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We propose a method to spatially confine or corral the movements of a 

micropendulum via the optical forces produced by two simultaneously 

excited optical modes of a photonic molecule comprising two microspherical 

cavities.  We discuss how the cavity enhanced optical force generated in the 

photonic molecule can create an optomechanical potential of about 10 eV 

deep and 30 pm wide, which can be used to trap the pendulum at any given 

equilibrium position by a simple choice of laser frequencies.   This result 

presents opportunities for very precise all-optical self-alignment of 

microsystems.   

 

PACS numbers: 42.50.Wk, 42.60.Da, 42.81.Wg 

 

The study of optical forces on micromechanical systems and coupled microcavities 

is of ever increasing importance as the size of photonic devices gets smaller and, 

therefore, optical forces acting on such devices become ever more significant [1-8].  The 
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optical forces result from the dipole interaction created by electromagnetic fields in 

closely-spaced dielectric structures; light travelling in the structure leads to a polarization 

of the electric field of atoms in the material, thereby creating a dipole between the atoms 

and the light.  When two such structures are brought close together the electric dipoles 

interact, creating a force the magnitude of which is proportional to the intensity of the 

propagating light.   Momentum conservation arguments have been used to show that the 

average electromagnetic force acting on a body is equal to the surface integral of the time 

averaged Maxwell tensors [8].  

Such optical forces can be viewed as efficient tools for controlling the  motion of 

micro and nanobodies in space, including trapping and corralling small dielectric bodies 

such as planar slabs or waveguides [1], microdisk or microspherical resonators [2], and 

dielectric cavities of more complicated structure [3-5].  For example, in a recent study [8] 

on the optical forces on two planar waveguides excited by symmetric and anti-symmetric 

electromagnetic modes, the maximum achievable deflection for each of the waveguide’s 

modes was discussed.  Another proposal [6] was based on the spectral bonding and self-

stabilization of two slabs of dielectric material, guiding a superposition of two transverse 

evanescent fields, thereby creating an “optical spring”.   

One important configuration for creating sufficiently large optical forces could 

consist of two closely positioned evanescently-coupled microresonators.  In such an 

optomechanical system, the optical forces arise due to the excitation of symmetric and 

anti-symmetric electromagnetic modes with frequencies depending on the distance 

between the cavities [1-8].  In [1] the optical force between two microspheres was 

evaluated as a function of the frequency splitting, which is, in turn, a function of the 
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separation of the two spheres.  It was shown that a force of 100 nN could be achieved for 

two 32.4 μm spheres, separated by 500 nm, with Q factors of 108, and pumped at 1mW.  

The authors considered the spring constant of the fiber stem onto which the sphere was 

attached and showed that, for a spring constant of 0.004 N/m, the displacement of the 

spheres due to optical forces could be as large as 1.5 μm.   They also showed that 

identical size matching of the spheres during fabrication was not essential by considering 

the effects of differing values of l (polar mode number) and m (azimuthal mode number) 

for the two spheres.  Van der Waals forces and electrostatic forces were also considered 

and these were found to be negligible and distinguishable, respectively, from the optical 

force.   

Frequency splitting of high Q modes in systems consisting of two microresonators 

has already been extensively discussed [9-11] and experimentally observed for different 

shaped dielectric bodies [12-15].  Such a splitting arises from the degeneracy breaking of 

the co-resonant modes in the coupled microresonators. This results in symmetric and 

anti-symmetric modes being established in the microresonators in what can be viewed as 

the optical analogue to the bonding and anti-bonding modes in conventional molecules. 

When the symmetric mode of the coupled microresonators is excited an attractive force is 

generated that tends to pull the microresonators together.  In contrast, the excitation of the 

anti-symmetric resonance leads to the generation of a repulsive force that pushes the 

microresonators apart. In general, each individual microresonator possesses a large set of 

optical resonances and each of these resonances is split in a coupled optomechanical 

system (for a perfect sphere).      



