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ABSTRACT 
 

Subjective belief elicitation about uncertain events has a long lineage in the economics and 
statistics literatures. Recent developments in the experimental elicitation and statistical 
estimation of subjective belief distributions allow inferences about whether these beliefs are 
biased relative to expert opinion, and the confidence with which they are held. Beliefs about 
COVID-19 prevalence and mortality interact with risk management efforts, so it is important 
to understand relationships between these beliefs and publicly disseminated statistics, 
particularly those based on evolving epidemiological models. The pandemic provides a 
unique setting over which to bracket the range of possible COVID-19 prevalence and 
mortality outcomes given the proliferation of estimates from epidemiological models. We 
rely on the epidemiological model produced by the Institute for Health Metrics and 
Evaluation together with the set of epidemiological models summarised by FiveThirtyEight 
to bound prevalence and mortality outcomes for one-month, and December 1, 2020 time 
horizons. We develop a new method to partition these bounds into intervals, and ask subjects 
to place bets on these intervals, thereby revealing their beliefs. The intervals are constructed 
such that if beliefs are consistent with epidemiological models, subjects are best off betting 
the same amount on every interval. We use an incentivised experiment to elicit beliefs about 
COVID-19 prevalence and mortality from 598 students at Georgia State University, using six 
temporally-spaced waves between May and November 2020. We find that beliefs differ 
markedly from epidemiological models, which has implications for public health 
communication about the risks posed by the virus. 
 
Keywords: subjective beliefs, beliefs, COVID-19 mortality, COVID-19 prevalence 
 
Declarations of interest: none 

 
⌘ Department of Risk Management & Insurance and Center for the Economic Analysis of Risk (CEAR), 
Robinson College of Business, Georgia State University, USA (Harrison); School of Economics, University of 
Cape Town, South Africa (Hofmeyr, Kincaid); Research Unit in Behavioural Economics and Neuroeconomics 
(Hofmeyr, Kincaid, Ross); School of Philosophy and School of Economics, University College Dublin, Ireland 
(Monroe); School of Society, Politics and Ethics, University College Cork, Ireland, School of Economics, 
University of Cape Town, South Africa, and Center for the Economic Analysis of Risk, Robinson College of 
Business, Georgia State University, USA (Ross); Center for the Economic Analysis of Risk, Robinson College 
of Business, Georgia State University, USA (Schneider); and Department of Economics, Andrew Young School 
of Policy Studies, Georgia State University, USA (Swarthout). Harrison is also affiliated with the School of 
Economics, University of Cape Town. E-mail contacts: gharrison@gsu.edu, andre.hofmeyr@uct.ac.za, 
harold.kincaid@uct.ac.za, brian.monroe@ucd.ie, don.ross931@gmail.com, mschneider@gsu.edu, and 
swarthout@gsu.edu. We are grateful to the Center for the Economic Analysis of Risk for funding this research; 
in all other respects the funder had no involvement in the research project. 
Corresponding author: Andre Hofmeyr (andre.hofmeyr@uct.ac.za)



 -1- 
 

1. Introduction 

 

Beliefs that individuals hold about COVID-19 prevalence and mortality interact with efforts 

to manage the risks of the virus. A core concern is the relationships between these beliefs and 

publicly disseminated statistics, particularly statistics based on evolving epidemiological 

models. The COVID-19 pandemic provides an important setting to study this relationship 

because of the role that epidemiological models have played in public debate, and 

understandable biases in early editions of models that became evident over a relatively short 

period of time. Public awareness of the extent to which official statistics about COVID-19 in 

the United States (U.S.) might be biased, due to political influences and varying recording 

practices in different hospitals and jurisdictions, poses an additional challenge when studying 

this relationship. To what extent did the beliefs of individuals evolve with the forecasts of 

epidemiological models? To what extent did the beliefs of individuals evolve with the official 

reports from the Centers for Disease Control and Prevention (CDC)? To what extent did 

these trends affect the confidence of individual beliefs over time? 

 

We elicit the subjective beliefs of 598 students at Georgia State University using incentivized 

forecasting tasks about expected COVID-19 prevalence and mortality. Our methods are 

designed to bracket the range of possible beliefs that individuals have, and assess their 

individual confidence in those beliefs. We also developed a method that allows us to directly 

identify the extent to which beliefs tracked forecasts of some publicly circulating 

epidemiological models, quite apart from the elicitation of beliefs to address the broader 

questions posed above. To ensure that we were able to observe changes over time, we 

administered six temporally-spaced waves between May and November 2020, with different 

respondents selected at random for each wave. 

 

To anchor predicted COVID-19 prevalence and mortality outcomes for the elicitation of 

beliefs over horizons of one month, and over horizons to December 1, 2020, we relied in part 

on one prominent epidemiological model, from the Institute for Health Metrics and 

Evaluation (IHME) at the University of Washington (http://www.healthdata.org). The IHME 

model has produced publicly disseminated daily forecasts of both infections and deaths 

throughout the course of the pandemic. We also made use of the evolving set of 

epidemiological models featured by FiveThirtyEight (fivethirtyeight.com), which ranged 

from 6 to 14 models over the course of our study, to complement the IHME model. We 
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develop a method to partition the possible outcomes presented to subjects into intervals or 

bins, such that if a subject were to hold beliefs consistent with the epidemiological models, 

including allowance for statistical error, she would bet the same amount on every bin. A 

notable feature of our method is that it allows direct inferences about the extent to which 

distributions of beliefs diverge from these model-based forecasts. More extensive inferences, 

beyond testing this specific null hypothesis, require more structural statistical modeling, and 

will be undertaken in subsequent analyses, such as [1]. 

