
Title Crowd-sensing for smart city applications: towards solving crowd-
sensing data challenges by introducing edge and cloud services

Authors Alkhelaiwi, Aseel T.

Publication date 2019

Original Citation Alkhelaiwi, A. T. 2019. Crowd-sensing for smart city
applications:towards solving crowd-sensing data challenges
by introducing edge and cloud services. PhD Thesis, University
College Cork.

Type of publication Doctoral thesis

Rights © 2019, Aseel T. Alkhelaiwi. - http://creativecommons.org/
licenses/by-nc-nd/3.0/

Download date 2024-04-23 13:35:37

Item downloaded
from

https://hdl.handle.net/10468/7787

https://hdl.handle.net/10468/7787

Crowd-sensing for Smart City
Applications

Towards solving crowd-sensing data
challenges by introducing edge and

cloud services

Aseel T. Alkhelaiwi
MSC, BSC. (HONS) COMPUTER SCIENCE

113224229
Thesis submitted for the degree of

Doctor of Philosophy

NATIONAL UNIVERSITY OF IRELAND, CORK

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

January 2019

Head of Department: Professor Cormac J. Sreenan

Supervisor: Dr. Dan Grigoras

Research supported by King Saud University in Saudi Arabia

Contents

List of Figures . vi
List of Tables . vii
List of Algorithms . viii
Abstract . x
Acknowledgements . xi

1 Introduction 1
1.1 Mobile Cloud Computing and Crowd-sensing 1
1.2 Motivation . 2
1.3 Challenges . 3

1.3.1 Challenges Related to the User End 3
1.3.2 Challenges Related to the Cloud End 3

1.4 Summary of Thesis Contributions 4
1.5 Thesis Structure . 6
1.6 Publications . 7

2 Literature Review 8
2.1 Introduction . 8
2.2 Background . 9

2.2.1 Cloud Computing . 9
2.2.2 Mobile Cloud Computing 9
2.2.3 Crowd-sensing . 10

2.3 Mobile Cloud Sensing: Related Work 11
2.3.1 Crowdsourcing . 12

2.3.1.1 Crowdsourcing by Collecting and Searching Data 13
2.3.1.2 Crowdsourcing with Roads and Traffic 14
2.3.1.3 Crowdsourcing and Location-based Services . . 15
2.3.1.4 Crowdsourcing and Assigning Tasks 17

2.3.2 Crowd-sensing . 17
2.3.2.1 Environmental 18
2.3.2.2 Situational . 19
2.3.2.3 Social . 21
2.3.2.4 Offering Incentives and Offloading Data 23
2.3.2.5 Crowd-sensing Architectures 25

2.3.3 Context Awareness . 28
2.3.3.1 Middleware for Provisioning Context-aware Mo-

bile Cloud Services 29
2.3.4 Discussion . 30

i

CONTENTS

2.3.5 Participatory and Opportunistic Contributions 31
2.4 Smart City Applications . 31

2.4.1 Special-purpose Systems 34
2.4.1.1 Traffic in Smart Cities 35

2.4.2 General-purpose Systems 36
2.4.3 Discussion . 37

2.5 Chapter Summary . 38

3 Design and Architecture 40
3.1 Introduction . 40

3.1.1 What are Crowd-sensed Data? 40
3.2 Challenges . 41
3.3 Requirements . 42

3.3.1 General Requirements 42
3.3.2 Specific Requirements 43
3.3.3 Non-functional Requirement 45
3.3.4 Performance Requirements 45

3.4 Design . 46
3.5 System Architecture Layers . 52
3.6 Comprehensive System Features 54
3.7 Chapter Summary . 55

4 Edge Services for Crowd-sensed Data 56
4.1 Introduction . 56
4.2 Problem Formulation . 57
4.3 Origin and Trustworthiness of Data 57

4.3.1 Previous Studies . 59
4.3.2 Design . 60

4.3.2.1 Traceability Requirement 65
4.3.3 Use Cases . 65
4.3.4 Discussion . 67

4.4 Scheduling Data . 68
4.4.1 Previous Studies . 69
4.4.2 Scheduling Service Requirement 70
4.4.3 Design . 70
4.4.4 Evaluation . 72

4.4.4.1 Evaluation setup 72
4.4.4.2 Evaluation result 74
4.4.4.3 Discussion . 75

4.5 Single-precision Floating Point Compression 76
4.5.1 Previous Studies . 77

4.5.1.1 Scientific Data 77
4.5.1.2 Audio and Image Compression 78

4.5.2 Compression Design . 78
4.5.2.1 Location-based Data Compression 78
4.5.2.2 Accelerometer Data Compression 80

4.5.3 Decompression . 82

Crowd-sensing for Smart City Applications ii Aseel T. Alkhelaiwi

CONTENTS

4.5.3.1 Location-based Decompression 84
4.5.3.2 Accelerometer Decompression 84

4.5.4 Evaluation . 85
4.5.4.1 Evaluation setup 85
4.5.4.2 Evaluation Result 85
4.5.4.3 Comparison . 85

4.6 Chapter Summary . 86

5 Data Management in the Cloud: Cloud Services 88
5.1 Introduction . 88
5.2 Partitioning Method . 89
5.3 Previous Studies . 92
5.4 Design . 94

5.4.1 Services . 99
5.4.2 Use Cases . 101

5.5 Evaluations . 103
5.6 Discussion . 103
5.7 User Agreement Agent (Notification Agent) 104
5.8 Chapter Summary . 105

6 Experimental Evaluations 106
6.1 Introduction . 106
6.2 Use Case 1: Exploiting Edge Services 107

6.2.1 Experiment Setup . 107
6.2.2 Experiment Results . 109
6.2.3 Edge Services Analysis 115
6.2.4 From the Edge to the Cloud 120

6.3 Use Case 2: Exploiting Data Reduction Services in the Cloud . . 120
6.3.1 Experiment Setup . 121

6.3.1.1 Consumers Interface Setup 122
6.3.1.2 Cloud Data Storage Setup 124

6.3.2 Partitioning Scenarios and Output 124
6.3.2.1 Partitioning Analysis 127
6.3.2.2 Comprehensive Services Evaluation 128

6.3.3 Reduction Services Scenarios and Output 128
6.3.3.1 Reduction Services Analysis 131
6.3.3.2 Comprehensive Services Evaluation 131

6.4 Architecture Highlights . 132
6.4.1 Does the Architecture Meet the Performance Require-

ments? . 132
6.5 Chapter Summary . 134

7 Conclusions and Future Work 136
7.1 Research Summary and Benefits 136
7.2 Limitations and Future Work . 138

7.2.1 Implementing More Services 138
7.2.2 Improving Existing Services 138

Crowd-sensing for Smart City Applications iii Aseel T. Alkhelaiwi

CONTENTS

7.2.3 Conducting More Evaluations and Experiments 139
7.2.4 Extending the Crowd-sensing Area 139
7.2.5 Using Different Operating Systems 140
7.2.6 Privacy and Security . 140
7.2.7 Offering Incentive Mechanisms 140

A “SenseAll” Mobile App 158
A.1 Login and Registration Screen 158
A.2 Dashboard Screen . 159
A.3 Sensing Screen . 159
A.4 Logout Screen . 162

B Trust and Reputation Scores 163

C Consumers Interface Screenshots 170

D Symbols and Definitions 175

Crowd-sensing for Smart City Applications iv Aseel T. Alkhelaiwi

List of Figures

2.1 Generic crowd-sensing architecture [61] 26
2.2 Dynamic-trust-based recruitment framework [54] 27

3.1 Architecture . 47
3.2 Edge server components and services 48
3.3 Task flow diagram for the services on the edge servers 49
3.4 System layers . 52

4.1 Task Flow Diagram in trust service. Trust threshold is denoted in δ 64
4.2 User "X" and user "Y" reputation values in one week 66
4.3 Number of contributions in every location 74
4.4 Average of data sent (Y-axis) in every location (X-axis) using the

scheduling approach and offloading all the crowd-sensed data . . 75
4.5 Single-precision floating-point format of IEEE 752 standard . . . 76

5.1 System Architecture . 91
5.2 Database “DB1” with the associated Access Log 95

6.1 Amount of data reduction after the trust service and scheduler are
applied . 116

6.2 Size of trusted non-similar data before and after compression is
performed . 117

6.3 Size of the data before performing any service and after applying
all the services . 117

6.4 Reputation score changes for every user over seven days 118
6.5 Screenshot of the first page (Login page) 122
6.6 Screenshot of the second page (Data Type page) 123
6.7 Screenshots of the third page (Service page). The parameters will

change depending on the database. 123
6.8 Size of the whole database after implementing the context extrac-

tion service for the mutable data chunks and the optimization ser-
vice for the immutable data chunks 131

A.1 Dashboard screen . 160
A.2 Sensing screen of “Roads” icon 161
A.3 Adding a photo . 161
A.4 Logout button . 162
A.5 Logging out . 162

C.1 Screenshot of the Data Type page (first request) 170

v

LIST OF FIGURES

C.2 Screenshot of the Data Type page (second request) 171
C.3 Screenshot of the Data Type page (third request) 171
C.4 Screenshot of the Data Type page (fourth request) 172
C.5 Screenshot of the Data Type page (fifth request) 172
C.6 Screenshot of the Service page using “Optimize” service 173
C.7 Screenshot of the Service page using “Extract” service 173
C.8 Screenshot of the notification email received by the second con-

sumer “test_aseel1@outlook.com” 174
C.9 Screenshot of the notification email received by the third con-

sumer “test_aseel2@outlook.com” 174

Crowd-sensing for Smart City Applications vi Aseel T. Alkhelaiwi

List of Tables

2.1 Mobile sensors . 13
2.2 Crowd sourcing applications . 31
2.3 Crowd-sensing applications . 32
2.4 Smart city application challenges 38

4.1 User status weighting parameter 61
4.2 Sensing style weighting parameter 62
4.3 Trust and reputation values for user "X" 66
4.4 Trust and reputation values for user "Y" 67
4.5 Decision questions and the corresponding scheduling weight . . 72
4.6 Locations and descriptions . 73
4.7 Priority weight (w) for every contribution considered for schedul-

ing in every location . 75
4.8 Floating Point Representation . 76
4.9 The number of bits in the mantissa to compress 79
4.10 Exponent values for every integer number 81
4.11 Integer categories . 82
4.12 Number of bits after steps 3.1 and 3.2 83
4.13 Comparison of the data size after compression 86
4.14 Detailed data size after compression 86

5.1 Log File Example . 102
5.2 Comparing database size after reduction 103

6.1 Number of contributions for every user on each day 110
6.2 Number of contributions before and after applying the trust and

scheduler services . 116
6.3 Log file in the cloud . 125
6.4 Response times for the tested cases 127
6.5 Type of every chunk . 129

vii

List of Algorithms

1 GPS coordinate compression (Case 1) 79
2 GPS coordinate compression (Case 2) 80
3 Accelerometer Data Compression 83
4 Accelerometer Data Decompression 84
5 Number of accesses to a data chunk 96
6 Check for important values (Exist_singular) 97
7 Data are immutable or mutable . 98
8 Optimization using one key column 100
9 Context Extraction using one key column 100

viii

I, Aseel T. Alkhelaiwi, certify that this thesis is my own work and I have not
obtained a degree in this university or elsewhere on the basis of the work sub-
mitted in this thesis.

Aseel T. Alkhelaiwi

Crowd-sensing for Smart City Applications ix Aseel T. Alkhelaiwi

Abstract

Abstract

Crowd-sensing is the ability of a crowd to utilize sensors embedded in mobile

devices to sense the surroundings and then send data to a centralized server

or the cloud. With crowd-sensing, a wide range of applications have been em-

powered, such as smart city, healthcare and marketing, of which the smart city

is the domain of interest in this research. However, sending a large amount of

data to the cloud has introduced several challenges, such as data truthfulness,

redundancy, transfer cost, bandwidth consumption and the way data are stored

and managed in the cloud.

This thesis presents a crowd-sensing architecture for smart city applications.

This architecture contains several services that play a key role in solving a num-

ber of the challenges listed earlier. Services are distributed between the cloud

and public local servers. The local servers are distributed around a city to im-

prove citizens’ quality of life. Services located on public local servers are called

edge services and are concerned with trust, the scheduler and compression.

Services located in the cloud are known as cloud services and contain a parti-

tioning method along with two reduction techniques: optimization and context

extraction.

The trust service calculates trust using different factors. Then, if the trust value

is above a predefined threshold, data are trusted; otherwise, they are discarded.

The scheduler removes redundant data and schedules sending data to the cloud

depending on their priority. The compression service compresses singlepreci-

sion floating-point data using two lossless compression algorithms. The parti-

tioning method in the cloud highlights the importance of data en- tries using

time, access rate and singularity factors. Then, based on the output of this

method, users can apply optimization and context extraction to optimize data

entries and extract important information, respectively. The order in which

these services are performed and how they work and communicate are pre-

sented.

Evaluations and use cases are performed on the mobile, local server and the

cloud using Android-based mobile devices and the Amazon EC2 cloud. The

results show the effectiveness of the proposed work by meeting predefined re-

quirements, such as reducing the amount of the data transferred.

Crowd-sensing for Smart City Applications x Aseel T. Alkhelaiwi

Acknowledgements

Acknowledgements

This thesis becomes a realty with the great support of many individuals. I would
love to express my sincere thanks to all of them.

First of all, I would like to extend my special thanks to my husband, Nasser,
my beautiful daughter, Haya, my father, Turki, my mother, Mariam and my
siblings, May, Lama and Sulaiman. This dream will not be achieved without
your sacrifices, support and patience throughout my PhD journey. I love you
all.

I would like to express my special thanks to my supervisor Dr. Dan Grigoras.
Thank you for your guidance and valuable comments throughout the last few
years. Thank you for your wisdom, enthusiasm, patience and pushing me far-
ther than I thought I could go. I really can’t thank you enough.

I also want to thank Dr. John Herbert and Professor Dana Petcu, internal and
external examiners of this thesis respectively. I am extremely grateful for your
suggestions and observations during my Viva Voce examination.

I wish to thank all my colleagues in the Mobile and Internet Systems Laboratory
(MISL) for their helpful comments during my reading group presentations. A
special thanks goes to Dr. Hazzaa Alshareef and Dr. Michael O’Sullivan (my pre-
vious two mobile-cloud PhD colleagues) for their great support and encourage
especially on the first two years. I also want to thank Mary Noonan in MISL for
her great help, kindness and beautiful soul. I want to thank all of my friends in
Cork who supported me emotionally and gave me such a wonderful memories.

Finally, I would like to dedicate this work to my father, mother, husband and
daughter for all of the support you gave me to fulfill my dream.

Aseel Alkhelaiwi

Crowd-sensing for Smart City Applications xi Aseel T. Alkhelaiwi

Chapter 1

Introduction

1.1 Mobile Cloud Computing and Crowd-sensing

In recent years, a cloud computing model has been widely used due to the re-

liable, fast and practical services clouds can offer through the Internet. The

adoption of cloud computing has seen rapid growth in different domains, such

as business, government and academia. Cloud computing offers powerful com-

putational ability and storage, which has attracted different technologies such

as mobile devices. Today, mobile devices play an important role in people’s lives

in terms of socializing, gaming, conducting business and commerce. However,

mobile devices suffer from low storage capacity and computational capability

and energy constraints. Therefore, the emergence of cloud computing and mo-

bile devices has introduced the notion of mobile cloud computing (MCC), en-

abling mobiles to use cloud capabilities. This means that mobile devices do not

need powerful computations or storage in the device itself, as they can utilize

different resources in the cloud. MCC is a motivating technology for crowd-

sensing, which utilizes the different sensors in the mobiles and can upload a

large amount of data to the cloud to be analysed, managed and stored.

Crowd-sensing can enable a broad range of applications, such as smart city (en-

vironmental, planning, traffic, etc.), healthcare, social and advertising, which

are powered by a crowd’s abilities to sense using mobile devices. The smart

city is the domain of interest in this thesis. As an example of a crowd-sensing

application and the type of data produced by it, consider a pothole application

that is implemented for citizens to send locations of bad or dangerous potholes

in the roads in a particular city. Citizens can start sensing by taking pictures of

1

1. INTRODUCTION 1.2 Motivation

the potholes and tagging them with the location, time and an optional descrip-

tion. Alternatively, a mobile device can perform the detection automatically

by sending a voice note of the noise when a pothole is detected using the ac-

celerometer. Therefore, data produced in this application are: GPS readings,

photographs, voice notes and text descriptions (if any). The data produced

from crowd-sensing can be large or, sometimes, extremely large depending on

the number of users contributing data through crowd-sensing applications.

1.2 Motivation

With the increased utilization of mobile devices in recent years, citizens can

now exploit crowd-sensing applications as a communication tool between them-

selves and the local government (i.e. city council or government initiatives).

Furthermore, local government can measure citizens’ satisfaction and receive

their community-oriented problems (e.g., traffic congestion, potholes, environ-

mental issues, etc.) by issuing crowd-sensing applications. Thus, citizens can

reflect their opinion about a particular issue in order to improve the quality of

life in the city.

However, these applications have several challenges in terms of the battery life,

cost and bandwidth consumption involved in the huge data transfer of mobile

devices and the reliability of the data transferred. The way in which crowd-

sensing applications are heavily dependent on cloud computing to store these

large amounts of data also causes other challenges to arise. These challenges

reside in the way data are stored and managed in the cloud and the amount

of time these data need to be there. This is due to the cloud pay-as-you-use

model, whereby the cost increases as time passes for continuously storing new

data and keeping these data in the cloud without filtration (i.e. the removal of

unwanted or useless data).

From this perspective, crowd-sensing and a cloud architecture that can tackle

these challenges (or at least some of them) is very much needed. This archi-

tecture needs to introduce a new model of computation that can make the data

and the transfer of that data from the crowd to the cloud as trustworthy and as

low in cost and bandwidth as possible. Furthermore, this architecture needs ef-

ficient managing criteria for data stored in the cloud in order to benefit different

applications (particularly smart city applications).

Crowd-sensing for Smart City Applications 2 Aseel T. Alkhelaiwi

1. INTRODUCTION 1.3 Challenges

1.3 Challenges

Crowd-sensing has a number of challenges that occur either on the user’s side

or on the cloud’s. User-side challenges are all the difficulties that the user

faces during the sensing task and while the crowd-sensed data are sent to

the cloud. Cloud-side challenges are all the complications that occur after the

crowd-sensed data are received in the cloud.

1.3.1 Challenges Related to the User End

1. Users might have mobile preferences and privacy concerns that are not

supported by crowd-sensing applications. Some users will have concerns

about disclosing their personal information, such as name, date of birth

and location.

2. Battery life: the energy consumption in terms of mobile battery life is

another challenge for crowd-sensing applications due to the huge battery

consumption when using the sensors located in a mobile device.

3. Costs and user incentives: there are costs in terms of price and users’

efforts when they utilize their mobile device for sensing tasks. The costs

occur when users send crowd-sensed data using their mobile operator

(3G/4G). Therefore, convincing users to take part in sensing tasks and

avoiding higher energy consumption as well as costs are major challenges

for the implementation of crowd-sensing applications. Therefore, for a

crowd-sensing application to succeed, there must be a proper incentive

mechanism to engage users in participating in the sensing task.

1.3.2 Challenges Related to the Cloud End

1. Trustworthiness: different user applications, particularly smart city appli-

cations, depend on users’ involvement and the sensed data received from

them. However, data should be trustworthy and truthful in order to ben-

efit and improve the quality of life for citizens in the smart city context.

2. Data origin: tracing the origin of data without affecting users’ privacy is an

important aspect. The cloud receives a large amount of data and stores

these data for a long time. Therefore, if errors occur in the data and

nothing indicates the origin of those data, the applications that should

benefit will generate the wrong results and incorrect information. Hence,

Crowd-sensing for Smart City Applications 3 Aseel T. Alkhelaiwi

1. INTRODUCTION 1.4 Summary of Thesis Contributions

ideally, it should be possible to identify the source of data in the cloud

when an error occurs. Furthermore, tracing the origin of data might be

useful in other scenarios such as, data analysis purposes. For example,

calculating percentages of damaged roads in different locations in a city

can only be captured by locating data origin.

3. Large data transfer: transferring large amounts of data from a mobile de-

vice to the cloud is not ideal, since the transfer will take a long time due to

the bandwidth limitations of different networks, especially 3G/4G/Long

Term Evolution (LTE).

4. Data storage: with the limited resources of mobile devices, sensed data

are usually offloaded to the cloud. However, in smart city applications and

others, such as scientific applications, data volumes will increase at a very

high speed and this will introduce the challenges of storing these data as

the costs are also increased. Managing and reducing data in the cloud

might cause the loss of important information. Therefore, the managing

process must be efficient enough to avoid the loss of critical features and

values.

In this thesis, only the cloud-side challenges are taken into consideration, since

only the challenges occurred after collecting crowd-sensed data are the main

concern in this thesis and ,therefore, the proposed work is based on overcoming

these barriers.

1.4 Summary of Thesis Contributions

The contributions provided by this thesis to the crowd-sensing and mobile cloud

computing domains are as follows:

• An analysis of related works employing the integration of crowd-sensing,

mobile cloud computing and smart city applications.

• The adoption of local processing using public local servers (i.e. edge

servers) for implementing different services with data produced by

crowd-sensing applications before sending them to the cloud. These

edge servers will include different filtration processes applied to the

crowd-sensed data. The local processing adopted in this thesis will have

several benefits, particularly in reducing the amount of data sent to the

cloud and bandwidth consumption.

Crowd-sensing for Smart City Applications 4 Aseel T. Alkhelaiwi

1. INTRODUCTION 1.4 Summary of Thesis Contributions

• A novel reputation system for data produced by crowd-sensing applica-

tions to assess the trustworthiness of these data. This reputation system is

located in the proximity of the users (i.e. data contributors) using public

local servers (i.e. edge servers). Data are assessed by different factors, as

presented in chapter 4, whereby trusted data are considered for sending

to the cloud and untrusted data are simply discarded. The history of the

trust values for all the previous contributions of every user is combined

and calculated in the cloud. Therefore, every user will have a reputation

history that will play a significant role in further decisions throughout the

edge computation.

• Support for the utilization of traceability for data produced from crowd-

sensing applications without exposing users’ identities, in order to ensure

anonymity. This will help in identifying the origin of data and the source

of errors if any occur. With the element of traceability, different smart city

applications in the cloud will benefit most from the data sensed.

• A scheduling service that is located in public local servers (i.e. edge

servers) that will schedule the transmission of trusted data to the cloud

depending on their priority. This service will also remove data contribu-

tions that are captured in the same location; this removal is based on the

reputation values of the users who contributed to the sensing process.

• A novel lossless compression service that takes advantage of the distribu-

tive nature of local servers around a city. This service is performed on

single-precision floating-point data sets and contains two compression al-

gorithms: one for location-based data (latitude and longitude) and the

other for an accelerometer’s three-dimensional data.

• A novel smart city data management architecture that contains a par-

titioning method. This method is performed with smart city relational

databases located in the cloud in order to reduce the cost and the amount

of data stored. The partitioning method highlights the importance and

sensitivity of certain data parts (i.e. chunks) in order to perform reduc-

tion services. Using this method, users can freely perform reduction ser-

vices on unnecessary data, which will improve storage and reduce costs

without losing important data.

• Two storage reduction services (optimization and context extraction) lo-

cated in the cloud and part of the smart city data management archi-

Crowd-sensing for Smart City Applications 5 Aseel T. Alkhelaiwi

1. INTRODUCTION 1.5 Thesis Structure

tecture. These services are applied to the databases depending on the

sensitivity of the data.

1.5 Thesis Structure

The remainder of this thesis is ordered as follows:

• Chapter 2, “Background and Literature Review”, outlines the background

to the topics related to this thesis and presents previously implemented

and theoretical works in the areas of crowd-sensing and smart city appli-

cations and architectures.

• Chapter 3, “Architecture and Design”, describes the challenges for imple-

menting a crowd-sensing architecture and lists the requirements for such

implementation. Furthermore, this chapter introduces the design and ar-

chitecture of crowd-sensing that meets requirements and overcomes the

challenges listed.

• Chapter 4, “Towards Reduction Before the Cloud”, presents the local pro-

cessing model that is located on the edge servers. These servers are public

local servers that are distributed around a city to improve citizens’ quality

of life. The server contains three services: the first service is the trustwor-

thiness evaluation of the data received; the second is the scheduling of

the trusted data based on their priority; and the final one is a reduction

service that includes two compression algorithms for floating-point num-

bers. This chapter presents the design of each of the three services and

evaluations performed on these services to demonstrate their outcomes.

• Chapter 5, “Data Management in the Cloud”, introduces the partitioning

method for the smart city databases located in the cloud and how this

method can partition data in a way that highlights the sensitivity and

importance of certain data entries. Based on the partitioning method out-

comes, two reduction services are presented: optimization and context

extraction. This chapter demonstrates how the partitioning method is

performed and on what data parts (i.e. chunks) the reduction services

can be applied without losing any important features or values.

• Chapter 6, “Evaluation”, presents two use cases that demonstrate the ef-

fectiveness of the approaches presented in chapters 4 and 5. The first use

case presents an evaluation that demonstrates how the edge services will

Crowd-sensing for Smart City Applications 6 Aseel T. Alkhelaiwi

1. INTRODUCTION 1.6 Publications

work on real crowd-sensed data. The second use case will show how data

management will take place in the cloud.

• Chapter 7 is the conclusion and outlines future work.

1.6 Publications

Chapters of this thesis are put together from the following publications:

[7] A. Alkhelaiwi and D. Grigoras, “The origin and trustworthiness of data in

smart city applications,” IEEE/ACM 8th International Conference on Utility and
Cloud Computing, 2015, pp. 376-382.

[6] A. Alkhelaiwi and D. Grigoras, "Scheduling crowd sensing data to smart city

applications in the cloud," 2016 IEEE 12th International Conference on Intelligent
Computer Communication and Processing (ICCP), Cluj-Napoca, 2016, pp. 395-

401.

[5] A. Alkhelaiwi and D. Grigoras, "Data reduction as a service in smart city

architecture," 2017 IEEE 3rd International Conference on Big Data Computing
Service and Applications (BigDataService), San Francisco, CA, 2017, pp. 172-

178.

[3] A. Alkhelaiwi and D. Grigoras, "Smart City Data Storage Optimization in

the Cloud," 2018 IEEE Fourth International Conference on Big Data Computing
Service and Applications (BigDataService), Bamberg, 2018, pp. 153-160.

[4] A. Alkhelaiwi and D. Grigoras Challenges of Crowd Sensing for Cost-

Effective Data Management in the Cloud. In: Zbakh M., Essaaidi M.,

Manneback P., Rong C. (eds) Cloud Computing and Big Data: Technologies,

Applications and Security. CloudTech 2017. Lecture Notes in Networks and

Systems, 2019, vol 49. Springer, Cham

The end of each chapter will indicate from which, if any, of the above publi-

cations the materials were taken. Parts of this chapter were published in the

Springer book chapter [4].

Crowd-sensing for Smart City Applications 7 Aseel T. Alkhelaiwi

Chapter 2

Literature Review

2.1 Introduction

The proliferation of mobile devices with sensing capabilities (e.g., the Global

Positioning System GPS, accelerometers, cameras and microphones) has made

them a rich source of sensing data [88]. People-centric sensing can be used to

develop a wide range of applications to improve citizens’ quality of life, includ-

ing environmental, traffic monitoring, smart city and healthcare apps. However,

due to the limited resources of the mobile devices themselves, sensed data are

usually offloaded and processed in the cloud.

Cloud computing provides resources to clients on an on-demand basis using

the Internet. Mobile cloud computing (MCC) has the added benefit of being a

motivating technology for context awareness and crowd-sensing by uploading a

large amount of sensed data (from mobile phones) to the cloud to be processed

and to feed different applications. Furthermore, by using clouds, mobile devices

will, in most cases, avoid short battery life and memory constraints. Thus, cloud

computing for mobile devices is a very attractive and productive trend.

The cloud not only offers sensor data collection and scalable storage, it can also

be used as a hub that is accessible to users or third parties who have permission

to use the data and can then produce useful applications that can serve a city

in different ways. From this perspective, the cloud has unlimited potential for

smart cities. In this chapter, an investigation of previous work takes place in the

area of mobile cloud crowd-sensing in the context of smart city applications.

8

2. LITERATURE REVIEW 2.2 Background

This chapter is organized as follow. Section 2 introduces the background. Sec-

tion 3 presents the characteristics of and previous studies on context awareness,

crowd-sensing and crowdsourcing. Section 4 presents smart city applications

and previous mobile cloud platforms that benefit these applications. Section 5

is the chapter summary.

2.2 Background

This section introduces and defines the main concepts considered in this thesis.

The concepts are cloud computing, mobile cloud computing and mobile crowd-

sensing.

2.2.1 Cloud Computing

Cloud computing is a smart technology that offers on-demand computing ser-

vices to users while ensuring scalable and reliable storage. The National In-

stitute of Standards and Technology (NIST) [106] defines cloud computing as:

model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction. (p.6) [106] Cloud computing

has several benefits, such as reliability, being easy to access, availability and

robustness. However, there are also challenges, such as privacy and security

[14].

Cloud computing offers different deployment services and users can choose

whichever suits their needs. These deployment services are [121]:

1. Infrastructure as a Service (IaaS): delivers the cloud infrastructure

(servers, storage, etc.) in a pay-as-you-go model.

2. Platform as a Service (PaaS): delivers everything needed for application

development, without worrying about the infrastructure setup.

3. Software as a Service (SaaS): delivers applications over the Internet.

2.2.2 Mobile Cloud Computing

MCC is a combination of cloud computing and mobile systems, whereby mo-

bile users can overcome the limitations of mobiles (e.g., limited storage and

Crowd-sensing for Smart City Applications 9 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.2 Background

processing) and benefit from cloud computing capabilities. The MCC Forum

defines MCC as follows [113]:

Mobile cloud computing at its simplest, refers to an infrastructure where both the
data storage and data processing happen outside of the mobile device. Mobile
cloud applications move the computing power and data storage away from mobile
phones and into the cloud, bringing applications and MC to not just smartphone
users but a much broader range of mobile subscribers.

MCC is useful in extending the battery life of mobile devices, since the process-

ing and computations takes place in the cloud. MCC increases the data storage

capacity and improves processing by utilizing the cloud.

2.2.3 Crowd-sensing

With the large sensing capabilities of mobile devices, users can use their mobile

devices to sense different aspects of their environment, which introduces the

mobile crowd-sensing area. Therefore, instead of deploying immutable wireless

sensor networks around a city, crowd-sensing takes advantage of user mobility

and the powerful mobile devices users have with them to sense around the

city using different mobile applications. This approach makes crowd-sensing

more cost-effective than immutable wireless sensor networks, as well as more

scalable if users’ sensing data are reliable and truthful.

There are numerous application areas that can benefit from crowd-sensing,

some of which are [166]:

• Smart city applications:

With the large populations in cities, there is a major need for effective city

management in order to make cities smarter and improve the quality of

life for their citizens. Smart cities contain several domain applications,

such as those for the environment (e.g., weather and water quality), traf-

fic, roadworks and road surveillance. Crowd-sensing engages citizens in

the management of their city to make it smarter and safer.

• Healthcare applications:

Mobile crowd-sensing is a promising paradigm for the healthcare area. It

is a useful tool for gathering day-to-day information from large numbers

of patients at a lower cost than medical body sensors [129] [130].

Crowd-sensing for Smart City Applications 10 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

• Advertising applications:

With users sharing their locations and other data using mobile crowd-

sensing, advertising companies can use this information to promote their

products [112].

• Social applications:

Mobile crowd-sensing can be used as a tool for users to socialize with peo-

ple and friends and share different information with them, such as their

exercise data. One example is a mobile app called Swarm [164], devel-

oped by Foursquare [48]. Using Swarm, users can share their locations

and experiences with their friends.

The smart city is the domain of interest in this thesis. Crowd-sensing in the

context of the smart city is defined as a subset of users, called a crowd, located

in the same area in a particular city who use mobile apps to utilize the sensors

of their mobile devices and then send the data to a centralized server or cloud.

2.3 Mobile Cloud Sensing: Related Work

Mobile devices and the sensors [12] available on them (see Table 2.1) have

led to sophisticated context-aware applications and systems. This area has cap-

tured a large amount of interest with regard to how mobile phone users can

contribute sensor data to enabling awareness of the environment (e.g., air pol-

lution and transportation), community, healthcare, etc.

Context awareness is considered the first generation of sensing and is defined

in [124] as the ability of devices to sense, infer and interact with a user’s local

environment. Today, the second generation of sensing is also drawing a great

deal of attention and is called crowd-sensing. Crowd-sensing is the acquisition

of sensor data from multiple (not only one) mobile devices. Crowd-sensing is

the capability to collect sensor data from a large number of mobile users upon

request to be used towards a specific goal (e.g., locating events or road works)

[133]. It enhances the efficiency of information collection in order to facilitate

collective intelligence [167].

Crowd-sensing might go beyond collecting processed sensor data from mobile

users to tasking them with human intelligence tasks, such as image recognition,

tagging or translation. This is called a crowdsourcing system, an example of

which is Amazon Mechanical Turk (AMT [9]).AMT provides infrastructure that

Crowd-sensing for Smart City Applications 11 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

enables hundreds of thousands of people to perform paid work on the Internet.

AMT is used for a number of simple tasks, such as labelling or tagging content,

and for complex tasks, such as translating or proofreading [9].

Mobile crowd-sensing applications have a number of characteristics that distin-

guish them from other sensing classes [52] as follow:

• The processing, communication, storage resources and sensing capabil-

ities allow different and flexible capabilities for sensing the user’s sur-

roundings.

• Mobile devices do not need to be deployed; users carry their mobiles

wherever they go.

• The different conditions of mobile devices due to device mobility, energy

consumptions, communication, and users’ preferences. It is, therefore, a

difficult operation to guarantee the required quality.

• Different applications can benefit from the same sensor data.

• Users can be involved in different sensing tasks, since they carry their de-

vices everywhere they go. However, some users have privacy and personal

preferences that might not be compatible with some applications.

• There must be proper incentives to attract and involve users. Since user

devices may suffer energy and monetary costs, this can lead to users being

unwilling to participate unless there is some incentive.

2.3.1 Crowdsourcing

Mobile crowdsourcing applications can be classified into either stand-alone ap-

plications or extensions of Web-based applications [27]. Web-based applica-

tions target users who do not have access to an organization and offer them

the ability to add their real-time location-based information to a service, such

as Gigwalk [57], Jana [72], and work done in [92]. Stand-alone applications

offer functionalities via crowdsourcing, such as collecting and searching, road,

traffic and location-based applications, as well as applications that assign tasks

to users.

Crowd-sensing for Smart City Applications 12 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

Table 2.1: Mobile sensors

Sensor Format Usage

Accelerometer
Floating-point numbers for all
three axes

Used for detecting
acceleration and
movement.

GPS
Longitude and Latitude as
floating-point numbers

Used for determining the
mobile phone user’s
location.

Camera Images (BMP, GIF, JPEG, etc.)
Used for taking
photographs.

Microphone AAC, MP3, FLAC, etc.
Used for dealing with
recordings.

Light sensor Floating-point number (e.g. lx)
Used for detecting light
levels.

Gyroscope
Floating-point numbers for all
three axes

Used for revealing complex
orientation features.

Proximity Floating-point number
Used for detecting the
location of a phone near a
human ear.

Fingerprint

Different formats (Images,
electrical charges, etc.) depending
on the detection method used
(optical, capacitive, etc.)

Used for authentication and
verification.

Magnetometer
Floating-point numbers for all
three axes

Used for detecting North
and usually used with GPS.

2.3.1.1 Crowdsourcing by Collecting and Searching Data

Several works have been based on crowdsourcing. Authors of [49] argue that

there are queries that cannot be answered by database schemes and search

engines. Therefore, they propose CrowdDB, which utilizes individuals’ entries

through crowdsourcing to process queries. Although CrowdDB has many of the

characteristics of traditional database systems, the conventional closed-world

assumption [111] of query processing does not apply to individuals’ entries.

This important change makes the system more accurate and robust, since some

crowdsourced data need to be merged and removed.

CrowdSearch is a crowdsourcing image search system for mobile devices pre-

sented in [188]. It integrates an automated image search implemented both lo-

cally and on remote servers with real-time human support for search outputs us-

ing AMT [9]. Search outputs are sent to the user after validation. With Crowd-

Crowd-sensing for Smart City Applications 13 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

Search, there are some tradeoffs between battery consumption, efficiency, delay

and validation costs. CrowdSearch tackles these tradeoff issues by creating a

predictive algorithm that helps decide what to validate and how then to dis-

tribute the image search tasks between mobile devices and servers. Another

crowdsourcing framework is the Crowdsourcing Data Analytics System (CDAS)

[97]. Different applications with high user involvement for verification tasks

can be performed by the CDAS system to ensure a high degree of accuracy. The

CDAS system takes a two-phase approach: the given task is first implemented

by a high-performance remote server; the result is then split into chunks and

sent to AMT for verification and the result is achieved by combining the differ-

ent chunks of the results.

Turning now to the area of disasters, today’s disaster response protocols do

not consider citizen collaboration [40]; they are still based on a centralized

system that originated with the military [104]. In [60], authors propose a

crowdsourcing system that allows people to share data for the area they are

in, using their devices (equipped with GPS) to sense and guide them to safety.

Other systems for disasters are Usahidi [172] and Sahana [148], which are

crowdsourcing systems for the management of aid attempts deployed in several

countries with the use of maps. Furthermore, a mobile application that observes

the spread of dengue fever using GPS is proposed in [139]. The patient inputs

the symptoms using the mobile app and waits for a response and guidance

on how to avoid dengue fever or to call a doctor. The user’s information and

location (captured using GPS) are stored in a database for medical use. A map

that displays the zones with a high incidence of ill people is also created.

Finally, Portolan [59] is a crowdsourcing system that relies on mobile devices to

structure an annotated graph of the Internet. After the mobile devices observe

the measures of the network around them, the information is gathered in a

central server.

2.3.1.2 Crowdsourcing with Roads and Traffic

CrowdSC [19] is a crowdsourcing platform that utilizes citizen contributions in

the context of a city. It converts queries such as “What roads are in need for

repair?” into easy tasks: gather, filter the data contributed by citizens, and send

the outcomes back to the citizens. After the requester posts a query, such as

roads in need of repair, a number of images are received with different evalua-

tions for the same location. To make the right evaluation, authors suggest three

Crowd-sensing for Smart City Applications 14 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

phases: a data collection phase that gathers images from contributing citizens;

a data selection phase that requests other citizens to choose the picture that

best describes the problem; and, finally, a data assessment phase that requires

citizens to evaluate each picture nominated from the previous phase. Further-

more, the platform offers three general policies to manage the process: buffer,

deadline, and first in, first out (FIFO). Policy selection is based on the user and

the degree of urgency.

CrowdOut [15] is a crowdsourcing system for ensuring street safety in cities

by asking citizens to record dangerous traffic situations (e.g., speeding) in real

time and to apply them on a city map. The CrowdOut system has been used

in an experiment in Nancy in France. The promising architecture can benefit

future systems that utilize crowdsourcing and visualize the data sensed into a

map. Another work is presented in [44] and is called “The Pothole Patrol”, as

it uses vehicles with installed sensors (vibrations and GPS) to collect data that

are used to evaluate the road status. Authors installed their system in seven

taxis in Boston, in the US, and show that their system identified a number of

potholes. However, by using mobile devices to sense the road during a journey

instead of deploying sensors in the vehicles, they might have avoided wasting

the time and cost of deployment.

Other systems that address traffic and exploit mobile devices in their research

work are VTrack [168] and SignalGuru [84]. VTrack’s goal is to estimate jour-

ney time, while SignalGuru’s goal is to anticipate a traffic light schedule.

2.3.1.3 Crowdsourcing and Location-based Services

There is a number of crowdsourcing projects for searching, routing and map

creation in outdoor environments. However, recent statistics show that people

allocate the majority of their time (80-90%) to indoor environments [163], such

as shopping centres and libraries. Therefore, more research is being directed to-

wards indoor location-based services (LBS), such as in-building assistance and

navigation. For example, CINA [142] is a crowdsourcing system that creates an

indoor navigation adviser using relative position. CINA utilizes mobile devices

to provide path information and navigation for pedestrians inside buildings.

