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Abstract 

Visceral pain, a debilitating hallmark of disorders of gut-brain axis interactions such 

as irritable bowel syndrome, has a major impact on quality of life. Given the increasing 

prevalence of irritable bowel syndrome over the past number of years, as well as a lack 

of effective treatments for disorders of visceral pain, new strategies need to be 

undertaken to develop successful interventions. The use of both dietary and 

pharmacological interventions to reduce visceral pain has yielded some promising 

results, however, these require further investigation. There is also a pressing need to 

unravel the mechanisms behind the aetiology of these disorders. 

In this thesis, we focused on prenatal and postnatal stress-induced dysfunction of the 

gut-brain axis and provide novel insights into the factors that modulate the visceral 

pain response.  

Firstly, the potential of CL-316243, a pharmacological intervention, and milk fat 

globule membrane (MFGM), a dietary intervention, as potential novel strategies to 

ameliorate visceral hypersensitivity resultant from exposure to stress in the early 

postnatal period were assessed. Specifically, using Sprague Dawley rats exposed to 

maternal separation (MS) for 3 hours per day from postnatal day 2-12, a well-

established rodent model of early life stress, we administered either CL-316243 via 

the oral route or MFGM in the diet to assess their efficacy in ameliorating MS-induced 

visceral hypersensitivity. Here, we report that both interventions were successful in 

reducing MS-induced visceral hypersensitivity and this occurred independently of 

changes at the level of central serotonergic signalling and secretomotor activity (CL-

316243), or the enteric nervous system and intestinal permeability (MFGM). 
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Next, we investigated the role of female sex hormones and the gut microbiota as 

modulators of visceral sensitivity using female germ-free mice. Here, we observed 

that the oestrous cycle modulated the visceral pain response in a microbiota-dependent 

manner and ovariectomy resulted in visceral hypersensitivity in conventional animals 

only. 

We then assessed alterations in the immune profiles of pre-adolescent rats and the 

consequent impact of MS. Here, we reported modest pre-adolescent changes in the 

plasma immune profile and spleen weight in male rats, with no changes seen in the 

gut immune profile at this same timepoint. 

Finally, we propose the use of several biological markers of systemic inflammation 

and gastrointestinal permeability as indicators of prenatal maternal stress during the 

second trimester of healthy pregnancies. The utilisation of these biomarkers could help 

to negate or prevent the deleterious impacts of early life stress both on foetal 

development and maternal health. 

Overall, the results of this thesis provide novel insights into early life stress-induced 

dysfunction of the gut-brain axis as well as potential therapeutic strategies.   
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Chapter 1 

 

General introduction 
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1. Historical and functional perspectives of the gut-brain 

axis 

The concept of complex crosstalk between the gut and the brain is not new, but rather 

spans over the past 2,000 years beginning with philosophers including Hippocrates, 

Plato, and Aristotle suggesting that the mind and body are fully integrated and 

inseparable from each other. However, the nineteenth century saw a period of 

accelerated investigation into the communication pathways that exist between the gut 

and the brain in both health and disease, which resulted in advances in treatment 

strategies for disease in the field of neurogastroenterology. Overviews of the historical 

investigations leading to the discovery of the gut-brain axis have been provided in 

several reviews (Cryan et al., 2019; Margolis et al., 2021; Mayer, 2011), which detail 

the extensive reach and function of these gut-brain communication pathways. 

In more recent times, the bidirectional communication between the gastrointestinal 

(GI) system and the brain has been termed the “the gut-brain axis”. This axis is key to 

both the maintenance of homeostasis of the entire body via the extensive 

communication pathways and contributions of multiple systems and is also 

reciprocally influenced by the systems of the body. This idea was uncovered in the 

1840’s by William Beaumont who showed that varying emotional states affect the rate 

of digestion, thus suggesting that the brain and the gut are communicating reciprocally. 

These bidirectional communication pathways allow for the GI tract to impact on 

nervous system-related functions such as mood, emotion, pain, stress reactivity, and 

neurochemistry (Foster et al., 2017; Gao et al., 2019; Huang and Wu, 2021; Huang et 

al., 2019; Mayer et al., 2015a; Mayer et al., 2014), while in turn exerting local effects 
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in the GI tract by affecting motility, secretion, and permeability (Covasa et al., 2019; 

Moyat et al., 2022; Waclawiková et al., 2022).  

Most recently, the communication networks of the gut-brain axis have been expanded 

to reflect the role of the gut microbiota, the hundreds of trillions of microorganisms 

that reside in the gut, and is now referred to as the “microbiota-gut-brain axis” (Cryan 

et al., 2019; Morais et al., 2021; Sherwin et al., 2016). The number of microbial cells 

in the body outnumbers the number of human cells to the order of 1.3:1 (Sender et al., 

2016), so it is not unimaginable that this community of microorganisms has 

widespread effects on physiology not just restricted to the GI tract (Contijoch et al., 

2019; Cryan and Dinan, 2012; Dinan and Cryan, 2017). While other distinct microbial 

communities exist both within and on the surface of organisms, including the oral 

microbiota (Kilian et al., 2016), pulmonary microbiota (Lynch, 2016), and skin 

microbiota (Grice and Segre, 2011), the most extensive microbiota population is that 

of the GI tract (Cryan et al., 2019). These bacteria, eukarya, and archaea have evolved 

with their hosts over millennia to form a complex and mutually beneficial relationship 

(Backhed et al., 2005; Neish, 2009). Some of the physiologically beneficial effects 

that the microbiota confers to the host include reinforcement of the gut barrier against 

pathogens (Baumler and Sperandio, 2016; Natividad and Verdu, 2013), regulation of 

host immunity (Belkaid and Hand, 2014), and energy balance and metabolism (den 

Besten et al., 2013). The gut microbiota is also pivotal in the communication between 

the gut and the brain and implicated in disorders of both (Bastiaanssen et al., 2018; 

Mayer et al., 2015b; Morais et al., 2021; Wilmes et al., 2021), details of which will be 

discussed later in this review of the literature. 
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2. Early life development of the microbiota-gut-brain axis 

The individual components of the microbiota-gut-brain axis undergo extensive 

development in early life to allow these complex interactions to be carried out 

appropriately. A brief overview of the function, and an in-depth summary of the role 

of the gut microbiota in the development of these components is provided in the below 

sections. 

 

2.1. Development of the gut microbiota 

The term “microbiota” is the hypernym used to describe the 10-100 trillion microbial 

cells living within and on the surface of multicellular organisms (Blaser, 2014; Gilbert 

et al., 2018). A concentration gradient is evident from the upper intestine, with a 

population of 102 to 104 cells per gram in the duodenum to 107 to 109 cells per gram 

in the ileum, to the colon which is home to 1011 to 1012 cells per gram (Derrien and 

van Hylckama Vlieg, 2015; Kovatcheva-Datchary et al., 2013; O'Hara and Shanahan, 

2006) (Figure 1). The different bacterial communities as well as their relative 

abundances found along the human GI tract are also outlined in Figure 1. The bacterial 

species that comprise the gut microbiota are extremely important not only for normal 

GI function, but also for gut development.  
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Figure 1. Representation of gut microbiota composition and abundance along the 

GI tract. Major features that shape the gut microbiota into different anatomical 

regions of the gut are indicated. A concentration gradient of the gut microbiota from 

the small to the large intestine is also seen. From (Kovatcheva-Datchary et al., 2013). 

 

The gut microbiota is essential in early life development. Colonisation of the GI tract 

with microbes is a dynamic process and for the first number of years of life, the 

composition and diversity of the gut microbiota fluctuates until the establishment of a 

more consistent “adult microbiota” which occurs at approximately age 3 in humans 

(Nylund et al., 2014; Rodríguez et al., 2015). Several factors are involved in early 

colonisation and development of the neonatal gut microbiota such as mode of delivery 

(Martin et al., 2016; Rouge et al., 2010), gestational duration (Barrett et al., 2013), 

early life antibiotic exposure (Mbakwa et al., 2016), mode of feeding (Madan et al., 

2016), and epigenetics (Gacesa et al., 2022) and examples and each of these have been 

reviewed extensively previously (Tamburini et al., 2016; Yee et al., 2020). 

 

2.1.1. Prenatal influences on the microbiota 

Prenatal factors including microbial seeding from the mother, maternal antibiotic use, 

maternal diet, and maternal stress exposure all impact upon foetal development and 

infant microbiota establishment. In early life, the diversity of the infant microbiota is 
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initially low prior to the observed expansion and diversification. Maternal antibiotic 

use has been shown to alter infant gut microbiota composition at 3 and 12 months of 

age in humans versus non-exposed infants (Zhang et al., 2019b), as well as decrease 

microbiota diversity (Dierikx et al., 2020). Similarly, maternal diet during pregnancy 

has been shown to heavily impact upon infant gut microbiota composition (Chu et al., 

2016; Lundgren et al., 2018; Mirpuri, 2021). Maternal stress results in shifts in the 

maternal vaginal and gut microbiota, which then impacts foetal development and 

infant microbiota composition (Jašarević et al., 2017). 

A current topic of intense discussion in research is the question of the sterility of the 

uterus. This also sparks the debate of whether the infant gut is sterile in utero and the 

infant microbiota is acquired both from the mother during and after birth as well as 

from the environment after birth, the so-called “sterile womb hypothesis” (Funkhouser 

and Bordenstein, 2013), or is there a distinct uterine microbiota colonising the foetal 

gut in utero, the “in utero colonisation hypothesis” (Collado et al., 2016). Since the 

early 20th century, it has been thought that the uterus is sterile due to the work of Henry 

Tissier (Tissier, 1900). Evidence exists to both support and disprove the notion of a 

sterile womb, however the current consensus is that there is no microbiome in the in 

utero environment and any bacteria found in the uterine cavity, meconium, placenta, 

umbilical cord, or indeed the neonate are likely invaders and may be reflective of a 

pathogenic state or due to contamination of samples (Baker et al., 2018; Bushman, 

2019; de Goffau et al., 2019; Kennedy et al., 2021; Khan et al., 2015; Lauder et al., 

2016; Perez-Muñoz et al., 2017; Rehbinder et al., 2018; Theis et al., 2019).  

Mode of delivery, whether it be via caesarean section or vaginal delivery, has profound 

effects on early colonisation of the gut. A study has shown that neonates born via 

caesarean section have a different microbiota composition compared to vaginally-born 
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neonates, with those born by caesarean section initially being exposed to the skin 

microbiota with a higher representation of Staphylococcus, Corynebacterium, and 

Propionibacterium spp. versus infants delivered vaginally with a high representation 

of Lactobacillus, Prevotella, and Sneathia spp. (Dominguez-Bello et al., 2010). 

Another study also reported a lesser abundance of Bifidobacterium spp. in caesarean 

section-born mice, which may impair the ability of these infants to break down the 

human milk oligosaccharides (HMO) in breastmilk resulting in an increased 

prevalence of atopic diseases (Fujimura et al., 2016) and metabolic disorders 

(Stuivenberg et al., 2022), further highlighting the major role of mode of delivery on 

early GI colonisation (Morais et al., 2020). Interestingly, exposure of neonates born 

by caesarean section to their mother’s vaginal microbiota resulted in a shift in 

microbiota composition towards that of vaginally-born infants during the first month 

of life (Dominguez-Bello et al., 2016). This same narrowing of the difference in 

microbiota composition between caesarean section and vaginally-born infants has 

been reported in another study using orally-delivered maternal faecal microbiota 

(Korpela et al., 2020). However, the efficacy of this mother-to-infant microbiota 

seeding method is somewhat disputed, with evidence suggesting that oral 

administration of maternal vaginal microbiota did not affect caesarean section-born 

offspring’s microbiota composition (Wilson et al., 2021). In summary, the mode of 

delivery is responsible for major shifts in gut microbiota composition, however, 

further studies are needed to determine the benefits of mother-to-infant microbiota 

seeding in caesarean section-born infants directly after birth. 
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2.1.2. Postnatal influences on the microbiota 

Aside from prenatal input, postnatal factors such as method of feeding also play a 

major role in early life microbiota colonisation. Breastfeeding has been marked as an 

important source of nutrition for neonates (Lyons et al., 2020). The microbiota 

composition of preterm infants has been seen to be lacking in two major genera, 

Bifidobacterium and Lactobacillus, versus full-term infants (Barrett et al., 2013). 

Breastfeeding provides bifidogenic factors and HMOs to aid the growth of beneficial 

bacteria in the gut and help to develop a more stable microbiome (Dai and Walker, 

1999) and has been shown to compensate for the missing genera seen in both preterm 

and caesarean section-delivered infants (Costello et al., 2012). Not surprisingly, it has 

been seen that there is greater Bifidobacterium population diversity in breastfed versus 

formula-fed infants (Roger et al., 2010). Interestingly, it has been shown that breastfed 

infants harbour a less diverse microbiota (lower α-diversity) versus formula-fed 

infants, which is thought to be the result of a higher capacity to degrade HMOs in 

breastfed infants, which has shown importance in the development of the immune 

system (Ma et al., 2020). The different methods of transfer and modulation of neonatal 

microbiota both prenatally and postnatally are summarised in Figure 2. It has also 

been suggested that the development of the microbiota, in tandem with multiple other 

systems including the brain, immune system, and hypothalamic-pituitary-adrenal 

(HPA) axis reflects a critical window in the development of the gut-brain axis (Cowan 

et al., 2020). As outlined above, several factors may directly affect the gut microbiota. 

One such factor is stress and associated HPA axis activation. It is thought that the early 

postnatal stage is critical for the development of a healthy microbiome as it is the most 

dynamic phase of microbiota development (O'Mahony et al., 2014). This will be 

discussed in more detail below in the relevant sections.  
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Other postnatal factors that impact upon the infant gut microbiota include exposure to 

stress in early life (D'Agata et al., 2019; Vogel et al., 2020) and postnatal antibiotic 

exposure which results in an increase abundance of pathogenic bacteria including 

Klebsiella and Enterococcus spp. (Reyman et al., 2022). 

 

 

Figure 2. Pre- and postnatal factors influencing neonatal gut microbiota including 

mode of feeding and maternal diet, antibiotic use, and exposure to stress. Prenatal 

factors that influence infant gut microbiota colonisation include maternal diet, which 

shapes the maternal microbiota which the infant is exposed to at birth. In the 

postpartum period and early life, postnatal factors including maternal diet, mode of 

feeding as well as neonatal antibiotic treatment and early life stress all play major 

modulatory roles in early life shaping of the gut microbiota. Red arrows indicate 

influencing factors. 
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2.2. Functional anatomy of the gastrointestinal tract 

The GI tract is the series of hollow organs beginning at the mouth and terminating at 

the anus and is responsible for the digestion and absorption of nutrients from food, 

control of motility, secretion, and also performs a role in immunity.  

Digestion begins in the mouth both mechanically and chemically. Here, the salivary 

glands produce saliva containing amylase which mixes with the ingested food and 

begins digesting starch. Mucins contained within saliva also aid in the formation of a 

bolus which is then transferred down the oesophagus to the stomach via peristaltic 

contractions (the muscular contraction of the GI tract). In the stomach, the partially 

digested food is mixed with enzymes and hydrochloric acid secreted by gastric cells 

to aid digestion. The stomach is anatomically divided into the fundus, body, and 

pylorus which enables accumulation, and mechanical digestion respectively. Next, 

each segment of the remaining GI tract performs specific processes related to digestion 

and absorption of food. For instance, the small intestine, usually between 3-6 meters 

long, is comprised of the duodenum (20-25cm in length), jejunum (~2.5 metres in 

length), and ileum (~3 metres in length), and is mainly involved in the absorption of 

nutrients.  

Chemical digestion of foodstuffs is carried out in the duodenum as it receives 

pancreatic juices and bile from the gall bladder, with the jejunum and ileum being 

involved in more absorptive roles. As there is no clear juncture between the jejunum 

and ileum, the jejunum may be recognised by the absence of Peyer’s patches, 

groupings of lymphoid tissue which are part of gut-associated lymphoid tissues which 

are seen in the ileum (Kobayashi et al., 2019), and the absence of Brunner’s glands, 

which secrete mucous to neutralise chyme from the stomach, present in the duodenum. 
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The jejunum also has circular folds, villi, and microvilli, all of which increase the 

available surface area for absorption of nutrients. The jejunum may be differentiated 

from the ileum by its’ greater thickness, increased vasculature, and more separated 

circular folds (Mahadevan, 2020).  

The small intestine is composed of 4 layers. The serosa, the outermost layer, is 

comprised of mesothelium (Figure 3 below). The muscularis houses two smooth 

muscle layers, one being the longitudinal muscle responsible for elongation or 

shortening of the gut, and the other being the circular muscle, which constricts the gut. 

This layer is also home to neurons organised into myenteric plexi. The submucosa 

contains blood vessels, lymphatics, and other plexi of neurons called submucosal plexi 

which are responsible for the regulation of motility and secretion. The mucosa is the 

innermost layer and is optimised for absorption by virtue of the presence of numerous 

villi which increase total surface area. Finger-like projections of the mucosa, the villi, 

increase surface area and are present throughout the small intestine and are longest in 

the duodenum and shortest in the distal ileum. Specialised epithelial cells, including 

crypt cells which control mitosis and secretion of fluids, divide and give rise to other 

specialised cells including goblet cells located between enterocytes which coat the villi 

in mucin to protect the wall of the GI tract and aid in movement of the chyme, 

enteroendocrine cells which produce hormones necessary for regulation of digestion 

through alterations in motility and secretion, Paneth cells which play a role in 

immunity via secretion of anti-microbial molecules, or enterocytes (Campbell et al., 

2019). 

Peristalsis results in the movement of chyme along the ileum to the large intestine 

though the ileo-caecal junction and into the caecum where any remaining water and 

required salts are absorbed. The colon is approximately 1.5 metres in length. In 
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summary, the journey of the remaining chyme begins in the ascending colon, which 

becomes the transverse colon, then the descending colon and the final part of the colon, 

the sigmoid colon. From the sigmoid colon, the contents of the gut pass into the 

rectum, and finally to the anus where it is expelled from the body. The main functions 

of the large intestine are absorption of water and electrolytes, formation of faeces, and 

digestion by gut bacteria (Nigam, 2019). The musculature of the wall of the colon is 

comprised of the outer longitudinal and inner circular layers. In the colon, the 

musculature, enteric nervous system (ENS), and interstitial cells of Cajal modulate 

contraction. The interstitial cells of Cajal extend connections to the myenteric and 

submucosal plexi as well as the circular muscle layer to regulate absorption. The 

interstitial cells of Cajal also play a modulatory role in motility via electrical 

propagation along smooth muscle cells, while also being involved in sensitivity to 

mechanical stimuli. Mechanoreceptors located in the mucosa have been shown to 

respond to touch, whereas those expressed in the serosa respond to distension 

(Bharucha and Camilleri, 2019).  

