
Title Bounding the search space of the Population Harvest Cutting
Problem with Multiple Size Stock Selection

Authors Climent, Laura;O'Sullivan, Barry;Prestwich, Steven D.

Publication date 2016-12-01

Original Citation Climent L., O’Sullivan B., Prestwich S.D. (2016) 'Bounding the
Search Space of the Population Harvest Cutting Problem with
Multiple Size Stock Selection', in Festa P., Sellmann M. and
Vanschoren J. (eds)., Learning and Intelligent Optimization, LION
2016, Lecture Notes in Computer Science, vol 10079, pp. 75-90.
doi: 10.1007/978-3-319-50349-3_6

Type of publication Conference item

Link to publisher's
version

https://link.springer.com/chapter/10.1007/978-3-319-50349-3_6 -
10.1007/978-3-319-50349-3_6

Rights © Springer International Publishing AG 2016. This is
a post-peer-review, pre-copyedit version of an article
published in Lecture Notes in Computer Science. The
final authenticated version is available online at: http://
dx.doi.org/10.1007/978-3-319-50349-3_6

Download date 2024-04-25 14:33:50

Item downloaded
from

https://hdl.handle.net/10468/11217

https://hdl.handle.net/10468/11217

Bounding the Search Space of the Population Harvest
Cutting Problem with Multiple Size Stock Selection

Laura Climent, Barry O’Sullivan, and Steven D. Prestwich

Insight Centre for Data Analytics
Department of Computer Science, University College Cork, Ireland

{laura.climent|barry.osullivan|steven.prestwich}@insight-centre.org

Abstract. In this paper we deal with a variant of the Multiple Stock Size Cutting
Stock Problem (MSSCSP) arising from population harvesting, in which some sets
of large pieces of raw material (of different shapes) must be cut following certain
patterns to meet customer demands of certain product types. The main extra dif-
ficulty of this variant of the MSSCSP lies in the fact that the available patterns are
not known a priori. Instead, a given complex algorithm maps a vector of contin-
uous variables called a values vector into a vector of total amounts of products,
which we call a global products pattern. Modeling and solving this MSSCSP is
not straightforward since the number of value vectors is infinite and the map-
ping algorithm consumes a significant amount of time, which precludes complete
pattern enumeration. For this reason a representative sample of global products
patterns must be selected. We propose an approach to bounding the search space
of the values vector and an algorithm for performing an exhaustive sampling us-
ing such bounds. Our approach has been evaluated with real data provided by an
industry partner.

1 Introduction

The Cutting Stock Problem (CSP) [6] is a well-known NP-hard optimization problem
in operations research. This problem involves deciding which pattern should be applied
to raw material stock in order to obtain sufficient amount of products to meet the de-
mands while minimizing cost. The CSP can be modeled and solved as an Integer Linear
Program (ILP). In this paper we deal with a variant of CSP introduced in [7] that we
classify [3] as ∗/V/D/R using Dyckoff’s typology, where ∗ means any dimensional-
ity, V means that the raw material stock is sufficient to accommodate all the demanded
products (hence, only some selected stock pieces have to be cut),D means that all large
pieces are different (in terms of shape) andR indicates many products demanded of few
different types. The feature V (any demand can be fulfilled) entails that the raw mate-
rial stock to be cut has to be selected. Each large piece has an associated “value” (e.g.
typically values are proportional to their sizes) and the objective function is to minimize
the total value of the raw material stock selected to fulfill the demand.

According to a later typology presented in [8], we are dealing with a variant of the
Multiple Stock Size Cutting Stock Problem (MSSCSP). In [8] it is noticed that research
on cutting and packing problems still is rather traditionally oriented. For instance, few

recent papers consider heterogeneous assortments of large pieces. In addition, the vari-
ant analyzed in this paper has certain peculiarities that make it harder and consequently
more challenging. This variant might emerge in real-life applications in which the num-
ber of raw material pieces available for cutting and their dimensions is uncertain be-
cause: (i) only a sample of the whole set of pieces is known, and/or (ii) the pieces might
change dynamically with time. Population harvesting (e.g. plants, fish and animals [4])
are examples of both types of uncertainty: the dimensions of their raw elements might
change due to their growth (case ii); and only some samples of the dimensions of the
raw elements are taken by the industry (case i). Note that measuring all of them (there
are possibly several hundred/thousand of elements) would be too costly.