The interesting aspect of CINA is that it does not need floor designs (e.g., [16]

[31]) or building sensors (e.g., [171] [87]). CINA also uses gamification to

raise user involvement. Similar to CINA is Airplace [89], another indoor local-

Crowd-sensing for Smart City Applications 15 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

ization system, which allows users to locate themselves and view a floor design

map using the received signal strength (RSS) of Wi-Fi access points.

Further systems that are based on crowdsourcing for map construction but for

outdoor environments are OpenStreetMap (OSM) [62] and Waze [152]. In

OSM, users provide data using a map system or sensors on a mobile device.

Waze utilizes traffic metadata to improve road navigation. In Waze, only mobile

devices placed on vehicles are utilized for sensing.

Furthermore, a Crowdsourced Linked Open Data Architecture (CLODA) is pre-

sented in [90]. Using mobile devices, CLODA integrates crowdsourcing, local-

ization and location-based facilities to provide useful information and public

datasets. One of the benefits of CLODA is that it can be run indoors by in-

stalling it on recent mapping systems. Ear-Phone [136] and NoiseTube [162]

are two other systems that work on building maps using the microphone sensor

in mobile devices.

Another location-based service is presented in [27].Authors present three ap-

plications that improve location-based searches based on the data gathered:

SmartTrace+, which supports matching paths; Crowdcast, which records user

surroundings; and SmartP2P, which works on improving the energy and time

spent on search tasks using proximity features. Authors implement and eval-

uate the applications using SmartLab. SmartLab is their programming cloud

and consists of more than 40 Android smartphones and a number of emulated

devices. Their work shows that energy consumption, privacy preservation, and

application performance are new spots for future mobile applications. Another

work is CityExplorer [103], which uses location-based games to collect location

data to benefit other applications (other than games). CityExplorer works as a

location-based service.

Finally, in [98], authors investigate the idea of using strangers as sensors

through social media. They use MoboQ, a location-based real-time system in

the form of questions and answers. By exploiting the idea of crowdsourcing

via MoboQ, users can request location-oriented questions and obtain responses

from different users in real time. The authors improve system accuracy by

evaluating the answers received using a microblogging system called Sina

Weibo to detect users who are currently at the location that is embedded in a

question.

Crowd-sensing for Smart City Applications 16 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

2.3.1.4 Crowdsourcing and Assigning Tasks

In terms of assigning tasks to users through crowdsourcing, authors of [85]

introduce Turkomatic, a system that binds crowds to task requesters in order

to help perform complicated queries. They first propose a set of simple tasks,

select a set of interesting ones and, finally, replace a complex task with a set of

simpler ones. This approach represents a tradeoff between delay and accuracy,

since the system requires observation during the runtime to ensure the level

of quality desired. Another crowdsourcing system is Soylent [20], which is a

word processing system that supports authors by asking AMT [9] workers to

reduce, proofread, and correct their documents. They offer the Find-Fix-Verify

approach, which divides authors’ requests into a set of phases to ensure quality

progress.

In addition, authors of [80] propose new techniques for allocating the maxi-

mum number of tasks to users. Users forward their locations to a centralized

server that allocates a task to an adjacent user. The experimental evaluations

demonstrate the effectiveness of the proposed techniques. However, verifying

the correctness and trustworthiness of users’ outcomes is a challenge with spa-

tial crowdsourcing. To overcome this issue, authors provide a reputation score

for every user and a confidence score for each task. The reputation score reports

how well a user completes a task. The confidence score decides if the outcome

of a requested task is accepted, and this is achieved when the confidence score

is greater than a predefined threshold [81]

Crowdsourcing is also used in creating news, by motivating users (i.e. volun-

teers) to provide data that are used to make news. In [154], authors offer

location-based crowdsourcing, in which a news company refers a task based on

users’ mobile device location. However, some users believe that their location

is personal information that should not be sent or shared and this is one of the

main challenges in this work.

2.3.2 Crowd-sensing

Mobile crowd-sensing applications can be classified into three categories: en-

vironmental, situational and social. Environmental applications are those con-

cerned with the natural environment and city features such as noise. Situa-

tional applications relate to public surroundings and transportation, such as

road and building conditions, parking availability and traffic. Social applica-

Crowd-sensing for Smart City Applications 17 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

tions are those that allow users to share sensed data about themselves, such as

their exercise routine information [52].

2.3.2.1 Environmental

One environmental application is Common Sense [39], which measures air pol-

lution (e.g., CO2) using special sensing devices that send the data sensed to mo-

bile phones via Bluetooth. Common Sense is inspired by “citizen science” [70]

and “street science” [33], which enable citizen collaboration in collecting data

and making decisions. Another application is CitiSense [199], a location-based

system that measures air pollution using special body-worn sensors that collect

data and send them to the user’s mobile device. The data are displayed to the

user on the mobile device and sent to a back-end server for different purposes,

such as inferring a detailed regional air-quality map. CitiSense captures more

detailed information at a regional scale than any other air pollution monitoring

system, as it exploits crowd-sensing to provide regional information.

Another system is AirSense [38], an air-quality monitoring system that gathers

sensor data from around a city to observe air pollution. Users can gather data

using mobile devices, a proposed air-quality monitoring device (AQMD) or both

to collect data opportunistically and offload them to the cloud. After that, the

data received in the cloud from mobile and AQMD devices are analysed to

provide an air pollution map of the city. When evaluating the system, users can

successfully ascertain the air quality in the neighbourhood and an air-quality

index map (AQImap) of the city. Other work is presented in [47], in which

authors develop a mobile application that enables users to benefit in real time

from an air pollution (e.g., PM2.5, which is particulate matter less than 2.5 µm

in diameter) monitoring service and share their images. The authors utilize the

cloud in their platform to gather historical data from different public places,

while users send and share pictures at the same time. Their experiment shows

high evaluation accuracy for PM2.5 estimation.

A mobile crowd-sensing architecture based on publish/subscribe middleware

is presented in [128]. The middleware makes sure data are aggregated and

filtered in a real-time manner to mobile crowd-sensing applications. Authors

demonstrate that their middleware is energy efficient by conducting an air-

quality application experiment, as it avoids unnecessary data transmission and

controls the sensing process. OptiMoS [189] is a mobile sensing system that

tries to reach optimal mobile sensing, taking into account the cost of sensing

Crowd-sensing for Smart City Applications 18 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

and coverage. Another air-quality system is the Open Sense project [2], which

monitors air pollution by deploying sensors on buses and maintaining sufficient

sensing coverage. Finally, CreekWatch [34], an iPhone application developed

by the IBM Research Center, empowers citizens to observe water quality in

creeks and send reports (e.g., pictures and messages). These reports are sent to

local water authorities to locate and manage pollution.

Authors of [195] propose a mobile crowd-sensing platform that creates large-

scale noise maps in order to reduce noise around a city and uses microphones

in mobile devices to do so. Their system received encouraging feedback when

it was planned, established and tested in Southern Italy. Another work is Nois-

eSense [132], a real-time noise-mapping service. Since mobile devices have

limited noise measurement sensors, authors propose a noise standardization

algorithm that gathers noise levels from different locations (e.g., road networks

and points of interest) with minimal user involvement. Their results confirm

the effectiveness of the proposed algorithm in deducing noise levels with only

a few measurements from mobile users.

2.3.2.2 Situational

CarTel [68] is a situational application that uses special sensor devices placed

in cars to determine the speed and location of the vehicles. The sensed data

are sent to a central server that will provide information about the routes with

the least delay and other traffic queries. The Nericell [114] application uses

mobile devices to sense roads, which will lower the cost and time of installing

special sensors on vehicles to define speed, traffic delays, potholes, etc. The

data sensed using Nericell are sent to a server for aggregation. A similar system

to CarTel is proposed in [144], the difference being that the system in [144]

uses a cyber-physical system to gather traffic, behavioural and environmental

data, while the data in CarTel are gathered using GPS and On-Board Diagnostics

(OBD).

In [29], authors provide design guidelines for a mobile crowd-sensing sys-

tem that combines parking guidance with a navigation system called the

COntribution-based Incentive Design (COIN) [30]. The authors’ approach is

different from others as it avoids manual entries in the road navigation system

while driving, in order to ensure safety. This is unlike other applications that do

not take the safety issue into account, such as Open Spot [83], which requires

drivers to perform a manual task while driving in order to search for parking

Crowd-sensing for Smart City Applications 19 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

places. Another parking application is ParkNet [102], which uses small sensing

devices connected to vehicles along with mobile devices to gather information

on available parking places while driving.

A crowd-sensing system is introduced in [193], based on the argument that GPS

is sometimes not sufficient in cities with large buildings. Therefore, authors

deliver a mobile location search service that enables users to capture a short

video clip or take photographs of nearby buildings and send them to the cloud.

The cloud processes the data, extracts important features, and then sends them

to a large database for the matching process. After that, the cloud returns an

image with the location and the facilities attached to it [37].

With regard to road conditions and traffic, authors of [76] have developed a

mobile crowd-sensing application called CRATER. CRATER estimates road con-

ditions by using the accelerator to measure the acceleration readings in the road

to detect the locations of speed bumps and potholes and then sends them to the

cloud. In the cloud, the data are received and processed to provide a clear esti-

mation of the road conditions for users. The processed information is issued on

a map to benefit both citizens and municipal authorities in locating potholes,

speed bumps and roads that need repair around the city. The evaluation in

[76] shows that CRATER successfully detected a high percentage of potholes

and speed bumps. Another work is presented in [53], in which authors gath-

ered GPS data from users using a quality-aware sensing data collection system

for road and traffic condition monitoring. They based their work on a scenario

in which, when a user arrives, the system will use a previous quality method

to estimate the amount of high quality data received by that participant. The

system then chooses whether to select this participant from the estimated re-

sult, which is then merged with a requested reward. To estimate the amount

of high-quality data sent by a participant, the authors use binomial-Poisson dis-

tribution (BPD) and a two-level iterative algorithm (expectation maximization

[EM]). They compare their work with [127] and show, using the simulation

results, that their research could provide higher-quality data using a real data

set. Furthermore, [95] propose SafeRNet, which uses mobile cloud computing

and crowd-sensing to collect and analyse traffic and historical data in order to

deduce safe routes (using a Bayesian network) and send them back to users in

real time. They present a case study with real traffic data that demonstrates

the effectiveness of their approach in inferring safe routes and increasing the

chance of safe driving.

Crowd-sensing for Smart City Applications 20 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

Finally, authors of [73] present a Mobile Sensor Data EngiNe (MOSDEN), a mo-

bile sensing system that is used by mobile devices to take sensed data and share

them between several users and applications. A common and important fea-

ture of the proposed system in this thesis and MOSDEN is that the application-

oriented processing is detached from collecting and sharing the sensed data.

MOSDEN is considered a well-structured framework in terms of its simplicity

and reusability due to the least development potential needed.

2.3.2.3 Social

A number of social applications have been created for crowd-sensing , one of

which is “iSee” [120], a crowd-sensing system that senses and identifies events

in outdoor public surroundings. Authors use their approach for two events:

(1) identifying smoking in surrounding areas; and (2) identifying graffiti in

cities. For example, if an “iSee” user observes someone smoking in a smoking-

prohibited area, the user only needs to swipe on the mobile screen to detect the

event. The data produced (i.e. GPS location, compass direction, user angle and

time) are transferred to a central server. With the data collected from “iSee”

users, more events can be discovered more accurately. Another localization sys-

tem, but one which takes place indoors, is given in [143]. This system is based

on Gaussian processes [137] for estimating the spatial field of a quantity and

utilizing users’ information once they cross some area of interest. In the evalu-

ation, the proposed method showed good results for estimating user positions

and, when the number of measurements increased, the computational cost did

not.

Another crowd-sensing system is presented in [91]. Authors create a public

human sensor web using a sensor data request application. In their system,

anyone can register and post a task and then receive sensor data for that task.

Furthermore, every user has to provide an individual profile that includes in-

formation about the user’s data and location, so that tasks can be automatically

sent to the most appropriate user. One benefit of this approach is the evolution

of manageable geodata. One major challenge in a social network is the number

of registered users, as the larger the number of users, the more valuable the

network becomes.

Furthermore, mobile users can use clouds to share photographs and videos and

tag their friends through social networks, such as Twitter. In [93], authors

introduce Mobile/Multimedia Experience bLOGging (Melog), a mobile cloud

Crowd-sensing for Smart City Applications 21 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

system that utilizes automatic blogging to share real-time experiences (e.g.,

travel) by analysing the GPS data and photographs captured on the journey

[37]. Similarly, DietSense [141] is an application that allows users to share

pictures publicly of what they eat in order to compare different eating habits.

Middleware for social crowd-sensing applications, called mobile edge capture

and analysis (MECA), is presented in [192]. MECA provides efficient sensed

data gathering from mobile devices to be used by different applications. MECA’s

architecture has three layers: the first is the data layer (mobile phones); second

is the edge layer, which selects devices to collect data; and the third is the

application layer, which processes and responds to application requests.

CenceMe [109] is a crowd-sensing system under the MetroSense project [107]

that develops different mobile-sensing projects. CenceMe allows users of social

networks to share their sensing data with their friends securely. The CenceMe

application on mobile phones observes user activity (e.g., running), mood (e.g.,

happy, sad), daily places (e.g., at the office) and contexts (e.g., cold), then sends

them to social networks, such as Facebook.

Bikers can also benefit from using crowd-sensing to sense new routes. For ex-

ample, Biketastic [140] is a system on which bikers can send information to

other bikers and show them routes and directions. While using new roads, bik-

ers can employ the Biketastic application on a mobile phone and capture the

location, road conditions and noise level of the road using GPS, an accelerom-

eter and a microphone, respectively. Furthermore, bikers can take images and

video clips of points of interest during the ride. These data are sent to a back-

end server to present these data on a map to ease information sharing between

bikers. One major problem with Biketastic is the battery life of the phone, since

a biker’s phone continues to sense during the route and the data are processed

in the phone before being transferred to the back-end server. However, authors

can reduce battery usage by processing the data in the back-end server.

BikeNet [42] is another system for bikers and represents a sensing system that

collects personal (e.g., heart rate), bicycle (e.g., speed), and context (e.g., noise

level) information. BikeNet uses sensors installed on bikes (Moteiv Tmote In-

vent motes) and mobile phones. The system sends data using sensor access

points (i.e. static or mobile) to a back-end server in real time. With BikeNet,

bikers can send their sensor data at a different time during the day. After up-

loading data, BikeNet enables the biker community to share the data from the

back-end server using a Web portal called “BikeView”. BikeNet is a full sensing

Crowd-sensing for Smart City Applications 22 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

system for bikers and the results of the authors’ experiments are encouraging.

However, installing sensors on every bike and the need for sensor access points

along the route make it a little harder and more costly and time consuming to

use. This would not be the case if every biker only used his/her phone as a

sensor and uploaded data whenever Wi-Fi is detected or 3G is used.

CrowdWatch is proposed in [175] and takes advantage of mobile crowd-sensing

to identify momentary problems and create alerts for unfocused walkers. After

studying walkers’ activities, authors use Dempster-Shafer evidence theory to

learn their behaviour and surroundings, and then calculate the likelihood of a

problem existing. They also trigger alerts for unsafe areas by tracing walkers.

With these experiments, the authors demonstrate the effectiveness of Crowd-

Watch in detecting surrounding problems.

Finally, in [179], authors propose PublicSense, a crowd-sensing system for pub-

lic facility management in a smart city (i.e. information reporting, issuing in-

telligent classifications and intelligent tagging). Users can report issues using

the camera in their mobile device alongside GPS to tag the location. The sen-

sor data are sent to a back-end server, where the data management will take

place using a proposed image classification technique that is based on a Fourier

descriptor algorithm. Their experiments show that PublicSense can identify the

type of issue using sensor data.

2.3.2.4 Offering Incentives and Offloading Data

Many crowd-sensing applications recruit users to contribute sensor data for dif-

ferent crowd-sensing tasks. There is a large number of studies on how to moti-

vate users to contribute to different sensing tasks. One of the common methods

used for successful crowd-sensing is offering incentives to users to increase in-

volvement and the quality of the sensing task. In [198], authors propose an

incentive mechanism that is based on a reverse auction and a Vickrey auction.

Their mechanism overcomes an important problem in the existing incentive

mechanisms, which is bad competition. They based their work on a scenario

in which the payment is calculated before a given task and users are paid af-

ter they complete it, taking into account the quality of the sensed data. With

the simulation results, the authors show the effectiveness of their incentive sys-

tem by improving the bid mechanism and the quality of the data received from

users.

Crowd-sensing for Smart City Applications 23 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

Another incentive system is proposed in [185]. Authors propose PIE, a person-

alized incentive for location-aware mobile crowd-sensing that can be online or

offline. PIE is not based on auctions or server-dominant incentives. Overall

payment for all the users depends on their participation as a group, while every

user is rewarded based on their individual input. The authors use a Voronoi di-

agram and Shannon entropy to calculate the contributions of every user and the

participation level of all the users. Their experimental work demonstrates that

PIE can successfully take participation level and different users’ contributions

into consideration. Although there are several incentive mechanisms for mobile

crowd-sensing, none of them addresses the idea of users’ cooperative compat-

ibility in joint tasks. Therefore, in [187], an incentive mechanism is proposed

that reduces the social cost of joint tasks. Authors define two bid types and a

number of compatibility models, in which the Social Optimization Compatible

User Selection (SOCUS) issue is framed for each bid type and users’ connections

are used for the compatibility models. They propose two reverse auction-based

incentive mechanisms that contain two steps: compatible user grouping and

a reverse auction. The authors demonstrate the efficiency of their work using

analysis and simulation

Authors of [184] offer MagiCrowd, an incentive mechanism for mobile crowd-

sensing that is based on negotiated bargain theory and motivates users to be

part of the sensing tasks. In MagiCrowd, users are sorted into numerous groups

to deal with the sensing tasks’ initiators. Authors present K-least in order to

group the users and accomplish K-anonymity location privacy. In the evalu-

ation, the authors show that MagiCrowd can attain a large number of users

involved in sensing tasks with the location privacy guarantee.

Finally, [75] presents an object tracking system, called CrowdTracker. Crowd-

Tracker tracks and predicts movement by assigning users to take photographs

of an object. The main goal of CrowdTracker is to accomplish a tracking job

in real time at lower cost. The CrowdTracker incentive is measured by the

number of participants in a given task and the distance needed to finish that

task. Furthermore, authors propose a prediction model for object movement

(MPRE) and two task distribution algorithms (T-centric and P-centric) that are

used by CrowdTracker. T-centric picks the participants and P-centric assigns

tasks to the participants. According to the experimental results, CrowdTracker

demonstrates effectiveness in tracking objects at a low cost.

Crowd-sensing for Smart City Applications 24 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

In mobile crowd-sensing, data offloading usually takes place either in real time

or whenever Wi-Fi is available (after the task is over). Authors of [174] pro-

pose a data-offloading system called effSense, which addresses the challenges

of energy consumption and data-transfer cost. effSense uses adaptive offload-

ing patterns that allow users to select a suitable timing and network to offload

data. The users in effSense can either be NDP (non-data-plan) or DP (dataplan)

users. For NDP users, they suggest eliminating data cost while offloading by us-

ing the least costly connection (e.g., Bluetooth or Wi-Fi); DP users can select

suitable events (e.g., a voice call) that need less energy while offloading data

instead of using a 3G network. The experiment results show how effective it is

to use effSense when offloading data in mobile crowd-sensing.

Offloading data to the cloud has a number of challenges, such as energy con-

sumption and data transfer cost. Therefore, in [[28], authors propose a frame-

work that takes into consideration the energy consumption when uploading

data to the cloud using only a Wi-Fi network. They upload data to the cloud

when Wi-Fi is available and is not being used by any other application, by using

Wi-Fi Ready Conditions (WRCs). Their framework will choose optimal WRCs in

order to minimize energy consumption. According to their evaluation results,

30% of the energy is saved when uploading data compared with a greedy-based

technique.

Finally, in [94], authors present a Quality-of-Information (QoI) satisfaction ra-

tio metric, a user sampling behaviour model and a QoI-aware energy-efficient

user selection method. The metric is used to measure the sensor data needed

for different tasks, whereby the behaviour model will measure the connection

between the initial energy and the user contribution. The user selection method

offers a solution to the optimization issue described. After conducting evalua-

tions, the results validate the effectiveness and strength of the approach.

2.3.2.5 Crowd-sensing Architectures

This section presents a number of current-state crowd-sensing architectures.

These architectures highlight the different building blocks of any crowd-sensing

architecture and their functionalities.

In [61], authors propose a general crowd-sensing and computing architecture,

depicted in Figure 2.1. Their architecture contains five layers: crowd-sensing,

data transmission, data collection, crowd data processing, and applications.

These layers are distributed between three different locations: sensing devices

Crowd-sensing for Smart City Applications 25 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

(e.g., mobile devices and vehicles), a back-end server (i.e. the cloud) and ap-

plication interfaces.

Figure 2.1: Generic crowd-sensing architecture [61]

The crowd-sensing layer in Figure 2.1 consists of data gathered from mobile

devices, vehicles, etc. The data transmission layer is where sensed data are sent

to a back-end server or the cloud. The data collection layer is located in the

back-end server or cloud. This layer consists of different functionalities regard-

ing the sensed data, such as data storage, filtration, anonymization to ensure

user privacy, and incentivizing users to become involved in the sensing process.

The crowd data processing layer contains extraction services, data quality mea-

Crowd-sensing for Smart City Applications 26 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

surement services, etc. Last is the application layer, in which the results from

the previous layer are visualized and presented in application interfaces.

Another crowd-sensing architecture is DTRF [54] (dynamic-trust-based recruit-

ment framework). However, DTRF is different from the previous generic ar-

chitecture as it selects trustworthy users to perform a crowd-sensing task, as

depicted in Figure 2.2. After the service requesters publish a task, the DTRF

platform chooses an appropriate number of users, depending on their locations

and trust values. The users who accept the task start the sensing process and

send the sensed data to the DTRF platform, which is located in a cloud or a

centralized server. The quality of the data is calculated in the DTRF platform

and the sensed data are then sent to the service requesters. Finally, the service

requesters send their feedback regarding the sensed data to the platform and,

depending on the feedback, users receive rewards or penalties.

Figure 2.2: Dynamic-trust-based recruitment framework [54]

The majority of crowd-sensing systems and applications presented in the liter-

ature above (sections 2.3.2.1, 2.3.2.2, 2.3.2.3 and 2.3.2.4) follow the generic

Crowd-sensing for Smart City Applications 27 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

architecture shown in Figure 2.1, or part of it. In the following chapter, the

architecture offered in this thesis will be presented and will introduce a new

layer of processing located between the crowd and the cloud.

2.3.3 Context Awareness

There are several context-awareness systems that help individuals, such as blind

people, to deal with their environment by using their mobile phones to sense

their surroundings. A system to identify traffic lights for blind navigation is pre-

sented in [13] The system contains two main parts: the mobile, which can be

any mobile device with sensors (e.g., a camera with GPS); and the cloud, which

offers context awareness via a set of servers. Mobile devices are utilized to take

videos and capture location using sensors and send them to the cloud. The

cloud, on the other hand, manages the data received and sends the existence

and status of traffic lights back to the mobile device. The system shows an ac-

ceptable response time and is promising in terms of gaining accurate results in

real-time problems. However, delivering real-time responses about the status of

traffic lights has some challenges. One of the main challenges is the time taken

from sending the video to the cloud until getting a response. Utilizing data pre-

processing services prior to the cloud could solve this. Another major challenge

is the battery life of the mobile device, since it continues to record videos. To

overcome this problem, videos could be taken using prior information of the

location of traffic lights using GPS.

Another context-awareness service is proposed in [159], where authors have

developed a service, called MobileMiner, that is located on a mobile device.

MobileMiner service educes co-occurrence patterns using limited resources to

highlight context cases that happen at the same time. MobileMiner occurs com-

pletely on the mobile device and thus guarantees privacy for users, which is

considered a challenge with cloud computing.

In [149], a context-awareness system that provides the proper context to users

is proposed. This system takes into account different users’ situations when try-

ing to obtain the right context. Authors use Case-Based Reasoning and Nearest

Neighbour algorithms in modelling the system. Furthermore, a soundawareness

application, called Sound Chat, is implemented and proposed in [100]. This ap-

plication concentrates on the interaction between and convenience of visually

impaired individuals and collaborative Web applications, such as Google Docs.

Crowd-sensing for Smart City Applications 28 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

The results of Sound Chat indicate the necessity for such applications and that

users were sufficiently accepting of the interaction.

In the area of healthcare, [125] proposes MECA, a system that utilizes context

awareness to help health providers in Brazilian society. MECA supports health

providers in a context combination task that provides agents with useful infor-

mation. This information is systematized by different contexts, such as location

and time.

2.3.3.1 Middleware for Provisioning Context-aware Mobile Cloud

Services

A key feature of mobile devices today is their ability to sense users’ contexts,

such as location, acceleration and movement. A key technical challenge is to

monitor user contexts and provide the right services for every context change.

Consider a mobile phone that runs an application that subscribes to appropriate

cloud services. Once the user moves, the context may change, so the application

must be able to invoke another service to adapt to the changed context. This

activity is called context-aware service provisioning.

Several works have been conducted on context-aware service provisioning in

mobile cloud services. One is VOLARE [122], which is middleware that dy-

namically adjusts cloud services while observing the context of a mobile device

connected to the cloud to ensure the quality of service (QoS). VOLARE observes

the context of a mobile device, such as battery consumption, central processing

unit (CPU) usage and network bandwidth, while receiving service discovery re-

quests from applications. It compares the existing QoS with the thresholds for

dealing with each service request. If the QoS level and the mobile device con-

text change at any time, it will search for a service that fulfils the requirements

and reconnect to it.

Similarly, in [86], authors propose an architecture for context-awareness ser-

vice provisioning. This architecture prompts the mobile user to invoke a cloud

service and select the most suitable based on the context information. The au-

thors identify a model consisting of four layers of context elements: the first is

monitored context, which refers to the device context (e.g., environmental and

device settings) and user preference; second, the type of gaps that happen when

content changes; third is the type of causes of the gaps; and last, the adapters,
which refer to the actions taken to remove the causes of the gap.

Crowd-sensing for Smart City Applications 29 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.3 Mobile Cloud Sensing: Related Work

Authors of [196] present a context-awareness middleware platform called Senz.

They exploit context recognition algorithms and merge the data coming from

users with data that already exist online. Senz successfully identified different

patterns in experiments, the system obtaining around 83% accuracy in pattern

recognition. Authors believe that using Senz with a cloud platform will produce

interesting mobile applications in context recognition.

2.3.4 Discussion

From the works stated earlier relating to crowd-sensing and crowdsourcing, it

can be seen that they have several points in common. First, they usually use

a backend server, which can be in the cloud, for processing the sensed data.

Second, the battery life in the context of mobile sensing is always considered a

challenge. Therefore, this must be taken into consideration when using crowd-

sensing applications.

One important concern shown in the context of crowd-sensing is that of incen-

tivizing citizens to participate in the sensing process. The literature showed

different works that used different ways to incentivize citizens. However, the

citizens’ motives for contributing in the sensing process as a consequence of

being offered incentives are not the main concerns of this thesis; the main con-

siderations of this thesis are data trustworthiness, scheduling, management and

reduction that well be shown in details in the next chapters.

Therefore, with the large amount of data sent to the cloud (or servers) and

the open nature of crowd-sensing applications, a number of challenges appear.

The first challenge is the trustworthiness of the sensor data contributed. For

example, some users might contribute incorrect data unintentionally or their

mobile device might be in the wrong position. A second challenge is the origin

of the data contributed, taking into consideration the privacy of the user. This is

really important in identifying the source of errors in the data received. Another

challenge is the size of the data sent to the cloud (or server). The fewer the

data the better, in terms of network traffic and bandwidth. The last important

challenge is the way big sensor data are managed, stored and processed in the

cloud. Since the cloud offers a pay-as-you-go model, the data in the cloud need

to be managed efficiently in order to be cost effective. This can be achieved by

numerous services, such as removing redundant data or non-used data without

losing important features or values.

Crowd-sensing for Smart City Applications 30 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.4 Smart City Applications

The above challenges and gaps are taken into consideration in this research and,

therefore, a number of methods and algorithms are proposed. These methods

will help improve the way data are trusted, sensed and managed in the cloud.

2.3.5 Participatory and Opportunistic Contributions

A key characteristic of mobile crowdsourcing and mobile crowd-sensing is

whether the crowd’s contribution is participatory or opportunistic. Participatory

contributions include users in sensing and generating data, while the input for

opportunistic sensing is data produced automatically from the users’ devices

without user involvement. In general, participatory sensing usually relates to

the crowd services on the Web because they need users’ involvement. Oppor-

tunistic sensing, on the other hand, is transparent to users [27]. Tables 2.2 and

2.3 show the mobile crowdsourcing and mobile crowd-sensing applications

listed above, whether they use participatory or opportunistic sensing (if any)

and the types of sensors they use.

Table 2.2: Crowd sourcing applications

Application Sensing Sensors Application Sensing Sensors

CrowdOut
[15]

Participatory
Camera /
GPS

Travelling
through
disasters [60]

Participatory
Camera /
GPS

CrowdSearch
[188]

Participatory Camera Airplace [89] Opportunistic GPS

CrowdSC [19] Participatory
Camera /
GPS

OSM [62] Opportunistic Camera/GPS

PotHole [44] Opportunistic
Vibration /
GPS

Waze [152] Both
Camera /
GPS

VTrack [168] Opportunistic GPS CLODA [90] Opportunistic GPS

SignalGuru
[84]

Opportunistic
Camera /
GPS

CityExplorer
[103]

Participatory
Camera /
GPS

SmartTrace/
Crowdcast/
SmartP2P
[27]

Opportunistic GPS

Ear-Phone
[136] /
NoiseTube
[162]

Opportunistic
Microphone /
GPS

2.4 Smart City Applications

The concept of the Smart City has been introduced as the application of per-

vasive computing models in urban spaces focusing on developing city network

infrastructures, optimizing traffic and transportation and improving the citi-

zens’ quality of life. Emerging technologies, such as mobile devices, wireless

Crowd-sensing for Smart City Applications 31 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.4 Smart City Applications

Table 2.3: Crowd-sensing applications

Application Sensing Sensors Application Sensing Sensors

iSee [120] Participatory
Camera/GPS/
Compass

Biketastic
[140]

Participatory
Microphone/
GPS /
Accelero-meter

[193] Participatory Camera
GreekWatch
[34]

Participatory Camera/GPS

[93] Participatory Camera/GPS CarTel [68] Opportunistic Special sensors

CommonSense
[39]

Opportunistic Special sensors ParkNet [102] Opportunistic
Special
sensors/GPS

CitiSense [199] Participatory Special sensors [29] Opportunistic GPS

PublicSense Participatory Camera/GPS
CenceMe
[109]

Both

Accelero-meter/
camera/
microphone/
virtual software
sensors

MOSDEN [73] Opportunistic

Internal and
external
mobile
sensors/virtual
sensors

AirSense [38] Opportunistic
Internal mobile
sensors/ special
sensor

Open Sense
[2],

Opportunistic Special sensors
DietSense
[141]

Participatory Camera

BikeNet [42] Both
Microphone/
GPS/special
sensors

Nericell [114] Opportunistic

Accelero-
meter/GPS/
microphone/
radio

networks, cloud computing and vehicular networking, promote the develop-

ment of urban computing within a smart city by enabling a way to track and

sense people’s use of mobile devices [21]. Therefore, people’s interaction is re-

quired in the Smart City concept. This interaction makes people an important

and integral part of the system, which is sometimes called a living lab [69].

There are a number of smart city experiments and projects that have been run

successfully. Some of these works cover smart city applications (which is the

interest of this study), while others are plans for an entire city. One example of

the latter is Masdar City [64] in Abu Dhabi, which has an area of 6 square kilo-

metres and about 50,000 citizens. This city has an integrated public transport

system to minimize the need for private vehicles. Another example is Zaragoza

[64] in Spain, which has large sensor networks over approximately 90% of its

routes to monitor the traffic in real time in order to improve the road network

through effective policies [22].

Furthermore, there is a smart city campaign in Seoul, in Korea, called “Smart

Seoul 2015” [157]. This campaign concerns delivering healthcare services for

Crowd-sensing for Smart City Applications 32 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.4 Smart City Applications

disabled and elderly citizens and providing them with smartphones and tablets

to ensure they obtain the required and suitable medical care. Another is the

“Smart City Wien” [156] project in Vienna. This project is aimed at achieving a

smart vision for the city’s energy in the long term (2050). This project contains

three settings: “Smart Energy Vision 2050”, “Roadmap for 2020 and beyond”,

which allows the city to start achieving its energy goals by 2020; and finally,

the “Action Plan for 2012-2015” for executing the processes for the roadmap.

Amsterdam is one of the European cities that are making major efforts to-

wards innovation. Amsterdam has introduced two effective programmes: Star-

tupDelta [161] and StartupAmsterdam [160]. The first programme’s goal is

to combine the Dutch startup ecosystem with government and corporations

in order to have one connected hub. The second programme is to provide

Amsterdam’s startup ecosystem. The city works hard to maintain innovation

and be energy efficient by using electric rubbish collection lorries, solar panels,

energy-efficient roofing, smart meters, etc. London also aimed to increase cit-

izen satisfaction by launching the largest European free Wi-Fi network by the

O2 operator [118].

“Smart Town” [158] is a smart town in Fujisawa City in Kanagawa in Japan,

which was built with the help of Tokyo and large companies such as Pana-

sonic and Tokyo Gas. This town has zero carbon emissions, is supplied with

renewables and contains 1,000 households. Furthermore, Tokyo is considered

a “green island” after planting one million trees in 2015 and providing smart

parking and large Wi-Fi hotspots. On the other hand, San Francisco [155] is

one of the cities that have considered smart parking the most. It also has a high

number of charging stations for electric vehicles. San Francisco is helps visually

impaired citizens on public transportation by offering different apps that help

them navigate the city.

Finally, there are a number of European-funded projects in the context of the

smart city. One of these projects is CITYOPT [32], which was established in

Helsinki in Finland, Vienna in Austria and Nice Cote d’Azur in France. The

main goal of CITYOPT is to have more energy-efficient environments. The de-

sign of CITYOPT is user-centred and users are engaged in the application and

connection of all the different stakeholders in the decision making of these

energy-efficient neighbourhoods. Another European-funded project is e-SAVE

[41], for an energy-efficient supply chain. e-SAVE’s goal is to assist different

Crowd-sensing for Smart City Applications 33 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.4 Smart City Applications

companies in providing and monitoring energy use to help in the supply chain

design decision process.

2.4.1 Special-purpose Systems

A number of systems have been designed to serve specific purposes, such as

monitoring environmental changes in cities, locating objects of interest, sens-

ing by vehicles and more. First, in [101], a framework that empowers the gath-

ering and distribution of city data is introduced, called CityWatch (CW). Two

different methods of sensing are utilized by CityWatch to collect data: fixed

sensing and crowd-sensing (i.e. participatory or opportunistic sensing). City-

Watch allows citizens to sense the environment in a city by using crowd-sensing.

Furthermore, authors use an interesting approach, gamification, to encourage

citizens to sense data. The main components in the CityWatch framework are

the CW middleware, the CW application server and the mobile application. The

CW middleware provides an interface for data gathering and distribution. The

CW application server runs the CW application located on the Web and mo-

bile phones, the Web side is used only to observe data, and the mobile device

side is used to both observe and sense data. A similar but smaller approach is

presented in [165]. Authors present a general architecture for mobile crowd-

sensing that is developed on top of the Extensible Messaging and Presence Pro-

tocol (XMPP) [146] and uses a publish-subscribe communication model [108]

to feed smart city applications.

Another system is introduced in [22], whereby authors present a location-based

smart city service designed to help citizens collect information relating to inter-

esting nearby objects. The clients are users who have a client application on

mobile devices. This application is called “around me” and is a case study to

consider the challenges in developing such an application and delivering knowl-

edge to users regarding their surroundings. This application helps citizens to

locate useful objects ordered by distance around their current location and dis-

tances are updated with the user’s movements. The data queries are performed

using a complex On-Line Transaction Processing (OLTP) server platform. Their

work has focused on many issues in the improvement of smart city applications

and has been adopted by the Italian city of Cesena to make it a smart city.

In the context of vehicular computing, MobEyes [55] is middleware that sup-

ports urban watching applications using vehicles. A number of sensors are in-

stalled on vehicles, such as a wireless connection, video cameras and other

Crowd-sensing for Smart City Applications 34 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.4 Smart City Applications

sensors, to sense surroundings and events, then to process and categorize the

data produced. MobEyes stores sense data in mobile node storage instead of up-

loading the sensed data directly to the Internet. The sensed data are managed

by on-board processors to extract important features, e.g., car number plates.

This knowledge is then sent regularly to the cloud and can then be found on

the Internet for different sensed events. A different vehicle-sensing application

is presented in [178], where authors exploit a mobile device for sensing (us-

ing accelerometers and gyroscopes) the movements of a vehicle to define the

driver’s mobile device location (e.g. is it going left or right?). They believe their

work could ease the development of safety applications. They refer to this as

a low infrastructure approach, as it does not use a built-in Bluetooth system.

Their experiments also show that their approach is highly accurate.

Furthermore, a system called MineFleet [79] was designed for a commercial

fleet to measure and analyse different vehicles’ features in order to reduce op-

erational costs. In MineFleet, the vehicle data are gathered and processed using

custom devices that run MineFleet software, whereby these devices are located

on fleet lorries. The software observes the current status of the vehicle, such as

driver behaviour. The stored data are transferred to an external server for more

processing when a network connection is detected.

2.4.1.1 Traffic in Smart Cities

Traffic is considered one of the major issues in city management and is a widely

explored topic. Authors of [105] propose the CityWatcher application, which

is used by citizens to send their video recordings about road accidents or any

other city problems, e.g., potholes. CityWatcher contains three key compo-

nents: Internet-connected objects (ICOs), middleware, and user software. ICOs

utilize an application developed for recording videos, which are tagged with a

time stamp and location. These ICOs can be mobile devices, vehicle-mounted

surveillance cameras (VMSCs), which have become widely used in recent years

[25], special cameras, etc. The middleware is created using an open source

middleware system for intelligent Internet of Things (IoT) applications, called

OpenIoT [119]. Finally, the user software is simply a Web application for users

to send requests for videos and watch them. In other work in [182], authors

present how in-vehicle sensors that are used to determine accidents [26] can be

replaced by mobile devices that are equipped with sensors, such as accelerom-

eters, cameras and microphones. They have developed a model that combines

Crowd-sensing for Smart City Applications 35 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.4 Smart City Applications

mobile sensors and the surroundings in order to decrease the time between an

accident occurring and the emergency response.

2.4.2 General-purpose Systems

There are a number of frameworks that are not designed for a specific applica-

tion. One is [8], which presents a smart city architecture that exploits different

sensing devices (e.g., mobile devices and sensors) to serve a city. The frame-

work permits users to collect surrounding data, and then the data are managed

and analysed in the cloud to obtain information about the surroundings. With

this information, a number of functions can be implemented to improve urban

management, such as healthcare and smart traffic. As stated above, this cloud-

based framework is not designed for a specific application; instead, it provides

cloud services for urban management. It allows handy extensibility of different

components, since it contains a group of components.

Another system is introduced in [123], where authors use cloud computing

techniques to process a large amount of data for a ubiquitous city (U-City) sys-

tem in order for citizens to be able to use different services at different times

and places. They propose a system called “SOUL”, which supports Web services

in mobile devices with Android operating systems. SOUL interacts with virtual

machines automatically without the need to have knowledge of cloud infras-

tructure. The authors believe that SOUL is the first mobile cloud portal for a

UCity. However, they also believe they need to improve their work to include

more operating systems.