 

Epidemiological models, like any (deterministic or statistical) models, can be poor predictors 

of outcomes, even when designed according to accepted best practice. The IHME model that 

provided the basis for the baseline frame of bins we used in the study has been subject to 

specific criticism, with some experts arguing that its design did not reflect best 

epidemiological practice [2-4]. On the other hand, as also noted by these critics, the IHME 

model was the most prominently disseminated and cited source of epidemiological 

forecasting among the general public. This makes it a natural benchmark for our purposes. In 

this context it is also worth reiterating that other epidemiological models that were displayed 

on FiveThirtyEight informed additional frames for bins, beyond the baseline, that were used 

to elicit beliefs. In retrospect, the majority of these additional models did significantly 

outperform the IHME model in predicting U.S. COVID-19 infections and deaths. 

 

We find that beliefs diverge markedly from the epidemiological models we used for setting 

bins. This finding has immediate implications for public health communication about the 

risks posed by the virus if we view those epidemiological models as more likely to be reliable 

in their predictions. With additional assumptions that allow us to infer beliefs precisely from 

the reports that our subjects make, we can say much more. A particularly important lesson, 

developed in [1], concerns the striking evolution over the 6 waves of elicitation of the level of 

confidence about cumulative deaths by December 1, 2020. Around August, the confidence of 

beliefs tightened significantly. Future research will explore the possible determinants of the 

changes in belief confidence, as well as any change in bias for other COVID-19 events 

covered by our elicitations in the U.S. and South Africa.1 

 
 

 
1 We conducted a parallel, multi-wave experiment using the same elicitation methods in South Africa, although 
that is not a focus of our attention here. 
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2. Material and Methods 
 

2.1 Eliciting Subjective Belief Distributions 
 

The importance of eliciting subjective beliefs about uncertain events has long been clear 

across many disciplines. The earliest attempts to measure beliefs came from survey questions 

[5, 6]. These have become increasingly sophisticated, with researchers now seeking to elicit 

whole belief distributions for non-binary events [7, 8], such as the levels of COVID-19 

infections and deaths that are our focus. However, surveys do not incentivize the truthful 

revelation of beliefs, and there is substantial evidence that using hypothetical surveys to elicit 

beliefs can be unreliable [9]. Our use of an incentive-compatible mechanism to elicit beliefs 

makes our approach fundamentally different to survey responses, and more informative.2 The 

concept of subjective belief was formally developed in economics and decision theory as an 

extension of the notion of revealed preference [11]. Just as the strength of preferences for fine 

wine over plonk can be revealed by purchase decisions when the relative prices of the two 

types of wine are varied, beliefs can be revealed by betting decisions that depend on a 

particular outcome, such as the level of COVID-19 infections, reported by a certain source, 

such as the CDC, on a specific day in the future. 

 

A key development in the reliable elicitation of subjective beliefs was operationalizing this 

notion of beliefs revealed by betting, by observing changes in betting decisions as the relative 

odds offered by bookies are varied. Imagine an array of bookies, lined up in terms of their 

odds that the COVID-19 infection rate will go up in the next month, rather than stay the same 

or go down. Some bookies offer great odds that it will go up, and some offer great odds that it 

will go down, and there are many bookies in between. Now allow someone to place a bet of 

$1 with each bookie. If the bettor is risk neutral, the point at which they switch from betting 

that infections will go up to betting that they will not go up tells us the odds that this person 

places on these events, and from those odds we can infer the person’s subjective probability 

of infections going up.  

 

It is a small formal step to present this array of bookies in the form of a “scoring rule,” which 

translates different bets into payoffs for the bettor, depending on the realized outcome or 

event [12, 13]. And in turn we can generalize these ideas to placing bets on several events, 

 
2 See [10] for an example of the use of survey questions to elicit beliefs about COVID-19. 
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such as the event that infection rates go up by more than 1 percentage point, the event that 

they go up by between 0 and 1 percentage points, and the event that they go down. In this 

way we can elicit the subjective probability mass function over these events, or indeed the 

probability distribution function for continuous events [14]. Or we can divide a continuous 

event, such as the level of COVID-19 infections by June 30, 2020, into 10 bins that partition 

the event space over which we seek to elicit beliefs, as in the experiment we report. And 

since we are asking people to place bets with simulated bookies, with varying odds defined 

by a scoring rule, this is easy to do with real money, and thereby provide incentives for 

truthful revelation of beliefs cum bets by using “proper” scoring rules [15].  

 

Our method is intended to be general. Consider a policy setting in which a statistical model 

provides predictions about macroeconomic outcomes, and policy-makers base their 

recommendations on those predictions. Most statistical models, particularly in economics, 

rely on some data that are collected with a lag, and with data that often undergo major 

revisions over time. Invariably, senior decision-makers come to make decisions armed with 

predictions from a model that they know misses some information. It could be that 

predictions made today from the statistical model are conditioned on interest rates or 

exchange rates that applied a month ago, since all other data needed for the model has a one-

month lag in collection. But the decision-makers know that current interest rates or exchange 

rates have changed sharply in the last few weeks. In this setting the subjective beliefs of the 

decision-makers are formed by some combination of the statistical model and their beliefs 

about how that knowledge about the recent past affects the predicted macroeconomic 

outcomes. And even if the predicted macroeconomic outcomes are expected to be the same, 

knowledge of actual outcomes in recent weeks might affect the confidence intervals around 

the predictions.3 A comparable challenge regularly faces Chief Risk Officers and their 

forecasts of major financial risks.4 

 
3 In stylized form, this is exactly what happens in the opening hours of the important Federal Open Market 
Committee meetings of the U.S. Federal Reserve every month. Forecasts of the future economy have been 
distributed by staff of the Federal Reserve Board of Governors, and the discussion leads to a consensus as to 
what the Committee believes is likely to happen to the economy. Based on that consensus, critical policy 
decisions by the voting members of the Committee are made [16]. The consensus might be the same as the 
forecasts of the statistical model, it might be different in expectation, or it might just be different in terms of 
confidence intervals. Our method may be framed as a formal way to characterize how these initial statistical 
forecasts compare to the views of the Committee members. In effect, it would have the Committee members 
place bets, with proceeds to a worthy charity of course, on the future outcomes of certain key macroeconomic 
variables. 
4 A comparison of models and beliefs, similar to ours but for Chief Risk Officers (CRO) and a statistical model, 
was reported by [17]. In that case the predictions of the statistical model for a one-year horizon, generated just 
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Figure 1: Subjective Belief Task Interface and Bets of Subject #183 on May 29, 2020 

