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Abstract: Advances in machine learning and the development of very large knowledge graphs have
accompanied a proliferation of ontologies of many types and for many purposes.  These ontologies are
commonly developed independently,  and as  a  result,  it  can be difficult  to  communicate  about  and
between them.  To address this difficulty of communication, ontologies and the communities they serve
must agree on how their respective terminologies and formalizations relate to each other.  The process
of coming into accord and agreement is called “harmonization.” The Ontology Summit 2021 examined
the overall landscape of ontologies, the many kinds of ontology generation and harmonization, as well
as the sustainability of ontologies.  The Communiqué synthesizes and summarizes the findings of the
summit as well as earlier summits on related issues.  One of the major impediments to harmonization is
the relatively poor quality of natural language definitions in many ontologies.  The summit surveyed
the state of the art in natural language definition development, based on lexicographic principles, as
well as examples of ongoing projects that are explicitly dealing with harmonization and sustainability. 
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1. Introduction

Ontologies are proliferating, producing a complex landscape of many types, roles and uses for many
purposes (Hitzler, 2021b), such as data integration, Semantic Web applications, business reporting and
artificial  intelligence.   Ontologies can be extracted,  learned, modularized,  interrelated,  transformed,
analyzed, and harmonized as well as developed in a formal process which can be manual or automated.
There are now many ways that ontologies interact with other technologies, including, but not limited to,



statistical  and linguistic  techniques,  generation by machine learning tools,  serving as  the basis  for
machine learning so as to improve the quality and explainability of its results, and integration into
machine learning architectures (Gaur, Faldu, and Sheth, 2021).  Unfortunately, it is commonly the case
that ontologies are constructed independently.  While such ontologies can serve their purposes very
well, it can be difficult to  align ontologies that were developed for overlapping domains. Furthermore,
when an ontology was generated using automated methods, it can be difficult for humans to understand
it.  There is growing understanding of the need for harmonization and better definitions of terms in
ontologies as well as some best practices to provide these.  

Following some planning meetings, the Ontology Summit 2021 examined the landscape of ontology
generation and harmonization using a series of virtual presentations and sessions held from February to
May 2021.   This  Communiqué synthesizes  and summarizes  the findings  of that  series.   Based on
community interests, the Ontology Summit 2021 was organized into four tracks and the Communiqué
also  reflects  the  sub-topics  of  these  tracks.  The  Ontological  Landscape  track  provided  an  overall
framework for different kinds of ontology and for the rest of the summit tracks.  The results of this
track are summarized in Section 2. 

As  discussed  in  Section  2.2,  one  of  the  purposes  of  ontologies  is  for  communication,  and
misinterpretations can occur when terms are not adequately defined.  To avoid misinterpretations, in the
context of this Communiqué, a term is to be understood as having the natural language definition,
unless a term has a namespace prefix.  When an important natural language term is ambiguous, the
intended definition or definitions will be specified.  For example, in Section 3.1, the word "annotation"
is used, and the intended dictionary definition is specified.  It is this notion of annotation that is used in
the Communiqué, and not, for example, owl:AnnotationProperty.  As another example, the notion of
a "definition" is used throughout the Communiqué.  Various notions of definition are summarized at the
beginning of Section 3.  These are the notions of definition that are used in the Communiqué, and not
rdfs:isDefinedBy.

Natural language definitions, especially domain definitions, are an essential part of ontologies; but,
from an ontological perspective, they are often poorly written, either because of a lack of experience
with writing definitions, a shortage of resources, or because of a lack of emphasis on properly defining
terms during the ontology development process.   Details on the notion of a semantically adequate
natural language definition and its role in ontology development and harmonization are presented in
Section 3. 

The recent development of much more effective machine learning techniques has made it possible to
extract  ontological  information   from source  documents.   While  such techniques  are  effective  for
particular  tasks,  currently  they  are  generally  opaque  and  do  not  lend  themselves  to  easy  human
understanding and  explainability.  The issue of explainability was examined in a previous Ontology
Summit (Baclawski et al., 2020a).  One way to make machine learning techniques more explainable is
to integrate machine learning with ontologies (Baclawski et al., 2018b; Gaur, Faldu, and Sheth, 2021).



The architectures that have been developed for integrating ontologies with machine learning, and more
generally, integrating symbolic (which includes knowledge graphs and ontologies) and sub-symbolic
(such as machine learning) techniques, are presented in Section 4. 

Furthermore,  it  isn’t  enough  to  construct  ontologies  with  well  developed  definitions  and
documentation,  they must  be sustained over  time.   There is  much more to  sustainability  than just
ensuring that it has a continuing source of funding.  The results of the Sustainability of Ontologies track
are presented in Section 5.

Section 6 concludes the Communiqué with a summary of the main issues and challenges raised by the
Ontology Summit.

2. The Ontological Landscape
Ontologies have many aspects and purposes.  As a result, the growing classification of ontologies will
have many dimensions. These dimensions form a rich landscape rather than a simple linear “spectrum.”
The  distinctions  among  types  of  ontologies  were  studied  and  surveyed  in  the  first  two  Ontology
Summits in 2006 and 2007.  The first was the Upper Ontology Summit (Cassidy, Obrst, Ray, Soergel,
and  Yim,  2006),  and  the  second  was  on  “Ontology,  Taxonomy,  Folksonomy:  Understanding  the
Distinctions” (Obrst  et  al.,  2007).  A number of ontology dimensions were identified in these two
summits, and some of the most prominent ontologies of the time were classified along the dimensions
(Baclawski 2007, 2007b; Baclawski and Duggar, 2007). The most common classification of ontologies
is by their level of generality, and Section 2.1 discusses the types of ontology as distinguished by how
generally applicable the ontologies are.