Due to the above mentioned uncertainties associated with the raw material pieces of
this type of MSSCSP, it is impossible to know all the patterns associated with each piece
of stock (many dimensions of the stock are unknown). For this reason, in the literature
and in industry, an algorithm that simulates the cutting of a whole set of raw material
samples according to certain values vector has been generally used. The objective is
to obtain similar results when such vectors and algorithms are used for cutting the real
stock from which the sample data was acquired. The values vector is composed of
continuous variables and each of them is associated with a product type. Note that we
do not have access to the set of patterns to be cut in a direct manner, only via the
application of this complex algorithm which is denoted throughout the paper as A.
The A algorithm selects the optimal cutting for each raw material sample based on the
values of the products. The optimality criterion of such algorithm is to maximize the
total value, which is the sum of the products of value and units cut of each product
type. Then each combination of total amounts of products that can be cut from a set
of raw material pieces represents a global products pattern for this set. By providing
several different values vectors as input to the A algorithm, different global product
patterns associated with a set of raw material pieces can be obtained. Once the best
values vector has been selected in this cutting simulation process over the sample data,
it is used as input to the A algorithm that cuts the real raw material (which is installed
in the cutting machines). If the sample is representative of the whole population, the
results of the cutting will be similar to that predicted in the simulation phase.

We would like to highlight that it is not straightforward to model and solve this vari-
ant of MSSCSP because the number of values vectors is infinite (continuous variables)
and therefore, for realistic instances we can not enumerate all the global products pat-
terns in a reasonable amount of time. For this reason a representative sample of them
must be selected. This is a complicated task because the algorithm that generates the
global products patterns (a) is complex and requires a great amount of time for realistic
instances and (b) it matches many different values vectors to similar global products
patterns. As an example of (b) consider a values vector whose associated global prod-
ucts pattern has the maximum possible amount of each type of product. Then, even if
its associated value in the vector is increased (and the rest of values of the vector re-
main the same), the same global products pattern will be obtained. The latter fact, and
the necessity of finding a representative set of global products patterns in a reasonable
amount of time (case a), has motivated the work presented here.

Amounts

ValuesUpper BoundLower Bound

Fig. 1. Amounts obtained with A for several values associated with a product.

Our main objective is to reduce the search space for the values vector by bounding
it in such a way that areas that produce the same global products pattern are excluded
(because we want to maximize how scattered the global products patterns produced
are). To illustrate this we show a graph in Figure 1 that represents the amount of certain
products obtained after applying the A algorithm with different values vectors (other
types of products can also be cut from the raw material). On the horizontal axis is the
value associated with each type of product (normalized to the interval [0,1], and on the
vertical axis are the product amounts. Note that the minimum amount that it is possible
to obtain is zero units and the maximum amount is 211.74 units. The dashed rectangle
includes different amounts of such products, so it is necessary to sample in this area in
order to obtain a wide range of different global products patterns. Note that values less
than or equal to the minimum value in the rectangle (lower bound), the A algorithm
produces the same amount of product: zero. The opposite occurs with values that are
at least the maximum value in the rectangle (upper bound): the amount obtained is the
maximum. For this reason, using values that are outside the interval delimited by the
lower and upper bound is a waste of time as no new global products patterns will be
obtained. As mentioned, reducing the computational time is vital, especially in on-line
problems such as CSP real-life applications with uncertainties.

In order to reduce the computational time for generating a representative sample
of global products patterns, we present definitions and equations for calculating the
lower and upper values bounds of each product. These bounds ensure that the mini-
mum/maximum amount of a type of product is obtained. As far as we know, there is
no other reported technique that attempts to compute the lower and upper bounds, nor
to reduce the values search space. The lower and upper bounds that we introduce can
be used with any sampling technique (e.g. random sampling as the naivest approach)
and consequently by bounding the search space, a representative set of global products
patterns tends to be obtained more quickly. In addition, without lose of generality, in
this paper we also propose a method for exhaustive sampling using such bounds.

The paper is structured as follows. First, the variant of the MSSCSP is formalized.
An explanation of the A algorithm is also provided. Afterwards, the calculation of the
upper and lower bounds is explained, and we also introduce an exhaustive sampling
algorithm. The effectiveness of our method is shown with an evaluation with real-life
instances. Finally we present our conclusions.

