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Abstract

This article examines the presence of spatial spillovers in farms’ dynamic technical inefficiency

scores using Data Envelopment Analysis and a second-stage spatial truncated bootstrap regres-

sion model. Dynamic inefficiency is measured in terms of variable input contraction and gross

investment expansion, while the second-stage model allows an individual’s dynamic inefficiency to

be influenced by both own and neighbours’ characteristics. The empirical application focuses on

the panel data of specialized Dutch dairy farms observed over the period 2009-2016 and for which

exact geographical coordinates of latitude and longitude are available. The results confirm the

existence of spatial spillovers in farmers’ dynamic technical inefficiency levels. Although changes

in neighbours’ subsidies do not significantly influence an individual’s inefficiency, an increase in

neighbours’ age reduces an individual’s performance, while an increase in neighbours’ levels of

intensification improves an individual’s dynamic efficiency.
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1. Introduction

Despite the numerous theoretical and methodological advances in the area of firm-level bench-

marking, the measurement of firms’ performance remains a challenging task. This is because

producers operate under a complex environment in which temporal as well as spatial links in their

decisions may exist. Tackling the intertemporal nature of producers’ decisions has been well docu-

mented in the related literature. The assumption that firms instantaneously adjust their production

factors to their optimal levels has been severely criticized, motivating the move from static to

dynamic modelling. In a dynamic setting, firms’ optimal policy is to gradually adjust their quasi-

fixed factors of production due to the existence of adjustment costs (Penrose 1959; Treadway 1970;

Stefanou 1989; Stefanou 2009). Empirically, the constraint that capital is not freely adjusted is im-

posed through an equation of motion where capital depends on the rate of depreciation of existing

capital and investment in new capital. Examples of such dynamic efficiency studies include Silva

and Stefanou (2003), Serra et al. (2011), Kapelko et al. (2015), Kapelko and Oude Lansink (2017)

and Ang and Oude Lansink (2018).

Although a plethora of studies have accounted for the intertemporal nature of producers’ decision-

making processes, spatial spillovers, which represent externalities arising from neighbouring pro-

ducers, have not been addressed so extensively. The scarcity of studies accounting for such effects

may be due to modelling complications or the unavailability of spatial data. However, Anselin

(2001) warns that, conditional on their existence, ignorance of spatial spillovers may lead to biased

inference. Furthermore, the identification of spatial links between producers may be valuable to

more effectively disseminate knowledge and/or promote new technologies so as to improve firms’

economic and environmental performance.

In the agricultural economics literature, Foster and Rosenzweig (1995) and Weiss (1996) were

some of the first to discuss the potential existence of spatial links between farmers in a technology

adoption setting. Subsequent empirical studies including Wollni and Andersson (2014) and Läpple

et al. (2017) verified the existence of spatial spillovers in farmers’ decisions to adopt new technolo-

gies. Additionally, in a farm survival analysis setting, Storm et al. (2014) found adverse spatial

spillovers from economically larger farms due their greater ability to expand their businesses by

biding up land prices and the associated inability of the surrounded farms to reach their optimal
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size. This discussion was gradually extended to efficiency analysis with Areal et al. (2012), Pede

et al. (2018) and Skevas (2019) arguing that producers may learn from their neighbours or imitate

them, thus resulting in spatial spillovers in their inefficiency scores. For instance, an individual

farmer may experience efficiency gains by learning how to use his resources more effectively from

surrounding farmers. Furthermore, an individual’s working motivation may be influenced by that

of neighbouring farmers and result in similar investment decisions that will improve performance.

Thus, we might expect the existence of spatial spillovers in farmers’ inefficiency scores.

Early attempts to account for spatial effects in agricultural efficiency analysis focused on the

regional or the municipality level. For instance, Hadley (2006) and Schmidt et al. (2009) included

regional-specific dummies and municipality-specific covariates respectively, in an inefficiency re-

gression setting. However, recognising that spatial spillovers may take place at a more disaggre-

gated level led the subsequent (few) studies to focus on lower scale. For example, Areal et al.

(2012) used a kilometer grid-square level, while Pede et al. (2018), Skevas and Grashuis (2019),

Martínez-Victoria et al. (2019) and Skevas (2019) used exact geographical coordinates (i.e. lati-

tude and longitude) to test for the presence of spatial spillovers in firms’ inefficiency/productivity

scores, with the results verifying their existence. However, and as long as the identification of

spatial spillovers on inefficiency is concerned, previous studies merely examined their presence

on static inefficiency, disregarding the temporal links of production decisions that are implied by

the sluggish adjustment of quasi-fixed factors of production. Failing to account for intertemporal

linkages can lead to misleading efficiency estimates.