 One of the primary purposes of ontologies is for communication, and Section 2.2 surveys the types of
ontology with respect to different communication requirements.  Section 2.3 discusses the different
approaches to what the entities of an ontology are intended to represent.  Sections 2.4 and 2.5 survey
two more dimensions: attitudes toward realism and the representation of uncertainty.  Section 2 ends
with a  short  discussion  of  ontological  commitment  in  Section  2.6.   However,  there  are  still  other
dimensions in the landscape, and these are surveyed later on in Sections 3, 4 and 5.

2.1 Generality

Ontologies  are  most  often  classified  by  their  level  of  generality.   The  most  generic  or  abstract
ontologies  are  called  foundation(al)  ontologies,  generic  ontologies,  top-level  ontologies,  and upper
ontologies (Ontology Term List, 2020).  The most specific ontologies are called application ontologies
because they are generally associated with a specific or narrow range of applications.  In between these
two extremes, there are reference ontologies and domain ontologies.  Reference ontologies are more
specific than foundation ontologies, yet are not limited to a particular domain.  Domain ontologies are
limited to a single domain, but domains can form hierarchies with many levels of generality and the
domain  ontologies  may also  have  many levels  of  generality  (Schneider,  2021).   Other  notions  of
ontology  generality  have  been  proposed,  such  as  upper-level  reference  ontologies  that  provide



specifications of requirements, functions, design or standards for a specific application (Chen, Ludwig,
Ma, and Walther, 2019). 

2.2 Communication

One of the main purposes of ontology is to improve communication.  In general, communication can be
between  people,  between  people  and  machines,  and  between  machines.   Machines  operate  and
interoperate best when the elements of the ontology are defined precisely and logically so that they are
processable (e.g., inferences can be computed) and their ambiguity is minimized.  Human language, in
comparison, is much richer with large numbers of types of figures of speech and inherent ambiguities
(Hanks and Jezek, 2008; Baclawski, 2021).  Far from being a flaw of human language, this richness is
its strength.  Humans deal with the ambiguity of language by the context of a dialog, the manner of
communication (e.g.,  inflection and gestures) and being able to ask for clarification (Sowa, 2021).
Accordingly, an ontology and its documentation should recognize the distinctions between the needs of
humans  and  machines.   One  means  of  accomplishing  this  is  to  have  a  “language  interface”  that
mediates between the human and machine terminology.  The language interface is an important feature
of  modern  software  engineering processes,  and ontology development  can  also  benefit  from these
practices (Bennett, 2021; Woods and Low, 2021).

One of the functions of a definition is to adjust the readers’ or systems’ inferential competences, i.e.,
what  readers  or  systems  infer  when  encountering  the  term  that  is  defined  (Seppälä,  Ruttenberg,
Schreiber,  and  Smith,  2016).   For  a  theoretical  explanation  of  the  functions  of  natural  language
definitions in ontologies, backed by empirical neuropsychological studies see (Seppälä, Ruttenberg,
and Smith, 2016).

Another effective means for communication is to base the ontology on the events and states of interest
in a domain, as well as the arguments (subjects, objects, adverbs, etc.) of those events (as per neo-
Davidsonian semantics).  Basing an ontology on events and states allows the ontology to be deeply
informed by narrative and event linguistic theory (Westerinen, 2021).

For a computable ontology using OWL, Common Logic or other logic-based ontology representation
languages, the identifiers (for elements of the ontology) are, in fact, symbols of the signature of the
(logical) language.  However, humans are already familiar with such natural language terms or phrases,
sometimes in highly emotional and biased ways.  As a result, humans can easily forget or ignore that
the identifiers need to be treated as symbols whose interpretation is dictated by the formalizations used
to  define  the  identifiers.   Misinterpretation  is  even  more  likely  when  an  ontology  element  is  not
adequately defined to meet the intended interpretations.  Inadequate definitions occur for many reasons.
One reason why a natural language definition can be inadequate is an implicit reliance by the ontology
developers on the expectation that a user of the element will “understand” how the element is to be
interpreted.  Ontology developers may have a specific understanding of the natural language term or
phrase  being  defined  without  realizing  that  some  of  the  users  of  the  ontology  have  a  different
understanding (Schneider, 2021).



Well defined concepts are an essential ingredient in communication and play a central role in semantic
interoperability.  Both communication and interoperability are based on a common understanding of
concepts,  services,  information and contributing data.    The Ontology Summit  2007 discussed the
spectrum of useful semantic artifacts starting with an implicit preference for strong formality found in
ontologies (Obrst et al,  2007).  A range of resources exist,  such as folksonomies (e.g.,  simple user-
defined keywords lists useful to annotate resources on the Web), along with taxonomies, conceptual
models,  and  controlled  vocabularies  (e.g.,  the  Medical  Subject  Headings  (MeSH)).   A controlled
vocabulary reflects an association of terms and is part  of language use in a domain, which,  like a
model, imposes some simplifying, constraining, and organizing form on the fluxing complexity of that
domain  about  which  we communicate.   The  impetus  of  controlled  vocabularies  is  on  formalizing
concepts in a logical language to allow some degree of automated processing of data.  There was less
attention at the Ontology Summit 2007 on standardization of other forms of semantic resources in pre-
formalization phases.  More recently, there has been a greater recognition and appreciation of both
ontologies and standard vocabularies to support communication, data sharing and interoperability.

