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A virtual substrate for high quality InAs epitaxial layer has been attained via metalorganic

vapor-phase epitaxy growth of Sb-assisted InxGa1�xAs metamorphic buffers, following a convex

compositional continuous gradient of the In content from x¼ 53% to 100%. The use of

trimethylantimony (or its decomposition products) as a surfactant has been found to crucially

enable the control over the defect formation during the relaxation process. Moreover, an

investigation of the wafer offcut-dependence of the defect formation and surface morphology has

enabled the achievement of a reliably uniform growth on crystals with offcut towards the [111]B

direction. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3703587]

Low band-gap materials are of high interest, due to their

applications, i.e., in low-noise, low-power, high-frequency

electron mobility transistors, and infrared devices. The lim-

ited availability of suitable materials with large lattice

parameters, which would serve as substrates, is a major

draw-back. Epitaxy-ready wafers made out of InAs are ex-

pensive as such, and their limited dimensions are also elevat-

ing the costs of device production, as large-scale fabrication

is impeded. A way of obtaining suitable materials for InAs

lattice-matched overgrowth is to create a metamorphic buffer

layer (MBL), in which the in-plane lattice parameter is being

adjusted from more readily available material (like GaAs or

InP). The objective is to obtain the highest surface quality

(low density of defects in the final layer) with lowest possi-

ble cost, through reduction of the overall growth thickness.

Adjustment of the lattice parameter has been recently

reported to give better morphological results, when the com-

position of the alloy follows exchange of group V, not III,

elements,1 allowing also, by doing so, the control of the

growth rate independent of the chemical composition (in a

regime rate–limited by group III precursor dynamics). On

the other hand, InxGa1�xAs has historically been the material

of choice, also because the control of (high) V/III ratio is of-

ten required for good growth quality. The competition

between group V elements on the surface during the epitaxial

growth in the first scheme discussed obviously makes this

variable harder to control.

In relation to our contribution, due to a large lattice mis-

match between InP and InAs (about 3%), the InxGa1�xAs

MBL bridging this gap suffers from high compressive strain.

Relaxing the strain by defect formation allows for larger in-

plane lattice parameters to be attained but brings the well

known risk of morphological disruptions due to formation of

threading dislocations, which in turn give rise to high surface

roughness. Control over the relaxation mode can be obtained

in several ways, i.e., selecting specific gradient of compound

change,2 allowing for self-curing of the system by thick

overgrowth, reducing the growth temperature,3 and, in prin-

ciple, any tool capable of modifying surface energies like

surfactant use, etc.

Alloy segregation in InxGa1�xAs is another possible

source of surface roughening leading to formation of thread-

ing defects.4 For that reason, compositionally graded MBLs

are often found to be limited to low indium containing

alloys. However, again, the use of surface acting agents may

allow this obstacle to be overcome, as e.g., the surfactant

effect of antimony was reported to be useful in controlling

epitaxial growth mode, preventing 3-D growth in compres-

sively strained InGaAs layers, mostly with applications to

quantum wells (QWs).5

In this letter, we present important results on metalor-

ganic vapor-phase epitaxy (MOVPE)-grown InGaAs meta-

morphic buffers with composition varying from lattice

matched to indium phosphide (InP) up to indium arsenide

(InAs). Extremely good surface quality and low residual

strain were obtained after only 1.65 lm thick MBL growth.

Strain release was controlled by a specific design of the gal-

lium to indium exchange rate, and the use of antimony as a

surfactant proved to be an essential element. Our findings

represent a promising result towards the development of de-

vice grade metamorphic buffer layers, opening the way to a

better and more effective exploitation of the 6.1 Å material

family.

All epitaxial samples discussed here were grown in a

high purity MOVPE (Ref. 6) commercial horizontal reactor

(AIX 200) at low pressure (80 mbar) with purified N2 as car-

rier gas. The precursors were trimethylindium (TMIn), trime-

thylgallium (TMGa), trimethylantimony (TMSb), arsine

(AsH3), and phosphine (PH3). The design of the most success-

ful sample was as follows: 100 nm thick buffer layers of InP

were grown on (001) InP perfectly oriented or slightly misor-

iented substrates (always with high tolerance, þ/�0.02�)
semi-insulating (iron doped) (the role of the substrate misor-

ientation will become evident in the discussion in the last part

of our manuscript); the buffer was followed by lattice-

matched InGaAs 50 nm layer and 1650 nm TMSb assisted

growth with indium concentration changing from 53% to

100%.

