation. In particular, a closing operation consists in a dilation

followed by an erosion using the same structuring element. The effect of this

operator is to remove small (i.e., smaller than the structuring element) holes and

tube like structures in the interior or at the boundaries of the image. Figure

4.13 represents the scheme of a closing operation. Closing is similar in some

way to dilation, as it tends to enlarge a region and reduce its holes. In order

to keep the original boundary shape, the structuring element has to be “small

enough”, affecting at the same time the reduction of the holes. For this reason, a

structuring element with a circular shape and 11× 11× 11 pixels is used in this

work. However, to further reduce possible holes in the binary image, the closing

operation is followed by a voting fill hole filter.

(a) (b)

Figure 4.13: Morphological closing scheme. (a) A region with small holes (white

parts inside the red region). (b) After the closing operation the red region has

grown and the holes become smaller.
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4.5.3.6 Binary Voting Fill Hole Filter

This filter aims at filling medium size holes and cavities (tens of voxels) inside the

boundary of a binary image applying a voting operation. A squared structuring

element is used to probe the image and determine if a voxel should be included in

the non-zero region. The filter runs iteratively until no voxels are changed between

two iterations or until a maximum number of iteration is reached. In principle,

the number of iterations should be chosen based on the size of the holes to be

filled in. The larger the holes expected, the higher the number iterations should

be in order to fill in the full hole. In the proposed method, a neighbourhood size

of 3×3×3 pixels was chosen, with 10 as maximum number of possible iterations.

4.5.4 Algorithm Performance

4.5.4.1 Overview

In this section, the method used to test algorithm performance is described. The

datasets that have been used are first presented. Then, the methods used to

evaluate the performance of the algorithm are described. Finally, the results

obtained from the testing are shown and the conclusions are summarised.

4.5.4.2 CT Datasets

Many reported airway segmentation algorithms have been tested only on specific

types of images, making evaluation of reliability across different platforms prob-

lematic. Parameters such as slice thickness, reconstruction kernel and radiation

dose greatly affect the quality of the image, and thus the quality of segmentation

may vary hugely. For these reasons, the algorithm was tested on twenty four hu-

man cases and several breathing pig lung CT scans across multiple scan parame-

ters; slice thickness, convolution kernel, and radiation dose have been considered.

For the human cases, the twenty test cases from the EXACT’09 dataset [171]

were used and the proposed method was compared with the other teams who

participated to the challenge. From the twenty test cases of the challenge, six

cases belonging to the same subject, reconstructed using different parameters,

were then extrapolated. The algorithm was also tested on four local clinical cases
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belonging to different subjects but reconstructed with the same convolution ker-

nel.

Since twenty four cases are not sufficient to determine true reliability of the

algorithm, several CT scans of a phantom breathing pig lung were also used.

These scans were all acquired from the same model varying convolution kernel,

slice thickness, and radiation dose for each scan. Images from the pig lung model

were acquired during simulated inspiration, expiration and half inflation. Forty-

eight pig lung scans were obtained, in addition to clinical data. This is still

not a sufficient number of scans, as thousands of cases would be needed, but it

can be considered a sufficiently high number to assess the algorithm, especially

considering the difficulty in comparing different methods.

Human Cases

Four clinical chest CT scans were acquired at CUH using a GE Medical System

scanner from four different subjects. The first two scans were acquired using a

Discovery CT750 HD CT scanner, case 3 was scanned using a GE LightSpeed

VCT scan, whereas the CT model for case 4 was the GE Discovery STE. The

four patient scans were all provided by the Cork University Hospital (CUH)

in compliance with an approved ethical protocol by the Cork Research Ethics

Commitee. They all belonged to patients with suspicious lung cancer and were

selected from the regional multidisciplinary thoracic oncology meeting. Datasets

were generated using a standard scanning protocol for lung cancer patients, i.e.,

asking the patient to hold a full-inspiration breath for less than 20 s to reduce

motion artifacts. A voltage of 120 kVp was used for all cases, while the tube

current varied from 60 to 200 mA as determined by automatic tube current

modulation. Slice thickness was 1.25 mm for all the datasets. The final 3D images

were all reconstructed using a lung convolution kernel and an ASIR reconstruction

technique. Table 4.3 reports acquisition parameters for the CUH cases.

In order to evaluate the algorithm on a larger database, the EXACT’09 challenge

[171] was considered. The datasets are publicly available and Table 4.4 presents

acquisition parameters of the twenty test cases. Numbers of the cases represent

the indices from the EXACT’09 project. The presented algorithm does not require

any training, so the first twenty cases of the database were not used. Since the
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Manufacturer Model Name Slice Thickness (mm) Kernel Tube Voltage (kVp) Tube Current (mA) I\E

CUH 1 GE System Discovery CT750 HD 1.25 LUNG 120 65 I

CUH 2 GE System Discovery CT750 HD 1.25 LUNG 120 125 I

CUH 3 GE System LightSpeed VTC 1.25 LUNG 120 60 I

CUH 4 GE System Discovery STE 1.25 LUNG 120 170 I

Table 4.3: Acquisition parameters of the scans provided by CUH. I/E indicates

full-inspiration (I) or full-expiration (E) breath-hold.

Manufacturer Model Name Slice Thickness (mm) Kernel Tube Voltage (kVp) Tube Current(mA) I\E

CASE 21 Siemens Sensation 64 0.6 B50f 120 200.0 E

CASE 22∗ Siemens Sensation 64 0.6 B50f 120 200.0 I

CASE 23 Siemens Sensation 64 0.75 B50f 120 200.0 I

CASE 24 Toshiba Aquilion 1.0 FC12 120 10.0 I

CASE 25∗ Toshiba Aquilion 1.0 FC10 120 150.0 I

CASE 26 Toshiba Aquilion 1.0 FC12 120 10.0 I

CASE 27∗ Toshiba Aquilion 1.0 FC10 120 150.0 I

CASE 28 Siemens Volume Zoom 1.25 B30f 120 348.0 I

CASE 29∗ Siemens Volume Zoom 1.25 B50f 120 348.0 I

CASE 30 Philips Mx8000 IDT 16 1.0 D 140 120.0 I

CASE 31 Philips Mx8000 IDT 16 1.0 D 140 120.0 I

CASE 32 Philips Mx8000 IDT 16 1.0 D 140 120.0 I

CASE 33 Siemens Sensation 16 1.0 B60f 120 103.6 I

CASE 34 Siemens Sensation 16 1.0 B60f 120 321.0 I

CASE 35 GE LightSpeed 16 0.625 Standard 120 411.5 I

CASE 36 Philips Brilliance 16P 1.0 C 120 206.0 I

CASE 37 Philips Brilliance 16P 1.0 B 140 64.0 I

CASE 38∗ Philips Brilliance 16P 1.0 C 120 51.0 E

CASE 39 Siemens Sensation 16 1.0 B70f 100 336.7 I

CASE 40 Siemens Sensation 16 1.0 B70s 120 90.6 I

Table 4.4: Acquisition parameters of the twenty cases from the EXACT’09

dataset. I/E indicates full-inspiration (I) or full-expiration (E) breath-hold. As-

terisk ∗ indicates that a scan was acquired from the same subject as the previous

one.

goal of the work was also to compare clinical images reconstructed with different

kernels but acquired with other CT platforms, six scans from the twenty cases

of the EXACT’09 project [171] were further extrapolated and considered. In

particular, three scans belonging to the same subject and acquired with the same

scanner, but using different parameters, were chosen; cases 24 and 25 scanned

with Toshiba Aquilion; cases 28 and 29 acquired using a Siemens Volume Zoom

scanner; cases 37 and 38 that were obtained using a Philips Brilliance 16P scan.

Breathing Pig Lung Model

To further investigate reliability of the algorithm, a breathing pig lung model was
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(a) (b)

Figure 4.14: Breathing pig lung model. (a) Scheme representing the breathing

pig lung model. (b) Plasticised pig lung when fully inflated [30].

developed. To this end, a BioQuest Inflatable Lung kit (Nasco, Fort Atkinson,

WI, USA) was used as a phantom for CT image acquisition (see Figure 4.14a).

This kit consists of plasticised pig lungs (Figure 4.14b) which can be inflated to

various levels as required. The lungs are placed in a vacuum chamber, with the

trachea connected to atmospheric pressure. When the chamber is evacuated, the

pressure differential between the outside and the inside of the lungs causes them

to inflate. Venting the chamber to the atmosphere equalises the pressure which

causes the lungs to collapse to an uninflated equilibrium form. The lungs were

made to inflate and deflate in a programmable way to simulate standard breathing

patterns. An Arduino Uno microcontroller was used to enable a set of solenoid

valves (AD612 by CS Fluid Power) to control the lung inflation level. One valve

connects to the vacuum pump, while another is used for venting the chamber.

To set the breathing cycle, two dials are connected to the microcontroller. One

dial controls the overall period of the cycle while a second one sets the inflation

time as a percentage of the period. This simple low cost solution proved very

effective in simulating the human breathing pattern. Using this model, 48 CT

scans of the lungs were generated during inspiration, expiration and half inflation

phases. For both inspiration and expiration eight different protocols were used

to evaluate the effect on image quality. The scanner used to get computerized

tomographic images was the GE Medical System Discovery CT750 HD with an
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ASIR reconstruction technique. The reconstruction kernel was varied between

lung and standard kernels, and images were acquired at four different of slice

thicknesses ranging from 5 to 0.625 mm. Three different levels of tube current

and radiation exposure were used; a high radiation dose ranging from 60 to 160

mA, a medium dose of 40 mA and a low dose of 10 mA. Finally, an image at half

inflation was acquired with a 0.625 mm slice thickness, high radiation dose and

a standard reconstruction kernel to investigate the effect of lung inflation.

4.5.4.3 Evaluation Methods

To evaluate the performance of the algorithm, the airway labels from all the

datasets described were generated. To this end, one seed point was manually

placed in the trachea of each case exploiting the 3D Slicer functionalities. For the

pig lung model images, the seed point has been carefully placed between the carina

and the bronchus sus which leaves the trachea before the carina. The method

has then been invoked, and the labels generated using the approach outline in

Sections 4.5.3.3 and 4.5.3.4. The segmentation process took an average of 23 min

to complete on a 64-bit, i7-3770, 8 GB computer.

From the generated labels, 3D models of the airways have been created lever-

aging the 3D Slicer model maker module, with parameters optimised for good

visual results. No pre-filtering was used before the segmentation. Only in one

case (for a pig breathing model that was scanned during inflation, with a 1.25

mm slice thickness, high radiation dose, and reconstructed with a lung kernel)

a blur gaussian filtering was necessary to partially remove noise from the image

and avoid leakage “explosion” during the segmentation.

For the evaluation of the EXACT’09 cases, the segmentation results obtained

using the presented method were sent to the organizers who used the constructed

reference segmentation to calculate results. The resultant performance measures

are:

• Branch Count: the number of branches that were detected correctly, as

compared to the gold standard described in Section 4.3.2.
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• Percentage of Branches Detected: the fraction of branches that are correctly

detected, with respect to the total number of branches present in the gold

standard.

• Tree Length: the sum of the lengths of the centrelines of all correctly de-

tected branches.

• Percentage of Tree Length Detected: the fraction of tree length in the gold

standard that was correctly detected.

• Leakage Count: the number of disconnected (considering the 26 neigh-

bours voxels) sources where leakage occurs. A leakage source is defined

as “correct” voxels (relatively to the gold standard) that have at least one

non-“correct” voxel within its 26-neighbours.

• Leakage Volume: the total volume of the regions that are not marked as

“correct” in the gold standard

• False Positive Rate: the fraction of the total segmented volume that is not

marked as “correct” compared to the gold standard.

For the remaining CUH clinical cases and the pig lung model cases, branch

count, branch length, airway volume and leakage score were calculated and evalu-

ated. For the branch count, correctly segmented branches were counted by visual

inspection. The centreline of the airway label was then extracted exploiting the

classes provided by the Vascular Modeling Toolkit (VMTK) [193] and this was

used to compute the length of the branches. The sum of all branch lengths of a

case was considered to compute the final branch length of that case. Airway vol-

ume was computed considering the number of label voxels combined with voxel

geometry. Finally, the most important parameter, the leakage score, was used

to determine the quality of the segmentation for each image. To this end, a

new evaluation system for leakage detection was implemented. This method is

detailed in Section 4.5.4.4.

For the pig lung breathing model, the correlation between segmentation met-

rics and CT acquisition parameters was also investigated. This analysis was

possible only for the breathing pig lung model, as the clinical case data were too
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diverse for meaningful comparison. This analysis helped us further prove relia-

bility of the algorithm across varying parameters. In particular, dose and slice

thickness were included. The convolution kernel variation was not included in

correlation outputs, as only two values are considered (i.e., lung and standard)

and correlation was always maximum.

4.5.4.4 Leakage Evaluation Method

Leakage presence is the most important parameter to be considered once the

airway is segmented. This often turns out to be a complicated task, as it may be

difficult to distinguish small leakage from a correctly segmented branch. For this

reason, a novel leakage evaluation system was developed which allowed expert

clinicians to quantify leakage in airway segmentation results. To the best of

our knowledge, an evaluation method of this type has never been considered

before. Four expert clinicians from the field of respiratory medicine or radiology

were instructed on what leakage is. This way, clinicians’ knowledge of airway’s

anatomy could be exploited and a specialized assessment on leakage presence was

obtained. The clinicians were then asked to analyse the 3-D reconstructed model

of the airway as well as the label placed on the chest CT image and to score

the segmentation ranging from 1 to 5, where 5 was a segmentation presenting

significant leakage and 1 was an image with no leakage. Figure 4.15 shows the

scoring scheme presented to the clinicians in order to score the images. Average

scores were then used to evaluate the segmentation.

4.5.5 Results

In this section, the results obtained on both the clinical cases and on the breathing

pig lung model are described. As an example of obtained results, Figures 4.16(a)-

(f) show the 3D reconstruction obtained for six clinical cases. On the other hand,

Figures 4.16(g)-(l) represent results obtained for six pig cases acquired during

inspiration, with a 0.625 mm slice thickness, and varying the radiation dose.

Cases shown in Figures 4.16(g)-(i) were reconstructed using a lung convolution

kernel, whereas cases presented in Figures 4.16(j)-(l) were reconstructed with a

standard convolution kernel.
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Figure 4.15: Leakage scoring scheme as presented to clinical experts. A score of

5 is given to an image with significant leakage present, while 1 represents an image

with no leakage.

4.5.5.1 Results on Clinical Cases

In Table 4.5 the optimal thresholds identified by the algorithm for the human

cases of Tables 4.3 (CUH) and 4.4 (EXACT09) are reported. As shown in the

table, in most cases, a different threshold is chosen for the segmentation of the two

airways. Therefore, having a different threshold for the trachea, the right and left

lungs helps to have a better segmentation in one lung, which will not be affected

by the presence of leakage in the other. Table 4.6 shows the results obtained from

the EXACT’09 challenge. Considering the “mean” row of the table, as compared

to the other team’s mean results reported in

Table 4.7, it is evident that the method is comparable to other methods in

terms of branch count and tree length, and it is reasonably placed in terms of

leakage count and leakage volume as well as false positive rates. These results

are also shown in Figure 4.17. In choosing a threshold for the two lungs there is

a good trade-off between airway segmentation and leakage presence.