2.3 Ontology Distinctions

Ontologies may be used for a range of purposes, such as data integration, Semantic Web applications,
business  reporting  and  artificial  intelligence.  Different  uses  are  best  supported  by  different  and
sometimes contrasting modeling styles.

A key distinction with ontologies, as with any kind of model, is the question of what kind of thing is
represented by the elements of that model (e.g., the classes, relationships, properties, etc.). An ontology
is  a  model  that  represents  things  and   relationships  among  them,  relevant  for  a  purpose.  Many
ontologies are designed to contextualize data for a specific domain.

Ontologies define classes in terms of the necessary and sufficient characteristics that make something a
member of that class. Most of these distinctions are not expressible as data. For example, a legal or
financial instrument will be defined in terms of legal or financial characteristics (“Social Constructs” in
Searle, 2010); real estate, streets and islands are physical things in the world; and so on. Applications
meanwhile will use data that has been identified as best representing those things in the world. For
example, your date of birth may be represented as a type of “Event” with a date (of birth) on which the
event  occurred,  and this  date  may be represented by data  called “dateOfBirth” with a  datatype of
“date.”

One kind of ontology, often called a “concept” ontology, will contain logical statements framed in
terms of domain attributes and how they define the meanings of things in that domain (Bennett, 2021).
These logical statements can be used by humans to understand things in the domain, e.g., for business
purposes. Another kind of ontology is used to model the data associated with the things in the domain.
Choosing what data to use to represent those things is a design decision, even if in many cases the
design choices are obvious. These are often known as “operational” or “application” ontologies.



Further analysis suggests that there may be different styles of ontology that deal with operational data.
An ontology for integrating multiple sources of data may need to have more semantically nuanced
distinctions to deal with the different ways those data sources reflect conceptualizations of the world.
While an ontology for reasoning over data (e.g., in a knowledge graph) would typically be simpler.

Other differences reflect operational design choices. For example, an operational ontology need not use
a full foundational ontology to partition its world. It would also typically have fewer relationships, with
little or no use of constraints such as property domains and ranges. By contrast, a concept ontology
would have a richer set of relationships such as for different types of whole-part relations, and would
reflect the many constraints that apply to the relationships and properties.

In deriving an operational ontology from a concept ontology several design steps are needed: flattening
the  class  hierarchy,  extracting  concepts  that  are  relevant  to  the  application  use  case,  selectively
removing classes that reflect some of the top-level ontology (TLO) partitioning such as “things in
roles” and shortening the corresponding property paths, so that for example a conceptual distinction
between  say  Loan  –  Borrower  (as  party  in  role)  –  Person,  becomes  a  simple  “Loan  –  Person”
relationship. Each application use case, being a distinct business context, would entail the extraction of
different  material  from the concept  ontology.  In this  regard,  operational ontology design follows a
similar path to any other technology development, with the concept ontology playing the role of a
“Computationally Independent Model” (CIM) in the development process. 

For an ontology, especially a very large one, to be consistent in the broader sense of this term, it must
not only be logically and conceptually consistent, but it must also have a consistent style throughout.
Consistency in this broader sense requires conformance to style guidelines, such as naming conventions
and  change  management  procedures  (Uschold,  2021).   Consistency  is  also  a  necessary  part  of
sustainability as discussed in more detail in Section 5.  

2.4 Realism

Another dimension of ontology is the degree of “realism.”  Philosophical realism is the thesis that there
is a reality that exists independently of people.  There are many notions of realism that have been
proposed and studied in philosophy.  An ontology is  realist,  with respect  to  a particular  notion of
realism,  if  it  is  based on the philosophical  realism thesis.  Neither philosophical nor computational
ontologies require realism; indeed, computer scientists’ focus is generally more pluralistic with respect
to what entities may be relevant, whether they are ontological (in the philosophical sense), conceptual,
cognitive, hypothetical,  etc.  Being more pluralistic has benefits for dealing with natural language,
common sense, and other human capabilities.  Another consequence of a pluralistic attitude is that it
allows for notions of “truth” that underlie different reasoning mechanisms (i.e., logics) and that depend
on context  and situation  (Masolo,  2021).   Different  forms  of  logic  are  a  frequent  topic  of  earlier
Ontology Summits, including the ones in 2007 referenced above (Obrst et al, 2007), in 2010 “Creating
the Ontologists  of  the Future”  (Neuhaus et  al,  2010),  and in  2017 “AI,  Learning,  Reasoning,  and



Ontologies” (Baclawski et al, 2018b).  One of the most important examples of a different reasoning
mechanism is probabilistic reasoning that is discussed in the next section.

2.5 Uncertainty

Human  understanding  is  typically  probabilistic.  To  reflect  our  best  understanding  of  the  world,
ontologies, for some situations or applications, should support uncertainty specification and reasoning.
However, there is no generally agreed upon way to specify uncertainty in an ontology.  For example,
the likelihood of a specific RDF statement being true can be defined as simply as adding a :probability
predicate as an RDF* edge property or to a reification of the RDF statement (Westerinen, 2021); or one
could annotate the statement with a  :strength  predicate (Sharma, 2021).  Some of the proposals for
incorporating uncertainty in ontologies include PR-OWL (Carvalho, Laskey, and Costa, 2017) and the
Bayesian Ontology Language BEL (Ceylon and Peñaloza, 2017).  But, perhaps having flexibility in the
definition of ontological probabilities is an advantage.  It may be that the notion of uncertainty, like
other aspects of an ontology, will depend on the particular domain, community and purpose.  Rather
than attempt to create a single reference ontology for uncertainty, there should be a meta-theory for
uncertainty that is modularized and customizable for the particular task and purpose (Breiner, 2021).