2 Problem Formalization

In this section we explain the new features of the variant of the MSSCSP, with respect
to the traditional CSP formulation [6]. (Parts of the following explanations have been
extracted from [7]). MSSCSPs have raw material pieces of different dimensions which
we can cut at will. In the variant that we are dealing with, we have a fixed number of
raw material pieces (possibly hundreds or thousands) each with its own dimensions σr.
There are K subsets of raw material pieces and each subset has R pieces (R might
be different for each subset but this is ignored to simplify the description). Either a
subset is fully cut with a unique values vector or none of its pieces is cut (as previously
motivated in Section 1, due to the uncertainty of the environment). Then, each subset
of raw material pieces has its own associated global products patterns (which are not
given and therefore we must sample them), which are the combinations of amounts of
products that can be cut from it. A global products pattern p ∈ Q+

|M| is noted as
p = 〈a1, . . . , a|M|〉, whereM is the set of product types and aj represents the amount
of units of product mj ∈M cut from certain set of raw material pieces.

Definition 1. We represent a type of product as a tuple mj = 〈sj , zj〉, where:

– sj ∈ R is the size of a piece of mj . Depending on the number of dimensions ana-
lyzed, sj can represent: lengths for 1-dimension (e.g. cm), areas for 2-dimensions
(e.g. cm2) or volumes for 3-dimensions (e.g. cm3).

– zj is the dimensions of mj . For instance, if mj has the shape of a rectangle, zj
would be the required length and width for mj .

As previously mentioned, in the variant of MSSCSP analyzed, the patterns are not
known a priori and it is only possible to have indirect control over them via a list of
continuous variables called a values vector. A values vector v ∈ Q+

|M| is a vector
of |M| continuous variables. Each vj represents the value associated with the type of
product mj ∈ M per unit of sj . For instance vj could represent monetary units: e,
$, etc. per each unit of sj , (e.g. e/m3). A set of products types M and a vector of
dimensions σ of |R| raw material pieces can be passed to an algorithm A which uses
a values vector for calculating the corresponding p. Then, A can be represented as the
following mapping function:

A(M, 〈σ1, . . . , σ|R|〉, v)→ p (1)

To make this variant of the MSSCSP amenable to an ILP approach, in [7] the infinite
set of possible values vector was reduced to a finite set of n values vectors (which should
be sufficiently representative) uik (i = 1 . . . n) for each subset of raw material pieces

k ∈ K (the same n is assumed for each subset to simplify the notation). Then global
products patterns for each subset k are precomputed by using algorithm A, storing the
results in vectors of constants uik = A : (M, 〈σ1, . . . , σ|R|〉k,vik) (∀i, k). The ILP
model is as follows:

min
n∑

i=1

K∑
k=1

ckxik ∀xik ∈ {0, 1}

s.t.
n∑

i=1

K∑
k=1

uikjxik ≥ dj ∀j ∈M
n∑

i=1

xik ≤ 1 ∀k ∈ K

where dj is the targeted demand for each type of product, ck is the value associated with
the stock subset k and xik are the decision variables that indicate if the subset k is cut
with the global product pattern i. The objective function is to minimize the total value
of the sets of raw materials used for satisfying the demands. Note that if a subset of raw
material pieces k is not used for satisfying the demands (and therefore it is not cut),
then all its decision variables (xik∀i ∈ nk) are zero. Note also that the first constraint
ensures that the demands are fulfilled and second constraint prevents the use of more
than one global products pattern in a set of raw material pieces. As mentioned, this set of
representative global products patterns (uik∀i∀k) must be generated in order to be able
to solve this ILP with standard optimisation software; and it needs to adequately cover
all possible global products patterns for each set of raw material pieces k. The main
contribution of this paper resides in this task. By bounding the search space of values
of the vector, we are reducing the likelihood of generating global products patterns that
are not new (they are equal to a previous generated global products pattern). Hence, the
global products patterns generated in a fixed amount of time tend to be more scattered
and therefore more significant for the analyzed problem.

3 Algorithm A

In [7], the A algorithm is treated as a black box. Instead, we analyze and use its prop-
erties, which allows us to reduce the values search space of the this variant of the MSS-
CSP. For this reason, in this section we briefly explain the A algorithm. This algorithm
simulates the cutting of a set of raw material pieces R into certain products typesM.
Each type of product mi has an associated value vi, representing how valuable is each
unit of product (these values compose the values vector v, which is provided as an in-
put). This algorithm selects the optimal cutting for each raw material sample, where the
optimality criterion is to maximize the total value, which is the sum of the products of
value and units cut of each product type.