A new flexible sensor cloud architecture that is used for smart cities is provided

in [131]. This architecture would enable users to provide different forms of data

from different sensing infrastructures and is based on the Sensor Web Enable-

ment (SWE) standard defined in [150]. An integrated sensing architecture for

different sensing applications is proposed in [45]. The architecture is located in

the cloud, which makes it robust and reliable. Authors consider their architec-

ture as a basis for a Mobile Application as a Service (MAaaS), as they provide

a foundation for developing different applications with different sensing mod-

els. With their emergency response system case study, the authors reduce the

energy consumption of the mobile devices used in sensing. A similar system

in [63] uses wireless sensor networks instead of mobile devices to connect to

the cloud to serve different city applications. In [110], authors propose sensing

architecture for mobile devices. Their architecture is intended to process meta-

Crowd-sensing for Smart City Applications 36 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.4 Smart City Applications

data instead of sensor data. The authors argue that keeping metadata is more

useful than maintaining sensor data, as the latter are not well-structured and

are not easy to process [74]. Their evaluation results show high effectiveness

with processing metadata; however, the privacy of the mobile devices is still a

problem.

Finally, in [82],authors propose a cloud-based service that helps in managing

smart cities. To manage the data generated from smart cities, they use informa-

tion and communications technology (ICT) tools and a software service, since

ICT has a major effect on smart cities’ management in terms of better commu-

nications services and helps citizens to exploit their surroundings by delivering

essential information. Cloud computing has the potential to manage, store,

and process city-oriented data; however, different tools are required to process

these data efficiently.

2.4.3 Discussion

From the work referred to above, it can be stated that data availability and user

involvement are important keys to the success of smart city architectures. Thus,

involving users by crowd-sensing can play a major role in providing sensor data

in the context of a city for achieving improvements in their cities (education,

transportation, etc.). The modelling and organizing of data once received in

the cloud (or servers) are essential, as they can have a significant effect on the

way the data are analysed and knowledge extracted.

For the success of a smart city, important features need to be tackled, such as

user privacy and trust. User identity and information should come with a high

level of privacy and security and the data contributed for the sake of the city

should be trusted and truthful. Furthermore, with the major usage of mobile

devices, low-cost communication is required and this can easily be achieved

with the use of wireless communication. The challenges of crowd-sensing in

the context of a smart city are illustrated in Table 2.4.

The architectures in Figures 2.1 and 2.2, show that sensed data are all offloaded

to a cloud or a back-end server in order to perform several services on these

data. However, this will consume resources (e.g. bandwidth and cloud stor-

age) and, therefore, increase the necessity to adopt some kind of preprocessing

before data transmission to the cloud. This processing must consist of impor-

tant services such as data filtration, redundancy removal, data reduction, etc.

Crowd-sensing for Smart City Applications 37 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.5 Chapter Summary

Therefore, an architecture that can overcome all (or some) of these challenges

and the challenges in table 2.4 is required. This architecture needs to introduce

a new layer of processing located between the crowd devices and the cloud.

The processing of data in the middle layer before the cloud has several advan-

tages such as, data filtration. The architecture and the benefits behind it will be

discussed in detail in the following chapters.

Table 2.4: Smart city application challenges

Challenge Description Requirement

Bandwidth
consump-
tion

Sending large amounts of data will
consume bandwidth and thus
increase cost and cause major
network traffic.

Efficient data reduction
services.

Mobile
power con-
sumption

Exploiting the built-in sensors of
mobile devices for crowd-sensing
applications will reduce battery life.

Improvements and new
designs in mobile devices to
increase the battery life.

Data trust-
worthiness

With the explosion of data, smart
city applications are exposed to
untrustworthy data that might
affect the city in terms of decisions.

Trust evaluation criteria that
calculate how truthful data
are.

User
privacy

When using different
crowd-sensing applications, users
will be worried about the exposure
of their identities.

Either provide strong
encryption and cryptographic
tools or ensure anonymity for
user identities.

Data man-
agement

With the notion of big data that are
transferred and stored in the cloud,
these data need to be managed
efficiently to increase storage
effectiveness and reduce storage
cost.

Effective data management
techniques need to be
adopted in the cloud
platform.

Low-cost
communi-
cation

Different connection protocols can
be used in crowd-sensing
applications, such as Wi-Fi, 3G and
Long Term Evolution (LTE).

Users can either use a Wi-Fi
connection to avoid any costs
or use the other protocols
intelligently to manage the
costs as much as possible.

2.5 Chapter Summary

Previous work offered in mobile cloud sensing shows a promising area that

can be used by local authorities and by public and private organizations. This

chapter presented different methods of mobile cloud sensing for different ap-

plications that increase the quality of life for citizens and provide comprehen-

Crowd-sensing for Smart City Applications 38 Aseel T. Alkhelaiwi

2. LITERATURE REVIEW 2.5 Chapter Summary

sive understanding of how crowd-sensing is a good method for making cities

smarter. The difference between crowd sourcing and crowd-sensing was pre-

sented, whereby crowd sourcing requires human intelligence, while crowd-

sensing does not. Crowd sourcing applications are organized into either stan-

dalone applications or extensions of Web-based applications. On the other

hand, crowd-sensing applications are classified into environmental, situational

and social. Smart city applications that can be either special purpose or more

general were also presented.

A number of challenges in the area of crowd-sensing and smart city applications

were stated, as these increase the importance of providing architecture that can

tackle some if not all of these challenges.

Through this thesis an architecture that includes methods and algorithms to

overcome some of the challenges is given. In the next chapter, the design of

the system components and the architecture that include different middleware

services are presented.

Crowd-sensing for Smart City Applications 39 Aseel T. Alkhelaiwi

Chapter 3

Design and Architecture

3.1 Introduction

The works in the literature review in the previous chapter demonstrate that the

amount of data drawn from crowd-sensing and smart city applications is large

and difficult to manage. Since mobile devices have limited resources, a num-

ber of studies have considered offloading data to be stored and processed in

the cloud. However, offloading data to the cloud introduces a number of chal-

lenges, such as the trustworthiness of the data, which is an important element

that plays a large role in the success and improvement of a city. Furthermore,

the size of data that are transferred to the cloud and stored must be taken into

consideration, as the challenges of mobile energy and bandwidth consumption

then arise. Therefore, a mobile cloud architecture that can articulate the chal-

lenges in the literature is needed. This chapter first presents the challenges that

this system is designed to address. A set of requirements is then introduced

that shapes the components and properties of the proposed system, which is in-

tended to make data management and the transfer of crowd-sensing data more

efficient. The design and architecture of the proposed system are also shown.

3.1.1 What are Crowd-sensed Data?

Before introducing the design of the system, crowd-sensed data need to be

clearly defined. Mobile devices have a variety of sensors that produce heteroge-

neous data types. For example, data could be latitude/longitude values, time,

photographs, voice notes, accelerometer readings and/or GPS coordinates, the

last two being floating-point numbers. Therefore, in this thesis, crowd-sensed

40

3. DESIGN AND ARCHITECTURE 3.2 Challenges

data are all the different types of data produced from the various kind of sensors

of mobile devices (see Table 2.1).

In this thesis, an Android mobile sensing app, called “SenseAll”, is developed

(see Appendix A). In this mobile app, the user will choose from different aspects

of the city, such as weather, traffic and road conditions, and then start to sense

depending on the data required for his/her selection. After that, data are sent

as a packet that has the following structure: application user ID, annotation

about the type of data (data description) in the packet, and after that will come

the data produced by the mobile sensors. For example:

1. If the user chooses to send simple traffic data, the packet will contain the

following:

(User Application ID-Traffic-Latitude-Longitude-Time-Accelerometer

reading).

2. If the user chooses to send road condition data, the packet will contain

the following:

(User Application ID-Road-Latitude-Longitude-Time-Accelerometer

reading-Photo- voice note).

3.2 Challenges

In this section, and after reviewing the literature chapter 2, the challenges that

can face crowd-sensed data and the ones that this research took into consider-

ation are:

• Data trustworthiness

The success of smart city applications depends on user involvement. How-

ever, with the openness of crowd-sensing and high user contributions,

smart city applications can be exposed to untrustworthy and malicious

data. For example, someone could contribute data that serve his/her own

interests or might unintentionally pass on incorrect data because the mo-

bile device has become decalibrated.

• Bandwidth consumption

Crowd-sensing for Smart City Applications 41 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.3 Requirements

With crowd-sensing and utilizing cloud computing for processing and

analysing, a large amount of data is sent to the cloud, which requires

high bandwidth utilization, energy consumption and network traffic.

• Data usability

Useful crowd-sensed data are those that are vital and not redundant.

Therefore, there must be some kind of usability evaluation of crowdsensed

data, since sending these data without filtering and prioritizing them will

introduce high bandwidth consumption. Crowd-sensed data that are use-

ful will have high priority when data are sent to the cloud.

• Data management in the cloud

With the limited resources of mobile devices, crowd-sensed data are usu-

ally offloaded to the cloud. However, in smart city applications or sci-

entific applications, data volumes will increase at a very high speed and

this will introduce the challenge of storing these data as the costs are also

increased.

• Losing important data features

The previous challenge introduces a significant consideration, which is the

loss of important data. Therefore, the managing process must be efficient

enough to avoid the loss of critical features and values.

3.3 Requirements

Having defined the research challenges in the previous section, the require-

ments can now be identified into two sets of requirements: first, the general

requirements that should be part of any smart city architecture and second, the

specific requirements that can be identified for designing the system proposed

in this thesis. These requirements can improve the way in which crowd-sensed

data are trusted, scheduled, sent and organized in the cloud.

3.3.1 General Requirements

Cities usually have different characteristics due to their specific financial and

environmental constraints. However, there are essential requirements that need

to be met when designing and implementing the architecture for any smart city

application. These key requirements are [151]:

Crowd-sensing for Smart City Applications 42 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.3 Requirements

1. Sensing objects: Including sensor objects that are either fixed or mobile

is one of the important requirements of smart city architecture. These

objects are important when sensing and collecting data in a city.

2. Real-time sensing: Continuous sensing and monitoring is another impor-

tant requirement for collecting data in order to use them to predict useful

information.

3. Sustainable policies: Every architecture must have clear and sustainable

policies regarding each domain (economic, environmental, etc.). For ex-

ample, the architecture needs to guarantee a minimal negative impact on

the city in terms of community, safety, environment, economy, etc.

4. Storing data: Architectures must include storage for the data collected in

order to use them in analysing and mining.

5. Availability: The availability of a centralizing middleware (cloud infras-

tructure) is highly important, since the middleware must continue to ob-

tain, store and analyse data.

6. Privacy: Privacy is a highly important and sensitive requirement. Privacy

policies must be clear on exactly the type of data that are going to be cap-

tured and what will be done with them. This requirement is a challenge

for every smart city architecture.

7. User involvement: Users must be part of the smart city architecture and

the deployment process of the system, since the purpose of smart city

applications is to increase the quality of life of the citizens.

8. Extensibility: The architecture should be flexible when adding new ser-

vices and new types of sensors.

3.3.2 Specific Requirements

The question now is how to achieve an architecture that can manage and re-

duce the large amount of crowd-sensed data contributed by different users. To

achieve this goal, a set of core requirements that can optimize the data transfer

and storage of crowd-sensed data in smart city architecture is listed below.

1. The crowed-sensed data must be filtered before they are sent to the cloud and
this filtration needs be located in the right spot.

Crowd-sensing for Smart City Applications 43 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.3 Requirements

With the increasing volume of crowd-sensed data that is sent to the cloud,

the necessity to filter these data is increased. This filtering process must

be located in the right place in order to reduce the amount of data as

much as possible i.e. by locating the filtering process in the proximity of

the users (edge servers/public local servers).

2. Users and their data must be trusted.

Crowd-sensing and smart city applications include high levels of user con-

tributions and these applications could be exposed to untrustworthy and

malicious data. However, the success of these applications depends on

the originality and trustworthiness of the crowd-sensed data. Therefore,

ensuring data trustworthiness is essential in satisfying successful crowd-

sensing and smart city applications.

3. The origin of the crowd-sensed data needs to be traced.

In the cloud, large amounts of data are stored and used by different smart

city applications. If data are wrong and there is no information about their

origin, not only will applications return incorrect results, but there is also

no way of identifying the source(s) of the errors. Therefore, data trace-

ability is another important requirement when processing crowd-sensed

data.

4. The privacy of the user information must be ensured.

Tracing the origin of crowd-sensed data is essential (see requirement num-

ber 3). However, users’ identities and location could be exposed. There-

fore, ensuring anonymity is another important requirement in such a sys-

tem.

5. The approach has to minimize the bandwidth and network traffic.

Crowd-sensing applications upload a large amount of data from mobile

phones and other sensors to the cloud for processing. However, sending

a large amount of data to the cloud requires a high bandwidth and net-

work traffic and consumes a lot of energy. Therefore, the proposed system

needs to overcome these challenges.

6. The data should be managed and reduced efficiently in the cloud.

As increasing amounts of data are sent to the cloud, the size of the data

that need to be managed also increases. Sometimes, the free space in the

Crowd-sensing for Smart City Applications 44 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.3 Requirements

cloud is limited; for example, Google Drive provides 5 GB. The crowd-

sensed data in the cloud then need to be managed and reduced periodi-

cally, as all cloud providers offer users pay-as-you-go storage.

3.3.3 Non-functional Requirement

• Availability: The system should function and be accessible at any time.

• Scalability: The system should be able to accommodate a large amount

of data at any time.

• Privacy: The system should protect users’ personal information from be-

ing exposed anywhere.

• Security: With the openness of crowd-sensing applications, the system

should provide some level of security in order to prevent attackers from

accessing users’ mobile devices and intentionally generating false data.

• Extensibility: The system should be able to add new services and features

without affecting or changing the current functionality.

• Cost-effectiveness: The system should efficiently minimize the costs re-

lated to data transfer and data storage.

• Data quality: The system should ensure the quality of the data received

in order to be beneficial in the context of a smart city.

3.3.4 Performance Requirements

• Bandwidth utilization: With the large amount of crowd-sensed data gen-

erated in the smart city context, the system should reduce the amount of

data transferred in order to decrease bandwidth utilization and network

traffic.

• Storage saving: Although the cloud offers data storage, there is a price

for this. Therefore, the system should manage the crowed-sensed data

received by the cloud efficiently in order to reduce the storage cost.

• Compression ratio: Since the system offers a compression service before

sending the crowd-sensed data to the cloud, this service should achieve a

reasonable compression ratio to decrease the size of the data transferred.

Crowd-sensing for Smart City Applications 45 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.4 Design

• Robustness: The system should successfully cope with errors. In this

research, there are two kinds of errors that might occur: the first is on the

user side and the other is on the server/cloud side. The system should

have the right actions for the following questions:

– What if the sensors of the mobile device become decalibrated and

start to send false data?

– What if the server were to go down?

• Security and privacy: The system should provide a reasonable level of

protection and privacy for user accounts and prevent any personal infor-

mation exposure.

The following section presents a mobile cloud architecture design that can meet

the above requirements.

3.4 Design

This section discusses the system architecture, design overview, proposed ser-

vices and the users who can interact with the system. The architecture proposed

in this thesis aims to:

• Check the trustworthiness of the crowd-sensed data before they are sent

to the cloud.

• Manage the traffic in transferring crowd-sensed data to the cloud.

• Reduce the size of crowd-sensed data before they are sent to the cloud.

• Locate the services above as close to the crowd as possible.

• Reduce the amount of storage allocated to crowd-sensed data in the cloud.

The system is divided into four main components, as depicted in Figure 3.1 and

described in more details below.

1. Users

Users can be a subset of citizens, from two to what we call a crowd, lo-

cated in a particular area of a city, who use an Android sensing applica-

tion on their mobile devices and deploy data through a Wi-Fi connection.

Users will need to provide user credentials (i.e. user name and password)

in order to be able to send data to the cloud using their mobile devices.

Crowd-sensing for Smart City Applications 46 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.4 Design

Figure 3.1: Architecture

2. Edge Servers

This component consists of public local servers that are distributed around

the city for the purpose of collecting crowd-sensed data, storing them

for a period of time and processing them locally before they are sent to

the cloud. These public servers also run other applications, such as traf-

fic or environmental monitoring. These local servers contain three sub-

components, as shown below in Figure 3.2. First, every user’s contribu-

tion (user ID and data) will have a data receiver instance that is managing

a buffer. The buffers are organized in FIFO (First In First Out) form. Then,

a general buffer will take users’ contributions from the individual buffers,

one at a time, and insert them to the local database for a limited period

of time, e.g., one day. The period of time is variable and might be short or

long depending on the application used and the amount of users’ contri-

butions received. The server will also record the meta-data, such as user

ID, sensor data types, etc., in a log file.

• Trust Manager

The trust manager will calculate the level of data trustworthiness.

The trust manager performs the trust calculation using four factors:

user status, data variety, loyalty and similarity. When considering a

specific user contribution, if the trust calculation is above a defined

Crowd-sensing for Smart City Applications 47 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.4 Design

Figure 3.2: Edge server components and services

threshold, the data are trusted and sent to the cloud; otherwise, the

data are discarded. The details of this component are contained in

chapter 4 and parts of this work were published in this conference

paper [7].

• Scheduler

After calculating the level of trust, the scheduler component receives

the trusted data and calculates their priority depending on a number

of factors that vary depending on the application in use. After a

period of time e.g., one day, trusted crowd-sensed data of higher

priority are sent first and all the metadata for all the contributions

are removed from the log file. The details of this component are

presented in chapter 4 and parts of this work were published in this

conference paper [6].

• Local Reduction Unit

The reduction component focuses on single-precision floating-point

data and takes advantage of the distribution of local servers in smart

cities. There are two compression techniques in this component:

one for location-based data (latitude and longitude) and the other

considers three-dimensional accelerometer data. The details of this

Crowd-sensing for Smart City Applications 48 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.4 Design

component are presented in chapter 4 and parts of this work were

published in this conference paper [5].

A task flow diagram that shows the order of the services in the public

local servers is shown in Figure 3.3.

Figure 3.3: Task flow diagram for the services on the edge servers

Edge servers distribution mechanism

In this thesis, only one server is taken into account in the design and eval-

uation phases. However, in this section, a number of considerations are listed

regarding the distribution of the servers around the city and the communication

between them, if needed. These considerations are:

Crowd-sensing for Smart City Applications 49 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.4 Design

• The servers are distributed evenly around the city and the distribution is

based upon GPS coordinates. GPS coordinates for any two nearest servers

need to be different in decimal numbers in order to benefit most from the

services located on these servers. However, areas with a high and active

population can have two servers to avoid server overload.

• The cloud performs the server selection task. This event is triggered when-

ever users attempt to send their sensed data. The cloud locates the nearest

local server and sends its location to the user mobile application. If two

servers are considered appropriate for one user, the user can choose one

of them.

• Every server must have the physical address of the two nearest servers.

Then, when one of the servers is down, the other will be in charge of the

down server’s area.

• If one user senses data and then tries to send these data at a different time

and location (whenever Wi-Fi access is available), the cloud then chooses

the server nearest to the user’s current location. However, the data will

not receive the expected benefit from the services in the server since the

GPS coordinates for the sensed data are different from those in the server.

The importance of having the same GPS coordinates for both the sensed

data and the server will be highlighted in chapter 4.

3. Cloud

The cloud component in this architecture contains databases in which

users’ information, history and trusted crowd-sensed data are stored. With

the large amount of crowd-sensed data stored in the cloud, there is a

necessity to manage these data efficiently, since the data storage in the

cloud has a pay-as-you-go model. Therefore, the cloud component con-

tains three sub-components, outlined below

• Reputation Manager

Reputation management takes place in the cloud and updates users’

reputation values regularly. Therefore, trust is a value calculated in

the local server over a period of time. On the other hand, reputation

is a value calculated in the cloud, whereby the cloud takes a new

trust value received from the local server for a specific user and adds

Crowd-sensing for Smart City Applications 50 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.4 Design

it to the previous reputation value to update it for that particular

user. The details of this component are presented in chapter 5.

• Partitioning Manager

The partitioning manager first partitions data depending on variable

parameters that can be defined by the user, the application or both,

such as time and access rate. These parameters logically partition the

database in order to the consumers (e.g. cloud administrators, city

council) to have a clear vision of what the limit of reduction might

be when applying reduction services to the data, since every smart

city database (as well as the databases of other domains) contains

important and often sensitive entries at specific times. The details

of this component are presented in chapter 5 and parts of this work

were published in this conference paper [3].

• Cloud Reduction Service

This service contains two different data reduction techniques: data

optimization and context extraction. These services are applied de-

pending on the sensitivity of the data, whereby sensitive data are

those that contain important values, for example, within the weather

database, data entries corresponding to days with flooding in a par-

ticular city are considered sensitive data. This service is strongly

related to the partition manager output, whereby every technique

will make use of the partitioning method to reduce data stored in

the cloud efficiently and, therefore, decrease the cost of storing these

data. Details of this component and the partition manager are pre-

sented in chapter 5.

4. Consumers

Consumers are citizens, cloud administrators, and private or public au-

thorities, who have access to the crowd-sensed data stored in the cloud.

There could be one, two or a large number of consumers. Consumers need

to register in the cloud in order to benefit from the data stored there.

Crowd-sensing for Smart City Applications 51 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.5 System Architecture Layers

3.5 System Architecture Layers

Following the system architecture presented in the previous section in detail,

the five different layers contained in the system are now presented: Application,

Management, Service, Data and Servers. These layers are shown in Figure 3.4.

Figure 3.4: System layers

The Application Layer contains users and their mobile devices or vehicles that

are used to sense different aspects of a city, such as its environment. Users then

use Wi-Fi connections to send the crowd-sensed data. The Wi-Fi connections

are distributed around the city to improve the quality of life of the citizens. The

Management Layer contains different components that are located in either

the cloud or the edge servers. These components manage the way data are

managed, sent, received and stored, as follows.

• Account Manager

The Account Manager, which is responsible for storing users’ application

IDs and passwords (credentials), is located in the cloud. In this thesis, the

Crowd-sensing for Smart City Applications 52 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.5 System Architecture Layers

application IDs that are assigned by the mobile apps are used instead of

real names in order to ensure anonymity.

• Data Distribution Manager

The Data Distribution Manager receives the crowd-sensed data and stores

them in the corresponding database in the cloud. For example, if the

crowd-sensed data received by the cloud are for water quality, the Data

Distribution Manager will store these data in the Water Database.

• Local Manager

The Local Manager activity takes place in the public local server and is

responsible for dealing with data once received in the server in terms of

trust calculation, compression and scheduling. In more detail, and as

shown in Figure 3.2, when crowd-sensed data are received in the local

server, the Local Manager will first store the data in a local database for

a period of time, which is defined depending on the application in use. It

will then input the data to the Trust Manager. After that, passing through

Scheduler, it will send the trusted data to the Local Reduction Unit, which

will then pass trusted compressed data back to the Scheduler. The Local

Manager is also responsible for sending the trust values of the users to the

Reputation Manager in the cloud.

• Query Manager

The Query Manager is an interface that allows consumers to query the

Smart City databases located in the cloud. Using this interface, con-

sumers can manage data in terms of partitioning, optimizing and extract-

ing knowledge.

• Execution Manager

The Execution Manager is located in the cloud and will simply receive the

queries from the Query Manager and execute them.

The Service Layer includes all the different services in the local servers and

the cloud that were presented in the previous section (section 3.4). The Data

Layer contains all the databases needed in this thesis, which are all stored in

a relational form. The Users Database contains users’ account information and

the Reputation Database holds the users’ reputation values. The Smart City

Database contains different databases, such as Water, Weather and the Environ-

ment. Every Smart City Database corresponds to one Context Database. The

Crowd-sensing for Smart City Applications 53 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.6 Comprehensive System Features

Context Databases contain the knowledge extracted from the different Smart

City Databases.

Finally, the Servers Layer is basically the cloud and the edge servers (i.e. public

local servers) in this thesis.

The next section presents system featues that shows how the proposed archi-

tecture can meet the requirements outlined above.

3.6 Comprehensive System Features

The proposed system can tackle the requirements listed above and, therefore,

provide a solution to each of the challenges addressed earlier in this chapter.

Although the complete evaluation will take place in detail in the next chapters,

the following is a high-level evaluation:

• Instead of locating all the services in the cloud, and in an approach that

is different from previous work, some of the components of the proposed

system are located as close to the crowd as possible and the services will

run locally in local servers. This will increase the benefits of the sys-

tem components, the most important of which is reduced data size before

sending to the cloud (by removing untrusted data and compressing GPS

coordinates and Accelerometer readings) and therefore, reduced band-

width requirement and use.

• Trustworthiness of the crowd-sensed data is evaluated using four factors:

user status, data variety, loyalty and similarity. The calculation of these

factors decides whether the crowed-sensed data are trusted or not.

• The issue of exposing user identities when using traceability is overcome

by ensuring anonymity. This is because user identities are not sent to the

cloud in the first place. Since the only users’ IDs used are application IDs

that are assigned to every contributing user, these IDs are the ones sent to

the cloud.

• Depending on the application in use (Weather, Traffic, Pothole Detection,

etc.), the proposed system uses a scheduler to evaluate the usability and

priority of the crowd-sensed data before they are sent to the cloud.

• Crowd-sensed data size is reduced using compression. This compression

process is located in the proximity of the crowd (public local servers).

Crowd-sensing for Smart City Applications 54 Aseel T. Alkhelaiwi

3. DESIGN AND ARCHITECTURE 3.7 Chapter Summary

• The crowed-sensed data are managed in the cloud using a partitioning

method that partitions data using a set of parameters, such as time and

access rate, which are introduced fully in chapter 5. After data are parti-

tioned, two reduction services are applied to the appropriate data parts to

avoid losing important data and values.

3.7 Chapter Summary

In this chapter, a set of challenges in the crowd-sensing and smart city applica-

tions domain were presented, as well as the challenges that will be addressed

using the system proposed. The design of the system, showing the different

components and services in both the public local servers and the cloud, was

also introduced. It was demonstrated that these components could operate to

complete the job required. The architecture and its five layers were also shown

in more details. Finally, the proposed system was analyzed to determine how it

could meet the requirements listed earlier.

The next chapter presents the implementation of the different components of

the public local servers. This will show how the crowd-sensed data are pro-

cessed once received to the local server. The implementation of the components

located in the cloud is then introduced in chapter 5, in order to show how the

crowd-sensed data are managed and reduced efficiently.

Crowd-sensing for Smart City Applications 55 Aseel T. Alkhelaiwi

Chapter 4

Edge Services for Crowd-sensed
Data

4.1 Introduction

Crowd-sensing, which involves anonymous crowd data contribution, can be

used to develop a wide range of applications and systems, such as smart city

applications. The success of smart city applications depends on the users’ in-

volvement. However, with the open nature of crowd-sensing and high user

contributions, smart city applications can be exposed to untrustworthy and ma-

licious data. For example, some users may unintentionally contribute incorrect

data simply because the mobile device was in the wrong position or the sen-

sor had gone out of calibration. Other users may contribute data that serve

their own interest e.g., a leasing agent who sends fabricated low noise read-

ings in order to sell a particular property. Smart city applications are useless

for citizens in the community if data contributions cannot be trusted. Thus,

the trustworthiness of data contributed by users/devices must be evaluated to

identify a malicious contribution, i.e. ensuring data trustworthiness is essential

to satisfying successful smart city applications [66].

Another key aspect is the possibility of tracing the origin of data without affect-

ing contributors’ privacy. Over time, clouds store large amounts of data that will

be used by many different applications. If data are wrong and there is no in-

formation about their origin, not only will applications return incorrect results,

but there is also no way of identifying the source(s) of the errors. Therefore,

data traceability should be another feature of smart city applications when pro-

56

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.2 Problem Formulation

cessing crowd-sensing data. This new feature of mobile cloud architecture is

important, even in the presence of a trust system as an additional check, iden-

tify and correct mechanism.

Furthermore, there is another challenge that lies in the context of the cloud:

the more data are sent to the cloud, the greater the size of data that needs to

be managed. Sometimes, the free space in the cloud is limited: for example,

Google Drive provides 5 GB, then users need to selectively send data to the

cloud as all cloud providers gave users pay as you go storage. Thus, data sent

to the cloud need to be reduced in size.

In this chapter, three different services (Trust, Scheduling, Compression) are

presented where these services are in the proximity of the crowd. Moreover,

the utilizing of local servers and the benefits behind it are presented in this

chapter as well.

4.2 Problem Formulation

This chapter is part of the work carried out to develop a crowd-sensing archi-

tecture that provides cost-effective services in the context of smart city. The

increasing volume of crowd-sensing data rises the necessity to adapt local pro-

cessing in order to send and store these data efficiently in clouds. The chal-

lenges presented in chapter 3 are important and can be overcome by processing

data at the edge (i.e. local processing). Therefore, in this chapter, the idea of

edge servers (i.e. public local server) will be utilized in order to have what so

called “local processing”. The users, contributing data in the sensing task, will

always send data to the nearest public local servers in order to perform local

processing to the data before the cloud. All of the services presented in this

chapter will take place in the public local servers.

4.3 Origin and Trustworthiness of Data

In this section, a reputation system for evaluating the trustworthiness of the

crowd-sensed data contributed by users/devices is presented. This reputation

system is different from previous work, discussed in section 4.3.1.

Instead of having the reputation system deployed in the cloud, its service will

run locally, on the public local servers. Local processing of crowd data has

Crowd-sensing for Smart City Applications 57 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.3 Origin and Trustworthiness of Data

several benefits, especially in reducing the amount of traffic and data filtering.

This service allocation on local servers is reasonable in a city Wi-Fi network that

is designed to support the community. The following are the contributions in

this section:

• A data traceability service.

• A trust and reputation system that is located in the proximity of data

contributors using public local servers.

Definitions

In this thesis, “trust” and “reputation” are used as separate views, following an-

other work [176]. The term “trust” relates to building the user’s trust and level

of reliability in his/her current contribution accumulated by the local server,

i.e. data sensing contributions performed in a specific period of time, such as

one day. Reputation management takes place in the cloud to update the user

reputation for all of his/her contributions regularly. Therefore, trust is a value

calculated in the local server over a period of time, alongside the sensed data.

On the other hand, reputation is a value calculated in the cloud, whereby the

cloud takes the new trust value received from the local server for a specific user

and adds it to the previous reputation to update the reputation value for this

particular user. The history is considered in the reputation calculation process,

not in the trust process.

Motivation

Ultimately, the trustworthiness of the contributed data and establishing the ori-

gin of those data are very important in any crowd-sensing application in order

for the users (i.e. data consumers) to use the data confidently. Therefore, de-

tecting the trustworthiness of data is a major challenge, which, when overcome,

will help guarantee the success of the crowd-sensing application. The following

are some scenarios in which evaluating data is very important:

1) Events Reporting: Users could report events that occurred in malls, uni-

versities and other public places and share them with others. However,

malicious users could try to fabricate the appearance of a crowd at an

event in order to promote it [170].

2) Road Repairs: Suppose the City Hall of city “X” launched a mobile appli-

cation that helped users to send photographs and locations of the roads

Crowd-sensing for Smart City Applications 58 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.3 Origin and Trustworthiness of Data

that need to be repaired in their neighborhood. Malicious users could

fabricate images in order to have their neighborhood repaired first [19].

3) Traffic Warning: Suppose there was an application that received traffic

jam warnings from users in a specific location and distributed these alerts

to other drivers. Untrustworthy users could send false warnings for some

location to reduce traffic congestion for themselves [65] [182].

4.3.1 Previous Studies

A widely used approach to the efficient assessment of the trustworthiness of

sensed data received from different users is to use a reputation system [66].

Researchers [67] have proposed a reputation system for participatory sensing

applications that measures user trust by giving a reputation value to each user

for his/her contributed data. They adopt a similar architecture to the Reputa-

tionbased Framework for Sensor Networks (RFSN) [51], a reputation frame-

work for traditional embedded wireless sensor networks. The downside of this

system is that the trust value of any user is only computed by taking into ac-

count the historical behavior of that user, unlike the approach in this thesis, in

which the trust value is calculated regardless of the previous contributions.

In the proposed Wi-Fi sensing system for smart city applications, authors [183]

address the trustworthiness of the data published in their system by forming

endorsement links between users so that the users can submit reviews of Wi-

Fi hotspots along with the data publishers. Their system is different than the

proposed approach in that trustworthiness is actually calculated in the cloud by

the number of submitted reviews and the number of endorsements earned, not

by testing the data itself (in their case, the strength of the Wi-Fi).

Another system addressing the trustworthiness of crowdsourcing systems,

called Trustworthy Sensing for Crowd Management (TSCM), has been pro-

posed as a cloud-centric crowd management scheme [78]. TSCM adopts the

MSensing auction and incentives system for smart phones [191] and improves

it by presenting the reputation awareness and trustworthiness of the smart

phone users. User reputation is updated regularly in the cloud in TSCM, where

reputation is used as a basis to pay users and assign tasks for them. The

reputation score calculation depends on the accuracy of the sensed data. The

authors’ system performs the auction and the calculation of the trustworthiness

in the cloud, while the system in this thesis undertakes the calculation of trust

Crowd-sensing for Smart City Applications 59 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.3 Origin and Trustworthiness of Data

locally. Furthermore, in their case, the cloud receives all the sensing data,

whether trusted or not, from users, whereas for the system in this thesis only

the sensed data by users with a trust value above a specific threshold are sent

to the cloud.

ARTSense [177] is a framework that addresses the problem of trust and

anonymity in participatory sensing systems. The trustworthiness of the sensing

data is calculated using a trust assessment algorithm. Their algorithm is similar

to the proposed approach as they use different weighting factors (location,

time, sensor mode and traveling mode) to build trust but concentrate on

anonymous user reputation levels and preserving privacy for users. Unlike the

local processing in this thesis, ARTSense performs the anonymity and trust

algorithm in the cloud.

CrowdSC [19] is a crowdsourcing framework that uses citizen participation

in the context of a city. It transforms queries into simple tasks: collect, filter

the data provided by users, and provide as well as return the results to the

user. To make the right assessment of the data, authors propose a three-step

process. The data collection step collects photos from participants. The data

selection step asks other participants to select the photo that best represents

the problem. Finally, the data assessment step asks participants to assess each

photo selected from the data selection step. The proposed system performs all

of these steps for assessing data contributed by users in the cloud, which means

that the cloud will receive both useful and useless data during the process,

which is impractical, and not the case with the approach in this thesis. All of

the above systems use a cloud/server to compute the trustworthiness of the

data contributed. In the proposed system in this thesis, the trustworthiness

calculations take place locally in, for example, WLAN APs or a local server.

4.3.2 Design

When the sensed data are received by the local server, the data are cached and

stored in a log file, along with the user ID, for a determined period of time (e.g.,

one day) in order to start building trust. Four important factors are considered

for assessing trust with a weighting parameter for every factor:

1) The user status (i.e. not moving, walking, or moving fast) is an important

factor that could affect the quality of the sensed data being sent. The weighting

parameter (S) of every status is illustrated in Tab. 4.1. Every status is given

Crowd-sensing for Smart City Applications 60 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.3 Origin and Trustworthiness of Data

a weight according to the quality of the data produced with it. This weight

reflects how important the status of the user is when he/she starts the sensing

process, where some statuses have higher weight than others. The numbers

in Tab. 4.1 are chosen to show the impact of the proposed trust system based

on the threshold assigned later in this section. For example, the quality of a

picture taken from a moving vehicle is different from that taken when the user

is stationary. Pictures may be shown to be blurry when someone is moving.

Someone taking a picture while walking will also have less chance of taking

a blurred picture than when running. Therefore, the “not moving” status is

accorded a higher weighting than “walking”, “walking” has a higher weighting

than “running”, etc.

Table 4.1: User status weighting parameter

User Status S

Not Moving 0.2

Walking 0.15

Running 0.1

Moving > 40 mph 0.05

2) The variety of sensed data will add more weight when building trust. There-

fore, the weight parameter is higher for a user who sends a photo along with a

recording and location than a user who sends a photo with a location only. The

weighting parameter for the different sensors is shown in Tab. 4.2. The dif-

ference in every weight assigned to every sensing style depends on the degree

of effort made by the user, where some styles have higher weight than others.

Recording voice notes and taking photos need more effort from the user than

location, since the location is sent by default from the user’s mobile phone. In

the “SenseAll” application (see Appendix A), the location needs to be turned on

before sensing in order to send the sensing data (voice, photo). The numbers

in Tab. 4.2 are chosen to show the impact of the proposed trust system based

on the threshold assigned later in this section

3) The user who contributes more to the sensing activity will add more weight

to his/her trustworthiness. If one user sends sensed data regularly during a

period of time (the time before the log file is sent to the cloud), the trustwor-

thiness of this user and the data he/she sends will be scored as 0.05 for every

contribution, excluding the current contribution. Loyalty is an important factor

Crowd-sensing for Smart City Applications 61 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.3 Origin and Trustworthiness of Data

Table 4.2: Sensing style weighting parameter

Sensing Style SS

Location 0.05

Voice 0.2

Photo 0.2

Accelerometer 0.1

in the trust system proposed. It is calculated for this parameter for user “u”:

Nu = number of previous contributions in a predefined time ∗(0.05) (4.1)

4) Sensed data that are similar to each other are beneficial to each other. For

example, if user “X” and user “Y ” are in the same location and send data that

are similar to each other, this will add trust for both users. On the other hand, if

the two users are in the same location but their data are in conflict, the sensed

data of the user with the higher reputation, from previous contributions, will

be considered and the other one will be discarded. Therefore, similar data

will be weighted more heavily when calculating the trust value. The similarity

between two contributions varies from one application to another. For example,

one application considers two contributions as similar if they are captured in the

same location. Another application considers two contributions as similar if the

location and photos captured are for the same incident. This factor is calculated

as follows:

Sim =

 0.1 if two contributions are similar (∀u and u′ ∈ LOG)

0.0 if two contributions are not similar (∀u and u′ ∈ LOG)
(4.2)

Where u and u′ are two different users, LOG is the log file in the local server

during the predefined time. The value (0.1) is chosen for similar contributions

based on the trust threshold shown next.

After these factors are calculated, (4.3) is performed to compute the trust for

the contribution for user “u”:

Tu = e(Su+SSu+Nu+Simu) (4.3)

This equation will produce a value Tu from (1.0) to (3.8). The value (1.0)

corresponds to when the user contribution contains only the location of some

Crowd-sensing for Smart City Applications 62 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.3 Origin and Trustworthiness of Data

incident, then SS is (0.5) leading to a minimum value of (1.0) for Tu. Again,

if S is (0.5) and SS is (0.5), then adding these two values will make (0.1) and

leading to a value of (1.1) for Tu. The value (3.8) corresponds to when the

exponent is equal to (1.35), this is when S is (0.2), SS is (0.55), N is (0.3)

and Sim is (0.3). In other words, Tu will have the highest value (3.8) when

the contribution is captured while the user is “Not Moving”, the contribution

contains all Sensing Styles (SS), the user had (6) previous contributions (6 ∗
0.05 = 0.3) during the predefined time and 3 similar contributions (3∗0.1 = 0.3)
that are captured during the predefined time.

The value Tu is tested before sending it to the cloud (after the predefined period

of time, e.g., one day):

• If the value is below a specific threshold (below or equal to 1.2, where

this threshold is chosen based on the lowest accepted trust value when

the sum of the factors is (0.2). This happens in four different situations:

first, when S is (0.15) and SS is (0.5). Second, when S is (0.05) and SS
is (0.15). Third, when S is (0.05), SS is (0.05) and N is (0.1). Finally,

when S is (0.05), SS is (0.05) and Sim is (0.1). These cases produce the

lowest trusted values. This is because in these cases the user is considered

aware of the incident that needs to be captured, the incident is supported

by similar contributions, or the user is considered loyal (i.e. two previous

contributions during the predefined time), therefore, his/her contribution

needs to be trusted), then the contribution will be discarded and the trust

value Tu is re-calculated using the “penalty” equation in (4.4) and sent to

the cloud along with the user ID:

Tu = −eT u (4.4)

Note that Tu in (4.4) is a negative number. The reason behind this equa-

tion is to show that one untrusted contribution will have a negative expo-

nential impact on the reputation.

• If the value is above the threshold, then it will be sent to the cloud along

with the user ID and the crowd-sensed data. The user ID and the crowd-

sensed data are saved in the corresponding database

From above, it can be seen that calculating the exponential sum of all of the

factors in (4.3) will give more control of the numbers in order to highlight

what is accepted and what is not.