2.6 Ontology Commitments

Ontology development and sustainability are processes during which many design decisions must be
made.   These decisions vary with respect  to how much of the ontology is  affected.   Furthermore,
different  ontology development  methodologies vary with respect  to  what  decisions  are  made,  who
makes  the  decisions,  as  well  as  when and how the  decisions  are  made (i.e.,  governance).   While
modularity can help limit the scope of a decision, there will nevertheless be decisions that have major
consequences for the process and the artifacts that are developed.  The design decisions also affect how
well an ontology can adapt to future requirements.  Decisions made during the development of an
ontology are commonly referred to as “ontological commitments.”  When using this term in the context
of ontology development, one must be careful not to confuse the term with the philosophical notion of
ontological commitment, such as Quine’s Criterion (Stanford Encyclopedia of Philosophy).

2.7 Understanding and Analysis

Understanding and definition of the notions to be represented in an ontology are fundamental problems
in ontology development that  distinguish it from software or even systems development.  In ontology
development there are at least two phases to representing a notion or entity. First, there is understanding
what  the  notion  or  entity  is.  The  second  is  the  analysis  phase  in  which  the  notion  or  entity  is
represented or modeled using the selected or available constructs.  For example, one may have selected
OWL as the ontology language or one is working within the context of a foundational, reference, or
domain ontology.  

During the “understanding” phase the developer needs to survey relevant references, starting with a
“common” dictionary (e.g., Oxford or Cambridge) and moving on to more domain specific references
(e.g., ISO specifications), if they exist. Using a range of references can provide a contrast among the
different ways a notion or entity is understood as well as the contexts in which the notion or entity



occurs.   These contrasts  will  greatly  aid in  “understanding” the notion or entity and what  may be
needed  to  be  represented  to  meet  the  stated  needs  of  the  ontology being developed.   Ideally,  the
understanding  phase  should  lead  to  a  useful  natural  language  definition,  a  critical  element  in
representing a notion or entity for human interpretation.

The next phase is the ontological analysis process.  Note that the understanding and analysis phases are
usually  performed in  parallel  rather  than  in  series.   An aid  in  ontological  analysis  can  be  a  well
constructed  foundational  ontology  (e.g.,  DOLCE,  BFO,  UFO,  GFO),  since  such  an  ontology  has
already incorporated ontological analysis during its creation.  One common pitfall during the analysis
phase is  “taxonomy seduction” which is  the tendency to place  an entity  into  a  taxonomy without
completing an understanding or analysis. Premature “classification” of a notion or entity can bias an
entire development effort and/or require rework (Schneider, 2021).

3. Definitions and Harmonization
There are many notions of definition.  We give a brief summary of some of these here.  For a more
complete discussion of the various notions of definition see the Stanford Encyclopedia of Philosophy.

One major distinction is concerned with how precisely and thoroughly the definition specifies a term.
The  strongest  form is  an  intentional  definition that  gives  necessary  and  sufficient  conditions  for
membership in the defined term's extension.  A weaker form is an extensional definition that lists all
examples explicitly.  An extensional definition might not be possible or feasible, and there may be other
examples that subsequently need to be added.  The weakest form is an ostensive definition that is often
non-verbal and accompanied by a gesture pointing to an example.

Another  distinction  is  concerned  with  consistency  with  reality.   A  real  definition attempts  to  be
consistent  with  reality,  while  a  nominal  definition is  only  concerned  with  the  usage  of  a  term in
practice.  Nominal definitions vary with respect to how closely they reflect existing usage: a descriptive
definition aims to be compatible with all existing usages, while a  stipulative definition is introduced
either on a temporary basis or in a specific context and need not be compatible with any other usages of
the term.

One aspect of definition is that there should be terms, such as the term “entity,” that are explicitly left
undefined.  Otherwise, the definitions will inevitably be circular.

Definitions can serve as links between humans, between human communities, between humans and
ontologies, as well as between different ontologies. Historical attempts to standardize terms included
creating  core  metadata  models  and  common  conceptual  models  for  combining  data  into  a  single
representation (Silva, Perez,  and Kofuji,  2019).  For example, the Simple Knowledge Organization
System  (SKOS)  is  a  core  metadata  model  standard  for  the  Web  (SKOS,  2009).  However,  these
standardization attempts have largely failed to be adopted because of flawed conceptualizations, lack of
community agreement,  and inadequate representation;  and thus the attempts have resulted in silos.
More  recently,  significant  progress  has  been  made  leveraging  best  practices  including  the  use  of
ontological analysis and design.  The Ontology Summit 2021 surveyed the different notions and levels



of formality of definitions, with emphasis on practical methods to harmonize a variety of semantic
resources, and a summary of this survey is given in this section.