 4

In recent work [7], it was shown that the trapping optical potentials in a two-body 

optomechanical system can be created by exploiting the forces produced by the 

symmetric and anti-symmetric modes of two neighboring optical resonances. The system 

is assumed to be pumped by laser light slightly blue detuned from the crossover 

frequency of a symmetric and anti-symmetric mode. Such an approach allows for the 

creation of an attractive and repulsive force, the sum of which may form a potential well 

a few tens of eV deep [7].   This work focused on small micro-rings with radii of 2.5 μm, 

with a large free spectral range (4.5 THz) and a tuning range of 45 THz, so that crossings 

between the symmetric resonance of one whispering gallery mode (WGM) and the anti-

symmetric resonance of a neighboring WGM can be achieved.  If so, one laser line may 

be used to simultaneously excite the symmetric and anti-symmetric resonance at one of 

these crossings. 

Here, we propose an alternative approach to spatially confine the motion of coupled 

microresonators. In our approach, the optical force is assumed to be produced by the 

symmetric and anti-symmetric modes of the same optical resonance. This is achieved by 

simultaneous excitation of the system by two-frequency laser light so that one 

monochromatic component of the light excites the symmetric mode and the second 

component excites the anti-symmetric mode. Specifically, we consider an optical system 

consisting of two microspheres [16, 17], one of which is evanescently coupled to an 

optical fiber carrying the exciting laser field and the other is free to move in space and 

can be viewed as a micropendulum.  We show that, in our scheme, the movable 

microsphere can be localized in a region as small as 10 pm.  An important feature of our 

approach is the opportunity it offers to trap the pendulum at any given spatial position, 
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since - by a judicious choice of the frequencies of the laser light - one can predefine the 

equilibrium position of the pendulum. We also stress that, here, the symmetric and anti-

symmetric modes can be simultaneously excited by two fixed laser lines so that the 

pendulum may be spatially trapped at any frequency position where the splitting occurs, 

without size restrictions.  One important application may be in the precision control of 

the gap between resonators of a photonic molecule, thus allowing for extremely fine 

tuning of the optical modes.  

A schematic of the proposed approach is shown in Fig. 1.   A photonic molecule, 

consisting of two microspheres, is optically pumped by two-frequency laser light using a 

tapered optical fiber.  The first microsphere (Sphere 1) is fixed and unable to move, while 

the second, movable microsphere (Sphere 2) is suspended by a thin fiber stem and acts as 

a pendulum in the photonic molecule system. The length of the stem can be chosen in 

order to ensure that the pendulum has the desired spring constant. The microspheres are 

positioned so that they are separated by less than 500 nm to ensure that whispering 

gallery modes excited in the first microsphere are coupled into the second microsphere.  

A qualitative description of the mechanical properties of the proposed system is 

shown in Fig. 2. Figure 2(a) depicts the symmetric and anti-symmetric modes of the 

photonic molecule originating from a degenerate mode with frequency, 0ν .  We assume 

that two-frequency laser light excites the symmetric and anti-symmetric modes of the 

photonic molecule. Laser light with frequency 01 νν >  effectively excites the anti-

symmetric mode at a sphere separation, 1x . Light with frequency 02 νν <  excites the 

symmetric mode at a sphere separation, 2x .  Generally, these two modes create a force on 

Sphere 2 at any position, with zero force at the equilibrium position, 0x , located between 
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points 1x  and 2x , as shown in Fig. 2 (b).  Specifically, when the movable microsphere, 

Sphere 2, is located at a relatively small distance around 1x  in the region 0xx < , it is 

mostly excited by the anti-symmetric mode with frequency close to 1ν  and, accordingly, 

it is acted on by a positive force which attracts the microsphere to the equilibrium 

position from the left.  In a similar way, if Sphere 2 is positioned in the region 0xx >  

around 2x  it is mostly excited by the symmetric mode with frequency close to 2ν  and is 

acted on by a negative force which attracts the microsphere to the equilibrium position 

from the right. Applying two-frequency laser light, therefore, generates an optical force 

that is responsible for the creation of a potential well with a minimum at 0x  as shown in 

Fig. 2(c).   The position of the equilibrium point may be controlled by varying the laser 

frequencies, 1ν  and 2ν . Any disturbance of Sphere 2 from its equilibrium position could 

be detected as a shift in the resonance positions of the symmetric and anti-symmetric 

modes, and could be monitored using a very weak probe laser. 