 

Figure 1 is a screenshot of the experimental software we developed to elicit the beliefs of 

each subject about COVID-19 prevalence and mortality. This subjective belief question was 

presented to subjects during Wave 1 of our study, which took place on May 29, 2020. Figure 

1 shows the actual bets, in the form of a token allocation, of subject #183, and the amount to 

be paid depending on the answer to the question. The answer was verified using the first 

public report provided by the CDC after the date in the question, which was explained to 

subjects through audio-visual instructions before they completed the task. 

 

Armed with probability mass functions over ten events, as represented in Figure 1, which 

characterize subjective belief distributions over the levels of COVID-19 prevalence and 

mortality, we can analyse the bias and confidence of those beliefs. Bias is just the familiar 

concept from statistical estimation: how different is the weighted average belief from the 

 
prior to the belief elicitation, were used to calibrate a belief elicitation task presented individually to the CRO 
subjects. Comparisons of their predictions suggested, inter alia, that the CRO predictions did not have the 
extreme “tails” of the statistical models.  
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realized event, or the best available econometric or epidemiological model at the time [17], or 

the claims of prominent media or political leaders? All of these types of “target beliefs” to 

assess bias are actually useful metrics for different reasons, so there is not just one measure of 

bias that is of interest.5 Confidence is just the familiar concept of imprecision from statistical 

estimation, most commonly captured by the variance of beliefs about their mean. We prefer 

to think of confidence more broadly to reflect the variability of beliefs, so we can also 

consider skewness and kurtosis, but the point is to pay attention to more than just the 

weighted average or mode of beliefs. One can only characterize bias and confidence if one 

elicits subjective belief distributions [18], which of course allow for the special case of 

degenerate beliefs held with certainty.6 Fully Bayesian epidemiological models of COVID-19 

infections and deaths provide posterior predictive distributions of future levels, which can be 

used to also make determinations of whether subjective beliefs are “overconfident” or 

“insufficiently confident,” using the approach documented in [20]. 

 

Our approach here to our subjects’ elicited beliefs is Bayesian. We compared elicited beliefs 

with expert epidemiological opinion. The latter might be taken as reasonable priors which 

agents use to produce their own posteriors given what individual data they have. Also, we 

describe beliefs as a probability distribution over outcomes, as a Bayesian would. Priors here 

refer to already held beliefs about the probability of some statement; in the context of medical 

testing, priors about having a disease might start from the population base rate. Posteriors are 

revisions of those beliefs formed after obtaining new evidence, such as a positive disease test.  

However, we make no explicit use here of Bayesian updating from priors plus data to explain 

changes in posterior beliefs of our subjects from wave to wave.  

 
5 Our subjects were literally rewarded for their beliefs about the report by the CDC of the cumulative level of 
infections or deaths from COVID-19 on a certain date. This report, of course, was an estimate. Such reports 
were often revised over time, as more data, better data, and alternative methods of estimation were employed. 
Hence we refer generally to a “target” value against which elicited beliefs were compared, rather than some 
true, objective value. 
6 The notion of bias is used in several different ways across various disciplines. In statistics and econometrics it 
typically refers to an estimate of some parameter, such as the average of an estimated belief distribution. In this 
case, one would construct tests that compare the point estimate of the parameter to the “target” estimate, using 
the estimated standard error of the point estimate. An alternative approach that is standard for Bayesians is to 
define some “region of practical equivalence,” or ROPE, that describes differences between the parameter 
estimate and the “target” estimate, and then compare that ROPE to the highest density interval (HDI) of some 
estimated distribution. In our case the ROPE is the distance between the average belief and the target estimate, 
and the HDI is defined over the elicited subjective distribution of beliefs (not the distribution of the mean as a 
parameter estimate). For symmetric distributions the HDI is the familiar equal-tailed interval. To an economist, 
the ROPE refers to the bias that is of economic significance. To a Bayesian, the ROPE allows a natural 
statement of what classical statisticians mean by the testing of a point-null hypothesis [19], by turning it into an 
interval hypothesis appropriate for the inferences at hand. See Appendix A for details on the ROPE we 
constructed for our Bayesian statistical analyses. 
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Figure 2 shows the realized answer, as reported by the CDC, to the question from Figure 1, 

and hypothetical bets that vary according to whether they are biased relative to the number of 

infections by June 30, 2020, and the confidence with which these beliefs are held. Per the 

experimental protocol, the official reports from the CDC are treated as the correct answer that 

determine subject payments. The top left quadrant of the figure represents an unbiased, but 

relatively low confidence, set of bets, in the sense that the largest bet was placed on the 

correct answer, but bets were also made on other events. The bottom left quadrant also 

represents unbiased beliefs, but held with a degenerate level of confidence in the sense that 

all tokens were bet on the correct event. The two right quadrants represent biased beliefs 

because no tokens were allocated to the correct event, but clearly differ according to the 

strength with which beliefs were held.7 

 