Definition 2. The total value of a piece of product mj ∈M is calculated as:

t(mj) = sjvj (2)

Note that the input values vector has a direct impact on the amounts of each type of
product that will be obtained from a certain raw material. The other factor that has an
influence in the amounts is the dimensions of the raw material pieces and the dimensions
of the product types. The greater is a value vi where the other values of v are fixed, the
greater the number of products mi its associated global products pattern p will have
after running algorithm A (they will be equal only in the case of reaching a saturation
point, see Figure 1 as an example). In the same way, the opposite situation (at most
number of pieces) holds when the values of vi are decreased. In the next section, we
use these properties of the A algorithm for bounding the values search space.

Typically, in the literature, the A algorithm has been implemented with Dynamic
Programing (DP) [2, 1]). DP is an approach that allows us to solve complex problems
by dividing them into a collection of simpler subproblems. For such purpose, the sub-
problems must be sequential and independent. The problem of cutting a raw material
piece satisfies these properties, since it is a recursive one (i.e. maximize by cutting the
first product and then maximizing the remainder).

4 Computing Lower and Upper Bounds

In this section we present definitions and equations of the lower and upper values vector
that is provided as an input of the A algorithm. Each value vi of such a vector (v)
is associated with a type of product mi with particular shape characteristics zi. The
main idea behind the lower and upper bounds is that when we apply the A algorithm
(Equation 1) to a certain raw material, when the value associated with a type of product
is:

(i) at most the lower bound, it is ensured that the amount obtained of such product is
the minimum.

(ii) at least the upper bound, it is ensured that the amount obtained of such product is
the maximum.

A toy example is described for further explanation of the bounds.

Example 1. We consider a 2-dimensional space with two product types (m1 and m2)
with a rectangle shape. Then z1 and z2 is represented with the height (h) and the width
(w). The size of the product types, is determined by the equation of the area of a rect-
angle. Thus, s1 = l1w1 and s2 = l2w2. Figure 2 shows such products. Note that s1 is
greater than s2. Without loss of generality, for this example, w1 = w2.

4.1 Computing Lower Bounds

Given M = {mi,mj} where sj < si (in Example 1, mi = m1 and mj = m2),
we want to calculate the lower value bound, which is the greatest value that we can
assign to the associated variable of mi in a values vector (v) in order to ensure that the
minimum amount of mi is obtained for any raw material. For such purpose, we present
the following definition.

m1

l1

w1 m1

m2

l1

l2

w2

w1

Fig. 2. 2- dimensional example of two product types.

Definition 3. The maximum number of pieces of mj that can fit in one piece of mi,
according to their shape specifications (zi and zj), is k(zi, zj). To simplify the notation,
we will tend to use k rather than k(zi, zj) when the variables are obvious from context.

We consider a subpart of the raw material from which we can only cut either one
piece ofmi or k pieces ofmj . Note that the waste produced when cuttingmi is smaller
or equal than when cutting k pieces of mj . Figure 3 shows such situation for Example
1, where the size of the subpart of the raw material analyzed is ks1. Note that for this
example, k(z1, z2) = 1. If the cut off products from this subpart is k pieces of m2,
there is an associated waste which is the size analyzed minus ks2 (grey area in Figure
3). Thus, if v1 = v2, cutting the type of product m1 is the best option because the total
value of a piece ofm1 is greater than the total value of k pieces ofm2: t(m1) > kt(m2)
due to s1 ≥ ks2 (see Equation 2).

l1

l2

w2

w1 m1

m2

Fig. 3. Example for explaining the lower bound.

For computing the lower value bound, we would like to know how much smaller
the value vi should be, in order to change the priority order where cutting k pieces of
mj is the most profitable. In order to compute this value, we compute for which vi the
priorities are equal. This situation occurs when the total profit of cutting a piece of mi

is equal to the total profit of cutting k pieces of mj (t(mi) = kt(mj)). By applying
Equation 2 we obtain for which vi the priorities are equal. Then, resting an arbitrarily
small positive number (denoted as ε), we obtain the lower bound:

vlbi (mi,mj) =
k(zi, zj)sjvj

si
− ε, for si ≥ sj . (3)

From the above, we can state that for any value vi ≤ vlbi , the total benefit of cutting
k pieces ofmj is greater than the total benefit of cutting a piece ofmi. Therefore, when
applying the A algorithm with vlbi to a complete raw material, the obtained number of
pieces ofmi is the minimum and the obtained number of pieces ofmj is the maximum.
Note that if at least one piece of mj fits in a piece of mi (e.g. Example 1 represented
in Figure 2), then the minimum amount of mi is zero (e.g. Figure 1). Otherwise, there
might exist subparts of the raw material in which mj does not fit but mi does, in such
case the amount of mi could be greater than zero.