Assuming that the movable Sphere 2 is brought into the evanescent field of the 

fixed Sphere 1, we first evaluate the splitting of the optical resonance defined by a polar 

mode number l , azimuthal mode lm =  and radial mode 1=n . For a given resonance, 

the frequencies of the anti-symmetric, aν , and symmetric, sν , modes as a function of the 

separation between the microspheres can be found from [18,19]  

                                                      ( )
0, 2

1 ναβν ⎟
⎠
⎞

⎜
⎝
⎛ += ∓

sa ,                   (1) 

where 0ν  is the unshifted modal frequency, dxel /2/3 −−= αςα  is the frequency shift due to 

overlapping of the evanescent fields of the microspheres, and dxel /22/3 −−= βςβ  is the 
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frequency shift caused by the change in the optical path length of one microsphere due to 

the presence of the other. In the above equations, 12/ 2 −= snd πλ  is the evanescent 

field decay length defined by the refractive index, sn , of the microspheres at wavelength 

νλ c= .  ας  and βς  are functions of microsphere dimensions and refractive indices. 

Specifically, we choose microspheres of radius, m5.12 μ=R , made of fused silica with a 

refractive index, 46.1=Sn , and a quality factor, 810=Q . Each sphere is assumed to 

support an electromagnetic mode with numbers 65=l , lm = , 1=n , and a corresponding 

wavelength nm1568=λ  or size parameter 50.0668, calculated according to the 

asymptotic expansion from [20].  For such microspheres, the free spectral range 

THz6.22/ ==Δ snRc πν , nm6.234=d ,  4.1=ας , and 1.0=βς  [19].  

In the proposed system each microsphere experiences an optical force defined by 

the optical energy stored in the microsphere. The optical force on Sphere 2 can be 

evaluated from   

                   sa FFF += ,    (2) 

where the partial forces due to the anti-symmetric and symmetric modes are defined by 

[1,5] 
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aU  and sU are the energies of the electromagnetic field stored in the anti-symmetric and 

symmetric modes pumped by external fields with frequencies 11 2πνω =  and 22 2πνω = , 

such that 
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In Eq. (4) γ  is the linewidth of the cavity resonance,  0U  is the maximum energy stored 

in a single microsphere at resonance, such that 00 /ωPQU = .  γω /0=Q  is the quality 

factor of a single microsphere, P  is the optical power, and 00 2πνω = . Here, the 

symmetric and anti-symmetric modes are treated as individual Lorentzian shaped 

resonances and the energy in the photonic molecule varies with the detuning from each 

mode [15, 19, 21, 22].  

The frequencies of the split modes for the microspheres are plotted in Fig. 3(a), for 

an intersphere gap of nm.07.0250 ±  The numerical results presented in Figs. 3(b) and 

3(c) were obtained by choosing the equilibrium position of Sphere 2 to be nm2500 =x . 

At equilibrium position, frequencies for the anti-symmetric and symmetric modes, 

)( 00 xaa νν =  and )( 000 xss νν = , are determined from Eq. (1).  To obtain a zero value for 

the optical force at 0x , 1ν  and 2ν  are detuned from a0ν  and s0ν  by equal amounts. 

Detunings of γγγδ 5and3,7.0=  are used for the results presented.  Figure 3(b) shows 

the optical force on the movable microsphere, calculated for three different sets of 

applied laser frequencies, 1ν  and 2ν , and an optical power, mW1=P .  Figure 3(c) plots 

the optical potential for the movable microsphere generated by the optical force 

determined from Eq. (2). The asymmetry in the potential well is due to the asymmetry 

between the attractive and repulsive forces. One can see that, as the detuning increases 

from γ7.0  to γ5 , the depth of the potential well increases from 5 to 13 eV and the trap 

width increases from 10 to 58 pm.   
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Next, we evaluate the mechanical properties of a pendulum composed of the 

movable microsphere attached to a cantilever. In the geometry we consider, the 

oscillation frequency of the pendulum along the x-direction is defined by the spring 

constant, optκ , of the optical force and the spring constant, cκ , of the cantilever.  