 

Figure 2: Bias and Confidence of Subjective Belief Distributions 

 

A direct implication of incentivizing bets with a proper scoring rule is that if someone 

believes that each event, as represented by the bins in a task, is equally likely to occur, the 

 
7 We used a quadratic scoring rule (QSR) to incentivize truthful revelation of beliefs. As a proper scoring rule, 
the QSR provides the highest expected reward if risk neutral subjects report their true beliefs, and therefore 
penalizes subjects for betting on events to which they do not assign positive probability. Unless a subject reports 
degenerate beliefs, as in the bottom left or right quadrant of Figure 2, the QSR still provides payment for bins to 
which no tokens have been allocated, as in the top left or right quadrant of Figure 2. 
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person will bet exactly the same amount on each bin, as represented in Figure 3. Thus, when 

someone bets anything other than the same amount on every bin, this reveals that they do not 

consider every event as equiprobable. We constructed bins over which to elicit beliefs about 

the number of infections and deaths due to COVID-19 in the U.S. either one month in the 

future or by December 1, 2020. These bins were constructed such that if a person’s bets differ 

across bins, this non-uniformity across bins reveals that the person’s beliefs deviate from 

epidemiological models of infections and deaths due to COVID-19. 

 

 

Figure 3: Bets for Equiprobable Events 

 

The first step in constructing these bins is to define the distribution of underlying events. We 

assumed that deaths and infections, scaled to the population of the U.S., follow a Beta 

distribution. The Beta distribution is flexible enough for our purposes, has well-defined 

higher moments, and finite support over an interval. This last property ensures that the 

number of people who will be infected or die due to COVID-19 cannot be negative or greater 

than the U.S. population. In addition, the Beta distribution is well suited to characterizing the 

bias and confidence of subjective belief distributions. Finally, it has two sufficient statistics, 

and therefore the shape of the distribution can be defined by two points, or anchors, along its 

cumulative distribution function (CDF), if the cumulative density at each anchor is known or 

imposed. 

 

We therefore set out to define pairs of anchors that consist of a lower anchor, such that there 
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is a probability of 0.1 that the true statistic would be less than this amount, and an upper 

anchor, such that there is a probability of 0.2 that the true statistic would be greater than this 

amount.8 For each pair of anchors, a Beta distribution was defined that uniquely satisfies 

these two sufficient statistics. This Beta distribution was then used to define 10 bins such that 

each bin represented 10% of the full distribution’s cumulative density.9 This bin construction 

exercise ensures that if a person’s beliefs were the same as the distribution we defined, which 

was based on epidemiological models, they would maximize their expected earnings and 

their expected utility by betting the same amount on each bin. 

 

Our method for designing which bins to present to subjects was intended to provide general 

information about the beliefs of individuals that reflected our hyper-priors about the 

underlying data generating process. Our method also served to generate a sharp, direct test of 

the specific null hypothesis that the beliefs of individuals tracked those informed by 

epidemiological models. And by the beliefs from individuals and the models “tracking” each 

other, we mean much more than aligned weighted averages: we insist that they also track 

each other in terms of levels of confidence. This additional criterion allows us to determine if 

the evolution of epidemiological understanding and modeling, which was dramatic during the 

period of our elicitation, is matched by an evolution of individual beliefs. 

 

2.2 Reflecting Epidemiological Models 

 

To effect this test of the null hypothesis, we need some characterization of the beliefs that 

might be arrived at by attention to “epidemiological models.” To do that we started with the 

IHME model, and used the forecasts that it provided to generate the bins we refer to as frame 

0.10 And, more specifically, our method generated bins that implied equal weight should be 

given to each bin, in terms of bets implemented with token allocations. Proper scoring rules 

incentivize the truthful revelation of beliefs of risk neutral bettors. There are deep theoretical, 

 
8 Section 2.2 discusses the bin anchoring calculations we performed for each wave of the study. 
9 In general, any parametric distribution with a defined CDF and S sufficient statistics can be defined by S 
points along the CDF. Let F(x | ɑ, β) be the cumulative density of the Beta distribution below x, with shaping 
parameters ɑ and β. For each frame, we pick (x, y), such that F(x | ɑ, β) = 0.1, and  1 - F(y | ɑ, β) = 0.2. We then 
combine these two equations such that h(ɑ, β) = F(x | ɑ, β) + F(y | ɑ, β) – 0.9 = 0, and solve for the unique roots 
ɑ*, β* such that h(ɑ*, β*) = 0. Finally, we use the resulting Beta distribution F(x | ɑ*, β*) to define the bins for 
that particular frame.  
10 See [21] for a review of the historical context, modeling assumptions, accuracy, and criticisms of the IHME 
model. See [22] for an early discussion of susceptible-infected-recovered (SIR) model validity given human 
behavior in response to the pandemic. Finally, see [23] for an evaluation of COVID-19 models over time. 
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experimental, and statistical issues that arise when agents are not risk neutral, because then 

they can make bets to hedge against risk [15]. For example, an extremely risk averse 

decision-maker might bet the same amount on every bin in a subjective beliefs task to ensure 

zero variance in payment, regardless of the event that is realized. Thus, if the subjects in our 

experiment all bet the same amount on every bin, we would be unable to directly infer 

whether this was due to high levels of risk aversion or to beliefs that are consistent with 

epidemiologically informed forecasts.11 However, to the extent that subjects do not bet the 

same amount on every bin, this implies that their beliefs are not consistent with the 

epidemiologically informed forecasts regardless of their levels of risk aversion. This property 

is a powerful innovation in the method developed and applied here: it is apparent that risk 

preferences of individuals only matter if subjects do not bet the same amount on every bin. 