4.2 Computing Upper Bounds

In this section, given the sameM = {mi,mj} where sj < si (in Example 1,mi = m1

and mj = m2), we want to calculate the upper value bound, which is the lowest value
that we can assign to the associated variable of mi in a values vector (v) in order to
ensure that the maximum amount of mi is obtained for any raw material. For such
purpose, we define:

Definition 4. The minimum number of pieces of mj that are required to fit one piece of
mi into the global shape of them, according to their shape specifications (zi and zj), is
h(zi, zj). To simplify the notation, we will tend to use h rather than h(zi, zj) when the
variables are obvious from context.

We consider a subpart of the raw material from which we can only cut either one
piece of mi or h pieces of mj . Note that the waste produced when cutting mi is at least
that when cutting h pieces of mj . Figure 4 shows such situation for Example 1, where
the size of the subpart of the raw material analyzed is hs2. Note that for this example,
h(z1, z2) = 2. If the cut off product from this subpart ism1, there is an associated waste
which is the size analyzed minus s1 (grey area in Figure 4). Thus, if v1 = v2, cutting
the type of product m1 is the worst option because the sum of the total value of the h
pieces of m2 is greater than the total value of a piece of m1: t(m1) < ht(m2) due to
s1 ≤ hs2 (see Equation 2).

m1

m2

l1

l2

w2

w1

m2

l2

Fig. 4. Example for explaining the upper bound.

For computing the upper value bound, we would like to know how much greater
the value vi should be, in order to change such priority order (a piece of mi the most
profitable). In order to compute such a value, as we did previously, we compute for

which vi the priorities are equal. This situation occurs when the total profit of cutting a
piece of mi is equal to the total profit of cutting h pieces of mj (t(mi) = ht(mj)). By
applying Equation 2 we obtain for which vi the priorities are equal. Then, summing an
arbitrarily small positive number (denoted as ε), we obtain the upper bound:

vubi (mi,mj) =
h(zi, zj)sjvj

si
+ ε, for si > sj . (4)

From the above, we can state that for any value vi ≥ vubi , the total benefit of cut-
ting h pieces of mj is lower than the total benefit of cutting a piece of mi. Therefore,
when applying the A algorithm with vi ≥ vubi to a complete raw material, the obtained
number of pieces of mi is the maximum and the obtained number of pieces of mj is
the minimum. Because when it is possible to cut from a certain subpart of the material
h pieces of mj , instead, a piece of mi will be cut. Note that the minimum amount of
mj does not have necessarily (and probably will not) to be zero. This is due to the fact
that sj < si and therefore, there will probably be parts of the raw material in which mi

does not fit but mj does.

4.3 Generalizing the Bounds

Previously we introduced the equations of the lower and upper bounds that ensure that
we obtain the minimum and maximum amounts of a type of product in comparison with
a smaller type of product. Here, we extend these concepts for the circumstance in which
there are more than two types of products to be cut. First, we denote the smaller subset
of a product type mi as:

Definition 5. M<
i ⊂M : sj < si,∀mj ∈M.

We present two propositions:

(i) If vi is equal to the minimum value of all the lower bounds associated with each
smaller type of product, we can ensure that the minimum amount of mi will be
obtained, since the total value of cutting k pieces (see Definition 3) of any of the
smaller products is greater than the total value of cutting a piece of mi. This is
denoted as follows:

vlbi (mi,M<
i) = min

mz∈M<
i

vlbi (mi,mz). (5)

(ii) If vi is equal to the maximum value of all the upper bounds associated with each
smaller type of product, we can ensure that the maximum amount of mi will be ob-
tained in the homogeneous case (combinations of products of the same type only),
since the total value of cutting h homogeneous pieces of any other smaller prod-
ucts is lower than the total value of cutting a piece of mi (see Definition 4). This is
denoted as follows:

vubi (mi,M<
i) = max

mz∈M<
i

vubi (mi,mz). (6)