Table 4.8(a) reports the results obtained for the CUH datasets. In this case,

the goal was to evaluate the reliability of the developed software across different

human cases. For this reason, the most important metric to be considered is the

leakage scoring, since unlike the EXACT09 dataset, for the others parameters no
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.16: Representative 3D constructions of results obtained from (a-d) CUH

cases (acquired with 1.25 mm slice thickness), from (e,f) EXACT’09 cases 24 and 25

(1.0 mm slice thickness), and from (g-l) six pig lung breathing model cases acquired

using 0.625 mm slice thickness, during inspiration. (g-i) were reconstructed using

a lung convolution kernel, varying dose from high to low, respectively. (j-l) were

reconstructed with a standard convolution kernel, varying dose from high to low,

respectively.
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(a)

(b)

(c)

Figure 4.17: Results for the EXACT’09 challenge. In airway segmentation, hav-

ing a good trade-off between tree length and leakage volume is essential.
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Trachea Right Lung Left Lung

CUH 1 -800 -800 -824

CUH 2 -930 -1000 -1024

CUH 3 -800 -1096 -1000

CUH 4 -800 -995 -976

CASE 21 -800 -840 -820

CASE 22∗ -800 -1008 -1000

CASE 23 -820 -1003 -996

CASE 24 -820 -980 -974

CASE 25∗ -800 -955 -972

CASE 26 -860 -925 -846

CASE 27∗ -800 -800 -800

CASE 28 -800 -866 -835

CASE 29∗ -800 -912 -930

CASE 30 -800 -825 -820

CASE 31 -800 -958 -1000

CASE 32 -800 -997 -1000

CASE 33 -800 -953 -940

CASE 34 -800 -1000 -980

CASE 35 -800 -918 -907

CASE 36 -800 -851 -825

CASE 37 -800 -889 -894

CASE 38∗ -800 -800 -800

CASE 39 -800 -950 -959

CASE 40 -800 -1009 -1005

Table 4.5: Optimal thresholds (in HU) identified by the algorithm for airway

segmentation of human cases. Thresholds are chosen independently for trachea,

right and left lungs. Asterisk ∗ indicates that a scan was acquired from the same

subject as the previous one.

gold standard is available. As shown in the table, the average score for all cases

is close to 3, meaning that the clinicians considered the segmentation and the

3D reconstruction acceptable in terms of leakage presence. As a further test, the

effect of changing parameters during scan acquisition on airway segmentation was

assessed on six EXACT’09 cases. Table 4.8(b) shows the results for the selected

cases. Results are in the same format as those reported in Table 4.6 with an

added column representing the leakage score as evaluated by the four clinicians.

For the case of leakage appearance, the segmentation does not seem to be par-

ticularly affected by varying parameters. However, comparing cases 28 and 29,
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Branch Branch Tree Tree length Leakage Leakage False

Count Detected Length Detected Count Volume Positive

(%) (cm) (%) (mm3) Rate (%)

CASE21 98 49.2 51.1 46.2 1 0.2 <0.01

CASE22 141 36.4 98.6 29.8 13 77.7 0.60

CASE23 126 44.4 90.5 34.8 12 119.8 1.02

CASE24 72 38.7 57.0 35.1 23 245.9 1.82

CASE25 108 46.2 82.7 32.8 5 29.2 0.20

CASE26 32 40.0 21.6 32.8 2 226.3 7.53

CASE27 41 40.6 30.1 37.1 0 0.0 0.00

CASE28 69 56.1 47.7 43.6 0 0.0 0.00

CASE29 93 50.5 62.2 45.0 1 9.0 0.12

CASE30 79 40.5 57.0 37.3 0 0.0 0.00

CASE31 99 46.3 70.3 40.0 2 73.9 0.74

CASE32 89 38.2 73.2 33.6 2 29.9 0.26

CASE33 85 50.6 62.1 42.2 0 0.0 0.00

CASE34 264 57.6 195.7 54.7 16 89.5 0.41

CASE35 146 42.4 108.9 35.2 1 23.7 0.19

CASE36 121 33.2 122.8 29.8 2 2.6 0.03

CASE37 64 34.6 54.4 30.6 1 2.7 0.03

CASE38 37 37.8 27.3 41.1 3 4.0 0.08

CASE39 113 21.7 97.6 23.8 5 92.0 1.01

CASE40 102 26.2 91.2 23.6 5 21.5 0.17

Mean 99.0 41.6 75.1 36.5 4.7 52.4 0.71

Std. dev. 50.3 9.0 39.4 7.6 6.3 73.3 1.67

Min 32 21.7 21.6 23.6 0 0.0 0.00

1st quartile 69 36.4 51.1 30.6 1 0.2 <0.01

Median 96 40.6 66.2 35.1 2 22.6 0.18

3rd quartile 126 50.5 98.6 43.6 12 92.0 1.01

Max 264 57.6 195.7 54.7 23 245.9 7.53

Table 4.6: Results obtained from the twenty test cases of the EXACT’09 project.
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Branch Branch Tree Tree length Leakage Leakage False

Count Detected Length Detected Count Volume Positive

(%) (cm) (%) (mm3) Rate (%)

Team 1 91.1 43.5 64.6 36.4 2.5 152.3 1.27

Team 2 157.8 62.8 122.4 55.9 12.0 563.5 1.96

Team 3 74.2 32.1 51.9 26.9 4.2 430.4 3.63

Team 4 186.8 76.5 158.7 73.3 35.5 5138.2 15.56

Team 5 150.4 59.8 118.4 54 1.9 18.2 0.11

Team 6 77.5 36.7 54.4 31.3 2.3 116.3 0.92

Team 7 146.8 57.9 125.2 55.2 6.5 576.6 2.44

Team 8 71.5 30.9 52 26.9 0.9 126.8 1.75

Team 9 139 56 100.6 47.1 13.5 368.9 1.58

Team 10 79.3 32.4 57.8 28.1 0.4 14.3 0.11

Team 11 93.5 41.7 65.7 34.5 1.9 39.2 0.41

Team 12 130.1 53.8 95.8 46.6 5.6 559 2.47

Team 13 152.1 63 122.4 58.4 5 372.4 1.44

Team 14 161.4 67.2 115.4 57 44.1 1873.4 7.27

Team 15 148.7 63.1 119.2 58.9 10.4 158.8 1.19

UCC 99.0 41.6 75.1 36.5 4.7 52.4 0.71

Table 4.7: Mean results of the teams taking part in the EXACT’09 challenge.

The last row reports mean results obtained with the described approach.
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Volume Branch Branch Leakage

(mm3) Count Length(mm) Score

CUH 1 41270.59 84 1369.69 3±1.15

CUH 2 34772.03 106 1505.25 2.50±0.58

CUH 3 41369.35 96 1610.39 3.25±0.50

CUH 4 58288.49 88 1425.97 3.25±0.50

(a)

Branch Branch Tree Tree length Leakage Leakage False Leakage

Count Detected Length Detected Count Volume Positive Score

(%) (cm) (%) (mm3) Rate (%)

CASE 24 72 38.7 57.0 35.1 23 245.9 1.82 2.75±0.50

CASE 25∗ 108 46.2 82.7 32.8 5 29.2 0.20 2.50±0.58

CASE 28 69 56.1 47.7 43.6 0 0.0 0.0 3.25±0.50

CASE 29∗ 93 50.5 62.2 45.0 1 9.0 0.12 3.50±0.58

CASE 37 64 34.6 54.4 30.6 1 2.7 0.03 2.50±0.58

CASE 38∗ 37 37.8 27.3 41.1 3 4.0 0.08 3.00±0.00

(b)

Table 4.8: Results obtained for human cases. (a) Cases provided by CUH. (b)

Cases selected from the EXACT’09 cases. Asterisk ∗ indicates that a scan was

acquired from the same subject as the previous ones.

that where acquired changing only the convolution kernel, the resultant airway

volume, branch count, and branch length were slightly different between the two

cases. In particular, the use of a sharper B50f kernel gives better segmentation

than using a smoother B30f kernel. In terms of leakage, both cases were consid-

ered quite acceptable, although case 28 scored slightly better. This result was

as expected, as the use of different kernels affects the quality of the image. In

particular, a sharper kernel would preserve higher spatial frequencies at the ex-

pense of greater image noise, whereas a smoother kernel would decrease noise and

spatial resolution, at the same time reducing the higher frequency contribution.

Therefore, a sharper kernel allows for more peripheral aiway segmentation, at

the cost of more leakage. In fact, the size of peripheral branches decreases going

deeper into the lung, leading to a blurring effect that makes peripheral branches

less recognizable from the lung parenchyma.

EXACT’09 cases 24 and 25 were also reconstructed using two different kernels.

In particular, a smoother FC10 kernel was used for case 25. Therefore, as for

the previous comparison, a better segmentation may be expected for case 24.

117



4. AIRWAY SEGMENTATION

However, as shown in Table 4.4, case 25 was acquired using a higher radiation

dose. This affects the quality of the image more than kernel variation, leading

to far better segmentation in terms of airway volume, branch count, and branch

length. Furthermore, the leakage score was also slightly lower for case 25. In

this case, this may be due to improved quality of the image which at the same

time improved the quality of peripheral branches. Note that for cases 26 and

27 (acquired and reconstructed with the same parameters as cases 24 and 25,

respectively) a similar situation occurs, confirming the results of the previous 2

cases. Since their reconstruction parameters were the same as that for cases 24

and 25, these cases were not reported in the table.

Analysis of segmentation for cases 37 and 38 is slightly different. Here, case 37

was scanned using a smoother kernel, but with a higher radiation dose and, more

importantly, a full-inspiration breath-hold, while case 38 was acquired during

a full-expiration breath-hold. In this latter case, a full-inspiration breath-hold

guarantees that more airway branches will be visible on the CT image, since

branches will be more expanded and the air inside them will help to increase the

contrast with respect to lung tissue. For this reason, far better results are obtained

for case 37 compared to case 38. This may also explain the difference in leakage

score. It should be noted that the CT datasets from EXACT’09 were only used

for comparative analysis of segmentation parameters, rather than comparison

with any gold-standard.

In general, results obtained on human datasets are promising and show that

the proposed algorithm with the optimised parameters is quite stable across vary-

ing scanning parameters. However, to avoid leakage, in some cases segmentation

may stop too early, thus preventing possible segmentation of peripheral branches.

In this sense, a new method for segmentation of peripheral branches to be inte-

grated with the current algorithm may be of great benefit and should be consid-

ered in the future.

4.5.5.2 Results on Breathing Pig Lung Model

The breathing pig lung model was used to evaluate the effect on airway segmen-

tation of:
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Kernel
Volume (mm3) Branch Count Branch Length (mm) Leakage Score

Inspiration Expiration Inspiration Expiration Inspiration Expiration Inspiration Expiration

Standard 53025.54±213.45 41213.01±118.34 91.89±21.12 52.22±17.23 2240.55±155.90 1512.20±127.78 1.89±0.28 2.67±0.35

Lung 54374.74±251.21 44516.82±210.53 94.73±35.78 89.00±28.01 2320.74±175.10 2008.65±201.61 2.04±0.50 2.69±0.32

Table 4.9: Results obtained on the breathing pig lung model for kernel variation

in inspiration and expiration.

Parameters Results

Slice Thickness (mm) Dose Kernel Volume (mm3) Branch Count Branch Length (mm) Leakage Score

0.625 H STD 48171.31 87 2186.95 2

Table 4.10: Parameters and results for pig lung breathing model during half-

inflation.

• Slice thickness

• Reconstruction kernel

• Radiation dose

• Level of inflation

In order to evaluate the half-inflation case, a slice thickness of 0.625 mm, high

radiation dose and a standard kernel have been chosen. Figure 4.18 reports the

average results obtained across slice thickness and radiation dose for inspiration

and expiration phases. Results are obtained considering a specific slice thickness

or dose and computing the average value among the other parameters. As an

example, the value obtained for a slice thickness of 0.625 mm is given by the

average of the results obtained varying dose and kernel for that thickness.

Table 4.9 shows results obtained varying the convolution kernel (computing

the average values among dose and slice thickness), whereas in Table 4.10, pa-

rameters and results for the half-inflation dataset are presented. Although airway

segmentation for images acquired during an inspiration phase shows improved

segmentation compared to that obtained on expiration datasets, in both cases

slice thickness is the parameter most affecting the segmentation. In fact, as

shown in Figures 4.18(a)-(c), airway volume, branch count and branch length all

increase when thickness is reduced. This result is expected, as less fine details
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.18: Results for the breathing pig lung model during inspiration (blue)

and expiration (red), when varying (a-d) slice thickness (computing the average

values among dose and kernel) and (e-h) radiation dose (computing the average

values among slice thickness and kernel).
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are preserved with thicker slices. At the same time, during inspiration, leakage is

more likely when thickness is reduced (see Figure 4.18(d)). This is probably due

to the higher number of branches segmented, which makes automatic recognition

of leakage more complicated. However, it is worth pointing out that, in general,

the presence of leakage was insignificant during inspiration, as confirmed by the

fact that for a slice thickness of 0.625 mm, an average score around 2 was given

to the segmented image.

As for the expiration phase, leakage appeared more often than in the inspira-

tion dataset. This is due to the minor presence of air inside the lung, which makes

the airways less recognizable from the lung tissues on a CT image. Furthermore,

in Figure 4.18(d) leakage increases for a 2.5 mm slice thickness relative to the

5 mm slice thickness image. However, when thickness is further decreased, the

perception of the degree of leakage decreased as well. In this case, the result is

thought due to the combination of the thinner slices used (i.e., an image with a

better quality) resulting in a smaller number of branches segmented with respect

to the inspiration phase. In fact, better quality images enables the segmentation

of more branches. At the same time, the segmentation is stopped quite early in

this case, thus reducing the probability of leakage.

On the other hand, tube current and radiation dose does not particularly

affect airway segmentation, as shown in Figure 4.18(e)-(h). In this case, for

both inspiration and expiration, none of the considered metrics present significant

variation across the different doses. In particular, the segmented volume does

not seem to vary when changing the dose. Branch count and length are slightly

increased with increased dose, while leakage occurrence is quite stable.

Finally, variation of the convolution kernel used for the reconstruction only

slightly affects segmentation for the inspiration phase. As shown in Table 4.9,

a lung kernel allows segmentation of more peripheral branches, at the cost of

leakage. However, in general the algorithm can be considered quite stable with

kernel variation during an inspiration phase. On the expiration phase, a lung

kernel gives better results in terms of volume, branch count and branch length,

whereas the kernel choice does not seem to greatly affect the leakage probability.

Good results have also been obtained for half inflation images, as shown in Table
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4.10. In this case, airway segmentation was similar to that obtained for a full-

inspiration phase.

In general, the results obtained for the breathing pig lung model are quite

encouraging and show that the algorithm proposed here can be considered reliable

and stable across the different CT acquisition parameters. As expected, slice

thickness is the parameter that has the greatest effect on airway segmentation.

However, this is due to the fact that less details are recognizable on the image

when thickness is higher. In terms of leakage score, the images were largely

considered highly acceptable, indicating that the algorithm is able to segment

as many branches as possible among those recognizable on the CT scans, while

avoiding the leakage appearance.

4.5.5.3 Correlation Between Segmentation Metrics and CT Acquisi-

tion Parameters

To improve quantitative analysis of results, the considered metrics were correlated

with the different acquisition parameters. Radiation dose and slice thickness were

included, while the convolution kernel variation was not considered, as only two

values are considered, i.e., lung and standard, and correlation is always maximum

as is evident from Table 4.9. In fact, all the segmentation measures improved

(a) (b)

Figure 4.19: Correlation between image quality and metrics for the breathing pig

lung model during (a) inspiration and (b) expiration phases.

when a lung kernel was used, although the improvement was not significant.
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Figure 4.19(a) shows the correlation for the inspiration case, whereas in Figure

4.19(b) correlation during expiration is represented.

As seen in Figure 4.19(a), all the segmentation metrics strongly correlated

with slice thickness variation for inspiration, confirming the great effect of thick-

ness variation on airway segmentation. In particular, when slice thickness de-

creased, airway volume, branch count, branch length and leakage increased, giv-

ing a correlation value of approximately −1 (R ≤ −0.97 for all the metrics). This

result confirms those discussed above. Moreover, as already stated in Section

4.5.5.2, the segmented volume correlated poorly with radiation dose (R = 0.378)

during inspiration, while branch count and length improved in the same way with

dose (R = 0.99 and R = 0.92, respectively).

Leakage occurrence is only slightly correlated to dose variation (R = 0.723).

For the expiration case, again slice thickness strongly correlated with volume,

branch count, and branch length (R ≤ −0.97). However, there is no significant

correlation with leakage presence (R = −0.02).

