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An empirical calibrated energy model of a 
CNC machine case study using process 
output data to reduce energy 
consumption. 
Abstract 
With an ever growing need to reduce energy consumption in the manufacturing industry, 
process users need to become more aware on how production impacts energy consumption. 
Computer numerically controlled machining tools are a common manufacturing apparatus, 
and they are known to be energy inefficient. This paper describes the development of an 
empirical energy consumption model of a CNC with the aim of predicting energy consumption 
based on the number of parts processed by the machine (both successful and scrapped). In 
using the Calibrated Model Method, the data undergoes initial preparation followed by 
exploratory data analysis and subsequent model development via iteration. During this 
analysis, relationships between parameters are explored to find which have the most 
significant on energy consumption. A training set of 191 datapoints yielded a correlation value 
of 0.95, between the power consumption and total units produced. RMSE, MAPE and MBE 
validation test yielded results of 0.198, 6.4% and 2.66% respectively showing high confidence 
in prediction. 

Introduction 
In recent years, energy consumption has been an increasingly important consideration in the 
manufacturing industry, both in the fight against climate change, and as a means of making 
financial savings [1]. With global energy demand estimated to increase by 45% from today’s 
levels to 2030, all aspects of our energy system must be analysed [1]. The industrial sector 
plays a large role in this increase, currently accounting for 41.9% of final electricity 
consumption [1]. By improving energy use in the industrial sector, substantial improvements 
can be made in global energy demand and carbon emissions. 

Numerical modelling is increasingly being used in the design and optimization of 
manufacturing processes in order to increase the quality of the produced parts and improved 
production yield [2]. Traditionally, production is assessed by monitoring four main 
manufacturing attributes; cost, time, quality and flexibility [3]. While there is an increased 
awareness around energy consumption in the production industry [4], energy consumption 
modelling for processes is far less common. Many studies look at particular processes in great 
detail or apply a bespoke prediction model to a certain process, however this makes it difficult 
to apply to other scenarios [5] and hence the outputs from this research is not easily 
replicable. Energy consumption can be collected by various means, such as internal energy 
reading or by utilising external sensors. It was found that in manufacturing, energy 



consumption can be recorded, stored and used in varying formats, with no standardisation. 
Because of this, general models are not very common to apply to different manufacturing 
settings so bespoke models are developed[6]. Due to the nonlinear nature of energy 
consumption within manufacturing,  data science and machine learning approaches would 
need to be considered [4].  

This study focused on the development of an empirical energy consumption model of a CNC 
machine, which seeks to predict energy consumption based on product throughput. The 
development of the model can also provide analysis into means to assess where potential 
energy reduction strategies can also applied. This paper looks at current empirical energy 
modelling practices from literature, provides an overview of the methodology used then 
describes an implantation of the developed model on real world manufacturing data. 

Literature Review 
The machining process is a fundamental manufacturing technique, where parts are shaped 
by the removal of unwanted material. Various techniques are applied to remove this material 
such as milling, grinding, and turning. Machining equipment are a high energy consumer 
within manufacturing and not very energy efficient, at less than 30% [7]. This is due to the 
varying nature of the tools within the machines and the materials being used. Machining tools 
contain many motors and auxiliary devices, with varying energy consumptions. Behrendt et 
al. (2012) found that in a CNC machine, the spindle’s work  drives near peak power during 
rough cuts, while the consumption at the finishing cuts can be significantly lower [8].  Various 
studies exist in trying to further understand machining energy consumption. They also found 
that the power required to remove material has a small impact on the overall consumption, 
which means savings could stem from the overall cycle time [8].  Energy modelling can be a 
challenging task due to the complexity of machining tools [9]. This environment is often 
characterised by large variety in products in small batches, requiring real-time monitoring, 
dynamic scheduling and decision making, and adaptive capability. Energy modelling of this 
task also needs to have a dynamic approach, as every time distributed resource or multiple 
objectives are considered, the energy usage needs to be updated [9]. 

Empirical modelling is a data driven approach where the performance of the item being 
modelled is translated into one or a set of algebraic equations [10]. The use of empirical 
modelling denotes defined algebraic relationships between the input and the required 
output. These types of models are constructed with regards to prediction ability or model fit 
(data approximation), prognostic ability (forecasting) and model structure (agreement with 
theories and facts). They are becoming more and more common as the systems being 
modelled are becoming more complex and less structured [11]. Overall, empirical models 
offer simplistic solutions for quantitative comparisons between different operating 
conditions. Studies show that empirical models can be greater than 90% effective [12]. Garg 
et al. (2018) sought to develop an empirical model of machining tools by building empirical 
models focusing on optimising process parameters to efficiently machine parts, thus reducing 
overall consumption. The model inputs on this study were identified as spindle motor power 
rating (W), maximum spindle speed (rpm), maximum turning diameter and length (mm). From 
literature, it was found that many of the energy models of CNC machines rely on tool 



parameter data to drive prediction.  In many cases, data to that level of detail can be difficult 
to install recorded. By deriving a relationship between process output and energy 
consumption data, this approach to modelling may be a more simplistic first step for many 
CNC users to predict machine energy consumption. Peng et al. (2014) highlights that empirical 
models use actual production data to establish relationships between main variable and the 
energy consumption. Methodology 