For the case of combinations of h heterogeneous pieces (combinations of products
of different types) of smaller products, unfortunately it is possible that some heteroge-
neous combinations have a slightly greater total value than a unit of product mi. Then,
we cannot assume Proposition (ii) for all the heterogeneous combinations. However, it
is very unlikely that such proposition does not hold for real-life instances. This is be-
cause when we compute the bounds, we consider that the space left in the area analyzed
is waste (worst scenario). However, in reality such left area could be used to fit another
piece of any product (generally several pieces fit in every big raw material piece). Then
the total value of h heterogeneous pieces (excluding mi) would be compared against
the total value of n heterogeneous pieces (including at least a piece of mi). (However
in our proposition only a unique piece of mi is considered, which has lower total value
than combining such piece with another product). For this reason, generally for real
instances the min./max. amounts of products are obtained with greater/lower values
(respectively) than the theoretical bounds presented in this paper.

We now define the interval of values between the lower and upper bounds of a type
of product with respect smaller types of products. This allows us a reduction of the
values search space while ensuring that global products patterns with amounts between
the minimum and maximum possible amounts (inclusive) are selected (according to
Propositions (i) and (ii)). Such a set of values is defined as follows:

Vi(mi,M<
i) = [vlbi (mi,M<

i), v
ub
i (mi,M<

i)] (7)

In [7] the authors generate a set of global products patterns with Monte Carlo sim-
ulation over a fixed interval for all the types of products (e.g. [1, 1000]). Instead, this
simulation can be performed over Vi(mi,M<

i) by fixing a basis value for the smallest
product and computing the V interval for the bigger products (in increasing size order)
for each sampling. As mentioned, by calculating the specific interval delimited by the
lower and upper bounds for each type of product, we are reducing the likelihood of gen-
erating equal global products patterns, which implies a greater likelihood of obtaining
scattered global products patterns. Following, we also introduce an exhaustive global
products patterns generation algorithm that uses such intervals.

5 Exhaustive Global Products Patterns Generation based on V

In this section we explain how to generate all possible global products patterns for a set
of product types with respect to some fidelity (denoted as f) over the values vector. First
the V interval is discretized based on f (see Equation 7), then we present an algorithm
that exhaustively generates global products patterns.

5.1 A Fidelity-based Discretization of the Interval V
Following the interval V (Equation 7) is discretized according to a fidelity variable f ,
which represents a value increment:

Vi(mi,M<
i , f)={vlbi (mi,M<

i) + nf, ∀n ∈ {0, . . . , q}}
where q = minN : vlbi (mi,M<

i) + qf ≥ vubi (mi,M<
i) (8)

The above set of values is expressed as a minimum value and a series of increments
of value f over it. The minimum value of the set is the lower bound. The next values
are obtained by incrementing f units in every step. The maximum number of such
increments is denoted as q and it is the minimum natural number of increments of value
f that are necessary in order to reach or exceed the upper bound. Note that the lower
the fidelity is, the greater the set Vi is (with the exception of rare situations in which the
lower and upper bounds are equal).

5.2 Algorithm for an Exhaustive Generation of Global Products Patterns

We introduce an algorithm that generates all the values vectors for a set of product
types M by computing the discretized set V (see Equation 8) for a given fidelity f .
The corresponding global products patterns (denoted as C) of the values vectors are
also computed by using the A algorithm over a given subset of raw material pieces
with characteristics 〈σ1, . . . , σ|R|〉. First, Algorithm 1 initializes an empty values vector.
Then, it assigns a basis number (denoted as b) to the smallest type of product, where
b can be randomly generated or it can be specified by the user. Note that this value
remains fixed during the complete execution of the algorithm. Algorithm 1 is also in
charge of initializing the subsetMu ⊂ M, which contains the products whose values
have not yet been assigned (at this stage, all the products except the smallest one).