In terms of dose variation, the metrics correlated similarly to the inspiration

case, with branch count and length following the change of dose more closely than

the segmented volume (R = 0.91 for branch count, R = 0.85 for branch length,

and R = 0.21 for volume). As was the case for the slice thickness, leakage was not

greatly dependent on the chosen radiation dose (R = −0.31). Therefore, these

results further confirm that the airway segmentation algorithm proposed here

can be considered stable across radiation dose and convolution kernel variations.

Again, the segmentation greatly depends on the chosen slice thickness, as this

substantially affects the quality of the image and the number of branches visible

on the CT scan.

Finally, scanning of a real pig lung has been accomplished during two animal

studies for testing the virtual bronchoscopy (see Chapter 6). For both studies,

0.625 mm slice thickness, 60 mA radiation dose, and standard convolution kernel

were used. This allowed for evaluation of reliability of the algorithm on real

images. Results are shown in Chapter 6.
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4.5.6 Discussion and Future Work

In this Chapter, the implementation of a new semi-automated algorithm for air-

way segmentation starting from chest CT images has been described. The algo-

rithm is freely available and can be downloaded and used within the 3D Slicer

environment. This is the first freely available system for airway segmentation and

will help new research teams compare their results with those presented here.

The optimization of parameters of the algorithm in order to have as general an

algorithm as possible was described. The method proved to be reliable and sta-

ble across varying CT parameters while comparable with other teams’ methods.

As expected, slice thickness is the parameter which most affects segmentation,

whereas variation in radiation dose and convolution kernel do not significantly

affect airway segmentation.

A CT scan acquired during a full-inspiration breath-hold guarantees a higher

contrast between airway and lung tissue, leading to better segmentation, as shown

in both clinical and pig phantom cases. The method is able to cease the segmen-

tation before significant leakage appears. Although not optimised to maximise

branch detection as other algorithms proposed in literature, the proposed method

allows the segmentation of one lung’s airways regardless of possible leakage ap-

pearance in the other. This feature appears novel and avoids early and unneces-

sary stoppage of the algorithm due to leakage. In previous works [178, 182, 189]

a pre-determined maximum number of voxels or a maximum volume were used

as stopping criteria for the segmentation. A maximum number of allowed voxels

can be determined case by case based on the number of voxels of the trachea seg-

mentation, giving more flexibility and adaptability to the algorithm. However, in

some cases the segmentation does not allow to segment deeper branches, as once

the region growing encounters the stopping criteria, the segmentation is not fur-

ther increased. Therefore, the method might benefit from the integration of the

region growing approach with other segmentation techniques, as in [183,194,195].

Future improvements may seek to use different thresholds for different volumes

of interest within the same lung. Also, performance of the algorithm should be

considered on more human CT images and on CT images belonging to patients

affected by different pulmonary diseases. However, being the first open-source
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airway-segmentation algorithm available, the proposed approach enables other

teams to have a frame of reference for comparison of segmentation results using

personal datasets. Alternatively, the algorithm could be considered as a starting

point for new airway segmentation algorithms that seek to segment narrow pe-

ripheral bronchial branches. The final goal is to obtain a method that is stable

across all available scanners and allow stable and reliable segmentation regardless

of the parameters chosen for scanning.

4.6 Summary

In this chapter, a new open-source method for semi-automatic airway segmenta-

tion starting from chest CT images was described. The primary results are as

follows:

• The algorithm is the first open-source minimal user interaction algorithm

of its kind and is as general as possible. It can be used for both human and

animal (porcine, canine) chest CT images.

• A method to split the volume into three different parts to be segmented

separately without affecting computation time has been introduced.

• A novel method to evaluate leakage presence on the segmented images has

been presented. This is quite simple and can be re-used by other teams to

compare results.

• The described algorithm is reliable across different clinical CT cases, pro-

viding results that are comparable with those of other teams.

• The algorithm is reliable also across different CT scanners and parameters,

as proven using a breathing pig lung model.

• The algorithm is easily modified and extended, making it a good starting

point for new airway segmentation methods.
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Chapter 5

Virtual Bronchoscopy∗

5.1 Overview

This chapter presents the implementation of a novel open-source method for vir-

tual bronchoschopy (VB) to be used in combination with the UCC electromag-

netic tracking system [8,16]. This VB method is available online as an extension

of 3D Slicer and is composed of different sub-systems that can be used indepen-

dently for other purposes. First, the relevant literature and background to VB

systems is introduced. Then, implementation of the algorithm and its sub-parts

is presented in detail. The tool consists of a Python module composed of six

different parts; three methods to be used as pre-processing steps prior to the

virtual navigation procedure, a step dedicated to real-time navigation, and two

final methods for operations that facilitate the navigation procedure. The main

aspects presented in this chapter are:

• Development of the first open-source method for VB navigation starting

from airway segmentation of CT images.

• Optimization of the algorithm for an EM tracking system developed at

UCC. However, the system can be coupled with any EM system for lung

∗This chapter is based on P. Nardelli, H. A Jaeger, C. O’Shea, K. A. Khan, M. P. Kennedy

and P. Cantillon-Murphy, “Open-source Virtual Bronchoscopy in Pre-clinical Validation Using

3D Slicer”, International Journal of Computer Assisted Radiology and Surgery (2016), [Under

Review]
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navigation tracking.

• Automatic creation of pathways from the lung trachea toward selected re-

gions of interest. These pathways will guide physicians during navigation.

• Development of a method for image registration during the navigation. This

compensates for the use of 5 DOF sensors, helping to avoid possible roll-

rotation misalignment with the real view.

• Providing the user with a complete system that facilitates navigation toward

a region of interest. To this end, six different views showing the position

of the probe inside the lung are simultaneously presented to the user, who

can the choose the easiest and most helpful to follow.

5.2 Introduction

When a patient is diagnosed with a suspiciously malignant lung cancer, the physi-

cian may decide to proceed with biopsy or cancer exportation. To do so, the CT

image of the patient is analysed and anatomy of the airways is mentally recon-

structed from the stack of 2D images to identify the best path toward suspect

nodule. This is then followed by a physical bronchoscopy to evaluate or biopsy

the nodule. However, image guidance based on CT images alone is tedious, due

to image noise, low image quality, or the complex structure of the different re-

gions. Moreover, standard bronchoscopes do not reach thin peripheral airways.

For this reason, in the last two decades the idea of using a virtual environment

that reconstructs the lung anatomy and helps the physician during bronchoscopy

procedures has emerged as a potential solution. This concept has been called vir-

tual bronchoscopy (VB) and simulates the inside of the airway during navigation

similar to those from a real bronchoscope, allowing for virtual exploration of the

inside of the lung.

Combined with a CT image, VB can also provide information about the real

position of the probe within the lung, as well as information of structures that

may not be visible on a CT image. Moreover, thanks to VB systems, an ”optimal”

pathway, or road map, toward the lung cancer can be automatically reconstructed
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and presented to the user, allowing the physician to focus on the procedure, with-

out the need to memorize the path. This approach, combined with the real video

captured from the bronchoscope when available, will also help choose the correct

path at branching points and avoid mistakes due to unexpected movements of

the patients, such as coughing.

Finally, the end goal of the development of a VB system is to help the physician

reach peripheral airways, which are small and narrow and therefore not reachable

using a standard bronchoscope. Currently the operator has to reach these areas

“blindly”. A VB system will follow the information provided by the virtual

environment to navigate, biopsy and, eventually, treat cancer in these areas. At

present, there are three commercially available systems that implement virtual

navigation. As described in Chapter 2, superDimension [26] and Veran SPINDrive

[27] use electromagnetic navigation coupled with virtual reconstruction of the

inside of the airways. Bronchus LungPoint [28] uses a different approach. Instead

of trying to identify the correct position of the bronchoscope within the lung

using EM tracking, an image-based synchronization technique is used to align the

virtual images obtained from the CT scan of the patient with the anatomy seen

in the live bronchoscopic video. However, all these systems have the drawback of

high costs.

This chapter describes an open-source method for virtual bronchoscopy start-

ing from chest CT images for accessing and sampling pulmonary peripheral le-

sions. The system has a modular structure and is composed of different methods

that can also be used for different applications. It has been optimized for a

specific EM tracking system developed at UCC, but it can be easily adapted to

be used with a different technology. A virtual navigation platform of this kind

for use within the lung paves the way for potential future work with a complete

system for safe and reliable diagnosis.

5.3 Literature Review

In the last decade, several approaches have been proposed for virtual bron-

choscopy. These aim at localising the actual position of the bronchoscope in-
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side the lung in a virtual environment. The most common approaches apply EM

tracking, real-virtual image matching, or a combination of both.

EM Tracking Methods

EM tracking systems use a small sensor mounted on the tip of the bronchoscope

(or inserted in the bronchoscope channel) to determine location and orientation

of the tip in real time. These systems require calibration and registration between

the real and the virtual environments before each bronschoscopic session [196].

Calibration and registration can be achieved either by using fiducial markers

placed near the bony structure [196] or using anatomical landmarks of the airways,

such as carina and main bronchi [10]. However, the EM field can be distorted due

to the presence of ferromagnetic material around the EM system, while accuracy

of EM tracking can be affected by unexpected movement of the patient and

respiration during bronchoscopy.

Real-virtual Images Matching

Real-virtual matching tracking techniques, on the other hand, seek to track the

position of the scope by finding the best match between the real image from the

bronchoscope with the rendered view of the airways. The similarity between the

two images can be accomplished using approaches that are either intensity-based

or geometry-based.

Intensity-based methods [197,198] compare the intensities between the two im-

ages. Bricault et al. [197] proposed a method that renders the virtual bronchial

views using a ray tracing technique, while in [198], a novel approach that uses

photo-realistic rendering has been proposed. However, intensity-based techniques

are really sensitive to small local intensity variations and illumination artefacts

and may often require continuous manual lighting adjustment of the virtual cam-

era.

Conversely, geometry-based approaches [199–201] consist in extracting anatom-

ical structures from the two images to find the best match. Deligianni et al.

[199–201] presented a method that uses a linear local shape-from-shading (SFS)

algorithm derived from the unique camera/lighting constraints of the endoscope

to extract surface normal and accomplish a pq space-based 2D/3D registration
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process. The system also incorporates a patient-specific airway deformation

model that permits accounts for deformation of the airways due to breathing

and coughing. This approach proved more robust to illumination artefacts and

tissue deformation than intensity-based techniques. However, recovering geomet-

rical structures from the bronchoscope video can be challenging, due to the fact

that conventional methods to extract the structure, such as the SFS, assume or-

thogonal projection and light source at infinity. However, these assumptions can

not be used in the bronchoscopic scenario. To overcome this problem, Shen et

al [202] recently proposed a method which first extracts depth information of the

bronchoschopic image using a SFS approach based on the assumption that the

light source is near the surface. Next, depth information from CT data is recov-

ered by linearisation of depth buffering from perspective projections of the CT

model. Finally, the camera position is then estimated as that which maximises

the similarity between the two extracted depth maps.

Hybrid Methods

Virtual bronchoscopy can also be achieved using an hybrid approach that com-

bines EM tracking and image registration. An hybrid method that combines

EM tracking and intensity-based image registration has been proposed by Mori

et al [203]. The approximate position and orientation of the bronchoscope in

the coordinate system of the CT image is determined using EM tracking. This

is used as a starting point for an intensity-based registration between the real

bronchoscopic image and the virtual image generated with a highly-optimized

software-based volume rendering. A similar approach has been developed by Luo

et al [204]. This system is based on three main steps. First, a camera and hand-

eye calibration to obtain intrinsic parameters of the bronchoschopic camera and

to perform sensor-camera alignment is undertaken. Then, a rigid registration be-

tween EM and CT tracking coordinates is performed. Finally, an intensity-based

image registration is combined with the result of the EM system to improve the

camera tracking. Another methodology using both EM tracking and image reg-

istration, based on differential surface analysis in a pq space, was outlined by

Soper et al [205, 206]. As part of that framework, the positional and orienta-

tional error between the CT and EM tracking system is adaptively estimated by
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means of Kalman filtering. The local deformation at each video frame is then

intra-operatively estimated to compensate for respiratory motion. Such hybrid

methods improve the performance of the registration, but have the drawback to

complicate the registration algorithm and the sensor calibration.

One of the biggest issue is due to the high time consumption of image registra-

tion. For this reason, methods that use motion prediction have also been proposed

to achieve faster convergence during registration. Higgins et al. [207] investigated

an approach that estimates the optical-flow from the bronchoscope video and uses

the tracked 3D trajectory to assist localisation in the virtual world. This allows

for tracking of the 3D motion of the bronchoscope. A different approach that

employs a Kalman filter to predict the 3D motion of the bronschoscope has been

proposed by Nagao et al. [208]. However, the final image registration still relies

on the matching between real and virtual images, as the 3D motion prediction

from 2D video images may not be accurate enough.

In this research, an hybrid method that combines EM tracking of 5 DOF

sensing and intensity-based image registration has been investigated. A novel

landmark-free registration approach for EM tracking is proposed. The 5 DOF

sensor inserted through the bronchoscope channel allows for navigation in pe-

ripheral branches, but does not provide information about roll rotation of the

scope. For this reason, an intensity-based image registration based on multi-

scale pyramid registration is employed to compensate for possible roll-rotation

misalignment.

5.4 Algorithm Implementation

5.4.1 Overview

In this section, the implementation of an open-source system for VB coupled with

EM tracking is detailed. This approach was chosen to (i) minimise registration

delays and (ii) facilitate VB in the outer airways where the bronchoscope cannot

pass due to the airway narrow lumen. The VB method can be used for (1) real

navigation, but also (2) procedural simulation and planning. The system has a

modular structure, enables direct pre-operative CT-based procedure planning and
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Figure 5.1: Block diagram of system hardware.

provides direct guidance during bronchoscopy. A 3D representation of the target

is provided. This virtual target changes colour once the bronchoscope reaches

the desired region. Distance information between the current location and the

biopsy site is interactively provided as the physician advances the bronchoscope.

Since the system was used in combination with EM tracking using a 5 DOF sens-

ing, video image registration between the real and the virtual camera has been

implemented to compensate for possible roll angle misalignment. The centreline

of the 3D rendered airway view is extracted and used to avoid registration issues

between the real and virtual environments. Figure 5.1 shows a block diagram

of the system hardware. A desktop Windows 7 computer, with 16 GB RAM is

used as the main CPU. A WinStar frame grabber [209] connects the bronschope

monitor to one of the PC’s USB ports. The grabber is enabled by the BlazeVideo

grabber software [210] which trasmits the real image of the bronchoscope to the

PC. The SplitCam software [211] is used to connect the video grabber to the
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Pre-Procedure Operations

Algorithm Functionality

Centreline Extraction Extract the airway model’s medial axis

Procedure Planning Create pathways toward target regions of interest

Registration Register real and virtual environments

(a)

Image-guided Operations

Algorithm Functionality

Centreline Compensation Compensate for registration errors

Roll Rotation Compensation Compensate for 5 DOF tracking

Distance to Target Real-time distance to the region of interest

Video Streaming Streams video into 3D Slicer

(b)

Table 5.1: Summary of algorithms involved in the VB procedure. (a) Pre-

procedure operations. (b) Operations for image-guided navigation.

open-source Public Software Library for Ultrasound Imaging (PLUS) research

framework [212,213]. PLUS is a toolkit for data acquisition, pre-processing, and

calibration in navigated image-guided interventions which was originally devel-

oped for ultrasound-guided interventions. However, it is now widely used in all

kinds of interventions, with and without ultrasound imaging. In the case of the

proposed algorithm, PLUS was used to stream the video from the bronchoscope

into 3D Slicer. The PC is also connected to the EM tracking system, with tracking

implemented using MATLAB (Mathworks Corp, Natick, MA) [8, 16]. MATLAB

is also used to register the real and virtual environments created from 3D Slicer.