We contribute to the literature as follows: unlike previous studies that have only accounted

for spatial spillovers on static inefficiency, we examine the presence of spatial spillovers in farms’

dynamic inefficiency scores. Dynamic technical inefficiency is measured in terms of variable input

contraction and gross investment expansion using DEA. Subsequently, a second-stage spatial trun-

cated bootstrap regression model is used to examine the presence of spatial spillovers on farm dy-

namic inefficiency. Own as well as neighbours’ characteristics are specified as determinants of an

individual’s dynamic inefficiency and the related marginal effects are calculated. The application

focuses on the panel data of specialized Dutch dairy farms, observed over the period 2009-2016,

for which geographical coordinates of latitude and longitude are available. Dutch dairy farming is

an interesting case study for two reasons. First, the sector is characterized by high capital intensity
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and rapid technological progress, which give rise to the existence of high adjustment costs that

justify the dynamic framework. Second, according to Groeneveld et al. (2013) Dutch dairy farm-

ers tend to communicate with their neighbours and be aware of their production practices, which

makes it interesting to study potential spatial spillovers in their inefficiency levels. The following

section presents the method used to measure dynamic technical inefficiency and the specification

of the second-stage spatial model. A description of the dataset follows. Results are presented and

discussed in the subsequent section, while the final section concludes.

2. Methodology

2.1. Dynamic technical inefficiency measurement

As in Silva and Stefanou (2007), a dynamic directional distance function is used to measure dy-

namic technical inefficiency. In this context, farms use a vector of fixed inputs L ∈ RB
+, a vector

of quasi-fixed inputs K ∈ RF
+ with associated gross investments I ∈ RZ

+, a vector of variable

inputs x ∈ RJ
+ and produce a vector of outputs y ∈ RM

+ . The input requirement set is represented

as V (y : K,L) = {(x, I) : (x, I) can produce y given K, L}. According to Silva and Stefanou

(2007), the input requirement set V (y : K,L) is a closed and nonempty set, has a lower bound,

is positive monotonic in variable inputs x, negative monotonic in gross investments I, is a strictly

convex set, has output levels that increase with the stock of capital and quasi-fixed inputs, and

can be disposed of freely. For farm i and time t, the input-oriented dynamic directional distance

function
−→
D i,t(y,K,L,x, I; gx,gI) with variable input and investment directional vectors gx and

gI respectively, is defined as:

−→
D i,t(y,K,L,x, I; gx,gI) =max{β ∈ R : (x− βgx, I + βgI) ∈ V (y : K,L)}

gx ∈ RN
+ ,gI ∈ RZ

+, (gx.gI) 6= (0N ,0Z)
(1)

if (x − βgx, I + βgI) ∈ V (y : K,L) for some β,
−→
D i,t(y,K,L,x, I; gx,gI) = −∞, otherwise.

This directional distance function measures the maximal translation of (x, I) in the direction that

is defined by the vector (gx,gI) that keeps the translated input combination in the set V (y : K,L).

Given that βgx is subtracted from x and βgI is added to I, the aim is to find by how much to
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contract the vector of variable inputs (x) and expand the gross investments (I) in the direction

(gx,gI) onto the boundary of the technology. Dynamic technical inefficiency is measured by β.

The dynamic directional distance function in equation (1) is estimated using DEA. We consider

a Variable Returns to Scale (VRS) technology because previous studies, such as Zhu and Oude

Lansink (2010), report increasing returns to scale for Dutch dairy farms, which is allowed for in

the VRS specification. Omitting the time subscript for the remainder of this paper, for simplicity,

the optimization problem is written as follows:

−→
D i(y,K,L,x, I; gx,gI) = max

β,λi
β

s.t.

ym ≤
N∑
i=1

λiyim m = 1, ...,M ;

N∑
i=1

λixij ≤ xj − βgx,j, j = 1, ..., J ;

If + βgI − δfKf ≤
N∑
i=1

λi(Iif − δfKf ) f = 1, ..., F ;

N∑
i=1

λiLi
b ≤ Lb b = 1, ..., B;

N∑
i=1

λi = 1

λi ≥ 0, i = 1, ..., N

(2)

where λ is an intensity vector of firm weights and δ is the depreciation of capital. The first four

constraints impose restrictions on outputs, variable inputs, gross investments and fixed inputs re-

spectively, while the fifth and the sixth constraints allow for VRS technology and nonnegativity of

the farm weights respectively. In our application, the directional vectors for variable inputs gx and

gross investments gI are the quantity of variable inputs and 20% of the size of capital respectively,

as in Kapelko et al. (2015).

2.2. Spatial truncated bootstrap regression

Once the dynamic technical inefficiency scores are obtained, typical second-stage censored regres-

sion models can be used to explain variation in inefficiency scores. However, we go one step fur-

ther and examine the potential presence of spatial spillovers in the dynamic technical inefficiency
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scores. This is achieved by allowing dynamic inefficiency to be a function of both individual and

neighbour characteristics as Skevas and Grashuis (2019) do in a static inefficiency framework.2,3

Given that DEA analysis yields relative inefficiency scores that are serially correlated, the inde-

pendence assumption in the second-stage truncated regression is violated making the regression’s

estimates biased. For this purpose, the Simar and Wilson (2007) single bootstrap approach is used,

which has been shown to be a valid method for correcting the small sample bias and the serial

correlation of the non-parametric inefficiency estimates both in radial (Kapelko and Oude Lansink

(2015), Rezitis and Kalantzi (2016)) and directional distance function settings (Singbo and Oude

Lansink (2010); Skevas et al. (2012); Singbo et al. (2014)). This is achieved by replacing the

inconsistent estimates of the original truncated regression with bootstrap estimates while allow-

ing for heterogeneity in the distribution of inefficiency and separability of the production set and

the independent variables. Subsequently, the bootstrap estimates are used to perform inferences

(i.e. construction of confidence intervals). The bootstrap algorithm is applied to each observa-

tion separately, which allows to provide empirical representations of the impact of individual and

neighbours characteristics on farm dynamic technical inefficiency. Details for implementing each

step of the bootstrap algorithm can be found on the description of algorithm 1 in Simar and Wil-

son (2007). Note also that this study does not specify fixed effects, which is a common choice in

studies that adopt the truncated bootstrap regression setting (Aramyan et al. (2006); Skevas et al.