Algorithm 1: Exhaustive Generation of Global Products Patterns
Data: 〈σ1, . . . , σ|R|〉,M, f, b
Result: C
mi ∈M : si = minz∈|M| sz ;
v ← ∅; // empty values vector
vi ← b;
Mu ←M\{mi}; // Unassigned set of products
C ← fixValue (v,σ, ∅,M,Mu, f);
return C

Finally, Algorithm 1 calls the recursive procedure fixValue which, given the set
of unassigned product types (Mu), selects the smallest one and computes its set of
values (V , see Equation 8). Subsequently, each of the values of such a set is assigned
iteratively to the analyzed type of product. In addition, the already assigned type of
product is deleted fromMu. This process is repeated recursively until all the product
types have already an assigned value. Note that the procedure fixValue is recursively
called with the updated set Mu. Once all the product types have already an assigned
value, the A algorithm is used for obtaining the global products pattern associated with
the vector of values v. If such global products pattern is new, it is added into C. Finally,
when all the values in the set V have been assigned, the procedure adds the type of
product to the unassigned set of products (Mu) and it returns the set of global products
patterns computed C. Once all the runs of the procedure fixValue have finished, the

total set of global products patterns generated is returned to the Algorithm 1. (Note that
all the patterns obtained by each call to the procedure are merged into C).

Procedure fixValue(v,σ, C,M,Mu, f) : C
select mi ∈Mu : si = minz∈|Mu| sz ;
Mu ←Mu \ {mi};
V ← Vi(mi,M<

i , f); // See Equation 8
for e ∈ V do

vi ← e;
ifMu = ∅ then
〈a1, . . . , a|M|〉 ← A(M, 〈σ1, . . . , σ|R|〉,v);
if 〈a1, . . . , a|M|〉 6∈ C then

C ← C ∪ {〈a1, . . . , a|M|〉};

else
C ← C∪ fixValue (v,σ, C,M,Mu, f);

Mu ←Mu ∪ {mi};
return C

6 Evaluation

In this section we first describe a case study of a real-world population harvesting prob-
lem [4]: forestry harvesting. Subsequently we evaluate several instances of this type
with our approach. We do not compare our solution with other techniques because, as
far as we know, there is no other approach that attempts to compute such bounds, nor to
reduce the values search space. In the forestry harvesting problem the logs of the trees
have to be cut into smaller log-pieces by harvesting machines in order to satisfy the
demands of the customers. The products have shape specifications (minimum diameter,
length, etc.) and their volumes are measured typically in cubic meters (m3). As men-
tioned, in this variant of the MSSCSP there are several subsets of stock. For the forestry
problem, we call each subset of trees a block and each of them has a given specific
value. The objective function is to minimize the total value associated with the blocks
harvested. (Recall that for the MSSCSP only some stock is selected for satisfying the
demands and therefore only this selection is harvested).

In this section we evaluate the approach presented in this paper, which reduces the
values search space by computing upper and lower values bounds associated with all the
products. For such purpose, we used the exhaustive sampling approach introduced in
this paper (Algorithm 1) for generating a set of global products patterns for each block.
Lastly, by solving the ILP of the MSSCSP variant analyzed (see Section 2), we obtain
the optimal solution for such patterns. A solution of this variant of the MSSCSP consists
in a selected vector of values (and its corresponding global products pattern) for each
of the selected blocks to be cut. Note that there is no guarantee that this solution is the
optimal based on all the possible global products patterns. Due to the impossibility of

enumerating all the possible global products patterns for realistic instances, optimality
can not be ensured for the analyzed variant of the MSSCSP. Hence the importance of
obtaining a sparse (and therefore significant) sample of global products patterns.

We have performed the evaluation with a sample of real data from our industrial
partner. The total volume of the sampled logs of the trees is 1191.3m3 and it is com-
posed by eight blocks and four product types. We computed the global products patterns
of each block by using Algorithm 1 with b = 10 and fidelities: 0.9, 0.7 and 0.5. Then,
we solved 50 randomly generated and satisfiable demands instances by solving their
corresponding ILPs with CPLEX solver with a time cut-off of 1 hour (but the average
of the solving time was 16 minutes). The experiments were run on a 2.3 GHz Intel Core
i7 processor. Our industrial partner also provided us with the software that carries out
the DP-based simulation that implements A (see Equation 1). Since DP is a complete
algorithm, other DP implementations, such as the ones mentioned in Section 3, could
have been used for A, with equivalent results.

Fig. 5. Number of global products patterns generated for each block.

Figures 5 and 6 show the results obtained from the experiments performed. Specifi-
cally, Figure 5 shows the number of global products patterns that Algorithm 1 computed
for the tested fidelities. As mentioned, the lower the fidelity the higher the number of
global products patterns, in general. For instance in Block 4 and Block 7 there is a
difference of almost 400 global products patterns between fidelity 0.5 and 0.9. This is
reflected in the computation times of the global products patterns (see the times be-
tween brackets in Figure 5). Note that computing the global products patterns for all the
blocks for fidelity 0.9 required one hour and a half, which is less than five times less the
time required for fidelity 0.5 (eight hours). However, our algorithm allows the selection
of the global products patterns granularity according to the available time.