Located within the monolayer of epithelial cells, a host of immune cells including 

dendritic cells, B and T cells, as well as macrophages maintain intestinal homeostasis. 

Dendritic cells are located throughout the lamina propria, gut associated lymphoid 

tissue, and in discrete lymphoid aggregates and are among the most potent antigen 

presenting cells and are capable of initiating the adaptive immune response (Iwasaki 

and Medzhitov, 2015). Under pathological conditions, dendritic cells recognise 

microbial-borne antigens and mount an immune response, however, given the vital 

role of the microbiota in digestion and gut to brain signalling, intestinal dendritic cells 

have adapted to tolerate oral antigens and maintain a symbiotic relationship between 

the host and the microbiota (Chieppa and Eri, 2013). 
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2.3. The role of the gut microbiota in the development of the enteric 

nervous system 

The ENS is a division of the autonomic nervous system and is comprised of networks 

of neuronal and glial cells embedded in the gut wall along the entire length of the 

intestine. It exerts control over normal physiological function of the GI tract and is 

comprised of two major ganglionated plexi; the myenteric plexus and submucosal 

plexus (Figure 3). Although the ENS is capable of functioning independently of the 

central nervous system (CNS) to control GI secretomotor activity including peristalsis, 

gastric secretion, and nutrient and water absorption, there is constant bidirectional 

communication between the ENS and CNS via intestinofugal neurons which synapse 

onto sympathetic ganglia, where sensory information travels along spinal and vagal 

afferent routes to the CNS (Furness, 2012), and from the CNS to ENS preganglionic 

neurons of vagal efferents from the dorsal motor nucleus of the vagus nerve which 

innervate the muscular and mucosal aspects of the gut (Breit et al., 2018). The ENS 

has also been shown to play a major role in gut-brain axis communication (Carabotti 

et al., 2015) and responds either directly or indirectly to the luminal contents of the 

gut, including microbial metabolites and mediators. Intrinsic primary afferent neurons 

of the ENS, neurons with their cell bodies, processes, and connections located in the 

gut wall detect the luminal environment including microbial metabolites and 

mechanical manipulations and are involved in chemosensing and initiation of 

secretomotor and vasomotor reflexes. The extrinsic primary afferent neurons are 

neurons with differing locations depending on function; those with their cell bodies 

located in the nodose and jugular ganglia are vagal afferents, whereas for spinal 

afferents these are located in the dorsal root ganglia (DRG). The function of these 

extrinsic primary afferent neurons is to relay sensory information such as nociceptive 
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signals to the CNS and are hypothesised to exert effects on myenteric neurons of the 

ENS, resulting in smooth muscle contraction (Smith-Edwards et al., 2019). Even 

before being established in the foetus, the microbiota plays a major role in gut 

development as products produced by the maternal gut microbiota begin exerting 

indirect effects on gut physiology and development in utero (Heiss and Olofsson, 

2019). The influence of the gut microbiota on ENS development has been discussed 

at length previously (Hyland and Cryan, 2016; Obata and Pachnis, 2016). 

It is seen that the major developmental processes associated with ENS formation begin 

early in gestation during the formation of the neural tube (Goldstein et al., 2013). In 

humans, the colonisation process of the rudimentary gut by neural crest cells begins at 

approximately gestational week 4 (Nagy and Goldstein, 2017), with the myenteric 

plexus developing from week 4 until shortly before birth, and submucosal plexus 

development lagging behind by 3 weeks with continued development postnatally (Fu 

et al., 2004; Wallace and Burns, 2005). This same enteric neural crest cell colonisation 

process may be seen in mice with the myenteric plexus forming from embryonic day 

8.5-9.5 to 13.5-14, with some semblance of a submucosal plexus forming from 

embryonic day 14.5-16.5 (Rao and Gershon, 2018). 

Shortly following birth, the GI tract is rapidly colonised by microorganisms as 

indicated above. The role of the microbiota in ENS development may be seen in that 

germ-free (GF) mice have a lower number, as well as density of  myenteric neurons, 

indicating a potentially reduced functional capacity compared to relative controls 

(Collins et al., 2014). The gut microbiota has been identified as one of the main 

modulators of ENS development (Foong et al., 2020) as in rodents, both the ENS and 

gut microbiota undergo substantial parallel development postnatally. This begs the 

question of whether these developmental processes are linked and is supported by the 
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observation that in GF mice, improper development and functionality of the ENS is 

seen (Kabouridis and Pachnis, 2015). Caputi and colleagues demonstrated this in 

C57BL/6 mice by depleting the gut microbiota via administration of broad-spectrum 

antibiotics and observed the abnormal development of glial networks and a reduction 

in the number of neurons in the myenteric plexi (Caputi et al., 2017b). To further 

support the link between the development of the ENS and the gut microbiota, 

colonisation of GF mice with conventional microbiota rescues the function of enteric 

neurons altered as a result of a lack of microbiota (McVey Neufeld et al., 2015; Vadder 

et al., 2018).  

Antibiotic depletion of the gut microbiota has also been shown to decrease GI transit 

(Ge et al., 2017; Lendrum et al., 2016). Mechanisms underlying this effect are thought 

to be related to decreased inhibitory neuronal nitric oxide synthase (nNOS) nitrergic 

signalling as antibiotic-induced dysbiosis reduced nNOS signalling, leading to altered 

inhibitory input to the gut, resulting in dysmotility (Caputi et al., 2017b). This is 

reinforced in a study by Anitha et al who treated mice with broad-spectrum antibiotics, 

resulting in a reduction in bacterial load, a decrease in the number of nNOS+ neurons, 

and delayed motility (Anitha et al., 2012). The microbiota is required for normal 

excitability of gut neurons, in particular, myenteric intrinsic primary afferent neurons 

as seen in a study in GF mice where colonisation of GF mice rescued the excitability 

lost as a result of the GF condition, highlighting the importance of the gut microbiota 

in appropriate gut function (McVey Neufeld et al., 2013). The expression of the aryl 

hydrocarbon receptor on enteric neurons of both the proximal and distal GI tract 

enables a response to luminal content, including to microbial metabolites (Obata et al., 

2020). These findings together demonstrate the necessity of the gut microbiota in 

normal development of the gut and the ENS. 
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Figure 3. Structure of gastrointestinal tract including the enteric nervous system. 

The schematic illustrates the laminar organization of the bowel in three dimensions 

from the mesentery to the lumen. The two major plexuses of the ENS are the myenteric 

plexus, located between the circular and longitudinal muscle layers in the muscularis 

externa, and the submucosal plexus, located in the submucosa. Image obtained from 

Wikimedia and reproduced under a creative commons attribution-share alike 4,0 

international license. 

 

2.4. The role of the gut microbiota in the development of the gut barrier 

At the interface between the enteric microbiota, luminal contents of the GI tract, and 

the host lies the gut barrier. This barrier is comprised of two main layers; (i) a physical 

barrier to regulate diffusion between cells and host tissue and (ii) a functional barrier 

to allow immune tolerance and nutrient uptake. During the prenatal period, the GI tract 

is already capable of the following; (i) digestion of food (ii) defence against pathogens 

(iii) hormone and signalling molecule secretion (iv) osmoregulation (v) detoxification 

of metabolites resultant of metabolism (Buddington and Sangild, 2011), indicating that 

the infant GI tract is primed to respond to postnatal microbial colonisation. 
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There are three main methods by which molecules may pass through the epithelial 

barrier; (i) passive diffusion across the cell membranes (ii) passive diffusion through 

spaces between neighbouring cells (iii) carrier/receptor-mediated transport (Chelakkot 

et al., 2018). The innermost layer of the gut barrier is the mucous layer which serves 

as a buffer between the luminal contents of the GI tract and the gut epithelial cells. 

This layer is formed following secretion of mucins such as MUC2, a highly 

glycosylated mucin which prevents bacterial adherence to the epithelial layer, by 

goblet cells and is comprised of 2 layers; the inner and outer mucous layer. The inner 

layer is approximately 100µm thick, contains concentrated antimicrobials, and has a 

low density of bacteria whereas the outer layer contains more diluted antimicrobials 

and allows some bacterial penetration (Natividad and Verdu, 2013). Mucous structure 

also varies depending on location in the gut as well as microbiota composition. The 

next layer, a single layer of epithelial cells comprised of endocrine cells, goblet cells, 

Paneth cells, enterocytes, and M cells, forms a physical barrier between luminal 

contents and visceral tissues and organs. This epithelial layer is fortified by tight 

junctions formed by the interaction of tight junction proteins including zonula 

occludens ZO-1, ZO-2, occludin, and claudin. 

A critical regulator of gut barrier development is the gut microbiota as it is seen that 

gut barrier function is impaired in GF animals (Smith et al., 2007). A study in piglets 

found that at birth, physiological and molecular parameters of the gut mucosal barrier 

of the ileum and colon, including fluorescein isothiocyanate (FITC)-dextran flux, 

crypt depth, and gene expression levels of toll-like receptors (TLR), are already 

distinct with little variation occurring in these parameters in the colon, while some 

variation was noted in the ileum until postnatal day (PND)28 (Arnaud et al., 2020). 

Further studies have reinforced the role of the gut microbiota in gut barrier 
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development whereby the outer mucous layer of GF mice was similar to that of 

conventional animals, but the inner mucous layer was more permeable to bacteria-

sized beads, an effect that was rescued by colonisation of the GI tract with microbiota 

(Johansson et al., 2015). The role of the gut microbiota in development of the gut 

barrier has been discussed at length previously (Takiishi et al., 2017).  

The gut barrier and immune system develop in tandem, with the epithelial barrier 

playing a major role in early life priming of the immune system, and the mechanism 

by which the gut microbiota exerts its effects on gut barrier development and function 

has been suggested to be mediated by the immune system.  

 

2.5. The role of the gut microbiota in the development of the immune 

system 

The immune system undergoes extensive development in utero as well as in the early 

postnatal period, with this evolutionary capacity persisting throughout the lifespan as 

the host encounters various immune challenges (Simon et al., 2015). The immune 

system may be broadly split into two subsystems, the innate and adaptive immune 

system, which function in synchrony to mount a defence against pathogens and other 

foreign particles. The innate immune system provides a non-specific front line of 

defence against potentially infectious agents and includes both physical and chemical 

barriers such as the skin and mucous membranes, myeloid-derived immune cells, and 

soluble mediators (Pettengill et al., 2014; Williams, 2011).  

The adaptive immune system is more specific in its response, utilising immune cells 

of lymphoid lineage to mount a pathogen-specific response (Simon et al., 2015). The 

adaptive immune system also retains an “immunological memory” of previously 
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encountered pathogens, and thus is more effective should the host be exposed to that 

same pathogen again (Flajnik and Kasahara, 2010). 

It is also seen that optimal colonisation of the GI tract in neonates is central for 

appropriate immune development in the gut (Langhendries, 2006). Further evidence 

for the vital role of the gut microbiota in early life immune system development is 

found in studies reporting that a lack of Bifidobacteria and depletion of genes 

associated with HMO utilisation was found to result in immune dysregulation and 

systemic inflammation in early life (Henrick et al., 2021). For quite some time it has 

been proposed that a decreased exposure of infants to microbes as a result of increased 

cleanliness in the developed world, the hygiene hypothesis (Garn et al., 2021), 

negatively impacts upon immune system development. It has been suggested that 

exposure to this increasingly sterile environment compromises immune system 

development and function, leading to a rise in the incidence of atopic diseases, namely 

asthma and eczema, in childhood (Strachan, 1989). Evidence to support this theory 

includes the observation that the incidence of atopic diseases during early childhood 

in those that are exposed to pets, other children at home (siblings), or a farm 

environment is far lower than those who grew up without experiencing these same 

environments (Ball et al., 2000; Benn et al., 2004). The immune system of the gut is 

very well developed with a vast array of immune cells and mechanisms capable of 

mounting appropriate immune defences against pathogens and other harmful foreign 

particles. One such mechanism includes the litany of receptor molecules present in the 

intestinal epithelial cells for recognition of bacterial cell surface ligands such as 

capsular polysaccharides, peptidoglycan, and lipopolysaccharide (LPS) (Platt and 

Mowat, 2008).  
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At the centre of how immune system development may be affected by the gut 

microbiota lie the TLRs. It is seen that both pro- and anti-inflammatory cytokines are 

released following the activation of TLRs (Takeda and Akira, 2005). TLRs are 

activated by bacterial products such as LPS and therefore development of the immune 

system is closely regulated by the gut microbiota. It is seen in human children that 

early life perturbations in the gut microbiota may lead to the development of immune 

diseases such as Crohn’s disease and inflammatory bowel disease (Matsuoka and 

Kanai, 2015).  

The role of the gut microbiota in the development of the immune system is further 

bolstered by the observation that GF animals display a dysregulated and ineffective 

immune system (Round and Mazmanian, 2009). It may also be noted that through 

communication between the enteric microbiota and the host at the gut epithelial 

barrier, the microbiota is involved in early life priming of the immune system. This is 

accomplished via recognition of self-versus non-self-antigens by pattern recognition 

receptors (PRR), such as the TLRs in the gut, which aid in tolerance to the host 

microbiota by the immune system (Chu and Mazmanian, 2013; Fasano and Shea-

Donohue, 2005; Francino, 2014). Further, short-chain fatty acids (SCFA) such as 

butyrate have been shown to reinforce the mucosal barrier through stimulation of 

mucous production (Jung et al., 2015; Willemsen et al., 2003). Through the evidence 

above, it is no surprise that any microbiota-targeted insult in early life would have 

detrimental effects on proper immune system development and later function. 
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2.6. The role of the gut microbiota in the development of the brain  

The gut microbiota also plays a pivotal role in CNS development as it is seen that in 

the absence of the maternal gut microbiota in GF mice, the microglia which play a 

major role in brain circuitry exhibit alterations in gene expression levels (Thion et al., 

2018). Early neural tube development has been shown to be susceptible to both 

internal and external factors prenatally such as maternal diet, stress, and infection. In 

a study by Diaz Heijtz and colleagues, it was noted that the gut microbiota may alter 

neurodevelopment by altering levels of synaptophysin and postsynaptic density 

protein (PSD)-95 (markers of synaptic vesicle maturation as an indirect marker of 

synaptogenesis and maturation of excitatory synapses respectively) in the striatum in 

a critical window of development. This may lead to alterations in synaptogenesis via 

long-term regulation of synaptogenesis or by direct modulation of neurotransmitters 

such as serotonin (5-HT), melatonin and gamma-aminobutyric acid (GABA) (Heijtz 

et al., 2011). It has also been reported that maternal microbiota disruption alters uterine 

environmental conditions, leading to abnormalities in the foetal brain which are 

lessened by the addition of microbial metabolites to foetal thalamic explants (Vuong 

et al., 2020). Interestingly, in GF mice it is seen that there is increased neurogenesis, 

or birth of new neurons, in the dorsal hippocampus versus conventional controls which 

was not reversed by recolonisation with microbiota (Ogbonnaya et al., 2015). Further, 

hippocampal and amygdalar volumes are shown to be increased in GF mice 

(Luczynski et al., 2016b), and CNS serotonergic signalling is altered in GF mice which 

is not rescued by postnatal recolonisation with microbiota (Clarke et al., 2013). These 

findings highlight the prenatal or very early postnatal modulatory role of the gut 

microbiota on neuronal processes in the brain which occur during critical windows of 

development (Vuong et al., 2020). 
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The behavioural correlate of the developmental alterations in these microbiota-

mediated CNS structures includes decreased anxiety (Neufeld et al., 2011), non-spatial 

memory deficits (Gareau et al., 2011), as well as exaggerated stress responsivity 

(Clarke et al., 2013). The modulatory role of the gut microbiota on brain and behaviour 

has been extensively reviewed previously (Luczynski et al., 2016a). 

It is known that the gut microbiota may affect blood-brain barrier (BBB) permeability 

either directly or by action of released metabolites as well as via the release of 

cytokines (Logsdon et al., 2018). Gut microbes, or their metabolites have also been 

shown to cross the BBB and exert effects on both BBB permeability and brain function 

(Parker et al., 2020). Evidence to support the effect of the gut microbiota on 

neurodevelopmental processes lies in the concept that the permeability of the BBB at 

the hippocampus, frontal cortex, and striatum is thought to be controlled by the 

microbiota. Interestingly, increased BBB permeability has also been seen in GF versus 

conventional mice (Braniste et al., 2014).  

The gut microbiota is capable of synthesis of many neuromodulatory molecules 

including GABA, noradrenaline (NA), 5-HT, as well as SCFAs and tryptophan, and 

as such may affect gut-brain signalling (Bistoletti et al., 2020; Bosi et al., 2020). It has 

also been shown that specific bacteria may modulate neurotransmission within the 

CNS via alteration of precursors for example, Bifidobacterium infantis has been seen 

to increase peripheral tryptophan levels and possibly decrease 5-HT degradation in the 

brain (Desbonnet et al., 2008).  

Interestingly, the neural circuitry required for perception of pain are already developed 

by the end of the second trimester. It has been shown that the nerve tracts involved in 

the spinothalamic tract are completely myelinated to the level of the thalamus by 
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gestational week 30, and the neurons from the thalamus to higher brain regions in the 

cortex are myelinated by week 37 (Anand and Carr, 1989). The late gestational and 

early postnatal period is considered a critical window for neuronal development as 

functional connections are still being formed and myelinated. Thus, any insult either 

prenatally or in the early postnatal period may impact upon the nociceptive system, 

resulting in sensitisation including in perception of visceral pain. 

 

2.7. The role of the gut microbiota in HPA axis development  

The HPA axis undergoes major development both in utero and in the postnatal period. 

Development of the pituitary gland and activity of adrenocorticotropic hormone 

(ACTH) has been detected as early as 9 to 10 weeks gestational age (Pavlova et al., 

1968) as well as development of the foetal hypothalamus (Koutcherov et al., 2002). 

By week 12, corticotropic releasing factor (CRF) is detected in the foetal 

hypothalamus (Wood and Walker, 2015). The adrenal cortices of the foetus are active 

from early gestation and undergo substantial development both prenatally and 

postnatally (Ishimoto and Jaffe, 2011).  

