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RESEARCH ARTICLE

Guangbo HAO, Haiyang LI, Suzen KEMALCAN, Guimin CHEN, Jingjun YU

Understanding coupled factors that affect the modelling
accuracy of typical planar compliant mechanisms

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Abstract In order to accurately model compliant
mechanism utilizing plate flexures, qualitative planar stress
(Young’s modulus) and planar strain (plate modulus)
assumptions are not feasible. This paper investigates a
quantitative equivalent modulus using nonlinear finite
element analysis (FEA) to reflect coupled factors in
affecting the modelling accuracy of two typical distrib-
uted-compliance mechanisms. It has been shown that all
parameters have influences on the equivalent modulus with
different degrees; that the presence of large load-stiffening
effect makes the equivalent modulus significantly deviate
from the planar assumptions in two ideal scenarios; and
that a plate modulus assumption is more reasonable for a
very large out-of-plane thickness if the beam length is
large.

Keywords coupling factors, modelling accuracy, com-
pliant mechanisms, equivalent modulus

1 Introduction

Compliant mechanisms utilize flexibility of material to
achieve desired functions associated with motion, load and

energy, rather than suppress the flexibility [1–4]. They
offer low cost, high performance, and miniaturization for
applications in which traditional mechanisms are not
satisfactory. Modelling compliant mechanisms accurately
enables quick design synthesis and analysis, by providing
insightful observation how parameters affect the perfor-
mances of compliant mechanisms.
This paper discusses static modelling of planar com-

pliant mechanisms. Linear-matrix based linear modelling
method is easy to use and straight-forward, which can
provide an estimation of the instantaneous motion. For
accurate modelling, nonlinearities and other influence
factors should be taken into account as discussed below.
Nonlinearity. Nonlinearities in force-displacement

characteristics of compliant mechanisms have three
sources: Material non-linearity, large geometric non-
linearity, and non-linearity of load-equilibrium equations
under intermediate deflections [5,6]. The material non-
linearity is generally not incorporated in compliant
mechanisms due to the fact that plastic deformation is
not desired. Because most popular materials such as
aluminum alloy used in compliant mechanisms only work
within intermediate deformations without yield, the
geometry non-linearity can be ignored for simplification
[5]. The intermediate deflection is therefore the focus of
this paper, referring to that the transverse deflection is
limited to be less than 10% of the length of beam but
without neglecting non-linearity of load-equilibrium
equations. The presence of axial force in the transverse
motion equation is the physical embodiment of this type of
nonlinearity.
Timoshenko effect. Timoshenko beam theory is usually

used for short beams to consider shearing deflection and/or
Poisson’s ratio effect (cross-section shape change) in
modelling beam bending [7–9]. Nevertheless, if the length
of a beam is 10 times larger than its bending thickness, the
beam is referred to as a slender beam, also Euler-Bernoulli
beam, where the shearing deflection and Poisson’s ratio
effect can be ignored with acceptable modelling accuracy.
In this paper, only slender beams are taken into account.
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Modulus assumptions. In compliant mechanisms,
Young’s modulus E of material is adopted for planar stress
assumption where stress occurs only in the bending plane,
while plate modulus E′= E/(1 – �2) (� is Poisson’s ratio) of
material is employed for planar strain assumption where
strain perpendicular to the bending plane is negligible [5].
The detailed derivation for plate modulus is demonstrated
in Appendix A. For planar stress assumption, beam’s out-
of-plane thickness is qualitatively assumed to be small
enough, and for planar strain assumption, the out-of-plane
thickness is qualitatively assumed to be large enough. An
ideal planar stress assumption requires a zero out-of-plane
thickness, while an ideal planar strain assumption requires
an infinitely large out-of-plane thickness. Clearly, a
different planar assumption can cause a large error as
follows:

E# –E
E

¼ 1

1 – �2
– 1: (1)

There is a need of an accurate equivalent modulus Ee to
respond to a different out-of-plane thickness, enabling a
quantitative accurate analysis, which is the main objective
in this paper. The ratio of equivalent modulus to Young’s
modulus can be generally represented as follows:

Ee

E
¼ f X ,U ,D,L,T ,:::ð Þ, (2)

which is a function of at least beam’s out-of-plane
thickness (U), beam length (L), displacement (D) that is
limited to 0.1L, and beam’s in-plane thickness (T). In the
expression, the variable X denotes the type of mechanisms
such as the two designs as shown in Fig. 1. If an analytical
model for this modulus ratio is hard to derive, an empirical
equation based on finite element analysis (FEA) is desired.
References [10,11] reported interesting work on equivalent
modulus of right circular planar flexure hinges (short
beams) using an FEA method, and proposed an empirical
equation of the equivalent modulus (or modulus ratio as

defined above). It is shown that the equivalent modulus of
the right circular planar flexure hinges is larger than the
Young’s modulus but smaller than the plate modulus, and
that it is reasonable to use planar stress (or strain)
assumption if beam out-of-plane thickness compared to
the in-plane thickness is small enough (or large enough).
This paper intends to investigate how coupled para-

meters affect the equivalent modulus of two commonly-
used distributed-compliance mechanisms, with its remain-
der organized as follows. Section 2 describes the study
objectives followed by nonlinear FEA simulations and
analysis in Section 3. Finally, conclusions are drawn in
Section 4.