A common approach with empirical modelling in manufacturing is the use of the Response 
Surface Method (RSM) [7,9,13,14]. The RSM works best between several explanatory 
variables and one response variable. Due to this model only containing one explanatory 
variable and one response variable, and limited available data, the RSM output could be 
ineffective. The methodology selected to develop the model is based on the Calibrated Model 
Method, a modelling methodology originally created to optimise the energy consumption of 
a building [15]. The methodology is based on a similar approach where prepared data is 
inputted to an initial model and the model is iteratively calibrated with the data to improve 
predictability. While applications vary between building and machine modelling, the 
approaches do not. Both scenarios see a basic initial model developed, following iterative 
data improvements, this calibrates the model further to the eventual creation of an effective 
final model. This method is especially useful for when limited data is available and assessment 
sees modifications that can improve the final model. 

 
Figure 1 Modelling Methodology 

In data preparation stage, the data is gathered, formatted, and standardised for use in the 
energy model. The model requires two inputs, from energy data and production data. It is 
only after significant data preparation that both sets of data are ready for analysis. Both input 
files are indexed to be compatible with one another then merged for data analysis. In the case 
of time series data, ensuring data sets are sampled to the same time frame. 



With the prepared data, the relationship between datapoints is examined. This includes data 
correlation, causation and understanding. From data visualisation, explanations for major 
outliers that could hinder model performance as well as other relationships can be assessed. 
Through iterative adjustments, relationships between datapoints are calculated to potentially 
generate assumptions,  assess machine performance, and increase machine understanding. 
Examples of such assumptions may be assuming idling energy consumption from shifts with 
zero throughput, approximating the active energy consumption from this and using scrap 
data to calculate the amount of energy lost due to scrap. It is recommended to document 
each iteration on a model version log, documenting what changes were made, any new 
assumptions, assumptions removed and validation scores. 

Once data preparation and exploratory analysis is complete, the data can then be modelled 
using datapoints with the highest correlation using the most appropriate empirical modelling 
method (linear regression, multivariate regression etc.). The predicted results can then 
undergo validation using methods such as root mean squared error (RMSE), mean absolute 
percentage error (MAPE) and mean bias error (MBE). 

Case Study 
Description 
This methodology was applied to a medical device manufacturing process where a CNC lathe 
was utilised to remove material. The CNC operates in two 12 hour shifts daily, which formed 
the measured timeframe of the study. The CNC machines parts, where a raw block of material 
is machined into the required shape.  

Production data (parts produced, parts scrapped) was readily available via an OSI PI network 
connection to the physical machine. Realtime power consumption at the time of 
development was not available however, so power consumption was collected using a Fluke 
1734 Energy Logger over five different production shifts recording consumption every one 
minute. Four of the five energy datasets were used as a training set while the fifth was 
retained as the testing set for model validation. 

Model 
Data Preparation 
The input data first underwent data preparation ahead of the data analysis. The power 
training data, power testing data and production data were used as inputs in this stage. Firstly, 
the power datasets were resampled from their original 1 minute granularity to 12 hour 
production shifts, with the power data during the shifts summed. As the collection of power 
data involved a temporary energy tracker over five different production shifts, this created 
inconsistencies within the power data as was addressed. With the tracker being installed and 
removed mid shift, the data from the first and last shift were excluded as data was collected 
for a partial shift and not reflective of the entire shift. The production data from the CNC’s 
shifts were then extracted to its own dataset. In this dataset, the total quantity of parts 
produced during the shift was calculated by summing the number of successful parts with the 



parts that were scrapped. A scrap yield percentage was also calculated. Following this, both 
datasets were merged ahead of the next stage of the analysis.  

Data Analysis 
With the prepared data, initial analysis included assessing the correlation between the power 
consumed per shift and the total units produced.  Over iterative adjustments, it was found 
that power consumption during the installation and removal from the CNC were incomplete, 
reducing model efficiency. These datapoints were then removed. The data was assessed to 
obtain the assumed idling consumption of the CNC. Various datapoints in the set showed 
when instances when no parts were produced, the power consumption remained relatively 
static and the average power value was assumed as the idling power value of the CNC. The 
active power per shift was then calculated by subtracting the assumed idling power from the 
total power consumption. By utilising the scrap yield percentage, when applicable, the power 
consumed on parts that were ultimately scrapped was also calculated, as seen in Table XXX.  