Hence we are able to test this null hypothesis by directly comparing the token allocations we 

observe from individuals, without any need for adjustment for their risk preferences. 

 

The specific epidemiologically informed model used for frame 0 was then used as the basis 

for adjustments to generate the bins reflected in frames 1, 2, and 3, which were also informed 

by consideration of additional publicly circulating epidemiological models. Apart from 

allowing us to test for wholesale deviations from the hyper-priors reflected in frame 0, these 

frames themselves can be viewed as reflecting beliefs informed by wider ranges of 

epidemiological models. Our method then adds the constraint that someone holding beliefs 

consistent with those models would bet exactly the same amount on every bin. Thus, frame 0 

gives greatest prior weight to one specific epidemiological model, and frames 1, 2, and 3 use 

bins reflecting alternative ranges of wider epidemiological modeling. In this sense, our 

complete set of frames is designed to reflect “epidemiological models” as a whole, respecting 

the inevitable changes in the number of such models available for public scrutiny, and 

modeling assumptions of different experts, over the course of the pandemic.  

 

Our method to select two anchors for our belief elicitation required us to focus on prospective 

outcomes for COVID-19 statistics at various future time points, over which subjects could 

then place bets. We aimed to base these anchors on credible epidemiological models, 

presenting us with several challenges.  

 
11 During the experimental session, we also elicited the risk attitudes of each subject to account for the 
possibility of hedging in the elicitation and estimation of subjective beliefs. We do not focus on risk attitudes 
here, because they are unnecessary for our inferential objective. 
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First, when COVID-19 was declared a pandemic, epidemiologists still had relatively little 

knowledge of its transmission vector, but this knowledge improved rapidly and steadily over 

the course of our study frame [24]. This improvement of knowledge resulted in changes in 

the specification structure of models as our study unfolded, and the addition of new models 

that were made available between waves of our study.  

 

Second, no single model supported forecasts of all of the outcomes on which we asked 

subjects to report beliefs. So we were forced to sacrifice some consistency with respect to the 

set of epidemiological models considered over time, as well as across outcomes at a point in 

time. 

 

Third, on some of our waves the virus was spreading very quickly and there were lags 

between CDC reports and model forecast updates. On some occasions, when the CDC 

incorporated retrospective data from heavily affected states as jump shifts, the effects of these 

lags were substantial. Statistical efficiency implied that we not present subjects with bets on 

outcomes at the lower end of infections or deaths that had already become impossible. In 

general, our method was to use our own hyper-priors to construct a specific null hypothesis. 

This entailed using as much information about the pandemic as was available to us, rather 

than devising a procedure for mechanically applying epidemiological models. At the same 

time, anchoring our hyper-priors on epidemiological forecasts in a consistent way was also a 

crucial element of our method. 

 

In the face of these and other challenges, we adopted the following approach to selecting 

belief elicitation anchors for COVID-19 prevalence and mortality in the U.S. population.12 

To begin, for each of our six waves we selected a baseline distribution (BD0) based primarily 

on forecasts from the IHME. We selected this model because among those that were 

available from the beginning of our study, it uniquely provided specific projections of both 

case and death numbers for every future date through our planned time course. However, we 

allowed adjustments to this distribution wherever it was incompatible with the actual 

incidence of infection and mortality, due to lags. During moments of rapid transmission, 

 
12 We also asked subjects to forecast prevalence and mortality rates among Americans aged 65 years and older, 
in light of the crucial role of their far higher mortality in driving policy responses. The construction of anchors 
for this part of our experiment involved special problems due to progressive decline in available data quality 
over the course of our study. This aspect of the overall project will be discussed elsewhere. 



 -12- 
 

mortality reports were a basis for estimates of infections that were more reliable than direct 

infection reports themselves, and our method called for this information to be incorporated 

into our hyper-priors. 

 

We did not limit anchors to the adjusted IMHE-driven baseline distribution for three reasons. 

First, we sought to reduce the likelihood that many subjects might place all of their tokens in 

one extreme bin or the other, thus failing to provide us with much information about the 

distribution of their beliefs. Second, we aimed to avoid being limited to broad bin ranges that 

would fail to provide subjects with opportunities to report relatively precise beliefs if they 

indeed held such beliefs. Finally, we did not want to end up with uninformative responses, 

which could occur with very wide bins if subjects bet all of their tokens on the same bin. 

 

We therefore constructed three additional bin anchors (BA1 - BA3) that shifted forecasting 

anchors relative to the baseline. To connect these to expert observation and modeling, we 

drew information from additional epidemiological models. The data journalism website 

FiveThirtyEight consolidates models produced by leading public health research institutes. 

The number of these reported models varied during the course of our study, from 6 on Wave 

1 to 14 by Wave 6. We used the mortality forecasts of these additional models to constrain 

construction of bin anchors BA1 - BA3 for each wave.  Since these models, unlike the IHME 

model, do not forecast infections, when anchoring bounds for infections we imposed the case 

fatality rate (CFR) that prevailed at the time of the wave according to the CDC. We then 

assumed that this rate would converge linearly over time to the CFR of the IHME model for 

December 1, 2020; again, the IHME model provided the only long-range forecast available 

during early waves. 

 

We established anchors for BA1 in each wave by replacing the mortality anchor for BD0 by 

the bottom of the forecast range for the most “optimistic” model in the FiveThirtyEight suite 

as of the wave in question, where “optimistic” means the model that forecast the lowest 

number of deaths consistent with actual mortality reports on the day before launch of the 

wave in question. The upper anchor was then adjusted so that the probability density function 

(PDF) would replicate the baseline distribution BD0 as closely as possible, subject to the 

constraint imposed by the assumption made above about the CFR value for each wave. 