(2012); Skevas and Oude Lansink (2014); Kapelko and Oude Lansink (2015); Horta et al. (2016);

Rezitis and Kalantzi (2016)). This is because the Simar and Wilson (2007) bootstrap approach is

applied at the individual level, whereas specifying fixed effects and eliminating them through the

common mean-differencing approach makes the transformed variables consist of a group rather

than individual observations.

2In the related literature, this model is called the Spatial Lag of X model, abbreviated as SLX (LeSage and Pace 2009;

Vega and Elhorst 2015).
3Although not using exact location information of latitude and longitude and not applied to agriculture, Fusco et al.

(2018) and Fusco et al. (2019) present an alternative single-step DEA approach in which the inefficiency of each unit

is measured relatively to other units that belong to the same territory and where the number of neighbours is estimated

empirically. However, this study uses the Skevas and Grashuis (2019) approach where inefficiency is first calculated

based on a common frontier and spatial spillovers are sought in a second-stage regression. This allows us to quantify

spatial spillovers and identify the channels through which they may arise.
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The spatial truncated bootstrap model is written as:

β̂TI = αι + Zη + WZθ + ξTI ≥ 0 (3)

where β̂TI is the N × 1 vector of the individuals’ dynamic technical inefficiency scores obtained

from equation (2), ι is an N × 1 vector of ones associated with the constant term parameter α, Z

is an N × L matrix of farm-specific characteristics, η is the associated L× 1 vector of parameters

to be estimated and ξTI is the N × 1 vector of noise terms. Focusing on the spatial component

of equation (3), the term WZ represents neighbours’ characteristics. This is achieved by placing

elements on theN×N spatial weights matrix W such that the product WZ yields anN×Lmatrix

that contains linear combinations of the values of neighbours’ independent variables. Finally, the

L × 1 parameter vector θ quantifies the strength of spatial spillovers. Note that the constant term

is not included in Z because it would be perfectly collinear with the corresponding WZ variable.

The same holds for the time dummies that are included in the application that follows. Inference

in the spatial truncated bootstrap model presented in equation (3) is based on the so-called direct

and spillover effects. The direct effects are the coefficient estimates with respect to the farm-

specific characteristics (η), while the spillover effects are those associated with the neighbours’

characteristics (θ). To be able to make quantitative statements with respect to these effects, the

corresponding marginal effects are calculated using the formula presented in Cameron and Trivedi

(2010) who derive the marginal effects of a variable that is left-truncated at 04. The derivative

of β̂TI with respect to a variable contained in Z yields the corresponding direct marginal effect,

which reveals the percentage change in a farmer’s dynamic inefficiency due to a unit increase in

his own respective characteristic. The derivative of β̂TI with respect to a variable contained in

WZ yields the corresponding spillover marginal effect, which captures the percentage change in a

farmer’s dynamic inefficiency due to a (cumulative) one unit increase in his neighbours’ respective

characteristic.

4Consider the case where a (left-truncated at 0) variable y is a function ofK explanatory variables contained in a vector

x with associated parameter vector β and an error component ε with standard deviation σ. The derivative of y with

respect to the kth explanatory variable in x is calculated as: ∂y
∂xk

= βk×

[
1− x

′
β
σ ×

φ(x
′
β/σ)

Φ(x′ β/σ)−
(
φ(x

′
β/σ)

Φ(x′ β/σ)

)2
]

, where

φ(·) is the standard normal distribution and Φ(·) represents the standard normal cumulative distribution function.
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3. Dataset

Description of the data

Our data come from the Farm Accountancy Data Network (FADN) which are collected by Wa-

geningen Economic Research of the Netherlands. The dataset contains information on specialized

Dutch dairy farms and covers the period between 2009 and 2016. FADN defines specialized dairy

farms as those whose revenues from sales of milk, milk products and turnover and growth of cattle

comprise at least 2/3 of their total revenues. The dataset is a balanced panel of 1,584 observations

from 198 farms.5

One output, two fixed inputs, one quasi-fixed input with its associated gross investments and

two variable inputs are considered. The output comprises farm total output which includes milk,

milk products, turnover and growth of cattle, crop products and other. The two fixed inputs are

farms’ total labour measured in hours and farms’ total utilized agricultural area measured in

hectares, as in Serra et al. (2011). Labour is considered to be a fixed input because it almost

entirely comes from family labour. Buildings and machinery (capital) constitute the quasi-fixed

input, while gross investments in this component are also considered. Finally, the two variable

inputs are costs of intermediate inputs excluding feed and feed expenses. The former is an aggre-

gate of veterinary expenses, crop-specific costs, energy expenses, contract work and other variable

costs. Note that animals are not used as a separate quasi-fixed input so that the employed model is

empirically tractable. The same approach was followed by Hüttel et al. (2017) and Ang and Oude

Lansink (2018). The output and inputs measured in monetary values are defined as implicit quan-

tity indices by calculating the ratio of value to its associated price index obtained from EUROSTAT,

with base year being that of 2010.