To read the sensor position tracked by the EM system in 3D Slicer, the open-

source OpenIGTLink software, available as 3D Slicer extension, is used [214].

The system works in two main steps; (1) a pre-procedure step followed by (2)

an image-guided bronchoscopy step. The pre-procedure step involves centreline

airway extraction, real-virtual registration and procedure planning (with paths

to target creation). The second step represents the operations involved during

the procedure, including intensity-based image registration. The methods are

written mostly in C++ (using ITK classes) and Python and are run through a
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Python graphical user interface. Table 5.1(a) reports the pre-procedure opera-

tions for VB, while in Table 5.1(b) the operations executed during navigation are

summarised.

The remainder of the chapter details the different algorithms involved in the VB

procedure.

5.4.2 Centreline Extraction

5.4.2.1 Overview

The first pre-processing operation is the extraction of the centreline of the 3D

model. This is a very important operation as the centreline is used during image-

guided navigation to correct possible registration errors. Centreline (or “skele-

ton”) extraction refers to the process of computing the central axes of the label of

tubular structures. In the described application, this involves taking the extracted

airways and applying some mathematical operations of erosion and thinning until

only the skeleton of the label remains.

Numerous methods exist for centreline extraction of tubular structures which

aim to be robust and accurate without requiring human interaction. Algorithms

should preserve the general anatomy of the structure and be computationally

efficient.

Swift et al [215] introduced a semi-automatic algorithm that generates a series

of airway-tree axes staring directly from CT images, with no prior segmentation

required. The method is based on an adaptive 3D searching technique to find set

of central axes for the major airways and on a subsequent cubic-spline analysis and

contour finding procedure. The approach is focused on assessing major airway

obstructions.

In their method for 3D path planning for VB, Kiraly et al [216] defined a

skeletonization algorithm that combines two chamfer distance metrics and a 3D

thinning operation.

Yu et al [217] used a method that combines the segmented image and the

original CT image to derive a sub-voxel-level polygonal surface. Differential ge-

ometry is then employed to determine the set of central axes and branch points

of a vascular tree.
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In their methods for VB, Higgins et al [207] and Gibbs et al [218] combined

these three approaches of 3D thinning, B-spline analysis, and differential geometry

to extract the central axes of the segmented airways.

A different centreline tracking approach that uses the Hessian matrix to iden-

tify intensity ridges in 2D and 3D images was presented by Aylward et al [219].

This approach does not need prior segmentation.

Bitter et al [220] proposed a minimal-path approach that starts with a coarse

approximation of a 3D skeleton which determines a graph. A weight is then

assigned to each edge of the graph, based on a combination of the Euclidean dis-

tance from a user-defined source node and Euclidean distance from the boundary

of the object. The Dijkstra’s shortest path algorithm is applied on this graph to

extract the final centreline.

Lee et al [221] presented an approach that implements a thinning algorithm

to iteratively delete the border points of an object until a smaller set of connected

points is acquired. Euler characteristics and connectivity are preserved to guar-

antee invariance of the object’s topological requirements, such as cavities, holes,

and connections to the original object.

Lastly, an approach which is most closely related to the one implemented here

was presented by Bouix et al [222]. This method implements fully automated cen-

treline extraction that first utilises an average outward flux (AOF) measure to

distinguish skeletal points from non-skeletal ones and then combines this infor-

mation with a topology preserving thinning procedure. The strategy is to thin

the medial surface to obtain a structure composed only of curves and to prune

the result to obtain the skeleton. In this section, the method, based on such

a thinning operation, to extract the centreline of the segmented airway tree is

described.

5.4.2.2 Centerline Extraction Method

The method for centreline extraction implements the algorithm described in [222].

This approach was chosen as it is based on theoretical properties that have been

previously thoroughly justified [223] and because the algorithm is completely

automatic, the approach finds all centreline paths in volumetric tubular structures
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Figure 5.2: Block-diagram of the steps involved in centreline extraction. For each

step the resulting image is shown.

with arbitrary topologies unlike most of the methods in literature that find a

single centreline at the time and have very complex numerical implementation.

Other methods require user interaction to select at least the end points of a

particular centreline path. Since the main goal of the research was to reduce user

interaction as much as possible, this approach was found appropriate. Moreover,

this represents the first implementation of the algorithm for centreline extraction

of an entirely segmented airway tree.

The steps composing the algorithm are shown in the block diagram of Figure

5.2. The algorithm extracts the centreline of the specified airway label using an

AOF implementation of the label followed by a thinning of the medial surface

to obtain a structure with only one curve, defined as the medial curve, and a

pruning operation to obtain the final centreline. To this end, the first step is

the computation of the distance map of the label. This operation is executed
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using a signed Danielsson distance map filter [224]. This way, the distance map

of the input image is computed as an approximation, with pixel accuracy, to the

Euclidean distance [224]. The distance map is then filtered with a Gaussian filter,

and the gradient vector, ∇D, of the image is calculated. The result is used as

input to the AOF algorithm, which is computed using (5.1),

AOF(x) =
1

n

26∑
i=1

〈ni,∇D(xi)〉 (5.1)

where xi is a 26-neighbour of x and ni is the outward normal at xi of the unit

sphere centred at the voxel x. This operation is repeated for each pixel in the

interior of the object.

Once the AOF algorithm ends, the centreline is extracted by thinning the

medial surface to obtain a structure composed only of curves, defined as the

medial curve. To this end, if the removal of a voxel does not create a hole, does not

create a cavity, and does not disconnect a connected component, it is considered

as a simple voxel, as its removal does not affect the object’s overall topology. This

is defined in accordance to the voxel’s categorization introduced by Malandain et

al [225]. Therefore, the strategy involves guiding the thinning operation by the

AOF measure over a very small neighbourhood, while ensuring that only simple

voxels are removed. This operation ends when all the simple voxels are removed

or when the AOF has an average below a user-defined threshold. In the described

application, a threshold of 0 was found as the optimal choice in order to extract

the complete airway model centreline. The thinning operation creates a medial

curve of the original surface. The output of the filter is a binary image containing

the centreline of the input structure.

To complete the process, the algorithm requires a few minutes (an average of

3-4 minutes on a 512×512×600 image with a standard desktop PC). The end goal

of the centreline extraction operation is to use the centreline as a tool to correct

possible registration errors. To this end, the centreline is used to maintain the

virtual probe inside the 3D model environment, helping the guidance system.

The ideal is to remove this step when an optimal registration process is available.

However, in order to use the centreline to correct the position of the probe, a 3D

model of the centreline itself is created starting from the binary image.
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(a) (b)

Figure 5.3: Example of centreline extraction from a pig lung 3D model. a) Shows

the extracted centreline alone, whereas in b) the centreline is imposed on the lung

model.

An example of a centreline model extracted from a pig CT airway label is

shown (a) alone and (b) fused on the airway model in Figure 5.3. This model

consists of many thousands of voxels, which would computationally burden the

navigation if all voxels are considered. Therefore, the next step involves the

extraction of part of the points of the centreline, followed by iterative smoothing

to better align these points. Particular care needs to be taken for this operation,

as points in the 3D model are ordered following their position in the axial slices.

Therefore, points belonging to separated branches may appear one after the other

in the points order of the 3D model. For this reason, a technique that recognizes

the previous and following closest points to the considered one in the list of points

of the 3D model is implemented. The central point’s position is then moved to

be more aligned with the previous and following points using (5.2),

p = ρ[ 0.5( pp + np) − p] (5.2)

where ρ is a relaxation term empirically set to 0.5, p is the central point, pp

the previous point, and np the next point. The position of these points are then

saved in a list of positions to be used during image-guidance.
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5.4.3 Procedure Planning

5.4.3.1 Overview

Once the centreline has been extracted, the next step involves procedure planning,

that is the phase where the physician analyses the CT images and selects the

biopsy target to be reached during navigation. Different tools have been provided

on the Slicer user interface to aid the physician during image analysis and to

improve path creation, when necessary. Different strategies have also been used

for procedure planning in image-guided bronchoschopy, most of which exploit the

extracted centreline to create the path to target [181,183,215,218,226]. The field

of robotics has also focused much attention on the path planning problem [227],

including determination of navigated device movements to reach a target site

within the airway tree model [228]. Other approaches have required interactive

path generation and knowledge of start/end points [229]. In this section, the

approach used to create the route from the trachea to the selected targets of

regions of interest is discussed.

5.4.3.2 Route Extraction Implementation

In the described system, some of the classes provided by the VMTK toolkit

[193] were exploited. This is an open-source toolkit that provides a collection

of libraries and tools for 3D reconstruction, geometric analysis, mesh generation,

and surface data analysis of 3D models of tubular structures. Most of these

methods have been optimized for applications on the vascular tree. A group of

these classes allows for the centreline extraction of a 3D vascular model using

two end-points, defined as source and target points, provided by the user. This

method was employed for the implementation of the described system and was

optimized for pathway creation from an airway model. The method was also

chosen considering that the trachea starting point can be used as source point,

while the target location is already provided by the physician on the CT image

to compute the nodule’s probability malignancy with the system described in

Chapter 3. This position is automatically converted by Slicer into a position

within the 3D model, and no further manual interaction is required. Only in case
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the position to reach is outside the segmented airways the user is required to also

select the label point closest to the target.

The algorithm extracts the centreline as the weighted shortest path traced

between the two points. In order to ensure that the final lines are in fact central,

the path is bound to run on the Voronoi diagram [230] of the 3D model. Voronoi

diagrams can be thought of as the place where the centres of maximal inscribed

spheres are defined. A sphere inscribed in an object is said to be maximal when

there is no other inscribed sphere that contains it. So, for every point belonging

to the Voronoi diagram, a sphere is centred on that point which is a maximal

inscribed sphere. A Voronoi diagram can be very noisy. However, this noise

does not affect the centreline. Centrelines are determined as the paths defined on

the Voronoi diagram which minimize the integral of the radius of the maximal

inscribed spheres along the path, which is equivalent to finding the shortest path

in the radius. In order to do so, a wave is propagated from the selected source

point using the inverse of the radius as the wave speed. The wave arrival time at

all the points of the Voronoi diagram is then recorded, and finally the line the line

from the indicated target point down along the gradient of arrival times is back-

traced. The propagation is described by an Eikonal equation and is computed

using the Fast Marching Method [167]. This operation is implemented for all the

target points specified by the user.

In case the area to reach is outside the 3D model, a final spline interpolation

of the specified points is finally accomplished. The output of the method is a 3D

model that is automatically fused to the airway model. An example of routes to

different targets created using this method is presented in Figure 5.4.

5.4.4 Registration

5.4.4.1 Overview

Registration is the last pre-processing step of the VB system implemented. Reg-

istration refers to the process of transforming a set of points in one coordinate

frame of reference to another frame of reference. In the described application, this

involves taking the position and orientation data from the real-time EM tracking

system and transforming this data to the frame of the navigation environment,
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Figure 5.4: Example of routes as created from an pig airway model. The different

routes are shown in blue. The red dots represent 5 different targets selected by the

user.

represented by the 3D rendered airway model. The registration is computed con-

sidering a rotation matrix, translation vector, and if required a scaling factor to

transform the EM tracking frame into the virtual frame.

Registration allows for visualization of the position relative to the lung within

the 3D model in real-time. The simplest and most common method for regis-

tration is landmark-based registration, also called rigid registration, and consists

in selecting a set of points (usually 4 to 8) on the CT image of the patient, and

physically touching with the probe at corresponding points in the patient. The

two sets of point can then be aligned using a geometric transformation (rotation

plus translation).

Solomon et al [196] presented a landmark-based registration using landmarks

which are visually identified inside the lung. A similar method is also used by

Schwartz et al [9] when describing the superDimension system.

A different approach to registration involves matching the video image of the

bronchoscope with the 3D CT data [231]. Mori et al [203] outlined a hybrid

registration method to improve an initial landmark-based registration with an

image registration process. A hybrid registration algorithm was also proposed

by Soper et al [205, 206]. The first landmark-based registration is followed by

the implementation of a Kalman filter strategy applied to the video frame. This
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approach compensates for possible errors associated with the first registration,

making the process more robust.

In general, landmark-based registration often results in a difficult and prob-

lematic approach due to difficulty in accurately obtaining registration data. Klein

et al [232] demonstrated that a fiducial free approach provides better accuracy.

Using in-volume-maximization (IVM) which aims at minimizing the number of

points outside the airway model after acquisition of a set of probe points. In

order to do so, a simulated annealing [233] is used to search for the best ro-

tation and translation. This method provides a good registration, but is also

computationally expensive.

In different studies, Mori et al [234] and Deguchi et al [235, 236] proposed

landmark-free registration algorithms. Instead of using landmarks, the probe is

simply moved in the patient’s lungs while at the same time probe points are

iteratively aligned with the virtual model through a iterative closest point (ICP)

algorithm. This exploits the information for the current position in the real lungs

to align the probe data with the correct bronchi regions using the 3D model’s

centreline. Luo et al [237] outlined a landmark-free registration that reduces the

distance between rough probe points and the centreline extracted from the CT

image. Lastly, Hofstad et al [238] proposed a different registration technique that

uses a modified version of an ICP algorithm and combines both position and

orientation of the bronchoscope to relate it to the running direction of the airway

model centreline.

In this research, a novel landmark-free registration approach based on bal-

anced surveillance bronchoscopy has been implemented. This helps improve ac-

curacy of the algorithm and reduce the manual interaction required.

5.4.4.2 Landmark-free Registration

Landmark-based registration methods may oftentimes be tedious, time consum-

ing and problematic, due to issues in picking corresponding points in the real

environment. In some cases, the landmarking process needs to be repeated until

a good registration is obtained. For this reason, a new landmark-free registration

method that is easier and more feasible was investigated. This method uses the
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probe data information acquired during a pre-procedure balanced bronchoscopy

(balanced survey). The physician is asked to move the bronchoscope through the

trachea and the two main bronchi, which are easily recognizable. The probe is

tracked by the EM tracking system using a sensor placed at the tip of the bron-

choscope [8,16,239,240]. This creates a cloud of points which is then registered to

the corresponding airway model centreline points. To this end, an ICP algorithm

is used. First, the mathematical tools used in the development of the algorithm

are described, before implementation, testing and results of the algorithm are

presented.

Iterative Closest Point

ICP is an algorithm employed to find the best transformation (in terms of rotation

and translation) that aligns a source point cloud to a fixed target [241]. It is an

iterative algorithm, that, in its simplest form, follows four main steps:

1. For each point in the source point cloud, the closest point in the target

point cloud is identified; the closest point represents the target.

2. Root mean squared distance (RMSD) is minimised to find the optimal trans-

formation aligning the source point cloud to the target point cloud.

3. The optimal transformation is applied to the source point cloud.

4. Step 1 is repeated until convergence is reached.

Rotations Definition

A rotation matrix is defined by three angles: α, β and γ. α is referred to as

yaw rotation and defines the counterclockwise rotation around the z axis (for a

definition of x, y, and z axes, see Figure 5.5). The second angle, β is defined

as pitch rotation and describes the counterclockwise rotation around the y axis.

Finally, the γ angle determines a counterclockwise rotation around the x axis,

and is addressed as roll rotation. These rotations are defined by (5.3) to (5.5).

Rz(α) =

cosα − sinα 0
sinα − cosα 0

0 0 1

 (5.3)
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Figure 5.5: Scheme representing yaw, pitch, and roll rotations.

Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 (5.4)

Rx(γ) =

1 0 0
0 cos γ − sin γ
0 sin γ1 cos γ

 (5.5)

The single rotation matrix which embodies the three rotations is then formed by

multiplying the yaw, roll and pitch rotation matrices as (5.6).

R(α, β, γ) = Rz(α)Ry(β)Rx(γ) (5.6)

Registration Algorithm

The algorithm takes as input the probe data acquired with EM tracking during

a balanced surveillance bronchoscopy, the corresponding centreline branches and

the carina position in both point clouds (used during a first rough alignment).