A role for the gut microbiota in HPA axis development and function has also been 

observed. It is seen that chronically high levels of cortisol, the stress hormone in 

humans, can impact upon the gut microbiota and intestinal epithelial barrier 

permeability in a reciprocal manner (for review see (Kelly et al., 2015)). Stress 

responsivity and anxiety-like behaviour are noted to be elevated in GF versus 

conventional mice (Clarke et al., 2013; Sudo et al., 2004), indicating that early life 

microbiota products and potentially the systems they affect are capable of influencing 

stress system development and function.  
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Irritable bowel syndrome (IBS) is a disorder of gut-brain axis interactions that is 

associated with both an altered gut microbiota as well as an exaggerated cortisol 

response to CRF stimulation (Dinan et al., 2006). This association was investigated in 

GF mice whereby decreased anxiety-like behaviour was observed versus specific 

pathogen free (SPF) mice, mice whose exact gut composition is known and controlled, 

on the elevated plus maze (Neufeld et al., 2011). This same decreased anxiety-like 

behaviour was seen by Clarke and colleagues using the light-dark box (Clarke et al., 

2013). However, only this reduction in anxiety-like behaviour, but not the CNS 

neurochemical alterations, was normalised following reconstitution of the microbiota 

post-weaning, highlighting a temporal critical window of development (Clarke et al., 

2013).  

Stress, particularly in early life exerts effects on HPA axis function, resulting in 

alterations in cortisol at baseline or response to a subsequent stressor (Butler et al., 

2017; Ouellet-Morin et al., 2019). Mounting evidence exists to support the idea that 

the gut microbiota is required for an appropriate stress response. Sudo and colleagues 

noted that the stress response, as measured by plasma ACTH and corticosterone 

(CORT), was elevated in GF versus SPF mice in response to a restraint stress (Sudo 

et al., 2004). Further justification for the necessity of the gut microbiota in the 

mounting of an appropriate stress response is seen where colonisation of GF mice with 

Bifidobacterium infantis ameliorated the exaggerated stress response observed (Sudo 

et al., 2004). Colonisation of naturally timid GF BALB/c mice with the microbiota of 

SPF NIH Swiss mice resulted in an increase in exploratory behaviour whereas the 

converse is true if GF NIH Swiss mice are colonised with microbiota from BALB/c 

mice (Bercik et al., 2011a), further supporting the role of gut microbiota in gut-brain 

axis signalling.  
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3. Pathways of communication of the microbiota-gut-

brain axis 

The main pathways of communication between the GI tract and the CNS including the 

role of the gut microbiota and its’ metabolites, the ENS, the gut epithelial barrier, 

immune signalling, HPA axis, and the vagus nerve are summarised in Figure 4. Here, 

the different routes of communication will be discussed.  

Figure 4. Routes of communication between the gut microbiota and the central 

nervous system including proposed humoural and neural routes through 1. Neural 

routes 2. Immune signalling 3. Release of neurotransmitters 4. HPA axis 

modulation. Factors that affect gut barrier permeability are also outlined including 

stress and circulating corticosteroids, which may affect tight junction protein 

expression and function. The influence of the enteric nervous system on control of 

gastrointestinal function is also shown. ACTH–Adrenocorticotropic Hormone, BBB – 

Blood Brain Barrier, CRF–Corticotropin Releasing factor, HPA – Hypothalamic-

Pituitary-Adrenal, TJP – Tight Junction Protein.  
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3.1. Neural communications  

One of the primary routes of communication between the gut and the brain is via the 

vagus nerve of the parasympathetic nervous system (Figure 4 point 1). The vagus 

nerve is a mixed nerve composed of 80% afferent (sensory) and 20% efferent (motor) 

fibers. Afferent fibers of the vagus nerve innervate both the mucosal and smooth 

muscle layers of the intestine from the duodenum to the distal colon (Wang and 

Powley, 2000; Wang and Powley, 2007). The vagus nerve, through its afferent 

connections, can sense the local environment in the gut and send this information to 

the CNS where it may be integrated into the autonomic network before a response is 

generated (Bonaz et al., 2018). These local changes include detection of microbial 

metabolites produced by the gut microbiota and in this way, the microbiota exert 

influence over gut-brain axis signalling (Bonaz et al., 2018). The vagus nerve may be 

directly activated by SCFAs produced by enteric bacteria such as butyric acid (Breit 

et al., 2018). Evidence to support the major role of the vagus nerve in gut-brain 

communication includes that vagotomy prevents the beneficial in vivo effects of the 

bacteria Lactobacillus rhamnosus JB-1 seen in mice where a reduction in the CORT 

response to a stressor and a reduction in stress-induced depressive and anxiety-like 

behaviours is seen in normal mice treated with this bacteria (Bravo et al., 2011). Other 

studies have also supported the role of the vagus nerve in gut-brain axis signalling 

showing that the in vivo anxiolytic effects of Lactobacillus rhamnosus JB-1 (Liu et 

al., 2021), and Bifidobacterium longum subsp. longum NCC3001 in a mouse model of 

colitis were absent in vagotomised mice, implicating the vagus nerve in gut-brain axis 

signalling (Bercik et al., 2011b). 

The sympathetic nervous system is also involved in gut-brain communication. The 

majority of the viscera receive both parasympathetic and sympathetic innervation via 
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the vagus nerve and splanchnic nerves respectively each of which exert opposing 

effects. For example, parasympathetic innervation results in vasodilation and 

increased GI motility and secretion, whereas sympathetic innervation results in 

vasoconstriction and decreased GI motility and secretion (Breit et al., 2018).  

It is generally accepted that pain signals are transmitted via spinal mechanisms 

including via the spinoreticular, spinomesencephalic, spinohypothalamic, and 

spinothalamic tracts (Millan, 2002). The spinoreticular tract projects to the dorsal 

reticular nucleus to regulate the affective component of pain, while the 

spinomesencephalic tract projects to the periaqueductal gray, with information 

regarding the intensity and location of the pain. Conversely, the spinohypothalamic 

tract links to the hypothalamus to coordinate affective and behavioural responses to 

pain. In pain perception, the thalamus acts as the gatekeeper for the many nociceptive 

and anti-nociceptive signals entering and leaving the CNS before being relayed to 

higher brain areas including the anterior cingulate cortex and somatosensory cortex 

(Cryan et al., 2019). 

 

3.2. Immune modulation 

Another key mediator in the modulation of gut to brain signalling is the immune 

system (Figure 4 point 2). The distribution of immune cells in the gut is by far the 

densest in the body (Cryan et al., 2019), with these immune cells in continuous contact 

with the gut microbiota either by direct contact or via sensing released molecules. To 

prevent the mounting of an immune response, the mucous layer lining the GI tract 

limits contact between the enteric microbiota and the internal organs. It is at this 

mucosal barrier that the crosstalk between the immune system and the gut microbiota 

occurs. Epithelial PRRs monitor intestinal homeostasis and bacterial infiltration by 
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sensing microbe-associated molecular patterns, which once activated, mount an 

intestinal immune response (Duerkop et al., 2009). 

The autonomic nervous system, with integration from the ENS and CNS, is 

responsible for the maintenance of physiological homeostasis. The autonomic nervous 

system, in concert with endocrine signalling of the HPA axis, may induce local 

alterations in the gut such as changes in motility, mucous production, permeability of 

the intestine, and the mucosal immune response (Mayer et al., 2015a). 

The ENS lies at the interface between the microbiota along with the luminal content 

of the gut and the host and is primed to communicate with the microbiota either 

directly or indirectly (Figure 4). One mechanism by which the microbiota effect 

change in GI physiology is via activation of PRRs such as TLRs. Several TLRs are 

expressed throughout the ENS and are activated by products and components of the 

microbiota (Hyland and Cryan, 2016). One such receptor is TLR4, which is expressed 

in myenteric plexi (Anitha et al., 2012). TLR4 has been shown to have importance in 

normal functioning of the gut and has been linked to proper development of the ileum, 

specifically in the development of normal ileal morphology (Caputi et al., 2017a). 

Interestingly, TLR4 is expressed in the nodose ganglion of the vagus nerve which can 

detect LPS, a component of gram-negative bacteria, further supporting the influence 

of the gut microbiota in gut to brain signalling (Hosoi et al., 2005). LPS activation of 

TLR4 and NF-κB has also been linked to increased enteric neuronal survival (Anitha 

et al., 2012). TLR4 is involved in colonic motility as seen by TLR4 knockdown or 

knockout which resulted in delayed motility (Anitha et al., 2012). This is also seen by 

blocking TLR4 signalling by means of introduction of a spontaneous mutation 

TLR4lps-d which mimics GF and antibiotic-induced colonic dysmotility by removing 

the sensitivity of the receptor to its ligand, LPS (Caputi et al., 2017a). The important 
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role of TLRs in the modulation of physiological processes is further reinforced in that 

TLR4-/- mice display decreased inhibitory signalling-mediated relaxation of the colon, 

delayed colonic motility, and decreased faecal pellet output associated with decreased 

inhibitory nNOS signalling (Anitha et al., 2012). Knockout of TLR2 also results in a 

decrease in the number of nNOS+ neurons in the myenteric ganglia (Brun et al., 2013). 

TLR4 has even been suggested to play a regulatory role in the communication between 

glia and neurons in the small intestine (Caputi et al., 2017a) and may thus be involved 

in gut signalling and normal gut function. Concluding from evidence above, it is clear 

that both immune-mediated TLR signalling and the gut microbiota are required for 

normal physiological function of the gut.  

 

3.3. Enterochromaffin cells  

Enterochromaffin cells (ECCs) play a vital role in communication between the gut and 

the brain and are of pivotal importance in the neuroendocrine system within the gut. 

ECCs are responsible for the regulation of secretion, motility, and absorption 

(O’Mahony et al., 2011) via production and release of neurotransmitters, namely 5-

HT (Figure 4 point 3). ECCs are innervated by vagal afferents and via this route, may 

effect change in both local enteric and central nervous systems (Lutgendorff et al., 

2008) and may possibly play a role in control of the immune response (Yang and 

Lackner, 2004). ECCs produce 5-HT and along with the neurons of the ENS, store 

~95% of this neurotransmitter (Kim and Camilleri, 2000) with all 5-HT in the blood 

being gut-borne (Toh, 1954). 5-HT may affect host physiology as it is central to the 

control of motility and secretion in the gut, and modulation of levels of 5-HT in the 

gut by the gut microbiota also affects host GI function (Yano et al., 2015).  
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Depending on the 5-HT receptor activated, the response to 5-HT differs. 5-HT is 

known to play a crucial role in control of gut motility (Martin et al., 2022). Treatments 

for constipation centre around agonism of the 5-HT4 receptor whereas treatments for 

diarrhoea revolve around antagonism of the 5-HT3 receptor, highlighting the major 

regulatory role of 5-HT in motility (Kendig and Grider, 2015). The gut microbiota 

plays an important role in the production of 5-HT in the gut (De Vadder et al., 2018). 

This is supported by the fact that GF mice, that have not been colonised by bacterial 

species and are sterile in microbiological terms, show a large decrease in the amount 

of 5-HT present in the plasma versus their conventional counterparts (Clarke et al., 

2013; Hata et al., 2017; Wikoff et al., 2009). As the host is unable to synthesise 

tryptophan, the precursor of 5-HT, itself, the gut microbiota plays a vital role in the 

metabolism of tryptophan into bioactive molecules, including via the kynurenine 

pathway (for review see (Gheorghe et al., 2019)). Further, GF animals also show a 

reduction in tryptophan metabolism along the kynurenine pathway that is normalised 

following colonisation of the GI tract (Clarke et al., 2013). It is seen that following 

microbiota depletion using antibiotics, circulating 5-HT levels drop (De Vadder et al., 

2018), thus reinforcing the role of the gut microbiota in tryptophan metabolism. 

 

3.4. Stress reactions of the axis   

The HPA axis, also referred to as the stress axis, is another main factor that influences 

gut-brain communication (Figure 4, point 4). Under conditions of stress, CRF and 

arginine vasopressin (AVP) are released from the paraventricular nucleus of the 

hypothalamus which stimulates production and systemic release of ACTH from the 

anterior pituitary, resulting in glucocorticoid synthesis and release from the adrenal 
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glands, namely cortisol in humans, CORT in rodents. This cascade results in a 

physiological stress response and may be activated by the experience of stress. This 

endocrine signalling pathway is controlled at brain level by negative feedback of 

cortisol against CRF, AVP, and ACTH by acting on the glucocorticoid receptor when 

concentrations of cortisol are high. Studies in GF animals have outlined the regulatory 

role of the gut microbiota on HPA axis reactivity with studies reporting stress 

hyperreactivity in response to restraint stress in GF animals versus conventional 

controls (Clarke et al., 2013). 

 

3.5. Mediators 

Neurotransmitters are key signalling molecules in the gut-brain axis. Here, a brief 

overview of the neurotransmitters and SCFAs known to be involved in gut to brain 

communication are discussed. 

5-HT is produced from its precursor tryptophan in the ECCs in the gut. 5-HT may 

affect GI motility, behaviour, secretomotor activity, as well as peristalsis (Huang and 

Wu, 2021). GF animals have also been shown to harbour less 5-HT in the colonic 

lumen and caecum compared to conventional animals, which was reversed following 

colonisation (Hata et al., 2017). Further, dysfunction of serotonergic signalling is 

associated with stress-related psychiatric disorders and IBS (Wilmes et al., 2021). The 

extensive function of 5-HT signalling in the gut-brain axis is described in section 3.3 

above. 

GABA is the major inhibitory neurotransmitter of the nervous system. GABA exerts 

effects on GI motility as well as enteric immunomodulation (Auteri et al., 2015). It 

has been shown that microbes including Escherichia spp. and Lactobacillus spp. can 



32 
 

synthesise GABA (Richard and Foster, 2003; Siragusa et al., 2007). To further support 

the role of GABA in gut-brain axis communication, GF animals have been shown to 

have less luminal GABA versus their conventional controls (Matsumoto et al., 2012). 

Catecholaminergic neurotransmitters such as NA were some of the first 

neurotransmitter systems to be demonstrated to be involved in gut-brain 

communication. Interestingly, GF animals display higher levels of NA compared to 

their conventional controls (Kingsley et al., 1991). Further, NA and adrenaline have 

been shown to promote pathogenesis and growth of bacteria (Lyte et al., 2016). 

Other major contributors to gut-brain communication are microbial metabolites such 

as SCFAs, the most abundant of which are butyrate, acetate, and propionate (Silva et 

al., 2020). SCFA’s are produced following the fermentation of dietary fibers and are 

either absorbed by enterocytes by non-ionic diffusion or via transporter proteins such 

as the monocarboxylate transporter-1 (Tamai et al., 1995) and sodium-coupled 

monocarboxylate transporter-1 (Miyauchi et al., 2004) and are broken down along the 

Kreb’s cycle, resulting in adenosine triphosphate as an energy source (Schönfeld and 

Wojtczak, 2016). SCFAs may act locally in the GI tract and in the periphery via 

activation of several G-protein-coupled receptors, the most studied being the free fatty 

acid receptors (FFAR) 2 and 3 (Dalile et al., 2019; Schlatterer et al., 2021). 

Interestingly, it has been reported that butyrate may affect ENS physiology with 

respect to cholinergic neuronal representation in myenteric neurons, suggesting a role 

for SCFA’s in normal gut physiological function (Soret et al., 2010). SCFA’s have 

also been shown to activate FFAR3 on the vagus nerve, resulting in increased activity 

in several brain areas (De Vadder et al., 2014). 
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4. Adverse early life events 

Over eighty years ago, Hans Selye defined stress as “the non-specific response of the 

body to any demand for change”. An individual’s experience of stress differs hugely, 

so much so that one may be considered more resilient or susceptible to the effects of 

stress (Liu et al., 2018). While the individual response to stress exposure may vary, it 

is well-known that stress activates the HPA axis and results in the release of the stress 

hormone cortisol in humans (Dickerson and Kemeny, 2004) and CORT in rodents 

(Smith and Vale, 2006), which then goes on to effect behaviour. 

Stress during the early stages of life, ranging from the in utero to early postnatal period 

may have drastic effects on both gut and brain development and later life function. For 

the purpose of this thesis, the impact of stress during both the prenatal and early 

postnatal periods on later life gut-brain communication will be investigated. Stress 

exists in numerous forms ranging from physical, inflammatory, and psychological 

stressors, to less often considered experiences such as mode of delivery and method 

of feeding. The range of factors that influence gut to brain communication from the 

prenatal period into adulthood is summarised in Figure 2.  

 

4.1. Stress in the prenatal period 

4.1.1. Effect of stress in the prenatal period on mothers 

The prenatal period encompasses the time from conception until birth. The result of 

exposure to stress in the prenatal period is two-fold in that not only is the foetus 

experiencing this stress, but so too is the mother. Prenatal maternal stress may manifest 

as depression, anxiety, perceived stress, or any combination (Painter et al., 2012). 

Prenatal stress has been associated with several unfavourable outcomes, including 
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increased risk of preterm birth (Garcia-Flores et al., 2020; Lilliecreutz et al., 2016), 

delivering an infant with low birth weight (Fan et al., 2018; Khashan et al., 2014; 

Nkansah-Amankra et al., 2010), and preeclampsia (Maher et al., 2017), a complication 

of pregnancy characterised by heightened blood pressure. Throughout the course of 

pregnancy, maternal cortisol rises to up to 3-fold basal levels by the third trimester 

(Jung et al., 2011) and while glucocorticoids play a major role in foetal development, 

overexposure may have devastating effects on foetal development (Reynolds, 2013).  

The wide-ranging impacts of stress on the mothers includes the development of stress-

related psychiatric disorders such as depression and anxiety either during pregnancy 

or in the early postpartum period. It has also been suggested that a depressed mood 

may be one of the most common complications associated with childbirth, with an 

incidence of 10-20% in the first year following parturition (Reid and Taylor, 2015). 

Postpartum depression has also been shown to dysregulate the HPA axis (Zorn et al., 

2017) and increase cortisol levels in the mothers in the postpartum period (Syam et 

al., 2021). Further, the levels of prolactin, a hormone involved in lactation, generally 

increase towards the end of pregnancy before dropping off to within normal range in 

the first 3 weeks postpartum. Prolactin also plays a role in the regulation of mood and 

maternal behaviour, with studies reporting that the elevated levels of prolactin during 

pregnancy reduced anxiety in the postpartum period in the mothers (Larsen and 

Grattan, 2012). Further to this, women experiencing prenatal depressive symptoms 

and possible pregnancy-related anxiety were less likely to plan to breastfeed their 

child, however this tendency did not translate to a lower incidence of breastfeeding 

(Fairlie et al., 2009). More recent studies have shown that breastfeeding rate is 

negatively affected by prenatal depression (Figueiredo et al., 2014), and that mothers 

who breastfeed have a lower incidence of postnatal depression (Pope and Mazmanian, 
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2016). However, the directionality of the changes in intention and initiation of 

breastfeeding is still under investigation. 