Assuming that optc κκ <  and the mass of the microsphere, M, exceeds that of the 

cantilever, m, we can evaluate the oscillation frequency as Moptopt κ=Ω . As an 

example, we evaluate the spring constant of the optical force for a silica microsphere with 

radius, m,5.12 μ=R  and mass, kg108.1 11−×=M  (at a density of 3kg/m2200=ρ ) and 

assuming a detuning, γδ 3=  (c.f. Fig. 3(b)). For this case, the width of the trapping 

region is pm30≈Δd .  The spring constant is evaluated from Eqs. (1)-(4) and is given by 

( ) N/m4500/
0

=−= =xxopt dxdFκ  and the oscillation frequency is given by 

MHz 5.22 =Ω πopt .   

It is worth noting that the quantities optκ  and optΩ , produced by the optical force, 

considerably exceed the corresponding values defined by the material properties of the 

cantilever, cκ  and cΩ . For a cylindrical cantilever of radius, a, and length, L, the spring 

constant, cκ , that defines the deflection mode of the pendulum can be evaluated from  

( )( )3443 LEac πκ = , where E is Young's modulus. For a system fabricated in our 

laboratory, composed of a silica cantilever of radius, m1 μ=a , and length, m01.0=L , 

attached to a silica microsphere of radius, m5.12 μ=R  and mass, kg108.1 11−×=M , we 

obtain N/m 107.1 7−×=cκ  and Hz. 1522 ≈=Ω πκπ Mcc   The extremely small value 

of cκ  ensures that, in the absence of the optical force, the microsphere at the end of the 
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pendulum is essentially free to move in the horizontal plane.  For silica, we have taken 

Young’s modulus, GPa6.72=E , and the density, 3kg/m2200=ρ . 

Taking into account the spring constant of the pendulum along the x-direction due 

to the optical force one can evaluate that, at a temperature, T , the uncertainty in the 

pendulum position is  optTkx κB2=Δ .  For a detuning, γδ 3= , when N/m4500=optκ , 

the position uncertainty at room temperature, K 300=T , is estimated to be as low as 1.4 

pm.  The position uncertainty can be further reduced by using a larger spring constant and 

lower temperature.  However, a larger spring constant would also reduce the maximum 

displacement of the pendulum that can be achieved by the optical force and the sensitivity 

of the pendulum to external forces.  

In addition to the dramatic influence on the deflection mode along the x-direction, 

the optical force also influences the deflection mode of the pendulum along the 

orthogonal y-direction (i.e. in and out of the plane in Fig. 1). The qualitative behavior of 

the pendulum after a displacement along the y-axis can be explored if one considers the 

optical potential shown in Fig. 4, while taking into account the practical inextensibility of 

the cantilever. Note that, if there were no cantilever present, the movable Sphere 2 would 

be able to orbit around the fixed Sphere 1 along the circular trajectory shown by the 

dashed line in Fig. 4.  The presence of the cantilever fixed at a suspension point and 

being of constant length (for all practical purposes) breaks the angular symmetry of any 

possible displacement of Sphere 2.  As can be seen from Fig. 5, any displacement, yδ , of 

Sphere 2 along the y-direction in a curved optical potential produces a restoring force, F, 

in the x-y plane with values of the force components xFF optx δκ≈≈  and ( )RyFFy 2δ= .  

The displacement in the y-direction is, therefore, always connected to the displacement in 
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the x-direction due to the curvature of the optical potential and the inextensibility of the 

cantilever. As a result, the movement of Sphere 2 in the x-y plane represents, generally, a 

nonlinear motion. This imposes a difficulty in evaluating the extension of the pendulum 

oscillations along the y-direction. Nevertheless, a rough estimate can be made as follows. 

At thermal equilibrium the typical value of the force component along the x-direction is 

estimated from xFF optx Δ≈≈ κ , where xΔ  is a mean thermal displacement. 