Growth conditions varied between the grown layers.

The final optimised growth conditions were as follows (on
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0.4� misoriented substrates towards [111]B): InP buffers

were grown with V/III ratio of 450 and growth rate of

1.4 lm/h at 700 �C thermocouple (TC), according to our

best established conditions for MOVPE grown InP.7

InGaAs layers were grown with V/III of 130, at growth rate

of 1 lm/h, with the temperature of 700 �C during the growth

of lattice-matched buffer and dropping to 670 �C for the first

400 nm of graded growth, and then gradually reducing dur-

ing the growth to 580 �C TC at the end of the grading. InAs

cap layers, if present, were with 130 V/III ratio, 1 lm/h

growth rate, and at 580 �C TC. The TMSb flow was switched

on at the beginning of the graded layer at a value of

2� 10�5 mol/min (ratio As/TMSb� 270) increasing during

growth towards the end of the grading to the value of

4� 10�5 mol/min (ratio As/TMSb� 135). The TMSb flow

was not included into V/III estimations. Scanning transmis-

sion electron microscopy with energy-dispersive x-ray spec-

troscopic measurements (not shown) were performed after

growth runs, showing no trace of Sb in the grown alloy, con-

firming the purely surfactant effect of the (TM)Sb. In struc-

tures capped with InAs layer, antimony support was also

used, with identical TMSb flow as at the end of the grading.

All layers were nominally undoped.

Other growth efforts are also reported, with growth pa-

rameters described in detail when particular sample is dis-

cussed; in particular, some reference samples were grown,

without using TMSb as a surfactant during the graded layer

growth.

All epitaxial growths resulted in smooth surfaces (see

commentary on samples non-uniformities in the dedicated

paragraph later in text) with cross-hatch pattern clearly visi-

ble when inspected with an optical microscope in (Nomar-

ski) differential interference contrast (N-DIC) or in dark field

mode. Subsequent detailed morphological study was per-

formed with atomic force microscopy (AFM) in tapping/non

contact mode at room temperature and in air. The defects

formation and propagation were observed with cross sec-

tional transmission electron microscopy (TEM).

The assessment of composition and the strain in the

layers were made according to measurements of reciprocal

space maps (RSMs) obtained by high resolution x-ray dif-

fraction (HRXRD) measurements. Measurements were done

in a symmetric (004) and two asymmetric (224 and -2-24)

reflections with sample positioned at 0�, 90�, 180�, and 270�

with respect to its main crystallographic axes.

In Figure 1(a), the sketch of our optimized sample

design is presented. The choice of the exchange curve

between Ga and In ions was made following past reported

findings for the use of a parabolic grading as a convenient

way for defect control.8 We did observe by TEM imaging

(not shown) a similar defect distribution as reported in Ref.

8. On the steep part of the curve, the defects formed rapidly,

while when reaching the plateau, the (mostly) non defected

crystal structure was restored. However, if we kept the pure

simple parabolic design as in Ref. 8 up to the InAs lattice pa-

rameter, the elastic strain, building up in the pseudomorphic

part of the grading, caused a new generation of defects,

threading to the sample surface and corrupting the final mor-

phology. Furthermore, we also observed a very high residual

strain which prevented reaching the in-plane InAs lattice pa-

rameter. Thus, to prolong the controlled defect formation

range and improve the energy release, we modified the

design and introduced the intermediate 1 lm thick part of

FIG. 1. (a) General sample structure. (b) The plot showing gradient of In-

Ga exchange in the MBL (red trace); InP buffer marked with blue trace for

indication only. Dashed curve shows a full parabolic shape, part of which

was selected as initial MBL curve design. (c) TEM image in cross-section

geometry of one of the realizations, showing defects distribution in MBL

without their propagation into the cap.
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linear grading, with slope as a tangent to prior parabolic