It  is  clear  that  domain  vocabularies  vary  significantly  in  quality  and scope,  often  with  alternative
definitions for the same term and definitions that have varying degrees of formality.  This problem has
been recognized for a long time.  It is said that when Confucius was asked what he would do if he was
a  governor,  he  replied  that  he  would  “rectify  the  names”  to  make  words  correspond  to  reality.
Standardization  of  term  meanings  remains  challenging  since  there  are  many  conflicting  and
overlapping glossaries and incompatible data models that define domain terms in idiosyncratic, domain
or application specific ways.  Completely “rectifying the names,” like attempting to develop a single
ontology for everything, may be too ambitious a goal, but harmonization can be achieved, albeit with
some effort.  Harmonizing terminology is underway in some domains, such as the cryosphere, which is

the frozen water part  of  the  Earth system concerned with ice fields and glaciers (ESIP,  2021), and in
government related domains such as the National Information Exchange Model (NIEM, 2017).

Writing an adequate definition, whether from a human or a computer perspective, is not easy.  Indeed,
one of the main problems with developing natural language definitions for ontologies is precisely the
common assumption that anyone can write definitions and that they will then be harmonious.  Ontology
design experience as well  as  experiments have shown that  even for well  understood domains,  the
results of manual classification tasks performed by domain experts are highly inconsistent (Westerinen,
2021).  So, the first step in writing definitions is often to accept that it is a hard task.  There are many
existing definition writing principles and guidelines in lexicography, terminology, and logic that one
can use for writing definitions (Seppälä, Ruttenberg, and Smith, 2017).  

The  rest  of  this  section  gives  examples  and  lessons  learned  about  developing  and  harmonizing
definitions.

3.1 Definitions and Harmonization in the Environmental Sciences

In this section, a specific example is presented in detail of a domain that aims to address definitions and
semantic  harmonization.   The  domain  is  the  environmental  sciences,  and  the  ontology  is  the
Environmental  Ontology (EnvO) (EnvO Ontology).   EnvO is  a  semantic  resource for  semantically
controlled descriptions of environmental entities. For example, the Darwin Core glossary uses EnvO in
its  habitat  descriptions  and  was  developed  by  applying  text-mining  approaches  to  extract  habitat
information from the Encyclopedia of Life and automatically create experimental habitat classes within
EnvO.

Here is an example of an EnvO natural language definition: A habitat is “An environmental system
which can sustain and allow the growth of an ecological population.”

EnvO’s initial focus was to represent biomes, environmental features, and environmental materials, and
the initial purpose was for genomic and microbiome-related investigations.  However, the need for
environmental semantics is common to a multitude of fields, and EnvO’s scope has steadily grown



since  its  initial  description.   As  the  scope  has  expanded,  the  ontology  has  been  enhanced  and
generalized to support its increasingly diverse applications (such as the Cryo (glaciers and ice fields)
and the Marine (ocean) realms) that are now examined in more detail.

The Global Cryrosphere Watch (GCW) has sponsored the effort to harmonize term definitions that are
already in  use  in  the  Cryo domain.   Sometimes  a  single  term will  have  dozens  of  different  term
definitions.  Consider the term “snow cover”.  The GCW harmonized definition is the following:

“An area density which inheres in snow distributed over an area of a landmass or other substrate.” 

Additional information about this term is provided by annotations.  An annotation is an explanation or
comment  added  to  data  or  metadata.   Definitions  are  annotations,  but  there  are  other  kinds  of
annotations that have a significant impact on understanding both by humans and by machines.  For
example,  annotations can be used for explanations (Baclawski et  al,  2020a) and for specifying the
context and provenance of information (Baclawski et al, 2018a).  An example of an annotation for
GCW that is not part of a term definition states that, in general, snow cover is a layer of snow on the
ground surface and can be compared to the related terms of snowfield and snowpack.

EnvO natural  language  definitions  conform to  the  Minimum Information  for  the  Reporting  of  an
Ontology (MIRO) guidelines (Matentzoglu, Malone, Mungall et al, 2018).

The EnvO harmonization effort has had a number of accomplishments (Berg-Cross, 2021).

1. The  GCW  glossary  analysis  results  were  harmonized  with  EnvO  and  aligned  with
corresponding terms in the Semantic Web for Earth and Environment Technology (SWEET)
ontology.

2. The alignment with SWEET has improved the definitions of SWEET terms.

3. EnvO and SWEET terms have been aligned with other OBO Foundry ontology terms (Ontology
Tools and Resources, 2021).

4. A special envoPolar subset of EnvO has been crafted with relevant terms and axioms.

5. Attribution for all of these updates have been documented to the people or groups responsible
for these changes.

6. Best practices for documentation were instituted, including annotating the time the definition
was added, the orcid.org of the individual who created the update, and provenance information
about definition derivation from EnvO to SWEET.

7. Templating methods were employed to accelerate class creation, and spreadsheets were used to
help update ontologies with definitions.  Specifically, the OBO Robot tool was used to facilitate
EnvO collaboration.  The Robot tool guides users through the process of creating new terms and
is intended to be used by non-ontologists.  Robot organizes new term requests in a standardized
google sheet template, and users can follow a step by step process to fill out the appropriate
spreadsheet columns.



3.2 Lessons Learned and Best Practices

In this section, some of the best practices for harmonization of definitions are presented.  For general
advice about developing natural language definitions, see the Guidelines for Writing Definitions in
Ontologies (Seppälä et al, 2017).  The guidelines include advice such as: be brief, align, re-use, extend,
and revise semantic resources.  The following points integrate and extend the guidelines with further
best practices and advice (Berg-Cross, 2021b).