Maternal experience of depression has also been reported to exert negative effects on 

maternal physical and mental health together with a lower overall quality of life. 

Further, these women also experienced difficulties with social relationships as well as 

a perceived lower social support and higher suicidal ideations (for review see (Slomian 

et al., 2019)). Prenatal stress also negatively impacts the maternal gut-brain axis and 

leads to alterations in the maternal gut microbiota and increased maternal GI 

permeability, which may lead to inflammation and alterations in foetal development 

(Jašarević et al., 2017). These disorders associated with stress in the perinatal period 

may then lead to negative outcomes in the offspring as described below.  

 

4.1.2. Effect of stress in the prenatal period on offspring 

The effects of prenatal stress on the foetus have also been investigated extensively. 

Heightened maternal levels of the steroid hormones glucocorticoids such as cortisol in 

humans may impact foetal development by crossing the placental barrier and 

impacting neurodevelopment and affecting foetal programming (Moisiadis and 

Matthews, 2014). Furthermore, decreased expression of 11β-hydroxysteroid 

dehydrogenase type-2, the glucocorticoid-inactivating enzyme expressed in the 

placenta, negatively impacts foetal development, resulting in foetal growth restriction 

(Cottrell et al., 2014). There is also preclinical evidence for altered development of the 

HPA axis in the offspring (Glover et al., 2010; Thayer et al., 2018). This same altered 

programming is also seen in humans whereby infants exposed to high levels of 

maternal cortisol displayed an exaggerated cortisol response to heel-prick (Davis et 



36 
 

al., 2011). It may also be seen that infants who were exposed to prenatal stress display 

behavioural problems and lower cognitive skills (Bergman et al., 2010; Berthelon et 

al., 2021; Lin et al., 2017). Prenatal maternal anxiety has also been shown to impact 

on neurodevelopment whereby those exposed to prenatal maternal stress during 

gestation display a decrease in grey matter density in the brain (Buss et al., 2010), as 

well as postnatal growth of the hippocampus (Qiu et al., 2013). Interestingly, long-

term cortisol levels measured in maternal hair correlated with infant amygdala 

development in a sex-specific manner whereby structural changes were restricted to 

males, and connectivity changes were found in females (Stoye et al., 2020). 

Under normal conditions, the placenta serves as a barrier to protect the foetus from 

high circulating levels of maternal glucocorticoids, however, this barrier has been 

shown to be compromised following reports of anxiety in the mother via reduction of 

11β-hydroxysteroid dehydrogenase type-2 (O'Donnell et al., 2012), resulting in 

increased exposure of the foetus to high maternal glucocorticoids. Interestingly, 

glucocorticoid treatment may also be used to reduce the likelihood and severity of 

respiratory distress in neonates where there is a high risk of preterm birth (Agnew et 

al., 2018), highlighting the importance of temporality of glucocorticoid exposure on 

developmental outcomes. 

 

4.2. Stress in the postnatal period 

Microbes rapidly colonise the GI tract directly after birth and for the first year of life 

there is major maturation of both the gut and the bacterial species colonising it 

(Backhed et al., 2015). In this way, exposure to early life stress (ELS) during this 

developmental window may be particularly detrimental for the establishment of the 

various systems of the gut-brain axis as outlined below.  
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4.2.1. Maternal separation 

4.2.1.1. Impacts on the gut microbiota 

A well-established animal model of ELS is maternal separation (MS) and involves the 

separation of the pups (either singly or together) from their mother for a certain period 

in early life. MS has been shown to cause alterations in the gut microbiota (Cryan and 

O'Mahony, 2011; O'Mahony et al., 2011), as well as alter gut-brain axis signalling 

(O'Mahony et al., 2009) (Figure 5). Alterations in faecal microbiota have also been 

seen following exposure to MS (O'Mahony et al., 2009; O'Mahony et al., 2020) as 

well as alterations in microbial diversity with an increased representation of Prevotella 

and Flexibacter, which have been reported to be associated with colitis (Pusceddu et 

al., 2015a). Interestingly, there appears to be a sex-specific effect of MS on microbiota 

composition as it is seen that in males, MS reduced the relative abundance of 

staphylococcus, yet increased that of streptococcus, Gracilibacter, and Alkalibaculum, 

whereas in females a decrease in Barnesiella, Anaerovorax, and Mucispirillum was 

noted (Park et al., 2021). Mucispirillum has been associated with inflammation in the 

GI tract and has been reported to be increased in colitis (Rooks et al., 2014) and this 

decrease in females may suggest that an inflammatory response in the gut is not 

induced. MS has also been shown to increase Bacteroides and decrease 

Lachnospiraceae (Park et al., 2021). Further, another study in mice reported decreases 

in Lachnospiraceae and Porphyromonadaceae, while increases in Bacteroides, 

Lactobacillus, Porphyromonas, Alloprevotella, and Firmicutes were seen in males, 

only a decrease in Mucispirillum and Lactobacillus was noted in females (Rincel et 

al., 2019b). Other studies in rats have reported a decrease in Fusicatenibacter (Fukui 

et al., 2018), which has also been shown to be decreased in patients with ulcerative 

colitis (Takeshita et al., 2016). Studies have also reported a decrease in beneficial 
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bacteria including Lactobacillus following MS in primates (Bailey and Coe, 1999) and 

rats (Murakami et al., 2017). However, the functional output of these specific changes 

in the gut microbiota induced by MS is as yet unclear, and only correlative conclusions 

may be drawn. 
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Figure 5. Behavioural and physiological impacts of maternal separation. These 

changes are resultant from a 3-hour separation from postnatal day 2-12 and include 

the induction of an anxio-depressive phenotype, alterations in stress reactivity, 

increased visceral sensitivity and activation of stress-responsive brain areas, and 

alterations in the immune response. This phenotype is evident through adulthood. GI 

= Gastrointestinal; MS = Maternal separation; ↑ indicates an increase; ↓ indicates a 

decrease. 

 

4.2.1.2. Impacts on physiology and behaviour  

The effects of MS on offspring behaviour are quite well characterised (for review see 

(Rincel and Darnaudéry, 2020; Wang et al., 2020)) in rats, however, the effects of MS 

in mice are not clear as studies consistently report opposite findings, or no effect of 

MS in their mouse model (Savignac et al., 2011; Tractenberg et al., 2016). For the 

purpose of this review of the literature, the existing MS literature has been broadly 

split into brief (≤15 mins) and prolonged (>1 hr) separation paradigms, and the latter 

is discussed in detail here.  

The effects of prolonged MS are generally agreed upon in the literature (see Figure 

5). MS (3 hrs per day from PND2 to 12) resulted in decreased locomotor activity and 

induced deficits in spatial learning as measured by the Morris water maze (Berg et al., 

2015). This same paradigm has also been seen to induce an exaggerated stress (CORT) 

response and increased anxiety-like behaviour as measured by the elevated plus maze 

in rats (Huot et al., 2001). Prolonged MS (6 hours per day from PND 2 to 15) led to 

increased serum levels of CORT and also immunological alterations along with 

depressive and anxiety-like behaviours into adulthood (Roque et al., 2014). Another 

study in rats using a 6-hour separation reported increased anxiety-like behaviour with 

accompanying activation of neural circuits relevant to anxiety (Troakes and Ingram, 

2009). SPF mice that underwent prolonged MS (3 hours per day from PND1-21) had 

significantly higher plasma CORT levels when compared to control mice (De Palma 
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et al., 2015). PND 9 pups that had undergone prolonged MS (3 hours per day from 

PND2-8) also displayed an exaggerated stress response in response to a restraint stress 

(Kuhn and Schanberg, 1998). 3-hour MS has also been shown to increase the 

activation of stress-responsive brain regions including the paraventricular nucleus, 

medial amygdaloid nucleus, and supraoptic nucleus (Fóscolo et al., 2022). However, 

studies have also shown no change or decreased anxiety and depressive-like 

behaviours in C57BL/6 mice following prolonged MS (3 hours per day from PND1-

14) (Savignac et al., 2011), further supporting that MS in mice is not as reproducible 

as in rats.  

Another parameter that is altered following MS is pain sensitivity. Sensitivity to pain 

is increased in adulthood following early life exposure to prolonged MS (3hrs per day 

from PND2-15) (Vilela et al., 2017). MS for 3 hours per day from PND2-14 resulted 

in visceral hypersensitivity from the post-weaning period, which persisted into 

adulthood (Yi et al., 2017). Visceral hypersensitivity resulting from a 3 hour per day 

separation from PND2-12 has also been noted (Collins et al., 2022; O'Mahony et al., 

2009; O'Mahony et al., 2020). It may therefore be posited that exposure to ELS, such 

as MS, may sensitise specific areas of the CNS such as the amygdala, cingulate cortex, 

and basal ganglia which have been identified as having altered activation patterns in 

IBS patients (Bonaz et al., 2002) and may be implicated in the pathophysiology of 

visceral hypersensitivity (O'Mahony et al., 2009). MS also exerts effects on 

nociceptive circuitry. MS results in increased excitability of afferent neurons in the 

DRG and increased activity of the superficial and deeper layers of the spinal cord as 

well as altering the activity of the rostroventral medulla, periaqueductal gray, and 

hypothalamus which are involved in descending control of pain (Melchior et al., 

2021). Interestingly, ELS in the form of limited nesting material affects the activation 
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of specific brain regions involved in pain perception and processing including the 

somatosensory, insular, cingulate and prefrontal cortices, periaqueductal gray, and 

thalamus (Holschneider et al., 2016), suggesting that other forms of ELS such as MS 

may also alter this pain circuit. 

Exposure to ELS also has detrimental effects on the CNS. It is seen that Wistar rats 

that underwent MS for 3 hours per day from PND1-10 display higher activation of the 

amygdala following contextual fear conditioning in adulthood (Diehl et al., 2014). MS 

(1 hour per day from PND2-9) has also been shown to have an impact upon 

hippocampal neuroplasticity whereby induction and length of hippocampal long term 

potentiation was increased (Kehoe and Bronzino, 1999), which is the neural correlate 

of learning and memory (Bliss and Collingridge, 1993). Several studies have shown 

that MS results in deficits in cognition and different types of memory (Hulshof et al., 

2011; McVey Neufeld et al., 2020). Sprague Dawley rats separated for 3 hours per day 

for the first two weeks of life were also found to have decreased hippocampal levels 

of 5-HT (Lee et al., 2007). From the above studies, it is clear that prolonged MS has 

deleterious effects on neurochemistry possibly relating to the increased anxiety and 

depressive-like behaviours seen following MS. 

MS has also been shown to result in various dysfunctions of the GI system (Pohl et 

al., 2015). It has been reported that MS results in alterations in GI motility including 

delayed gastric emptying and increased colonic motility at baseline as well as in 

response to a subsequent stressor (Babygirija et al., 2012; Bülbül et al., 2012; 

O'Mahony et al., 2009). MS has also been shown to result in an increase in the number 

of enteric cholinergic neurons (Gareau et al., 2007a) as well as an increase in gut 

epithelial barrier permeability (Barreau et al., 2007; Moussaoui et al., 2017; 

O’Mahony et al., 2011). Interestingly, an increase in the number of ECCs as well as 
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in circulating and colonic 5-HT is seen in MS animals (Bian et al., 2010), which is 

also seen in patients with IBS. A decrease in the number of Paneth cell as well as 

endocrine cell hyperplasia is also seen following MS (Estienne et al., 2010). 

Alterations in gut motility are also seen following MS with alternating bouts of 

diarrhoea and constipation seen from pre-adolescence to adulthood (Yi et al., 2017). 

Not only are deficits seen in rodent pups exposed to MS, but deficits are also seen in 

human children. In a population of Romanian children from the 1980’s to 1990’s who 

were exposed to separation from their parents and psychosocial deprivation by being 

raised in substandard orphanages, several social and cognitive deficits were observed 

such as quasi-autism, cognitive impairment, and inattention or hyperactivity (Gunnar, 

2010; Rutter et al., 2007). Another form of ELS is childhood sexual abuse which has 

an occurrence rate of 20% in females and 5-10% in males (Runyan et al., 2002) which 

results in the development of psychiatric disorders such as post-traumatic stress 

disorder, anxiety and panic, and poorer physical health including abdominal pain and 

GI complaints (Leserman, 2005). This type of ELS also has further long-lasting 

psychological outcomes such as increased suicidal tendencies, self-harm, and 

cognitive impairment (Runyan et al., 2002). Childhood sexual abuse also increases 

HPA axis activity (Charmandari et al., 2003). Reasoning behind the cognitive deficits 

induced by ELS may lie in the fact that early life exposure to a sustained stressor, such 

as childhood sexual abuse or MS, results in hyperactivation of the HPA axis leading 

to hyperfunction of the fear centre of the brain, the amygdala, accompanied by 

decreased activation of the hippocampus which is responsible for learning, cognition, 

and negative feedback of glucocorticoids. Suppression of growth may also be seen due 

to suppression of growth hormone by the HPA axis (Charmandari et al., 2003).  
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Considering all the evidence on the effect of MS on offspring, is it clear that there are 

several factors that must be considered when elucidating the effect of MS on gut-brain 

communication and physiology such as genetic strain, length of separation, and life 

stage at time of separation. Evidence above suggests that prolonged MS is sufficient 

to induce a lasting depressive and anxiety-like phenotype into adulthood with an 

exaggerated CORT response to stressors.  

 

4.2.1.2.1. Impact of maternal care in early postnatal life 

The mother-child dyad is of paramount importance, in particular, in early life. Rodent 

pups are dependent upon their mother as paternal input is minimal and pups are 

therefore heavily affected by changes in quality of maternal care (Franklin et al., 

2012). Of course, there are inter-individual differences in the quality of maternal care 

seen in both rodents and humans whereby good maternal care, including provision of 

a safe environment and reliability of care, has been linked with a resilience to exposure 

to stress (Champagne et al., 2003; Jaffee, 2007). Conversely, poor maternal care, 

including neglect and abuse, exacerbates susceptibility to stress in later life 

(Henningsen et al., 2012) and predisposes to development of mood disorders and 

behavioural problems in later life as well as a disruption in cognitive development 

including language abilities at 18 months (Jaffee, 2007). Disruption of this relationship 

between mother and child can lead to alterations in behaviour and even lead to the 

manifestation of stress-related psychiatric disorders later in life. Interestingly, the 

cortisol and pain responses of infants undergoing the heel prick test was reduced by 

exposure of the infant to the odour of their own mother’s milk (Nishitani et al., 2009), 

further highlighting the importance of the mother-child dyad. Several studies have 

shown the importance of this early life association between mother and child both in 



45 
 

rodents and in humans. Interestingly, the stress hyporesponsive period (SHRP) seen 

in rodents between PND4 and 14 whereby a decreased response to stressors and 

downregulated HPA axis activity is observed, is dependent upon the presence of the 

mother as separation from the mother for 24 hours elicited an increase in CORT levels 

in the pups, even when housed with their littermates (Cirulli et al., 1992). This is of 

importance for the use of the MS model, as one of the most often used paradigms 

involves daily separation from PND2-12, during the SHRP. It is also observed that 

maternal input such as licking and grooming is required for the upkeep of the SHRP 

(Levine, 2002). However, there is no correlate of the SHRP seen in mammals which 

may question the translatability of investigating this factor in a murine model. 

In terms of further relevance to MS, maternal behaviour has been shown to modulate 

the ultrasonic vocalisations of pups exposed to a single isolation in both control and 

MS animals. Of interest, higher maternal care was associated with lower frequency 

calls in control pups and higher frequency calls in MS animals which may be 

associated with distress (Kaidbey et al., 2019). It has also been shown that MS impacts 

heavily on maternal care with studies reporting an increase in licking and grooming as 

well as arched-back nursing (for review see (Orso et al., 2019)). Overall, MS impacts 

on maternal care, generally resulting in increased care using the prolonged MS 

paradigm. 

 

4.2.2. Weaning – a critical time period 

Weaning is a critical timepoint that sees a change in diet from the mother’s milk to 

solid food, and in animals, a change in housing conditions whereby they are 

permanently separated from their mother. This period of change is usually also 

accompanied by a decrease in voluntary food take as the animal adapts to the new 
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solid diet. The age at which weaning occurs has long lasting effects on physiology. 

Appropriate weaning has been shown to increase gut barrier permeability which is 

gradually reduced over the next two weeks post-weaning (Moeser et al., 2007). The 

GI immune system is also activated due to weaning in response to the vast expansion 

of the gut microbiota (Al Nabhani et al., 2019). Weaning has also been associated with 

an increase in the intestinal expression of pro-inflammatory cytokines (Pié et al., 

2004).  

It has been shown that precocious weaning results in a litany of physiological 

alterations (Campbell et al., 2013). Mice that were weaned early displayed a 

predisposition to stress-related psychiatric disorders such as anxiety and a 

dysregulated CORT response to a stressor in later life (Kikusui et al., 2019). Early 

weaning stress has also been shown to impact heavily upon GI physiology (Zheng et 

al., 2021), resulting in impaired mucosal barrier function in pigs (Smith et al., 2009), 

deeper crypts, lower villus/crypt ratio, and smaller villus area which is normalised 

before adulthood in rats (Crispel et al., 2019), leading to an impaired capability for 

absorption. Further, early weaning is associated with impaired gut barrier function (Hu 

et al., 2013a). Precocious weaning also exerts effects on the ENS whereby enteric 

neuronal numbers did not decline with age as was seen with late weaned controls and 

was associated with increased cholinergic activity (Medland et al., 2016). Alterations 

in cholinergic activity have been linked to immune responsivity (Dhawan et al., 2012), 

epithelial barrier function, and secretory diarrhoea (Hirota and McKay, 2006). Thus, 

weaning is an important sensitive period which has long lasting ramifications on host 

physiology and health. 
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5. Disorders of early life stress 

The idea that perturbations in the gut microbiota may be a causative factor in the 

development of acute and chronic diseases both in the brain and the gut has gathered 

momentum in recent years. Several studies have implicated the gut microbiota in 

functional and psychiatric disorders (Foster and McVey Neufeld, 2013; Hyland and 

Cryan, 2016). Here, ELS-related disorders will be discussed. 