Accordingly, the restoring force along the y-axis can be characterized by a spring 

constant given by ( ) N/m105.22 4−×=Δ≈ Rxopty κκ . This optical spring constant 

exceeds the material spring constant for the deflection modes, cκ , by three orders of 

magnitude. Accordingly, the uncertainty in the pendulum position along the y-axis due to 

optical force can be roughly evaluated as nm8.52 B ==Δ yTky κ . 

Another important factor that may influence the motion of the pendulum along the 

y-direction is gravity.  A displacement of the pendulum along the y-axis by a value of yΔ  

leads to an angular displacement of the pendulum, Ry /Δ≈θ , and a vertical 

displacement, 2θRh ≈Δ . Accordingly, at thermal equilibrium, from the expression 

TkhgmM B≈Δ+ )2( , where m is the mass of the cantilever and M the mass of the 

microsphere, the maximum vertical displacement is determined to be ~8 pm and the 

maximum displacement along the y-direction is ~10 nm.    Note that any contribution to 

the maximum displacement arising from the mechanical restoring force of the cantilever 

is negligible compared to that due to gravity and has, therefore, not been included.  This 

estimate for Δy is close to that already determined for the optical potential and highlights 

the fact that the pendulum motion is limited to less than 10 nm in this direction.  A 
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similar maximum displacement estimate can be made for the x-direction; however, the 

optical trap provides much tighter confinement for the pendulum in this direction once 

the laser is switched on. 

Until now, we have discussed parameters of the optomechanical pendulum for the 

deflection modes that cause oscillations of the pendulum in the horizontal plane.  In 

general, one should consider the influence of the optical forces on compression and 

torsion modes of the pendulum.  In what follows, we show that the contribution to both of 

these modes from optical forces is negligibly small.  

For the case of a compression mode, the mechanical oscillations of the considered 

pendulum in the vertical direction, i.e. the z-direction, are defined by the spring constant, 

LEaz /2πκ = , where, as before, a is the radius and L is the length of a silica cantilever, 

and E is Young’s modulus for silica.  The associated vertical oscillation frequency of the 

microsphere pendulum along the z-direction is defined by its material properties and is 

given by  Mzz κ=Ω .  Using the aforementioned values for a, L and M we obtain 

N/m 23=zκ  and kHz 1802 =Ω πz .  The spring constant due to the vertical component of 

the optical force can be evaluated in the following way.  If, due to any reason, the 

movable microsphere is shifted in the vertical direction by an amount zδ  this produces a 

vertical component of the optical force, Fv, such that ( ) zRzFF voptv δκδ =≈ 2 , where 

( ) N/m105.222/ 4−×==Δ≈= yoptoptv RxRF κκκ .  The friction coefficient, vκ , due to the 

optical force in the vertical direction is very small compared to N/m 23=zκ , due to the 

mechanical properties of the pendulum and can, therefore, be neglected.    For the vertical 

oscillation amplitude we obtain, at room temperature, pm192 B ==Δ zTkz κ . The 
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oscillation amplitude is very small when compared to the radius of the microsphere, i.e. 

610/ −≈Δ Rz ; therefore, we deduce that the vertical displacement of the movable 

microsphere does not influence the optical oscillations of the pendulum along the x-

direction.  

For a torsion mode, the spring constant, ϕκ , due to the material properties of the 

pendulum is defined by the shear modulus of the silica cantilever, GPa31=G , the 

cantilever radius, m1 μ=a , and the length of the cantilever, m01.0=L , such that 

mN109.42/ 124 −×== LGaπκϕ .  The corresponding torsion oscillation frequency is 

defined by ϕκ  and the moment of inertia of the microsphere, 

2212
5

2 mkg101.1 −×== MRI ,  as  πκπ ϕϕ 2/2 I=Ω kHz6.10≈ .  The optical force 

cannot influence the torsional motion due to the angular symmetry of the evanescent 

field.   Fluctuations of the angular position of the pendulum due to thermal torsional 

motion can be evaluated as rad. 101.4/2 5
B

−×==Δ ϕκϕ Tk  Again, the extremely small 

value of the torsion fluctuation angle shows that the torsional motion of the pendulum 

cannot influence optical oscillations along the x-direction.   