1. Organize the terms into a concept system (network of concepts) and indicate the position of
each term in the concept system.  Somewhat informal conceptual models may help organize the
networks during the early phases of ontology development.

2. To ensure that definitions are brief,  put other,  more encyclopedic information in annotation
notes.

3. To structure taxonomies use the nearest generically super-ordinate concept, adding one or a few
constraining characteristics.

4. Consider harmonizing the role of lexical modifiers as well as nouns and verbs.  For example,
words like alpine or liquid.

5. Reuse existing vocabularies such as Schema.org, DCAT2, VIVO, DDI, etc.  However, doing so
will usually involve specializing the more general term.

6. Reduce  (conceptual)  ambiguity  by  explicitly  showing  relationships  between  the  terms.
Ambiguity is  reduced along the semantic  spectrum in a  number of ways.   For humans the
ambiguity of a term is reduced by a good definition or by inclusion in a glossary of related
terms. More structure is added by specifying class membership of subtype relations. The use of
a logical language to represent definitions can reduce ambiguity for automated, digital systems.
Some terms described as “similar to” one another carry some degree of ambiguity as to how
they are similar.   This  can be reduced by specifying more precise relations.   For example,
instead of describing a glacier as being similar to an ice mass, one can specify that “a glacier is
a type of ice mass.”

7. Be sensitive to issues of granularity.  Metonymy is the naming of a thing by something related
to it.  For example, using the name of the whole for a part or vice versa.  Figures of speech such
as metonymy are so commonplace that one may not be aware that one is using a figure of
speech at all.

8. Avoid vague comparisons, such as using the word “similar” in a definition.  There will usually
be many similar terms and terms with overlapping meanings.  Perform semantic analysis to
distinguish similar terms.  Semantic analysis involves establishing relations among terms where
appropriate, such as subtypes, part-whole relationships, roles, influences, production (output)
relationships, etc. 



9. The  interface  between  the  business  (natural)  language  and  the  technical  language  (e.g.,
Description  Logic  or  First-Order  Logic)  helps  human-machine  communication  by  making
language more precise and less ambiguous (Seppälä, 2021; Woods and Low, 2021).  The impact
of  differences  between  the  textual  and  logical  definitions  in  ontologies  was  examined  in
(Seppälä et  al,  2016).   However,  when communicating with natural  language,  one must  be
aware of how people categorize the world.  Unlike the classes and properties of ontologies,
human categories “shimmer” (Hanks and Jezek, 2008; Baclawski, 2021).

10. Terms may be standardized, but the meanings or their expected interpretations should be too.

11. Definitions will vary according to context of use and target audience.

These lessons of the EnvO community can be useful for other communities.  In Section 5 below, the
issue of sustainability of ontologies is discussed in general.

4. Neuro-Symbolic Learning Ontologies
Symbolic  reasoning has  a  long history,  and continues  to  be  an  active  area  of  research.   Machine
learning, also known as sub-symbolic methods, is also a very active area of research.  Although both
are part of AI, these two areas have been developed under clearly distinct technical foundations and by
separate research communities.  The two areas have complementary strengths and weaknesses.  As a
result, finding ways for bridging the gap between symbolic and sub-symbolic approaches to AI is a
long-standing unresolved challenge,  and integrating these two areas is now the subject of growing
research interest in AI.  Bridging this gap was addressed in the Ontology Summit 2017 (Baclawski et
al, 2018b), but new AI techniques, especially in machine learning, have since been developed so that
revisiting this topic is certainly timely.  

Neuro-symbolic learning aims to integrate neural learning with symbolic approaches typically used in
computational logic and knowledge representation in AI.  One benefit of such an integration is the
development  of  effective knowledge extraction methods towards  explainable AI (Gaur,  Faldu,  and
Sheth, 2021; Lamb, 2021; Sheth, 2021), but there are many other advantages (Sriram, 2021).  While
there are significant benefits for tighter integration of neural and symbolic paradigms, it is not known
how best to integrate them, and many integration architectures have been proposed.  Symbolic models
can be the result of, or the basis for, different stages of a neural process.  The following are some of the
architectures of techniques that integrate symbolic and sub-symbolic methods (Kautz, 2021):

1. The simplest and most common architecture is one in which symbolic data (e.g., documents)
are processed with symbolic techniques to produce vectors that are input to a sub-symbolic
module  (e.g.,  a  neural  network).   The  vector  output  of  the  sub-symbolic  module  is  then
interpreted in symbolic form using symbolic techniques.  

2. Another architecture is a symbolic system that can invoke sub-symbolic submodules.  As far as
the symbolic system is concerned, the submodules are just subroutines like any others.  Self-
driving vehicles usually use this architecture.



3. One could, in principle, invert the roles of symbolic and sub-symbolic in Architecture (2) above
to get an architecture in which it is the sub-symbolic system that is invoking the symbolic one.
The advantage of inverting the roles of symbolic and sub-symbolic is that doing so allows for
very complex decision making, since symbolic reasoners can perform combinatorial reasoning
much more scalably and efficiently than sub-symbolic systems.

4. Architectures (1), (2) and (3) above do not include learning during normal processing.  The
symbolic  and  the  sub-symbolic  modules  have  already  been  programmed  and  trained,
respectively.  Some recently developed architectures incorporate symbolic reasoning in the sub-
symbolic  system  by  organizing  the  sub-symbolic  system  according  to  symbolic  rules.
Examples of such architectures are tensor product representations and logic tensor networks,
which  can  find  generalization  and  part-whole  hierarchies.   In  other  words,  these  newly
developed architectures can generate ontologies, or at least some aspects of ontologies.  The
forms of reasoning that can be incorporated include temporal logic, description logic, and first-
order predicate logic (Hitzler, 2021).