Apart from output, input and investment indices, we also use financial, social and management

indicators. These are included in the Z matrix of the second-stage spatial truncated bootstrap

regression model presented in equation (3) to test for their (direct and spillover) impact on dynamic

5Employing balanced panel data is a very typical procedure followed in the spatial econometrics literature because the

properties of spatial estimators become problematic for unbalanced panel datasets. This is because several restrictive

assumptions and sensitive estimation techniques are needed, including statements regarding why the data are missing

and imputation methods for recovering them (Elhorst 2014b).
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technical inefficiency. Subsidies constitute the financial indicator and represent the total payments

that farms receive under the Common Agricultural Policy (CAP) framework, while the Dutch

Consumer Price Index obtained from EUROSTAT is used to measure them in the base year of

2010 in e10,000. Though there are ample studies examining the relationship between subsidies

and inefficiency, the direction of the effect is debatable. On the one hand, there exist studies

including - Zhu and Oude Lansink (2010), Zhu et al. (2012), Minviel and Sipiläinen (2018) and

Skevas et al. (2018a) - who report a positive effect on inefficiency as a result of the income effect

nature of subsidies that lowers farmers’ motivation to work efficiently. On the other hand, studies

such as Blancard et al. (2006), Kumbhakar and Bokusheva (2009), and Rizov et al. (2013) report

a negative effect of subsidies on inefficiency when the former acts as a source of credit that allows

farms to innovate and operate closer to the frontier. The social indicator is age and is measured in

years.6 The effect of age on inefficiency is also an empirical question. While Luh and Stefanou

(1993) argue that as farmers grow older they become less inefficient because they acquire higher

experience and learning ability, Hadley (2006) and Abdulai and Tietje (2007) stress that older

farmers may lose their working motivation and refrain from productive investments, thus becoming

more inefficient. Finally, the management indicator is farmers’ stock density measured as the

ratio of livestock units to total land. This variable represents farms’ degree of intensification.

Utilizing the same indicator, Alvarez and del Corral (2010) report a negative relationship between

stock density and inefficiency, attributing it to the easier management of more intensive farms

and the associated lower probability of their operators to misuse their resources. Alternatively,

stock density can be negatively associated with inefficiency given that intensive farms are more

keen on adopting new technologies (Läpple et al. 2017), which can decrease their inefficiency.

Furthermore, time dummies are included to make the dynamic inefficiency scores comparable

across different years. The year 2009 is used as a base category. Table 1 offers summary statistics

6Although age can be specified either as a continuous variable or as a dummy variable that can capture differences

across age groups (i.e. young, middle-aged and old), the former approach is used in the present study. This is

because most farmers in the sample are old (as the mean value of age on Table 1 manifests), which would make the

remaining categories consisting of very few observations. Furthermore, given that the main objective of the paper

is to identify spatial spillovers among farms, specifying age as a dummy variable would simply capture differences

in inefficiencies between different age groups across space and not the impact of increasing neighbours’ age on an

individual’s performance, which could manifest knowledge or motivation spillovers.
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of all our variables.

Table 1

Summary statistics of the utilized variables

Variable Unit Mean Std.

y Total output (index) 340,131.40 238,714.00

L1 Total labour (hours) 4,683.26 2,705.19

L2 Total land (hectares) 70.01 42.65

K Buildings & machinery (index) 484,526.70 395,674.50

I Gross investment in buildings & machinery (index) 114,603.30 160,228.00

x1 Intermediate inputs (index) 77,592.18 58,051.79

x2 Feed (index) 79,558.85 63,441.16

p EUROSTAT output price (index) 1.09 0.10

c EUROSTAT buildings & machinery price (index) 1.03 0.04

w1 EUROSTAT intermediate inputs’ price (index) 1.09 0.07

w2 EUROSTAT feed price (index) 1.15 0.14

Subsidies CAP payments (index in e10,000) 6.52 5.55

CPI Dutch Consumer Price Index (index) 0.97 0.34

Age Years 52.54 10.19

Density Livestock units/total land (ratio) 3.77 10.69

Finally, the effect of the farmer’s neighbours’ indicators on his own inefficiency is our main

focus here. Some prior expectations follow. Concerning subsidies, if they are viewed as a source

of finance that allows farmers to adopt new technologies and decrease their inefficiency levels, one

would expect that changes in the farmer’s neighbours’ subsidies would not influence the farmer’s

own inefficiency as they do not entail changes in the farmer’s financial capacity. Positive spillover

effects on efficiency could however arise if neighbouring farmers communicate the advantages of

the uptake of new technologies with an adjoining farmer, which can increase his probability of

uptake and therefore his efficiency. However, if subsidies are perceived as an additional source

of income that lower farmers’ motivation to work efficiently, this may also result in an efficiency
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decrease for an adjoining farmer, through a reduced motivation spillover effect from neighbouring

farmers. With respect to age, positive or negative spillover effects may arise. On the one hand,

older neighbours may share their experience and their accumulated knowledge on production-

related issues with a neighbouring farmer, resulting in a farmer’s own efficiency gains. On the

other hand, a farmer’s efficiency may decrease if his working motivation is (negatively) impacted

by his neighbours’ reduced motivation, which may occur especially if they are close to retire-

ment. Finally, given that producers who employ intensive production practices tend to commit

less production mistakes and be more keen and familiar with using new technologies, an individ-

ual farmer that is surrounded by more intensive farmers may experience efficiency gains due to

learning spillover effects from his neighbours.