Crowd-sensing for Smart City Applications 63 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.3 Origin and Trustworthiness of Data

The trust value is used to update the user reputation by adding it to the previous

value of the reputation:

Repu = Rep′u +Tu (4.5)

Where Repu is the new reputation value and Rep′u is the previous reputation

value. The reputation is in the range from (0) to (100).

The intuition behind how the trust is calculated is that consecutive high trust

values will build a reputation, but one low trust value will ruin it.

Figure 4.1: Task Flow Diagram in trust service. Trust threshold is denoted in δ

Example. User “X” downloads the SenseAll application, agrees to turn the lo-

cation on and wants to start sensing data. He/She takes a photo while walking

in an area of interest and sends it to the cloud. Before being received by the

cloud, the data are evaluated in the local server. User “X” will have a weightof

0.15 for user status, 0.05 and 0.2 for location and photo, respectively, 0 for

Crowd-sensing for Smart City Applications 64 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.3 Origin and Trustworthiness of Data

the number of contributions made during the day (since this was the first) and

0 for similarity, as no similar sensing data have been taken in that specific lo-

cation. Then, Tx = e0.4 = 1.4, which means the data of user “X”, along with

his/her trust value Tx = 1.4 and user ID, are sent to the cloud, as Tx is above

the threshold.

4.3.2.1 Traceability Requirement

Depending on the application, tracing the origin of the data is a key factor in the

success of smart city applications since this helps in tracing the errors if any ap-

peared in the data. In this thesis, data traceability is taking into account when

users contribute in the sensing task but without affecting the user’s privacy con-

cerns. To illustrate how traceability is considered, “SenseAll” mobile app is the

android mobile app that is used through out this thesis for different data sens-

ing and gathering. “SenseAll” will have application ID assigned for every user

using the app along with a user-generated password. To support traceability,

users using this app will have location services turned on (by default) when

sensing. However, the user will have the choice to turn it off if he/she has some

privacy concerns. Full information about the app is presented in appendix A.

4.3.3 Use Cases

The use case below will demonstrate how the trust algorithm works:

• User “X”

User “X” downloads the SenseAll application, agrees to share his/her location

and wants to start sensing the environment in location “A”. During the first four

days of sensing, shown in Table 4.3, he/she gains trust values that are above the

threshold (1.2), which means that the reputation value is added every day (Day

1 = 1.3, Day 2 = 1.3+2.1 = 3.4, Day 3 = 3.4+1.9 = 5.3, Day 4 = 5.3+1.7 = 7.0).

However, on the fifth day, the user sends data that have a trust value equal to

the threshold, as the picture he/she sends is corrupted and only the location

counts.

Therefore, the trust value is calculated using (4.4):

Tx = −e1.2 = −3.3

Crowd-sensing for Smart City Applications 65 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.3 Origin and Trustworthiness of Data

Table 4.3: Trust and reputation values for user "X"

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Trust 1.3 2.1 1.9 1.7 1.2 1.4 1.6

Reputation 1.3 3.4 5.3 7.0 3.7 5.1 6.7

And the reputation is calculated using (4.5):

Repx = 7.0− 3.3 = 3.7

Note that one bad contribution will have a detrimental effect on reputation (see

Fig. 4.2). On the sixth and seventh days, the user contributes good data that

improve the reputation but the harm of that one bad contribution cannot be

recovered completely after two days.

Figure 4.2: User "X" and user "Y" reputation values in one week

• User “Y”

User “Y” downloads the SenseAll application, agrees to share his/her location,

and wants to start sensing the environment in location “B”. During the first

day, shown in Table 4.4, he/she contributes trusted data and has a reputation

value of 1.5 . The data contributed on the following two days are below the

threshold. This leads to negative reputation values that equate to a reputation

of zero. The reputation value is treated as zero because there is no scale for

negative numbers in the presented approach; These values are simply kept to

make the reputation calculations. These are the calculations that occurred on

the second and third days.

Crowd-sensing for Smart City Applications 66 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.3 Origin and Trustworthiness of Data

Table 4.4: Trust and reputation values for user "Y"

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Trust 1.5 1.2 1.1 1.7 1.9 1.4 1.7

Reputation 1.5 −1.8 −4.8 −3.1 −1.2 .2 1.9

In day 2, the trust value is calculated using (4.4):

Ty = −e1.2 = −3.3

And the reputation is calculated using (4.5):

Repy = 1.5− 3.3 = −1.8

In day 3, the trust value is calculated using (4.4):

Ty = −e1.1 = −3.0

And the reputation is calculated using (4.5):

Repy = (−1.8)− 3.0 = −4.8

Then, as shown in Table 4.4, the user took three days to recover from the two

consecutive pieces of untrustworthy data contributed (see Fig. 4.2). Therefore,

in this trust approach, building trust takes time but contributing malicious data

ruins a reputation.

4.3.4 Discussion

This simple but effective approach will reduce the amount of untruthful data

in the cloud by a large degree, since data with low scores (below a specific

threshold), according to the factors presented, are discarded and not sent to the

cloud. Unfortunately, existing solutions proposed in related works to solve the

issue mentioned in the scenarios in section 4.3.1 and others are weak because

they:

• Either require offloading all sensed data to the cloud and evaluating the

trustworthiness of the data there, which is unnecessary traffic and time

consuming, or

Crowd-sensing for Smart City Applications 67 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.4 Scheduling Data

• Add significant overheads to users’ mobile phones, since the processing

and evaluation takes place on the phone.

In the proposed solution, the sensed data are processed and evaluated locally.

Malicious data are immediately discarded when discovered, and not sent to the

cloud. Thus, more time is saved and traffic overheads are avoided when sending

data to the cloud. Furthermore, in this approach, that the location service in

the mobile device is required to be turned ON before the user starts sensing

in the “SenseAll” application in order to support traceability. With traceability,

smart city applications in the cloud will benefit the most from the data sensed.

In the proposed approach, the issue of exposing user identities to traceability

is overcame by ensuring anonymity. This is because user identities are not sent

to the cloud in the first place, since only use application IDs assigned to every

contributing user are used, and these IDs are the ones sent to the cloud.

4.4 Scheduling Data

In this section, a scheduler service for crowd-sensed data is presented that is

located in the public local servers. The scheduler calculates the priority factor

for each user’s sensor data in the local server before the data are ready to be

sent to the cloud. Data with a high priority are sent first and data with low

priority are scheduled for another time. Therefore, the scheduler will examine

the relevance of the crowd-sensed data and prioritize sending these data to the

cloud.

Data Usefulness definition in the context of the scheduler

Data usefulness is defined in terms of how important, and not redundant,

crowd-sensed data offered by users are in order to send them to the cloud.

Crowd-sensed data with high priority are sent first.

Motivational Example

Suppose the City Hall of city “X” launched a mobile application that let mobile

phones detect the locations of roads that need to be repaired in their neigh-

borhood and send this information to the cloud. In some cases, the cloud will

receive locations of secondary roads that need to be repaired (i.e. not main

or busy roads), or roads located in some area that is not of high risk e.g., no

schools or playgrounds nearby [19]. Thus, the cloud might receive locations

Crowd-sensing for Smart City Applications 68 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.4 Scheduling Data

of damaged roads that are not of high importance, thus raising the question

of calculating the priority of the crowd-sensed data before sending them to the

cloud. Furthermore, another significant case is when a number of citizens who

go along a busy route might send information for the same pothole(s) that they

pass to the cloud; these replicated data will consume bandwidth. The idea of

examining data usefulness (i.e. priority) is, therefore, important, meaning that

it is necessary to assess how urgently a road needs to be repaired before sending

the crowd-sensed data to the cloud. For that purpose, a scheduler is required

to be in proximity to the crowd in order to send the crowd-sensed data to the

cloud based on their priority and avoid transmitting the same data for the same

pothole a number of times.

4.4.1 Previous Studies

There are a number of works related to sensing the environment and cloud

computing integration. They all share the same model, which is to send all the

information to the cloud to be processed there, but differ from each other in

using mobile phones or wireless sensor networks. One of them is “CrowdSC”

[19], that uses citizen participation in the context of a city where the citizens

will respond to the queries by taking photos. Then, they are asked to select

the photos that best describe the issue and assess these photoes. Another work

presents CrowdOut [15], that engage users in reporting dangerous traffic situ-

ations (e.g., speeding) in real time and map it on a city. Furthermore, in [44],

authors present an application called PotHole Patrol that reflects road situation

by using data generated from the sensors deployed in vehicles.

In terms of examining data usability, other authors [197] have proposed time-

and priority-based selective data transmission (TPSDT) for a Wireless Sensor

Networks gateway that examines the usability of crowd-sensed data and de-

pended on a Point versus Time and Priority (PTP) table maintained in the cloud

using the data requested by each mobile user. Their system is similar to the ser-

vice presented in that the usefulness of data is examined before sending them

to the cloud in order to avoid network traffic and decrease transmission band-

width. However, their system is different from the proposed service in that they

maintain their PTP table by analysing mobile users’ behaviour in the cloud dur-

ing a period of time, while the service in this thesis uses users’ reputations and a

scheduling algorithm (see section 4.4.3) for the selective transmission of useful

data to the cloud.

Crowd-sensing for Smart City Applications 69 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.4 Scheduling Data

4.4.2 Scheduling Service Requirement

Once the crowd-sensed data received to the local server, the trust will be eval-

uated first by the trust service presented in section 4.3, then the scheduling

service will take place. The crowd-sensed data should be trusted (after evalu-

ation) in order to enter the scheduling service. Untrusted data are discarded

after the trust evaluation.

4.4.3 Design

Once received by the local server, data are cached. The meta-data for this

contribution, such as user ID, are registered in the log file for a set period of

time (i.e. one day) in order to collect more data and calculate the priority

of these data and start building trust. At the end of this period of time, the

local server will selectively send data to the cloud depending on their priority

and the user’s trust. First, the user’s trust is calculated using weighting factors

presented previously (section 4.3.2), whereby crowd-sensed data for trusted

users are kept in order to schedule sending them to the cloud and data that

are not trusted are discarded. After the trust is calculated for any particular

user, the reputation value for this user is updated in the cloud. The cloud has a

reputation reference for every user and that this is updated regularly and sent

to all local servers. Then, in the proposed scheduling method, there is a priority

weight (w) that has, by default, the value of zero for every user contribution at

the beginning. Its value is calculated by the local server using different factors

applied in the following order:

1. Untrusted data are discarded using a trust evaluation method; only

trusted data are considered for scheduling.

2. At the end of the determined time, i.e. one day, if there are two or more

trusted users who sent data for the same location, then only the crowd-

sensed data from the user with the higher reputation value are considered;

the other similar contributions will add weight to this user’s data using an

approach outlined in equation (4.6), called a similarity weight for user

“u” (simu):

simu = n− 1 (if n > 0) (4.6)

Where “n” represents the number of all contributions in the same location

as user “u”, including his/her contribution. For example, if there are three

Crowd-sensing for Smart City Applications 70 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.4 Scheduling Data

contributions from three users (including user “u”) in the same location

and only the contribution from user “u” is accepted (since he/she has the

highest reputation value), then n = 3 and simu = 2.

3. Applying the scheduling method to the crowd-sensed data left by calculat-

ing the priority depends on the application used. In this thesis, “SenseAll”

application that automatically detects potholes tagged with location and

time. The priority is calculated by assigning a weight value for every de-

cision question. These decision questions can be changed depending on

the city’s requirements or locations and are answered by the public local

servers using the city map that is installed in every local server around

the city. As an example, the decision questions for the application in this

thesis are:

• “Is the data received located in a children-designated area?”: this

decision is the highest in weight since the safety of children is the

most important.

• “Is the street considered a main/busy street?” It is important to know

if the road with a pothole is a main street (e.g„ a highway), a busy

street (not a highway) or neither (a sub-road), since potholes in main

or busy streets might increase congestion.

• “Is the data captured during the rush hour?” This question is impor-

tant because congestion might be increased or even caused by the

pothole.

• “Is it a rainy area?” This decision question is not as important as the

others but areas with a lot of rain and potholes covered by water

might be dangerous due to the unexpected reactions of traffic partic-

ipants, particularly cyclists.

All trusted not-redundant crowd-sensed data pass through these decision ques-

tions and acquire a weight, as depicted in 4.5. After that, these data are sent

to the compression service, if floating-point numbers exist, (section 4.5). Then,

the data after compression, if any, will be scheduled to be sent to the cloud de-

pending on their weight. Crowd-sensed data with a higher weight are sent first

in order to receive a fast response from the local authority, lowerweight data

are scheduled for a later time and, finally, data with zero weight are discarded.

Crowd-sensing for Smart City Applications 71 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.4 Scheduling Data

Table 4.5: Decision questions and the corresponding scheduling weight

Decision Questions Scheduling Weight (w)
Rainy area? w = 1
Main road? w = 2
Busy road? w = 2
Rush hour? w = 1
Child area? w = 3

The weight ranges from 0 to 7, where 7 is the highest weight and this happens

if the road is designated for children, busy, data were captured in rush hour, the

area is rainy and no similar data are detected; however, it can be more than 7

if similar data are detected.

Example. As an example, consider a pothole that is located in a rainy area on

a main road. User “X” (who used a pothole app on his mobile device) passed

by this pothole using his bicycle at 4 pm (which is considered part of the rush

hour). His mobile device detected the location and sent it to the nearest local

server “SERVER1”, along with the time and a voice note that recorded the envi-

ronmental noise at the time (the app records every period of time and the last

recording when the pothole is detected is the one that will be sent).

Another user, “Y” (who used the same pothole app), detected the same pothole

when passing it using his car at 4:30 pm (also rush hour). The mobile phone

of user “Y” will send the data to the nearest local server, “SERVER1”. Data for

“SERVER1” show that user “X” and user “Y” are trusted (using trust method

in section 4.3) and that user “Y” has a higher reputation value than user “X”.

Then, the data contribution from user “X” is discarded, and a value of w = 1
(similarity weight) is given to the data from user “Y”, which are considered for

scheduling. The scheduler computes a weight of 4 for user “Y”. Therefore, the

contribution of user “Y” is scheduled to be sent to the cloud with a weight of

4 + 1 = 5. However, if there are other crowd-sensed data with a higher priority

weight than 5, these data are scheduled to be sent to the cloud first.

4.4.4 Evaluation

4.4.4.1 Evaluation setup

To perform the evaluation, the effectiveness of the scheduling method is exa-

mined when scheduling important and unduplicated data regarding pothole

Crowd-sensing for Smart City Applications 72 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.4 Scheduling Data

detection. First, the proposed method will show how it deals with data when

received by local servers (before sending to the cloud) and then compare it

with the idea of sending all the crowd-sensed data to the cloud, as in all previ-

ous work. In the simulation, there is one cloud, one local server and 50 mobile

users (i.e. a crowd), with a total of 50 contributions in one day. There are two

assumptions, first, the cloud will send the updated reputation values for every

user to the local server every day and the other is that all the data received

in the local server are trusted. Furthermore, another assumption is that Wi-Fi

services are distributed in the city to support the community.

Table 4.6: Locations and descriptions

Location Description

LOC1 Rainy area+ Main road

LOC2 Rainy area+ Main road+ Rush Hour

LOC3 Rainy area+ Busy road+ Child area

LOC4 Rainy area+ Busy road+ Child area+ Rush hour

LOC5 Rainy area+ Sub-road

LOC6 Rainy area+ Sub-road+ Child area

The roads are categorized into three different types. First are Main roads, such

as highways. Second are Busy roads that are defined as roads with a large

number of vehicles passing every day. Third are Secondary roads, which are

neither Main nor Busy roads. For every type, there are 2n possibilities for road

descriptions, where n = 3 according, since there are three conditions for every

road type (Rainy area, Child area, Rush Hour). In this simulation, two cases for

every road type are covered. The Rainy road condition is included in every case,

since Cork is considered a rainy area. Furthermore, the road descriptions are

chosen after discarding unnecessary road conditions in the city. For example,

main roads are usually highways that are crowded during rush hour but there

are no child areas on highways; therefore, main roads during rush hour are the

ones examined. However, child area conditions are taken into consideration

for both busy roads and subroads. For the sub-roads, rush hour conditions are

not examined due to their stable condition during the day (they are quiet roads

all day long). The data were collected from six different locations that contain

potholes. The descriptions of these locations are shown in Table 4.6. There are

different numbers of contributions in each location as shown in Figure 4.3. All

the contributions from the same location will have the same weight value as

Crowd-sensing for Smart City Applications 73 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.4 Scheduling Data

they detected the same pothole; however, the users’ reputation values are used

in the final decision to determine which contribution is considered.

Figure 4.3: Number of contributions in every location

4.4.4.2 Evaluation result

The evaluation results with respect to the scheduling method and the usability

of the data are presented in Figure 4.4. The scheduling approach is highly

effective when a higher number of contributions are received from the same

location. For example, in locations 1, 2, 3 and 4, the amount of data sent to

the cloud is reduced by at least 90%, where only 10% or less of data are sent

(only one contribution in every location). In location 6, the amount of data

sent is reduced by 80% using the scheduling method. However, this approach

showed the same result as the “offloading all” method in locations where only

one contribution was sent due to the area being quiet (i.e. location 5).

For every location, only one contribution was chosen, depending on the rep-

utation values. The priority weight for the one contribution selected in every

location after performing the scheduling algorithm is indicated in Table 4.7.

Then, the contribution from location 2 was the first to be sent to the cloud,

followed by location 4, location 1, location 3, location 6 and, finally, location

5. The amount of time between contributions depends on several factors. One

factor is the priority threshold that is defined by the city council or municipality

(whoever is interested in the contributions). If one contribution exceeds the

threshold, it will be sent immediately to the cloud. For example, if the priority

weight of one contribution in this evaluation exceeds 100, this means that the

pothole is really dangerous and needs to be sent to the cloud immediately in

Crowd-sensing for Smart City Applications 74 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.4 Scheduling Data

Figure 4.4: Average of data sent (Y-axis) in every location (X-axis) using the
scheduling approach and offloading all the crowd-sensed data

order for the city to take a quick action. Network traffic is another factor that

can postpone the transfer of contributions with lower weight. Furthermore, the

number of contributions that can be sent to the cloud (bandwidth and network

specifications) in a predefined time is considered another factor. However, the

details of all of these factors are beyond the scope of this thesis.

Table 4.7: Priority weight (w) for every contribution considered for scheduling
in every location

Location Similarity (sim) Priority (w) Total

LOC1 14 3 17

LOC2 29 4 33

LOC3 9 6 15

LOC4 24 7 31

LOC5 0 1 1

LOC6 4 4 8

4.4.4.3 Discussion

The approach presented in this section is effective in reducing the amount of

data sent to the cloud to only data that are relevant to the application. Instead

of offloading all the crowd-sensed data to the cloud, only part of them are sent

Crowd-sensing for Smart City Applications 75 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA

4.5 Single-precision Floating Point
Compression

by the scheduler running on the distributed public local servers that are close

to the crowd. This scheduler performs two main jobs:

1. If the local server receives a number of contributions for the same location,

the scheduler will select the data that will be sent to the cloud based

on the reputation values of the users. Other data are discarded but the

number of contributions is considered as a value (similarity weight) that

is added to the priority factor.

2. Schedules the sending of useful data to the cloud based on their priority.

Data with high priority are sent first.

The scheduling approach is more effective in situations with a large number

of contributions for the same location. Then, the consumptions of network

bandwidth and network traffic are significantly reduced.

4.5 Single-precision Floating Point Compression

A compression method for single-precision floating-point data is the contribu-

tion presented in this section. This compression method is located in the Re-

duction Unit of the local server. The distribution of local servers in a smart

city is taken into account and therefore two compression techniques are pre-

sented: one for location-based data (latitude and longitude) and the other for

an accelerometer’s three-dimensional data.

IEEE floating-point numbers have three basic components: the sign, the expo-

nent, and the mantissa. The number of bits in single and double precision is

shown in Table 4.8. In this thesis, the focus is on single-precision floating-point

values (Fig. 4.5).

Table 4.8: Floating Point Representation

Precision Sign Exponent Mantissa

Single 1 8 23

Double 1 11 52

Figure 4.5: Single-precision floating-point format of IEEE 752 standard

Crowd-sensing for Smart City Applications 76 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA

4.5 Single-precision Floating Point
Compression

4.5.1 Previous Studies

Although data compression is an attractive topic in the literature, only a

small number of studies have focused on the floating-point compression that

is needed in big data scenarios, such as crowd-sensing, smart city data and

scientific data.

4.5.1.1 Scientific Data

In [96], authors propose a compression method for floating-point data streams.

They used a prediction method in order to find similar numbers in a stream

and use them as predictions. Then, after performing some operations on the

actual number and the predictions, the residuals are compressed using multi-

way compression. Furthermore, authors of [138] proposed an algorithm that

compresses sequences of IEEE double-precision floating-point values as follows.

First, the algorithm predicts each value in the sequence and XORs (Exclusive

ORs) it with the true value. If the predicted value is close to the true value, the

sign, the exponent, and the first few mantissa bits will be the same. The work

in this thesis has no prediction method; the compression was performed easily

without any prediction limitations (i.e. over-processing).

In [169], a floating-point compression approach (fzip) is proposed. It has two

stages: the first uses the coding scheme in Burrows-Wheeler Transform (BWT)

compression [21]; the second is value and prefix compression, in which fzip

uses arithmetic codes to encode the prefixes. Therefore, a different pattern is

compressed at each stage. Fzip achieves a good compression ratio but performs

badly in terms of runtime. Other work is proposed in [58], in which authors

offer a binary masking technique that partially increases the regularity of high-

performance computing data sets in order to create high compressible data sets

before applying it for compression. Their work shows a good improvement in

compression ratio. However, their masking performs well with data of high sim-

ilarity (neighbor elements in high-performance computing have close values).

Finally, in [43], authors propose a delta compression algorithm to compress 64-

bit floating-point values by storing the higher-order differences between values.

The majority of the works above took advantage of the similarities in some

scientific data sets and their work will not be as effective if the data set values

are random. In this thesis, the compression algorithms proposed will deal with

both cases: the repeated values in GPS coordinates and the randomness of

accelerometer readings.

Crowd-sensing for Smart City Applications 77 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA

4.5 Single-precision Floating Point
Compression

4.5.1.2 Audio and Image Compression

In terms of audio and image compression, Ghido proposes a compression algo-

rithm for floating-point audio data [56].

The algorithm transforms the floating-point values into integers, maintains the

properties of the original values and creates an extra binary stream used for the

decompression of the original floating-point values. In the presented approach,

neither transformation made nor an extra binary stream is added; the exponent

part is used for reconstruction in the cloud (in accelerometer readings only;

GPS coordinates are reconstructed in the cloud without the exponent or any

additional bit).

Another work that represents the floating point as an integer proposes an addi-

tion to the JPEG2000 standard in order to encode floating-point data efficiently

with bit-plane coding algorithms [173]. Furthermore, in [50], changes are per-

formed on JPEG2000 to adapt lossless floating-point compression, such as op-

timizations in the wavelet transformation and beforehand signaling of special

numbers.

In [71], authors use a context-based arithmetic coder for single-precision

floating-point coordinates. They use the exponent to shift between different

arithmetic contexts, while in the presented approach, the exponent is used to

represent the exponent number and classify the integer part (see section 4.5.2

for more details).

4.5.2 Compression Design

4.5.2.1 Location-based Data Compression

In this section, a compression method is proposed that takes advantage of the

smart city architecture introduced in chapter 3. Public local servers are dis-

tributed around the city to serve the citizens. Therefore, the following question

was asked: why do the architecture not benefit from the server distribution and

apply a compression method to GPS coordinates (latitude and longitude) that

are represented as single-precision floating-point numbers (32 bits)?

The servers serve an area that has a diameter not more than 130 kilometers

(approximately 130 km is the distance that changes the integer value in the co-

ordinates from x.0000 to y.0000, where x and y are two consecutive numbers).

This means that all contributions that are received by a particular server will

Crowd-sensing for Smart City Applications 78 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA

4.5 Single-precision Floating Point
Compression

have the same sign and integer part. However, some might receive a maximum

of two integers and the way this is handled will be shown.

• Case 1 – Servers cover an area that has the same integral part for both

latitude and longitude (Algorithm 1).

Algorithm 1: GPS coordinate compression (Case 1)
Input: x.y (x is the integer part and y is the decimal part)
Output: Result (the compressed number in binary form)
if x == num then //num is the integer part that

Result = (y0. . . .yn)b //is covered by the server

else
No compression applied, use the 32 bit IEEE float-point presentation

Latitude and longitude are float numbers that are represented in Figure

4.5. For the sake of simplicity, the latitude will be discussed and the same

will apply to longitude. Therefore, the sign part, the exponent part and

the variable number of bits in the mantissa part can be removed, since

they are the same for all contributions.

The contribution is then sent to the cloud, in which there is a table that

has every server and its corresponding integral number covered in order

to decompress.

The number of bits in the mantissa will differ depending on how large the

integer is, as shown in Table 4.9. The number of bits that are removed

for compression will be from 10 to 16 (if assumed that the highest integer

number is 255).

Table 4.9: The number of bits in the mantissa to compress

Integer numbers
Number of bits to

compress in mantissa
Sign + exponent + bits in

mantissa to compress

2, 3 1 bit 1 + 8 + 1 = 10
4-11 2 bits 1 + 8 + 2 = 11
8-15 3 bits 1 + 8 + 3 = 12
16-31 4 bits 1 + 8 + 4 = 13
32-63 5 bits 1 + 8 + 5 = 14
64-127 6 bits 1 + 8 + 6 = 15
128-255 7 bits 1 + 8 + 7 = 16

This means that the higher the integer the more bits to compress. The

reason for a missing bit is because of the IEEE float number presentation.

Crowd-sensing for Smart City Applications 79 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA

4.5 Single-precision Floating Point
Compression

For example, the number 13 is, in binary, 1101 but after normalization,

the most significant bit is hidden and only 3 bits from the mantissa are

eligible for the compression method.

• Case 2 – If the server covers an area that has two different integral parts

(Algorithm 2).

The same procedure as that for Case 1 will be applied, but with a minor

difference: the server needs to add 1 bit (called a decision bit) at the

beginning of the compressed value in order for the cloud to determine

which integral part is considered for decompression. For example, if the

server always receives GPS coordinates that can have two possible integer

parts, x and y, the server will assign 0 for the integer x and 1 for integer

y and add it as the most significant bit in order for the cloud to decide

which integer is needed. Thus, this case is different only in the decision

bit that is added as the most significant bit (see Algorithm 2).

Algorithm 2: GPS coordinate compression (Case 2)
Input: x.y (x is the integer part and y is the decimal part)
Output: Result (the compressed number in binary form)
if x == num1 then //num1 is the first integer

Result = (0 y0 . . . yn)b //covered by the server
else if x== num2 then //num2 is the second integer

Result = (1 y0 . . . yn)b //covered by the server
else

No compression applied, use the 32 bit IEEE float-point presentation

4.5.2.2 Accelerometer Data Compression

During a single event, an accelerometer will return data for three coordinate

axes (x, y and z). These data values are single-precision floating-point numbers.

In this section, a compression method is proposed that will reduce the size of

these float numbers by attempting to remove some bits that can be recovered

easily later in the cloud.

The integral number is considered (the integer part of the float number) to be

from 0 to 39. This is based on the experiment presented in section 4.5.4 and

the android accelerometer Sensor.getMaximumRange() API (i.e. android hard-

ware restrictions), in which 39 was the highest integer in all axes. However,

this method will also work with any number higher than 39. The sign, expo-

nent and mantissa of the 32-bit floating-point numbers are treated as follows

(Algorithm 3):

Crowd-sensing for Smart City Applications 80 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA

4.5 Single-precision Floating Point
Compression

1. The sign bit is left unchanged in this method, in which 0 corresponds to a

positive number and 1 corresponds to a negative number.

2. The exponent is mainly 8 bits. If the exponent is negative, the number is

left uncompressed since there is no way to predict the numbers after the

float point. On the other hand, if the exponent is positive, then the num-

ber of bits in the exponent is decreased to 3 bits. These 3 bits represent

the number of bits moved after the float point during the normalization

process. For example, in number 13.1857, the mantissa part will look

like this before normalization: 1101.0011. After normalization, the num-

ber will look like this: 1.1010011 X 23, whereby the point is moved to

the most significant 1. Since the number of bits moved after the point is

three, then the exponent will only represent number 3. In the integer part

range (1 − 39), the exponent range is from 0 to 5. Therefore, 3 bits are

reasonable to present the exponent part and there is no need to add 127

(single-precision bias). The bias addition will take place later in the cloud

in the decompression process. Table 4.10 shows the numbers and their

corresponding exponent values that will be stored in the exponent part.

Table 4.10: Exponent values for every integer number

Number Exponent

0 Negative exponents

1 0 (000)b

2 and 3 1(001)b

4-7 2(010)b

8-15 3(011)b

16-31 4(100)b

32-39 5(101)b

3. In the mantissa, the exponent is used to categorize the integers and de-

crease the number of bits that represent the integer number (1− 39). The

categorization of the integers is presented in Table 4.11. The reduction of

the number of bits will take place in two steps:

3.1) The most significant bit for all integers under the exponents from 1

to 5 is always 1. This bit is going to be removed all the time (the

hidden bit in IEEE floating-point). Thus, all the numbers with an

exponent from 1 to 5 have one bit removed.

Crowd-sensing for Smart City Applications 81 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA

4.5 Single-precision Floating Point
Compression

Table 4.11: Integer categories

Exponent Integer Binary

0 1 1

1 2 and 3 10 and 11

2 4-7 100-111

3 8-15 1000-1111

4 16-31 10000-11111

5 32-39 100000-100111

3.2) After removing the most significant bit “1” from all the numbers, the

exponents 1 and 2 will have 1 bit and 2 bits, respectively, to repre-

sent their integer numbers (Table 4.11). Therefore, these integers

are left unchanged. On the other hand, the integers covered by the

exponents 3, 4 and 5 can be further altered. Starting from numbers

covered by exponent 5 (32−39), the new most significant bit after re-

moving “1” will always be “0”. Thus, this bit can also be removed and

the numbers from 32 to 39 are represented only in 4 bits. Numbers

covered by the exponent 3 are slightly different. The new most sig-

nificant bit (after removing 1) can be either 0 or 1. Therefore, there

need to be some indication if this bit needs to be removed. Since

the exponent is represented in 3 bits and only exponents from 0 to 5

remain, the exponent 6 can be used to help indicating the bit in the

decompression. The exponents 3 and 6 are used in the compression

process for the integer values from 8 to 15. Exponent 3 indicates

that the removal of “0”, while exponent 6 indicates the removal of

“1”. Therefore, numbers from 8 to 15 can be represented in only 2

bits. The same will happen to numbers from 16 to 31, for which ex-

ponent 4 is used to indicate that the removal of “0” and exponent 7

to indicate the removal of the bit “1”. Thereafter, the numbers from

16 to 31 are represented by only 3 bits. For an illustration, see Table

4.12.

4.5.3 Decompression

In this section, the decompression processes for both location-based and Ac-

celerometer data are presented. The decompression process will take place in

Crowd-sensing for Smart City Applications 82 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA

4.5 Single-precision Floating Point
Compression

Table 4.12: Number of bits after steps 3.1 and 3.2

Number Exponent
Number of bits after

step 3.1
Number of bits after

step 3.2

2-3 1(001)b 1 bit 1 bit

4-7 2(010)b 2 bits 2 bits

8-15 3(011)b and 6(110)b 3 bits 2 bits

16-31 4(100)b and 7(111)b 4 bits 3 bits

32-39 5(101)b 5 bits 4 bits

the cloud and it will re-construct the compressed single-precision floating point

numbers in a cost-less and easy way as shown below:

Algorithm 3: Accelerometer Data Compression
Input: x.y (x is the integer part and y is the decimal part)
Output: Result (the compressed number in binary form)
if x == 1 then

Exponent = 000
Mantissa=(y0 . . . yn)b

else if x== 2 OR x==3 then
Exponent = 001
Mantissa=(x1)b(y0 . . . yn)b //x0 is removed

else if x >=4 AND x<= 7 then
Exponent = 010
Mantissa=(x1x2)b(y0 . . . yn)b //x0 is removed

else if x >=8 AND x<= 11 then
Exponent = 011
Mantissa=(x2x3)b(y0 . . . yn)b //x0 and x1 are removed

else if x >=12 AND x<= 15 then
Exponent = 110
Mantissa=(x2x3)b(y0 . . . yn)b //x0 and x1 are removed

else if x >=16 AND x<= 23 then
Exponent = 100
Mantissa=(x2x3x4)b(y0 . . . yn)b //x0 and x1 are removed

else if x >=24 AND x<= 31 then
Exponent = 111
Mantissa=(x2x3x4)b(y0 . . . yn)b //x0 and x1 are removed

else if x >=32 AND x<= 39 then
Exponent = 101
Mantissa=(x2x3x4x5)b(y0 . . . yn)b //x0 and x1 are removed
no compression applied, use the 32 bit IEEE float-point presentation
Exponent= (c0c1c2c3c4c5c6c7)b

Mantissa= (x1 . . . xn)b(y0 . . . yn)b
End if
Result=(Signbit)(Exponent)(Mantissa)

Crowd-sensing for Smart City Applications 83 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA

4.5 Single-precision Floating Point
Compression

4.5.3.1 Location-based Decompression

The cloud will have a table that contains the ID of every public local server

around the city and the integer part(s) for both the latitude and longitude that

are covered. Therefore, when the compressed positive latitude and longitude

values are received to the cloud and attached with the local server ID (in the

Http request), the cloud will look up the ID in the table and re-construct the

latitude and longitude. The re-construction process is by returning the removed

bits that corresponds to the removed integer part.

Negative values are not compressed by algorithm 3, they are received by the

cloud as they are in which no processing needed.

4.5.3.2 Accelerometer Decompression

The cloud will receive the compressed accelerometer readings in a binary for-

mat then it will use algorithm 4 to reconstruct the removed bits.

Algorithm 4: Accelerometer Data Decompression
Input: (Sign)(Exponent) (Mantissa) (The output of algorithm 3)
Output: Result (IEEE single precision in binary format (32 bits))
if Exponent = 000 then

Mantissa=(1 y0 . . . yn)b

end if
if Exponent = 001 then

Mantissa=(1x1)b(y0 . . . yn)b //x0 is added
end if
if Exponent = 010 then

Mantissa=(1x1x2)b(y0 . . . yn)b //x0 is added
end if
if Exponent = 011 then

Mantissa=(10x2x3)b(y0 . . . yn)b //x0 and x1 are added
end if
if Exponent = 110 then

Mantissa=(11x2x3)b(y0 . . . yn)b //x0 and x1 are added
end if
if Exponent = 100 then

Mantissa=(10x2x3x4)b(y0 . . . yn)b //x0 and x1 are added
end if
if Exponent = 111 then

Mantissa=(11x2x3x4)b(y0 . . . yn)b //x0 and x1 are added
end if
if Exponent = 101 then

Mantissa=(10x2x3x4x5)b(y0 . . . yn)b //x0 and x1 are added
end if
Result=(Signbit)2((Exponent)10 + 127)2(Mantissa)2

In algorithm 4 and after returning the removed bit(s), the Sign bit, Exponent

and Mantissa are put together but first some work need to be done on the

Crowd-sensing for Smart City Applications 84 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA

4.5 Single-precision Floating Point
Compression

Exponent to be compatible with IEEE single- precision floating point format.

First, the bias (127) is added to the Exponent decimal value then the resulted

value is converted to a binary form (8 bits).

4.5.4 Evaluation

In the evaluation, the effectiveness of the compression method is assessed by

first comparing the size of the data before and after performing the compression

for both GPS coordinates and accelerometer readings. Then, the method is

compared with some of the existing compression algorithms.

4.5.4.1 Evaluation setup

The compression ratio described above was first evaluated with a data set that

contains GPS and accelerometer readings (i.e. both GPS coordinates (latitude

and longitude) and three axes (x, y and z) of accelerometer readings). Then,

there are five entries (latitude, longitude, x, y and z) for every sensing contri-

bution. These entries are represented as a single-precision floating point and

this is how it is received by the server. The data set is obtained by an Android

app developed for this thesis (the details are in appendix A). In the evaluation,

there are the cloud and one local server that received the crowd-sensed data

and started performing on compression on the set. The data set consisted of

2,000 readings and was about 1.2 MB (even though the data set was not large,

the intention is to examine the compression method on real crowed-sensed

data): the GPS coordinates data were 0.51 MB and the accelerometer data was

0.72 MB.

4.5.4.2 Evaluation Result

The proposed compression method is implemented and ran on the data set. The

location-based data reduction (step 1) was performed on the GPS coordinates

and the accelerometer data reduction was applied to the accelerometer axes.

The data set size was reduced to 0.82 MB, which means the method removed

up to 33% of the data.

4.5.4.3 Comparison

The proposed compression method is compared in terms of compression perfor-

mance with one general-purpose compression algorithm (zlib) [200] and one

Crowd-sensing for Smart City Applications 85 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.6 Chapter Summary

floating-point data compression algorithm (Szip) [194]. Zlib offers general-

purpose lossless data compression and is an abstraction of the deflate algo-

rithm. Szip is a predictive compression algorithm based on the extended-Rice

algorithm that uses Golomb-Rice codes for entropy coding. Table 4.13 demon-

strates that the proposed approach is more effective, as the data size after

Table 4.13: Comparison of the data size after compression

Compression algorithm Data size (MB)

zlib 0.98

Szip 0.91

Presented approach 0.82

compression appears to be the lowest. Furthermore, the comparison is per-

formed on the GPS coordinates and accelerometer readings separately. Table

4.14 shows the data size after performing each compression algorithm. The

compression approach in this paper and Szip have a similar GPS data size after

compression due to the high similarity of the GPS data received on one server.

However, the approach proposed in this thesis shows a better result than the

other two algorithms for the accelerometer readings, where the data are ran-

dom. The proposed approach deals with every data entry as a separate entry

and does not use the history of the previous entries to predict the next value.

Therefore, this method shows its effectiveness for similar and random values.

Table 4.14: Detailed data size after compression

Compression algorithm GPS data size (MB) Accelerometer data size (MB)

zlib 0.292 0.691

Szip 0.265 0.645

Presented approach 0.261 0.562

4.6 Chapter Summary

This chapter presented the different middleware services in the smart city en-

vironment, where this middleware is in the proximity of the crowd. The mid-

dleware is offered as public local servers that are located next to the crowd and

offered by the city to improve the quality of life for citizens. Theses services

are:

Crowd-sensing for Smart City Applications 86 Aseel T. Alkhelaiwi

4. EDGE SERVICES FOR CROWD-SENSED DATA 4.6 Chapter Summary

1. Trust Service that calculates the trust for every contribution received using

four factors, then if this contribution is trusted, it will be moved to the

scheduler service but the trust value and the user ID will be sent to the

cloud. If the contribution is not trusted, it will be discarded but the trust

value will be recalculated and sent to the cloud along with the user ID.

2. The Scheduler will schedule sending the data to the cloud depending on

their priority and it differs depending on the application in use. Further-

more, it removes similar contributions from the same location. Before

data are scheduled to the cloud, they are sent to the reduction unit first.

3. The Reduction Unit that contains a compression unit for single precision

floating point i.e. location-based numbers and accelerometer numbers.

Even though the reduction in size is technically occurred in the Reduction Unit

(section 4.5), all of the other services contain reductions in data in their own

way. In more details, in the Trust Service, the untrusted data are discarded

and not sent to the cloud. If the Scheduler, in a specific application, receives a

number of contributions for the same location, it will just pick one contribution

for that location instead of sending all of these similar data to the cloud. The

Scheduler will choose this contribution depending on the highest reputation

values for the user contributed.

The following chapter will present the data partitioning approach and the ser-

vices provided by the cloud. The data partitioning approach will logically par-

tition the data depending on a number of parameters. The two services, then,

will apply to the data depending on the result of the data partitioning approach.

Chapter 6 will present a use case and experimental work for the whole services

existed in this thesis.

Section 4.2 and all subsections were published in [7]. Section 4.3 and all sub-

sections were published in [6]. Section 4.5 and all subsections (except section

4.5.3) were published in [5].