5. Another learning architecture is to input instances of logical inferences, expressed as input-
output  pairs,  to  train  a  sub-symbolic  model.   Training  with  logical  inference  examples  is
primarily useful for mathematical problems, and it is surprisingly effective,  although it will
make mistakes sometimes (Kapanipathi, 2021).

6. Another architecture uses sub-symbolic methods, such as back-propagation, to train a symbolic
system.   Back-propagation  is  invoked  whenever  the  system makes  a  mistake.   Training  a
symbolic system can be useful for question-answering systems.  

Another reason why sub-symbolic methods need knowledge based methods is the intuition, based on
human  behavior,  that  intelligence  necessarily  involves  learning,  knowledge  from  experience,  and
reasoning, which could be expressed as an equation as follows:

Intelligence = Learning from Data + Knowledge/Experience + Reasoning

which has been used as the basis for Knowledge-Infused Learning (KIL) (Sheth, Gaur, Kursuncu, and
Wickramarachchi, 2019).  The KIL notion is a collection of architectures that range from shallow to
deep infusion of knowledge, allowing one to match an architecture with a particular application.  KIL
has the potential to have impacts on robotics, cognitive science, autonomous vehicles, and personal
assistants (Sheth, 2021).

Yet another architecture is to start with a “seed” ontology and augment it incrementally using signal
processing techniques  from knowledge graphs extracted from various  sources,  such as  documents.
Signal  processing  is  a  very  highly  developed  and  active  area  with  a  large  community,  and  this
connection  between  this  community  and  the  ontology  community  could  have  many  benefits
(Majumdar, 2021; Sowa, 2021; Baclawski et al, 2020b).

The survey given in this section has attempted to give a rough organization of the large variety of
neuro-symbolic architectures that are now being developed, but one can expect new architectures to be
developed by researchers in this very active field.



5. Sustainability of Ontologies
Many  organizations,  including  government  agencies,  standards  bodies  and  commercial  firms,  use
ontologies and have developed tools for  various  ontological  activities,  such as creation,  evolution,
mapping and other forms of harmonization.

Sustainability  involves  addressing much more  than  simply  ensuring  sufficient  funding.   Achieving
sustainability  fully  requires building on a  firm foundation.   The most  important  aspects  of  such a
foundation are the following three “pillars.” (Dickerson, 2021)

1. Economic Viability.  One must ensure there is sufficient funding for maintaining the ontology
for as long as its purpose remains relevant.  The manner in which resources are allocated and
monitored  determines  whether  economic  viability  is  achieved.  Without  proper  oversight,
economic viability cannot be maintained.

2. Social  Equity.   Ontologies  can  have  biases,  including ontologies  that  are  generated  using
machine learning.  Data invariably has biases to a greater or lesser extent, and machine learning
techniques cannot find or correct them on its own (Suresh and Guttag, 2019).  While combining
symbolic knowledge with machine learning can help to discover and mitigate it,  it is important
to accept that addressing bias remains an vital part of ontology development and maintenance.  

Using  standards  and  rigorous  methodology  can  also  assist  in  ensuring  social  equity  is
adequately addressed. Standards provide a common baseline for involved parties, so a wider
group  of  people  are  able  to  fully  participate  in  development.  A thorough  approach  helps
establish quality, which also encourages an unbiased approach (Dickerson, 2021).

3. Environmental  Protection.   The  term  “environment”  in  this  pillar  refers  to  the  human
environment that surrounds the specific community that developed an ontology.  It is important
to recognize that communities and their ontologies do not exist in isolation.  One must maintain
avenues of communication and cooperation with adjacent and other related communities.

Well designed definitions, documentation and harmonization, as discussed in Sections 3 and 4 above,
can contribute both to the Social Equity and the Environmental Protection pillars of sustainability.

The pillars of sustainability illustrate that there is much more to ontology development than simply
creating the ontology.  The first round of ontology development is only the beginning; one must put it
into production.

First,  planning  is  needed  to  execute  the  release.   One  must  plan  for  infrastructure  concerns,  the
engagement of stakeholders, and the scheduling of associated tasks (Franch and Ruhe, 2016). Once an
ontology is released and is actively being used by those outside the development group, the need for
revisions  arises.   A development  team can  only  anticipate  so  many  potential  issues;  release  also
contains a baseline of content (Kotis, Vouros, and Spiliotopoulos, 2020). Those issues must be managed
appropriately, or the post-release viability of the ontology will be in jeopardy.  



Mechanisms must be implemented to facilitate revisions and as appropriate, expansions to the original
model.   Well-designed  feedback  and  editing  channels,  including  templates,  further  the  robust
environment for an ontology to mature (Blasko, Kremen, and Kouba, 2015).  Stakeholders can be
resources to edit the content of an ontology as well as enforce equity through promotion of standards.  

Maintaining  the  technical  infrastructure  furthers  the  intellectual  and  collaborative  infrastructure
required to sustain ontologies for the long term.  Ever changing formats, languages, platforms and tools
also make it hard to sustain ontology repositories, which was the topic of the Ontology Summit 2008
(Obrst et al., 2008).