3.1. Construction of the spatial weights matrix

The construction of the spatial weights matrix requires an assumption regarding the network

through which spatial influences arise. While Foster and Rosenzweig (1995) assume that spatial

spillovers are more likely to exist between farms located in close geographical proximity, Conley

and Udry (2010) argue that spatial spillovers do not necessarily exist between neighbouring farms

but rather flow from more ’successful’ farms to the rest. Nevertheless, the latter argument is more

likely to hold in the context of developing countries in which large heterogeneity of farms’ perfor-

mances, sizes and technology choices exists. However, in a developed country such as the Nether-

lands, dairy farms tend to be more technologically advanced and more homogeneous in terms of

performance. We assume that spatial spillovers in Dutch dairy farms are more likely to arise at

the neighbourhood level and construct the spatial weights matrix based on farms’ geographical

distance.

The available dataset contains information on farms’ latitude and longitude. These variables

allow for calculating the distance between farms and, therefore, the construction of the spatial

weights matrix W in equation (3). Following Roe et al. (2002), we recognise that an individual

farmer may be more strongly influenced by close neighbours than more distant ones and use an

inverse distance matrix that places more weight on the former. The inverse distance matrix has ele-

ments wij = 1
dij

, where dij is the Euclidean distance between individual i and j. The conventional

practice of setting a distance cut-off point d∗ is followed, implying that all spatial weights wij out-
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side this distance are zero. The cut-off point d∗ is set equal to the minimum distance within which

all farms in the sample have at least one neighbour, as in Marasteanu and Jaenicke (2016). This

distance is 18km. Note that the diagonal elements of W (wii) are exempted from the above proce-

dure and equal zero so that an individual is not defined as neighbour to himself. Finally, we follow

Vega and Elhorst (2015) and standardize the spatial weights matrix W by scaling its elements by

its maximum eigenvalue instead of the row sums. This is done because according to Kelejian and

Prucha (2010), row normalizing a spatial weights matrix that is based on inverse distances makes

its distance decay interpretation invalid. This is because the impact of observation i on j is not the

same as that of the observation j on i, and the information about the mutual proportions between

the elements in the different rows of W disappears.

4. Results and Discussion

Linear programming is used to solve the DEA problem in equation (2). Table 2 reports the mean

and standard deviation of the dynamic inefficiency scores per year. Average dynamic technical

inefficiency across all individuals and years is 22%. That is, farms can on average and under

ceteris paribus conditions reduce their variable inputs by 22% and increase their gross investments

by 4.4% of the value of the capital stock (i.e. 0.2×0.22). The reported average inefficiency score is

higher than Serra et al. (2011) but similar to Steeneveld et al. (2012), who measured the dynamic

and static inefficiency of Dutch dairy farms, respectively. However, the inefficiency scores of

the aforementioned studies can’t be directly compared with those reported in this study. This is

because Serra et al. (2011) use an older dataset and the technique of SFA, while Steeneveld et al.

(2012) estimate inefficiency in a static setting using also an older dataset. In contrast, this study

estimates dynamic inefficiency using DEA and a more recent dataset that covers the period after

the economic crisis of 2008/2009, which is also characterized by several technological advances,

perhaps especially automatic milking machines.
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Table 2

Mean and standard deviation of dynamic inefficiency per year

Year Mean dynamic inefficiency Std.

2009 0.24 0.17

2010 0.22 0.18

2011 0.23 0.17

2012 0.23 0.19

2013 0.17 0.15

2014 0.21 0.17

2015 0.22 0.18

2016 0.26 0.20

Average 0.22 0.18

In fact, studies that employ more recent datasets tend to report higher inefficiency scores for dairy

farms. For instance, Namiotko and Baležentis (2017) measure the inefficiency of Lithuanian dairy

farms under the presence of investment spikes and estimate average inefficiency at 23%.7 Further-

more, Skevas et al. (2018b) use a reduced form dynamic inefficiency model and report an average

dynamic inefficiency score of 35% for German dairy farms.

Turning to the results of the spatial truncated bootstrap regression model, Table 3 reports the

corresponding parameter estimates along with the estimates from a non-spatial truncated bootstrap

model. The reported results are based on a distance cut-off point of 18km, which is the minimum

distance at which all farms in the sample have at least one neighbour. Another practice used in the

literature is to choose a higher cut-off point such that all farms have several neighbours (Roe et al.