 

5.1. Irritable bowel syndrome  

IBS is one of the most prevalent disorders of gut-brain axis interactions and now 

accounts for 20-50% of the GI workload worldwide (Sperber et al., 2021) and has an 

estimated worldwide prevalence of 20% (Lovell and Ford, 2012a). IBS displays a 

female predominance with symptom onset occurring as early as age 35 (Maxwell et 

al., 1997) and is characterised by abdominal pain and/or bloating, altered bowel habits, 

and abdominal distension (Mearin et al., 2016). IBS is currently diagnosed using the 

Rome IV criteria (Palsson et al., 2016) and although several factors including 

(epi)genetic predisposition, immunological involvement, alterations in gut microbiota, 

inflammatory agents, stress, and neuropsychiatric disorders have been suggested to 

play a role in the onset of this disorder of gut-brain axis interactions, the aetiology of 

IBS is not clearly understood (Bellini et al., 2014). IBS is thought to reflect altered 

gut-brain axis homeostasis, and as such may be classified as a microbiota-gut-brain 

axis disorder (Mayer et al., 2015b; O'Mahony et al., 2017; Wilmes et al., 2021).  

Exposure to stress, particularly in early life, has been shown to induce gut dysbiosis 

and has also been flagged as a risk factor for the development of IBS in later life 

(Drossman, 2011; O'Mahony et al., 2017). In patients with IBS who have a history of 
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ELS, it was found that the cortisol response to sigmoidoscopy was higher than that of 

patients without IBS, and that a faster speed of return to baseline cortisol correlated 

with a lower symptom severity and higher quality of life (Videlock et al., 2009). 

Patients with IBS have also been shown to display altered cognition (Kennedy et al., 

2015; Kennedy et al., 2014c) and heightened response to an acute stressor (Kennedy 

et al., 2014b). Numerous classifications of IBS exist based on bowel movement type 

including IBS-diarrhoea predominant, IBS-constipation predominant, IBS-mixed 

stool pattern, and IBS-unclassified (Mearin et al., 2016). Another subset of IBS 

patients include those who present with psychiatric comorbidities, namely anxiety or 

depression which includes 44% and 25% of IBS patients respectively (Midenfjord et 

al., 2019).  

 

5.2. Stress-related psychiatric disorders 

It has been observed that up to 60% of patients presenting with depression or anxiety 

also report GI issues (Liu and Zhu, 2018). Although the precise cause of IBS is still 

unclear, a role for the gut microbiota in the apparition of this disorder is emerging.  

The gut microbiota also appears to play a role in the manifestation of stress-related 

psychiatric disorders such as depression as a depressive phenotype may be conferred 

by use of faecal microbiota transplantation (FMT) from a depressed patient to a rodent 

(Kelly et al., 2016b). Several theories exist attempting to elucidate the method by 

which alterations in the gut microbiota may be related to the manifestation of disease. 

One such school of thought is the leaky gut hypothesis. This hypothesis identifies a 

breakdown in gut barrier function leading to bacterial translocation (see Figure 6) 

causing inflammation and is thought to contribute to the apparition of some psychiatric 
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disorders (Kelly et al., 2015). Not only has impaired gut barrier function been 

implicated as a causative factor, but due to translocation of bacteria from the gut, LPS 

may enter the brain due to increased BBB permeability, leading to neuroinflammation 

(Kelly et al., 2015; Smythies and Smythies, 2014). Figure 6 depicts the effect of stress 

on gut and brain function. 

Figure 6. Gut-brain axis crosstalk under normal and diseased conditions. On the 

left, normal gut barrier function and symbiosis is seen whereas on the right a “leaky” 

gut is seen following exposure to stress or disease which may trigger an immune 

response along with intestinal dysbiosis resulting in inflammation. CNS–Central 

Nervous System, SCFA–Short chain fatty acids. From (Borre et al., 2014). 

 

5.2.1. Biomarkers for stress-related psychiatric disorders 

Stress-related psychiatric disorders including depression and anxiety disorders affect 

approximately 10% of the global population each year (Craske et al., 2017; Otte et al., 

2016). There is a clinical need to identify biomarkers for these disorders to aid in 

earlier diagnosis and treatment for patients. In recent years, these potential biomarkers 

have been classified into diagnostic, monitoring, pharmacodynamic, predictive, 

prognostic, and safety depending on their application (Califf, 2018). Biomarkers 

identified for stress include salivary cortisol (Pearlmutter et al., 2020), catecholamines, 

interleukin (IL)-6 and 8, and c-reactive protein (CRP) (reviewed by (Noushad et al., 

2021)). 
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5.2.1.1. Biomarkers for anxiety disorders 

Some biomarkers for anxiety-related disorders have been identified. As anxiety 

disorders can affect the immune system, some immune biomarkers have been 

proposed. These include immunoglobulins such as IgA, where a strong association 

between perceived stress and anxiety and low salivary IgA has been observed 

(Engeland et al., 2016). CRP, a marker of inflammation has also been shown to be 

higher in the blood of males with anxiety disorders (Vogelzangs et al., 2013). Genetic 

biomarkers for anxiety have received less research attention, however the gene for 

monoamine oxidase A has been suggested to play a role in the aetiology of generalised 

anxiety disorder (Tadic et al., 2003). There is also some evidence to support a link 

between a polymorphism in the gene for brain-derived neurotrophic factor and 

generalised anxiety disorder (Moreira et al., 2015), however, whether these genetic 

alterations may be useful as biomarkers is still a topic of debate in research, with some 

studies reporting no association (Wang et al., 2015). Although, currently the most 

well-known biomarker for anxiety is the brain-derived neurotrophic factor gene, 

which is linked to alterations in deoxyribonucleic acid (DNA) methylation (Doherty 

et al., 2016; Miao et al., 2020). Some research into epigenetic biomarkers for anxiety 

disorders has also reported promising results. A study by Cerveira de Baumont and 

colleagues reported that telomere length in adolescents with persistent anxiety did not 

change over time, suggesting a delay in neuronal development (Cerveira de Baumont 

et al., 2021). Epigenetic mechanisms related to anxiety disorders include DNA 

methylation and histone modifications (Lin and Tsai, 2020). 
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5.2.1.2. Biomarkers for depression 

Suggested biomarkers for depression again highlight an immune role in stress-related 

psychiatric disorders. CRP and IL-6 have been reported to be heightened in depression 

(Haapakoski et al., 2015). Not surprisingly, those with depression also display 

hypercortisolaemia (Stetler and Miller, 2011). Genetic biomarkers for depression 

include a noted decrease in 5-HT1A  messenger ribonucleic acid (mRNA) levels in the 

hippocampus and prefrontal cortex of patients with major depressive disorder (López-

Figueroa et al., 2004). Epigenetic factors, that is the interplay between environment 

and genes, including histone modification and DNA methylation resulting in a 

decrease in brain-derived neurotrophic factor in the brain have also been suggested as 

biomarkers for depression (Roth et al., 2009; Tsankova et al., 2006). It has also been 

suggested that epigenetic modulation by early life adversity in patients with depression 

resulting in hypermethylation of the 5-HT transporter gene may also prove a useful 

biomarker for depression (Kang et al., 2013). Depression has also been linked with 

alterations in the gut microbiota. Surprisingly, patients with major depressive disorder 

have been shown to have a greater α-diversity versus healthy control patients (Jiang et 

al., 2015). Conversely, a decreased species richness and α-diversity in depressed 

patients has also been reported (Kelly et al., 2016b). A decrease in the amount of 

Bifidobacterium and Lactobacillus, thought to have a beneficial effect against stress 

and depressive disorders, in patients with major depressive disorder was found by 

Aizawa and colleagues (Aizawa et al., 2016). Patients with bipolar disorder present 

with a significantly altered gut microbiota composition, namely a decreased 

representation of Faecalibacterium, versus healthy controls (Evans et al., 2017). 

Interestingly, in the same study, Evans et al. correlated the relative amount of 

Faecalibacterium with better health as scored using several self-reporting 
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questionnaires. Conversely, no significant differences in species richness between 

depressed patients and control subjects were found by another study (Naseribafrouei 

et al., 2014). A variation in the microbiome between depressed patients and healthy 

controls is also seen and most notably, in the absence of gut microbiota, i.e. in a GF 

condition, depressive symptomatology develops (Zheng et al., 2016).  

 

5.3. Irritable bowel syndrome with psychiatric comorbidities 

IBS is a double-edged sword in that not only may one experience the functional GI 

disturbances associated with the manifestation of IBS symptoms, but a comorbidity 

with psychiatric disorders such as depression and anxiety may also be seen (Foster et 

al., 2017; Wilmes et al., 2021). A vicious cycle then ensues as mood disorders such as 

depression and anxiety may worsen the severity of IBS, which may in turn exacerbate 

the intensity of the comorbid mood disorders. Importantly, the severity of GI 

symptoms has been associated with the presence of a comorbid psychiatric disorder, 

highlighting the inextricable link between psychiatric disorders and IBS symptom 

severity (Stasi et al., 2019). The global incidence of anxiety and depressive disorders 

ranges from 7 to 10% (Baxter et al., 2013; Craske, 1999; Otte et al., 2016) and these 

disorders are still diagnosed based on symptoms which, when comorbid with IBS, 

make clinical management difficult given the suboptimal treatment options (Clarke, 

2020). In recent years, a role for the gut-brain axis in neuropsychiatric disorders has 

gained traction. A causal role for the gut microbiota in mood disorders has also been 

suggested whereby FMT from patients with depression to rodents conferred 

depressive-like symptoms (Kelly et al., 2016b; Knudsen et al., 2021). Given the 

impact of IBS on quality of life, there is an apparent need for more effective 

treatments. 
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5.4. Visceral pain as a hallmark of IBS 

Abdominal pain is the cardinal symptom of IBS. Heightened sensitivity to pain in the 

abdominal region is termed visceral hypersensitivity and may be broken down into 2 

constituent elements: (i) allodynia, the perception of a non-noxious stimulus as painful 

and (ii) hyperalgesia, an augmented response to pain. There is a significant 

relationship between female sex and development of IBS symptomatology, including 

visceral hypersensitivity (Adeyemo et al., 2010; Lovell and Ford, 2012b). As a 

hallmark of functional GI disorders (Enck et al., 2016), the presence of visceral 

hypersensitivity is used as a major diagnostic criterion for IBS as epidemiological 

reports show that between 30 and 90% of those with IBS display visceral 

hypersensitivity (Bouin et al., 2002; Ludidi et al., 2012; Posserud et al., 2007; van der 

Veek et al., 2008). A recent review has discussed the pathophysiology of visceral pain 

and potential treatments in great detail (Lucarini et al., 2020a). 

 

5.4.1. Ascending and descending pathways of visceral pain  

Perception of visceral pain beings at extrinsic nociceptors with cell bodies located in 

the DRG and nerve endings throughout the wall of the GI tract. These nociceptors are 

capable of sensing and responding to pH, stretch or distension, microbial metabolites, 

inflammation, and neurotransmitters released by the ENS (Sengupta, 2009). Receptors 

such as the transient receptor potential cation channel subfamily V member 1 (TRPV1) 

expressed on these neurons detect signals such as histamine, substance P, 

acetylcholine, as well as changes in pH. The nociceptive signal travels to the dorsal 

horn of the spinal cord and via the release of molecules including substance P, 

glutamate, vasoactive intestinal peptide, and somatostatin, the signal is transmitted to 

the contralateral side of the spinal cord. From here, depending on where the cell body 
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is located, the nociceptive signal travels along either the ascending spinothalamic 

(originating in the deep dorsal horn) or spinoparabrachial (originating in the 

superficial dorsal horn) tract (involved in sensory and affective aspects of pain 

respectively) to reach the brain (Hunt and Mantyh, 2001). Once this signal reaches the 

brain, specifically the thalamus for the spinothalamic tract, it is sent to cortical and 

limbic areas including the somatosensory cortex and anterior cingulate cortex for 

localisation and intensity grading. For the spinoparabrachial tract, this signal reaches 

the parabrachial nuclei and is sent to the amygdala and hypothalamus for affective 

processing. Once processed in these structures, an inhibitory or facilitatory response 

will be engaged. The descending inhibitory pathway is then activated either resulting 

in the release of inhibitory neurotransmitters in the dorsal horn of the spinal cord, 

resulting in inhibition of these nociceptive signals, or the signal is facilitated. The 

regulation of this response is mediated by the periaqueductal gray in connection with 

the dorsal horn of the spinal cord via the rostroventral medulla and receives input from 

higher brain structures including the anterior cingulate cortex, nucleus tractus 

solitarius, and the hypothalamus and mainly involves the release of 5-HT, opioids, 

cannabinoids, or NA. Repeated activation of these nociceptors may lead to chronic 

visceral pain via central sensitisation, involving increased excitability of spinal cord 

and higher order neurons, or peripheral sensitisation of the visceral nociceptors 

(Moloney et al., 2016a; Moshiree et al., 2006; Sikandar and Dickenson, 2012). The 

ascending and descending pathways of visceral pain modulation are summarised in 

Figure 7. 
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Figure 7. Ascending and descending pathways of visceral pain modulation. The 

ascending pathway for visceral pain perception from the periphery through the dorsal 

root ganglia via the dorsal reticular nucleus to the primary somatosensory cortex, 

insula, pregenual anterior cingulate cortex (pACC), and the midcingulate cortex 

(MCC). The descending pathway is mediated via signals from the ACC, thalamus, and 

amygdala to the periaqueductal gray (PAG), locus coeruleus, and raphe nucleus, 

returning via the rostral ventral medulla to the colon. From (Moloney et al., 2015a). 

 

5.4.2. Assessment of visceral sensitivity 

In a laboratory setting, visceral sensitivity may be measured by quantifying the 

response to colorectal distension (CRD) which involves the controlled inflation of a 

balloon in the colorectal region to a given pressure and is commonly used both 

clinically (Camilleri, 2002; J. van der Schaar, 1999) and preclinically (O'Mahony et 

al., 2012) for visceral sensitivity assessment. This can be achieved in several ways 

including measurement of the threshold pressure, cumulative number of pain 

behaviours, or electromyographic recordings in response to the distension. 
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5.4.2.1. Electromyography 

Electromyography is considered a more objective measure of visceral sensitivity as it 

is used to quantify the abdominal contractions in response to a noxious colonic 

stimulus such as CRD via electrodes implanted into the muscles of the abdominal wall 

and is not subject to observer bias or unclear pain behaviours. This technique has been 

used extensively in the literature as a readout of visceral pain (Kogure et al., 2020; 

Lucarini et al., 2020b; Parisio et al., 2019). 

 

5.4.2.2. Pain threshold and cumulative number of pain behaviours 

Another often-used method of quantification of visceral sensitivity involves recording 

the threshold pressure, or the pressure at which the first pain behaviour is displayed. 

It has been shown experimentally that a lower pain threshold to colonic distention is 

indicative of visceral hypersensitivity. Similarly, the cumulative number of pain 

behaviours displayed across the distension protocol may be used to assess visceral 

sensitivity whereby a higher total numbers of pain behaviours is indicative of visceral 

hypersensitivity. The number of pain behaviours may also be represented per pressure 

gradient, whereby it is seen that as distension pressure increases, so too does the 

number of pain behaviours (Yang et al., 2006). 

 

5.4.2.3. Verbal reporting 

In human patients with IBS, verbal reporting of pain in response to distension of the 

colorectal region has proven to be an effective and reliable measure of visceral 

sensitivity (Keszthelyi et al., 2012). However, this technique in humans also has its 

pitfalls as it is vulnerable to psychological factors including anxiety and heightened 
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vigilance seen in IBS patients, which may lead to reports of pain, rather than true 

visceral hypersensitivity (Dorn et al., 2007). Verbal reporting is not suitable for use 

preclinically for reasons that are readily apparent. 

 

5.4.3. Factors modulating the visceral pain response 

Given its’ complex nature, several factors have been suggested to play a role in the 

pathophysiology of visceral hypersensitivity including: (i) gut microbiota (ii) sex 

hormones and (iii) neurotransmitters. Similarly, many of the factors that feed into the 

pathophysiology of visceral pain may be seen as modulators of the visceral pain 

response.  

 

5.4.3.1. The gut microbiota 

The gut microbiota has been shown to be a major modulator of the visceral pain 

response. In a study by Luczynski et al, it was seen that male mice devoid of any 

microbiota (GF) are spontaneously viscerally hypersensitive, and this was reversed by 

colonisation by conventional microbiota (Luczynski et al., 2017). This observation 

was sex specific as it is seen that female GF mice do not display visceral 

hypersensitivity (Tramullas et al., 2021). It has also been seen that FMT from a 

viscerally hypersensitive patient to a mouse resulted in visceral hypersensitivity, 

highlighting that the gut microbiota exerts a major role in visceral hypersensitivity 

(Crouzet et al., 2013). Further, visceral pain has also been reported following antibiotic 

depletion of the gut microbiota (O’Mahony et al., 2014). The increasing emphasis of 

the gut microbiota in visceral sensitivity has been reported extensively in the literature 

(Defaye et al., 2020; Rea et al., 2019; Theodorou et al., 2014). 
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5.4.3.2. Sex hormones 

Female sex hormones, namely oestrogen, have been shown to exert modulatory effects 

on visceral pain perception. The oestrous cycle in rodents mirrors the menstrual cycle 

in humans, but only last between 4-5 days and consists of four distinct phases; (i) 

proestrus (ii) estrus (iii) metestrus (iv) diestrus (Byers et al., 2012b). Levels of 

oestrogen fluctuate across the oestrous cycle, with highest levels present during 

proestrus and lower levels seen during diestrus (Hong and Choi, 2018). It has been 

shown that visceral sensitivity varies across the oestrous cycle (Moloney et al., 2016b). 

However, there is currently no consensus as to the specific changes induced by 

oestrogen on visceral pain perception. Intriguingly, female GF mice do not display 

baseline visceral hypersensitivity seen in male GF mice (Luczynski et al., 2017) and 

are insensitive to ovariectomy-induced visceral pain. Further, alterations in visceral 

sensitivity across the oestrous cycle were seen in their conventional counterparts, and 

ovariectomy-induced visceral pain was reversed by exogenous oestradiol 

administration (Tramullas et al., 2021), highlighting the role of female sex hormones 

on visceral pain perception. This is also of relevance given the female predominance 

of IBS. The dichotomy in results of the anti- versus pro-nociceptive properties of 

oestrogen has been reviewed extensively (Sun et al., 2019).  