2 Study description

The study objects in this paper are a compound basic
parallelogram mechanism (CBPM) (Fig. 1(a)) and a
compound double parallelogram mechanism (CDPM)
(Fig. 1(b)). The two mechanisms are both 1-DOF (degree
of freedom) and symmetrical translational compliant
mechanisms, which are composed of identical slender
beams. Figure 1(a) is the one without under-constraints and
free of buckling, which can induce load-stiffening effect by
the inherent internal axial force caused by the primary
translation (along the Y-axis) only. Figure 1(b) is the one
with under-constrained stages (secondary stages), but
without load-stiffening effect under the primary transla-
tion. This paper only studies the equivalent modulus under
the primary motion. In Fig. 1(a), each beam can be
simplified as a fixed-clamped beam, while in Fig. 1(b) each
beam can be simplified as a fixed-guided beam.
The closed-form primary motion equations for the two

designs (Fig. 1) are shown below [12,13]. In the two
equations, we normalize the geometrical dimension by the
beam length (L), the force by EeI/L

2, and moment by EeI/L
(I: Moment of inertia of cross-section areas) with all

Fig. 1 Two types of commonly-used translational compliant mechanisms
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normalized parameters denoted by corresponding lower-
case symbols [14].

ys �
fy

48þ 2:88y2s
1=d þ y2s=700

, (3)

ys �
fy
24

, (4)

where d = 12/(T/L)2 is a normalized parameter in which T is
the beam in-plane thickness.
Since the required actuation force is proportional to the

used modulus under the same primary motion [10,11], the
following two equations can be obtained:

F3D

FSS
¼ Ee

E
, (5)

FSN

FSS
¼ E#

E
, (6)

where F3D, FSS and FSN are the actual required actuation
forces for the same primary motion (D) under no any
planar assumption, planar stress assumption, and planar
strain assumption, respectively, which will be simulated by
FEA in the next section.

3 FEA simulation results and analysis

Commercial software, Comsol, was used to conduct FEA
to obtain the required actuation forces for the same primary

motion. Here, the nonlinear simulation function is
activated, and finest free meshing for beams is chosen
for two cases with planar stress and planar stress
assumptions, respectively, and a case without any planar
assumption. Simulation results are shown in Figs. 2 to 5.
For convenience, beam thickness is fixed to 1 mm and
other parameters vary case by case.
Figure 2 shows the force ratio (F3D/FSS) significantly

changes with primary motion with the highest value at the
home position for the CBPM. It also suggests that larger
out-of-plane thickness makes the force ratio (F3D/FSS)
larger as imagined. However, it seems that force ratio (FSN/
FSS) is not sensitive to the primary motion and the out-of-
plane thickness as suggested by Eq. (6). Figure 3 shows
that primary motion increases the force ratio (F3D/FSS)
slightly but has no effect on the force ratio (F3D/FSS) for
the CDPM. The increase of the out-of-plane thickness
significantly increases the force ratio (F3D/FSS) but has
little influence on force ratio (FSN/FSS), as predicted by
Eq. (6).
In order to reflect the effect of beam length along with

other parameters on the force ratio, the average force ratio
over primary motion is adopted as shown in Figs. 4 and 5
for both CBPM and CDPM. Similar to the results as
illustrated in Figs. 3 and 4, the increase of out-of-plane
thickness enlarges the average force ratio (F3D/FSS), but
has an insignificant influence on the average force ratio
(FSN/FSS). In addition, the average force ratio (FSN/FSS) is
almost independent of the beam length, which is nearly
same as E′/E as shown in Eq. (6).
There is an exciting finding that a shorter beam can

increase F3D/FSS in a larger degree, and F3D/FSS can even

Fig. 2 CBPM force ratio results for fixed beam length
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be much larger than FSN/FSS under certain combination of
L and U. This finding is different from the result in Refs.
[10,11] and betrays our expectation. The influence from
beam length of the CBPM is stronger than that of the
CDPM, due to the fact that the CBPM exhibits load-
stiffening behavior. The presence of significant load-
stiffening effect results in large internal axial force, which
may amplify the Timoshenko effect to make equivalent
modulus deviate from the planar (stress and strain)
assumptions in two ideal scenarios. Figures 4 and 5 both
reveal that a plate modulus assumption for both CBPM and
CDPM is still valid for large out-of-plane thickness if the