2002). However, this article relies on a standard rather than an arbitrary threshold.8

7This estimate concerns farms with similar size to the ones used in this article.
8Robustness checks are performed using 20km and 22km distance cut-off points. Parameter estimates are virtually

the same. Furthermore, the Akaike’s Information Criterion (AIC) is slightly lower in the model that uses the 18km

cut-off point, implying that it fits the data better than the rest. The results from the robustness checks are reported in

Table A1 in the on-line Appendix. The robustness checks concern the spatial truncated bootstrap regression model

because this is the model that is favoured by our data.
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Table 3

Estimates of the non-spatial and the spatial truncated bootstrap model

Non-spatial Spatial

Variable Mean Std. 5% Interval Mean Std. 5% Interval

Constant 0.22 0.03 [0.17, 0.27] 0.25 0.03 [0.19, 0.30]

Dummy_2010 -0.01 0.02 [-0.04, 0.02] -0.01 0.02 [-0.04, 0.02]

Dummy_2011 -0.02 0.02 [-0.05, 0.02] -0.02 0.02 [-0.05, 0.02]

Dummy_2012 0.01 0.02 [-0.02, 0.04] 0.01 0.02 [-0.03, 0.04]

Dummy_2013 -0.09 0.02 [-0.12, -0.05] -0.09 0.02 [-0.12, -0.06]

Dummy_2014 -0.02 0.02 [-0.05, 0.01] -0.02 0.02 [-0.05, 0.01]

Dummy_2015 -0.01 0.02 [-0.04, 0.02] -0.01 0.02 [-0.05, 0.02]

Dummy_2016 0.03 0.02 [0.00, 0.06] 0.03 0.02 [0.00, 0.06]

Subsidies -0.02 0.01 [-0.04, -0.01] -0.02 0.01 [-0.04, -0.01]

Age 0.01 0.00 [0.01, 0.02] 0.02 0.01 [0.01, 0.02]

Density -0.03 0.01 [-0.06, -0.02] -0.03 0.01 [-0.05, -0.01]

WSubsidies - - - 0.00 0.03 [-0.05, 0.05]

Wage - - - 0.01 0.01 [0.00, 0.02]

Wdensity - - - -0.03 0.01 [-0.04, -0.03]

σ 0.17 0.00 [0.16,0.18] 0.17 0.01 [0.16, 0.18]

AIC -1,292.03 -1,322.90

BIC -1,230.67 -1,246.19

Note: Statistically significant confidence intervals are presented in bold.

The estimates with respect to the year dummies do not differ across models. However, the estimates

with respect to the constant term and the age variable differ across models as they are deflated in

the non-spatial model. This implies a severe deflation of the calculated marginal effect of age on

inefficiency. Finally, the data present substantial evidence in favour of the spatial model since the

quantities of the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)

are lower when compared to the non-spatial model. Given this last result, all subsequent inferences
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are based on the estimates of the spatial truncated bootstrap regression model.

Focusing on the estimates with respect to the year dummies, the dynamic inefficiency scores

exhibit significant differences in the years 2013 and 2016. Specifically, dynamic technical ineffi-

ciency is significantly lower in 2013 and significantly higher in 2016 when compared to 2009 (i.e.

base year). Moving to the direct effects, which correspond to the estimates with respect to the indi-

vidual farm characteristics, statistically significant effects are observed. Subsidies and density are

associated with lower inefficiency levels, while age is linked to higher inefficiency. Concerning

the spillover effects represented by the parameter estimates associated with neighbours’ charac-

teristics, statistically significant positive and negative spillovers are observed for age and density

respectively.

As mentioned in the methodology section, the marginal effects of the determinants on ineffi-

ciency are calculated and are presented in Table 4.

Table 4

Marginal effects of the dynamic inefficiency determinants

Variable Mean Std. 5% Interval

Dummy_2010 -0.01 0.02 [-0.03, 0.02]

Dummy_2011 -0.01 0.02 [-0.04, 0.01]

Dummy_2012 0.00 0.02 [-0.02, 0.03]

Dummy_2013 -0.07 0.02 [-0.09, -0.04]

Dummy_2014 -0.02 0.02 [-0.04, 0.01]

Dummy_2015 -0.01 0.02 [-0.04, 0.01]

Dummy_2016 0.03 0.02 [0.00, 0.05]

Subsidies -0.02 0.01 [-0.03, -0.01]

Age 0.01 0.00 [0.01, 0.02]

Density -0.02 0.01 [-0.04, -0.01]

WSubsidies 0.00 0.02 [-0.04, 0.04]

WAge 0.01 0.00 [0.00, 0.01]

WDensity -0.03 0.00 [-0.03, -0.02]

Note: Statistically significant confidence intervals are presented in bold.
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Compared to 2009, dynamic technical inefficiency is 7% lower in 2013. However, in 2016 the dy-

namic inefficiency is 3% higher than that observed in 2009. For the remaining years, no significant

differences occur. Explanations on why the average inefficiency of farms decreased in 2013 and

increased in 2016, when compared to 2009, can either be based on changes in the prices of variable

inputs or on differences in the variation of inefficiency among farms during these years. Regarding

price changes, according to EUROSTAT feed price increased from e13.40 per 100kg in 2009 to

e22.40 in 2013, while the price of Diesel increased from e61.15 per 100 litres in 2009 to e110.50

in 2013. Therefore, a possible explanation is that the aforementioned increases in the prices of

variable inputs in 2013 motivated farmers to use them in more parsimonious ways that decreased

their inefficient use. However, in 2016 the price of feed went down to e16.41 per 100kg and the

price of Diesel decreased to e86.5 per 100 litres. Therefore, an explanation for the higher ineffi-

ciency in 2016 is that the decreases in the prices of variable inputs motivated farmers to increase

their use, which can be associated with more production mistakes (i.e. overuse of variable inputs)

that led to higher inefficiency. Additionally, the year 2016 follows the recent 2015 abolition of

milk quota, which motivated farmers to increase milk production thus increasing their probability

of committing production mistakes and experiencing lower inefficiencies. Regarding differences

in the variation of inefficiency, given that the year dummies pick up differences in farms’ produc-

tion technologies across years, the lower inefficiency in 2013 may simply be due to less variation

in inefficiency between farms when compared to 2009, while the higher inefficiency in 2016 can

simply be due to higher variation in farms inefficiency as opposed to 2009.