Clinically, it has been seen that women experience heightened pain, and sensitivity to 

experimentally-induced pain versus men (Paller et al., 2009). This topic has been 

extensively reviewed in the literature (Mogil, 2018; Sorge and Strath, 2018; 

Templeton, 2020), however, it should also be known that there is a sex bias in the 

reporting of studies showing a male predominance (Mogil, 2020), leading to a gap in 

knowledge surrounding pain management in females. Similarly, the amplitude of the 

visceromotor response revealed that female maternally separated rats display 
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heightened visceral sensitivity versus males (Yi et al., 2017). Interestingly, intrathecal 

administration of antisense oligodeoxynucleotides designed to decrease expression of 

glucocorticoid receptors alleviated Paclitaxel (a chemotherapy drug)-induced 

mechanical hyperalgesia in males, but not females. Moreover, intrathecal 

administration of antisense oligodeoxynucleotides designed to reduce expression of 

β2-adrenoceptor (AR) on nociceptors attenuated mechanical nociception to a greater 

degree in females (Ferrari et al., 2020). Some of these sex differences in perception of 

pain may be attributed to circulating female sex hormones, which has been discussed 

above. Further, sex differences in central regulation of pain also exist. For instance, 

neurons of the ventrolateral periaqueductal gray-dorsal raphe differentially and sex-

dependently regulate pain behaviours via connections to the bed nucleus of the stria 

terminalis in mice (Yu et al., 2021a). Brain imaging studies have also reported 

differential sex-dependent activation in brain regions known to play a role in pain 

processing including the anterior cingulate, insular, and medial prefrontal cortices 

(Traub and Ji, 2013). Specifically in response to visceral stimuli, higher activation of 

the ventromedial prefrontal cortex, right anterior cingulate cortex, and left amygdala 

was noted in females with IBS, while in males with IBS, the right dorsolateral 

prefrontal cortex, insula, and dorsal periaqueductal gray displayed greater activation 

(Naliboff et al., 2003). Interestingly, mechanisms of pain and pain transmission have 

been shown to be different in males versus females. It has been suggested that in males, 

chronic pain is driven by the innate immune system via neutrophil recruitment to the 

vasculature of the spine, as well as infiltration of monocytes and activation of 

microglia-neuron crosstalk in the CNS, whereas in females this is accomplished by 

the adaptive immune system via central or peripheral activation and infiltration and 

activation of T-lymphocytes (Gregus et al., 2021). 



60 
 

5.4.3.3. Neurotransmitters 

The catecholaminergic neurotransmitter NA plays an important role in visceral pain 

perception. NA acts at α- and β-ARs and is involved in descending inhibitory control 

of pain. Postganglionic sympathetic nerve fibers provide the main source of 

catecholamines in the periphery, and it has been shown that all three subtypes of the 

α1-AR are expressed in the DRG of the lumbar region, supporting their role in the 

transmission of pain (Nicholson et al., 2005). While the ascending NA pathways in 

the brain have been shown to facilitate nociception, descending NA inhibition 

originating from the locus coeruleus has been suggested to be anti-nociceptive (Hickey 

et al., 2014). While the majority of studies investigating the role of NA in pain 

perception have focused primarily on α-AR, the β-ARs have received increasingly 

more attention as a therapeutic target for disorders of pain. β-AR are G protein-coupled 

receptors that are generally coupled to a Gs protein (and in some cases Gi) which 

results in activation of adenylate cyclase, resulting in increased cAMP activity (Schena 

and Caplan, 2019). There are 3 subtypes of β-AR; β1-AR, β2-AR, and β3-AR which 

are widely expressed throughout the body. Antagonism of the β2-AR has been shown 

previously to alleviate stress-induced visceral hypersensitivity (Winston et al., 2010; 

Zhang et al., 2014). The β3-AR is expressed on cholinergic neurons of both the 

myenteric and submucosal plexi of the ENS in rodents and humans (Cellek et al., 

2007; Nasser et al., 2006), frontal cortex and hippocampus in humans (Rodriguez et 

al., 1995), hippocampus, cerebral cortex, hypothalamus, striatum, and brainstem in 

rats (Summers et al., 1995). The β3-AR is also expressed in the urinary system (Michel 

and Vrydag, 2006), white and brown adipose tissue (Nahmias et al., 1991), and cardiac 

tissue (De Matteis et al., 2002). Furthermore, agonism of this receptor has been shown 

to result in visceral analgesia (Cellek et al., 2007) whilst also decreasing the 
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excitability of submucosal enteric neurons in a somatostatin-dependent manner 

(Schemann et al., 2010). Clinically, the role of NA signalling has been exploited by 

utilising β3-AR agonists as a treatment option for overactive bladder (Keam, 2018). 

5-HT also plays a major role in pain. All 5-HT receptors are G protein-coupled 

receptors, with the exception of 5-HT3 which is a ligand-gated ion channel (McCorvy 

and Roth, 2015). There is disagreement as to whether 5-HT signalling is pro- or anti-

nociceptive, however alterations in 5-HT signalling have been reported in patients 

with IBS (Crowell, 2004). Acute tryptophan depletion, resulting in decreased 5-HT, 

led to increased pain in patients with IBS, which then resulted in heightened pain and 

urge scoring (Kilkens et al., 2004). In contrast, chronic exposure to 5-HT in mice 

increased visceral pain (Feng et al., 2014). Agonists of the 5HT4 receptor have shown 

anti-nociceptive properties (Hoffman et al., 2012; Sabaté et al., 2008), whereas 

antagonists of the 5-HT3 receptor inhibited spinal dorsal horn neuronal activation in 

response to CRD (Kozlowski et al., 2000) and increased colonic compliance (Delvaux 

et al., 1998). Intraduodenal administration of 5-HT has also been shown to decrease 

the visceromotor response to CRD (Feng et al., 2014). All of these studies report a role 

for 5-HT in modulation of the visceral pain response and highlight the further need for 

research into its mechanism of action. 

 

5.4.3.4. The immune system 

The immune system not only plays a vital role in defence of the host, but also in the 

perception of pain. For instance, the immune system may lead to direct or indirect 

activation of nociceptive neurons. Following pathogen recognition by the immune 

system, a cascade of inflammatory cytokines may be released which leads to activation 

of nociceptive neurons, resulting in perception of pain. Nociceptors on neurons may 
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also be activated directly following detection of microbial metabolites and this is 

mediated through either PRRs or independent of this pathway (Chiu et al., 2013; van 

Thiel et al., 2020). Not surprisingly, during inflammation the action potential threshold 

for nociceptive neurons to fire is significantly reduced, resulting in heightened 

sensitivity. Mast cells, cells that regulate innate and adaptive immune responses 

among other functions (Krystel-Whittemore et al., 2016), have been shown to be 

increased in the gut of patients with IBS (Singh et al., 2020) and have been shown to 

play a strong mediating role in pain perception, particularly from the viscera (Héron 

and Dubayle, 2013; Zhang et al., 2016a). When activated, mast cell degranulation 

results in the release of inflammatory cytokines, which act on nociceptors to sensitise 

pain (Aich et al., 2015; Chatterjea and Martinov, 2015). This sensitisation and 

crosstalk is thought to be a key mechanism by which the immune system influences 

pain perception (Pinho-Ribeiro et al., 2017). 

 

5.4.3.5. Interaction of stress and pain 

As is evidenced above, stressors may induce visceral pain, therefore the two are 

inextricably linked. It has been seen that ELS-induced visceral hypersensitivity in 

females was accompanied by an increase in glucocorticoid receptor and CRF 

expression in the central amygdala, and knockdown of the glucocorticoid receptor or 

CRF induced visceral hypersensitivity (Prusator and Greenwood-Van Meerveld, 

2017). Furthermore, adrenalectomised rats were not sensitive to Paclitaxel-induced 

mechanical hyperalgesia (Ferrari et al., 2020), further reinforcing the modulatory role 

of the stress axis on pain. However, the effect of stress on pain perception is 

bidirectional as it has been shown that exposure to acute stressors results in temporary 
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pain suppression (Butler and Finn, 2009). This stress-induced analgesia is thought to 

have developed as part of the body’s response to stressors to enable the fight or flight 

response or coping and is mediated by the opioid system (Amit and Galina, 1986). 

Conversely, chronic exposure to stress has been shown to result in stress-induced 

hyperalgesia in both healthy subjects and patients with disorders of chronic pain 

(Crettaz et al., 2013), thus highlighting the divergent effects of stress on pain 

perception. The neurological basis for stress-induced hyperalgesia has been suggested 

to involve the anterior cingulate cortex, amygdala, periaqueductal gray, rostral 

ventromedial medulla, spinal cord, and the HPA axis (Jennings et al., 2014; Olango 

and Finn, 2014). 

 

5.5. Preclinical models of visceral pain 

There are many preclinical models of visceral pain that may be used. These have been 

recently extensively reviewed by (West and McVey Neufeld, 2021). Here, the most 

commonly used models will be discussed and are listed in Table 1. 

Table 1. List of the preclinical models of visceral pain discussed. 

Preclinical model of visceral 

pain 

Induction method Reference 

Wistar-Kyoto Rats Genetically 

predisposed to stress 

(Gunter et al., 2000; 

O’Mahony et al., 2013) 

Antibiotic Depletion of the Gut 

Microbiota  

Microbiota disruption (Aguilera et al., 2015; Hoban 

et al., 2017; O’Mahony et al., 

2014; Verdú et al., 2006) 

Maternal Separation  Early life stress 

induced 

(Botschuijver et al., 2019; 

Moloney et al., 2015b; 

O'Mahony et al., 2009) 

Faecal Microbiota 

Transplantation 

Microbiota disruption (Crouzet et al., 2013) 

Water Avoidance Stress  Psychological stress (Nozu et al., 2017) 
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5.5.1. Genetically susceptible stress models 

The concept of a genetic susceptibility to many disorders is not new. It has been seen 

that stress-induced visceral hypersensitivity may be modulated by epigenetic changes 

in gene expression. These changes include alterations in DNA-methylation and 

histone-acetylation patterns in the brain of rodents (Tran et al., 2013). Another study 

reported baseline visceral hypersensitivity in Wistar-Kyoto versus Sprague Dawley 

(O’Mahony et al., 2013) and Fisher-344 rats (Gunter et al., 2000). 

 

5.5.2. Gut microbiota depletion 

To further support the role of the gut microbiota in stress-induced pain, depletion of 

the gut microbiota with an antibiotic cocktail in early life results in visceral 

hyperalgesia in adulthood in male rats, highlighting the importance of the gut 

microbiota in the regulation of visceral pain responses (O’Mahony et al., 2014). Verdu 

and colleagues also showed that administration of antibiotics induces visceral 

hypersensitivity (Verdú et al., 2006) in mice. In contrast, the administration of an 

antibiotic cocktail to adult rats reversed MS-induced visceral hypersensitivity (Hoban 

et al., 2017) and capsaicin-induced visceral hypersensitivity was attenuated by 

antibiotic administration in mice (Aguilera et al., 2015). Other studies have also shown 

that the gut microbiota is required for appropriate sensation of visceral stimuli 

(Luczynski et al., 2017; Tramullas et al., 2021), however the efficacy of gut microbiota 

depletion using antibiotics as a model of visceral pain remains unclear. It may be 

suggested that antibiotic administration alone results in visceral hypersensitivity, but 

when used following the induction of visceral pain via another model as mentioned 

above, may have beneficial effects.  
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5.5.3. Early life adversity and neonatal maternal separation 

MS is a widely used animal model of ELS, which involves repeatedly separating the 

mother from her pups in early life and elicits visceral hypersensitivity and increased 

HPA axis activity (O'Mahony et al., 2009). MS has reproducibly resulted in 

heightened visceral sensitivity in rats and is therefore an appropriate model of visceral 

hypersensitivity induction (Botschuijver et al., 2019; Collins et al., 2022; Moloney et 

al., 2015a; Moloney et al., 2015b; Yi et al., 2017). However, although MS does not 

reproducibly result in a robust behavioural phenotype in mice, MS in mice does induce 

visceral hypersensitivity (Riba et al., 2017; Riba et al., 2018). The plethora of 

behavioural and physiological effects of MS on both mother and offspring has been 

extensively discussed in a previous section. As the gut microbiota plays a role in the 

management of the stress response, so too is it involved in stress-induced pain. Early 

life, both in humans and rodents, is a critical timepoint at which neural pain circuitry 

is programmed and thus early life is a time at which pain circuitry, and therefore pain 

perception, may be most susceptible to alteration from external factors such as early 

life exposure to adverse events such as ELS (Prusator et al., 2016) or internal factors 

such as ELS-induced alterations in HPA-axis activity (Videlock et al., 2009). Research 

to support this is evident in cases of IBS where stress is a known causative factor for 

the development of this disorder associated with visceral pain (Farzaei et al., 2016). 

Interestingly, in a human study, those who reported that they had experienced early 

life adversity presented with higher perceived pain than those who did not experience 

this same adversity in early life (Sachs-Ericsson et al., 2007). In another study, it was 

found that the severity of IBS symptoms was worse in those who had experienced 

early life adversity (Kanuri et al., 2016). Moreover, studies in humans have shown that 

differences in abundance of several genera are seen in patients with IBS versus healthy 
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controls, further supporting the role of the microbiota in visceral pain (Noor et al., 

2010). 

 

5.5.4. Faecal microbiota transplantation 

FMT involves the transfer of faecal material from one individual to another and has 

been classically used as a treatment for recurrent Clostridium difficile infection 

(Bakken et al., 2011; Kelly et al., 2016a; Smillie et al., 2018). This technique is subject 

to a lot of variation in administration (Gheorghe et al., 2021), but is still a proven 

effective method of effecting change in the recipient. Interestingly, the use of FMT 

has not only highlighted the benefits of microbiota-targeted interventions but has also 

aided in the elucidation of mechanisms behind visceral pain. For instance, a study 

which inoculated GF rats with faecal microbiota from patients with IBS presenting 

with visceral hypersensitivity resulted in the transfer of visceral hypersensitivity 

(Crouzet et al., 2013). Similarly, FMT from rats with DNBS-induced colitis induced 

visceral hypersensitivity in control recipient rats (Lucarini et al., 2021).  

 

5.5.5. Water avoidance stress 

Another preclinical model of visceral pain is water avoidance stress. Water avoidance 

stress involved placing the rodent on an escape platform surrounded by water such 

that it cannot escape either for a single exposure, or 1 hour daily for up to 10 days 

(Hong et al., 2009; Luo et al., 2020; Tran et al., 2013). This model has been shown to 

reproducibly result in heightened visceral sensitivity (Nozu et al., 2017). Potential 

mechanisms behind water avoidance stress-induced visceral hypersensitivity have 

been suggested to include corticotropin-releasing hormone receptors, TRPV1 (Nash 
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et al., 2012), neurokinin-1 receptors (Schwetz et al., 2004b), and 5-HT receptors 

(Bradesi et al., 2007; Gilet et al., 2014). 
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6. Interventions for disorders of the gut-brain axis  

6.1. Microbiota-targeted interventions for disorders of the gut-brain axis 

It is now known that diet can impact heavily upon gut microbiota composition and 

therefore gut function (Wu et al., 2011). In recent times, prebiotics, probiotics, and 

psychobiotics have come to the fore as main modulators of the gut microbiome 

(Bastiaanssen et al., 2018) and have even been used to treat disorders such as IBS 

(Moloney et al., 2014) and mood disorders (Dinan et al., 2013). Several reviews on 

the efficacy of pre- and probiotics have been published, highlighting the need for 

future studies into their use as treatment strategies for disorders of the gut-brain axis 

such as IBS (Asha and Khalil, 2020; de Souza et al., 2022; Ford et al., 2018).  

 

6.1.1. Prebiotics  

Prebiotics are defined as a substrate (non-digestible fiber) that is selectively utilised 

by host microorganisms conferring a health benefit (Gibson et al., 2017). Prebiotic use 

to benefit host wellbeing received a large amount of interest in the 1990’s where 

fructooligosaccharide (FOS) and galactooligosaccharide (GOS) were the main 

prebiotics being investigated (Gibson and Roberfroid, 1995) and even today, FOS and 

GOS are front-runners in prebiotic studies as they have been shown to confer a health 

benefit in both preclinical models (Burokas et al., 2017) and human infants (Rao et al., 

2009). These prebiotics aim to confer health benefit by supporting the growth of 

beneficial microbes (Bastiaanssen et al., 2018) and may be used as modulators of the 

microbiota (Vulevic et al., 2013) and immune system (van Vlies et al., 2012). 

Prebiotics have been used in the treatment of IBS and comorbid psychiatric conditions 

including depression and anxiety, however, mixed results on the effects of prebiotics 
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on these symptoms has resulted in a lack of consensus on the benefit of their use 

(Wilson et al., 2019). Studies using prebiotics such as oligofructose (Hunter et al., 

1999) and FOS (Olesen and Gudmand-Høyer, 2000) reported no beneficial effects on 

symptoms. Another study utilising a trans-galactooligosaccharide mixture produced 

from lactose by Bifidobacterium bifidum NCIMB 41171 found that abdominal pain 

and discomfort were reduced, and stool pattern normalised (Silk et al., 2009). 

Prebiotics have been shown in several preclinical studies to ameliorate stress-induced 

changes in behaviour and alter host biochemistry. The reduction in locomotor activity 

induced in rats by MS is reversed by polydextrose and GOS administration, and 

deficits in spatial working memory are reversed with the addition of Lactobacillus 

rhamnosus GG to the prebiotic formulation (Berg et al., 2015). The use of polyphenols 

as a microbiota-targeted intervention against the effects of ELS has also proven 

effective whereby polyphenol intake in rats reversed ELS-induced deficits in 

depressive- and anxiety-like behaviour (Donoso et al., 2020). Chronic administration 

of both FOS and GOS together displayed both anxiolytic and anti-depressive effects 

in mice as well as reducing stress-induced CORT levels and normalising the gut 

microbiota following stress (Burokas et al., 2017). The exact mechanisms of action of 

FOS and GOS are not readily apparent, however it is known that FOS and GOS tightly 

regulate the gut microbiota (Burokas et al., 2017). Not only do prebiotics act at a local 

level in the gut, but they may also have effects on the CNS. GOS has been shown to 

increase hippocampal brain-derived neurotrophic factor levels (Savignac et al., 2013). 

Prebiotics have also been shown to increase 5-HT levels in the prefrontal cortex which 

may suggest that the behavioural changes observed with respect to depressive and 

anxiety-like behaviours following prebiotic administration may be 5-HT-mediated as 
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it has been shown that an increase in 5-HT levels has an anti-depressive-like effect 

(Cryan et al., 2002). Another family of prebiotics, HMOs will be discussed below.  

 

6.1.2. Probiotics  

Probiotics, on the other hand, are defined as live bacteria that have a positive effect on 

host health when ingested in adequate quantities (Bastiaanssen et al., 2018). This 

method of dietary intervention exploits the use of introducing previously identified 

beneficial bacteria to confer health benefits to the host. Similarly to prebiotics, 

probiotics have been shown to ameliorate the stress-induced behavioural changes in 

mice such as anxiety (Messaoudi et al., 2011), reduce stress-induced serum CORT 

levels (Bravo et al., 2011), as well as rescue memory deficits (Savignac et al., 2015). 