Crowd-sensing for Smart City Applications 87 Aseel T. Alkhelaiwi

Chapter 5

Data Management in the Cloud:
Cloud Services

5.1 Introduction

In recent years, the substantial increase in mobile device capabilities has led

to the introduction of the crowd-sensing paradigm. Mobile crowd-sensing used

Mobile cloud computing (MCC) technology in different application including

Smart City applications. However, due to the limited resources of mobile de-

vices, sensed data are usually offloaded and processed in data centres – clouds.

Clouds receive a large amount of sensed data from mobile phones and other

sensors to serve these smart city applications.

However, the increasing volume of crowd-sensing data in the cloud raises two

challenges. The first is that sending a large amount of data to the cloud requires

high bandwidth and consumes a lot of energy. Second is managing and storing

these data efficiently in clouds, then optimizing data without losing important

features and values.

To overcome the first challenge, middleware services are presented in chapter

4 that resides in public local servers and showed the importance of local pro-

cessing in a smart city context. Furthermore, the previous chapter showed how

the amount of data is reduced effectively on the edge and as close to the crowd

devices as possible. With these middleware services, data sent to the cloud are

reduced in numbers and size and, therefore, the amount of traffic and trans-

mission cost are reduced as well.

88

DATA MANAGEMENT IN THE CLOUD 5.2 Partitioning Method

Regarding the second challenge, clouds offer storage and computing resources

for many applications, such as smart city applications. However, this new model

needs to reconsider database management principles in order to provide scal-

able and efficient storage that takes into account the pay-as-you-use model.

Storage optimization has been studied for years in databases using methods

such as compression [147] [117] [77] [190] [46] [135]. The more data stored

in the cloud, the higher the cost. Therefore, to overcome the second challenge, a

relational database storage management in the cloud is proposed in this chapter

using, first, a proposed method to partition the databases into two logical parts

and, second, a set of proposed reduction services. The partitioning method is

performed using a number of parameters defined by the user such as time, ac-

cess rate etc. With the proposed partitioning method, one can identify the level

of importance and sensitivity of the data entries in a specific database and this

will help the user when applying different operations such as data reduction

operations.

The partitioning method that is located in the cloud is presented in this chap-

ter as well as the cloud reduction services i.e. data optimization and context

extraction.

5.2 Partitioning Method

The partitioning method is performed on smart city relational databases located

in the cloud in order to efficiently reduce the cost and the amount of data

stored. This method highlights the importance and sensitivity of data chunks

in order to perform reduction services. Using this method, users can perform

reduction services on unnecessary data, which will improve storage and reduce

costs without losing any important data.

The goal of using this method is to reduce the amount of stored data without

loosing important or sensitive data. Upon partitioned data, new services such

as optimization and context extraction are offered; these services will run in

the cloud and make use of the partitioning method to reduce data stored in

the cloud efficiently and therefore will decrease the cost. These services apply

to data chunks that are not as important as others, where a data chunk is any

number of data entries that is part of a database; for example, the first 1000

data entries in a weather database can be considered as a data chunk.

Crowd-sensing for Smart City Applications 89 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.2 Partitioning Method

Data Storage in the cloud

Smart city data in the cloud are stored into relational databases and they con-

sist of all types of crowd-sensed data (Longitude, Latitude, Time, Accelerometer

readings, etc.) obtained from different smart city applications such as Weather,

Environment etc. For simplicity, throughout this chapter, an assumption is con-

sidered that every database contains only one table, e.g., water database con-

tains only one table. Sensitive data refer to several things depending on the

database. Sensitive data defined as data that contain important values, per-

sonal information, cover critical areas or was captured at a critical time. These

features vary between different databases. For example, within the weather

database, data entries corresponding to days with flooding in city “X” are con-

sidered sensitive data. Immutable data are defined as data that are considered

sensitive, newly added to the database or frequently accessed by users. Muta-

ble data are data that are flexible to change, contain no sensitive data and not

frequently accessed. All of these features are shown in details in section 5.2.2.

Every database “Y” maps to a log file and a context database. The log file keeps

track of the number of accesses to different data chunks in “Y” (see section

5.4). The context database contains the knowledge-extracted from database

“Y”, such as the circumstances around a particular event. Figure 5.1 presents

the proposed architecture, which works as follows:

1. The user enters a specific time period (such as 1/1/2010 to 31/12/2010)

and specifies a smart city database (for simplicity, the assumption is that

every smart city relational database contains only one table) to check the

sensitivity of the data in which he/she wants to apply the reduction ser-

vices on and sends it to the cloud using the interface.

2. In the cloud, data are checked as to whether they are immutable or mu-

table, according to algorithm 7. The user then will receive the response

about the data.

3. The user will now have a clear idea about what services need to be applied

on the data requested (see section 5.4.1 for services and when to apply

them) and then can request these service(s). Depending on the decision

in step 2, the user can choose to either optimize data entries in a specific

database or extract context from this database. The context data are saved

into separate context tables where every smart city database maps to one

context database (i.e. table).

Crowd-sensing for Smart City Applications 90 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.2 Partitioning Method

4. After the service(s) execution is complete, the cloud acknowledges the

user.

Another important feature of this architecture is the schedule service, which

will allow the user to schedule the periodic communication of either raw or

context data to different users (i.e. consumers).

Motivational Example

Suppose the city council of city “X” collects air pollution data around the city

using mobile phones and vehicles, and data collected are stored in a cloud.

After a period of time (e.g. five years), the city council (IT department) realizes

the need to optimize the air pollution database in terms of cloud storage, since

it contains a huge number of entries that include unnecessary data collected

during the previous five years. The council then needs to find a way to reduce

the cost of storing the air pollution data and increase data storage efficiency.

However, the air pollution database (i.e. table) contains data entries that are

considered important since they might contain singularities or were captured

during an important time frame.

Figure 5.1: System Architecture

Crowd-sensing for Smart City Applications 91 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.3 Previous Studies

Therefore, the council needs to be careful when optimizing the storage to avoid

removing any important data from the database. To overcome this issue, it

agrees to choose a number of parameters and use them as a basis for distin-

guishing the important from the less important data. Section 5.4 introduces the

partitioning criteria.

5.3 Previous Studies

In cloud environments and with the increasing volume of data sent to the cloud,

data need to be managed efficiently in order to reduce cost and save storage.

Most of the research published to date proposed to manage data in the cloud

either by virtual machine (VM) utilization, or replication and parallel process-

ing.

In [186], authors propose a data replication approach to reduce the cost of data

storage and transfer for workflow applications. They categorize dataset types

into three groups, fixed dataset, free-flexible dataset and constrained-flexible

dataset, to build a connection between datasets and each data centre. They also

developed a data replication algorithm that takes place in a build-time phase

with distinct levels of data dependency, size of the data, access rate, and storage

capacities of the data centres. If dataset “d1” is located in data centre “X”, but

there is a task “t1” located in data centre “Y” where this task will frequently

invoke “d1”, then replicating “d1” in data centre “Y” will reduce the total cost C

where C = data storage cost for “d1” + data transfer cost for “d1”. Their work

is similar to the work in this chapter in terms of partitioning but is different

with regard to what is partitioned and why. They partitioned whole datasets in

order to decide what to replicate in distributed servers, but in this chapter, the

partitioning is applied for every database in order to optimize the storage in the

current cloud.

Furthermore, in replication, a DARE (distributed adaptive data replication) al-

gorithm, created by a scheduler for improved data locality measures is pre-

sented in [1]. The model uses an adaptive data replication technique that pro-

duces additional replicas for popular data and minimizes replicas for unpopular

data. In dynamic data replicas, their work uses a replication plan to save extra

storage and reduce overheads.

Authors of [153] define a smart city framework for data management using a

fog to cloud architecture. They propose a data acquisition block where data

Crowd-sensing for Smart City Applications 92 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.3 Previous Studies

aggregation is performed, such as removing redundant data, and use existing

data compression techniques (e.g. zip format).

In [35], authors present a Software-Defined Networking (SDN-based) frame-

work for Virtual Machine (VM) management. Their framework uses time-based

network information to transfer VMs. With their framework, the communica-

tion cost is reduced and the throughput is increased since their system trans-

ferred VMs that are around 50%. Their work concentrates mainly on communi-

cation cost reduction, however, not storage reduction. Another work, presented

in [99], focuses on the processing of smart meter data streams in a cloud in-

tegrated framework. The scenario states that, as the hardware utilization is

increased, it could accommodate more virtual machines for real-time pricing

applications. The analysis demonstrates the suitability of the cloud environ-

ment for frequently updating data streams.

In [17], the authors proposed a cloud data management system using Hadoop

that analyses sensor data requirements and overcomes the limits in the tra-

ditional relational database management system by providing parallel storage

and processing in the cloud. Authors proved how capable is their framework

in data management tasks in cloud systems. In [24] and [23], authors propose

a hierarchical Hadoop framework (H2F). This framework considers the hetero-

geneity of nodes and the geographic data distribution in order to overcome

limitations in the original Hadoop job-scheduling algorithm.

Furthermore, a distributed storage system for high data access concurrency is

proposed in [116]. Authors use a Hadoop MapReduce framework and a set

of versioning algorithms. Another work is UniHadoop [18], which combines a

grid middleware tool called Unicore with the Hadoop Distributed File System

(HDFS) to improve data storage in terms of duration, elasticity and disaster

recovery. All the previous works utilize parallel storage to manage the data,

which is unlike the proposed work in this chapter.

Finally, in [145], authors propose to automate data management in cloud com-

puting by using a storage selection system. This system chooses between dif-

ferent storage providers (i.e. Amazon, Azure and local clouds) based on user

requirements and general features of the storage providers, such as cost or per-

formance. Their work is interesting as it deals with data before storing them in

the cloud. On the other hand, the partition method proposed examines differ-

ent parameters of the data after they are stored in the cloud. The design of the

partitioning method is presented in section 5.4.

Crowd-sensing for Smart City Applications 93 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.4 Design

5.4 Design

Data volumes increase at a high speed in smart city applications as well as in

scientific applications. The challenges of storing these data and the costs are

also increased. Therefore, in this chapter, the need to optimize data storage

has led to a partitioning method, which will help users to apply data reduction

services, such as optimization to data chunks that are not particularly impor-

tant. This is advantageous, as the data storage in use is reduced without losing

important data and the cost also decreases.

Using a relational database model, first, the data are partitioned depending on

variable parameters that can be defined by the user, the application or both.

These parameters logically partition the database into immutable and mutable

part. The reason for these logical partitions is to have a clear vision of what the

limit of data reduction is when applying reduction services to the data, since

every smart city database (as well as the databases of other domains) contains

important and often sensitive entries at specific times. Therefore, by having

these immutable and mutable parts, the proposed services, such as context ex-

traction, can be applied to the mutable part and not to the immutable one.

In this work, the mutable part can be changed, optimized or sometimes deleted

if needed, whereas the immutable part cannot be changed (for a determined

period of time, at least) unless there is a need to remove redundancy.

Data entries for which the parameters are examined throughout this chapter

are called “di,y”, which indicates data entries that start from entry ‘‘i” to entry

“y”. In the smart city domain in use, the partition parameters are defined as:

time (T), access rate (AR), and singularities.

A. Time

Time simply represents the time stamp of the crowdsensed data entries in a

specific database. Specifically, the time stamp is needed for the first and last

entries of “di,y”.

Ti = time stamp for entry “i”, which is the first entry in the data part “di,y”.

Ty = time stamp for entry “y”, which is the last entry in the data part “di,y”.

Crowd-sensing for Smart City Applications 94 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.4 Design

B. Access Rate

Access rate shows how frequently data are accessed. The lower the values re-

sulting from equation (5.1), the better, since having a large number of accesses

will give small values using equation (5.1):

(AR)di,y = (log2 (NA)di,y)/(NU)di,y (5.1)

where (AR)di,y denotes the access rate to a piece of a database called “di,y”;

(NA)di,y is the number of accesses registered for “di,y” in a log file that is called

“Access Log”, and (NU)di,y is the number of different users who accessed “di,y”.

Figure 5.2: Database “DB1” with the associated Access Log

The logarithm function is a convenient way to handle large numbers. Therefore,

it is used in equation (5.1) where the number of accesses (NA) can be a large

number as there is no limit for the number of accesses every user can have. For

example, there can be 20 users who accessed a particular database for 1000

times. Futhermore, the reason behind dividing the logarithm of NA by NU and

not the other way around is to guarantee small values for AR.

B.1) Access Log

Every database is associated with a log file that keeps the number of accesses

to every data chunk in this particular database – see Figure 5.2. In the log file,

Crowd-sensing for Smart City Applications 95 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.4 Design

there are two columns, the first one captures the equal-sized data chunks in a

particular database while the other one keeps track of the number of accesses to

every chunk. For example, A chunk in the Weather database can be considered

as data entries in every month, or every six months. The user defines the size

of these data chunks. The size of “di,y” can be less, equal or larger than the

size of a data chunk. The number of accesses to a specific data part “di,y” can

be captured by checking what data chunks it belongs to and then returning the

number of accesses registered in the log for these data chunks (see algorithm 5).

Algorithm 5: Number of accesses to a data chunk
Input: Access Log with n logical chunks (chunk1, chunk2,.., chunkn) for database “DB1”, di,y

(requested data part)
Output: NAdi,y(the number of accesses to di,y)
Assumptions: n>1, sizeof(di,y) <= sizeof(chunk)
//which chunk di,y belongs to? Start the checking process starting from the
first chunk
z=1
while (z<= n AND (z+1) <=n) do

if (di,y ∈ chunkz AND di,y ∈ chunkz+1) then //di,y in two consecutive chunks
NAdi,y =access_num (chunkz) + access_num (chunkz+1)
Break //exit the loop

end if //di,y belongs to only one chunk
if (di,y ∈ chunkz OR equal_chunk(di,y, chunkz)) then

NAdi,y=access_num (chunkz)
Break //exit the loop

end if
z++

end while
if (z==n) then //checking the last chunk

if (di,y ∈ chunkz OR equal_chunk(di,y, chunkz)) then
NAdi,y =access_num (chunkz)

end if
end if

C. Singularities

Some entries in the database contain unique values that need to be identified

and cannot be changed or deleted. From this point, it is important to check

if the requested data entries “di,y” contain these important values. The singu-

larities (such as minimum, maximum or sensitive values) are defined by the

user depending on the smart city domain, such as, weather, traffic or urban

planning. Algorithm 6 demonstrates this parameter.

After calculating the access rate and capturing the time stamp for “di,y”, it is

necessary to check if one or more singularities exist and examine the result

using defined thresholds. With these thresholds, one can decide if “di,y” belongs

Crowd-sensing for Smart City Applications 96 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.4 Design

Algorithm 6: Check for important values (Exist_singular)
Input: di,y, Singular1, Singular2
Output: True if it contains singularities and False otherwise
x=i;
while (x<= y) do

if (dx contains Singular1 OR dx contains Singular2) then
return True

end if
x++

end while
return False;

to the immutable part of the particular database (SD) or to the mutable part

(NSD). If the data time stamp is higher than the time threshold, this means that

“di,y” is new data and not considered old. Furthermore, if the value of the access

rate is lower than the access rate threshold, this means that “di,y” is an active

part and accessed frequently. The data partitioning decisions are illustrated in

algorithm 7.

In algorithm 7, different options are checked with the three defined parameters.

The options are as follows:

1. Check if data are timely new (i.e. recently added to the database).

2. Check if data were captured for a long time but with a high number of

accesses (time and access rate thresholds are defined by the user).

3. Check if data were captured over a long time with a low number of ac-

cesses but some important values i.e. singularities exist.

From the algorithm above, it is necessary to outline that a data chunk is con-

sidered as a mutable part (NSD) if, according to the defined thresholds, it is

outdated, not frequently accessed and does not include any singularities. Oth-

erwise, the data part is considered immutable.

The algorithm above can be applied whenever the user wants to check a specific

data part (before applying the reduction services). However, this idea can be

extended by applying the algorithm periodically on the data chunks that are

defined in the log file. Therefore, algorithm 7 can be applied as follow:

1. Occasionally: the user needs to specify the data part to be checked. In this

case, the user will decide, depending on the flexibility of the data, what

are the reduction services that can be applied on the data part. then

Crowd-sensing for Smart City Applications 97 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.4 Design

Algorithm 7: Data are immutable or mutable
Input: Ti (time stamp for entry i), Ty (time stamp for entry y), ARdi,y, α (time threshold), δ
(Access rate threshold)
Output: di,y is immutable or mutable
//1//time is higher than threshold
if Ti > α AND Ty > α then

di,y ∈ SD //immutable
end if
//2//time stamp is less than threshold but access rate is high
if Ty <= α AND ARdi,y < δ then

di,y ∈ SD //immutable
end if
//3// time stamp is less than threshold and access rate is low,
then singularities need to be checked
if Ty <= α AND ARdi,y >= δ then

if not (exist_singular (di,y)) then
di,y ∈ NSD //mutable

else
di,y ∈ SD //immutable

end if
end if
//4// if the time stamp of the first entry is lower than the threshold but
the last entry is not, access rate will be examined.
If access rate is high, no need to check for singularities
if (Ti <= α) AND (Ty > α) AND (ARdi,y < δ) then

di,y ∈ SD //immutable
end if
//5// access rate is low (check for singularities)
if (Ti <= α) AND (Ty > α) AND (ARdi,y >= δ) then

if not (exist_singular (di,y)) then
di,y ∈ NSD //mutable

else
di,y ∈ SD //immutable

end if
end if

2. Periodically: the algorithm is applied every period of time (specified by

the user) on the data chunks that are defined in the log file. Therefore,

after defining the data chunks in the log file as immutable or mutable,

the optimization service is applied automatically on both the immutable

and mutable chunks. On the other hand, the user needs to specify when

to apply the context extraction service on themutable chunks (not auto-

matically). The reason for that is to be more cautious when applying the

context extraction service since it requires removing the whole mutable

data chunk after extracting the context (see section 5.4.1). It is impor-

tant to note that the classification of the data chunks (in this case) as

immutable or mutable is not permanent since it can be changed when the

partitioning parameters are changed after a period of time.

Crowd-sensing for Smart City Applications 98 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.4 Design

Changes made in the databases by the partitioning method and the reduction

services are seen by all users who have access to the databases in the cloud,

even when the changes are performed automatically by the system.

5.4.1 Services

After deciding in what database part “di,y” is included (i.e immutable or mu-

table), some services will be presented. These can be carried out on the im-

mutable part, mutable part or both.

1. Data Entry Optimization

Users can optimize a specific database in a specific period by removing

the consecutive rows that have the same value for one or two columns

(these are considered key columns as defined by the user). For example,

if two or more rows with different time stamps have the same value for

one or two key columns, then only the first row is left in the database,

while the rest are removed. This service will improve storage, particularly

in smart city databases, such as weather databases, since these will have

the same values for different columns on different days, such as summer

days. This service can be applied to both immutable and mutable parti-

tions. However, if the data requested to be optimized “di,y” are considered

immutable, there is a need to check whether they include singularities by

using algorithm 6. If “di,y” includes singularities, this optimization ser-

vice cannot be applied since there is a risk of losing important data, or

it can applied with restrictions (e.g. checking every entry if it contains

important value or not before applying the optimization service). Chan-

ges made by this service are permanent since deleted data can be easily

determined. The optimization process is shown in algorithm 8 where only

one key column is used. However, if more than one key columns are used,

they will simply be checked as well in the “if conditions” in algorithm 8.

2. Context Extraction

Users will select key columns they actually need (i.e. temperature in the

Weather database) then, based on their selection, the context is extracted

and inserted into the corresponding context database. Every database

(Weather DB, Water DB, etc.) has its own context database. In this ser-

vice, users will have the choice to delete the original data and keep only

the extracted data in the context database, which will save a significant

Crowd-sensing for Smart City Applications 99 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.4 Design

Algorithm 8: Optimization using one key column
Input: DB (Database), key (key column), DB_length (the number of rows in the database.
Output: Optimized DB
while (the current row != DB_length) do

if (key in the current row == key in the next row) then
Delete the next row

end if
if (key in the current row != key in the next row) then

Move to the next row
end if

end while

amount of storage. This service can be applied only to mutable partitions

of the database. The changes made by this service are semi-permanent.

The original data are deleted from the original database but kept for some

defined time in the cloud to make sure there are no requests on those

deleted data. After this period of time, the data are deleted permanently.

The highest value in the column, the lowest value and average values are

some examples of the context information that can be extracted from a

database. The context extraction process is a linear search in the database

where the extraction process used in this work is shown in algorithm 9.

Algorithm 9: Context Extraction using one key column
Input: DB (Database), key (key column), DB_length (the number of rows in the database,
Average= 0, Temp= key in the first row, Highest= key in the first row, Lowest= key in the
first row.
Output: time_frame= DB_timeframe, Average, Smallest, Largest
Move to the next row
while (the current row != DB_length) do

Temp= Temp + key in current row
if (key in the current row > Highest) then

Highest = key in the current row
end if
if (key in the current row < Lowest) then

Lowest = key in the current row
end if
Move to the next row

end while
Average = temp/DB_length

3. Scheduling

Users can schedule sending data to themselves in any time range they

specify (e.g. the data can be sent every month or every two months). The

data sent can be raw data from the original databases or knowledge data

from the context databases. This service can be applied to both immutable

and mutable partitions.

Crowd-sensing for Smart City Applications 100 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.4 Design

5.4.2 Use Cases

In this section, the way the partitioning method is performed is presented using

Weather database of [180]. Specifically, the partitioning method will be applied

on the entries from 1/1/2010 to 31/12/2011. In these use cases, the time

threshold is defined as α and it should be above 1/6/2011 and access rate

threshold as δ = .39 where the lower the number the better. Furthermore, the

log file is presented in table 5.1 where there is an assumption that every three

months is considered as a data chunk. For simplicity, the number of different

users’ accesses to a chunk (NU) is assumed to be equal to the number of accesses

(NA) registered in the log file for that chunk. Using table 5.1, there will be four

different cases according to algorithm 7:

1. The user wants to check data entries from 1/8/2011 to 31/8/2011:

First, the time is checked using the time threshold α. The month of August

in 2011 is larger than α, then this user entry is considered immutable and

thus no need to check any other parameters.

2. The user wants to check data entries from 1/1/2011 to 29/2/2011:

The time is below the threshold α, then there is a need to check the

access rate. Access rate in the months of January and February equals

.314(log2(11)/(11) and this value is below the δ (this indicates large num-

ber of accesses), then this user entry is considered immutable.

3. The user wants to check data entries from 1/10/2010 to 30/11/2010:

The time is below the threshold α and the access rate is above δ (access

rate = log2(2)/2 = .5). In this situation it is necessary to check if the

data entries in this time range contain important values (singularities).

If not, the user entry is considered flexible and mutable, otherwise it is

immutable.

4. The user wants to check data entries from 1/5/2011 to 30/6/2011:

The user entry in this case is quite different. The time for some entries is

below the time threshold α and other entries are above it. In this case,

it is necessary to examine the access rate to decide. The access rate for

this user entry is .375(log2(8)/8) which is below the access rate threshold

δ, then this user entry is considered immutable. If the access rate value is

above the threshold δ, then it is important to check for singularities.

Crowd-sensing for Smart City Applications 101 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.4 Design

Table 5.1: Log File Example

Data Chunk Time Range No. of Accesses

Chunk1 1/1/2010- 31/3/2010 8

Chunk2 1/4/2010- 30/6/2010 7

Chunk3 1/7/2010- 30/9/2010 5

Chunk4 1/10/2010- 31/12/2010 2

Chunk5 1/1/2011- 31/3/2011 11

Chunk6 1/4/2011- 30/6/2011 8

Chunk7 1/7/2011- 30/9/2011 4

Chunk8 1/10/2011- 31/12/2011 9

The time stamps for chunks 2, 3 and 4 are below the time threshold and

their access frequencies are above the threshold, but when the singularities are

checked, chunk 3 found to have singularities and this makes it an immutable

chunk. Therefore, 6 out of 8 chunks are considered immutable using the parti-

tioning parameters (around 75%). Since chunks 2 and 4 have no singularities,

these two chunks are the only chunks that are considered as mutable. On these

chunks all the reduction services (optimization and context extraction) can be

freely performed without worrying about loosing sensitive data. Therefore, if

the user decides to apply the context extraction service on these chunks, then

around 180 data entries are removed from the Weather database (in the case

study 2010 and 2011) and the context of these entries are extracted and in-

serted into the context database. This means that around 24.65% of the data

are removed from the Weather database in 2010 and 2011 using this service.

The reduction percentage can further be increased if there are more mutable

data chunks in the database. The more mutable data chunks, the more room

for data reduction. So, if there is an assumption that chunk 3 contains no sin-

gularities, then the percentage after applying the context extraction service is

increased to 36.98%.

If the optimization service is applied on the immutable chunks that contain no

singularities, there will be further reduction. Chunks 6 and 7 are the only im-

mutable chunks with no singularities. After applying the optimization service

and using the temperature as the key column, the followings are achieved: in

chunk 6 data is reduced by 15.38% (14 data entries removed from chunk 6),

while chunk 7 is reduced by 30.43% (28 data entries removed from chunk 7),

since the weather in summer days is almost the same. This means that around

5.75% of data are removed from the Weather database in 2010 and 2011 using

Crowd-sensing for Smart City Applications 102 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.5 Evaluations

the optimization service. With the two reduction services combined, data are

reduced by 30.4%. From the percentages above, the effectiveness of the pro-

posed partitioning method is seen and how this method can successfully and

easily help in reducing the amount of data without loosing important features.

5.5 Evaluations

For evaluation, the Weather database is deployed using Amazon Relational

Database Service [10] offered in Amazon Web Services (AWS) [11]. To be

more specific, only the entries from 2010 and 2011 are deployed; the size of

this Weather database is 1.7 MB.

Even though there is a lack of similar techniques where they can be compared

with the functionality of the proposed approach, compression techniques can

be the best fit in terms of data reduction and storage saving. Therefore, the

proposed approach is compared with two compression techniques. The first

is a general-purpose compression algorithm (zlib) [200]. The second is an

SQL supported compression method, called page compression [36], that stores

data efficiently in a row and removes redundancy. Table 5.2 shows that the

petitioning approach applied with the reduction services outperforms the other

two techniques; this is because this approach does not only remove repetitions,

it removes mutable entries too while extracting knowledge from the removed

data. Note that, storing the removed data for a period of time after applying

context extraction is not considered in this evaluation since these data will be

deleted permanently.

Table 5.2: Comparing database size after reduction

Reduction Method Size After Reduction

General-purpose Compression 1.51 MB

Page Compression 1.39 MB

Presented Approach 1.18 MB

5.6 Discussion

Even though the proposed approach accomplished a large percentage in storage

savings, this will introduce two new requirements:

1. Users’ agreements on reduction:

Crowd-sensing for Smart City Applications 103 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.7 User Agreement Agent (Notification Agent)

There will be a tradeoff between users’ agreement and reduction. As dif-

ferent users have access to the databases and one of them, let’s call him

“USER1”, applied the reduction services on the Weather database, the

others are not aware of that change. In this case, all the users who have

access to the database need to confirm their agreement to this reduction.

To overcome this issue, a database flag can be developed or notifications

are sent to all users asking them to confirm their agreement to the reduc-

tion applied by “USER1”. If all users confirm the reduction, then it will be

applied. Some may not and decide to maintain the original copy of the

database and pay for the service accordingly. This issue is solved in details

in section 5.7 using a user agreement agent.

2. CPU Load:

With the new data reduction service, the load on the CPU will increase due

to partitioning and reduction services. However, utilizing the cloud with

its powerful processors will drop the impact of this penalty. Furthermore,

the main goal in this chapter is data reduction and storage saving, and this

on the other hand will decrease I/O operations and execute the queries on

the databases faster. The storage cost can be determined using equation

(5.2) below. For simplicity, the data transfer cost is ignored and only the

storage cost is considered.

Cost=
((

GB per month * data size
)

* no. of months
)

(5.2)

The cost of storing the data in the cloud for a year is .0015$. The cost savings is

not that different after using the partitioning approach and reduction services

since the size of the database is small. However, there can be a big saving in

cost with large databases as there is more chance for data to be reduced after

applying reduction services. The complete evaluation of data reduction services

is presented in chapter 6.

5.7 User Agreement Agent (Notification Agent)

User agent is a notification component that can be located in the cloud or in

the consumer’s side (i.e. interface). This agent is triggered when a reduction

event (i.e. context extraction service) occurs. All the users who have access to

the data are registered in the cloud, therefore when one user attempts to apply

Crowd-sensing for Smart City Applications 104 Aseel T. Alkhelaiwi

DATA MANAGEMENT IN THE CLOUD 5.8 Chapter Summary

the reduction services on the data; the user agreement agent will send email

notifications to all other users. The main purpose behind this is to make sure

that all the users agreed on the reduction attempt and the data removed are

not necessary for all of them. With the agent, there are two scenarios:

1. At least one user refused the reduction: then the reduction attempt will

be declined and the data will be left unchanged.

2. All the users agreed upon the reduction: then the reduction query is per-

formed and the data are removed from this database. However, to ensure

reliability and robustness, the data removed are kept for a period of time

e.g. one month before being deleted permanently.

5.8 Chapter Summary

In this chapter, a smart city data management architecture is proposed that

takes into account storage optimization in the cloud. Data are partitioned

by utilizing user-defined parameters to distinguish sensitive from non-sensitive

data in a specific database. First, users will check to which part belongs the

data chunk they want to apply reduction services to, in order to avoid losing

important data. The partitioning method and the reduction services applied

to not-so-important data chunks lead to important database storage savings. A

number of services are proposed that can efficiently reduce the amount of smart

city data saved in the cloud. The proposed approach is an effective process of

reducing the smart city data storage of the cloud without losing important data

as shown in the use case earlier. Extended evaluations are conducted in the

next chapter.

The following chapter will present two different use cases and their evaluations.

The evaluations will be held for the whole services in the local servers and the

services in the cloud. Chapter 7 concludes the thesis.

Sections 5.1, 5.2, 5.3, 5.4 (except algorithms in section 5.4.1), 5.5 and 5.6 were

published in [3].

Crowd-sensing for Smart City Applications 105 Aseel T. Alkhelaiwi

Chapter 6

Experimental Evaluations

6.1 Introduction

There are two main sets of purposes behind the work presented in this thesis:

the first set involves assessing the smart city data produced from crowd-sensing

in terms of truthfulness and usefulness and reducing the amount and size of

the data before sending them to the cloud; the second set resides in the cloud,

where different users attempt to manage the smart city data located there. In

this chapter, evaluations of the performance of both edge services and cloud

services are undertaken to understand the effectiveness of the solutions pro-

posed.

Chapter 4 showed the performance of each service located on the edge as a

stand-alone unit. In this chapter, the performance of all the services on the edge

as a whole unit is presented in section 6.2, as well as the results of receiving

and filtering the crowd-sensed data using these services. A use case study is

also undertaken in section 6.3, in which different consumers utilize a user-

friendly web page to exploit the reduction services in the cloud. Consumers

send queries that are applied to the smart city data located in the cloud to

show how efficiently these services can manage the data storage. After the

evaluations are completed, the chapter outlines if the different edge and cloud

services will meet the requirements outlined in chapter 3.

106

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

6.2 Use Case 1: Exploiting Edge Services

This section presents an evaluation of the services located on the edge (i.e. the

trust manager, local reduction unit and scheduler) which is conducted for all

the services as a whole unit. Thus, if the edge services are regarded as a black

box, this section presents a use case that shows in detail the form and amount

of the crowd-sensed data entered into the black box and the amount and size

of the filtered data output.

6.2.1 Experiment Setup

An Android app called “SenseAll” was developed for sensing potholes around

a city. This Android app was installed on 14 Android devices (two HTC and

12 Samsung Galaxy devices) in order to start the pothole-sensing activity using

Wi-Fi. More details of the Android app can be found in Appendix A.

For the sake of simplicity and completion of the evaluation work, and due to

the unavailability of public local servers around the city in the meantime, a

Windows desktop is used as a local server and contains the three edge services

(i.e. the trust manager, local reduction unit and scheduler). This local server

runs a Java platform and is coded using Java Server Pages (JSP) in order to

receive the crowd-sensed data and store them using the MySQL database.

The server receives the data sent from every device whenever a Wi-Fi connec-

tion is available. The server stores the data in the database and starts the ser-

vices. For simplicity, the reputation calculation takes place in the server, as it

contains a table that has all the reputation values for all the users. The repu-

tation values at the beginning of the evaluation are all zero. The users build a

reputation as they start to sense.

The experiment took one week. The users were asked to use their mobile de-

vices every day to sense potholes whenever detected. Users can employ the

app easily while walking, running or driving, simply by opening the app (the

login process is only performed the first time) and placing the mobile device

on a surface or shaking it if a pothole is detected. The user can send a photo

as supporting evidence but this is an optional data entry. The data produced

by the app contain the time, GPS coordinates (latitude and longitude), three-

dimensional accelerometer readings, the status of the user (e.g., at a standstill,

walking, etc.) and, sometimes, a photo.

Crowd-sensing for Smart City Applications 107 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

The server will have a predefined time, which is one day, meaning that, every

day at 11:59 pm, the filtered data are sent to the cloud. Defining the local server

time as one day is not the case in a wide range of smart city applications, in

which hundreds or sometimes thousands of people are sensing data during the

day. However, in this evaluation, due to the small number of mobile devices, the

local server schedules sending the data only once a day in order to understand

the benefit of the edge services.

The data are passed to the server by sending an HTTP request and using JSON

markup. The trust calculation factors work as follows:

• The “user status” factor is chosen by the user from a drop-down list, where

the default value is “driving”.

• The “sensing style” factor depends on the variety of crowd-sensed data. In

this evaluation, the data contributed can be GPS coordinates, accelerom-

eter readings and photos.

• The “loyalty” factor is added up if the user made previous contributions

during the predefined time in this evaluation, which is one day. For exam-

ple, if the user had two previous contributions during the same day and,

later, the server received a third, this factor will have the value 0.1.

• The “similarity” factor checks if any of the previous contributions received

had the same GPS coordinates. If yes, this factor will have the value 0.1

for this contribution and all similar contributions; otherwise, it is 0.0.

The trust service performs two different calculations: the first is the calculation

of every factor for one contribution; and the other is the calculation of the trust

of that contribution using equation (4.3) in chapter 4. The first calculation is

performed once the contribution is received, while the second calculation is

undertaken at the end of the predefined time. The trust service calculates ev-

ery factor for the contribution received and saves the values of the factors in

a temporary database until the predefined time (one day) is over. This is to

ensure the addition of a similarity value for all previous contributions, not only

those currently available. Furthermore, postponing the trust calculation (the

second type of calculation) until the end of the day eliminates extra compu-

tations that occur when the trust is calculated for a specific contribution at a

specific time and similar data are detected later and the trust value needs to be

updated. Therefore, at the end of the day and after making sure that every con-

tribution has a similarity factor value that it deserves, trust is calculated using

Crowd-sensing for Smart City Applications 108 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

equation (4.3). Untrusted data are then discarded and the reputation scores

are updated. After that, the scheduler checks all the trusted contributions in

the temporary database and searches for similarities using the similarity factor.

If similar trusted data are detected, only the contribution with the highest user

reputation score is kept, while the others are discarded.

6.2.2 Experiment Results

The results of the experiment are shown on a daily basis below and lead to

the final analysis of the amount of data removed and reduced when sending

these data to the cloud. Every day, the trust and reputation value calculations

are shown, as well as the compression process for both location-based data and

accelerometer-based data and, finally, the scheduler process. It is important to

note that the trust and reputation calculations undertaken every day appear in

a table that corresponds to each day. The tables do not show the flow and order

of the trust calculations; they only show the final values for all the factors, as

well as the trust and reputation scores that are calculated at the end of the day.

Note that the reputation values are all zero before starting the experiment and

then the values build up or down depending on the trust values. The number

of contributions for every user on each day is shown in Table 6.1. The trust

calculations and reputation scores for all users for each day are shown in detail

in Appendix B.

1st Day

On the first day, the server received data from all the users in different time

frames. The server starts applying the services to the data once they are received

in the local database. Therefore, the server started with the data from User 3,

since it was the first contribution received. However, the time stamp for when

the data are received will not be taken into consideration in this evaluation

except for the purpose of analysis. Trust is calculated using the parameters

given in chapter 4.

After a trust value is calculated for every user, it is compared with the threshold.

If the value is above this threshold, the data are trusted and taken to the sched-

uler; otherwise, the data are simply discarded but the trust value is still used for

building reputation, as shown in Appendix B. Note that the number of contri-

butions received for the first day is 18, as users 6 and 11 had two contributions,

user 12 made three contributions and user 9 made none. The majority of the

Crowd-sensing for Smart City Applications 109 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

Table 6.1: Number of contributions for every user on each day

Users Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

User1 1 1 1 1 1 1 1

User2 2 1 1 2 1 1 1

User3 1 1 1 0 1 2 1

User4 1 1 1 1 1 1 1

User5 1 2 1 1 1 1 1

User6 2 2 1 2 2 1 1

User7 1 1 1 1 1 1 1

User8 1 1 1 1 1 1 1

User9 0 1 1 1 0 1 1

User10 1 1 1 1 1 1 1

User11 2 2 2 1 2 1 1

User12 3 2 1 2 2 1 1

User13 1 1 1 1 1 1 1

User14 1 1 1 1 1 1 1

users had the same score for “sensing style”, since they sent both location and

accelerometer data successfully. However, users 11 and 5 had different scores.

User 11’s pothole detection is supported with a photo and that increased the

value of the sensing style for that specific contribution. User 5 failed to send

accelerometer readings and only the default values of zero are received along

with the location. Furthermore, the more a user uses the app to send data, the

higher the “loyalty” factor. Therefore, the maximum number of contributions

made by a single user on the first day was three and these were performed by

user 12. Regarding the “similarity” factor, none of the contributions received

on the first day had the same location (GPS coordinates) for potholes received

by the time of this contribution; thus, this factor will have the value zero for all

contributions.

Three contributions were removed from the trust service as they were consid-

ered untrustworthy and did not provide enough evidence for potholes. The trust

values for these untrusted contributions were re-calculated using the penalty

equation presented in chapter 4, whereby these trust values are transformed

into negative exponential numbers. Therefore, the new penalty trust values will

ruin the reputation scores gained thus far and, in order for the users to recover

their scores, they need to improve their sensing contributions over the follow-

Crowd-sensing for Smart City Applications 110 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

ing days. Therefore, the trust service makes some reductions in the amount of

data received from the first day when the untrusted data are discarded.

The scheduler established if there were similar contributions by checking the

“similarity” factor of the 15 trusted contributions. However, on the first day,

no similar data were detected. The scheduler sent the trusted data to the local

reduction unit, where only the GPS coordinates and accelerometer readings are

compressed. The size of the trusted data before they entered the reduction unit

was 38.1 KB and, after the compression took place, the size of the data was 30

KB.

2nd Day

On the second day, the server received 18 contributions, as all the users con-

tributed data when potholes were detected. Users 5, 6, 11 and 12 contributed

twice, which added a value of 0.05 to their “loyalty” factor. User 5 showed great

improvement with the data contributed as both contributions are trusted but,

unfortunately, the reputation score for this user is still affected by the untrusted

data received on the first day. Therefore, user 5’s reputation value was still

negative and the following days will determine if this user’s reputation can be

rebuilt or not. The “similarity” factor indicates that there are two contributions

in the same location for users 2 and 8, which adds a value of 0.1 for both users

since this similarity indicates the truthfulness of the existence of the pothole.

Two contributions were discarded on the second day, from users 7 and 13.

Unfortunately, the reputation of user 7 is getting really low, since this user had

two consecutive untrusted contributions on the first and second days.

At the end of the day, the trusted data are checked by the scheduler for simi-

larities. The scheduler chooses between two similar pieces of data detected by

the trust service. The scheduler chose data from user 2, since this user had a

higher reputation value on the second day than user 8. This means that three

contributions were discarded: two were discarded from the trust service due to

low trust scores and one was discarded from the scheduler due to similarity.

After that, the compression methods were performed on the GPS coordinates

and accelerometer readings in the remaining 15 contributions. The size of the

trusted data before they entered the reduction unit was 40.4 KB and, after the

compression took place, the size of the data was 32.3 KB.