The differences in the number of global products patterns computed among the
different blocks depend on the characteristics of the blocks (such as number of pieces
of raw material and their sizes). Note that it is more likely to generate equal global
products patterns (which are rejected by Algorithm 1) for smaller block sizes. For our

analyzed instance, Block 2 is the smallest block (in terms of total m3) and it has the
lowest number of generated global products patterns (see Figure 5).

Fig. 6. Quality of the solutions obtained.

We compute an optimality bound by obviating the global products patterns and
considering that any combination of amounts of products can be cut from each block
(within its size). (It can be obtained by making such variations over the ILP of Section
2). Note that it is a bound of the optimality because at least such a total value must
be expended for satisfying certain demands. However, it might occur that the global
products patterns of the optimality bound do not exist in reality. In such a case, the
optimal solution has a greater total value than the optimality bound.

Figure 6 shows the quality of the solutions obtained after solving the ILPs of the
50 random demands instances, which is expressed as a gap with the optimality bound
(left axis). Note that for 41 instances we obtained a gap lower than 5%, which can
be considered as near-optimal. In addition, for many of them the gap is 0%, which
means that they are optimal. As expected, with better (lower) fidelities (which very often
implies more global products patterns) the quality of the solutions are equal or better.
Needless to mention, the economical impact that the quality of these solutions has in
the real-life applications (for real instances, the value of a single block could possible
be several thousand e). In addition to the sampling performed with our approach, a
complementary subsequent clustering algorithm (such as the one presented in [7]) could
be applied in order to reduce the set of input global products patterns provided to the
ILP (with the objective of speed up its solving time).

7 Conclusions

In this paper we have contributed to the literature by introducing an approach that
bounds the search space of a variant of the MSSCSP that arises from population har-
vesting. For such a problem it is not possible to enumerate all the patterns in a reason-
able amount of time, and therefore it is necessary to find a sparse set of global product
patterns. In this paper we provide definitions and equations of the lower and upper val-
ues bounds of the products. By sampling in their interval, the likelihood of generating
equal global products patterns is lower (and therefore patterns tend to be more scat-
tered). Furthermore, we also have introduced an algorithm that exhaustively generates
global products patterns according to their bounds and a fidelity parameter that fixes
their granularity.

The evaluation performed with a harvesting problem from our industrial partner
showed that the better the fidelity, the more global products patterns are generated, and
the better the quality of the solutions tends be. Most of the solutions obtained were near-
optimal or optimal, specially for the best fidelity analyzed. We would like to highlight
that the number of global products patterns, and how representative they are, affects the
quality of the solutions, so it has an economic impact for the stock owners.

As future work, we will focus on applying this approach to other types of real-life
MSSCSPs that fit into the population harvesting framework (e.g. we found similarities
with a problem from the clothing industry [5]).

Acknowledgments

This research was supported in part by Science Foundation Ireland (SFI) under Grant
Number SFI/12/RC/2289.

References

1. D. Anderson, D. Sweeney, T. Williams, J. Camm, and J. Cochran. An introduction to man-
agement science: quantitative approaches to decision making. Cengage Learning, 2015.

2. R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton, 1962.
3. H. Dyckhoff. A typology of cutting and packing problems. European Journal of Operational

Research, 44(2):145–159, 1990.
4. W. M. Getz and R. G. Haight. Population harvesting: demographic models of fish, forest, and

animal resources, volume 27. Princeton University Press, 1989.
5. M. Gradišar, M. Kljacić, G. Resinovič, and J. Jesenko. A sequential heuristic procedure for

one-dimensional cutting. European Journal of Operational Research, 114:557–568, 1999.
6. L. V. Kantorovich. Mathematical methods of organizing and planning production. Manage-

ment Science, 6(4):366–422, 1960.
7. S. D. Prestwich, A. O. Fajemisin, L. Climent, and B. O’Sullivan. Solving a hard cutting stock

problem by machine learning and optimisation. In Proceedings of the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), 2015.

8. G. Wäscher, H. Haußner, and H. Schumann. An improved typology of cutting and packing
problems. European Journal of Operational Research, 183(3):1109–1130, 2007.