curve, as sketched in Figure 1(b). This allowed for formation

of intermediate density defects region, while the final

250 nm of the grading was grown on a linear but slightly

gentler grade to reduce the dislocation density towards the

final interface (Figure 1(b)). When the MBL was overgrown

with a cap layer of InAs, none of the previously present dis-

locations propagated into it, leaving the surface virtually

defect-free, with normal step-bunched morphology (Figure

1(c)). It should be observed that we infer our surface defect

density from TEM cross sectional analysis, and that this lim-

its our detection to approximately <105 defects/cm2. Also,

to grow this first sample discussed, we used a constant tem-

perature of 700 �C throughout the buffers and grading and

600 �C for the cap growth, at variance to our optimised

structure.

To qualitatively describe surface roughness, we use the

root mean square (RMS) of the flattened AFM height scan in

an area of 10� 10 lm2. The resulting surface morphology of

the InAs overgrown layers presented an RMS of 13 nm and a

substantially step bunched surface (similarly to that observed

in MOVPE low growth rate grown InP,7 also see Figure 2).

Nevertheless, the typical holes associated with threading dis-

location (which would push the RMS to several tens of nm)

appearing on the surface were missing, an indication that the

surface organization is only linked to growth parameters and

strain distribution and not to a substantial presence of surface

defects.

Indeed, further optimization of the growth parameters

allowed for growth of smoother surfaces with small residual

strain: It was found that gradual reduction of the growth tem-

perature led to less significant step-bunching and more

defined step organization at the surface (Figure 2). Our opti-

mized RMS is as low as 4 nm, which is mostly due to the or-

dered succession of step bunches and not to defect related

growth morphology. Basing on HRXRD RSMs, the parallel

strain calculated9 for cap layer overgrowing MBL was esti-

mated to be ep��1.5% (60.5% for different sample rec-

ipes, without substantial correlation to growth parameters),

which corresponds to in-plane lattice parameter of 6.049 Å.

We should also say that during growth, the MBL does

not only relax the strain by defect formation, but, as observed

in many other systems, also by tilting. The final crystallo-

graphic tilt observed by AFM on the samples was �2� (vs.

the [111]A direction as measured by HRXRD—see also later

discussion and Figure 5).

To highlight the influence of Sb, we compared one of

our optimized structures to an Sb free growth. Both of the

samples discussed here were grown with 700 �C initial and

580 �C final growth temperature. The influence of Sb on the

material quality was striking when the final morphology of

the sample surfaces was compared (see Figures 3(c) and

3(d)), with a dramatic difference between the flow of step

bunches and a high density of defect related dimples. More-

over, the in-situ monitoring of the sample performed during

FIG. 2. Morphology of sample surface grown in optimized growth condi-

tions on perfectly oriented substrate; (a) N-DIC image, AFM images: (b) sig-

nal amplitude and (c) 3D surface reconstruction.

FIG. 3. (a) and (b) Reflectivity traces in

respect to growth time for sample grown

with (a) and without (b) Sb support.

Morphologies of respective surfaces

(AFM signal amplitudes) are shown on

(c) and (d). Sample grown with Sb

(image c) had RMS of 7 nm, without Sb

(d) RMS¼ 33 nm with holes depth

exceeding 200 nm, depth beyond stand-

ard AFM scanning abilities.
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growth by reflectance at two different energies (see Figures

3(a) and 3(b)) anticipated the differences between the two

samples. While the 2.65 eV monitoring was sensitive to both

surface quality and bandgap variation in the changing alloy,

the 1.3 eV signal accounted mostly for the “mirror” quality

of the wafer. Both traces show a significant drop of the

recorded signal only in the Sb-free sample after about 1 lm

of MBL growth, suggesting intensive defects formation from

that point on. The signal recovered after another couple of

hundred nanometers of growth, probably as a result of the

relaxation processes in the structure; however, the layer qual-

ity could not be restored even after the additional InAs cap

overgrowth, an indication of a strong presence of surface

threading defects. Note that the growth of the Sb-assisted

sample was stopped immediately after MBL, without cap

overgrowth, which would have planarised the surface even

more—thus, the difference in the behavior is even more

striking.