Crowd-sensing for Smart City Applications 111 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

3rd Day

On the third day, the server received 15 contributions and all the users con-

tributed data when potholes were detected. User 11 was the only one who

contributed twice on that day and, therefore, this user is eligible for receiving

the value 0.5 for the “loyalty” factor that will count for the second contribution.

Only one contribution was discarded on the third day, from user 4. This con-

tribution affected the reputation score for that user and degraded the score

from 2.6 to −0.7. User 5 started to recover from the untrusted contribution

made on the first day, as three trusted contributions were needed in order for

that user to transform the reputation score from a negative to a positive value.

However, users 7, 13 and 14 still needed more trusted contributions to recover

their reputations. User 7 had the lowest reputation score thus far, due to the

two consecutive untrusted contributions that user made on the first and second

days.

The “similarity” factor indicated that there were two pairs of similar contribu-

tions: the data from users 2 and 8 again and from users 12 and 6. Users 2

and 8 were very likely to have been walking together on both the second and

third days, as they had a similar location for the pothole detected and their

contributions were captured at the same time. The scheduler chose between

these similar data, taking into account the higher reputation score. Therefore,

the scheduler kept the data from users 12 and 2; the contributions from users 8

and 6 were removed. This means that three contributions were discarded: one

was discarded from the trust service due to a low trust score and the other two

were discarded from the scheduler due to similarity.

After that, the GPS coordinates and accelerometer readings for the 12 contribu-

tions were compressed in the local reduction unit. The size of the trusted data

before they entered the reduction unit was 18.4 KB and, after the compression

took place, the size of the data was 12.1 KB.

4th Day

On the fourth day, the server received 16 contributions and all the users (except

for user 3) contributed data when potholes were detected. All the data received

were considered trusted and no data were discarded. Users 4, 13 and 14 re-

covered their negative scores and started to build their reputations. User 7 still

had a negative score, even with two consecutive trusted contributions on days

Crowd-sensing for Smart City Applications 112 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

3 and 4; again, this was due to two untrusted data contributions on the first

and second days. Therefore, this shows how difficult it is to gain a reputation

having made consecutive untrusted contributions.

The “similarity” factor indicated that there were two similar contributions from

users 2 and 8. The scheduler then chose between these similar data, taking into

account the higher reputation score. Therefore, the scheduler kept the data

from user 2. This means that only one contribution was discarded and this was

done by the scheduler due to similarity. After that, the GPS coordinates and

accelerometer readings for the 15 contributions were compressed in the local

reduction unit. The size of the trusted data before they entered the reduction

unit was 23.3 KB and, after the compression took place, the size of the data was

15.4 KB.

5th Day

On the fifth day, the server received 16 contributions, where all the users con-

tributed data (except for user 9) when potholes were detected. Users 6, 11

and 12 contributed twice on that day and were, therefore, eligible for receiving

the loyalty value 0.5 that would count towards the “loyalty” factor with their

second contribution.

Only one untrusted contribution was discarded on the fifth day: that from user

13. This contribution affected the reputation score for user 13 and degraded

the score from 0.7 to −2.6, returning this user to a negative reputation value.

Although user 7’s contribution on day 5 is trusted, the reputation score is still

negative.

The “similarity” factor indicated that the contributions from users 2, 3 and 8

were similar, as well as the contributions from user 5 and the second contribu-

tion from user 11. This added the similarity value 0.1 to all five contributions.

At the end of the day, the scheduler chooses from the similar contributions,

taking into account the highest reputation. Therefore, the scheduler chose the

contributions from users 2 and 11, as they had the highest reputations of those

considered. This means that four contributions were discarded: one was dis-

carded from the trust service due to a low trust score and the other three were

discarded by the scheduler due to similarity.

After that, the GPS coordinates and accelerometer readings for the 12 contribu-

tions were compressed in the local reduction unit. The size of the trusted data

Crowd-sensing for Smart City Applications 113 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

before they entered the reduction unit was 19.6 KB and, after the compression

took place, the size of the data was 14.2 KB.

6th Day

On the sixth day, the server received 15 contributions, where all the users con-

tributed data once and user 3 contributed twice; this added the loyalty value

0.5 to the “loyalty” factor for the second contribution. Note that users 11 and

13 received the value 0.35 for the sensing style factor because these two sent

photos alongside GPS coordinates and accelerometer readings.

Three untrusted contributions were discarded on that day: those from users 5,

6 and 9. Their reputation scores were affected accordingly.

The “similarity” factor indicated that the contributions from users 3, 8 and 10

were similar. This added the similarity value 0.1 to all three contributions.

At the end of the day, the scheduler chooses from these similar contributions,

taking the highest reputation into account. Therefore, the scheduler chose the

contribution from user 8 and discarded the other two contributions. This means

that five contributions were discarded: three were discarded from the trust

service due to low trust scores, while the other two were discarded from the

scheduler due to similarity.

After that, the GPS coordinates and accelerometer readings for the 10 contribu-

tions were compressed in the local reduction unit. The size of the trusted data

before they entered the reduction unit was 45.8 KB and, after the compression

took place, the size of the data was 41 KB.

7th Day

On the last day, the server received 14 contributions, where all the users con-

tributed only once. Again, user 11 received the value 0.35 in the “sensing style”

factor because this user sent a photo alongside the GPS coordinates and ac-

celerometer readings.

Only one untrusted contribution was discarded on that day: that from user 6.

User 7 finally overcame the two consecutive untrusted contributions made on

the first two days. Therefore, it took five consecutive trusted contributions from

user 7 in order to regain a positive value.

Crowd-sensing for Smart City Applications 114 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

The “similarity” factor indicated that the contributions from users 2 and 8 were

similar. This added the similarity value 0.1 to these two contributions. At the

end of the day, the scheduler will choose from similar contributions, taking the

highest reputation into account. Therefore, the scheduler chose the contribu-

tion from user 2 and discarded the other contribution. This means that two

contributions were discarded: one was discarded from the trust service due to

a low trust score and the other was discarded by the scheduler due to similarity.

After that, the GPS coordinates and accelerometer readings for the 12 contribu-

tions were compressed in the local reduction unit. The size of the trusted data

before they entered the reduction unit was 33.2 KB and, after the compression

took place, the size of the data was 27.5 KB.

6.2.3 Edge Services Analysis

In this section, the analysis and evaluation of the experiment conducted in the

previous section are presented. This analysis will summarize the goals of the

above experiment, which were as follows:

• To evaluate the performance of the trust and scheduler services in terms

of reducing the amount of data received on the edge.

• To evaluate the performance of the local reduction service (i.e. compres-

sion) in reducing the size of the trusted data before sending them to the

cloud.

• To show how the reputation scores are affected by trusted and untrusted

data for every user on each day.

The main goal in this thesis is to reduce the amount and size of crowd-sensed

data received by the local server to minimize bandwidth utilization and reduce

network latency. In terms of data transfer, this architecture uses JSON markup,

as it is more lightweight than XML, which is an important factor in terms of

reducing the amount of data transferred and network delays.

The data reduction goal in this thesis is achieved at different stages of the exper-

iment above. The first stage is the trust service, which discards untrusted data.

The second stage is the scheduler, which removes similar data. The last stage

is the local reduction unit, which compresses the trusted data and thus reduces

the size of these data. Table 6.2 and Figure 6.1 summarize the first two stages

by showing the number of contributions discarded by both the trust and sched-

Crowd-sensing for Smart City Applications 115 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

uler services. Figure 6.2 shows the total size of the trusted data when received

by the local reduction unit and the size of the data after compression on each

day of the experiment. Furthermore, Figure 6.3 shows the size of the data once

received in the local server before applying any service and the size of the data

after applying all the edge services (i.e. trust, scheduling and compression).

Table 6.2: Number of contributions before and after applying the trust and
scheduler services

Days

Number of
contributions
received in
the local
server

Number of
untrusted

contributions
removed by the

trust service

Number of
similar

contributions
removed by the

scheduler

Total number of
contributions

after removing
untrusted and
similar data

Day 1 18 3 0 15

Day 2 18 2 1 15

Day 3 15 1 2 12

Day 4 16 0 1 15

Day 5 16 1 3 12

Day 6 15 3 2 10

Day 7 14 1 1 12

Figure 6.1: Amount of data reduction after the trust service and scheduler are
applied

Figure 6.4 shows the reputation score value changes for all 14 users over the

seven days of the experiment. User 7 has the lowest value, since this user

made two consecutive untrusted contributions on the first and second days.

Crowd-sensing for Smart City Applications 116 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

Figure 6.2: Size of trusted non-similar data before and after compression is
performed

Figure 6.3: Size of the data before performing any service and after applying
all the services

The proposed approach shows how difficult it is to regain reputation, as it takes

five trusted contributions from user 7 in order for that user to gain a value

above zero. User 6 was doing very well in the first five days but this user

sent two consecutive untrusted contributions on the sixth and seventh days,

which reduced the reputation score for user 6 by around 50% (from 12.5 to

6.2). All the contributions from users 1, 2, 3, 8, 10, 11 and 12 are trusted

and this explains the gradual increase in their reputation scores. However, the

increase differs from one user to another because some users (e.g., 11 and

Crowd-sensing for Smart City Applications 117 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

12) contributed more than once on some days and used more sensing styles

(e.g., photos) than others. This explains their high reputation scores compared

with the other users. Furthermore, users 2 and 8 contributed similar data,

which were captured in the same place at the same time. Thus, there is a high

probability that these two users were walking together on some days and this

added the similarity value for the similar contributions they sent.

Figure 6.4: Reputation score changes for every user over seven days

Execution time

In order to understand the time delay for the services in completing a task, the

execution time needs to be calculated. The execution time for the whole of the

edge services is the time from the data being received to the local server and the

time the data are sent to the cloud after applying the services. However, the ex-

Crowd-sensing for Smart City Applications 118 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.2 Use Case 1: Exploiting Edge Services

ecution time cannot be captured precisely since the services are executed in dif-

ferent time frames. This is because the trust service will calculate trust as soon

as the data are received in the server, but the scheduler will not be performed

until the end of the predefined time (one day in the experiment above). In this

section, the execution time for every service is calculated separately and then

the sum of the values will represent the execution time of the edge architecture.

However, the time of every service needs to be defined precisely. The trust ex-

ecution time (trust_runtime) is the average time this service needs to calculate

trust for every contribution. The scheduler execution time (scheduler_runtime)

is the time this service needs to remove similarities. The compression execu-

tion time (compression_runtime) is the time this service needs to compress all

the contributions. Therefore, the approximate architecture execution time for

one day can be calculated as follows, where the time values for every service

correspond to Day 7:

time = trust_runtime + scheduler_runtime + compression_runtime

= (14 ∗ .91 s) + 1.14 s + 3.7 s

= 17.58 s

In this evaluation, one day is the predefined time and this time frame must

be determined by the city. This time varies (e.g., 1 hour, 12 hours or 1 day)

depending on the criticality of the data. If the crowd-sensed data received in

the server are not critical (weather, traffic, etc.), the predefined time can be

as long as 1 day or so. However, the predefined time might change when the

number of contributions exceeds the capacity of the server. In this case, the

server will minimize the predefined time value and send the data to the cloud

in order to be able to receive new contributions. On the other hand, if the data

received are critical (e.g., a poisonous atmosphere or pollution), the time will

be as low as 30 minutes or even lower (depending on the population in the

place covered by the server).

However, the runtime for some services is proportional to the amount and type

of data received. Therefore, time complexity (big O notation) will also be used

to describe the time for the algorithms in this architecture, since the fixed time

overhead for the predefined time will not be counted.

The worst-case time complexity for the trust service is O(n); this is when there

are similar data and some users send data more than once during the predefined

Crowd-sensing for Smart City Applications 119 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

time frame. On the other hand, the best-case time complexity for trust service is

O(1), when there are no similar data and every user sends data only once during

the predefined time frame. For the scheduler, the worst-case time-complexity is

O(n) and the best-case is O(1), when there are no similar data detected during

the predefined time frame. Therefore, the worst-case time complexity for the

services all together is O(n) and the best-case time complexity is O(1).

Memory usage is another performance factor that captures the amount of data

stored during the implementation of edge services. However, since the amount

of data received in the evaluation above is very low and data are stored only for

a period of time (i.e. temporarily), the memory usage in the evaluation above

will not affect the performance on the edge.

6.2.4 From the Edge to the Cloud

After the cloud receives the crowd-sensed data, consumers can apply the cloud

services (i.e. optimization, context extraction and scheduling) presented in

chapter 5 to the data. However, the amount of data collected in the evaluation

above is very small. Therefore, the reduction services (optimization and context

extraction) will be applied and evaluated in the following section (6.3) using a

weather database that contains a large number of data entries to demonstrate

the effectiveness of these services.

Consumers can still use the schedule service to schedule sending the data in the

cloud to any interested organization. In this evaluation, for example, pothole

data can be sent to the municipal authorities regularly in order for them to take

the required actions. Therefore, consumers can schedule sending the data from

the cloud using the user interface illustrated in section 6.3.1.1. However, since

no organization is involved at this stage of the research, the data entries were

sent as an attached file to an email address created for evaluation purposes: .

6.3 Use Case 2: Exploiting Data Reduction Ser-

vices in the Cloud

This section presents an evaluation of the partitioning method that is located

in the cloud, as well as the reduction services (optimization and context ex-

traction). This experiment is in the form of consumers who are interested in

Crowd-sensing for Smart City Applications 120 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

the smart city data located in the cloud and have access to those data. These

consumers can partition the data and perform queries on them.

This section will not only show how the consumers interact with the data stored

in the cloud, but also how any attempt to delete the data will be treated by the

notification agent. The experiment has two sections: the first section shows

different scenarios for partitioning the data (section 6.3.2); while the other

demonstrates the output of the cloud services (optimization and context ex-

traction) after partitioning.

6.3.1 Experiment Setup

In this experiment, there is a web interface that is used by consumers to inter-

act with the cloud. This web interface was developed using WordPress, which

is written in PHP. The interface is deployed and hosted on the AWS Amazon

cloud (where the data are stored) using AWS Elastic Beanstalk and the Amazon

Relational Database Service. The queries that are sent from the web page to

the cloud are in HTTP format. The data are stored in the cloud using MySQL,

which is provided by the Amazon Relational Database Service. The sequence of

operations is outlined below:

1. The consumer will first log in.

2. The consumer will send a request to partition the data in a specific time

frame and wait for a response.

3. The cloud will process this request and then send the type of data entries

requested to be partitioned.

4. Depending on the response, the consumer will choose the desired service

(optimization, context extraction and schedule) and send the query to the

cloud.

5. If an optimization service is requested, the cloud will implement this query

once it has been received.

6. If a context extraction service is requested, the notification agent will be

triggered and emails sent to the other registered consumers asking their

permission to attempt the deletion that is associated with this service. If

only one consumer rejects the attempt, the query will be discarded. If all

the consumers agree to the deletion associated with the service, the query

will be applied to the data entries desired. These data entries will be

Crowd-sensing for Smart City Applications 121 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

deleted but the context of these data will be saved in a context database.

However, the data deleted are kept in the cloud as a backup for a period

of time, such as one month, before they are deleted permanently.

6.3.1.1 Consumers Interface Setup

In this experiment, three users are registered in the cloud as consumers. The

emails for the three consumers are: , , and . The three consumers are the only

users who can use the web interface designed for partitioning and reduction

purposes. The web interface contains three pages, as depicted in Figures 6.5,

6.6 and 6.7. The first page is the authentication page, where the consumer en-

Figure 6.5: Screenshot of the first page (Login page)

ters the email and password that are registered in the cloud. After the consumer

is granted access, the second page will appear. The second page contains all the

information that the consumer needs for partitioning requests (i.e. database

name and time frame) in a user-friendly way (i.e. drop-down lists). This will

be an easy way for the consumer to send a well-written query and avoid the

difficulty of typing queries. After the consumer chooses the database name and

the time frame of the data entries required for partitioning, the consumer can

press the “OK” button in order to send the query to the cloud. After performing

the query, the cloud will return the result to the consumer. The result will be

that the data entries are either immutable or mutable data. Depending on the

result of the partition method, the consumer can navigate to the third page in

order to perform the services (optimization, context extraction and schedule).

The third page is also designed in a user-friendly way (i.e. drop-down lists) to

make it easier for the consumer to build the query. In order to avoid network

traffic and bandwidth utilization, the notification agent in this experiment is

Crowd-sensing for Smart City Applications 122 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

located on the consumer side and is triggered if a context extraction service is

requested. This agent will send email notifications to the other two consumers

using an SMPT plugin in WordPress and wait for their responses. If both con-

sumers agree to apply the context extraction query, the query will be sent to the

cloud. If only one user rejects the query, it will be discarded.

Figure 6.6: Screenshot of the second page (Data Type page)

Figure 6.7: Screenshots of the third page (Service page). The parameters will
change depending on the database.

Crowd-sensing for Smart City Applications 123 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

6.3.1.2 Cloud Data Storage Setup

Weather buoy data in [181] are used in this experiment. These data are cap-

tured from February/2001 until April/2018 with 633,066 entries (size = 62.5

MB). These data are stored using the Amazon Relational Database service in

a database called “weather”. The reason these data are used instead of real

crowd-sensed data is the lack of a satisfying amount of crowd-sensed data that

can show the performance of the partitioning method and the cloud services.

A context database called “contextWeather” is associated with the “weather”

database in order to save the context of the data entries removed from the

“weather” database.

There are two managers in the cloud: the partition manager and the execution

manager. These managers are simply Java programs that are running on a Java

platform. The partitioning manager will receive requests from page two (i.e.

the Data Type page) in the consumer interface. This manager will receive the

data in an HTTP message, extract the request and start examining the data re-

quired. The execution manager is responsible for the request coming from page

three (i.e. Service page) in the consumer interface. The execution manager will

receive the data, extract the query and apply the query.

6.3.2 Partitioning Scenarios and Output

Before evaluating the partitioning method, the partition factors (time, access

rate and singularities) need to be identified. Regarding the Time factor, the

time threshold is assumed to be any data entry that has a time stamp that is

equal to or later than 1/1/2013, which means that the data that are captured

in the last five years are considered new.

For the access rate factor, the cloud will contain a log file table that contains

random values for both the number of accesses (NA) to every chunk and the

number of distinct users (NU) accessing that chunk (NU values are from 0 to 3

since only three consumers are registered). The partitioning manager will use

this log file to capture the NA and NU values in order to calculate the access rate

factor. The access rate threshold should be below 1.45 (assuming the highest

number of accesses is 20) and larger than 0.49. The number of users accessing

the data chunk should not be equal to 0. If it is, the data chunk will apparently

be considered as not being accessed frequently.

Crowd-sensing for Smart City Applications 124 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

Table 6.3: Log file in the cloud

Data chunk Time range No. of accesses No. of different users
Chunk 1 6/2/2001- 30/6/2001 1 1
Chunk 2 1/7/2001- 31/12/2001 0 0
Chunk 3 1/1/2002- 30/6/2002 2 2
Chunk 4 1/7/2002- 31/12/2002 5 1
Chunk 5 1/1/2003- 30/6/2003 2 1
Chunk 6 1/7/2003- 31/12/2003 0 0
Chunk 7 1/1/2004- 30/6/2004 7 3
Chunk 8 1/7/2004- 31/12/2004 8 3
Chunk 9 1/1/2005- 30/6/2005 5 2
Chunk 10 1/7/2005- 31/12/2005 0 0
Chunk 11 1/1/2006- 30/6/2006 0 0
Chunk 12 1/7/2006- 31/12/2006 1 1
Chunk 13 1/1/2007- 30/6/2007 2 2
Chunk 14 1/7/2007- 31/12/2007 0 0
Chunk 15 1/1/2008- 30/6/2008 0 0
Chunk 16 1/7/2008- 31/12/2008 5 2
Chunk 17 1/1/2009- 30/6/2009 0 0
Chunk 18 1/7/2009- 31/12/2009 0 0
Chunk 19 1/1/2010- 30/6/2010 0 0
Chunk 20 1/7/2010- 31/12/2010 2 2
Chunk 21 1/1/2011- 30/6/2011 1 1
Chunk 22 1/7/2011- 31/12/2011 2 1
Chunk 23 1/1/2012- 30/6/2012 1 1
Chunk 24 1/7/2012- 31/12/2012 4 2
Chunk 25 1/1/2013- 30/6/2013 1 1
Chunk 26 1/7/2013- 31/12/2013 2 2
Chunk 27 1/1/2014- 30/6/2014 4 2
Chunk 28 1/7/2014- 31/12/2014 1 1
Chunk 29 1/1/2015- 30/6/2015 8 3
Chunk 30 1/7/2015- 31/12/2015 4 3
Chunk 31 1/1/2016- 30/6/2016 3 3
Chunk 32 1/7/2016- 31/12/2016 2 2
Chunk 33 1/1/2017- 30/6/2017 5 2
Chunk 34 1/7/2017- 31/12/2017 4 2
Chunk 35 1/1/2018- 30/6/2018 3 1
Chunk 36 1/7/2018- 31/12/2018 2 2

In the log file, every 6 months is considered a data chunk. The log file was

created with assumed values in order to complete the experiment. This log file

is defined in Table 6.3.

Crowd-sensing for Smart City Applications 125 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

The Singularities factor in this experiment is only considered for one parame-

ter (i.e. column) in the “weather” database: this column is “airTemperature”.

Therefore, the values that are below 6◦C or above 17◦C in the “airTemperature”

column are assumed to be important (i.e. singularities).

In this experiment, there are five different requests to examine data entries in

the “weather” database. These requests are sent by user . All requests’ screen-

shots are appeared in Appendix C. The requests are:

1. Test the entries from 5/5/2015 to 5/7/2015. In this case, the only fac-

tor tested is Time. The times for these data entries are above the time

threshold and, therefore, these data entries are immutable.

2. Test the entries from 7/7/2004 to 7/10/2004. In this case, two factors

are tested: time and access rate. The time stamp for these entries is

below the threshold and, therefore, the access rate needs to be tested.

Access rate will be calculated as log 2(8)/(3) = 1. The value is below the

threshold, which means that the data chunk containing these data entries

is frequently accessed. Therefore, the data entries are immutable.

3. Test the entries from 1/7/2009 to 1/10/2009. In this case, all the factors

are tested, since the Time is below the time threshold and the number of

accesses to the data chunk is equal to zero (which means the consumers

had no interest in that chunk). Therefore, the system must search for

singularities in order to decide whether these data entries are immutable

or not. However, these data entries contain no singularities, which results

in these entries being considered as mutable data.

4. Test the entries from 1/4/2001 to 1/8/2001. In this case, two chunks are

included and all the factors are tested. This is because the Time for both

data chunks is below the time threshold and the access rate equals zero,

according to the following calculation: log2(1 + 0)/(1 + 0) = log2(1)/(1) =
0. Therefore, the system must search for singularities in order to decide

whether these data entries are immutable or not. However, these data

entries contain no singularities, which means that these entries are con-

sidered as mutable data.

5. Test the entries from 1/10/2012 to 1/2/2013. In this case, two chunks

are included and only two factors are tested. Regarding the Time fac-

tor, the time for some entries is below the time threshold and the other

entries are above it. Therefore, the access rate factor needs to be tested

Crowd-sensing for Smart City Applications 126 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

to decide whether or not the entries are frequently accessed and there is

no need to check for singularities. Access rate is calculated as follows:

log2(4 + 1)/(2 + 1) = log2(5)/(3) = 0.77. The value is below the threshold,

which indicates that these data entries are frequently accessed and are,

therefore, considered immutable.

6.3.2.1 Partitioning Analysis

The aim of this evaluation is to show how the partitioning method running on

cloud infrastructure works with a large database (633,066 entries) in terms of

response time and the correctness of the result. The reliability of the architec-

ture is shown in section 6.3.2, in which the factors are tested manually and the

answers are compared with the response of the architecture. Each of the five

cases tested above has shown the correct and expected output.

The response time can be defined as the time from the consumer sending a

request until the response is received from the cloud. The average response

time for each case is shown in Table 6.4, where every case has been tested

five times to guarantee the same result and avoid any network latency. The

average response time for each case differs because some cases require more

computations and calculations than others. The table shows that case 1 has the

lowest response time compared with the other cases because the only factor

tested is “Time”, as the data entries are considered to have been newly added.

On the other hand, case 4 has the highest response time, since all the factors

are tested and two chunks are included (a 4- month period) and the search for

singularities with more data entries will take some time. Table 6.4 shown that,

the less parameter tested or entries involved will result in less response time.

Table 6.4: Response times for the tested cases

Cases Response time (seconds)

Case 1 3.17 (lowest)

Case 2 3.51

Case 3 5.27

Case 4 6.18 (highest)

Case 5 3.90

Crowd-sensing for Smart City Applications 127 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

6.3.2.2 Comprehensive Services Evaluation

More evaluations were conducted for the partitioning method. This time, ev-

ery chunk in the database is tested for whether it is immutable or mutable, in

order to understand the amount of unnecessary (i.e. not important) chunks in

the database. Therefore, unnecessary chunks can be reduced or even removed

under certain conditions (e.g., saving a backup for a period of time).

There are 11 mutable data chunks and the rest are considered immutable, as

shown in Table 6.5. In the mutable data chunks, consumers are free to apply the

reduction services (context extraction and optimization) without restrictions.

There might be more mutable data chunks if the size of the chunks is reduced.

For example, reducing the size of a chunk to three months will give more spe-

cific results regarding the importance of that chunk. Chunk 12 is considered

immutable simply because it contains an important value (i.e. a singularity).

However, if this singularity exists only once in the first three months of that

chunk, the second three months would be considered mutable as they contain

no singularities, the time is below the threshold and the access rate is above the

threshold.

6.3.3 Reduction Services Scenarios and Output

Two scenarios are taken into consideration in this experiment:

1. When the data entries are immutable, only the optimization service can

be applied to these entries.

2. When the data entries are mutable, both the optimization service and the

context extraction service can be applied to these entries.

However, in the second scenario, applying optimization and context extraction

for the same data entries will add more time and unnecessary computations.

This is because the context extraction will result in the removal of all the data

entries and, therefore, there is no point in optimizing them. Therefore, when

data entries are mutable, only the context extraction service will be tested.

For the first scenario, the consumer will optimize the data entries contained in

the first partition request (from 5/5/2015 to 5/7/2015) in section 6.3.2. The

consumer will use the Service web page to apply the optimization (see Appendix

C for screenshots). The data chunk is reduced by around 19% and 1,409 data

Crowd-sensing for Smart City Applications 128 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

Table 6.5: Type of every chunk

Data chunk
Immutable or
Mutable

Chunk 1 Mutable
Chunk 2 Mutable
Chunk 3 Immutable
Chunk 4 Immutable
Chunk 5 Immutable
Chunk 6 Mutable
Chunk 7 Immutable
Chunk 8 Immutable
Chunk 9 Immutable
Chunk 10 Mutable
Chunk 11 Mutable
Chunk 12 Immutable
Chunk 13 Immutable
Chunk 14 Mutable
Chunk 15 Mutable
Chunk 16 Immutable
Chunk 17 Mutable
Chunk 18 Mutable
Chunk 19 Mutable
Chunk 20 Immutable
Chunk 21 Immutable
Chunk 22 Immutable
Chunk 23 Mutable
Chunk 24 Immutable
Chunk 25 Immutable
Chunk 26 Immutable
Chunk 27 Immutable
Chunk 28 Immutable
Chunk 29 Immutable
Chunk 30 Immutable
Chunk 31 Immutable
Chunk 32 Immutable
Chunk 33 Immutable
Chunk 34 Immutable
Chunk 35 Immutable
Chunk 36 Immutable

Crowd-sensing for Smart City Applications 129 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

entries are removed. The whole database is reduced by .22% after applying the

optimization service to that data chunk.

For the second scenario, the consumer will send a request to apply the context

extraction service in the Service web page to the third request (1/7/2009 to

1/10/2009) contained in section 6.3.2 (see Appendix C for screenshots).

Once the consumer () clicks the “submit” button on the Service page, the notifi-

cation agent will be triggered, since the service requested is context extraction.

The notification agent will send notification emails to the other two consumers

(and) notifying them of the request and asking their permission (see Appendix

C for screenshots). If both users agree to the request, the context extraction re-

quest will be sent to the cloud. However, if only one of the consumers rejects

the request, the context extraction request will be discarded. However, in this

scenario, both users agree to the request. Then the context extraction request

will be sent to the cloud and applied to the data entries by the execution man-

ager. All the data entries in this time frame are removed from the “weather”

database but inserted into a backup database for a period of time determined

by the consumers. The number of data entries removed was 8,297 rows, which

means that 1.31% of the data entries are removed (although not permanently)

as they are considered old data, not frequently accessed and contain no singu-

larities. However, the context of these data entries is extracted.

The context of these data entries, using the attribute “airTemperature”, is in-

serted in the “contextWeather” database. The “contextWeather” database con-

tains the average temperature for the time period for which the data entries are

removed, as well as the highest and lowest values that occurred in that period.

The attributes of any context database are different from one database (i.e.

weather, water, traffic) to another. The context database can also be different

when extracted from the same database if the parameters taken into account

are different. For example, one consumer can choose the context database

to be extracted from the “weather” database using “airTemperature”; another

consumer might choose “windSpeed”. The decision of which attribute to use

depends on the attribute(s) that best describe the data entries removed. These

kinds of decisions are made by the consumers and their departments but the

criteria for these decisions are beyond the scope of this thesis. However, for the

sake of simplicity and completion of the experiment, only one attribute is used

in this evaluation to demonstrate the work presented.

Crowd-sensing for Smart City Applications 130 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS

6.3 Use Case 2: Exploiting Data Reduction
Services in the Cloud

6.3.3.1 Reduction Services Analysis

The aim of this initial evaluation (section 6.3.3) is to show the performance of

the reduction services in terms of data reduction and execution time after ap-

plying the partitioning method. The evaluation shows that the amount of data

reduced (after applying reduction services on only the first and third requests

in section 6.3.2) is around 1.53%. This percentage shows the effectiveness

of these reduction services with the partitioning method. The comprehensive

evaluations for all data chunks are shown in section 6.3.3.2.

Execution time can be defined as the time from when a request is received by

the cloud to when the request is fully performed in the cloud. The services ex-

ecution time for both scenarios presented in section 6.3.3 is around the same,

since both services need to check every entry. Thus, the first scenario (optimiza-

tion service) takes 5.26 seconds and the second scenario (context extraction

service) takes 5.57 seconds. The number of data entries affects the execution

time when the services are applied. The more data entries there are, the more

time is needed for execution.

6.3.3.2 Comprehensive Services Evaluation

More evaluations of the data chunks were performed to demonstrate the

amount of data that can be reduced using the partitioning method along with

the reduction services. This time, the optimization service will be applied to all

Figure 6.8: Size of the whole database after implementing the context extrac-
tion service for the mutable data chunks and the optimization service for the
immutable data chunks

Crowd-sensing for Smart City Applications 131 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.4 Architecture Highlights

the immutable data chunks (25 chunks), whereas the context extraction will be

applied to the mutable data chunks (11 chunks). The size of the database after

applying the context extraction service to the mutable data chunks (11 chunks)

is reduced from 62.5 MB to 42.7 MB, which means that the database is reduced

by 31.68%. The size of the database after applying the optimization service on

the remaining data chunks (25 immutable chunks) is reduced from 42.7 MB

to 35.93 MB. Therefore, the size of the database after applying both services

is reduced by around 42.51%, as shown in Figure 6.8. This demonstrates how

effective the partitioning method and the services are at reducing the amount

of smart city data stored in the cloud.

6.4 Architecture Highlights

After showing the different edge and cloud services of the architecture, there

are several differences that distinguish them from those previously listed in

chapter 2 (section 2.3.2.5). The first and major difference is the utilization

of public local servers as an intermediate step between mobile devices and the

cloud. The services allocation in this intermediate step increases the worthiness

and importance of these services and thus increases the effectiveness of the ar-

chitecture. Another difference is that, although previous architectures might

contain similar services in terms of functionality, these are located either in a

mobile device or the cloud. However, although there are no right answers re-

garding where to allocate crowd-sensing services, in the architecture presented

in this thesis, the effectiveness of the services is increased since there are no en-

ergy or battery constraints in mobile devices, the crowd-sensed data are filtered

and hence reduced before they reach the cloud. Another difference is that all

the various services in the proposed architecture are distributed between local

servers and the cloud. This decreases the intensity of a centralized approach in

which all services are located in the same place regardless of the users’ different

locations.

6.4.1 Does the Architecture Meet the Performance Require-

ments?

Based on the evaluations and experiments presented in chapters 4 and 5 and

in this chapter, this section reconsiders the performance requirements in chap-

Crowd-sensing for Smart City Applications 132 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.4 Architecture Highlights

ter 3 to evaluate how the work in this thesis meets these requirements. The

assessment is as follows.

1. Reducing the amount of data transferred

One important goal in this thesis is to reduce the amount of data trans-

ferred from mobile devices to the cloud. This goal is achieved by intro-

ducing edge services. Even though the crowd will send data from their

mobile devices to the edge with no data reduction, this transmission is

local and by the use of Wi-Fi Access Points (i.e. no transmission cost).

Also, choosing to have data reduction services located on the edge and

not on mobile devices is due to storage and battery constraints of mobile

devices where the edge servers have no such constraints. Therefore, in

this thesis, the reduction of data transferred is taken into consideration

from the edge to the cloud, where a large number of contributions needs

to be transferred to the cloud not only a single one (from mobile device

to local server). Edge services perform data reduction at different levels,

as shown in the evaluation results of the first use case in section 6.2. The

first step is to discard untrusted contributions and consider only trusted

ones. The second step is to discard similar data that represent the same

location in a predefined time frame. The third step is to apply compres-

sion algorithms to single-precision floating-point numbers that achieve a

good compression ratio when compared with other techniques, as shown

in chapter 4. All the different levels in reducing the data transferred will

reduce bandwidth utilization and network traffic.

2. Ensuring storage saving in the cloud

Another important goal in this thesis is to manage the crowd-sensed data

in the cloud efficiently in order to remove unwanted data and save stor-

age. This goal is achieved by introducing a partitioning method and the

reduction services that are applied to data based on the output of the

partitioning method. The evaluation results of the storage data manage-

ment in the cloud are shown in the second use case in section 6.3. The

partitioning method demonstrated its effectiveness when applying the re-

duction services without losing important data or values.

3. Ensuring robustness

When utilizing local servers to act as edge servers before the cloud, there

is a possibility of a server being down. Therefore, a recovery plan that can

Crowd-sensing for Smart City Applications 133 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.5 Chapter Summary

be adopted by the city is introduced in chapter 3, whereby the nearest

available server can be in charge of receiving the crowd-sensed data that

belong to the stopped server.

Another error might occur on the user side whereby a mobile device starts

to send false data. To avoid this kind of error, the trust service located

in the edge servers will examine the trust and truthfulness of the data,

as shown in chapter 4. The trust service demonstrated its usefulness in

reducing the amount of untrusted data by a reasonable percentage.

4. Providing a reasonable level of privacy With crowd-sensing, privacy con-

cerns towards users’ personal information are introduced. In this research,

privacy concerns are taken into considerations on the user’s side. The mo-

bile app (i.e. SenseAll) was developed to use only application IDs when

data are sent to the cloud in order to guarantee anonymity and ensure

privacy.

6.5 Chapter Summary

This chapter has presented the results of the experiments conducted in this

thesis in order to evaluate the edge and cloud services. The aim of these ex-

periments is to understand the performance of these services in terms of data

reduction before data are sent to the cloud and after data are received in the

cloud.

The first evaluation was conducted on edge services in order to show the per-

formance of each service and how those data are reduced at every stage. This

evaluation ensured that the data that are sent to the cloud are trusted, distinct

and compressed. The experiment was applied on real crowd-sensing data gath-

ered from 14 different users using the “SenseAll” mobile application installed

on their Android devices.

The second evaluation took place in the cloud and was applied on a weather

database in order to show how consumers can partition data based upon the

importance of the data. This evaluation also shows how consumers can then

apply reduction services to weather data after partitioning. However, one of

these reduction services (context extraction) will not be applied until the other

consumers have agreed the outcome of this service.

Crowd-sensing for Smart City Applications 134 Aseel T. Alkhelaiwi

6. EXPERIMENTAL EVALUATIONS 6.5 Chapter Summary

Finally, the analysis shows that the proposed system met all the requirements

mentioned during the design stage and reduced the amount and size of data in

both the edge and the cloud by a reasonable percentage. The next chapter will

conclude this thesis by summarizing the research work presented. Furthermore,

the chapter will present the limitations in the architecture and improvements

to the edge and cloud services that can be undertaken as future work.

Crowd-sensing for Smart City Applications 135 Aseel T. Alkhelaiwi

Chapter 7

Conclusions and Future Work

This chapter presents the conclusions of this thesis by summarizing the research

work conducted, showing the limitations of the work and research that needs

to be undertaken in the future.

7.1 Research Summary and Benefits

This thesis presents a crowd-sensing architecture that overcomes certain chal-

lenges, such as the need to transfer a large amount of data to the cloud and

manage the data there. Therefore, two sets of services are provided. The first

set include the services that are located on the edge and pre-process the crowd-

sensed data received in order to reduce the amount of data sent to the cloud.

A smart city architecture that is located as close to the crowd as possible is

presented in chapter 4. This architecture consists of three different services:

the trust service, a scheduler and the reduction service (i.e. compression). The

trust service calculates the trust of every contribution received using four factors

(status, style, loyalty and similarity) and then updates the reputation score for

every user in order to build the reputation. The scheduler will re- move similar

data that are received from the same area and schedule sending distinct data

to the cloud after a predefined time depending on their priority. The reduction

unit service is a lossless compression step that is applied to GPS coordinates and

accelerometer data. With these services, it is possible to ensure that data sent

to the cloud from the edge are trusted, distinct and com- pressed. Then, the

crowdsensed data that are sent to the cloud are reduced in amount and size.

136

7. CONCLUSIONS AND FUTURE WORK 7.1 Research Summary and Benefits

The second set of services is located in the cloud and manages the data stored

efficiently. These services are optimization and context extraction. Consumers

of the data (e.g., a city council, cloud administrators, etc.) will first need to

partition data entries to which they need to apply the services logically. De-

pending on the form of these data entries (immutable or mutable), consumers

can choose which service to apply. The partitioning method depends on three

factors to decide whether data entries are immutable or not: time, access rate

and singularity. Therefore, data entries are immutable if they are newly inserted

into the database, frequently accessed by consumers or contain important val-

ues. Data entries are mutable if they are old data (i.e. not newly inserted into

the database), not frequently accessed by consumers and do not contain any

important values.

Services are applied depending on the type of data. Thus, the optimization

service can be applied to immutable and mutable parts since the data removed

can be recovered. However, the context extraction service can only be applied

to mutable data entries, since these will be removed from the database and the

context of these data is extracted and stored. However, the removal of data

is not a decision that can be made by only one consumer; this decision needs

the approval of the other consumers who are involved and have access to the

database. This kind of user-agreement decision is made using the notification

agent. Therefore, if only one consumer rejects the removal of data entries (us-

ing a context extraction service), the service will not be applied and data will be

left unchanged. Furthermore, if all the other consumers agree to the removal of

data entries, these data entries are kept for a period of time as a backup in the

cloud before they are permanently removed. The proposed system was evalu-

ated and tested by deploying it on an Amazon EC2 instance, one local server

and Android-based mobile devices. The system showed that it could success-

fully achieve the following:

• Reducing the amount of data on the edge by removing untrusted and

similar data every day (i.e. a predefined period of time) from around

6.25% to 33.33%

• Reducing the size of data on the edge by compressing GPS coordinates and

accelerometer readings every day (i.e. a predefined time) from around

10.48% to 34.24%.

Crowd-sensing for Smart City Applications 137 Aseel T. Alkhelaiwi

7. CONCLUSIONS AND FUTURE WORK 7.2 Limitations and Future Work

• Improving cloud storage and reducing the cost associated with data

storage by the partition method, whereby data were reduced by around

42.51% after applying both reduction services.

• Enhancing data quality so that data sent to the cloud are trusted, distinct

and compressed.

• Ensuring traceability and users’ privacy at the same time by tracking the

origin of data and using only application IDs.