Setting bottom anchors for each BA1 was the step in the construction most likely to require 

ad hoc adjustment due to lag effects. In such instances, basing the top anchor on the most 
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“optimistic” model in the suite required us to relax the assumption of a uniform PDF. To 

avoid suggesting implausibly over-precise estimates to subjects, such as 50,123 deaths, all 

anchors were converted to integers rounded to the nearest multiple of 10.  

 

We constructed anchors for BA2 by replacing the upper anchor of BD0 by the upper end of 

the most “pessimistic” model in the FiveThirtyEight suite, and adjusting the bottom anchor 

by analogous restrictions as for the BA1 construction above. Where lag effects required 

adjustments to bottom anchors on BD0, corresponding adjustments were made to bottom 

anchors of BA1 by reference to the assumed CFR for that wave.  

 

Finally, we constructed anchors for BA3 by setting the upper anchor to the top of the error 

range of the implied BA2 model for p = 0.05, then shifting up the bottom anchor by again 

maintaining the PDF of BD0 constrained by the assumed CFR for that wave.  

 

Thus, the ranges presented to study subjects were based on one set of bin anchors (BD0) that 

treated the IHME forecast as if it were the most informative, one set of anchors (BA1) shifted 

in an “optimistic” direction that remained within the range of expert forecasts and actual 

reports as of the day preceding the wave, and two sets of bin anchors (BA2 and BA3) shifted 

in a “pessimistic” direction, but also within the bounds of epidemiological modeling. The 

motivation for this asymmetry between optimistic and pessimistic representations reflected 

the fact that lag effects sometimes violated optimistic, but never pessimistic, bounds of 

distributions. 

 

With this set of bin anchors for prevalence and mortality statistics over one-month and 

December 1, 2020 timeframes we used our Beta distribution algorithm to partition the event 

spaces and define the set of bins for the task. Four sets of bin anchors produced four sets of 

bins per belief question, which we refer to as the frames for that question: BD0 defined the 

anchors for frame 0, and BA1, BA2, and BA3 defined the anchors for frames 1, 2, and 3, 

respectively. 

 

One frame per belief question was drawn randomly for each subject, so frames varied 

between subjects in the task. The construction of these frames allows us to draw inferences 

about the extent to which non-expert subjective beliefs differ from expert forecasts encoded 

in epidemiological models to the extent that bets vary from bin to bin.  
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3. Results 

 

We focus here on subject bets implemented by token allocations for the one-month 

forecasting horizon across waves 1-6 of our study. We limit our analyses to this horizon for 

ease of exposition. This sample consists of 598 subjects across the six waves. Figures 4 and 5 

represent the data from the 112 subjects who took part in Wave 1. 

 

 

Figure 4: Beliefs about COVID-19 Infections in the U.S. by June 30, 2020 

 

Figure 4 shows the distribution of token allocations from May 29, 2020 (Wave 1) for the 

number of COVID-19 infections in the U.S. by June 30, 2020. The distributions differ 

markedly across frames, which suggests that the way in which event spaces are anchored and 

partitioned affects subjects’ token allocations, even though each set of anchors was consistent 

with epidemiological models of the pandemic. However, to draw valid inferences about 

differences across frames both with respect to each other and the number of cases reported by 

the CDC, it is essential to account for the risk attitudes of subjects [15]. This is not the focus 

of our analyses here.  
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Despite these apparent differences across frames in Figure 4, the crucial result is that subjects 

did not bet the same amount on every bin. To test this hypothesis we estimated a Bayesian 

model of an ordered logit data generating process with appropriately diffuse priors; see 

Appendix A for further details. We defined the null hypothesis in terms of inferred posterior 

probabilities for each bin between 0.9 and 0.11 for our sample size. This “region of practical 

equivalence” (ROPE) from a Bayesian perspective [19] corresponds to the range of posterior 

estimates generated from randomly selected token allocations for each bin between 0 and 20. 

The posterior probability of the data in Figure 4 being in this interval is less than 0.001, 

calculated over all frames and waves.13 Thus, subjects did not bet the same amount on every 

bin, which is a necessary condition for the beliefs of subjects to be consistent with 

epidemiological models of the spread of the virus. If some of the token allocation 

distributions were more flat than others, this would suggest that the epidemiological 

modeling associated with that frame was more closely aligned with the beliefs of subjects, 

but clearly no such inference is valid on the basis of the distributions in Figure 4.  

 

Appendix B shows the distribution of token allocations elicited in waves 2-6 of our study of 

the number of COVID-19 infections in the U.S. one month after the date of each wave. While 

there are some interesting differences across waves, which reflect the (rapid) evolution of the 

pandemic in the U.S., better scientific understanding of the spread of the virus, and the 

proliferation of epidemiological models that had more data to feed their predictions, the 

overall pattern is the same: subjects’ beliefs differ significantly from epidemiologically 

informed models of COVID-19 infections. 

 

Figure 5 shows the distribution of token allocations from May 29, 2020 (Wave 1) for the 

number of COVID-19 deaths in the U.S. by June 30, 2020. Unlike infections, the 

distributions across frames are similar, but formal tests of the extent to which they differ 

require adjustments for risk attitudes. Again, the crucial result for our purposes is that 

subjects did not bet the same amount on every bin. The Bayesian posterior probability of this 

null hypothesis is, again, less than 0.001 over all frames and waves. Thus, the beliefs of 

subjects about COVID-19 deaths are not consistent with epidemiological modeling.  