Regarding the direct and spillover marginal effects of subsidies on inefficiency, only the for-

mer is statistically significant. In particular, a one unit (i.e. e10,000) increase in subsidies leads

to a 2% decrease in inefficiency. The related literature reports two different effects of subsidies

on inefficiency, where on the one hand, more subsidies may relieve farmers’ credit constraints and

make them less technically inefficient, while on the other hand, increasing subsidies may lower

farmers’ motivation to perform technically at a high level, thus increasing their technical ineffi-

ciency. Our results indicate that the former effect dominates, as in Kumbhakar and Bokusheva

(2009). As mentioned above, neighbours’ subsidies do not significantly affect an individual’s inef-

ficiency. This suggests that an increase in the subsidies received by neighbours does not change an

individual’s budget and motivation and consequently his ability or inclination to invest. When it
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comes to age, significant direct and spillover marginal effects are observed. A one-year increase in

the farmer’s age leads to a 1% increase in inefficiency. This suggests that as farmers move towards

the end of their life cycle, their lack of motivation to perform at a high technical level prevails over

their experience advantage, thus experiencing inefficiency increases (Hadley 2006; Abdulai and

Tietje 2007). A (cumulative) one-year increase in neighbours’ age increases an individual’s ineffi-

ciency by 1%, highlighting the existence of a reduced motivation domino effect between farmers

when becoming older. This probably occurs because neighbouring farmers gradually lose their

interest in searching for new technologies and investing in them, with this behavior being transmit-

ted to an adjoining individual resulting in his own efficiency losses. With respect to stock density,

statistically significant direct and spillover marginal effects also occur. A one unit (i.e. livestock

unit per total land) increase in stock density decreases dynamic inefficiency by 2%, which can

be due to the easier management of more intensive farms and the associated lower probability of

their operators to misuse their resources (Alvarez and del Corral 2010) or due to the tendency of

more intensive farmers to adopt new technologies that can increase their efficiency (Läpple et al.

2017). Interestingly, the spillover marginal effect of density on dynamic inefficiency has a higher

magnitude than the corresponding direct marginal effect. Specifically, a (cumulative) one unit in-

crease in neighbours’ density decreases an individual’s inefficiency by 3%, providing evidence of

a strong learning spillover effect among farmers. That is, an individual farmer surrounded by more

intensive peers may take advantage of their more efficient and up-to-date production techniques

and learn how to use his own resources more accurately, thus experiencing efficiency increases.

All in all, the above results verify the hypothesis that communication between neighbouring

farmers can either have adverse or beneficial effects in the form of efficiency losses and gains, re-

spectively. The former is verified by the positive relationship between neighbours’ increasing age

and an individual’s inefficiency, which can arise due to the reduced motivation of older farmers

that spillovers to neighbours. The latter is evident from the negative link among neighbours in-

creased density and an individual’s inefficiency, which can be due to the flow of knowledge among

neighbours regarding the accurate use of resources as this is hypothesized by Areal et al. (2012),

Pede et al. (2018) and Skevas (2019).
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5. Conclusions

We measure farms’ dynamic technical inefficiency using DEA and specify a second-stage spatial

regression model to test for the existence of spatial spillovers in the estimated inefficiency scores.

We depart from previous studies in the literature by examining the presence of spatial spillovers on

farms’ dynamic inefficiency. The temporal dynamics stem from the fact that quasi-fixed factors of

production such as capital are not instantaneously adjusted, due to the existence of high adjustment

costs (Stefanou 2009). Dynamic inefficiency is measured in terms of contraction of variable inputs

and expansion of gross investments. Subsequently, we recognise that interactions with neighbours

may influence an individual’s dynamic inefficiency and specify a second-stage spatial truncated

bootstrap regression model in which inefficiency depends on individual as well as neighbours’

characteristics. The hypothesized spillovers are based on learning and motivation domino effects

that may arise through the interactions among neighbouring producers (Areal et al. 2012). Ac-

counting for the potential existence of spatial spillovers in inefficiency scores is important both

from a theoretical and from a methodological point of view. Theoretically, detecting spillovers

across neighbouring farmers can help effectively disseminate knowledge and promote adoption of

innovative technologies to increase farm efficiency. Technically, second-stage DEA models that

ignore spatial spillovers may result in biased inference (Anselin 2001).