The carina position inside the centreline is manually identified, while the carina

position in the real lungs is acquired by requesting the physician to physically

touch it with the probe. The points belonging to the trachea, and to left and right

main bronchi are automatically labelled both on the virtual centreline points and

on the physical probe data, with three different labels. The points belonging to

the trachea branch are assigned the same index both on the centreline and in the

probe data, as are the points of the two main bronchi. While in the landmark-

based registration, at least 3 points must be selected and precision is essential.

In this algorithm only the carina position must be approximately detected, as
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alignment between the real and the “virtual” carina is automatic. Therefore, the

registration procedure can be defined as landmark-free. The proposed algorithm

works as follows. First, the two point clouds are centred (translation) with respect

to the origin of the three labels. Next, an interation process composed of 2 steps

is employed. These steps are sequentially repeated until convergence is reached

using a RMSD cost function defined by (5.7).

RMSD =
1

N

N∑
i=1

√
‖pi − ci‖2 (5.7)

In (5.7) N is the number of points, pi is a probe point and ci is the centreline point

closest to pi. The first step focuses on searching for the optimal rotation that

minimises the RMSD between the two point clouds. To this end, an ICP method is

implemented. Since only rotation is considered, a Kabsch algorithm [242] is used.

The source points are defined by the positions acquired with the probe, whereas

target points are determined by the centreline’s closest points. Searching of these

closest points represents the key enabler for the algorithm and is accomplished

by taking into account only points having the same label. As an example, if

the trachea is assigned a label of 1, only centreline points with that index are

considered. In this way, local minima (e.g. registration of the left bronchus as

the right one) are avoided. This step is repeated until the rotation matrix R

converges. Absolute convergence is reached when R is an identity matrix. Once

the first step in complete, a second step of searching for the optimal translation

that minimises the RMSD between the two clouds of points is employed. As in

the previous step, ICP is also used to find the translation that minimises the

RMSD. In this case, a local optimization algorithm is used. Again, labels of the

different regions are considered to avoid local minima. This step is necessary

as the carina is manually detected, causing possible misalignment between the

position of the two clouds. The problem to be solved is represented by (5.8):

topt = arg min
t

{ N∑
i=1

√
‖pi + t− ci‖2

}
(5.8)

where N is the number of samples, t=(tx, ty, tz) the translation vector, pi the

probe point, and ci the closest centreline point. The two steps are iteratively
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computed, and at the end of every iteration, the difference between the two

RMSDs is computed. After the iteration process, an optimal R and an optimal

t are found. These are used as initial conditions for an optimization algorithm

that computes the final R and t by solving (5.9).

(αf ,tf,opt) = arg min
αf ,tf

{ N∑
i=1

√
‖Rfpi + tf − ci‖2

}
(5.9)

In (5.9) αsa is the vector containing the yaw, pitch, and roll angles, Rsa the rota-

tion matrix, and tsa is the translation vector. This step increases the probability

of convergence to a global minimum. The transformation function, Tsa, found

using the optimization is a matrix defined by (5.10).

Tf =

[
Rf t>f

0 0 0 1

]
(5.10)

Lastly, the final transformation matrix Tv
r is given by the multiplication of the

matrices found at each stage of the registration procedure, using (5.11).

Tv
r = TxTf

( N−j∏
j=0

Tj

)
Ti (5.11)

Here Ti is the transformation matrix to translate the probe points to the origin

and is defined by (5.12):

Ti =


1 0 0 −Cpx

0 1 0 −Cpy

0 0 1 −Cpz

0 0 0 1

 (5.12)

where Cpx, Cpy, and Cpz are the coordinates of the carina position in the real

world, while Tz represents the transformation matrix to translate the probe points

to the virtual coordinate system:

Tz =


1 0 0 Cvx

0 1 0 Cvy

0 0 1 Cvz

0 0 0 1

 (5.13)

with Cvx, Cvy, and Cvz indicating the coordinates of the carina position in the

virtual world. The algorithm has been implemented in MATLAB (Mathworks

Corp, Natick, MA), and a graphical user interface has been designed to facilitate

user interaction during the registration.
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(a) (b)

Figure 5.6: The model used for the first test. In a) the portion of centreline used

to run the registration is shown. In b) the centreline (black) and the point cloud

(red) generated by adding random values are presented. The origin of the reference

system is represented by the carina centreline.

Algorithm Testing Methods

The described algorithm was tested with both simulated and real data, acquired

with EM tracking data using three different test methods: the first one using

simulated data obtained from the centreline obtained using the chest CT image

of a pig lung. A second test was conducted on a perspex model that reproduced

the airway structure. Finally, the last test was accomplished in a pre-clinical

setting using the breathing pig lung phantom described in Chapter 3.

Simulated Data Testing

The first technique consisted in simulating real data. The approach exploits the

portion of the airway centreline associated with the balance survey to generate

data that simulates probe data. In particular, 299 points of the centreline ex-

tracted from the airway model obtained from a pig lung chest CT image was

considered. This is shown in Figure 5.6(a). Each region of the centreline is then

automatically assigned a different label, as shown in Figure 5.7. Next, the method

to generate the simulated probe data was triggered. This consists in three dif-

ferent steps. First, a random noise (in a range [−5, 5] mm) is added to each

coordinate of each centreline point, maintaining the label previously determined
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Figure 5.7: Portion of centreline extracted for the registration algorithm. Differ-

ent labels are automatically associated with trachea, left main bronchus and right

main bronchus, shown in red, green and blue, respectively.

(a) (b)

Figure 5.8: Generation of simulated probe data. In (a) the centreline (black) and

the generated point cloud after a rotation of yaw = roll = pitch = π is applied.

(b) Shows the centreline (black) and the point cloud generated after an arbitrary

translation is applied. The origin of the reference system is the original carina

centreline.

(Figure 5.6(b)). The random values were recomputed for each trial. Next, a

rotation is applied to the points cloud, using a rotation matrix with random yaw,

pitch and roll (in the range [0, 2π]). An example is given in Figure 5.8(a). Fi-

nally, a random translation (in a previously defined range) is applied (see Figure

5.8(b)).

The new point cloud was used as a simulated probe data points cloud. The
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carina positions in the centreline points were manually identified in the centreline

points used for all the tests. On the other hand, the carina position of the gener-

ated points cloud was found by adding a random value to each coordinate of the

centreline carina. The carina centreline was also used as origin for the centreline’s

reference frame. These values were chosen in a range between [−20, 10] mm and

the translation of the point cloud is defined by a vector whose elements have the

same values, in the range between [−200, 200] mm.

Several trials of registration achieved between the centreline and the simu-

lated point clouds were used to evaluate performance of the algorithm, in terms

of accuracy and convergence time. Accuracy was measured by comparing the

RMSD between the centreline points and the generated points (1) after adding

the random value and (2) after the registration process. If the RMSD obtained

after registration was higher than the previously computed one, the registration

result was assumed to be close enough to a global minimum.

Five hundreds trials were used to test the algorithm: 100 trials using the whole

point clouds, 100 using 50% of the total points, 100 with 30% of the points, 100

considering 25% of the points, and a final 100 trials in which 20% of the total

points were used. This way, accuracy was tested for cases where the number of

points acquired with the probe is lower than the number of points composing the

centreline. For each trial, RMSD was computed after adding the random value

to the generated data and at the end of registration. Convergence time as well

as values used to generate the point cloud were calculated.

Before testing the algorithm with the generated data, a simpler set of tests was

carried out. In this case, the probe data points were generated without adding

the first random value. Hence, the registration problem has to be solved between

the centreline and a simply translated and rotated version of it. This way, the

first RMSD is equal to 0 mm, as no random value was added, and the RMSD

computed at the end of the registration can be interpreted as registration error.

Hence, the registration error is expected to be close to zero in this set of trials.

This test provides a preliminary quantitative measure of algorithm accuracy. In

fact, assuming that the tip of the broncoscope is moved close to the medial axis

of the airway during the balanced survey, generating probe data starting from
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Figure 5.9: The perspex model used for the second test. The blue line highlights

the path followed to simulate a balanced survey.

the centreline puts us in the optimal position to evaluate whether the algorithm

is correctly generated.

Rigid Airway Model Testing

A second test was conducted using a perspex model reproducing the airway

anatomy. The model is shown in Figure 5.9. The path followed with the probe is

highlighted in blue. This represents the points cloud of the balanced survey. A

3D virtual model of the blue path was created and the centreline extracted using

VMTK [193] classes. Fig. 5.10 shows the initial conditions of the problem. The

centreline consisted of 510 points, while 1500 probe data points were tracked.

(a) (b)

Figure 5.10: Two different views of initial conditions for registration testing with

the plastic phantom model. Centreline points are shown in black, while probe data

points are shown in red.
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Breathing Lung Model Testing

The last test evaluated performance using the data acquired from a breathing pig

lung model. An expert pulmonologist was asked to execute a balanced surveil-

lance bronchoscopy inside the breathing model, while the tracked probe data was

recorded. The lung model was then scanned with a GE System Discovery CT750

HD scan (0.625 mm slice thickness, 60 mA radiation dose, LUNG reconstruc-

tion kernel), the airway segmented and the airway model created as described

in Chapter 3. The centreline of the airway was extracted using the approach

described in Section 5.4.2.2, and used for the registration process. Due to me-

chanical deformation of the breathing lung model, reproducing the same airway

tree used to acquire the scan during the balance survey is challenging. The initial

condition to this registration problem is shown in Figure 5.11. The 3D model

is shown in black, the centreline is pictured in green, while the experimentally

recorded probe data are shown in red.

Figure 5.11: Initial condition for registration testing with data acquired using

a balanced surveillance bronchoscopy. The airway 3D model is shown in black,

whereas centreline points are shown in green and experimentally recorded probe

points are shown in red.

Registration Testing Results

Results achieved for the probe data simulated without adding the random noise

are summarized in Table 5.2. Table 5.3 shows results obtained for probe data

simulated with random values added. After 500 trials, only in 9 cases was the
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RMSD measured after registration larger than that measured after adding random

noise. In these nine cases, average differences between initial and final RMSD

Num. of points Average Maximum Average

Registration Registration Time to

Error (mm) Error (mm) Convergence (s)

299 9× 10−6 3.94× 10−5 20.30

149 1.02× 10−5 7.33× 10−5 14.16

99 9.40× 10−6 3.07× 10−5 11.95

74 8.48× 10−6 4.89× 10−5 10.89

59 1.03× 10−5 4.17× 10−5 9.70

Table 5.2: Registration trials between the centreline extracted from the pig (299

points) and the point clouds generated with the method proposed without adding

the random values.

Num. of points Average Num. of Trials

Time to with

Convergence (s) RMSDf > RMSDi

299 19.63 1

149 15.72 0

99 13.52 3

74 12.31 3

59 10.27 2

Table 5.3: Registration trials between the centreline extracted from the pig (299

points) and the simulated point clouds. RMSDf is the RMSD computed after

registration, while RMSDi represents the initial RMSD.

was 0.02±0.02 mm. The longest trial took 28.76 seconds on a 1.6 GHz, 4 GB RAM

PC. As shown in Fig. 5.12, registration error of the algorithm is not correlated to

the Euclidean distance between the position of the carina of the two clouds at the

beginning of the registration So, while human input is required, this input does

not affect the results. Figure 5.13 gives an example of registration between the
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Figure 5.12: Correlation between Euclidean distance at the beginning of regis-

tration and the registration accuracy, achieved in 100 different trials.

centreline and a point cloud generated by adding a rotation of yaw = π, roll = π,

and pitch = 0 (centreline and point clouds both consisting of 299 points). Figure

5.13(a) shows this specific initial condition. Here the carina of the two clouds are

not in the same position (Euclidean distance between the two was 8.6 mm). The

registration error obtained in this example was 5.40× 10−4 mm, achieved in 9.88

seconds.

Table 5.4 shows the different registration results obtained on ten different

cases. Initial conditions (distance and relative rotation between the carina posi-

tions in the two different point clouds), registration accuracy and time of conver-

gence are reported. Both clouds were composed of 299 points.

Figure 5.14 shows the registration results achieved using the perspex model.

In this case, time to convergence was 41.67 seconds, with RMSD = 2.09 mm.

Since precision of the sensor is in the range [1, 1.5] mm, this can be considered a

near optimal result. The percentage of points inside the whole model was 93.43%.

Klein et al [232] analysed the performance of different registration algorithm with

a similar phantom model, in terms of percentage of points within the model. Only

one algorithm was reported to obtain a percentage of points bigger than 93%

(97% in the best scenario). The comparison between the percentage achieved in

the test presented here and the ones detailed in [232] show that the proposed

registration algorithm may be considered a positive step forward. However, to
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(a) (b)

Figure 5.13: Example of registration trial between the centreline (black) and a

point cloud (red) generated without adding the initial random value. (a) Shows

the initial condition: the Euclidean distance between the two carinae is 8.6 mm.

(b) Shows the registration achieved. The process took 9.88 seconds, with an error

of 5.40× 10−4 mm.

Euclidean Yaw Roll Pitch Time Registration

Distance (rad) (rad) (rad) of Error

of Carinas (mm) Convergence (s) mm

17.52 3.84 3.54 0.05 22.12 7.50× 10−6

20.39 1.63 4.44 4.43 25.98 2.00× 10−6

13.99 2.79 5.71 0.41 26.04 3.89× 10−6

22.75 1.83 3.11 4.57 23.53 1.43× 10−6

10.14 3.68 1.63 0.97 18.34 2.16× 10−5

22.87 3.35 4.66 2.35 24.49 1.16× 10−5

9.39 5.26 2.64 0.97 16.59 5.25× 10−6

19.67 5.37 4.16 4.39 23.00 6.37× 10−6

23.70 4.24 0.38 2.60 28.41 1.28× 10−5

22.88 3.36 4.09 5.50 23.34 1.36× 10−5

Table 5.4: Ten different registration problems. Initial condition, registration error

and time of convergence are reported.
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(a) (b)

Figure 5.14: Two different views of result achieved using the perspex model.

Centreline points are shown in black, while probe points are shown in red.

obtain a more objective comparison the same phantom model should be used for

the registration.

Finally, results obtained on the breathing pig lung model are shown in Figure

5.15. In this case, time to converge was 168.03 seconds, using a centreline of 799

points and a probe data cloud of 1000 points.

In general, the algorithm may represent an improvement over the state of the art

in electromagnetic navigation bronchoscopy. Although minimal user interaction

is still required, the system is easy to use and increases the autonomy of the reg-

istration results. Performance of the algorithm was validated with three different

test methods; simulated data, balanced survey on a perspex model, and balanced

survey on a breathing pig lung model. At present, the inputs required from the

user are necessary to assign different indices, or labels, to the different branches

used for registration, to avoid local minima. Unlike landmark-based approaches,

these inputs do not have to be precise, but just provide a rough indication of the

position of the three branches. However, the end goal is to obtain an algorithm

that reduces and removes all user interaction. To this end, future work will seek

to automatically detect the three branches used in registration (carina, left and

right main bronchi).
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(a) (b)

Figure 5.15: Registration results achieved on the breathing pig lung model. Two

views from two different perspective are shown.

5.4.5 Image-Guided Bronchoscopy

5.4.5.1 Overview

The pre-procedure step ends with registration. Once the real airways are regis-

tered to the virtual airways created in Slicer, image-guided bronchoscopy begins.

When the operator is ready, the tracking system sending position and orienta-

tion information from MATLAB to Slicer can be activated. The button “Track

Sensor” on the interface will allows for visualization of real-time actual probe po-

sition in the airways model. For this to happen, several operations are involved,

including connecting Slicer to MATLAB, compensating for possible registration

or tracking errors, and correcting for roll rotation of the scope. In this section,

the technique implemented to stream real video frames from the bronchoscope to

3D Slicer is also described.

5.4.5.2 MATLAB-Slicer Bridge Connection

As stated above, the EM tracking system utilises a code implemented in MAT-

LAB to track the position of the probe in the real world and to transform this

information into a position in the virtual world using the registration process [30].
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Figure 5.16: The OpenIGTLink extension interface as it appears in 3D Slicer.