7.2 Limitations and Future Work

The results of the evaluations and experiments conducted in this thesis have

successfully shown that the proposed system can reduce the amount of data

transferred from mobile devices to the cloud and the amount of data stored

in the cloud under certain constraints. However, the work still contains some

limitations, which can be addressed and implemented in future work. These

limitations are referred to briefly as follows.

7.2.1 Implementing More Services

Two types of services were implemented in this thesis. The first type took place

on the edge in the form of public local servers or access points. These services

act as a reduction and filtration of the crowd-sensed data in order to make

them ready for the second type of services that take place in the cloud. In

future work, edge services could be optimized by merging the services together

in order to reduce the computations. The system could benefit further from

adding more services in the cloud that could optimize the data management

and reduce the cost of saving a large amount of data in the cloud. For example,

the cloud could have a periodic suggestion agent that could interact with users

and highlight the importance of data stored in the cloud.

7.2.2 Improving Existing Services

The proposed cloud services need to be improved to perform the same func-

tionality with different databases and different domains. Therefore, the ser-

vices need to apply different aspects when performing the reductions, such as

applying more parameters (not only one) from the database. Furthermore, the

notification agent showed good functionality when located on the consumer

Crowd-sensing for Smart City Applications 138 Aseel T. Alkhelaiwi

7. CONCLUSIONS AND FUTURE WORK 7.2 Limitations and Future Work

side in terms of bandwidth utilization and network latency. By allocating a no-

tification agent on the consumer side, the query will not be sent to the cloud

if only one consumer rejects the query. However, with a large number of con-

sumers, it might be more efficient if the notification agent is located in the cloud

and could exploit the cloud’s powerful resources.

7.2.3 Conducting More Evaluations and Experiments

The proposed edge services were evaluated in a real-world scenario but with a

small-scale crowd (14 users i.e. 14 devices). This is due to the complexity of

having a large number of Android devices with which to conduct experiments

(where a large number of users were using different operating systems) and the

complexity of convincing some Android users (i.e. a crowd) to download the

mobile app and conduct the experiment in the desired time frame (one week)

and in the desired area (the city of Cork). Therefore, in future work, the system

could be tested with the help of a larger crowd in order to observe how the

system behaves when interacting with a large number of users.

Furthermore, cloud services were tested using available open source weather

data, not data that are filtered and sent from the edge. This is due to the short-

age of crowd-sensed data that could highlight the benefits of the cloud services

proposed. However, in future work, cloud services could be implemented with

real crowd-sensed data that are sent from the edge (i.e. local servers) in order

to implement a complete chain of edge and cloud services that could show how

the system would work in such situations.

7.2.4 Extending the Crowd-sensing Area

Today, the notion is that the IoT depends heavily on cloud computing to

store and process data due to its unlimited storage and powerful processing.

Crowd-sensing data could be extended to include any other data, such as those

produced by light bulbs, wearable devices, kitchen appliances and buildings.

Therefore, in future work, the data produced from crowd-sensing and IoT need

to be combined and tested using the architecture proposed in this thesis to

show how the system would act with heterogeneous data.

Crowd-sensing for Smart City Applications 139 Aseel T. Alkhelaiwi

7. CONCLUSIONS AND FUTURE WORK 7.2 Limitations and Future Work

7.2.5 Using Different Operating Systems

The work in this thesis could be extended using different operating systems,

such as Apple iOS and Windows. This extension would raise the number of

users and thus increase the size of the crowd in which the mobile app could be

installed and start the sensing activity.

7.2.6 Privacy and Security

This thesis did not focus on security and privacy features when implementing

the proposed system since a smart city is by nature an open source domain.

However, privacy was taken into account when users were sending their data to

the local server, as the mobile app will assign unique application IDs to different

users when they first register. These application IDs are the user IDs that will

be encapsulated in the HTTP message and sent to the cloud. By using only

application IDs, the system can ensure anonymity and hide users’ identities.

However, in some smart city domains, such as health, more security techniques,

such as encryption, should be applied to the data saved in the cloud in order to

protect those data from unauthorized users.

7.2.7 Offering Incentive Mechanisms

Persuading users to be part of the evaluation process in chapter 6 was not an

easy task, which unfortunately resulted in a small crowd (i.e. 14 users). There-

fore, to increase crowd involvement and the amount of crowd-sensed data re-

ceived to demonstrate the architecture, there must be some kind of incentive

mechanism. Such a mechanism would encourage users to install the mobile

app and be part of the sensing process. Increasing user involvement will result

in improving the quality of life in a city.

Crowd-sensing for Smart City Applications 140 Aseel T. Alkhelaiwi

Bibliography

[1] Abad, Cristina L, Lu, Yi, and Campbell, Roy H. “DARE: Adaptive data replica-
tion for efficient cluster scheduling”. In: Cluster Computing (CLUSTER), 2011
IEEE International Conference on. Ieee. 2011, pp. 159–168.

[2] Aberer, Karl, Sathe, Saket, Chakraborty, Dipanjan, Martinoli, Alcherio, Bar-
renetxea, Guillermo, Faltings, Boi, and Thiele, Lothar. “OpenSense: open com-
munity driven sensing of environment”. In: Proceedings of the ACM SIGSPA-
TIAL International Workshop on GeoStreaming. ACM. 2010, pp. 39–42.

[3] Alkhelaiwi, A. and Grigoras, D. “Smart City Data Storage Optimization in the
Cloud”. In: 2018 IEEE Fourth International Conference on Big Data Computing
Service and Applications (BigDataService). 2018, pp. 153–160. DOI: 10.1109/
BigDataService.2018.00030.

[4] Alkhelaiwi, Aseel and Grigoras, Dan. “Challenges of Crowd Sensing for Cost-
Effective Data Management in the Cloud”. In: Cloud Computing and Big Data:
Technologies, Applications and Security. Ed. by Mostapha Zbakh, Mohammed
Essaaidi, Pierre Manneback, and Chunming Rong. Cham: Springer Interna-
tional Publishing, 2019, pp. 73–88. ISBN: 978-3-319-97719-5.

[5] Alkhelaiwi, Aseel and Grigoras, Dan. “Data Reduction as a Service in
Smart City Architecture”. In: Big Data Computing Service and Applications
(BigDataService), 2017 IEEE Third International Conference on. IEEE. 2017,
pp. 172–178.

[6] Alkhelaiwi, Aseel and Grigoras, Dan. “Scheduling crowdsensing data to smart
city applications in the cloud”. In: Intelligent Computer Communication and
Processing (ICCP), 2016 IEEE 12th International Conference on. IEEE. 2016,
pp. 395–401.

[7] Alkhelaiwi, Aseel and Grigoras, Dan. “The origin and trustworthiness of data
in smart city applications”. In: Utility and Cloud Computing (UCC), 2015
IEEE/ACM 8th International Conference on. IEEE. 2015, pp. 376–382.

[8] Altomare, Albino, Cesario, Eugenio, Comito, Carmela, Marozzo, Fabrizio, and
Talia, Domenico. “Using clouds for smart city applications”. In: Cloud Com-
puting Technology and Science (CloudCom), 2013 IEEE 5th International Con-
ference on. Vol. 2. IEEE. 2013, pp. 234–237.

[9] Amazon Mechanical Turk. http://www.mturk.com. Accessed: 30-10-2014.

141

https://doi.org/10.1109/BigDataService.2018.00030
https://doi.org/10.1109/BigDataService.2018.00030
http://www.mturk.com

BIBLIOGRAPHY

[10] Amazon RDS. https://aws.amazon.com/rds/.
[11] Amazon Web Services. http://aws.amazon.com/.
[12] Android Sensors. https://developer.android.com/guide/topics/sensors.

html.
[13] Angin, Pelin, Bhargava, Bharat, and Helal, Sumi. “A mobile-cloud collabora-

tive traffic lights detector for blind navigation”. In: mobile data management
(MDM), 2010 eleventh international conference on. IEEE. 2010, pp. 396–401.

[14] Armbrust, Michael, Fox, Armando, Griffith, Rean, Joseph, Anthony D, Katz,
Randy, Konwinski, Andy, Lee, Gunho, Patterson, David, Rabkin, Ariel, Stoica,
Ion, et al. “A view of cloud computing”. In: Communications of the ACM 53.4
(2010), pp. 50–58.

[15] Aubry, Elian, Silverston, Thomas, Lahmadi, Abdelkader, and Festor, Olivier.
“CrowdOut: a mobile crowdsourcing service for road safety in digital
cities”. In: Pervasive Computing and Communications Workshops (PERCOM
Workshops), 2014 IEEE International Conference on. IEEE. 2014, pp. 86–91.

[16] Bahl, Paramvir and Padmanabhan, Venkata N. “RADAR: An in-building RF-
based user location and tracking system”. In: INFOCOM 2000. Nineteenth An-
nual Joint Conference of the IEEE Computer and Communications Societies. Pro-
ceedings. IEEE. Vol. 2. Ieee. 2000, pp. 775–784.

[17] Bao, Yuan, Ren, Lei, Zhang, Lin, Zhang, Xuesong, and Luo, Yongliang. “Mas-
sive sensor data management framework in cloud manufacturing based on
Hadoop”. In: Industrial Informatics (INDIN), 2012 10th IEEE International
Conference on. IEEE. 2012, pp. 397–401.

[18] Bari, Wasim, Memon, Ahmed Shiraz, and Schuller, Bernd. “Enhancing UNI-
CORE storage management using Hadoop distributed file system”. In: Euro-
pean Conference on Parallel Processing. Springer. 2009, pp. 345–352.

[19] Benouaret, Karim, Valliyur-Ramalingam, Raman, and Charoy, François.
“CrowdSC: Building smart cities with large-scale citizen participation”. In:
IEEE Internet Computing 17.6 (2013), pp. 57–63.

[20] Bernstein, Michael S, Little, Greg, Miller, Robert C, Hartmann, Björn, Acker-
man, Mark S, Karger, David R, Crowell, David, and Panovich, Katrina. “Soy-
lent: a word processor with a crowd inside”. In: Communications of the ACM
58.8 (2015), pp. 85–94.

[21] Burrows, Michael and Wheeler, David J. “A block-sorting lossless data com-
pression algorithm”. In: (1994).

[22] Calderoni, Luca, Maio, Dario, and Palmieri, Paolo. “Location-aware mobile
services for a smart city: Design, implementation and deployment”. In: Jour-
nal of theoretical and applied electronic commerce research 7.3 (2012), pp. 74–
87.

[23] Cavallo, Marco, Cusmà, Lorenzo, Di Modica, Giuseppe, Polito, Carmelo, and
Tomarchio, Orazio. “A Hadoop based Framework to Process Geo-distributed
Big Data.” In: CLOSER (1). 2016, pp. 178–185.

Crowd-sensing for Smart City Applications 142 Aseel T. Alkhelaiwi

https://aws.amazon.com/rds/
http://aws.amazon.com/
https://developer.android.com/guide/topics/sensors.html
https://developer.android.com/guide/topics/sensors.html

BIBLIOGRAPHY

[24] Cavallo, Marco, Polito, Carmelo, Modica, Giuseppe Di, and Tomarchio,
Orazio. “H2F: a Hierarchical Hadoop Framework for big data processing in
geo-distributed environments”. In: Proceedings of the 3rd IEEE/ACM Interna-
tional Conference on Big Data Computing, Applications and Technologies. ACM.
2016, pp. 27–35.

[25] Chae, Kangsuk, Kim, Daihoon, Jung, Seohyun, Choi, Jaeduck, and Jung,
Souhwan. “Evidence collecting system from car black boxes”. In: Consumer
Communications and Networking Conference (CCNC), 2010 7th IEEE. IEEE.
2010, pp. 1–2.

[26] Champion, Howard R, Augenstein, Jeffrey, Blatt, Alan J, Cushing, Brad,
Digges, Kennerly, Siegel, John H, and Flanigan, Marie C. “Automatic crash
notification and the URGENCY algorithm: Its history, value, and use”. In:
Advanced Emergency Nursing Journal 26.2 (2004), pp. 143–156.

[27] Chatzimilioudis, Georgios, Konstantinidis, Andreas, Laoudias, Christos, and
Zeinalipour-Yazti, Demetrios. “Crowdsourcing with smartphones”. In: IEEE In-
ternet Computing 16.5 (2012), pp. 36–44.

[28] Chen, Longbiao, Wang, Leye, Zhang, Daqing, Li, Shijian, and Pan,
Gang. “EnUp: Energy-efficient data uploading for mobile crowd sens-
ing applications”. In: Ubiquitous Intelligence & Computing, Advanced
and Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Conferences.
IEEE. 2016, pp. 1074–1078.

[29] Chen, Xiao, Santos-Neto, Elizeu, and Ripeanu, Matei. “Crowdsourcing for on-
street smart parking”. In: Proceedings of the second ACM international sympo-
sium on Design and analysis of intelligent vehicular networks and applications.
ACM. 2012, pp. 1–8.

[30] Chen, Xiao, Santos-Neto, Elizeu, and Ripeanu, Matei. “Smart parking by the
coin”. In: Proceedings of the third ACM international symposium on Design and
analysis of intelligent vehicular networks and applications. ACM. 2013, pp. 109–
114.

[31] Choo, Jing Hang, Cheong, Soon Nyean, Lee, Yee Lien, and Teh, Sze Hou. “I 2
navi: An indoor interactive NFC navigation system for android smartphones”.
In: Proceedings of the World Academy of Science, Engineering and Technology 72
(2012), pp. 735–739.

[32] CITYOPT. http://www.cityopt.eu.
[33] Corburn, Jason. “Street science: community knowledge and environmental

health justice (urban and industrial environments)”. In: (2005).
[34] Creek Watch. http://creekwatch.researchlabs.ibm.com/. Accessed: 10-9-

2014.
[35] Cziva, Richard, Jouët, Simon, Stapleton, David, Tso, Fung Po, and Pezaros,

Dimitrios P. “SDN-based virtual machine management for cloud data cen-

Crowd-sensing for Smart City Applications 143 Aseel T. Alkhelaiwi

http://www.cityopt.eu
http://creekwatch.researchlabs.ibm.com/

BIBLIOGRAPHY

ters”. In: IEEE Transactions on Network and Service Management 13.2 (2016),
pp. 212–225.

[36] Data Compression. https://docs.microsoft.com/enus/ sql/relational-
databases/data-compression.

[37] Dinh, Hoang T, Lee, Chonho, Niyato, Dusit, and Wang, Ping. “A survey of mo-
bile cloud computing: architecture, applications, and approaches”. In: Wireless
communications and mobile computing 13.18 (2013), pp. 1587–1611.

[38] Dutta, Joy, Gazi, Firoj, Roy, Sarbani, and Chowdhury, Chandreyee. “Airsense:
Opportunistic crowd-sensing based air quality monitoring system for smart
city”. In: SENSORS, 2016 IEEE. IEEE. 2016, pp. 1–3.

[39] Dutta, Prabal, Aoki, Paul M, Kumar, Neil, Mainwaring, Alan, Myers, Chris,
Willett, Wesley, and Woodruff, Allison. “Common sense: participatory urban
sensing using a network of handheld air quality monitors”. In: Proceedings of
the 7th ACM conference on embedded networked sensor systems. ACM. 2009,
pp. 349–350.

[40] Dynes, Russell R. “Community emergency planning: false assumption and in-
appropriate analogies”. In: (1990).

[41] e-SAVE. http://www.e-save.eu.
[42] Eisenman, Shane B, Miluzzo, Emiliano, Lane, Nicholas D, Peterson, Ronald A,

Ahn, Gahng-Seop, and Campbell, Andrew T. “BikeNet: A mobile sensing sys-
tem for cyclist experience mapping”. In: ACM Transactions on Sensor Networks
(TOSN) 6.1 (2009), p. 6.

[43] Engelson, Vadim, Fritzson, Dag, and Fritzson, Peter. “Lossless compression of
high-volume numerical data from simulations”. In: Proc. Data Compression
Conference. 2000.

[44] Eriksson, Jakob, Girod, Lewis, Hull, Bret, Newton, Ryan, Madden, Samuel,
and Balakrishnan, Hari. “The pothole patrol: using a mobile sensor network
for road surface monitoring”. In: Proceedings of the 6th international conference
on Mobile systems, applications, and services. ACM. 2008, pp. 29–39.

[45] Fakoor, Rasool, Raj, Mayank, Nazi, Azade, Di Francesco, Mario, and Das, Sa-
jal K. “An integrated cloud-based framework for mobile phone sensing”. In:
Proceedings of the first edition of the MCC workshop on Mobile cloud computing.
ACM. 2012, pp. 47–52.

[46] Feng, Bo, Wu, Chentao, and Li, Jie. “MLC: An Efficient Multi-level Log Com-
pression Method for Cloud Backup Systems”. In: Trustcom/BigDataSE/I? SPA,
2016 IEEE. IEEE. 2016, pp. 1358–1365.

[47] Feng, Cheng, Wang, Wendong, Tian, Ye, Que, Xirong, and Gong, Xiangyang.
“Estimate air quality based on mobile crowe sensing and big data”. In: A World
of Wireless, Mobile and Multimedia Networks (WoWMoM), 2017 IEEE 18th In-
ternational Symposium on. IEEE. 2017, pp. 1–9.

[48] FOURSQUARE App. https://foursquare.com.

Crowd-sensing for Smart City Applications 144 Aseel T. Alkhelaiwi

https://docs.microsoft.com/enus/ sql/relational-databases/data-compression
https://docs.microsoft.com/enus/ sql/relational-databases/data-compression
http://www.e-save.eu
https://foursquare.com

BIBLIOGRAPHY

[49] Franklin, Michael J, Kossmann, Donald, Kraska, Tim, Ramesh, Sukriti, and
Xin, Reynold. “CrowdDB: answering queries with crowdsourcing”. In: Pro-
ceedings of the 2011 ACM SIGMOD International Conference on Management of
data. ACM. 2011, pp. 61–72.

[50] Gamito, Manuel Noronha and Dias, Miguel Salles. “Lossless coding of floating
point data with JPEG 2000 Part 10”. In: Applications of Digital Image Process-
ing XXVII. Vol. 5558. International Society for Optics and Photonics. 2004,
pp. 276–288.

[51] Ganeriwal, Saurabh, Balzano, Laura K, and Srivastava, Mani B. “Reputation-
based framework for high integrity sensor networks”. In: ACM Transactions on
Sensor Networks (TOSN) 4.3 (2008), p. 15.

[52] Ganti, Raghu K, Ye, Fan, and Lei, Hui. “Mobile crowdsensing: current state
and future challenges”. In: IEEE Communications Magazine 49.11 (2011).

[53] Gao, Hui, Liu, Chi Harold, Tian, Ye, Xi, Teng, and Wang, Wendong. “Ensuring
High-Quality Data Collection for Mobile Crowd Sensing”. In: Wireless Commu-
nications and Networking Conference (WCNC), 2017 IEEE. IEEE. 2017, pp. 1–
6.

[54] Gao, Yali, Li, Xiaoyong, Li, Jirui, and Gao, Yunquan. “DTRF: A dynamic-trust-
based recruitment framework for Mobile Crowd Sensing system”. In: Inte-
grated Network and Service Management (IM), 2017 IFIP/IEEE Symposium on.
IEEE. 2017, pp. 632–635.

[55] Gerla, Mario. “Vehicular cloud computing”. In: Ad Hoc Networking Workshop
(Med-Hoc-Net), 2012 The 11th Annual Mediterranean. IEEE. 2012, pp. 152–
155.

[56] Ghido, Florin. “An efficient algorithm for lossless compression of IEEE float
audio”. In: Data Compression Conference, 2004. Proceedings. DCC 2004. IEEE.
2004, pp. 429–438.

[57] gigwalk. www.gigwalk.com.
[58] Gomez, Leonardo A Bautista and Cappello, Franck. “Improving floating point

compression through binary masks”. In: Big Data, 2013 IEEE International
Conference on. IEEE. 2013, pp. 326–331.

[59] Gregori, Enrico, Lenzini, Luciano, Luconi, Valerio, and Vecchio, Alessio. “Sens-
ing the Internet through crowdsourcing”. In: Pervasive Computing and Com-
munications Workshops (PERCOM Workshops), 2013 IEEE International Con-
ference on. IEEE. 2013, pp. 248–254.

[60] Gunawan, Lucy T, Fitrianie, Siska, Yang, Zhenke, Brinkman, Willem-Paul, and
Neerincx, Mark. “TravelThrough: a participatory-based guidance system for
traveling through disaster areas”. In: CHI’12 Extended Abstracts on Human
Factors in Computing Systems. ACM. 2012, pp. 241–250.

[61] Guo, Bin, Wang, Zhu, Yu, Zhiwen, Wang, Yu, Yen, Neil Y, Huang, Runhe,
and Zhou, Xingshe. “Mobile crowd sensing and computing: The review of

Crowd-sensing for Smart City Applications 145 Aseel T. Alkhelaiwi

www.gigwalk.com

BIBLIOGRAPHY

an emerging human-powered sensing paradigm”. In: ACM Computing Surveys
(CSUR) 48.1 (2015), p. 7.

[62] Haklay, Mordechai and Weber, Patrick. “Openstreetmap: User-generated street
maps”. In: IEEE Pervasive Computing 7.4 (2008), pp. 12–18.

[63] Hassan, Mohammad Mehedi, Song, Biao, and Huh, Eui-Nam. “A framework
of sensor-cloud integration opportunities and challenges”. In: Proceedings of
the 3rd international conference on Ubiquitous information management and
communication. ACM. 2009, pp. 618–626.

[64] Haubensak, Oliver. “Smart cities and internet of things”. In: Business Aspects of
the Internet of Things, Seminar of Advanced Topics, ETH Zurich. 2011, pp. 33–
39.

[65] Herrera, Juan C, Work, Daniel B, Herring, Ryan, Ban, Xuegang Jeff, Jacob-
son, Quinn, and Bayen, Alexandre M. “Evaluation of traffic data obtained via
GPS-enabled mobile phones: The Mobile Century field experiment”. In: Trans-
portation Research Part C: Emerging Technologies 18.4 (2010), pp. 568–583.

[66] Huang, Kuan Lun, Kanhere, Salil S, and Hu, Wen. “A privacy-preserving rep-
utation system for participatory sensing”. In: Local Computer Networks (LCN),
2012 IEEE 37th Conference on. IEEE. 2012, pp. 10–18.

[67] Huang, Kuan Lun, Kanhere, Salil S, and Hu, Wen. “Are you contributing trust-
worthy data?: the case for a reputation system in participatory sensing”. In:
Proceedings of the 13th ACM international conference on Modeling, analysis,
and simulation of wireless and mobile systems. ACM. 2010, pp. 14–22.

[68] Hull, Bret, Bychkovsky, Vladimir, Zhang, Yang, Chen, Kevin, Goraczko, Michel,
Miu, Allen, Shih, Eugene, Balakrishnan, Hari, and Madden, Samuel. “Car-
Tel: a distributed mobile sensor computing system”. In: Proceedings of the 4th
international conference on Embedded networked sensor systems. ACM. 2006,
pp. 125–138.

[69] Information Society, Directorate-General for the and Commission), Media
(European. Advancing and Applying Living Lab Methodologies. Tech. rep. July
2010.

[70] Irwin, Alan. Citizen science: A study of people, expertise and sustainable devel-
opment. Routledge, 2002.

[71] Isenburg, Martin, Lindstrom, Peter, and Snoeyink, Jack. “Lossless compression
of floating-point geometry”. In: Computer-Aided Design and Applications 1.1-4
(2004), pp. 495–501.

[72] jana. www.jana.com.
[73] Jayaraman, Prem Prakash, Perera, Charith, Georgakopoulos, Dimitrios, and

Zaslavsky, Arkady. “Efficient opportunistic sensing using mobile collaborative
platform mosden”. In: Collaborative Computing: Networking, Applications and
Worksharing (Collaboratecom), 2013 9th International Conference Conference
on. IEEE. 2013, pp. 77–86.

Crowd-sensing for Smart City Applications 146 Aseel T. Alkhelaiwi

www.jana.com

BIBLIOGRAPHY

[74] Jeung, Hoyoung, Sarni, Sofiane, Paparrizos, Ioannis, Sathe, Saket, Aberer,
Karl, Dawes, Nicholas, Papaioannou, Thanasis G, and Lehning, Michael. “Ef-
fective metadata management in federated sensor networks”. In: Sensor Net-
works, Ubiquitous, and Trustworthy Computing (SUTC), 2010 IEEE Interna-
tional Conference on. IEEE. 2010, pp. 107–114.

[75] Jing, Yao, Guo, Bin, Wang, Zhu, Li, Victor OK, Jacqueline, CK, and Yu, Zhi-
wen. “CrowdTracker: Optimized Urban Moving Object Tracking Using Mobile
Crowd Sensing”. In: IEEE Internet of Things Journal (2017).

[76] Kalim, F., Jeong, J. P., and Ilyas, M. U. “CRATER: A Crowd Sensing Application
to Estimate Road Conditions”. In: IEEE Access 4 (2016), pp. 8317–8326.

[77] Kanakatte, Aparna, Subramanya, Rakshith, Delampady, Ashik, Nayak, Ra-
jarama, Purushothaman, Balamuralidhar, and Gubbi, Jayavardhana. “Cloud
solution for histopathological image analysis using region of interest based
compression”. In: Engineering in Medicine and Biology Society (EMBC), 2017
39th Annual International Conference of the IEEE. IEEE. 2017, pp. 1202–1205.

[78] Kantarci, Burak and Mouftah, Hussein T. “Trustworthy sensing for public
safety in cloud-centric internet of things”. In: IEEE Internet of Things Journal
1.4 (2014), pp. 360–368.

[79] Kargupta, Hillol, Sarkar, Kakali, and Gilligan, Michael. “MineFleet®: an
overview of a widely adopted distributed vehicle performance data mining
system”. In: Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM. 2010, pp. 37–46.

[80] Kazemi, Leyla and Shahabi, Cyrus. “Geocrowd: enabling query answering
with spatial crowdsourcing”. In: Proceedings of the 20th international confer-
ence on advances in geographic information systems. ACM. 2012, pp. 189–198.

[81] Kazemi, Leyla, Shahabi, Cyrus, and Chen, Lei. “Geotrucrowd: trustworthy
query answering with spatial crowdsourcing”. In: Proceedings of the 21st acm
sigspatial international conference on advances in geographic information sys-
tems. ACM. 2013, pp. 314–323.

[82] Khan, Zaheer, Anjum, Ashiq, and Kiani, Saad Liaquat. “Cloud based big data
analytics for smart future cities”. In: Proceedings of the 2013 IEEE/ACM 6th in-
ternational conference on utility and cloud computing. IEEE Computer Society.
2013, pp. 381–386.

[83] Kincaid, J. Googles open spot makes parking a breeze, assuming everyone turns
into a good samaritan. 2010.

[84] Koukoumidis, Emmanouil, Peh, Li-Shiuan, and Martonosi, Margaret Rose.
“Signalguru: leveraging mobile phones for collaborative traffic signal sched-
ule advisory”. In: Proceedings of the 9th international conference on Mobile
systems, applications, and services. ACM. 2011, pp. 127–140.

[85] Kulkarni, Anand, Can, Matthew, and Hartmann, Björn. “Collaboratively
crowdsourcing workflows with turkomatic”. In: Proceedings of the acm 2012

Crowd-sensing for Smart City Applications 147 Aseel T. Alkhelaiwi

BIBLIOGRAPHY

conference on computer supported cooperative work. ACM. 2012, pp. 1003–
1012.

[86] La, Hyun Jung and Kim, Soo Dong. “A conceptual framework for provisioning
context-aware mobile cloud services”. In: Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on. IEEE. 2010, pp. 466–473.

[87] Lamy-Perbal, Sylvie, Boukallel, Mehdi, and Castaneda, Nadir. “An improved
pedestrian inertial navigation system for indoor environments”. In: Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE.
2011, pp. 2505–2510.

[88] Lane, Nicholas D, Miluzzo, Emiliano, Lu, Hong, Peebles, Daniel, Choudhury,
Tanzeem, and Campbell, Andrew T. “A survey of mobile phone sensing”. In:
IEEE Communications magazine 48.9 (2010).

[89] Laoudias, Christos, Constantinou, George, Constantinides, Marios, Nicolaou,
Silouanos, Zeinalipour-Yazti, Demetrios, and Panayiotou, Christos G. “The air-
place indoor positioning platform for android smartphones”. In: Mobile Data
Management (MDM), 2012 IEEE 13th International Conference on. IEEE. 2012,
pp. 312–315.

[90] Larkou, Georgios, Metochi, Julia, Chatzimilioudis, Georgios, and Zeinalipour-
Yazti, Demetrios. “CLODA: A crowdsourced linked open data architecture”. In:
Mobile Data Management (MDM), 2013 IEEE 14th International Conference on.
Vol. 2. IEEE. 2013, pp. 104–109.

[91] Lasnia, Damian, Broering, Arne, Broering, A, Jirka, Simon, and Remke, Al-
bert. “Crowdsourcing sensor tasks to a Socio-Geographic network”. In: AGILE
2010: proceedings of the 13th AGILE International Conference on Geographic
Information Science: geospatial thinking, Guimaraes, Portugal. AGILE. 2010.

[92] Ledlie, Jonathan, Odero, Billy, Minkov, Einat, Kiss, Imre, and Polifroni,
Joseph. “Crowd translator: on building localized speech recognizers through
micropayments”. In: ACM SIGOPS Operating Systems Review 43.4 (2010),
pp. 84–89.

[93] Li, Hongzhi and Hua, Xian-Sheng. “Melog: mobile experience sharing through
automatic multimedia blogging”. In: Proceedings of the 2010 ACM multimedia
workshop on Mobile cloud media computing. ACM. 2010, pp. 19–24.

[94] Liu, Chi Harold, Zhang, Bo, Su, Xin, Ma, Jian, Wang, Wendong, and Leung, Kin
K. “Energy-aware participant selection for smartphone-enabled mobile crowd
sensing”. In: IEEE Systems Journal 11.3 (2017), pp. 1435–1446.

[95] Liu, Qun, Kumar, Suman, and Mago, Vijay. “SafeRNet: Safe transportation
routing in the era of Internet of vehicles and mobile crowd sensing”. In: Con-
sumer Communications & Networking Conference (CCNC), 2017 14th IEEE An-
nual. IEEE. 2017, pp. 299–304.

[96] Liu, Songbin, Huang, Xiaomeng, Ni, Yufang, Fu, Haohuan, and Yang, Guang-
wen. “A versatile compression method for floating-point data stream”. In: Net-

Crowd-sensing for Smart City Applications 148 Aseel T. Alkhelaiwi

BIBLIOGRAPHY

working and Distributed Computing (ICNDC), 2013 Fourth International Con-
ference on. IEEE. 2013, pp. 141–145.

[97] Liu, Xuan, Lu, Meiyu, Ooi, Beng Chin, Shen, Yanyan, Wu, Sai, and Zhang,
Meihui. “Cdas: a crowdsourcing data analytics system”. In: Proceedings of the
VLDB Endowment 5.10 (2012), pp. 1040–1051.

[98] Liu, Yefeng, Alexandrova, Todorka, and Nakajima, Tatsuo. “Using stranger as
sensors: temporal and geo-sensitive question answering via social media”. In:
Proceedings of the 22nd international conference on World Wide Web. ACM.
2013, pp. 803–814.

[99] Lohrmann, Björn and Kao, Odej. “Processing smart meter data streams in the
cloud”. In: Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd IEEE
PES International Conference and Exhibition on. IEEE. 2011, pp. 1–8.

[100] Machado, Rodrigo Prestes, Conforto, Débora, and Santarosa, Lucila. “Sound
chat: Implementation of sound awareness elements for visually impaired
users in web-based cooperative systems”. In: Computers in Education (SIIE),
2017 International Symposium on. IEEE. 2017, pp. 1–6.

[101] Manzoor, Atif, Patsakis, Constantinos, McCarthy, Jessica, Mullarkey, Gabriel,
Clarke, Siobhán, Cahill, Vinny, and Bouroche, Mélanie. “Data sensing and
dissemination framework for smart cities”. In: MOBILe Wireless MiddleWARE,
Operating Systems and Applications (Mobilware), 2013 International Confer-
ence on. IEEE. 2013, pp. 156–165.

[102] Mathur, Suhas, Jin, Tong, Kasturirangan, Nikhil, Chandrasekaran, Janani,
Xue, Wenzhi, Gruteser, Marco, and Trappe, Wade. “Parknet: drive-by sensing
of road-side parking statistics”. In: Proceedings of the 8th international
conference on Mobile systems, applications, and services. ACM. 2010, pp. 123–
136.

[103] Matyas, Sebastian, Matyas, Christian, Schlieder, Christoph, Kiefer, Peter, Mi-
tarai, Hiroko, and Kamata, Maiko. “Designing location-based mobile games
with a purpose: collecting geospatial data with CityExplorer”. In: Proceedings
of the 2008 international conference on advances in computer entertainment
technology. ACM. 2008, pp. 244–247.

[104] McEntire, David A. “Anticipating Human Behavior in Disasters: Myths, Exag-
gerations and Realities”. In: Disaster response and recovery (2006), pp. 62–85.

[105] Medvedev, Alexey, Zaslavsky, Arkady, Grudinin, Vladimir, and Khoruzhnikov,
Sergey. “Citywatcher: annotating and searching video data streams for
smart cities applications”. In: International Conference on Next Generation
Wired/Wireless Networking. Springer. 2014, pp. 144–155.

[106] Mell, Peter, Grance, Tim, et al. “The NIST definition of cloud computing”. In:
(2011).

[107] Metrosense. http://www.cs.dartmouth.edu/∼sensorlab/metrosense/.
[108] Millard, Peter, Saint-Andre, Peter, and Meijer, Ralph. “XEP-0060: publish-

subscribe”. In: XMPP Standards Foundation 1 (2010), p. 13.

Crowd-sensing for Smart City Applications 149 Aseel T. Alkhelaiwi

http://www.cs.dartmouth.edu/~sensorlab/metrosense/

BIBLIOGRAPHY

[109] Miluzzo, Emiliano, Lane, Nicholas D, Eisenman, Shane B, and Campbell, An-
drew T. “CenceMe–injecting sensing presence into social networking applica-
tions”. In: European Conference on Smart Sensing and Context. Springer. 2007,
pp. 1–28.

[110] Min, Hong and Scheuermann, Peter. “A Hierarchical back-end architecture
for smartphone sensing”. In: Proceedings of the 2012 ACM Research in Applied
Computation Symposium. ACM. 2012, pp. 434–439.

[111] Minker, Jack. “On indefinite databases and the closed world assumption”. In:
International Conference on Automated Deduction. Springer. 1982, pp. 292–
308.

[112] Mobile Advertising. http://www.mobads.com.
[113] Mobile cloud computing forum. http://www.mobilecloudcomputingforum.

com/.
[114] Mohan, Prashanth, Padmanabhan, Venkata N, and Ramjee, Ramachandran.

“Nericell: rich monitoring of road and traffic conditions using mobile smart-
phones”. In: Proceedings of the 6th ACM conference on Embedded network sensor
systems. ACM. 2008, pp. 323–336.

[115] Mühl, Gero, Fiege, Ludger, and Pietzuch, Peter. Distributed event-based sys-
tems. Springer Science & Business Media, 2006.

[116] Nicolae, Bogdan, Antoniu, Gabriel, Bougé, Luc, Moise, Diana, and Carpen-
Amarie, Alexandra. “BlobSeer: Next-generation data management for large
scale infrastructures”. In: Journal of Parallel and distributed computing 71.2
(2011), pp. 169–184.

[117] Nivedha, B, Priyadharshini, M, Thendral, E, and Deenadayalan, T. “Lossless
Image Compression in Cloud Computing”. In: Technical Advancements in Com-
puters and Communications (ICTACC), 2017 International Conference on. IEEE.
2017, pp. 112–115.

[118] O2 Wi-Fi Network. https://www.o2.co.uk/connectivity/free-wifi.
[119] OpenIoT Architecture. https://github.com/OpenIotOrg/openiot/wiki/

OpenIoT-Architecture. Accessed: 12-4-2014.
[120] Ouyang, Robin Wentao, Srivastava, Animesh, Prabahar, Prithvi, Roy Choud-

hury, Romit, Addicott, Merideth, and McClernon, F Joseph. “If you see some-
thing, swipe towards it: crowdsourced event localization using smartphones”.
In: Proceedings of the 2013 ACM international joint conference on Pervasive and
ubiquitous computing. ACM. 2013, pp. 23–32.

[121] Pallis, George. “Cloud computing: the new frontier of internet computing”. In:
IEEE internet computing 14.5 (2010), pp. 70–73.

[122] Papakos, Panagiotis, Capra, Licia, and Rosenblum, David S. “Volare: context-
aware adaptive cloud service discovery for mobile systems”. In: Proceedings of
the 9th International Workshop on Adaptive and Reflective Middleware. ACM.
2010, pp. 32–38.

Crowd-sensing for Smart City Applications 150 Aseel T. Alkhelaiwi

http://www.mobads.com
http://www.mobilecloudcomputingforum.com/
http://www.mobilecloudcomputingforum.com/
https://www.o2.co.uk/connectivity/free-wifi
https://github.com/OpenIotOrg/openiot/wiki/OpenIoT-Architecture
https://github.com/OpenIotOrg/openiot/wiki/OpenIoT-Architecture

BIBLIOGRAPHY

[123] Park, Jong Won, Yun, Chang Ho, Rho, Seong Woo, Lee, Yong Woo, and Jung,
Hae Sun. “Mobile cloud web-service for U-City”. In: Dependable, Autonomic
and Secure Computing (DASC), 2011 IEEE Ninth International Conference on.
IEEE. 2011, pp. 1061–1065.

[124] Pascoe, Jason. “Adding generic contextual capabilities to wearable comput-
ers”. In: Wearable Computers, 1998. Digest of Papers. Second International Sym-
posium on. IEEE. 1998, pp. 92–99.

[125] Paz, Leandro Ferreira, Maran, Vinicius, Machado, Alencar, and Augustin, Iara.
“MECA: Mobile System Support for Brazilian Community Health Agents Pro-
gram Based on Context-Awareness”. In: IEEE Latin America Transactions 15.8
(2017), pp. 1547–1555.

[126] Pelusi, Luciana, Passarella, Andrea, and Conti, Marco. “Opportunistic net-
working: data forwarding in disconnected mobile ad hoc networks”. In: IEEE
communications Magazine 44.11 (2006).

[127] Peng, Dan, Wu, Fan, and Chen, Guihai. “Pay as how well you do: A quality
based incentive mechanism for crowdsensing”. In: Proceedings of the 16th ACM
International Symposium on Mobile Ad Hoc Networking and Computing. ACM.
2015, pp. 177–186.

[128] Podnar Zarko, Ivana, Antonic, Aleksandar, and Pripužic, Krešimir. “Pub-
lish/subscribe middleware for energy-efficient mobile crowdsensing”. In:
Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing
adjunct publication. ACM. 2013, pp. 1099–1110.

[129] Pryss, Rüdiger, Reichert, Manfred, Herrmann, Jochen, Langguth, Berthold,
and Schlee, Winfried. “Mobile Crowd Sensing in Clinical and Psychological
Trials–A Case Study”. In: Computer-Based Medical Systems (CBMS), 2015 IEEE
28th International Symposium on. IEEE. 2015, pp. 23–24.

[130] Pryss, Rüdiger, Reichert, Manfred, Langguth, Berthold, and Schlee, Win-
fried. “Mobile crowd sensing services for tinnitus assessment, therapy, and
research”. In: Mobile Services (MS), 2015 IEEE International Conference on.
IEEE. 2015, pp. 352–359.

[131] Puliafito, Antonio. “Sensorcloud: An integrated system for advanced multi-
risk management”. In: Network Cloud Computing and Applications (NCCA),
2014 IEEE 3rd Symposium on. IEEE. 2014, pp. 1–8.

[132] Qin, Zhaokun and Zhu, Yanmin. “NoiseSense: A Crowd Sensing System for
Urban Noise Mapping Service”. In: Parallel and Distributed Systems (ICPADS),
2016 IEEE 22nd International Conference on. IEEE. 2016, pp. 80–87.