Interestingly, the increased GI permeability seen in major depressive disorder and IBS 

is reduced by pre-treatment with a probiotic as is the associated increased HPA axis 

activation (Ait-Belgnaoui et al., 2012).  

Probiotic use in the treatment of IBS has yielded more benefit that prebiotics, however, 

studies also report a lack of efficacy of Lactobacillus plantarum 299V (Sen et al., 

2002), and Lactobacillus reuteri (Amirimani et al., 2013) against the symptoms of IBS 

including stool quality, abdominal pain, and urge for defecation. Studies using 

probiotic strains Lactobacillus delbruekii, Lactobacillus fermentum, and other 

Lactobacillus and Bifidobacteria have reported benefits on overall IBS severity 

scoring scale and quality of life (Fawzy et al., 2021; Zhang et al., 2016b). More recent 

studies have shown a higher efficacy of multi-strain probiotics against symptoms of 

IBS. These include the multi-strain probiotic BioKult comprised of 14 different 

bacterial strains, namely Bifidobacteria and Lactobacillus) (Ishaque et al., 2018), 

Bifico (containing 3 strains; Bifidobacterium, Lactobacillus, Enterococcus) (Zhang et 
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al., 2019a), NordBiotic (four Bifidobacteria, five Lactobacillus, and one 

Streptococcus) (Skrzydło-Radomańska et al., 2021), and VSL#3 (eight strains of 

Bifidobacteria, Lactobacillus, and Streptococcus) (Guandalini et al., 2010) which 

reduced abdominal pain, bloating, and overall symptom severity measured by the IBS 

severity scoring scale.  

Psychobiotics were originally discovered as a new class of probiotic that act against 

the symptoms of anxiety and depression (Dinan et al., 2013), however more recently 

the definition of psychobiotics has received a lot of attention with calls to broaden the 

definition to include prebiotics (Sarkar et al., 2016). One such potential psychobiotic 

is Bifidobacerium infantis which has been shown to be effective in increasing 

peripheral tryptophan levels in Sprague Dawley rats suggesting that this strain may 

have potential as an anti-depressant even though classic anti-depressant activity in the 

forced swim test was not observed (Desbonnet et al., 2008). Psychobiotics have also 

been seen to be effective in ameliorating the MS-induced depressive-like 

symptomatology whereby chronic treatment with Bifidobacterium infantis reversed 

this behavioural deficit (Desbonnet et al., 2010). Psychobiotics have also been shown 

to be effective in reducing anxiety in BALB/c mice which were pre-treated with 

Mycobacterium vaccae (Matthews and Jenks, 2013), and in rats treated with 

Lactobacillus rhamnosus GG in combination with prebiotics (McVey Neufeld et al., 

2019). Interestingly, psychobiotics have even been suggested to have the potential to 

act on memory as following infection with Citrobacter rodentium, which resulted in 

memory dysfunction when coupled with acute stress in C57BL/6 mice, pre-treatment 

with a combination of Lactobacillus rhamnosus (R0011) and Lactobacillus 

helveticus (R0052) countered this memory dysfunction (Gareau et al., 2011). 

Interestingly, it is seen that GF mice display impaired memory, suggesting a role for 
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the gut microbiota (Cryan and O'Mahony, 2011), further reinforcing the role that 

psychobiotics may play in memory. Not only have psychobiotics been shown to be 

beneficial in murine models of stress but they have also been shown to be efficacious 

in human studies where anti-depressant activity was seen by a reduction in awakening 

cortisol levels following administration of Bimuno GOS (Schmidt et al., 2015) as well 

as a reduction in depressed mood following treatment with a probiotic blend 

comprised of Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus 

acidophilus, Lactobacillus brevis, Lactobacillus casei, Lactobacillus salivarius, 

and Lactococcus lactis (Steenbergen et al., 2015). 

 

6.1.3. Postbiotics 

Postbiotics are defined as a preparation of inanimate microorganisms and/or their 

components that confers a health benefit to the host (Salminen et al., 2021). Postbiotics 

include heat-killed bacteria as well as their metabolites and have the added benefit of 

circumvention of colonisation efficacy and viability at high doses as they are non-

living. Their use as a microbiota-targeted therapy for disorders include the reported 

efficacy of heat-killed Lactobacillus acidophilus LB with its’ culture medium when 

added to an oral rehydration solution for the treatment of diarrhoea in humans (Liévin-

Le Moal et al., 2007). Postbiotics have also been shown to affect gut physiology 

whereby lambs which were administered Lactobacillus plantarum RG14 showed 

improved gut barrier function via the upregulation of tight junction protein mRNA 

expression and alterations in pro-inflammatory cytokine mRNA expression (Izuddin 

et al., 2019). However, the benefit and efficacy of postbiotics as a treatment method 

for stress and non-stress related disorders is not fully clear, and as such, further studies 

into their uses should be conducted. 
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6.1.4. Faecal microbiota transplantation 

As previously mentioned, the use of FMT as a model of visceral pain has yielded 

promising results. Not only may FMT be utilised as a model to induce visceral pain-

associated disorders, but it may also be used as a treatment approach. The use of FMT 

from healthy controls in treating disorders of the gut-brain axis has proven to be 

effective against the symptoms of IBS in humans (Cui et al., 2021; El-Salhy and 

Mazzawi, 2018; El-Salhy et al., 2020; Johnsen et al., 2018). Some studies have 

reported no effect of FMT against the symptoms of IBS (Halkjær et al., 2018), 

however, the majority of studies support the safety and efficacy of FMT as a treatment 

for IBS. Similarly, evidence exists to support the use of FMT in the treatment of stress-

related psychiatric disorders such as depression and anxiety (Chinna Meyyappan et 

al., 2020; Kurokawa et al., 2018). Further large-scale studies are needed to fully 

investigate the efficacy of FMT as a treatment strategy for disorders of the gut-brain 

axis. 

 

6.1.5. Diet 

Manipulation of the gut microbiota through diet is an effective method of effecting 

change in host physiology and behaviour as it is well known that diet modulates gut 

microbiota composition (Leeming et al., 2019). Similarly, the gut microbiota may also 

influence host nutrition either directly or indirectly (for review see (Ezra-Nevo et al., 

2020)). This concept led to the introduction of the field of nutritional psychiatry as 

diet can positively impact on brain function. There is an inextricable link between diet 

and stress-related psychiatric disorders such as depression as it is seen that by use of 

dietary interventions including omega-3 fatty acids, the symptoms of depression are 

reduced (Ekong and Iniodu, 2021; Firth et al., 2019; Liao et al., 2019; Marx et al., 
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2019; Owens et al., 2020). It has been shown that omega-3 fatty acids upregulate adult 

neurogenesis, or birth of new neurons, and brain-derived neurotrophic factor 

expression (Beltz et al., 2007; Paduchová et al., 2021), while also preventing cortisol-

induced reductions in neurogenesis (Borsini et al., 2020). The Mediterranean diet, a 

plant-based diet high in omega-3 fatty acids, has also been shown to reduce the 

symptoms of depression (Dinan et al., 2019) (McMillan et al., 2011). Similarly, dietary 

supplementation with vitamin D has been shown to be effective in the treatment of 

depression (Parker et al., 2017).  

Given that diet majorly impacts on the symptoms of IBS, the exploitation of diet as a 

treatment strategy has received increasingly more attention in recent years. For 

example, a diet low in fermentable oligosaccharide, disaccharide, monosaccharide, 

and polyol (FODMAP) has been shown to lead to vast improvements in IBS 

symptomatology including abdominal pain, motility issues, and abdominal bloating 

(Black et al., 2021). Other dietary supplements that have shown promising results 

against IBS symptoms include peppermint oil (Alammar et al., 2019), however its 

efficacy has been subjected to scrutiny with calls for further investigation (Black et 

al., 2020b; Cash, 2020). 

 

6.1.6. Infant formula supplementation  

As mentioned previously in this review, one of the main methods of microbiota 

seeding in early life is through early life nutrition, whether it be from breastfeeding, 

or formula-feeding. When breastfeeding is not an option, infant formula may be used 

to supplement the infant with critical nutrients. Producers of infant formula are 

constantly attempting to better reflect the nutritional value of breastmilk in their 

formulas (Ahern et al., 2019), with the majority of the protein component being 
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derived from bovine milk (Lönnerdal, 2014). For example, supplementation with 

bovine milk fat globule membrane (MFGM), the membrane surrounding milk fat 

droplets, has been shown to reduce the impact of ELS on visceral pain and memory in 

rodents (Collins et al., 2022; O'Mahony et al., 2020). Further studies have reported 

higher cognitive scores as measured by the Bayley scales of infant development at 12 

months of age in infants fed an MFGM-supplemented diet (Timby et al., 2014), or 

MFGM and lactoferrin-supplemented diet (Li et al., 2019). MFGM has also been 

shown to have beneficial effects on GI physiology in pigs whereby measures of 

intestinal health including villus height, crypt depth, and expression of tight junctions 

were positively altered (Zhang et al., 2020). The addition of other bioactive fractions 

of bovine milk to increase the nutritional value of infant formula has also proven 

effective. These protein components include α-lactalbumin and lactoferrin (Skolnick 

et al., 2020). However, the main notable difference between breastmilk and infant 

formula is the lack of a diverse microbial community, fuelling the production of infant 

formula with prebiotics to better recapitulate the beneficial microbes found in 

breastmilk. 

 

6.1.7. Breastmilk 

Human breastmilk is the gold standard for infant feeding as it provides the necessary 

nutrients and bioactive compound which together promote growth and immune system 

competency. Breastmilk in itself possesses a distinct microbiome, which also plays a 

major role in infant gut microbiota development (Rodríguez, 2014). Breastmilk is 

produced in the presence of prolactin (Gargiulo, 2017), and the necessary nutrients are 

brought via the blood and lymph system and secreted into the breastmilk through 

mammary epithelial cells. The composition of breastmilk varies depending on the 



76 
 

developmental stage of the infant as various other nutrients are required at different 

developmental stages ranging from preterm birth, to weaning off the mother’s milk 

(Bauer and Gerss, 2011). Casein, lactoferrin, lysozyme, secretory IgA, and serum 

albumin are among the most abundant proteins found in breastmilk (Lyons et al., 

2020). HMOs are non-digestible glycans grouped into fucosylated, sialylated, and 

non-fucosylated neutral and are found in human breastmilk (Garwolińska et al., 2018). 

HMOs have been shown to modulate gut-brain axis activity through promotion of 

bacterial species in the gut such as Bifidobacteria (Kirmiz et al., 2018), leading to the 

generation of metabolites such as SCFAs (Šuligoj et al., 2020) and limiting the growth 

of pathogenic bacteria (Triantis et al., 2018). The HMOs 3’Sialyllactose and 

6’Sialyllactose have been shown to result in a decrease in anxiety-like behaviour in 

mice (Tarr et al., 2015), as well as positively impact on memory in rats (Oliveros et 

al., 2018). Importantly, the HMOs 2’-O-fucosyllactose and 3’Sialyllactose have been 

shown to reduce GI barrier permeability (Chleilat et al., 2020), which may be of use 

for treatment of disorders of the gut-brain axis. Interestingly, a blend of six HMOs 

reduced stress-induced visceral hypersensitivity in mice, an effect that was not seen in 

mice with a depleted microbiota, suggesting that HMOs act via the gut microbiota 

(Ferrier et al., 2022). 2’-O-fucosyllactose and lacto-N-neotetraose together improved 

IBS symptoms and overall quality of life as well as increasing the abundance of 

Bifidobacterium spp., further supporting the use of HMOs in the treatment of IBS 

(Iribarren et al., 2020; Iribarren et al., 2021; Palsson et al., 2020). 
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6.2. Pharmacological interventions for disorders of the gut-brain axis 

There are currently no approved pharmacological treatments specifically to treat 

visceral pain given its multifaceted aetiology, however, there are a number of 

pharmacological interventions that are of use against visceral pain-associated 

disorders. The interventions that have shown most efficacy clinically for the disorder 

of gut-brain interactions, IBS are summarised in Table 2.  
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Table 2. Overview of current pharmacological interventions for disorders of gut-

brain communication.  

Intervention 
Patient 

pool 
Result Proposed mechanism Reference 

Microbiota-targeted 

Rifaximin Non-

constipated 

IBS, IBS-

D 

Global IBS 

symptom 

improvement 

(visceral pain, 

bloating, altered 

bowel habits). 

Rifaximin alters the gut 

microbiota and reduces 

the immune response in 

the gut, likely a 

multifactorial mechanism. 

(Lembo et al., 

2020; Menees et 

al., 2012; 

Pimentel et al., 

2011; Schey and 

Rao, 2011) 

Antidepressants 

Tricyclic 

antidepressants 

Amitriptyline, 

imipramine, 

desipramine 

IBS-D Decreased visceral 

hypersensitivity.  

Can act via central 

modulation of visceral 

afferents. 

(Ford et al., 

2019; Rahimi et 

al., 2009; Thoua 

et al., 2009) 

Receptor-specific 

Gabapentin IBS-M, 

IBS-C, 

IBS-D 

Reduction of 

bloating, 

discomfort, and 

abdominal pain. 

Binds to α-2 delta 

subunits of voltage-gated 

Ca2+ channels and 

prevents membrane 

expression of Ca2+ 

channels, preventing 

glutamate, substance P 

release from primary 

afferents. 

(Houghton et al., 

2007; Lee et al., 

2005) 

Eluxadoline IBS-D Improvement in 

bowel movement 

urgency and 

frequency, quality 

of life. 

Acts as a µ and κ-opioid 

receptor agonist, and a δ-

opioid receptor antagonist 

which delays intestinal 

transit and alters secretion 

and sensation 

respectively. 

(Dove et al., 

2013; Lembo et 

al., 2016) 

Ebastine IBS Reduced visceral 

hypersensitivity, 

reduced abdominal 

pain. 

Histamine receptor 1 

antagonist which blocks 

histamine-induced 

sensitisation of TRPV1. 

(Wouters et al., 

2016) 
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Ibodutant IBS-D Relief of IBS 

symptoms and 

abdominal pain. 

Neurokinin-2 receptor 

antagonist, possible 

inhibition of neurokinin-

induced visceral sensory 

nerve activation. 

(Tack et al., 

2017) 

Loperamide IBS-D Reduced abdominal 

pain, improved 

stool consistency. 

Gastrointestinal tract µ-

opioid receptor agonist, 

decreases smooth muscle 

contraction in the 

intestinal wall. 

(Efskind et al., 

1996) 

Alosetron IBS-D Reduced abdominal 

pain, discomfort, 

and urgency. 

5-HT3 receptor 

antagonism. 

(Moore et al., 

2013) 

Antispasmodics 

Otilonium 

bromide 

IBS Reduction in 

abdominal pain and 

bloating severity 

Targets L- and T-type 

Ca2+ channels and 

tachykinin neurokinin-2 

receptors. 

(Clavé and Tack, 

2017; 

Triantafillidis 

and Malgarinos, 

2014) 
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7. Summary and conclusion  

The gut microbiota is heavily involved in all aspects of the development of the gut-

brain axis and its component parts. Stress in early life, whether it be in the prenatal, 

perinatal, or postnatal period, exerts deleterious effects on the function of the gut-brain 

axis and results in a wide range of disorders of gut-brain axis interactions and 

alterations in behaviour as outlined above. Pharmacological and dietary interventions 

aimed at restoration of proper function of the gut-brain axis have proven effective in 

some cases with future research into potential mechanisms of action required. Further, 

early detection of stress during pregnancy and early life may aid in the treatment of 

these disorders and reduce potential negative outcomes associated with stress in early 

life. 

This review of the literature highlights the need for novel investigations into 

treatments of disorders of gut-brain axis interactions such as IBS and associated 

hallmark visceral pain, as well as a better understanding of the factors that modulate 

these changes. Further studies are required to provide alternative and more effective 

treatments for early life stress-induced disorders of the gut-brain axis, and more 

reliable biomarkers for stress-related disorders should be investigated. 
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8. Aims of the thesis 

The overarching aim of this thesis is to lead a novel investigation into dysfunction of 

the gut-brain axis with a focus on visceral pain and explore dietary and 

pharmacological interventions that may ameliorate these deleterious effects. 

 

8.1. Aim 1: Can dietary or pharmacological interventions ameliorate early 

life stress-induced dysfunction of the gut-brain axis? 

Firstly, we characterised the effect of early life stress on behavioural and physiological 

measures in the rat. These studies were carried out with a focus on visceral sensitivity 

and the enteric nervous system (Chapters 2 and 3) and the effects of novel treatment 

strategies including the β3-adrenoceptor agonist CL-316243 and milk fat globule 

membrane were investigated. 

 

8.2. Aim 2: Is there a role for the gut microbiota and female sex hormones 

in perception of visceral pain? 

To establish whether the gut microbiota and female sex hormones impact on visceral 

pain perception, we used germ-free and conventional mice that were ovariectomised 

to cease the main production of female sex hormones and plotted the visceral pain 

response across the oestrous cycle (Chapter 4). 
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8.3. Aim 3: What is the impact of early life stress on pre-adolescent changes 

in circulating and gut immune profiles? 

Given that the immune system is an integral part of the gut-brain axis, we sought to 

investigate the impact of early life stress on the changes that occur during the pre-

adolescent period (Chapter 5). 

 

8.4. Aim 4: Can biological markers related to the immune system and 

intestinal permeability be utilised as biomarkers for prenatal maternal 

stress? 

Given that prenatal stress has been linked to a dysfunctional brain-gut axis in animal 

models we wanted to investigate potential biomarkers of this stress pregnant women 

with and without IBS (Chapter 6). 
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Abstract  

Background: Visceral hypersensitivity, a hallmark of disorders of the gut-brain axis, 

is associated with early life stress (ELS). Agonism of neuronal β3-adrenoceptors (AR) 

has been shown to alter central and peripheral levels of tryptophan and reduce visceral 

hypersensitivity. Here, we aimed to determine the potential of β3-AR agonism in 

reducing ELS-induced visceral hypersensitivity and possible underlying mechanisms.  

Methods:  ELS was induced using the maternal separation (MS) model, where Sprague 

Dawley rat pups were separated from their mother (postnatal day 2-12). Visceral 

hypersensitivity was confirmed in adult offspring using colorectal distension (CRD). 

CL-316243, a β3-AR agonist, was administered to determine anti-nociceptive effects 

to CRD. Distension-induced enteric neuronal activation was assessed by quantifying 

c-Fos positive neurons as well as β3-AR positive neurons in the colonic submucosa. 