After this is complete, the position of the probe is identified by a transformation

matrix T defined, as described above by (5.14).

T =

[
R t

0 0 0 1

]
(5.14)

In (5.14) R represents the 3x3 rotation matrix and t is the translation vector of

the probe. The first step toward the visualization of the actual probe position in-

side the virtual environment is communication between Slicer and MATLAB. For

this purpose, a Slicer extension referred to as OpenIGTLink [214,243,244] is used.

This is a network communication protocol specifically designed and developed

for research on image-guided and computer-assisted interventions. It provides a

standardized mechanism for communications among computers and devices for

a wide variety of image-guided therapy (IGT) applications. OpenIGTLink is a

set of messaging formats and rules (protocol) used for data exchange on a lo-

cal area network (LAN). The extension is shown in Figure 5.16. Once installed,

OpenIGTLink allows the user to create a new server with a specific hostname

and a unique port number within Slicer. These can then be used to connect any

other application to send real-time information to Slicer. Alternatively, the same

mechanism can also be used to send information from Slicer to over devices. In

the proposed application, this strategy was used to both send the transformation
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matrix containing the probe information from MATLAB to Slicer, and to send

the video frames captured by the bronchoscope’s camera to Slicer.

Once the information is available in Slicer, the “Transforms” tool is used for

editing T, when necessary, and to visualize the actual position of the probe in

the virtual environment. With this tool, the transformation is applied to the

3D model of the probe, which is then translated and rotated according to the

information received. The same transformation is then applied to the virtual

camera in one of the two 3D views presented to the user. In this view, the

camera is also placed at the tip of the probe model, with a focal point on the long

axis of the probe. In this way, when the probe moves inside the lung, a virtual

reproduction of the inside of the airways is shown to the user. The second view

presented to the user shows the 3D airway model, the probe, and the planned path

from a panned position. In this case, the camera is aligned with the z position

(see Figure 4.8) of the probe tip. Also, according to the position of the probe,

the camera zooms in or out to magnify airway details when smaller branches are

reached. Finally, a second endobronchial 3D view enabling the user to follow the

probe at a proximal displacement as the bronchoscope moves is available. The

camera is then placed at a later side of the probe, to provide a different view that

may be helpful in peripheral airways.

5.4.5.3 Centreline Compensation

One of the main issues when developing a system for image-guided bronchoscopy

is the registration process. If the two frames of reference are not properly reg-

istered, virtual navigation will be corrupted. If a landmark-based registration

process is utilised, difficulties lay in finding the correct corresponding points in

the real and virtual airways. In addition, if the operator is not an expert, using a

lung phantom may create confusion in distinguishing the right bronchus from the

left. An example result of incorrect registration is shown in Figure 5.17. In this

figure, the probe (purple marker) is completely outside of the model, whereas the

bronchoscope is clearly inside. The novel landmark-free registration method de-

veloped helps improves accuracy of the registration process and therefore reduce

possible misalignments. However, errors may still occur, especially in cases where
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Figure 5.17: If registration is not adequately executed, the probe model position

(indicated by the purple marker) will be completely outside the airways model.

the lungs can be deformed after the CT scan (as in the case of the lung phantom

at UCC). For this reason, an interim method to compensate for misalignments

to help improve accuracy of the navigation was developed. The idea underlying

the method is to exploit the fact that physicians tend to move the bronchoscope

on the medial axis of the airways. Therefore, assuming that registration errors

are not excessive, the centreline of the airway model can be exploited. To this

end, the translation vector, t, of the transformation matrix is analysed and, when

needed, modified. In particular, t is compared to the centreline points list (ex-

tracted during the pre-processing step) and the centreline position with smallest

Euclidean distance to the actual position is used as the new position. In this

way, t is modified with the new value. An example of corrected probe position

is shown in Figure 5.18. The blue marker represents the current probe position

received from MATLAB. The purple marker indicates the corrected position of

the probe, when compensating for errors using the centreline extraction. How-

ever, using the Euclidean distance as a method to compensate registration errors

may cause issues when branches become smaller and closer to each other. In

this case, even a small registration error may cause to choose a wrong point on

the centreline. This can cause a discontinuity in the compensated probe position
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(a) (b)

Figure 5.18: Representation of the centreline compensated navigation. Two

views of the same frame from two different perspective are shown. The blue stick

indicates the actual position as received from the tracking system. The purple stick

represents the corrected position of the probe.

from one branch to another. For this reason, future work should seek to identify

an optimal registration strategy.

5.4.5.4 Roll Rotation Compensation

The EM tracking system used to track the current position of the scope currently

utilises 5 DOF sensing. This means that along with the three components of the

translation t, only the yaw and pitch rotations can be tracked. This adversely

affects virtual navigation, because as the physician rotates the scope the virtual

and real images may become misaligned (Figure 5.19). This consideration is

particularly important at branching points, where a decision on the direction

to follow within the virtual model is made. It is worth noting that commercial

systems such as superDimension [26] and Veran SPINDrive [27] use 6 DOF sensors

with in their tracking systems, at the expense of larger instruments. However,

this eliminates the issue of roll misalignment.

As VB has become of general interest in research, numerous strategies of image
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Figure 5.19: Example of roll misalignment between the real and virtual video

frames. On the left side the actual view from the bronchoscope is presented, while

the picture on the right side shows the virtual image. The green line indicates the

path to reach the selected target.

registration for VB have been proposed. Some techniques try to correct videoen-

doscopic distortion caused by the scope camera [245,246], while other approaches

use the video image as a real-virtual registration tool either in hybrid registra-

tion methods or as unique approaches [203, 218]. A third method uses image

registration as a tracking system to determine the actual position of the scope

and reproduce it inside rendered views of the airway model [196, 202]. Methods

for image registration can be divided in two main categories; intensity-based and

geometry-based methods. The former method compares image intensities to find

the best match between the compared images [197, 198]. Geometry-based meth-

ods compare anatomical structures extracted from the real video images and the

images of the airway model. Recovering geometrical structures from video im-

ages can be challenging [199,200]. Another main drawback of image registration

is that it can be time consuming (e.g., > 1 second per frame [203]). There-

fore, methods that incorporate motion prediction have also been investigated to

achieve faster convergence for registration [208,247]. Although not optimised, an

intensity-based image registration that geometrically aligns the video frame from

the virtual camera to the corresponding video frame captured from the broncho-

scope is proposed. The method requires approximately 0.25 seconds to complete.
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Figure 5.20: Block diagram of the roll rotation compensation steps. Extraction

of branching points is computed prior to the procedure, while registration steps are

executed at every bifurcation during navigation.

Although quite fast, the method is still too slow to be useful to track every probe

position. This may cause delays and confusion during navigation. Therefore,

image registration is employed only when the scope reaches a branching point.

Figure 5.20 shows a block-diagram of the main steps involved in the implemen-

tation of the algorithm. In the following paragraphs the method to compute the

airway model’s branching points is described and then the algorithm implemented

for image registration is detailed.

Branching Points Extraction

To identify the branching points (bifurcations) of the airways model, the extracted

centreline is used. This algorithm was implemented in MATLAB and is executed

during the registration process. After the centreline labelling process is computed,

the algorithm calculates the distance between every point of the centreline and
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Figure 5.21: Scheme of the multiresolution pyramid method [248].

all the points of the other branches with a different label. If the reference point

is close enough to one or more points belonging to a different branch, then the

reference point index is stored as a bifurcation point. The threshold that defines

if two points are close enough was empirically set to 3 mm. This operation

determines a cloud of points at every airway bifurcation. The bifurcation positions

are then saved to a .txt file which is read by Slicer when the image registration

process begins.

Image Registration Implementation

When the physician moves the scope inside the lung, the probe position is com-

pared with the stored bifurcations points. When the probe is at a specified

distance (between 3 and 6 mm) from the bifurcation, the image registration al-

gorithm is automatically triggered. The range of distances has been empirically

defined and decreases when the scope moves closer to smaller branches. Also, to

avoid unwanted delays between one registration and the following one, a three

second time limit on consecutive registrations is imposed. The algorithm starts

recording the real video image and the virtual projection of the 3D airway model.

The two images are then normalized and the virtual image is re-sampled to match

the resolution size of the real image. At this point, the images are registered, es-

timating the virtual camera pose that maximizes the similarity between them. In
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the proposed approach, registration of the relative rotation between the two im-

ages is the key point. To do so, a multi-resolution pyramid registration method

that uses mutual intensity information as the similarity measure is employed.

An exhaustive optimizer is utilised to find the rotation that defines the optimal

match between the two images [61]. In particular, the multi-resolution pyramid

is a multi-scale signal representation in which a sequence of copies of the origi-

nal image is obtained decreasing both sample density and image resolution. An

interpolation is then applied to create the sub-sampled versions of the image.

Figure 5.21 shows representation of the pyramid filter. To obtain the different

resolution levels, the image is low pass-filtered and down-sampled by a factor of

2 to obtain the first pyramid level. The same operation is then repeated, until

all the required levels are obtained. Image details and patterns may be more

visible at one level rather than at another. For this reason, using a pyramid rep-

resentation of the real and virtual images provides for improved comparison. In

the described approach, four pyramid levels are used. For each level, the down-

sampled version of the two images is compared by computing a transform that

determines rotation of an image around a chosen centre. The pyramid version of

the virtual image is rotated around the pyramid version of the real image and

the rotation angles optimized. As a measure of similarity of the two images, the

Mattes mutual information is used [249]. Considering complete 2π rotation for

comparison may require up to 1 minute to reach convergence, which is too long for

VB procedures. Therefore, empirical investigation led to 36 rotations, one every

10 degrees, as a good trade-off between registration accuracy and computational

time. The optimal angle that determines the best match between the real and the

virtual image is then considered, and the airway 3D model is rotated accordingly.

Figure 5.22 shows the real and virtual frame images after image registration is

employed. This method was tested both on pre-clinical in-vitro and in-vivo stud-

ies. However, a future solution that allows for continuous image registration may

further improve the guidance experience. An alternative method may be to use

this approach in combination with a physical instrument to determine the roll

rotation of the bronchoscope or the use of 6 DOF sensing.
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Figure 5.22: After the image registration process, the virtual image is rotated to

match the real image.

5.4.5.5 Video Streaming

As shown in Figure 5.1, during the procedure the bronschope in connected to a

screen that shows the real-time video frames. However, having the real frame next

to the virtual image may further help the physician choose a correct path. For

this reason, the real video is streamed into Slicer, in a window next to the virtual

image. For this purpose, a WinStar video grabber [209] connects the scope screen

to the PC. BlazeVideo [210] is then used to visualize the transmitted images on

the PC. The PC is then connected via SplitCam [211] to allow visualization

of the images for different applications. To transmit the image to Slicer the

functionalities of the OpenIGTLink extension are exploited, using the open-source

software PLUSServer. PLUS supports numerous video capture devices, allowing

for the creation of a local server where the video can be transmitted. Orientation,

frame size and video format are adjustable, as well as the local server parameters

which have to be specified. Once this is complete, the system starts streaming

the endobronchial video stream.

5.5 Summary

In this chapter, the implementation of a new open-source method for VB to be

used in combination with EM tracking has been described. The method offers
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image-guidance navigation during bronchoscopy, and paves the way for potential

future work with virtual navigation for safe and reliable airway disease diagnosis.

The system is defined by two main parts, one pre-procedural, and the second one

for virtual navigation. The key components of the system are:

• An open-source method that extracts the airways centreline starting from

an airways label.

• A method for procedure planning, that provides different tools for the se-

lection of the target biopsy, nodule or airway, and constructs the optimal

path for navigation.

• Distance to target is updated in real-time and presented to the user.

• During the navigation, real and virtual images are shown and the CT image

is automatically aligned to the actual position of the probe to facilitate

navigation.

• Probe position compensation to the closest centreline position to overcome

possible registration errors.

• An image registration process that compares the real and virtual images

at every branching point of the airway model, rotating the virtual image

to match the real one. This compensates for the use of 5 DOF tracking

sensors.
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Chapter 6

Pre-clinical Testing and Results

6.1 Overview

In this chapter the testing that was carried out on the VB system coupled with

the EM tracking to verify performance and accuracy is described. The testing

methodology used is described and the results are outlined.

The system was tested on both in-vitro and in-vivo pre-clinical animal studies.

This serves as a precursor for future clinical work on human trials. First, the VB

technology was tested in-vitro in a breathing lung model to verify performance in

a simulated setting. Next, to further evaluate VB in a realistic setting, multiple

animal studies were carried out. This chapter details the different study parame-

ters, evaluation methods, and the results of navigation through the airways. The

following summarises the main results obtained:

• Using a VB system, pathways toward pre-defined targets were correctly

created.

• Using VB, targets were generally reached by the users, both by expert and

non-expert pulmonologists.

• System usability was measured using standard usability scales. User feed-

back after using the system was very satisfactory.
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• Pre-clinical in-vivo studies identified that few modifications need to be made

to the system towards the definition of an accurate and reliable method for

image-guided bronchoscopy.

6.2 Breathing Lung Model Evaluation

In this section, evaluation with a breathing pig lung model was explored. The

tests were conducted at the Irish Thoracic Society (ITS) Conference [250], that

took place in Cork, Ireland, in November 2015. Nine different specialist physicians

in the field of respiratory medicine were asked to navigate through the model lungs

in order to reach three pre-defined physical targets. The VB system was presented

on screen to the physicians who had to follow the different paths created in the

virtual environment to reach the regions of interest. At the end of the procedure, a

questionnaire was presented to the physicians to evaluate their general experience.

Time to reach the targets was recorded.

In this section, the tools used for the experimental setup are introduced.

Results of airway navigation through the airways are also described.

6.2.1 Bronchoscope

An Olympus 1T160 bronchoscope was used for the breathing lung tests. The

unit has a 6 mm OD with an instrument channel diameter of 2.8 mm. The

EM position tracking probe was inserted through the bronchoscopes instrument

channel for testing. The probe was connected to the EM tracking system, which

communicated probe position and orientation of the probe to a 3.6 GHz, 16 GB

RAM PC where both MATLAB and Slicer were running. Figure 6.1 provides a

diagram of the system setup.

6.2.2 EM Tracker

The transmitter board of the tracking system was mounted directly below the

lung vacuum chamber during the tests. The transmitter was rigidly aligned with

the vacuum chamber to reduce errors after registration due to relative motion

between the chamber and the transmitter. Once in place, the transmitter and
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Figure 6.1: Diagram of the system in the operating setup. In the figure, the

automated navigation system described in Secton 6.3.1.6 is also shown. This was

not used for testing with the breathing pig lung model.

sensors were first calibrated [8, 16] and then the registration was implemented.

To reduce registration errors, a landmark-based registration using eight easily

identifiable fiducials was used.

6.2.3 Airways 3D Model

The inflatable lung model used for the testing is the same used for the airway

segmentation testing as described in Chapter 4. To use the VB system, the

airways of the phantom were segmented and a 3D virtual model reconstructed

prior to the procedure. To achieve this, the airway segmentation described in

Chapter 4 was used. Optimal CT parameters (0.625 mm slice thickness, 60 mA

radiation dose, and LUNG convolution kernel) were used to scan the phantom

with a GE Discovery CT750 CT scanner. The model was kept inflated inside the

vacuum chamber during scanning to simulate a patient breath-hold. The setup

for scanning can be seen in Figure 6.2.

To further reduce artefacts in the CT scan, a low density packing foam was
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Figure 6.2: GE Discovery CT750 CT scanner with the inflated pig lung model.

used to raise the lungs away from the high density perspex box. To ensure

that the lung model matches the CT scan as much as possible when used for

the procedure, a photograph of the lungs in their uninflated position was taken.

This image was then printed to scale, laminated and placed at the base of the

vacuum chamber. This way, every time the lungs were placed in the perspex

chamber, the uninflated lungs were positioned to match the scanning position.