We want to stress a last point, which induced us to

investigate lower growth temperatures and different substrate

miscuts. Despite the fact that the majority of the grown sam-

ples surfaces had good morphology, we have noted that in

our initial growth conditions, parts of the wafers were

defected (the visual effect was evident directly with an opti-

cal microscope, see also Figure 4). In each case, the defected

area of the sample had a shape of a roughly elongated “8”

(with the vertical direction towards the [111]B planes), out-

side of which was the non-defected growth (pictorial sketch

in Figure 4(a)). In the defected area, the sample presented a

high density of groove-like cracks along the [�110] direc-

tion, as shown in Figure 4(e).

On close inspection, the step orientation of the surface

layer was flowing radially from a single spot (Figure 4(b)),

which after several tens of micrometers formed four distinct

regions, with the steps rotated by 90� in respect to each

other. When examined by means of HRXRD, the crystallo-

graphic tilt was observed to be reversed in the defect-free

parts which showed opposite step flow directions (the step

flow mapped the tilt and vice-versa, and the two different

tilts towards the opposite [111]A planes met at the centre

spot, Figure 4(d)). Moreover, in the defected parts of the

sample, the biggest tilt was off by 90� if compared to the

good regions (i.e., towards the [111]B planes). What is

worth noting, regardless of the size and type of used wafer

piece, the “8” shape was constantly present and only

appearing once on the sample, and thus its occurrence was

clearly not correlated with any pre-growth wafer damage or

impurity.

While we do not have a clear explanation on the origin

of this peculiar singularity on our wafers, one possible cause

of the observed problem could be strain induced wafer bend-

ing during the growth. This may well introduce locally dif-

ferent conditions and change the defects formation in the

structure. Also, temperature inhomogeneities across the wa-

fer could be a possible result of different types of curvatures,

apart from introducing strain related variation in the relaxa-

tion processes. Moreover, concave or convex deformation of

the sample can lead to an increase or to a decrease of the

local surface temperature of the wafer, leading to signifi-

cantly different final result.10

To eliminate the singular defect formation, we varied

our initial substrate miscut. Indeed, as the most of our

growths were performed on quasi-singular wafers, it is possi-

ble that the real off-cut of the substrate varied across the sur-

face, exposing A and B steps in different areas. To test this

hypothesis, we performed a reference growth with higher

off-cut wafers with intentional 0.4� miscuts toward [111]A

and [111]B. We found that on purely [111]A misoriented

substrates, the growth was uniformly defected, reproducing

the phenomenology of the “bad regions” obtained previously

on perfectly oriented wafers (Figure 5(a)). Most of the

[111]B misoriented growths presented low roughness (Figure

5(b)) (and the usual tilt towards the [111]A planes), although

small defected patches could still be found on them (as in

FIG. 4. (a) Sketch showing cleaved wafer piece used as a growth substrate,

with defected part marked M and m stand, respectively, for the major and

minor flats of the 2}wafer in european/japanese flat option. The wafer was

(100) with offcut 0.4� toward [111]B; (b) AFM image (signal amplitude) of

defected parts of the wafer, (c) dark field image of the defect center, and (d)

AFM image (signal amplitude) of the defect center.
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Figure 4). Only when the growth T was dropped as described

in our experimental section, uniform, good quality surface of

the whole [111]B misoriented wafer was obtained, eliminat-

ing the non-uniformity problem (when grown on quarter

wafers, as we normally do). The crystallographic tilt meas-

ured by HRXRD on [111]B samples resembled closely that

measured on good quality regions in perfectly oriented

wafers (Figures 5(d) and 5(f)), while the [111]A samples

have shown almost no tilt, presumably due to the formation

of defects which were efficiently releasing the accumulated

strain energy (Figures 5(c) and 5(e)).

In conclusion, we discovered that an appropriate combi-

nation of surfactant effects and original substrate miscuts are

key ingredients to obtain high quality MBL. While more

work will be needed to clarify the origin of the phenomenol-

ogy described, the observed variations in the final results

with relatively small substrate misorientation and tempera-

ture changes may justify the non-uniformity in literature

reports on similar growth attempts as well as explain the gen-

erally poor state of the art reproducibility.
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