[133] Ra, Moo-Ryong, Liu, Bin, La Porta, Tom F, and Govindan, Ramesh. “Medusa:
A programming framework for crowd-sensing applications”. In: Proceedings of
the 10th international conference on Mobile systems, applications, and services.
ACM. 2012, pp. 337–350.

Crowd-sensing for Smart City Applications 151 Aseel T. Alkhelaiwi

BIBLIOGRAPHY

[134] Raento, Mika, Oulasvirta, Antti, Petit, Renaud, and Toivonen, Hannu. “Con-
textPhone: A prototyping platform for context-aware mobile applications”. In:
IEEE pervasive computing 4.2 (2005), pp. 51–59.

[135] Ramaiah, K Dasaradha and Venugopal, T. “A novel approach to detect most ef-
fective compression technique based on compression ratio and time complex-
ity with high image data load for cloud migration”. In: Colossal Data Analysis
and Networking (CDAN), Symposium on. IEEE. 2016, pp. 1–5.

[136] Rana, Rajib Kumar, Chou, Chun Tung, Kanhere, Salil S, Bulusu, Nirupama,
and Hu, Wen. “Ear-phone: an end-to-end participatory urban noise mapping
system”. In: Proceedings of the 9th ACM/IEEE International Conference on In-
formation Processing in Sensor Networks. ACM. 2010, pp. 105–116.

[137] Rasmussen, Carl Edward. “Gaussian processes in machine learning”. In: Ad-
vanced lectures on machine learning. Springer, 2004, pp. 63–71.

[138] Ratanaworabhan, Paruj, Ke, Jian, and Burtscher, Martin. “Fast lossless com-
pression of scientific floating-point data”. In: Data Compression Conference,
2006. DCC 2006. Proceedings. IEEE. 2006, pp. 133–142.

[139] Reddy, Emmenual, Kumar, Sarnil, Rollings, Nicholas, and Chandra, Rohitash.
“Mobile application for dengue fever monitoring and tracking via GPS: case
study for fiji”. In: arXiv preprint arXiv:1503.00814 (2015).

[140] Reddy, Sasank, Shilton, Katie, Denisov, Gleb, Cenizal, Christian, Estrin, Deb-
orah, and Srivastava, Mani. “Biketastic: sensing and mapping for better bik-
ing”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM. 2010, pp. 1817–1820.

[141] Reddy, Sasank, Parker, Andrew, Hyman, Josh, Burke, Jeff, Estrin, Deborah,
and Hansen, Mark. “Image browsing, processing, and clustering for participa-
tory sensing: lessons from a DietSense prototype”. In: Proceedings of the 4th
workshop on Embedded networked sensors. ACM. 2007, pp. 13–17.

[142] Reinsch, Tobias, Wang, Yue, Knechtel, Martin, Ameling, Michael, and Herzig,
Philipp. “CINA-A crowdsourced indoor navigation assistant”. In: Proceedings
of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Com-
puting. IEEE Computer Society. 2013, pp. 500–505.

[143] Reyna, Eva Arias-de, Dardari, Davide, Closas, Pau, and Djurić, Petar M.
“Enhanced indoor localization through crowd sensing”. In: Acoustics, Speech
and Signal Processing (ICASSP), 2017 IEEE International Conference on. IEEE.
2017, pp. 2487–2491.

[144] Rodrigues, Joao GP, Aguiar, Ana, Vieira, Fausto, Barros, Joao, and Cunha,
Joao P Silva. “A mobile sensing architecture for massive urban scanning”. In:
Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Con-
ference on. IEEE. 2011, pp. 1132–1137.

[145] Ruiz-Alvarez, Arkaitz and Humphrey, Marty. “An automated approach to
cloud storage service selection”. In: Proceedings of the 2nd international
workshop on Scientific cloud computing. ACM. 2011, pp. 39–48.

Crowd-sensing for Smart City Applications 152 Aseel T. Alkhelaiwi

BIBLIOGRAPHY

[146] Saint-Andre, Peter. “Extensible messaging and presence protocol (XMPP):
Core”. In: (2011).

[147] Salomon, David and Motta, Giovanni. Handbook of data compression. Springer
Science & Business Media, 2010.

[148] Samaraweera, Isuru and Corera, Sheran. “Sahana victim registries: Effectively
track disaster victims”. In: Proceeding of ISCRAM (2007).

[149] Selviandro, Nungki, Sabariah, Mira Kania, and Saputra, Surya. “Context
awareness system on ubiquitous learning with case based reasoning and
nearest neighbor algorithm”. In: Information and Communication Technology
(ICoICT), 2016 4th International Conference on. IEEE. 2016, pp. 1–6.

[150] Sensor Web Enablement. http://www.opengeospatial.org/standards. Ac-
cessed: 12-9-2014. 2011.

[151] Silva, Welington M da, Alvaro, Alexandre, Tomas, Gustavo HRP, Afonso, Ri-
cardo A, Dias, Kelvin L, and Garcia, Vinicius C. “Smart cities software archi-
tectures: a survey”. In: Proceedings of the 28th Annual ACM Symposium on
Applied Computing. ACM. 2013, pp. 1722–1727.

[152] Simonite, T. Navigation im Schwarm. http://www.heise.de/tr/artikel/
Navigation-im-Schwarm-1183752.html. 2011.

[153] Sinaeepourfard, Amir, Garcia, Jordi, Masip-Bruin, Xavier, and Marin-Tordera,
Eva. “A Novel Architecture for Efficient Fog to Cloud Data Management in
Smart Cities”. In: Distributed Computing Systems (ICDCS), 2017 IEEE 37th
International Conference on. IEEE. 2017, pp. 2622–2623.

[154] Singer, Jane B, Domingo, David, Heinonen, Ari, Hermida, Alfred, Paulussen,
Steve, Quandt, Thorsten, Reich, Zvi, and Vujnovic, Marina. Participatory jour-
nalism: Guarding open gates at online newspapers. John Wiley & Sons, 2011.

[155] Smart City: San Francisco. http://smartcitysf.com.
[156] Smart City Wien. http://urbantransform.eu/2014/09/10/vienna-2050-

ensuring-quality-of-life-through-innovation-adopting-the-smart-
city-wien-framework/.

[157] Smart Seoul 2015. http://english.seoul.go.kr/wp-content/uploads/
2014/02/SMART_SEOUL_2015_41.pdf.

[158] Smart Town. http://fujisawasst.com/EN/project/.
[159] Srinivasan, Vijay, Moghaddam, Saeed, Mukherji, Abhishek, Rachuri, Kiran K,

Xu, Chenren, and Tapia, Emmanuel Munguia. “Mobileminer: Mining your fre-
quent patterns on your phone”. In: Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing. ACM. 2014, pp. 389–
400.

[160] StartUpAmsterdam. https : / / www . iamsterdam . com / en / business /
startupamsterdam.

[161] StartUpDelta. https://www.startupdelta.org.
[162] Stevens, Matthias and D?Hondt, Ellie. “Crowdsourcing of pollution data using

smartphones”. In: Workshop on Ubiquitous Crowdsourcing. 2010.

Crowd-sensing for Smart City Applications 153 Aseel T. Alkhelaiwi

http://www.opengeospatial.org/standards
http://www.heise.de/tr/artikel/Navigation-im-Schwarm-1183752.html
http://www.heise.de/tr/artikel/Navigation-im-Schwarm-1183752.html
http://smartcitysf.com
http://urbantransform.eu/2014/09/10/vienna-2050-ensuring-quality-of-life-through-innovation-adopting-the-smart-city-wien-framework/
http://urbantransform.eu/2014/09/10/vienna-2050-ensuring-quality-of-life-through-innovation-adopting-the-smart-city-wien-framework/
http://urbantransform.eu/2014/09/10/vienna-2050-ensuring-quality-of-life-through-innovation-adopting-the-smart-city-wien-framework/
http://english.seoul.go.kr/wp-content/uploads/2014/02/SMART_SEOUL_2015_41.pdf
http://english.seoul.go.kr/wp-content/uploads/2014/02/SMART_SEOUL_2015_41.pdf
http://fujisawasst.com/EN/project/
https://www.iamsterdam.com/en/business/startupamsterdam
https://www.iamsterdam.com/en/business/startupamsterdam
https://www.startupdelta.org

BIBLIOGRAPHY

[163] Strategy Analytics. http://www.strategyanalytics.com. Accessed: 20-9-
2014.

[164] Swarm App. https://www.swarmapp.com.
[165] Szabó, Róbert, Farkas, Károly, Ispány, Márton, Benczúr, András A, Bátfai, Nor-

bert, Jeszenszky, Péter, Laki, Sándor, Vágner, Anikó, Kollár, Lajos, Sidló, Cs,
et al. “Framework for smart city applications based on participatory sensing”.
In: Cognitive Infocommunications (CogInfoCom), 2013 IEEE 4th International
Conference on. IEEE. 2013, pp. 295–300.

[166] Talasila, Manoop, Curtmola, Reza, and Borcea, Cristian. “Mobile crowd sens-
ing”. In: Google Scholar (2015).

[167] Talebifard, Peyman and Leung, Victor CM. “Towards a content-centric ap-
proach to crowd-sensing in vehicular clouds”. In: Journal of Systems Archi-
tecture 59.10 (2013), pp. 976–984.

[168] Thiagarajan, Arvind, Ravindranath, Lenin, LaCurts, Katrina, Madden, Samuel,
Balakrishnan, Hari, Toledo, Sivan, and Eriksson, Jakob. “VTrack: accurate,
energy-aware road traffic delay estimation using mobile phones”. In: Proceed-
ings of the 7th ACM conference on embedded networked sensor systems. ACM.
2009, pp. 85–98.

[169] Townsend, Kevin R and Zambreno, Joseph. “A multi-phase approach to
floating-point compression”. In: Electro/Information Technology (EIT), 2015
IEEE International Conference on. IEEE. 2015, pp. 251–256.

[170] Toyama, Kentaro, Logan, Ron, and Roseway, Asta. “Geographic location tags
on digital images”. In: Proceedings of the eleventh ACM international conference
on Multimedia. ACM. 2003, pp. 156–166.

[171] Trehard, Guillaume, Lamy-Perbal, Sylvie, and Boukallel, Mehdi. “Indoor
infrastructure-less solution based on sensor augmented smartphone for
pedestrian localisation”. In: Ubiquitous Positioning, Indoor Navigation, and
Location Based Service (UPINLBS), 2012. IEEE. 2012, pp. 1–7.

[172] Usahidi. http://haiti.ushahidi.com/. 2007.
[173] Usevitch, Bryan E. “JPEG2000 extensions for bit plane coding of floating point

data”. In: Data Compression Conference, 2003. Proceedings. DCC 2003. IEEE.
2003, p. 451.

[174] Wang, Leye, Zhang, Daqing, Yan, Zhixian, Xiong, Haoyi, and Xie, Bing. “eff-
Sense: A novel mobile crowd-sensing framework for energy-efficient and cost-
effective data uploading”. In: IEEE Transactions on Systems, Man, and Cyber-
netics: Systems 45.12 (2015), pp. 1549–1563.

[175] Wang, Qianru, Guo, Bin, Wang, Leye, Xin, Tong, Du, He, Chen, Huihui, and Yu,
Zhiwen. “CrowdWatch: Dynamic Sidewalk Obstacle Detection Using Mobile
Crowd Sensing”. In: IEEE Internet of Things Journal 4.6 (2017), pp. 2159–
2171.

[176] Wang, Xinlei, Govindan, Kannan, and Mohapatra, Prasant. “Collusion-resilient
quality of information evaluation based on information provenance”. In: Sen-

Crowd-sensing for Smart City Applications 154 Aseel T. Alkhelaiwi

http://www.strategyanalytics.com
https://www.swarmapp.com
http://haiti.ushahidi.com/

BIBLIOGRAPHY

sor, Mesh and Ad Hoc Communications and Networks (SECON), 2011 8th An-
nual IEEE Communications Society Conference on. IEEE. 2011, pp. 395–403.

[177] Wang, Xinlei Oscar, Cheng, Wei, Mohapatra, Prasant, and Abdelzaher, Tarek.
“Artsense: Anonymous reputation and trust in participatory sensing”. In: IN-
FOCOM, 2013 Proceedings IEEE. IEEE. 2013, pp. 2517–2525.

[178] Wang, Yan, Yang, Jie, Liu, Hongbo, Chen, Yingying, Gruteser, Marco, and Mar-
tin, Richard P. “Sensing vehicle dynamics for determining driver phone use”.
In: Proceeding of the 11th annual international conference on Mobile systems,
applications, and services. ACM. 2013, pp. 41–54.

[179] Wang, Zi, Guo, Bin, Yu, Zhiwen, Wu, Wenle, Zhang, Jiafan, Wang, Zhu, and
Chen, Huihui. “PublicSense: A Crowd Sensing Platform for Public Facility
Management in Smart Cities”. In: Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Conferences.
IEEE. 2016, pp. 114–120.

[180] Weather. https://data.gov.ie/data.
[181] Weather Buoy Network. https://data.gov.ie/dataset/weather- buoy-

network.
[182] White, Jules, Thompson, Chris, Turner, Hamilton, Dougherty, Brian, and

Schmidt, Douglas C. “Wreckwatch: Automatic traffic accident detection and
notification with smartphones”. In: Mobile Networks and Applications 16.3
(2011), p. 285.

[183] Wu, Fang-Jing, Luo, Tie, and Liang, Jason Cheah Jia. “A crowdsourced WiFi
sensing system with an endorsement network in smart cities”. In: Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), 2015 IEEE
Tenth International Conference on. IEEE. 2015, pp. 1–2.

[184] Wu, Yao, Wu, Yuncheng, Peng, Hui, Chen, Hong, and Li, Cuiping. “Magi-
Crowd: A crowd based incentive for location-aware crowd sensing”. In: Wire-
less Communications and Networking Conference (WCNC), 2016 IEEE. IEEE.
2016, pp. 1–6.

[185] Wu, Yao, Wu, Yuncheng, Zeng, Juru, Chen, Hong, and Li, Cuiping. “PIE: A per-
sonalized incentive for location-aware mobile crowd sensing”. In: Computers
and Communications (ISCC), 2017 IEEE Symposium on. IEEE. 2017, pp. 981–
986.

[186] Xie, Fei, Yan, Jun, and Shen, Jun. “Towards Cost Reduction in Cloud-Based
Workflow Management through Data Replication”. In: Advanced Cloud and
Big Data (CBD), 2017 Fifth International Conference on. IEEE. 2017, pp. 94–
99.

[187] Xu, Jia, Rao, Zhengqiang, Xu, Lijie, Yang, Dejun, and Li, Tao. “Mobile Crowd
Sensing via Online Communities: Incentive Mechanisms for Multiple Coop-

Crowd-sensing for Smart City Applications 155 Aseel T. Alkhelaiwi

https://data.gov.ie/data
https://data.gov.ie/dataset/weather-buoy-network
https://data.gov.ie/dataset/weather-buoy-network

BIBLIOGRAPHY

erative Tasks”. In: 2017 IEEE 14th International Conference on Mobile Ad Hoc
and Sensor Systems (MASS). IEEE. 2017, pp. 171–179.

[188] Yan, Tingxin, Kumar, Vikas, and Ganesan, Deepak. “Crowdsearch: exploiting
crowds for accurate real-time image search on mobile phones”. In: Proceedings
of the 8th international conference on Mobile systems, applications, and services.
ACM. 2010, pp. 77–90.

[189] Yan, Zhixian, Eberle, Julien, and Aberer, Karl. “Optimos: Optimal sensing for
mobile sensors”. In: Mobile Data Management (MDM), 2012 IEEE 13th Inter-
national Conference on. IEEE. 2012, pp. 105–114.

[190] Yang, Chi and Chen, Jinjun. “A scalable data chunk similarity based com-
pression approach for efficient big sensing data processing on cloud”. In: IEEE
Transactions on Knowledge and Data Engineering 29.6 (2017), pp. 1144–1157.

[191] Yang, Dejun, Xue, Guoliang, Fang, Xi, and Tang, Jian. “Crowdsourcing to
smartphones: Incentive mechanism design for mobile phone sensing”. In: Pro-
ceedings of the 18th annual international conference on Mobile computing and
networking. ACM. 2012, pp. 173–184.

[192] Ye, Fan, Ganti, Raghu, Dimaghani, Raheleh, Grueneberg, Keith, and Calo,
Seraphin. “Meca: mobile edge capture and analysis middleware for social
sensing applications”. In: Proceedings of the 21st International Conference on
World Wide Web. ACM. 2012, pp. 699–702.

[193] Ye, Zhi, Chen, Xin, and Li, Zhu. “Video based mobile location search with
large set of SIFT points in cloud”. In: Proceedings of the 2010 ACM multimedia
workshop on Mobile cloud media computing. ACM. 2010, pp. 25–30.

[194] Yeh, PS, Serafino, W, Miles, L, Kobler, B, and Menasce, D. “Implementation of
CCSDS lossless data compression in HDF. Proc. Of NASA ESTO Conf. 2002,
Pasadena, CA, June 11-13”. In: (2002).

[195] Zappatore, Marco, Longo, Antonella, and Bochicchio, Mario A. “Using mobile
crowd sensing for noise monitoring in smart cities”. In: Computer and Energy
Science (SpliTech), International Multidisciplinary Conference on. IEEE. 2016,
pp. 1–6.

[196] Zhang, Hengyang, Huang, Tao, Liu, Yunjie, Zhu, Shixiang, Gui, Guan, and Chi,
Yuanying. “Senz: A Context Awareness Middleware System Used in Mobile
Devices”. In: Vehicular Technology Conference (VTC Spring), 2017 IEEE 85th.
IEEE. 2017, pp. 1–7.

[197] Zhu, Chunsheng, Sheng, Zhengguo, Leung, Victor CM, Shu, Lei, and Yang,
Laurence T. “Toward offering more useful data reliably to mobile cloud from
wireless sensor network”. In: IEEE Transactions on Emerging Topics in Comput-
ing 3.1 (2015), pp. 84–94.

[198] Zhu, Xuan, An, Jian, Yang, Maishun, Xiang, Lele, Yang, Qiangwei, and Gui,
Xiaolin. “A Fair Incentive Mechanism for Crowdsourcing in Crowd Sensing”.
In: IEEE Internet of Things Journal 3.6 (2016), pp. 1364–1372.

Crowd-sensing for Smart City Applications 156 Aseel T. Alkhelaiwi

BIBLIOGRAPHY

[199] Ziftci, Celal, Nikzad, Nima, Verma, Nakul, Zappi, Piero, Bales, Elizabeth,
Krueger, Ingolf, and Griswold, William. “Citisense: mobile air quality sensing
for individuals and communities”. In: Proceedings of the 3rd annual conference
on Systems, programming, and applications: software for humanity. ACM.
2012, pp. 23–24.

[200] zlib. http://www.zlib.net.

Crowd-sensing for Smart City Applications 157 Aseel T. Alkhelaiwi

http://www.zlib.net

Appendix A

“SenseAll” Mobile App

This appendix presents the “SenseAll” Android mobile app. This app was de-

veloped and installed in users’ mobile devices in order to conduct the sensing

activity used throughout this thesis. Therefore, this appendix will show how

users can sense using this mobile app.

The different screens in the mobile app are listed with their functionalities in

this appendix. These screens are:

1. Login and registration

2. Dashboard

3. Sensing

4. Logout

A.1 Login and Registration Screen

In order for users to use the app, they need to register in the cloud, where their

details will be validated. On the first screen (the Login screen), the user will

press the “register” button to navigate to the registration screen, where the user

will insert the required details. These details are:

1. Username

2. Password

3. Password validation

158

A. “SENSEALL” MOBILE APP A.2 Dashboard Screen

After filling in the required details, the user will press the “register” button in

order to send the details to the cloud and complete the registration process, but

first the app will check if all the details are in the desired form. The desired

forms are in terms of username and password length and Internet connection.

If the app verifies all the details, it will send these details to the cloud encapsu-

lated in an HTTP request. Otherwise, an error message will appear.

When the cloud receives the details, it will insert the user into the database and

assign a random ID if this user does not exist. This user ID is the ID used when

the user starts sensing. However, if the user is already registered in the cloud,

the cloud will send an error message to the app.

If the cloud verifies the user details, the user can go back to the Login screen

and insert the details to grant access to the app.

A.2 Dashboard Screen

The Dashboard screen contains several icons (i.e. buttons), each of which rep-

resents a smart city domain, such as weather, water, traffic, etc. As an exam-

ple, one icon is called “Weather”, which will transfer the user to the sensing

screen where the user can sense data that are related to the weather context.

Then, when these data are sent to the cloud, they are inserted into the weather

database. The Dashboard screen is shown below.

In this thesis, the only icon used is a “Roads” icon, with which users can sense

data related to road situations such as potholes. If the user presses this icon,

the Sensing screen for that icon will appear. The characteristics of the Sensing

screen that is related to the “Roads” icon are shown in section A.3.

A.3 Sensing Screen

The Sensing screen is the screen on which users can exploit the device sen-

sors and start to sense. The data produced by the app for all icons contains

time, GPS coordinates (latitude and longitude), three-dimensional accelerome-

ter readings, the status of the user (e.g., at a standstill, walking, etc.), photos

and voice notes. However, “Roads” is the only icon used throughout this thesis.

With this icon, users can send GPS coordinates (latitude and longitude), three-

dimensional accelerometer readings, the status of the user (e.g., at a standstill,

Crowd-sensing for Smart City Applications 159 Aseel T. Alkhelaiwi

A. “SENSEALL” MOBILE APP A.3 Sensing Screen

Figure A.1: Dashboard screen

walking, etc.) and photos. The status “Driving” is the default, in order to ensure

user safety and reduce the usage of mobile devices while driving. Thus, in order

to capture the accelerometer entries, the user will have to either shake the mo-

bile device or simply place it on a surface in a car or on a bike, for example. The

user status and photo entries are done by the user. However, a photograph is an

optional entry and has a separate activity that is obtained when the user clicks

“Photo?” button. GPS coordinates are attached once the user clicks “Send”

button.

Crowd-sensing for Smart City Applications 160 Aseel T. Alkhelaiwi

A. “SENSEALL” MOBILE APP A.3 Sensing Screen

Figure A.2: Sensing screen of “Roads” icon

Figure A.3: Adding a photo

Crowd-sensing for Smart City Applications 161 Aseel T. Alkhelaiwi

A. “SENSEALL” MOBILE APP A.4 Logout Screen

A.4 Logout Screen

The user can sign out from the “SenseAll” app by clicking the “Logout” button,

as shown below. By clicking this button, a message will be sent to the cloud

indicating that this user is no longer active and will not be part of the sensing

activity. Then, the app will navigate the user to the Login screen.

Figure A.4: Logout button Figure A.5: Logging out

Crowd-sensing for Smart City Applications 162 Aseel T. Alkhelaiwi

Appendix B

Trust and Reputation Scores

Day 1:

Users
Users
Status

Sensing
Style

Loyalty Similarity
Trust
value

Trusted?
Final

reputation

User1 0.2 0.15 0.0 0.0 1.4 YES 1.4

User2
0.15 0.15 0.0 0.0 1.3 YES

1.3 + 1.4 = 2.7
0.15 0.15 0.05 0.0 1.4 YES

User3 0.15 0.15 0.0 0.0 1.3 YES 1.3

User4 0.1 0.15 0.0 0.0 1.3 YES 1.3

User5 0.05 0.05 0.0 0.0 1.1 NO −3.0

User6
0.15 0.15 0.0 0.0 1.3 YES

1.3 + 1.5 = 2.8
0.2 0.15 0.05 0.0 1.5 YES

User7 0.05 0.15 0.0 0.0 1.2 NO −3.3

User8 0.15 0.15 0.0 0.0 1.3 YES 1.3

User9 N/A N/A N/A N/A N/A N/A N/A

User10 0.15 0.15 0.0 0.0 1.3 YES 1.3

User11
0.2 0.15 0.0 0.0 1.4 YES

1.4 + 1.8 = 3.2
0.2 0.35 0.05 0.0 1.8 YES

User12

0.2 0.15 0.0 0.0 1.4 YES
1.4 + 1.5 +

1.6 = 4.5
0.2 0.15 0.05 0.0 1.5 YES

0.2 0.15 0.1 0.0 1.6 YES

User13 0.15 0.15 0.0 0.0 1.3 YES 1.3

User14 0.05 0.15 0.0 0.0 1.2 NO −3.3

163

B. TRUST AND REPUTATION SCORES

Day 2:

Users Users
Status

Sensing
Style

Loyalty Similarity Trust
value

Trusted? Final
reputation

User1 0.15 0.15 0.0 0.0 1.3 YES 1.4 + 1.3 = 2.7

User2 0.15 0.15 0.0 0.1 1.5 YES 2.7 + 1.5 = 4.2

User3 0.15 0.15 0.0 0.0 1.3 YES 1.3 + 1.3 = 2.6

User4 0.1 0.15 0.0 0.0 1.3 YES 1.3 + 1.3 = 2.6

User5 0.2 0.15 0.0 0.0 1.4 YES −3.0 + 1.4
+1.5 = −0.1

0.2 0.15 0.05 0.0 1.5 YES
2.8 + 1.4+
1.4 = 5.6User6 0.2 0.15 0.0 0.0 1.4 YES

0.15 0.15 0.05 0.0 1.4 YES

User7 0.05 0.15 0.0 0.0 1.2 NO −3.3− 3.3 = −6.6

User8 0.2 0.15 0.0 0.1 1.6 YES 1.3 + 1.6 = 2.9

User9 0.15 0.15 0.0 0.0 1.3 YES 1.3

User10 0.2 0.15 0.0 0.0 1.4 YES 1.3 + 1.4 = 2.7

User11
0.15 0.35 0.0 0.0 1.6 YES 3.2 + 1.6+

1.5 = 6.30.2 0.15 0.05 0.0 1.5 YES

User12
0.15 0.15 0.0 0.0 1.3 YES 4.5 + 1.3+

1.5 = 7.30.2 0.15 0.05 0.0 1.5 YES

User13 0.05 0.15 0.0 0.0 1.2 NO 1.3− 3.3 = −2.0

User14 0.15 0.15 0.0 0.0 1.3 YES −3.3 + 1.3 = −2.0

Crowd-sensing for Smart City Applications 164 Aseel T. Alkhelaiwi

B. TRUST AND REPUTATION SCORES

Day 3:

Users Users
Status

Sensing
Style

Loyalty Similarity Trust
value

Trusted? Final
reputation

User1 0.2 0.15 0.0 0.0 1.4 YES 2.7 + 1.4 = 4.1

User2 0.2 0.15 0.0 0.1 (8) 1.6 YES 4.2 + 1.6 = 5.8

User3 0.15 0.15 0.0 0.0 1.3 YES 2.6 + 1.3 = 3.9

User4 0.05 0.15 0.0 0.0 1.2 NO 2.6− 3.3 = −0.7

User5 0.15 0.15 0.0 0.0 1.3 YES −0.1 + 1.3 = 1.2

User6 0.15 0.15 0.0 0.1 (12) 1.5 YES 5.6 + 1.5 = 7.1

User7 0.15 0.15 0.0 0.0 1.3 YES −6.6 + 1.3 = −5.3

User8 0.2 0.15 0.0 0.1 1.6 YES 2.9 + 1.6 = 4.5

User9 0.1 0.15 0.0 0.0 1.3 YES 1.3 + 1.3 = 2.6

User10 0.15 0.15 0.0 0.0 1.3 YES 2.7 + 1.3 = 4.0

User11
0.2 0.15 0.0 0.0 1.4 YES 6.3 + 1.4+

1.5 = 9.20.2 0.15 0.05 0.0 1.5 YES

User12 0.2 0.15 0.0 0.1 1.6 YES 7.3 + 1.6 = 8.9

User13 0.15 0.15 0.0 0.0 1.3 YES −2.0 + 1.3 = −0.7

User14 0.2 0.15 0.0 0.0 1.4 YES −2.0 + 1.4 = −0.6

Crowd-sensing for Smart City Applications 165 Aseel T. Alkhelaiwi

B. TRUST AND REPUTATION SCORES

Day 4:

Users Users
Status

Sensing
Style

Loyalty Similarity Trust
value

Trusted? Final
reputation

User1 0.1 0.15 0.0 0.0 1.3 YES 4.1 + 1.3 = 5.4

User2 0.15 0.15 0.0 0.0 1.3 YES 5.8 + 1.3+
1.6 = 8.7

User3
0.15 0.15 0.05 0.1 1.6 YES

3.9
N/A N/A N/A N/A N/A N/A

User4 0.15 0.15 0.0 0.0 1.3 YES −0.7 + 1.3 = 0.6

User5 0.2 0.15 0.0 0.0 1.4 YES 1.2 + 1.4 = 2.6

User6
0.15 0.15 0.0 0.0 1.3 YES 7.1 + 1.3+

1.4 = 9.80.15 0.15 0.05 0.0 1.4 YES

User7 0.2 0.15 0.0 0.0 1.4 YES −5.3 + 1.4 = −3.9

User8 0.2 0.15 0.0 0.1 1.6 YES 4.5 + 1.6 = 6.1

User9 0.1 0.15 0.0 0.0 1.3 YES 2.6 + 1.3 = 3.9

User10 0.2 0.15 0.0 0.0 1.4 YES 4.0 + 1.4 = 5.4

User11 0.15 0.15 0.0 0.0 1.3 YES 9.2 + 1.3 = 10.5

User12
0.15 0.15 0.0 0.0 1.3 YES 8.9 + 1.3+

1.5 = 11.70.2 0.15 0.05 0.0 1.5 YES

User13 0.2 0.15 0.0 0.0 1.4 YES −0.7 + 1.4 = 0.7

User14 0.15 0.15 0.0 0.0 1.3 YES −0.6 + 1.3 = 0.7

Crowd-sensing for Smart City Applications 166 Aseel T. Alkhelaiwi

B. TRUST AND REPUTATION SCORES

Day 5:

Users Users
Status

Sensing
Style

Loyalty Similarity Trust
value

Trusted? Final
reputation

User1 0.15 0.15 0.0 0.0 1.3 YES 5.4 + 1.3 = 6.7

User2 0.2 0.15 0.0 0.1 (8) 1.6 YES 8.7 + 1.6 = 10.3

User3 0.2 0.15 0.0 0.1 (8) 1.6 YES 3.9 + 1.6 = 5.5

User4 0.2 0.15 0.0 0.0 1.4 YES 0.6 + 1.4 = 2.0

User5 0.05 0.15 0.0 0.1 (11) 1.3 YES 2.6 + 1.3 = 3.9

User6
0.15 0.15 0.0 0.0 1.3 YES 9.8 + 1.3+

1.4 = 12.50.15 0.15 0.05 0.0 1.4 YES

User7 0.15 0.15 0.0 0.0 1.3 YES −3.9 + 1.3 = −2.6

User8 0.2 0.15 0.0 0.1 1.6 YES 6.1 + 1.6 = 7.7

User9 N/A N/A N/A N/A N/A N/A 3.9

User10 0.15 0.15 0.0 0.0 1.3 YES 5.4 + 1.3 = 6.7

User11
0.15 0.15 0.0 0.0 1.3 YES 10.5 + 1.3+

1.4 = 13.20.05 0.15 0.05 0.1 1.4 YES

User12
0.2 0.15 0.0 0.0 1.4 YES 11.7 + 1.4+

1.4 = 14.50.15 0.15 0.05 0.0 1.4 YES

User13 0.1 0.05 0.0 0.0 1.2 NO 0.7− 3.3 = −2.6

User14 0.15 0.15 0.0 0.0 1.3 YES 0.7 + 1.3 = 2.0

Crowd-sensing for Smart City Applications 167 Aseel T. Alkhelaiwi

B. TRUST AND REPUTATION SCORES

Day 6:

Users Users
Status

Sensing
Style

Loyalty Similarity Trust
value

Trusted? Final
reputation

User1 0.15 0.15 0.0 0.0 1.3 YES 6.7 + 1.3 = 8.0

User2 0.2 0.15 0.0 0.0 1.4 YES 10.3 + 1.4 = 11.7

User3
0.2 0.15 0.0 0.1 (8) 1.6 YES 5.5 + 1.6+

1.4 = 8.50.15 0.15 0.05 0.0 1.4 YES

User4 0.2 0.15 0.0 0.0 1.4 YES 2.0 + 1.4 = 3.4

User5 0.05 0.15 0.0 0.0 1.2 NO 3.9− 3.3 = 0.6

User6 0.05 0.05 0.0 0.0 1.1 NO 12.5− 3.0 = 9.5

User7 0.2 0.15 0.0 0.0 1.4 YES −2.6 + 1.4 = −1.2

User8 0.15 0.15 0.0 0.1 1.5 YES 7.7 + 1.5 = 9.2

User9 0.1 0.05 0.0 0.0 1.2 NO 3.9− 3.3 = 0.6

User10 0.15 0.15 0.0 0.1 1.5 YES 6.7 + 1.5 = 8.2

User11 0.15 0.35 0.0 0.0 1.6 YES 13.2 + 1.6 = 14.8

User12 0.15 0.15 0.0 0.0 1.3 YES 14.5 + 1.3 = 15.8

User13 0.15 0.35 0.0 0.0 1.6 YES −2.6 + 1.6 = −1.0

User14 0.2 0.15 0.0 0.0 1.4 YES 2.0 + 1.4 = 3.4

Crowd-sensing for Smart City Applications 168 Aseel T. Alkhelaiwi

B. TRUST AND REPUTATION SCORES

Day 7:

Users Users
Status

Sensing
Style

Loyalty Similarity Trust
value

Trusted? Final
reputation

User1 0.15 0.15 0.0 0.0 1.3 YES 8.0 + 1.3 = 9.3

User2 0.2 0.15 0.0 0.1 1.6 YES 11.7 + 1.6 = 13.3

User3 0.1 0.15 0.0 0.0 1.3 YES 8.5 + 1.3 = 9.8

User4 0.15 0.15 0.0 0.0 1.3 YES 3.4 + 1.3 = 4.7

User5 0.2 0.15 0.0 0.0 1.4 YES 0.6 + 1.4 = 2.0

User6 0.05 0.15 0.0 0.0 1.2 NO 9.5− 3.3 = 6.2

User7 0.15 0.15 0.0 0.0 1.3 YES −1.2 + 1.3 = 0.1

User8 0.2 0.15 0.0 0.1 1.6 YES 9.2 + 1.6 = 10.8

User9 0.1 0.15 0.0 0.0 1.3 YES 0.6 + 1.3 = 1.9

User10 0.2 0.15 0.0 0.0 1.4 YES 8.2 + 1.4 = 9.6

User11 0.15 0.35 0.0 0.0 1.6 YES 14.8 + 1.6 = 16.4

User12 0.2 0.15 0.0 0.0 1.4 YES 15.8 + 1.4 = 17.2

User13 0.15 0.15 0.0 0.0 1.3 YES −1.0 + 1.3 = 0.3

User14 0.2 0.15 0.0 0.0 1.4 YES 3.4 + 1.4 = 4.8

Crowd-sensing for Smart City Applications 169 Aseel T. Alkhelaiwi

Appendix C

Consumers Interface Screenshots

Figure C.1: Screenshot of the Data Type page (first request)

170

C. CONSUMERS INTERFACE SCREENSHOTS

Figure C.2: Screenshot of the Data Type page (second request)

Figure C.3: Screenshot of the Data Type page (third request)

Crowd-sensing for Smart City Applications 171 Aseel T. Alkhelaiwi

C. CONSUMERS INTERFACE SCREENSHOTS

Figure C.4: Screenshot of the Data Type page (fourth request)

Figure C.5: Screenshot of the Data Type page (fifth request)

Crowd-sensing for Smart City Applications 172 Aseel T. Alkhelaiwi

C. CONSUMERS INTERFACE SCREENSHOTS

Figure C.6: Screenshot of the Service page using “Optimize” service

Figure C.7: Screenshot of the Service page using “Extract” service

Crowd-sensing for Smart City Applications 173 Aseel T. Alkhelaiwi

C. CONSUMERS INTERFACE SCREENSHOTS

Figure C.8: Screenshot of the notification email received by the second consumer
“test_aseel1@outlook.com”

Figure C.9: Screenshot of the notification email received by the third consumer
“test_aseel2@outlook.com”

Crowd-sensing for Smart City Applications 174 Aseel T. Alkhelaiwi

Appendix D

Symbols and Definitions

Symbol Definition

S User status (i.e. not moving, walking, or moving fast).

SS Sensing Style (i.e. location, voice, photo, accelerometer).

Nu Loyalty factor for user “u”.

S’
Similarity function, returns “0” for no similarity and “0.1” for

similarity.

Sim Similarity factor in the trust service.

Tu Trust value for user “u”.

Repu Reputation value for user.

simu Similarity weight for user ”u” in the scheduler service

di,y data entries that start from entry “i” to entry “y”

T Time

AR Access Rate

SD Immutable part

NSD Mutable part

175

	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Acknowledgements
	Introduction
	Mobile Cloud Computing and Crowd-sensing
	Motivation
	Challenges
	Challenges Related to the User End
	Challenges Related to the Cloud End

	Summary of Thesis Contributions
	Thesis Structure
	Publications

	Literature Review
	Introduction
	Background
	Cloud Computing
	Mobile Cloud Computing
	Crowd-sensing

	Mobile Cloud Sensing: Related Work
	Crowdsourcing
	Crowdsourcing by Collecting and Searching Data
	Crowdsourcing with Roads and Traffic
	Crowdsourcing and Location-based Services
	Crowdsourcing and Assigning Tasks

	Crowd-sensing
	Environmental
	Situational
	Social
	Offering Incentives and Offloading Data
	Crowd-sensing Architectures

	Context Awareness
	Middleware for Provisioning Context-aware Mobile Cloud Services

	Discussion
	Participatory and Opportunistic Contributions

	Smart City Applications
	Special-purpose Systems
	Traffic in Smart Cities

	General-purpose Systems
	Discussion

	Chapter Summary

	Design and Architecture
	Introduction
	What are Crowd-sensed Data?

	Challenges
	Requirements
	General Requirements
	Specific Requirements
	Non-functional Requirement
	Performance Requirements

	Design
	System Architecture Layers
	Comprehensive System Features
	Chapter Summary

	Edge Services for Crowd-sensed Data
	Introduction
	Problem Formulation
	Origin and Trustworthiness of Data
	Previous Studies
	Design
	Traceability Requirement

	Use Cases
	Discussion

	Scheduling Data
	Previous Studies
	Scheduling Service Requirement
	Design
	Evaluation
	Evaluation setup
	Evaluation result
	Discussion

	Single-precision Floating Point Compression
	Previous Studies
	Scientific Data
	Audio and Image Compression

	Compression Design
	Location-based Data Compression
	Accelerometer Data Compression

	Decompression
	Location-based Decompression
	Accelerometer Decompression

	Evaluation
	Evaluation setup
	Evaluation Result
	Comparison

	Chapter Summary

	Data Management in the Cloud: Cloud Services
	Introduction
	Partitioning Method
	Previous Studies
	Design
	Services
	Use Cases

	Evaluations
	Discussion
	User Agreement Agent (Notification Agent)
	Chapter Summary

	Experimental Evaluations
	Introduction
	Use Case 1: Exploiting Edge Services
	Experiment Setup
	Experiment Results
	Edge Services Analysis
	From the Edge to the Cloud

	Use Case 2: Exploiting Data Reduction Services in the Cloud
	Experiment Setup
	Consumers Interface Setup
	Cloud Data Storage Setup

	Partitioning Scenarios and Output
	Partitioning Analysis
	Comprehensive Services Evaluation

	Reduction Services Scenarios and Output
	Reduction Services Analysis
	Comprehensive Services Evaluation

	Architecture Highlights
	Does the Architecture Meet the Performance Requirements?

	Chapter Summary

	Conclusions and Future Work
	Research Summary and Benefits
	Limitations and Future Work
	Implementing More Services
	Improving Existing Services
	Conducting More Evaluations and Experiments
	Extending the Crowd-sensing Area
	Using Different Operating Systems
	Privacy and Security
	Offering Incentive Mechanisms

	``SenseAll'' Mobile App
	Login and Registration Screen
	Dashboard Screen
	Sensing Screen
	Logout Screen

	Trust and Reputation Scores
	Consumers Interface Screenshots
	Symbols and Definitions