This requirement is significantly relaxed by the automated registration approach

defined in Section 5.4.4.2. While the lungs should nominally be in the same

position during testing as during the CT scan, over time the lung’s will deform

due to wear and tear. Therefore, to reduce errors, the CT scan should be taken

as close to the experiment time as possible. Ideally the experiment would take

place directly after the scan, without moving the lungs.

Figure 6.3 shows the vacuum chamber with the breathing lung model before

the CT scan in both the (a) deflated and (b) inflated state. Below the lungs, the

laminated figure can be seen.

Starting from the generated CT scan, 3D Slicer and the extension described

in Chapter 3 were used to generate the 3D virtual model of the phantom airways.

Figure 6.4 shows an example of 3D model obtained from the pig lung phantom.
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(a) (b)

Figure 6.3: The inflatable lung model setup for the CT scan when (a) inflated

and (b) deflated. Below each lung there is a laminated scaled image of the deflated

lungs used for lining up the model in a repeatable manner.

Figure 6.4: 3D model of the inflated pig lung model (0.625 slice thickness, 60 mA

radiation dose, LUNG convolution kernel).
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6.2.4 Breathing Lung Model

During testing, the lung model was alternated between an inflated and deflated

state, to simulate breathing of the lung and create a more realistic test environ-

ment. The pressure was adjusted until it matched the level during the CT scan

of the lung, and then decreased, to create a breathing cycle set to 5.3 seconds,

where simulated inhalation was enabled for 27% of the period, and exhalation

occupied the remaining time.

6.2.5 Virtual Bronchoscopy: Pre-Processing

The Slicer environment was set-up for virtual navigation and the video frame from

the bronchoscope’s camera streamed as described in Section 5.4.5.5. Next, three

different targets were selected in order of difficulty (red, blue and green). The

position of the three targets are shown in Figure 6.5. Physical targets made of

Blu-TackTM (volume < 5mm3) were placed within the model at the corresponding

positions. These simulated the presence of endobronchial nodules within the

airway. The first target was used for training with the image-guided navigation

system. For this reason, the target was placed in easy reach in the first branching

point of the right main bronchus (red dot in Figure 6.5). The second target

was placed at the second branching point of the left main bronchus (blue dot

in Figure 6.5). Finally, the last target, the most challenging for navigation, was

placed inside a small branch by the fifth bifurcation in the right main bronchus

(green dot in Figure 6.5). Routes to these target were automatically generated

in Slicer and all computed paths and VB images evaluated to ensure that no

artefacts were present, as determined by visual inspection of the CT image.

6.2.6 Virtual Bronchoscopy: Image-Guided Navigation

All nine participants were right handed volunteers of different ages and medical

experience in the field of respiratory medicine. Table 6.1 summarizes details

of the participants in terms of age, sight corrected vision, training grade and

number of previous bronchoscopies performed. Before the procedure, the goal

of the research was explained to all volunteers and they were briefly instructed
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(a) (b)

Figure 6.5: Position of the three targets inside the airways. Two different views

are shown. The first, second, and third targets are indicated in red, blue, and

green, respectively. First and third targets were placed in the right lung. The

second target was in the left lung.

Participant Right Sight Training # of Previous

ID Age Handed Corrected Grade Bronchoscopies

Vision Performed

V1 < 40 Yes Yes SHO 0

V2 35 Yes No 1 > 50

V3 37 Yes Yes Faculty > 50

V4 30 Yes Yes 3 (SHO) 0

V5 38 Yes No 2 (Reg) < 20

V6 40 Yes No 2 (Reg) < 20

V7 50 Yes Yes 5 > 50

V8 52 Yes Yes 5 > 50

V9 35 Yes No 5 > 50

Table 6.1: Details of volunteers participating to the VB system test. SHO stands

for senior house officer, while Reg indicates registrar physician (junior clinical fel-

low).
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in the methodology used. They were then required to navigate, one at a time,

towards the different targets. They were not aware of the target’s location, but

to reach the region of interest they had to follow the created path on the virtual

environment. Once in place, the virtual target placed on the 3D model, initially

red, changed colour to light blue, to help realize that the target was reached.

The physical Blu-Tack target (visible on the real video from the bronchoscope)

was touched to consider the navigation concluded. When one target was reached,

the next one was shown along with the corresponding path and the procedure

repeated until all three targets were navigated. For each target, time required for

guiding the physician to reach the region of interest was recorded.

6.2.7 System Usability Scale Questionnaire

After the procedure was completed, all participants were asked to complete a

questionnaire to evaluate their experience and usability of the VB system. Each

was asked five questions about the overall system usability and value:

• How was the overall ease of use of the system? (Poor to excellent)

• Does the system accurately replicate the clinical setting? (Not at all to

excellent)

• How valuable do you consider the system as a training tool? (Not at all to

extremely valuable)

• How valuable do you consider the system as a clinical tool? (Not at all to

extremely valuable)

• Would you use image-guided navigation in bronchoscopy? (Yes-No)

The second part of the questionnaire concerned the system usability. The system

usability scale (SUS) [251, 252] method was used to evaluate usability. This is a

simple, ten-part scale giving a global view of subjective assessments of usability.

The ten questions are characterized by five response options; from strongly agree

to strongly disagree:

1. I think that I would like to use this system frequently.
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2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to

use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very

quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

All statements required a response and if a user felt that they could not respond

to a particular item, they were asked to mark the centre point of the scale. Every

option for each item is assigned a particular score, from 0 to 4. For items 1, 3,

5, 7, and 9 the score contribution is the scale position minus 1. For items 2, 4,

6, 8, and 10, the contribution is 5 minus the scale position. However, scores for

particular items are not meaningful on their own. To calculate the SUS score,

first all the score contributions from each item has to be summed. Then, the

sum of the scores must be multiplied by 2.5 to obtain the overall value of system

usability. SUS scores have a range of 0 to 100, but this is not a percentage.

Based on research, a SUS score above a 68 would be considered above average

and anything below 68 is below average. However, the best way to interpret the

results involves “normalizing” the scores to produce a percentile ranking [253].
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Participant ID Target 1 Target 2 Target 3

V1 58 80 40

V2 20 17 17

V3 45 34 36

V4 59 82 241

V5 200 82 130

V6 40 20 32

V7 25 15 68

V8 10 18 40

V9 57 55 62

Average 58.2 44.8 74.0

Std. Dev. 56.5 30.04 70.7

Table 6.2: Time (in seconds) required to each participant to reach the three

targets.

6.2.8 Results

All targets were reached by the users. Table 6.2 shows the times required to every

user to reach the three targets. On average, target one was reached in 58.2±56.5

seconds, target two in 44.8 ± 30.04 seconds, and target three in 74.0 ± 70.7 sec-

onds. As expected, target three was the most complicated to reach, while the

high time required to reach target one (placed in a quite easy to reach posi-

tion), can be explained by the fact that participants were familiarizing with the

bronchoscope and the system. In general, considering that volunteers had never

tried the system previously and could not analyse the CT image or the lungs

prior to the procedure, this can be considered as a positive result, indicating the

help that the image-guided system can provide. Moreover, even participants who

never performed a bronchoscopy before were able to reach targets in reasonable

clinical time frames, indicating that the image-guided system helps choose the

correct path without any previous experience or image analysis. Comparison

with blind navigation, namely navigation without help of the VB system, would

give a better indication of the help the system could provide in a blinded compar-

ative study. However, this was not possible in the present study to to the small
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cohort and as the results would be biased by the participants already knowing

the position of the target. The end points of the study were technical feasibility

rather than comparative analysis. While a blinded study is certainly something

to be included in the future, the limited cohort number meant that such analysis

was difficult to achieve to date. Table 6.3 reports the results in terms of overall

satisfaction of the participants. In particular, having a virtual reconstruction of

the interior of the airways seems to help the user navigate within the lung without

the need to be an expert of the field, when compared to standard bronchoscopy.

An important aspect to consider is that the test was performed to evaluate the

entire system (EM tracking with VB) and not only VB. As shown, the VB system

has been considered easy to use and accurate in replicating the clinical setting.

Also, participants evaluated the system as valuable both as a training and as a

clinical tool. All the volunteers stated that they would use the system during a

bronchoscopy procedure.

Finally, individual results obtained on system usability are reported in Table

6.4. Sixty-eight resulted as the 20th percentile for this test, indicating that 80%

of participants found the system usable above average. In fact, as shown by

Table 6.4 only two participants scored the system below 68, with V6 close to

the usability limit. Furthermore, comments of the participants report that most

of them preferred to follow the path in the virtual environment to move the

bronchoscope, rather than looking at the real image. The results obtained in the

pre-clinical setting are promising and show that an image-guided system coupled

with electromagnetic tracking to recognize the current position of the scope inside

the lung may be of great benefit for diagnosis and assessment of pathological

conditions in the lung.

6.3 Tests in Live Animal Setting

Two live animal studies evaluated the VB algorithm. Both tests were approved by

both the Irish Department of Health and UCC Animal Experimentation Ethics

Committee and followed similar protocols, with incremental improvements to

instrumentation between studies. As well as testing the VB system, the two

tests were also used to evaluate performance of a novel semi-automated robotic
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Participant ID Q1 Q2 Q3 Q4 Q5 (Y/N)

V1 4 4 5 4 Yes

V2 4 4 2 4 Yes

V3 4 4 4 4 Yes

V4 2 4 5 5 Yes

V5 4 5 5 5 Yes

V6 5 4 4 4 Yes

V7 4 3 5 5 Yes

V8 5 4 4 3 Yes

V9 4 3 5 4 Yes

Average 4 3.89 4.33 4.22 //

Std. Dev. 0.87 0.6 1 0.67 //

Table 6.3: Results of overall satisfaction of participants. For all questions a score

1-5 was requested. For question 1 (Q1), 1 represented poor and 5 excellent. For

Q2, 1 was not at all, whereas 5 stood for excellent. For Q3 and Q4 scores ranged

from not al all (1) to extremely valuable. The test aimed at evaluating the entire

system, composed of both the EM tracking and VB. In this sense, physical setup

deficiencies cannot be addressed separately to VB.
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Participant ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Usability

V1 4 2 5 4 4 2 5 1 4 2 77.5

V2 4 1 4 2 4 2 5 2 3 2 77.5

V3 3 2 4 2 4 4 2 2 3 3 57.5

V4 5 2 3 3 4 3 5 2 4 3 70

V5 5 2 5 2 5 1 5 1 4 2 90

V6 4 1 4 4 4 2 3 3 4 3 65

V7 4 1 4 1 4 2 3 2 4 3 75

V8 5 1 5 4 3 2 3 1 5 4 72.5

V9 4 1 4 5 4 1 2 2 4 1 70

Average 4.22 1.44 4.22 3.00 4.00 2.11 3.67 1.78 3.89 2.56 72.78

Std. Dev. 0.67 0.53 0.67 1.32 0.5 0.93 1.32 0.67 0.6 0.88 9.05

Table 6.4: System usability for all participants. Each question was given a score

from 1 to 5, with 1 indicating strongly disagree, and 5 strongly agree. Final usability

score for each volunteer was given by multiply by 2.5 the sum of individual scores.

Scores higher than 68 indicate usability above average.

navigation method, compared to manual navigation, and to investigate novel

radiopaque tumour models [254]. In both tests, tumour models were placed in

different positions of the animals’ lungs and image-guided navigation was tested.

Navigation success, defined as correctly guiding the physician to the final pre-

defined target was undertaken. Tumour model samples from the target’s positions

were extracted to validate the navigation. Finally, time required to guide the

physician to the different regions of interest was recorded. Animal studies were

achieved using the same bronchoscope and the EM tracking system used for the

pre-clinical testing. Protocol and methods were similar for both studies, and the

procedure was refined with preceding studies. Here the protocol and methods

used for the two studies are first described. Results achieved using the VB system

compared to standard bronchoscopy are then presented.

6.3.1 Protocol and Methods

The first test was carried out using a 40 kg male Landrace pig, while during the

second test a 22 kg female Landrace swine was used. In both cases, the animal

was sedated, intubated and anaesthetised. Treacheal intubation was achieved
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with a 8.5 mm endotracheal tube (Blue Line SACETT tracheal tube from Smiths

Medical International, UK). After being intubated, the pig was subject to CT

scanning with a GE 64 slice Discovery VTC scanner. CT scan parameters were:

0.625 mm slice thickness, 60 mA radiation dose (at 120 kV) and standard con-

volution kernel. Figure 6.6 shows the pig during the scanning process. This

pre-scan was used as a comparison image to evaluate the contrast on CT images

of different tumour models placed in the pig lungs.

Figure 6.6: The pig during one of the scanning processes.

6.3.1.1 Endoscopic Placement of Tumour Models

To create targets for navigation, two different tumour models were investigated.

These models were tested on the breathing pig phantom described in Chapter 3

prior to the animal study. Beef tripe proved the optimal tumour model [254]. The

tumour model was created using fresh beef tripe segments saturated overnight in

300 mg I/ml Omnipaque solution with injection of Omnipaque and food colouring

into the segments immediately prior endoscopic injection. For the first study,

seven separate tripe samples were placed in the lungs (two in the upper right

lobe, two in the lower right lobe and three further positioned in the upper left

lobe), while during the second study six tumour models were considered (one

in the right medium lobe, one in the bronchus sus, one in the left upper lobe,

one in the left lower lobe, one in the right lower lobe, and a final one in the
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right upper lobe). The tumours were endoluminally advanced by bronchoscope

and endoscopic forceps. Each tripe segment measuring less than 1 cm3 and CT

fluoroscopy was used to confirm placement position. Figure 6.7 gives an example

of some tripe-based tumour models as they appear on a CT scout image. A

coronal CT slice containing the models, c-arm x-ray image taken in real time

during placement of the tumours, and images of the tripe models prior to insertion

and positioned in-vivo are also shown. The 3D airway model of the pig’s lungs

is overlaid on the fluoroscopy image to better indicate position of the tumour

models.

Figure 6.7: Tripe tumour models visible in lower right and left lobes. A coronal

CT slice, a C-arm X-ray image taken in real time while placing the models, and

images of the tripe models prior to insertion and positioned in-vivo are shown. The

3D airway model is also visible overlaid to the CT scout image [254].

6.3.1.2 Airways Segmentation

Following the placement of the tumour markers, a second CT with identical scan

parameters to the first was undertaken. This facilitated visualisation of the endo-

luminal tumour models within the airways and enabled 3D segmentation in the

Slicer platform. Airway segmentation and 3D model reconstruction was accom-

plished by placing a seed point within the trachea in the CT image and using
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the method described in Chapter 3. During the first study, segmentation was

achieved in 6 minutes on a Dell Precision M4800 with i7 Intel quad-core pro-

cessor operating at 3.6 GHz, with 8 GB of RAM. For the second study, airway

segmentation was achieved in 2.38 minutes on the same machine, with an im-

proved 16 GB of RAM. Figure 6.8(a) shows the 3D airway model obtained from

segmentation of the airways in the first study, while Figure 6.8(b) shows the

airway model obtained from the second pig.

(a) (b)

Figure 6.8: The 3D rendered airway model as obtained during (a) the first and

(b) the second study.

6.3.1.3 Pre-Procedure

Before starting bronchoscopy navigation, a number of pre-procedure steps were

executed. First, the VB system was opened in 3D Slicer, the airway label and

3D model were selected and the airway’s centreline extracted. This operation

required 11 minutes in the first study and 9.45 minutes in the second, on the

same machine used for airway segmentation. An expert physician individually

identified the tumour models by visual inspection of the CT image. Seven and six

independent tumour model targets were identified in both lungs during the first
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Target ID Distance to Location

Target (mm)

T1 91 Right Middle Lobe

T2 65 Left Upper Lobe

T3 76 Right Lower Lobe

T4 89 Right Lower Lobe

T5 104 Left Lower Lobe

T6 212 Left Upper Lobe

T7 163 Right Middle Lobe

(a)

Target ID Distance to Location

Target (mm)

T1 171 Right Middle Lobe

T2 120 Bronchus Sus

T3 166 Left Upper Lobe

T4 202 Left Lower Lobe

T5 208 Right Lower Lobe

T6 148 Right Upper Lobe

(b)

Table 6.5: Distance (in mm) of the targets from the bronchus sus and location in

the pig lungs for the (a) first and (b) second study.

and second study, respectively. These were marked with manually placed virtual

fiducials in 3D Slicer. Table 6.5 reports distances from bronchus sus and location

of the targets for both studies, whereas in Figure 6.9 the airway models with the

overlaid markers are presented. Finally, virtual navigation pathways were created

for all targets.