Our data concern specialized Dutch dairy farms observed from 2009 to 2016. This very recent

dataset, apart from the traditional output, input and investment information, also contains exact

geographical coordinates for farms based on their latitude and longitude. This information allows

the calculation of the distance between farms and therefore the identification of neighbouring pro-

ducers. Average dynamic technical inefficiency is 22%, highlighting the potential of Dutch dairy

farms to improve their variable input use and investments allocation. Farmers’ dynamic ineffi-

ciency levels are significantly influenced by individual characteristics. Subsidies decrease farms’

dynamic inefficiency levels as they may relax their credit constraints, enabling them to invest in

new technologies and move closer to the frontier. Increasing age leads to higher dynamic ineffi-

ciency. This may occur because as farmers grow older and approach the end of their life cycle, they

become less motivated to work efficiently. Finally, stock density decreases dynamic inefficiency,

which can be either due to the lower probability of more intensive farms to misuse their resources
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or due to their higher probability to adopt new technologies and the related efficiency gains. Fur-

thermore, significant spatial spillovers in farms’ dynamic inefficiency scores are found. Although

neighbours’ subsidies do not influence an individual’s inefficiency as they do not lead to changes

in his funds that can be used for investment purposes, significant spatial spillovers are observed

for age and, particularly, density. On the one hand, farmers surrounded by older neighbours tend

to be more inefficient. This is potentially because the reduced motivation of neighbours as they

grow older is transmitted to an individual farmer through imitation/communication, resulting in

his reduced performance. On the other hand, producers that farm close to more intensive peers

decrease their inefficiency. This suggests that farmers learn how to use their resources more effec-

tively from neighbours that employ more efficient and state-of-the art production practices, which

is ultimately translated as own efficiency gains.

Our results can be of particular interest to policy-makers. Knowing that learning spillover

effects between farmers exist highlights the importance of local farmers’ associations and/or farm

visits in spreading knowledge and information. For instance, dissemination of information on

using new equipment (i.e. milking robots) and new management programmes may benefit not

only those targeted but also those around them. Additionally, since our findings reveal that the

trend of older farmers becoming less efficient can also influence their neighbours, younger people

could be encouraged. Given that young farmers may be more aware of state-of-the art technologies

and more keen to invest in them, a motivation domino effect may result in efficiency gains for

neighbours. Strategies for attracting young people to farming can include setting aside a small

portion of direct payments for them, as is one of the key proposals for the future of the CAP after

2020. Additionally, intergenerational transfer of tangible and non-tangible assets such as access to

land, information, education and financial services can also be an incentive. In the Netherlands,

the main problem does not concern the intergenerational transfer of information and, in general,

the intangible assets but rather the transfer of land due to its very high price. Therefore, farm

succession can be eased by enhancing the access of new (institutional) investors to the financial

market, who are willing to invest in land and who can enable farms to lease the land and buy it

back over time.

Moving to the limitations of this research, the lack of data hinders the possibility of conducting

a broader empirical analysis. Specifically, this study utilizes only three socioeconomic character-
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istics to test for their impact on dynamic inefficiency, which also entails that three spatially lagged

explanatory variables are specified in the truncated regression model. Additional characteristics

were either not available or contained severe gaps, particularly for the most recent years, prevent-

ing the investigation of the impact of additional variables on dynamic inefficiency. Furthermore,

the lack of price information prevented examination of spatial spillovers on other components of

farms’ performance such as allocative and economic inefficiency.

Finally, future research can explore both methodological and application areas. One direction

is related to the specification of the distance cut-off point of the spatial weights matrix. Although

we use the conventional minimum distance cut-off threshold and the robustness checks reveal no

significant changes in the results when alternative arbitrary thresholds are concerned, a more data-

driven approach would be to estimate the distance cut-off point of the spatial weights matrix. An

estimation procedure is presented in Elhorst (2014a), where the distance cut-off point is estimated

based on an algorithm that minimizes the ordinary least squared residuals. Hence, future research

can extend this optimization routine to a truncated regression setting to estimate the distance cut-

off point and the related spatial spillovers on inefficiency. Additionally, future research could focus

on applying a similar empirical study to other countries such as France and Germany. This could

form an interesting case study because farms in such countries are not so densely located compared

to those in the Netherlands, which makes it interesting to test whether spatial spillovers still exist.

Also, spatial spillovers in other stages of the supply chain could be examined, such as amongst

processing firms.
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On-Line Appendix

Table A1

Estimates of the spatial truncated bootstrap model for the three different cut-offs

18km 20km 22km

Variable Mean Std. Mean Std. Mean Std.

Constant 0.25 0.03 0.25 0.03 0.26 0.03

Dummy_2010 -0.01 0.02 -0.01 0.02 -0.01 0.02

Dummy_2011 -0.02 0.02 -0.01 0.02 -0.02 0.02

Dummy_2012 0.01 0.02 0.01 0.02 0.01 0.02

Dummy_2013 -0.09 0.02 -0.09 0.02 -0.09 0.02

Dummy_2014 -0.02 0.02 -0.02 0.02 -0.02 0.02

Dummy_2015 -0.01 0.02 -0.01 0.02 -0.01 0.02

Dummy_2016 0.03 0.02 0.03 0.02 0.03 0.02

Subsidies -0.02 0.01 -0.03 0.01 -0.03 0.01

Age 0.02 0.01 0.02 0.01 0.02 0.01

Density -0.03 0.01 -0.03 0.01 -0.03 0.01

WSubsidies 0.00 0.03 0.01 0.03 0.01 0.03

WAge 0.01 0.01 0.01 0.01 0.00 0.01

WDensity -0.03 0.01 -0.03 0.01 -0.03 0.01

σ 0.17 0.01 0.17 0.00 0.17 0.00

AIC -1322.90 -1320.89 -1315.42
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