In summary, we have proposed a method to trap and corral an optomechanical 

system consisting of two microspheres, one fixed and one free to move in space, i.e. a 

microsphere pendulum.  The proposed approach relies on a two-frequency laser field, 

thereby allowing one to restrict the motion of the cavity pendulum inside a very small 

region of space at any given equilibrium position.  We have shown that, for a γ3 detuning 

of the two-frequency laser field, the optical potential in the radial direction could be 10 

eV deep and 30 pm wide.  In the absence of the two-frequency laser field (and ignoring 
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gravity), the thermal displacement of the pendulum at a room temperature energy of ~25 

meV is about m22.0 μ=Δ=Δ yx ; however, such a large displacement is not physically 

feasible due to the presence of gravity, thereby limiting the maximum displacement to 

~10 nm in either direction.   Once the two-frequency laser field is applied, the optical 

spring constant, optκ , of the trap can be as large as 4500 N/m, thus restricting the 

displacement of the pendulum to 1.4 pm in the x-direction. The displacement of the 

pendulum in the orthogonal direction is evaluated to be nm8.5=Δy .  To move the 

pendulum out of the trap it would need to be displaced by pm15± and such a disturbance 

would be observable as a change in the splitting frequencies. Control of the equilibrium 

position of the microsphere pendulum may be possible if simultaneous excitation of both 

the symmetric and anti-symmetric modes can be achieved.   

In this work we neglected (i) the van der Waals force by assuming that it is 

negligible and (ii) the electrostatic force by assuming that it is distinguishable from the 

optical force as discussed in [1].  Thermal effects due to material absorption [23] of the 

fixed laser lines were also not considered.  For the optical power used in our model we 

expect maximum thermal red shifts of around 10 GHz for all cavity modes.  This is small 

compared to the total frequency splitting and is not anticipated to affect the stability of 

the trap.  We also note that trapping limitations may arise from using different sized 

microspheres in the experimental arrangement, since it would be almost impossible to 

fabricate identical microspheres.  While theoretically [1] is has been shown that a 

reasonable degree of size mismatch is permissible, it is worth noting that high Q mode 

splitting using spheres that were dramatically size mismatched (240 μm and 375 μm) has 

been demonstrated experimentally [15]. We, therefore, conclude that size mismatching 
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during the fabrication process should not significantly reduce the trapping effects.    If the 

technical challenges can be overcome, optical corralling of micro-optic components 

opens up ways to construct optomechanical devices with extremely well-controlled 

position of the mechanical elements.   Finally, the estimates made within this work on the 

pendulum motion in the optical potential indicate that the problem is worth further focus, 

both theoretically and experimentally.  A more vigorous theoretical solution to the 

pendulum motion in the optical potential, based on a decomposition over proper 

eigenfunctions may clarify some of the remaining physics questions and will form the 

basis for future work. 

 

 

This work was supported in part by Science Foundation Ireland under Grant Nos. 

06/W.1/I866 and 07/RFP/PHYF518. YW acknowledges support from IRCSET under the 

Embark Initiative.  

 

 

 

[1] M. L. Povinelli, S. G. Johnson, M. Lončar, M. Ibanescu, E. J. Smythe, F. Capasso, 

and J. D. Joannopoulos, Opt. Express 13, 8286 (2005). 

[2] J. Ng, C. T. Chan, and Ping Sheng, Opt. Lett. 30, 1956 (2005). 

[3] H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, Opt. Express 13, 5293 

(2005) 

[4] T. J. Kippenberg and K. J. Vahala, Opt. Express 15, 17172 (2007). 



 16

[5] M. Eichenfeld, C. Michael, R. Perahia, and O. Painter, Nature Photonics 1, 416 

(2007).  

[6] A. Mizrahi and L. Schächter, Opt. Lett. 32, 692 (2007).  