6.3.1.4 Registration

For both studies a landmark-based registration method was utilised. Five virtual

landmarks placed in different positions were used; one in the bronchus sus, one in
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(a) (b)

Figure 6.9: A 2D view of the airway model showing the position of the placed

tumour markers for the (a) first and (b) second study. The different colours are

used here to distinguish the targets.

the main carina, two in the secondary and tertiary left carinae, and the last one in

the right secondary carina. These positions were manually identified and touched

with the sensor placed at the tip of the bronchoscope via the scope instrument

channel, while the same points were manually identified and marked in the virtual

3D airways. Registration was then performed in MATLAB.

6.3.1.5 Image-Guided Navigation to Targets

During the first study, after the pre-procedure steps, a second expert physician

undertook manual navigation towards the targets. The EM tracking sensor was

inserted in the bronchoscope working channel and each target was successfully

identified and navigated using manual bronchoscopic steering. At the end of

the procedure, automated navigation, described in Section 6.3.1.6, and biopsy

was attempted for targets 1 and 5. During the second study, a second expert

physician undertook only automated navigation for all targets.

As in the breathing pig lung model, once reached and touched the virtual tar-
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Figure 6.10: The VB system as used by the physician during the first animal

study.

gets changed colour from red to light blue. Roll rotation compensation, described

in Chapter 5, was utilised only during the second study, after being optimised.

Figure 6.10 shows the VB system as used by the physician during the procedure,

while in Figure 6.11 the semi-automated system used by the physician in combi-

nation with VB during the second animal trial is presented. For each navigated

target, the physician was required to take a tissue sample of the tumour model

using a pulmonary biopsy forceps (2 mm Radial Jaw 4 forceps from Boston Sci-

entific, see Figure 6.12) inserted through the bronchoscope instrument channel.

6.3.1.6 Automated Navigation

Figure 6.13 shows the physician using the joystick to navigate inside the lung

and reach the target. The automated navigation system consists of a catheter

specifically designed for use with flexible bronchoscopes incorporating a 1.5 mm

working lumen for endoscopic instruments and 2.65 mm outer diameter. The

catheter tip incorporates the tracking sensor and allows for continuous tracking

regardless of the inserted instrument type or exchange. The catheter is connected

to a motorised actuation system. The proximal end of the catheter contains
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Figure 6.11: The semi-automated joystick-based navigation system as used by

the physician in combination with VB.

Figure 6.12: Example of forceps as utilised to biopsy the different targets.

four pull wires whose tension can be monitored through individual force sensing

loadcells on each wire member (see Figure 6.14). A joystick connected to the

loadcells allows for different forces on each of the wires to steer the catheter’s
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Figure 6.13: The physician used the joystick to navigate inside the lung.

tip. As well as the tumour models, also the catheter automation system was

Figure 6.14: The catheter is connected to a motorised system where four force

sensing loadcells apply a different tension on the four wires connected to the

catheter’s tip based on the position of the joystick.

tested in the breathing lung model prior to the animal study [73]. During the

trial ex-vivo, the automated joystick control was used for catheter manipulation

to the tumour target following positioning of the bronchoscope approximately

5 cm from the target. Once the navigated catheter was at the tumour target,

187



6. PRE-CLINICAL TESTING AND RESULTS

biopsy was achieved with the same pulmonary biopsy forceps used during manual

navigation inserted through the central lumen of the automated catheter.

6.3.2 Results: First Study

During the first study, all the tumour models were successfully navigated using

manual bronchoscopic steering with virtual navigation. An average time of 9.71

seconds was necessary for navigation to the targets. Table 6.6 reports the spe-

cific time required for each target. For each tumour model, a tissue sample was

extracted and visually inspected to confirm successful targeting of the region of

interest. Tumour 1 and 5 were also successfully navigated with automated nav-

igation, as confirmed by biopsy of the tumour models. User satisfaction at the

system was noted, although it was noted that registration between the real and

virtual world should be improved. In deeper branches the centreline compensation

method is not sufficient to guarantee accurate guidance. Real and virtual frame

images were often mismatched when the bronschoscope was rotated. Therefore,

a method to compensate for the use of 5 DOF sensing should be implemented to

help align the two images.

Target ID Time to Reach Target (sec)

T1 18

T2 14

T3 10

T4 8

T5 6

T6 7

T7 5

Average Time 9.71

Std. Dev. 4.71

Table 6.6: Time (in seconds) required to reach every target using VB.
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6.3.3 Results: Second Study

During the second study, four targets were successfully navigated, whereas targets

3 and 6 were not reached, with the physician trying for more than 5 minutes. This

was probably due to the fact that targets 3 and 6 were found to have moved from

their original location. Table 6.7 reports the time required to reach every target.

An average time to target of 45.75 seconds was required. In terms of image

intensity, the placed tumour models proved more representative of real tumours

on CT scans.

This study aimed at testing the robotic navigation system with VB. During

navigation, the image registration approach successfully aligned real and virtual

images at branching points and improved user satisfaction with the VB system

was noted. However, the study outlined a few aspects to be improved for fu-

ture work. First, the sensor at the tip of the catheter is fragile and easy to

break. Design of the catheter should be modified to guarantee higher reliabil-

ity. Also, the physician noted mis-matching between joystick movements and

catheter orientation. To this end, a label indicating how to insert the catheter

into the bronchoscope’s channel may help. Finally, landmark-based registration

did not provide true alignment between real and virtual images, and centreline

compensation cannot be considered a long-term solution. Removing the centre-

line extraction stage would also reduce time required in pre-procedural planning.

For this purpose, an optimized landmark-free registration, such as the one de-

scribed in Chapter 5, represents a possible solution. Accurate testing for this

method should be carried out with animal studies to evaluate the benefits which

the approach brings to VB. A comparison between the two registration methods

should be performed.

6.3.4 Conclusions

The procedure for the two animal studies described was refined by means of

preceding studies, used mainly to evaluate the EM tracking system. The VB

system described in Chapter 5 was tested as applied to the EM tracking system

developed at UCC, both with manual navigation of the bronchoscope (first animal

study) and automated navigation (second trial).
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Target ID Time to Reach Target (sec)

T1 115

T2 20

T3 Not reached

T4 25

T5 23

T6 Not reached

Average Time 45.75

Std. Dev. 46.21

Table 6.7: Time (in seconds) required to reach every target using robotic steering

and VB. Targets 3 and 6 were not reached.

Compared to standard bronchoscopy, advantages of having a system that auto-

matically creates a virtual reconstruction of the inside and outside of the airways

tree are multiple. With standard bronchosopy, the physician is provided only

with the video from the camera at tip of the bronchosope. Therefore, the video is

used to “guess” the current location and move toward the desired region. This is

a difficult operation that requires training and high experience. The VB system

described here works as a GPS system for the lung, which automatically creates

and provides pathways toward the target regions of interest. Beside guiding the

user during navigation, the automatic creation of the pathway also avoids the

physician the tedious operation of analysing the patient’s CT scan by scrolling

trough 2D images to mentally reconstruct the pathway. Moreover, the system

updates and presents in real-time the distance to target, so that the physician is

always aware of the exact location of the bronchoscope. This would help blind

biopsy, especially in peripheral regions that are not reachable with the current

technology.

The two animal studies proved the usability and accessibility of the developed

VB system. Although direct comparison with commercial systems is not possible,

the system seems to improve some key aspects. Reconstruction of the airways

3D model does not require specific CT parameters, as shown in Chapter 4, and

manual interaction is kept as low as possible. Therefore, the system paves the
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way for the development of an optimized VB system that allows for automatic

navigation and blind biopsy of peripheral lung nodules. To this end, improve-

ments to the overall system are required. Among them, the registration process

and roll rotation compensation should be improved and optimized and pathways

should be created in real time during navigation.
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Chapter 7

Summary and Future Work

7.1 Summary of Thesis Contributions

This thesis presents the development of the first open-source virtual bronchoscopy

system for image-guided navigation. The system has been developed exploiting

the functionalities of the freely available software package 3D Slicer. A system

for nodule malignancy prediction starting from CT images has been developed

and validated on clinical cases. This method paves the way for the development

of a complete CAD system to detect and classify nodules and help the physician

decide whether to proceed with biopsy.

An airway segmentation method has been implemented to create a 3D ren-

dered model of airways starting from chest CT images. Performance of the system

has been evaluated on clinical cases, compared to other groups’ results and tested

on a breathing pig lung model and live animal evaluation. This is the first fun-

damental step to the development of a system for virtual navigation inside the

airways. This method has been developed, tested, and evaluated both in the pre-

clinical and clinical settings, in combination with an electromagnetic navigation

platform.

The novel contributions of this thesis are summarised here.

• The design of a novel open-source algorithm for nodule malignancy predic-

tion has been presented (Chapter 3). The system requires the user to specify

the nodule location and automatically defines nodule characteristics, such as
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size, location, edge shape, wall thickness and calcification presence. These

characteristics are then combined with clinical characteristics to determine

probability of malignancy. Reliability of the system has been validated on

real clinical cases. The system paves the way for potential future work

aimed at automatic identification and classification of lung nodules.

• The first open-source algorithm for airway segmentation starting from chest

CT images has been proposed (Chapter 4). The method can be used for

both human and animal (porcine, canine) images and provides a frame of

reference for comparison of results using local datasets. Also, the algorithm

can be easily modified and extended according to local needs.

• The airway segmentation method has proven comparable with other teams’

methods, as validated by participating in the EXACT’09 challenge, and is

reliable across varying CT parameters, as verified using the breathing pig

lung model (Chapter 4).

• A novel method to evaluate leakage presence on segmented airways has

been designed (Chapter 4). This can be easily reproduced by other teams,

thus providing a general evaluation system to provide a better method to

compare results.

• A novel open-source virtual bronchoscopy system for image-guided naviga-

tion has been implemented and described (Chapter 5). This system has a

modular structure and has been optimized for usage with an electromag-

netic tracking system.

• The VB system provides different tools for helping during pre-procedure and

navigation steps. Pathways towards the user-specified regions of interest

can be easily defined, and methods for compensation of registration errors

as well as for roll rotation of the bronchoscope have been designed and

optimized (Chapter 5).

• A new method for registration between real and virtual environment has

been proposed and validated (Chapter 5). The method improves perfor-

mance of registration and drastically reduces user interaction.
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• Finally, the use of the VB system has been tested and evaluated in the pre-

clinical setting, using the breathing pig lung phantom, and in live animal

studies (Chapter 6). During different pre-clinical tests, landmark-based

registration was used. The breathing model was successfully navigated by

nine physicians from respiratory medicine, and usability of the system was

validated with two live studies.

7.2 Proposals for Future Work

7.2.1 CT Images Noise Removal

A fundamental limitation of airway segmentation algorithms is the presence of

noise on chest CT images, due to multiple causes. The noise may cause a blurring

effect of narrow airways that may be confused with the surrounding parenchyma.

For this reason, algorithms are currently unable to segment more than 5-6 airway

generations of the 23 composing the lungs. Reducing noise on chest CT images

may help improve the segmentation results. Toward this end, the use of a non-

local means (NLM) filter that uses a multiscale approach aimed at enhanching

airways on the image may be a possible solution. Similar approaches have been

succesfully proposed for magnetic resonance images (MRI) [255] and could be

extended to CT images.

7.2.2 Airway Segmentation Improvement

As describe in Chapter 3, the proposed airway segmentation method is compara-

ble with other teams’ algorithms and is reliable across different CT parameters.

However, the algorithm is not reliable for segmenting deeper branches, that be-

come too narrow to be safely distinguished from the parenchyma, causing leakage.

Also, the algorithm is semi-automatic, requiring the user to specify a seed point

within the trachea. A first improvement may automatically find the trachea on

the CT image, by searching for a round-shaped area with low intensity values

(< −800 HU) on the first axial images of the CT scan. A point inside this area

may be used as a seed point for region growing segmentation. The algorithm
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currently splits the volume into trachea, right, and left lungs, that are segmented

separatedly to improve segmentation results. A further improvement may be

splitting the volume into smaller regions (e.g., at every bifurcation point) and

segment each volume independently. Alternatively, the proposed algorithm could

be used as a starting point for a more sophisticated method aimed at segmenting

peripheral branches. The development of a method to automatically identify and

eliminate leakage during and after the segmentation may be of great help in this

goal.

7.2.3 Registration Improvement

A fundamental limitation of many image-guided systems based on EM tracking is

registration between the real and virtual environment. As described in Chapter

5, a novel and simple method that improves performance of a landmark-based

registration was proposed. However, this system is affected by possible deforma-

tion over time of the lungs and by breathing of the patient. In fact, CT scans of

the patients are generally acquired at full inspiration. Also, the method requires

minimal user interaction, consisting in indicating the branches position and exe-

cuting a balanced survey. Improvements to this method may involve automatic

labelling of the branches and more sophisticated breathing compensation. For

this purpose, a respiratory gated registration system may be examined. This

consists in using a second sensor placed on the patient’s chest to take into ac-

count the respiratory phases of the patient and track the probe’s positions during

the inhalation phase only. Moreover, integration of a lung deformation model

should be taken into account for the future. Beside helping future testing with

the breathing pig lung model, this model might help improve the registration

process when executed days or months after the CT scan.

7.2.4 5 DOF Sensor Compensation

An important issue observed during virtual navigation is the mis-alignment, in

terms of roll-rotation, between the real and virtual camera. This is due to the

5 DOF sensor used for the tracking, that does not provide roll information. An
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intensity-based image registration method that finds the optimal rotation an-

gle between the real and virtual frame was proposed. However, this method

is relatively slow compared to the tracking speed and is affected by the image

quality. Therefore, the method is triggered only at bifurcations, where branch

characteristics are easily visible. Besides hardware solutions, such as the use of

sensor to be placed on the bronchoscope to identify the applied roll rotation,

an improvement to image registration may involve using a computationally effi-

cient inverse-compositional formulation as proposed by Merritt et al. [256]. This

method was introduced to register real-time the real and virtual world, but a

similar approach may be implemented to reduce computational costs of image

registration and avoid delays. Another option consists in using a features-based

image registration, to be combined with the intensity-based approach. The main

drawback of this idea is that extraction of the characteristics from the two images

may not be straightforward.

7.2.5 Real-time Pathway Updating

A challenge noted during image-guided navigation is the static nature of the

virtual pathway model. The creation of the pathway is completed before the

procedure starts, as it is relatively computationally expensive. During the pro-

cedure, if the virtual camera’s focal point is not aligned with the the pathway, it

may disappear from the screen. Hence, a method to provide real-time updates

of the path computation should be examined. Toward this end, one option is

the creation of an additional piece of pathway every time the original pathway

exits the virtual screen. This added path would guide the physician toward the

original path. Alternatively, a new method that uses the created path to compute

all possible viewing directions before the procedure may be computed. However,

this approach may add time to the pre-procedure phase.

7.2.6 Nodule Computer-aided Detection System

In Chapter 7, a semi-automatic algorithm for nodule malignancy prediction was

described. The system requires indication of the nodule’s location and automati-

cally extracts radiographic characteristics. The end goal of the research is to help
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the physician identify the nodule and decide whether to proceed with biopsy. To-

ward this end, a complete CAD system that automatically identifies and classifies

the nodule should be developed. A common approach for nodule detection and

classification involves using machine learning algorithms, exploiting artificial neu-

ral networks. Once the nodule is properly identified and classified, the proposed

method might be employed to determine nodule malignancy. However, one of the

main aspects to investigate is computational costs, as CT images usually consists

of around 500 image whose analysis may require high computation costs.
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