 
13 The same conclusion applies if we only examine frame 0 (reflecting the IHME model), only examine frames 
1, 2 and 3 (reflecting all models other than the IHME model), or only examine frames 2 and 3 (reflecting the 
best performing models from an ex post perspective). The same conclusions apply for beliefs about deaths as 
well as beliefs about infections. 
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Figure 5: Beliefs about COVID-19 Deaths in the U.S. by June 30, 2020 

 

Appendix C shows the distribution of token allocations in waves 2-6 of the number of 

COVID-19 deaths in the U.S. one month after the date of each wave. Differences across 

waves are less pronounced in comparison to beliefs about COVID-19 prevalence, but 

subjects’ beliefs clearly differ from epidemiologically informed models of deaths attributed 

to the virus. 

 

4. Discussion 

 

A general challenge implicit in our design was that the U.S. has not, as we write, yet 

implemented large-scale randomized testing for COVID-19.14 Consequently, detected cases 

involve over-representation of infected people who presented with morbid symptoms. 

Furthermore, accurate tracking of prevalence and mortality in the U.S. has been impeded by 

 
14 We refer here to randomized testing using the entire population as the sampling frame. Due to the clear 
existence of many asymptomatic cases, randomized testing of only people who present with symptoms, as has 
very helpfully characterized the public health response in a number of countries such as Germany and South 
Korea, still falls short of an adequate scientific method for estimating true infection prevalence. 
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decentralized administration and politicized conflict [25]. Epidemiologists universally 

acknowledge that undetected cases with lower morbidity outnumber detected cases [26]. The 

implication is that the evidence-based forecasting in which we asked our subjects to engage 

was not directly of the disease itself, but rather of the evolution of the processes used by 

public health officials to arrive at announced statistics and projections. It is open to question 

to what extent people behaviorally manage their health risks by responding to expert 

forecasts, and to what extent they choose behavior on the basis of their own idiosyncratic 

representations of diseases. 

 

Coupled with these issues were significant changes in scientific understanding of the virus 

over the time period of our study, which presumably also influenced the risk mitigation 

efforts of individuals. These changes in expert understanding can be summarized as follows: 

estimations of the frequency of fomite transmission declined; estimations of the frequency of 

aerosol transmission increased; estimations of the efficacy of widespread mask use against 

prevalence, morbidity, and mortality increased; estimations of the weight of behavioral 

responses, independent of public-health policy choices, increased; and estimation of the 

extent of path-dependence in transmission geography due to “super-spreading” events 

increased. While our study does not speak directly to this improving scientific knowledge of 

the virus, the fact that we constructed a pseudo panel of participants means that we can track 

the evolution of beliefs about COVID-19 prevalence and mortality over time [1]. This will 

allow us to determine whether beliefs became more or less biased, and whether the 

confidence with which these beliefs were held varied, as more information about the virus 

became available. We will proceed with this line of investigation in subsequent analyses. 

 

Figures 4 and 5, together with the complementary figures in Appendices B and C, show that 

forecasting COVID-19 infections is fraught with difficulty, certainly in comparison to deaths. 

We define the “correct” answer for our subjects as meaning “correctly matching the CDC’s 

estimated report.” Figure 4 shows that this correct answer in frame 0 about the level of 

infections on June 30, 2020 fell into the last bin of the event space, despite the fact that the 

IHME considered the most likely level to fall further within the interior region of the event 

space. By contrast, Figure 5 shows that the correct answer fell into the “middle” of the event 

space in every frame. This difference in the accuracy of forecasting infections and deaths is 

not surprising. Although methods of estimating infections, and reliability of data 

transmission, vary with the severity of viral spread and the geography of its concentration, 
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deaths are less variable and follow infections with a predictable lag. This is arguably one 

reason why our subjects’ beliefs appear to be more closely calibrated on deaths than on 

infections. 

 

The potential implications of our research for educational interventions about COVID-19 are 

clear. While there is no single, well-confirmed consensus theory of health behavior or other-

regarding behavior that can ground educational efforts [27], beliefs will play an important 

role in explaining health behavior, regardless of the specific approach adopted. Beliefs about 

risk to oneself and to others are fundamental factors in understanding behavior, and are 

potential levers, therefore, for educational intervention. Meta-analyses show that risk 

perception has a significant influence on behavior [28], including precautionary reductions in 

aggregate consumption leading to declines in economic activity [29]. Moreover, the extent to 

which beliefs influence behaviors, and which beliefs are amenable to educational influence, 

depends in part on the confidence individuals have in their attitudes. There is also solid 

evidence that there is heterogeneity across groups in beliefs about health risks [30]. 

 

Our sample consists of university students with an average age of 21 years. There is evidence 

[31] that mortality risks that individuals of a certain age group have current or prior peer 

experience about are better understood, compared to mortality risks that apply more to older 

age groups. This finding makes considerable sense, in terms of rational investments in 

knowledge of mortality risks. However, it suggests that the beliefs of younger adults might 

not be well adjusted early in the pandemic, when the vast majority of mortalities occurred 

among (much) older adults. 

 

Our study provides rich data about beliefs and related factors that the literature suggests are 

necessary to ground educational interventions. Because we elicit incentivized measures of 

beliefs, as well as the spread of confidence in various COVID-19 outcomes, we have fine-

grained detail that is seldom available in educational interventions. Individuals who have 

very focused beliefs, and discount alternative outcomes strongly, will respond to information 

differently than individuals who give more credibility to alternative degrees of COVID-19 

risk. In Bayesian statistical terms, those with more diffuse priors should respond more 

strongly to new information than those with tighter priors. We will also be able to investigate 

how our participant’s beliefs about COVID-19 vary according to demographic 

characteristics, the primary sources of news subjects used to inform themselves about the 
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course of the pandemic, and incentivized elicitations of risk attitudes and time discounting, 

which we also included in the study. These additional variables could allow one to target 

public health and educational interventions to particular groups on the basis of their beliefs, 

and the extent to which they are more or less receptive to new information about risks posed 

by the virus and attendant mitigation measures. 