The EnvO example  in  Sections  3.1  and 3.2  above illustrates  how a  community  is  addressing  the
sustainability of their ontology.  The GCW glossary analysis results were harmonized with EnvO and
aligned with corresponding terms in the SWEET ontology. SWEET is a lightweight ontology with
broad coverage, but sporadic definitions that historically served as a starting point for concepts within
the  Earth  Sciences.  Richer  semantics  were  often  added  for  particular  domains,  and  spinoffs  from
SWEET were created. In comparison to EnvO’s concepts, SWEET concepts are less axiomitized and,
as noted, fewer terms have definitions. Many of the legacy terms that are in SWEET were lifted from
online sources like Wikipedia and were not subjected to analysis by domain experts.  More recently,
portions  of  SWEET have  been  updated  with  a  new release  in  2021.   The  lessons  that  the  EnvO
community learned are valuable for other communities.

As research methodology and scope have expanded with technological advances, the management of
ontologies and other related semantic resources has become a critical and distinct component of the
ontology lifecycle.  The scale  and diversity  of new semantic  resources,  such as  knowledge graphs,
neuro-symbolic generated products and domain vocabularies, requires a reexamination of ontological
engineering practices, and the various roles of ontologies in the overall semantic research enterprise.

6. Summary and Conclusion
The proliferation of ontologies of many different types, purposes and roles has created an urgent need
for ontology harmonization to improve communication between people, between people and machines
and  between  machines.   This  Communiqué  has  surveyed  the  issues  for  ontology  generation  and
harmonization.  As there are many stakeholders that have an influence on or are impacted by these
issues, the following summarization is organized by the various kinds of stakeholders.

The  highest  level  stakeholders  are  the  communities  and  organizations  who  sponsor  ontology
development projects, either alone or as part of other projects.  At this level it is important to ensure
that all three pillars of sustainability are well founded.  Community agreement is needed for ontology
extensions and revisions.  Good mechanisms for community discussion are important as are partner
agreements with groups with domain vocabularies.  A variety of tools are used for coordination and
harmonization, such as Slack and Github, but community members are not necessarily skilled in the
use of these tools.



The project managers of a project that includes ontology development are important stakeholders for
ontology generation and harmonization.  The effort to control the meaning of terms in vocabularies
requires a lifecycle of their own, which must be managed like other digital data lifecycles.  Project
managers are responsible for selecting and enforcing appropriate style guidelines in general, and style
guidelines for definitions in particular, such as the Guidelines for Writing Definitions in Ontologies and
the MIRO guidelines.  Another management challenge is maintaining access to the vocabulary for
reuse or for alignment with ontologies.

Project managers and developers must collaborate to make important high-level decisions during the
ontology  development  process.   A well  constructed  foundational  ontology  can  aid  in  ontological
analysis, but can also affect other decisions and the development process.  So, selecting a foundational
ontology must be very carefully done.  Another important decision is the neuro-symbolic architecture
that will be used for incorporating symbolic reasoning in the sub-symbolic system.  A good intuition
about the neuro-symbolic architecture decision is the equation  Intelligence = Learning from Data +
Knowledge/Experience + Reasoning.  The terms in the domain vocabulary should include not only
nouns and verbs but also lexical modifiers such as adjectives and adverbs.  All of the vocabulary terms
should be organized into a concept system, which need not be a hierarchy.

The end users of ontologies and ontology-based systems are stakeholders, and ontology developers
should collaborate with end-users to ensure that the technical language of the developer is consistent
with the natural language of the end user.  The use of natural language for the symbols of an ontology
can result in confusion because of existing meanings that humans have for the symbols.  Accordingly,
ontologies should recognize the distinctions between the needs of humans and machines.  One of the
functions of a definition is to adjust the readers’ or systems’ inferential competences, i.e., what they
infer when encountering the term that is defined.  One effective means for communication is to use
narrative and event linguistic theory.  The logic underlying an ontology should be selected according to
the requirements of the users of the ontology.  It is especially important to include an appropriate notion
of uncertainty.

There is another kind of stakeholder who is only indirectly part of ontology development but who has a
significant  impact;  namely,  the  ontology  researcher.   Ontology  harmonization  can  be  very  time-
consuming, so tools are important to simplify the effort required as well as to manage the effort over
time.  The challenge is to develop better  tools for harmonization.   The scale and diversity of new
semantic  resources,  such  as  knowledge  graphs,  neuro-symbolic  generated  products  and  domain
vocabularies, requires a reexamination of ontological engineering practices.  Learning and training in
these  new semantic  resources,  and their  use  in  operational  ontology  practices  is  important.  Some
preliminary mechanisms to maintain access to vocabularies for reuse or for alignment with ontologies
have been established, but better mechanisms are needed.  Another challenge is to develop better tools
and techniques for reaching agreement efficiently with a diverse community.



The ontology developers have important responsibilities to ensure that the domain of the ontology is
properly understood and documented.  One important prerequisite for understanding a domain is to
survey all existing relevant references.  Having collected relevant terminology, the developer should
avoid taxonomy seduction, i.e., prematurely placing entities into taxonomies.  Remember that terms
may  be  standardized  but  the  meaning  has  to  be  too.   Writing  good  definitions  is  essential  for
standardizing meaning, but the first step in writing definitions is to accept that one does not know how
to do it.   The  next  step  is  to  start  learning how.  There  are  now excellent  guidelines  for  writing
definitions.  Some other concerns of definition development include avoiding vague comparisons and
sensitivity to levels of granularity.
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