[7] P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, Nature Photonics 1, 658 

(2007) 

[8] F. Riboli, A. Recati, M. Antezza, and I. Carusotto, Eur. Phys. J. D 46, 157 (2008). 

[9] K. Hayata, H. Yenaka, and M. Koshiba,  Opt. Lett. 18, 1385 (1993). 

[10] H. Miyazaki and Y. Jimba, Phys. Rev. B 62, 7976 (2000).   

[11] E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, IEEE J. Sel. Topics in  

Quant. Electr. 12, 78 (2006). 

[12] M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. 

A. Dremin, and V. D. Kulakovskii, Phys. Rev. Lett. 81, 2582 (1998). 

[13] Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, Opt. Lett. 28, 2437 

(2003). 

[14] Y. P. Rakovich, J. F. Donegan, M. Gerlach, A. L. Bradley, T. M. Connolly, J. J. 

Boland, N. Gaponik, and A. Rogach, Phys. Rev. A 70, 051801(R) (2004).  

[15] A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, Phys. Rev A        71, 

043804 (2005). 

[16] J. M. Ward, P. Féron, and S. Nic Chormaic, IEEE Photon. Technol. Lett. 20, 392 

(2008). 



 17

[17] D. O'Shea, J. Ward, B. Shortt, and S. Nic Chormaic, IEEE Photon. Technol. Lett.  

19, 1720 (2007). 

[18] L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 29, 626 

(2004). 

[19] M. L. Gorodetsky and V. S. Ilchenko, J. Opt. Soc. Am. B 16, 147 (1999). 

[20] C. C. Lam, P. T. Leung, and K. Young, J. Opt. Soc. Am. B 9, 1585 (1992). 

[21] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 

91, 043902 (2003). 

[22] M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000). 

[23] T. Carmon, L. Yang, and K. J. Vahala, Opt. Express. 12, 4742 (2004). 

 

 

 

 

  

 

 

 

 



 18

FIGURE CAPTIONS 

 

FIG. 1 (color online). Proposed experimental setup.  Sphere 1 is stationary and optically coupled to a 

tapered optical fiber, while Sphere 2 is free to move and optically coupled to Sphere 1. The pumping laser 

field consists of two monochromatic field components with frequencies ν1 and ν2. Insert shows the 

transmission of a weak probe signal as a function of frequency for a given separation, x, between the 

microspheres. 

 

 

 

FIG. 2 (color online). (a) Qualitative dependence of the frequencies of the symmetric (lower line) and anti-

symmetric (upper line) optical mode in a two-sphere system as a function of  the sphere separation; (b) 

nature of the optical force on Sphere 2 as a function of sphere separation; (c) shape of the optical potential 

for Sphere 2 as a function of sphere  separation.  

 

 

 

FIG. 3 (color online).  Photonic molecule system with sphere radii m5.12 μ=R , MHz22 =πγ , 

46.1=sn , 810=Q , nm1568=λ and mW.1=P  (a) Frequency splitting of the anti-symmetric and 

symmetric optical modes for an unshifted modal frequency, THz191/0 == λν c , as a function of sphere 

separation.  The equilibrium position of Sphere 2 is nm2500 =x  and the applied laser frequencies, ν1 and 

ν2, are blue-detuned from the equilibrium position frequencies, sa vv 00 and  by γ5 . The arrows show the 

direction of the partial forces,  aF  and sF . (b) Position dependence of the optical force on Sphere 2 for 

three different detunings of  1ν  and 2ν from av0 and sv0 .   (c) Optical potential for Sphere 2 as a 

function of position for the same detunings as (b).  
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FIG. 4 (color online). Optical potential in the x-y plane.  The color (grey) scale indicates the depth of the 

potential. The dashed white line represents the minimum of the potential.  Point 1 shows the equilibrium 

position of Sphere 2 and point 2 is chosen for illustration of the force components in Fig. 5. 

 

 

FIG. 5 (color online).  Schematic of the forces on Sphere 2 for the displacement from point 1 (the 

equilibrium position) to point 2 chosen on the y-axis.  The dashed circular line centered on Sphere 1 

represents the minimum of the optical potential.  
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