 

Educational interventions around COVID-19 using only hypothetical survey information 

about beliefs, and no evidence about how confidently those beliefs are held, are likely to be 

unproductive. The methods presented here offer a more useful guide for getting the evidence 

needed to design successful educational interventions. 

 
 

5. Conclusion 

 

We conducted an incentivized, experimental study on the beliefs of individuals about 

COVID-19 prevalence and mortality with six temporally-spaced waves between May and 

November, 2020. Our experimental design allows us to draw direct, simple inferences about 

whether those beliefs differ from publicly salient epidemiological models of infections and 

deaths due to COVID-19. We find that the beliefs of individuals about both infections and 

deaths differ markedly from epidemiologically informed models. Our study has implications 

for the dissemination of scientific information, and could be used to tailor public health and 

educational interventions to people most receptive to risk mitigation efforts.  
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Appendix A 
[Online Working Paper] 

 
The analysis of our data is undertaken using a Bayesian statistical model that allows us to 

evaluate the posterior probability that observed distributions of reports are indeed uniform.  

 

The data are in the form of 100 tokens allocated by each subject in response to each question 

in a given wave. These tokens are allocated across 10 bins, which refer to interval outcomes 

for COVID-19 infections or deaths. Hence these data may be viewed as ordered, since tokens 

allocated to lower bins refer to fewer infections or deaths than tokens allocated to higher bins. 

The number of tokens allocated to each bin may be viewed as a frequency count, so that the 

implied likelihood of the observed data correctly reflects the intensity of reports about 

beliefs. We use the familiar ordered logit (or logistic) specification of this data generating 

process.  

 

The prior we have, by design, is that tokens and beliefs will be allocated uniformly over the 

10 bins for each question. This prior arises from our method of determining the intervals for 

each bin. One exception is for the elicitation of deaths in frame #3 of wave 5, due to an error 

in the calculation of intervals. Although this error did not radically change the intervals for 

this frame in comparison to other frames for this question in this wave, those bins did not 

reflect our uniform prior. Hence the data for this frame and question, in just this wave, are 

removed from our analysis. 

 

In order to test our null hypothesis, we must define a ROPE that characterizes an interval 

around the posterior estimates of our model. To do this we undertake pre-estimation 

simulation of the estimates that we would obtain for the appropriate sample size we observed. 

These simulations considered random integer-valued allocations of tokens across the 10 bins 

by each (simulated) subject. For example, random allocations between 9 and 11 would have 

selected integers from the set {9, 10, 11} for each subject, with an expected average over 

enough simulations of 10, matching the uniform prior. For each such random allocation 

around 10, we estimate the model using the simulated data, and evaluate the 95% credible 

intervals of the model parameters around the estimates that would have been implied if every 

subject had strictly followed the prior and allocated 10 tokens to every bin. These credible 

intervals allow us to easily see how “regions of practical equivalence” in token allocations 

translate into regions of practical equivalence in estimates from the ordered logit model. We 
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can then repeat these random draws a large number of times, in our case 100 times, and find 

the ROPE from the largest difference in credible intervals over all bins and simulations. It is 

then a simple matter to return to the actual, observed data, estimate the ordered logit model, 

and compute the probability of the posterior estimates being in that ROPE, defined now over 

the estimates of the model using the observed data. 

 

This approach to generating a ROPE is quite general. It is often the case that one can propose 

a ROPE directly in terms of the parameters defining the data generating process, or that they 

are proscribed by rules or regulations. For example, for bioequivalence the Food and Drug 

Administration recommends ROPE limits of 0.8 and 1.25 for the ratio of two means of 

different comparison distributions [19]. And ROPE limits are commonly used in actuarial and 

epidemiological calculations for risk management purposes, often varying with the expected 

size of the risk:  for example, ±20% for moderate risk, ±5% for high risks, and ±50% for low 

risks [1]. But it is important to be able to undertake pre-posterior simulation when the 

mapping between “natural limits” for a ROPE and the corresponding limits for the underlying 

parameter estimates for some data generating process can be highly nonlinear. 
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2015;28:45-8. 
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Appendix B 
[Online Working Paper] 

 

This appendix shows the distributions of subject reports about COVID-19 prevalence from 

waves 2-6 of our study. The main text provides a general discussion of the results from these 

waves, and how they follow a similar pattern to that which we observed in wave 1. 

 
 

 
Figure B1: Beliefs about COVID-19 Infections in the U.S. by July 30, 2020 
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Figure B2: Beliefs about COVID-19 Infections in the U.S. by August 30, 2020 

 
 

 
Figure B3: Beliefs about COVID-19 Infections in the U.S. by September 30, 2020 
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Figure B4: Beliefs about COVID-19 Infections in the U.S. by October 30, 2020 

 
 

 
Figure B5: Beliefs about COVID-19 Infections in the U.S. by December 1, 2020 
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Appendix C 
[Online Working Paper] 

 
This appendix shows the distributions of subject reports about COVID-19 mortality from 

waves 2-6 of our study. The main text provides a general discussion of the results from these 

waves, and how they follow a similar pattern to that which we observed in wave 1. 

 

 
Figure C1: Beliefs about COVID-19 Deaths in the U.S. by July 30, 2020 
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Figure C2: Beliefs about COVID-19 Deaths in the U.S. by August 30, 2020 

 
 

 
Figure C3: Beliefs about COVID-19 Deaths in the U.S. by September 30, 2020 
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Figure C4: Beliefs about COVID-19 Deaths in the U.S. by October 30, 2020 

 
 

 
Figure C5: Beliefs about COVID-19 Deaths in the U.S. by December 1, 2020 

 