Table 1 Data Analysis example 

DateTime Power [kW] Total 
Units 

Parts 
successful 

Parts 
scrapped 

% 
scrapped 

Active Power 
[kW] 

Power 
scrapped 
[kW] 

Power per 
Part 

2022-01-12 
19:00:00 

1781.665599 45 45 0 0.000000 596.598943 0.000000 13.257754 

2022-01-13 
07:00:00 

1955.644445 59 58 1 1.694915 770.577789 13.060640 13.060640 

2022-01-13 
19:00:00 

2005.026689 55 55 0 0.000000 819.960033 0.000000 14.908364 

2022-01-14 
07:00:00 

2085.867077 63 63 0 0.000000 900.800421 0.000000 14.298419 

2022-01-14 
19:00:00 

1206.358962 0 0 0 0.000000 21.292305 0.000000 0.000000 

 

Data Model 
From iterative improvements during analysis, the training was used to create a linear 
regression energy model of the power consumption. Iterative changes made to the model 
included data manipulation, visualisation and interpretation. Examples of such changes 
include ensuring duplicate and non-numerical values were addressed, contextual outliers 
were understood and appropriate visualisation methods for process users. The training set of 
191 datapoints yielded a high instance of correlation (0.95) between the power consumption 
and total units produced, which formed the input for the linear regression model. This model 
was then tested on a set of 41 datapoints. The accuracy percentage was calculated for each 
of the datapoints with a mean average of -0.68%. 

 



 
Figure 2 Power consumption v Total units produced 

Results 
Data Analysis 
The findings from each iteration showed improvements from the data analysis. The analysis 
provided quantification on the energy consumed due to parts scrapped per production shift 
(Figure XX), and the amount of active energy consumed per part. As expected, the majority 
of the energy consumption came from active production however the quantification of 
energy consumed when the CNC was idle and parts were scrap may be useful for machine 
users. These insights give process users further insight into how much energy is consumed 
per part through the machine and could foster future improvements. 

 
Figure 3 Power consumption based on status (Energy consumption in kW, distribution in %) 

 

Data Modelling 
Figure XX shows the comparison between the actual and predicted energy consumption 
values of test data.  Numerous validation methods were used to validate the energy 
consumption model’s performance, namely normalised RMSE, MAPE and MBE. These 
validation methods yielded results of 0.198, 6.4% and 2.66% respectively. For the normalised 
RMSE, a value of less than 0.5 indicates a high level of predictability whereas for MAPE and 



MBE, a percentage score of close to zero indicates a high level of predictability. Overall, these 
values showed a high predictive capability for the model for future use on the CNC. 

 

Figure 4 Actual Power Consumption v Predicted Power Consumption 

 

Key Performance Indexes 
From the data analysis, various performance observation could be obtained:  

Energy Scrapped: Although the scrap yield is commonly accessible based on the production 
data alone, by quantifying the amount of energy lost due to scrap, this could highlight the 
further monetary on top of loss from scrapped materials. In the case of this study, out of 
71MW consumed during the testing period, 1.5MW was scrapped. Power Consumed Per Part: 
Indicator of machine performance, during the study the mean and median value of this 
parameter was approximately 12.33 and 13.65 kW/part respectively. Should the machine 
operate outside a confidence interval, this may indicate the machine requires attention. 
Normalised Predicted Energy Score: This KPI was calculated as another indicator on machine 
and model performance. Calculated by obtaining the product of the predicted consumption 
and the inverse of the actual consumption, a value of 1 shows ideal performance and 
performance outside certain criteria could require further attention. From the testing period, 
the mean of values returned was 1.002. Should these KPIs return greater than expected, this 
could indicate machine errors, however, should a the power consumed per part KPI remain 
satisfactory, this could indicate issues with model performance.  

Discussion 
The adapted calibrated model method used to develop the empirical energy consumption 
model, provided an effective means when data availability was scarce. With a training dataset 
of 191 points, the data was prepared and underwent initial analysis. Determining the CNC’s 
baseline energy consumption, the amount of active energy consumed on top of the baseline 
and the average consumption per part. The analysis also quantified the energy lost due to 
parts scrapped, an effective means for waste reduction. This dataset identified a correlation 
of 0.95 between energy consumption and total parts produced, which were then inputted 
into a linear regression model. The model was tested on a 41 point dataset. Fig XXX conveys 
the comparison between the actual values and predicted values in the model. To validate 
model, RMSE, MAPE and MBE validations methods were used and returned values of 0.198, 



6.4% and 2.66% respectively. Each value indicted a high confidence of predictability from their 
respective metric. From the iterative analysis of the results, better correlations were 
established which ultimately made the model more predictable. It was found that in preparing 
the data model, it could be reusable across any similar CNC. 

Future Work 
Following the use of temporary energy trackers, next steps would include the installation of 
EpiSensors wireless energy meters. The collection of energy data can facilitate real time 
modelling of the CNC. The model will also be trialled on other CNC machines to assess the 
model’s applicability on other machines, including other CNCs and other machining assets, 
such the saw and cleanline. 

Likewise, from the analysis, the quantification of the relationship between energy 
consumption and process improvements could foster energy savings. Examples that can be 
explored include the means to reduce scrap and alternative approaches when the machine is 
not in use other than remaining idle. 
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