beam length is more than 40 times of beam in-plane
thickness. This means that Euler-Bernoulli beam works
well for plate modulus assumption under large out-of-
plane thickness. Furthermore, a Young’s modulus assump-
tion for CDPM is largely acceptable for small out-of-plane
thickness in spite of different beam lengths. Therefore,
based on the recommendations in Figs. 4 and 5, an
equivalent modulus can be selected to produce more
accurate analytical model using Eqs. (3) and (4).
The cubic (3th degree polynomial) fitting curve equation

for the CBPM for a given beam length (Fig. 4) is shown
below

Fig. 3 CDPM force ratio results under fixed beam length

Fig. 4 Average force ratio for CBPM Fig. 5 Average force ratio for CDPM
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y1 ¼ p1x
3 þ p2x

2 þ p3xþ p4, (7)

where x = U/T, and y1 denotes the average of F3D/FSS=
Ee/E.
For L = 20 mm, the coefficients are p1 = 4.3494�10–6,

p2 = – 0.0003865, p3 = 0.012315, and p4 = 1.1174; for L =
30 mm, the coefficients are p1 = 3.1976�10–6, p2 =
– 0.00028066, p3 = 0.0091061, and p4 = 1.0737; and for L
= 40 mm, the coefficients are p1 = 2.2863�10–6, p2 =
– 0.00020164, p3 = 0.0068409, and p4 = 1.0502.
Similarly, the cubic fitting curve equation for the CDPM

for a given beam length (Fig. 5) is shown below

y2 ¼ p1x
3 þ p2x

2 þ p3xþ p4, (8)

where x = U/T, and y2 denotes the average of F3D/FSS=
Ee/E.
For L = 20mm, the coefficients are p1 = 6.3392�10–6,

p2 = – 0.0005568, p3 = 0.016328, and p4 = 1.0009; for
L = 30 mm, the coefficients are p1 = 2.5216�10–6, p2 =
– 0.00028307, p3 = 0.011118, p4 = 0.99798; and for L =
40 mm, the coefficients are p1 = 1.3393�10–6, p2 =
– 0.00018976, p3 = 0.0091325, and p4 = 0.99502.
For a beam length in either CBPM or CDPM that is not

equal to 20, 30 or 40 mm as shown in Figs. 4 and 5, a linear
interpolation method can be applied to obtain the average
Ee/E corresponding to this beam length. We can observe
from the above cubic fitting equations that they have the
similar coefficient characteristic where only p2 is negative
and the other coefficients are positive. Moreover, the
increase of beam length can cause the decrease of p1, |p2|,
p3 or p4.

4 Conclusions

This paper discusses the effects of coupled factors on the
equivalent modulus for the modelling accuracy in planar
compliant mechanisms. Two typical parallelogram
mechanisms are simulated by nonlinear FEA to demon-
strate such effects. The cubic fitting curve equation for the
average of Ee/E corresponding to a different beam length
and a different beam out-of-plane thickness has been
obtained. It has been found:
① That the beam’s out-of-plane thickness (U), beam

length (L), and displacement (D) all have influences on the
force ratio (F3D/FSS) with different extents;
② That the presence of load-stiffening effect makes the

equivalent modulus largely deviate from the planar
assumptions in two ideal scenarios; and
③ That a plate modulus assumption is still valid for a

very large out-of-plane thickness if the beam length is
more than 40 times of beam in-plane thickness.
A closed-form model of the equivalent modulus to

accommodate all parameter effects is greatly desired in the
future. Investigating the equivalent modulus for more
typical compliant mechanisms is also the further work.
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Appendix A: Plate modulus

Figure A1 shows the normal stresses of an infinitesimal
element along three orthogonal directions. If a planar strain
assumption in the XY plane is made, we have the normal
strain equation in the Z-direction based on the generalized
Hook law:

εzz ¼
�zz

E
–
�

E
�xx þ �yy
� � ¼ 0, (A1)

where syy= 0 since there is no applied stress in this
direction, causing planar stress in the XZ plane.
Equation (A1) can be simplified as
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�zz ¼ ��xx: (A2)

Thus the normal strain equation in the X-direction can
be obtained as:

εxx ¼
�xx

E
–
�

E
�yy þ �zz

� �
: (A3)

The substitution of Eq. (A2) into Eq. (A3) yield

εxx ¼
�xx

E=ð1 – v2Þ: (A4)

Therefore, the Plate modulus is derived for the bending
in the XY plane as

E# ¼ E

1 – �2
:

Fig. A1 Normal stresses of an infinitesimal element along three
orthogonal directions
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