Tryptophan metabolism was assessed both centrally and peripherally as well as 

colonic secretomotor function. 

Key Results: Here we show that CL-316243 significantly ameliorated MS-induced 

visceral hypersensitivity. While no impact of MS was evident in the enteric nervous 

system, CL-316243 did lead to a significant decrease in the distension-induced 

activation of β3-AR+ colonic submucosal neurons. Furthermore, MS altered plasma 

tryptophan metabolism and colonic adrenergic tone while CL-316243 reduced both 

central and peripheral levels of tryptophan and affected secretomotor activity in the 

presence of tetrodotoxin. 

Conclusions and Inferences: This study supports a beneficial role of CL-316243 in 

reducing ELS-induced visceral hypersensitivity and suggests that targeting the β3-AR 

can significantly influence gut-brain axis activity through modulation of enteric 
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neuronal activation, tryptophan metabolism, and colonic secretomotor activity which 

may synergistically contribute to offsetting the effects of ELS. 

 

Graphical abstract 
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Introduction 

Stressful experiences, particularly in early life may have detrimental effects on host 

development and physiology. A well-established model of early-life stress (ELS) in 

rodents is maternal separation (MS), which involves separating pups from their dams 

for a specified amount of time, usually during the stress hyporesponsive period. One 

of the most often used paradigms involves a 3-hour daily separation from postnatal 

day 2-12 which results in robust effects on behaviour and physiology (O'Mahony et 

al., 2009; O'Mahony et al., 2020). These changes include alterations in central and 

peripheral nervous systems (De Palma et al., 2015), hypothalamic-pituitary-adrenal 

axis function (Juruena et al., 2006; O'Mahony et al., 2009), as well as response to pain 

(O'Mahony et al., 2009; O'Mahony et al., 2020; O’Mahony et al., 2011; Vilela et al., 

2017; Yi et al., 2017). MS has also reproducibly been shown to elicit an anxio-

depressive phenotype in rodents (Cui et al., 2020; McVey Neufeld et al., 2019). 

Previous studies in rodents have reported increased visceral sensitivity following 

exposure to MS (O'Mahony et al., 2020; Yi et al., 2017). Visceral hypersensitivity, 

characterised by a diffuse sensation of pain arising from the midline of the body 

(Sikandar and Dickenson, 2012), is a hallmark of disorders of gut-brain axis 

interactions such as irritable bowel syndrome (IBS), a condition for which ELS is a 

known risk factor (Wilmes et al., 2021) and for which there is currently no satisfactory 

treatment. Although the exact aetiology behind the manifestation of ELS-induced 

visceral hypersensitivity is unclear, several factors are known to play a major 

modulatory role in perception and processing of pain. These factors include the gut 

microbiota (Luczynski et al., 2017), female sex hormones (Tramullas et al., 2021), and 
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neurotransmitters such as serotonin (5-HT) and noradrenaline (NA) (O'Mahony et al., 

2006). 

Noradrenaline is a catecholaminergic neurotransmitter known to play a role in pain 

perception which acts via α or β-adrenoceptors (AR). β-ARs are G protein-coupled 

receptors and are generally coupled to a Gs protein which increases cAMP when 

activated by NA and adrenaline (Schena and Caplan, 2019). In terms of its role in 

visceral pain perception, NA release in the spinal cord from descending pathways 

inhibits pain via α-ARs (Pertovaara, 2006). Modulation of β-ARs has also proven 

useful in the alleviation of visceral pain with antagonism of β2-AR reversing stress-

induced visceral hypersensitivity, whereas administration of NA resulted in visceral 

hypersensitivity in control rats (Zhang et al., 2014). The β3-AR is expressed on 

cholinergic neurons of both the myenteric and submucosal plexi of the enteric nervous 

system (Nasser et al., 2006), and agonism of this receptor has been shown to elicit 

visceral analgesia (Cellek et al., 2007) whilst also decreasing excitability of 

submucosal enteric neurons in a somatostatin-dependent manner (Schemann et al., 

2010). β3-AR expression has also been shown both in the frontal cortex and 

hippocampus of the human brain (Rodriguez et al., 1995) and in the rat brain, 

specifically in the hippocampus, cerebral cortex, hypothalamus, brainstem, and 

striatum (Summers et al., 1995). It has been shown previously that MS alters the levels 

of β3-AR in adipose tissue (Miki et al., 2013) and decreases NA levels in the brain 

(Arborelius and Eklund, 2007), which could suggest a role for the β3-AR in MS-

induced dysfunction. 

CL-316243, a highly selective agonist for the rat β3-AR (Baker, 2005), has been 

shown to increase central tryptophan (Lenard et al., 2003) and 5-HT (Conley et al., 

2006), which when coupled with its anti-nociceptive properties highlights a potential 
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role for central serotonergic signalling in its mechanism of action against visceral pain. 

Alterations in both central and peripheral serotonergic signalling have also been 

reported in patients with IBS (Faure et al., 2010; Stasi et al., 2014). Studies using 5-

HT4 receptor agonists in humans and rodents report anti-nociceptive activity (Hoffman 

et al., 2012; Sabaté et al., 2008), whereas antagonism of the 5-HT3 receptor in rodents 

inhibits spinal dorsal horn neuronal activation in response to colorectal distension 

(CRD) (Kozlowski et al., 2000) and increased colonic compliance in humans (Delvaux 

et al., 1998).  

Tryptophan, the precursor of 5-HT, has gained increasingly more attention for its 

potential role in neuropsychiatric disorders and disorders of gut-brain axis interactions 

such as IBS. Tryptophan may be metabolised to form 5-HT or melatonin, or be broken 

down into several neuroactive metabolites via the kynurenine pathway which accounts 

for ~95% of tryptophan metabolism (Peters, 1991). Acute tryptophan depletion, 

resulting in decreased 5-HT, led to increased pain in patients with IBS, further 

supporting the role of 5-HT in visceral pain processing (Kilkens et al., 2004). As the 

precursor of 5-HT, it would stand to reason that alterations in tryptophan availability 

would disturb 5-HT concentrations both centrally and peripherally, with this altered 

serotonergic signalling modifying pain perception. 

Colonic secretomotor function is closely linked to disorders of gut-brain axis 

interactions such as IBS. Both visceral hypersensitivity and alterations in gut 

secretomotor function are seen in cases of IBS (Camilleri, 2015) where hyperactivity 

of secretomotor neurons results in diarrhoea and hypoactivity results in constipation 

(Nezami and Srinivasan, 2010). Secretomotor neurons are located both in the 

myenteric ganglia of the enteric nervous system, where they project to the mucosa, 

and in the submucosal ganglia which project to the myenteric ganglia and have been 
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suggested to serve as the link between secretion and motility in the gut (Costa et al., 

2000). Distension of colonic tissue from guinea-pigs ex vivo has been shown to result 

in alterations in secretomotor activity, specifically resulting in increased secretion 

(Weber et al., 2001). Interestingly, MS has been shown to alter baseline short circuit 

current (ISC) in colonic tissue (Gareau et al., 2006), suggesting that alterations in 

secretomotor activity may play a role in MS-induced dysfunction. 

To date, few studies have investigated the role of the β3-AR in ELS-induced visceral 

pain, therefore, the aim of this study was to assess the potential of β3-AR agonism 

against ELS-induced visceral hypersensitivity and investigate possible serotonergic or 

colonic secretomotor activity-dependent mechanisms. 
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Methods 

Animals 

Male and female Sprague Dawley rats (approximately 8 weeks of age) were purchased 

from Envigo, UK and were mated in the biological services unit, Doughcloyne, and 

subsequent offspring were used in this study. The day of birth was designated as 

postnatal day (PND0). All dams and littermates were housed in large plastic cages (15 

x 22 x 9cm) in a humidity- (55% ± 10%) and temperature- (21°C ± 1°C) controlled 

room. The holding room was maintained at a 12-hour light/dark cycle (lights on 7am). 

All experiments were conducted in accordance with the guidelines of European 

Directive 86/609/EEC and the Recommendations 2007/526/65/EC and were approved 

by the Animal Experimentation Ethics Committee of University College Cork. 

 

Maternal separation 

Maternal separation was carried out as previously described (O'Mahony et al., 2009). 

Briefly, at PND0 litters were randomly assigned to maternally separated (MS) or non-

separated (NS) groups. At PND2, MS litters were taken from the main colony room 

to an adjacent room maintained at the same lighting and temperature conditions. The 

dam was carefully removed from the home cage and placed into a smaller holding 

cage, following which the pups (entire litters) were gently transferred together to a 

small cage where they remained for 3 hours. Cages containing the pups were placed 

on heating pads maintained at between 30°C and 33°C and were filled with 3cm of 

bedding so the pups could thermoregulate as needed. The dam was returned to the 

home cage and placed back in the main colony room without the pups for this time 

period to avoid communication via ultrasonic vocalisation or scent. Following the 3-



91 
 

hour separation, dams were again brought to the adjacent room and all pups were 

returned to their original home cages. NS litters were also transported to and from the 

adjacent room as the MS litters to avoid the confound of transportation stress but were 

left otherwise undisturbed in their home cages with the exception of weekly cage 

cleaning. This procedure was carried out daily from PND2 to PND12 inclusive. The 

period of the separation was carried out at the same time each day (9am-12pm). At 

PND21, offspring were sexed and weaned, and male offspring were used for the 

remainder of the study. 

 

In vivo studies 

The selective β3-AR agonist CL-316243 (product number C5976, Sigma-Aldrich, 

Dublin, Ireland) was administered perorally via gavage 1 hour prior to CRD as shown 

in Figure 1. Two different doses were used based on a previous study in the literature 

– 0.1mg kg-1 and 1mg kg-1 (Cellek et al., 2007). A vehicle control group with 0.9% 

saline was used. CL-316243 was not administered to NS animals for the visceral 

sensitivity assessment as there was no viscerally hypersensitive phenotype to rescue 

with CL-316243. The volume of the agonist or saline administered was 1ml kg-1. For 

CRD-induced neuronal activation and tryptophan metabolism, the effect of CL-

316243 in NS animals was investigated to assess if this agonist affects the neuronal 

response to CRD and tryptophan metabolism under control conditions. 
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Experimental design 

Separate cohorts were used for the following assessments:  

A. Visceral hypersensitivity assessment: For investigation into the effect of β3-AR 

agonism on visceral pain perception; NS-Vehicle, MS-Vehicle, MS-CL-316243 

(0.1mg kg-1 and 1mg kg-1) groups were used during colorectal distension. n = 9-16 per 

group; Colonic submucosal neuronal activation in response to CRD: NS-Vehicle, NS-

CL-316243 (0.1mg kg-1), MS-Vehicle, MS-CL-316243 (0.1mg kg-1). n = 5-10 per 

group. 

B. β3-AR expression in colonic tissue assessment: For investigating the expression of 

β3-AR in colonic submucosal plexi; NS-Control, MS-Control. n = 4-5 per group; 

Ussing chamber experiments; NS and MS control. n = 9-13 per group. 

C. Tryptophan metabolism assessment (HPLC): NS-Vehicle, NS-CL-316243 (0.1mg 

kg-1 and 1mg kg-1), MS-Vehicle, MS- β3-CL-316243 (0.1mg kg-1 and 1mg kg-1). n = 

6-8 per group. 

Sample collection details: All rats were euthanised by decapitation for tissue 

collection. Colonic samples were collected (A) 1 hour following CRD (B) 

Immediately after decapitation. (C) Whole brain was removed immediately following 

decapitation and dissected into regions and stored at -80°C until later analysis. 
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Figure 1. Experimental design. (A) Animals received CL-316243/saline 1 hour prior 

to CRD. Colonic tissues were excised for analysis of CRD-induced neuronal activation 

and the number of CRD-induced pain behaviours was scored. (B) Animals underwent 

maternal separation and colonic tissue was collected for analysis of β3-AR expression 

in the enteric nervous system and Ussing chamber experiments. (C) Animals received 

CL-316243, and brain regions and plasma collected for HPLC analysis. All animals 

from A, B, C above underwent the same conditions, with any differences shown. CRD; 

Colorectal distension, ENS; Enteric nervous system, P.O.; Perorally. 

 

Colorectal distension 

The colorectal distension (CRD) protocol was carried out as previously described 

(O'Mahony et al., 2009) at PND77. Animals were fasted for 16 hours prior to the start 

of the procedure. Animals were lightly anaesthetised with isoflurane and a 6cm-long 

polyethylene balloon with a connecting catheter was inserted into the colon, 1cm 

proximal to the anus. The catheter was secured to the tail of the animal with surgical 

tape to prevent displacement. Animals were allowed to recover from the anaesthesia 

for 10 minutes prior to the start of the procedure. The CRD paradigm used was an 

ascending phasic distension from 0 to 80mmHg over an 8-minute period. Air inflation 

and pressure were monitored during the procedure using a customised barostat 

(Distender Series II, G and J Electronics, Toronto, ON, Canada). Pain behaviours were 

identified as abdominal retraction, withdrawal and stretching (O'Mahony et al., 2012). 

A trained observer, blinded to the experimental groups, scored each animal for the 
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threshold pressure, when the first pain behaviour was observed, as well as the number 

of pain behaviours displayed across all pressure ranges by each animal.  

 

Colonic submucosal neuronal activation following colorectal distension 

Given the high level of expression of the β3-AR on submucosal neurons and the role 

of these neurons in secretomotor activity relevant to IBS, the percentage of colonic 

submucosal neurons activated in response to CRD was assessed. Animals received 

CL-316243 via oral gavage 1 hour prior to CRD. Based on the efficacy of the 0.1mg/kg 

dose of CL-316243 in the visceral sensitivity assessment, this dose only was used here. 

1 hour after the CRD had been carried out, colonic tissue was gently excised, rinsed, 

opened along the mesenteric line, and pinned flat on a Sylgard-coated (SYLGARD™ 

184 Silicone Elastomer, Dow, CA, USA) dish where it was incubated for 10 minutes 

with 1µM nifedipine to induce muscle fiber relaxation. The tissue was then further 

stretched and fixed in Zamboni’s fixative overnight for immunohistochemistry. 

Preparations of the submucosal plexus were prepared by microdissecting away the 

mucosa and separating the submucosa containing the submucosal plexus from the 

underlying circular and longitudinal muscle layers. The submucosal plexus 

preparations underwent three 15-minute washes in the washing solution (PBS with 

0.1% Triton X-100) under gentle agitation. Following the washes, tissues were 

incubated with a sheep anti-c-Fos primary antibody (Chemicon, cat. no. AB1584) 

diluted in the washing solution at a concentration of 1:300 for 40 hours at 4°C. 

Following the incubation with the primary antibody, three 15-minute washes with the 

washing solution under gentle agitation were carried out. Tissues were then incubated 

for 2 hours at room temperature under gentle agitation with the secondary antibody 
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anti-sheep conjugated with CY3 (Jackson Immunoresearch cat. no. 713-165-003) 

diluted in the washing solution at a concentration of 1:100. A further three 15-minute 

washes with the washing solution were then carried out. For co-staining with the β3-

AR, tissues were incubated with a goat anti-β3-AR primary antibody (Santa Cruz, cat. 

no. SC1473) diluted in the blocking solution (5% donkey serum in the wash solution) 

at a concentration of 1:100 for 40 hours at 4°C. Three washes of 15-minutes were then 

carried out under gentle agitation and the tissues were incubated with an anti-goat 

conjugated with FITC secondary antibody (Chemicon, cat. no. AP180F) diluted in the 

blocking solution at a concentration of 1:100 for 3 hours under gentle agitation at room 

temperature. Following the incubation period, tissues were again washed (three times 

x 15 minutes each) under gentle agitation before being mounted and coverslipped for 

imaging. Sections were imaged using an Olympus BX51 fluorescent microscope 

equipped with an oil immersion 100x objective lens. The number of neurons with 

nuclear c-Fos staining expressed as a percentage of total c-Fos+ve neurons activated in 

response to CRD was analysed in 20 randomly selected submucosal ganglia, and an 

average value per animal was used. The number of neurons with nuclear c-Fos+ve 

staining expressed as a percentage of β3-AR+ve neurons was assessed using the same 

method to investigate the involvement of the β3-AR in neuronal response to visceral 

stimulus. 

 

β3-AR expression in colonic submucosal preparations 

To investigate the expression of the β3-AR in colonic submucosal plexi, colonic 

submucosal plexus preparations were prepared and immunohistochemically stained 

for the β3-AR. Briefly, colonic tissue was gently excised, rinsed, opened along the 
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mesenteric line, and pinned flat in a Sylgard-coated (SYLGARD™ 184 Silicone 

Elastomer, Dow, CA, USA) dish where it was incubated for 10 minutes with 1µM 

nifedipine to induce muscle fiber relaxation. The tissue was then further stretched and 

fixed in Zamboni’s fixative overnight for immunohistochemistry. Preparations of the 

submucosal plexus were prepared by microdissecting away the mucosa and separating 

the submucosa containing the submucosal plexus from the underlying circular and 

longitudinal muscle layers. The submucosal plexus preparations underwent three 15-

minute washes in the washing solution (PBS-0.1% Triton X-100) under gentle 

agitation before being incubated with the blocking solution (5% donkey serum in the 

washing solution) for 1 hour at room temperature. Tissues were then incubated for 40 

hours at 4°C with a goat anti-β3-AR primary antibody (Santa Cruz, cat. no. SC1473) 

diluted in the blocking solution at a concentration of 1:100. Following this, three 15-

minute washes with the washing solution were carried out under gentle agitation and 

tissues were then incubated with an anti-goat conjugated with FITC secondary 

antibody (Chemicon, cat. no. AP180F) diluted in the blocking solution at a 

concentration of 1:100 for 2 hours under gentle agitation at room temperature. Three 

15-minute washes were carried out under gentle agitation, and tissues were incubated 

with a mouse anti-PGP9.5 primary antibody (UltraClone limited) diluted in blocking 

solution at a concentration of 1:400 overnight at 4°C. The next morning, three 15-

minute washes with the washing solution were carried out under gentle agitation and 

tissues were incubated with a goat anti-mouse conjugated with rhodamine red 

secondary antibody (Jackson Immunoresearch, cat. no. 115-295-166) diluted in 

washing solution at a concentration of 1:400 for 2 hours at room temperature. Three 

further washes of 15 minutes each were carried out before tissues were mounted and 

coverslipped for imaging. Tissues were imaged using an Olympus BX51 fluorescent 
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microscope equipped with an oil immersion 100x objective lens. The number of β3-

AR-expressing neurons in 10 randomly selected colonic submucosal ganglia was 

counted and expressed as a percentage of total PGP9.5+ve neurons and an average value 

per animal used. 

 

High-performance liquid chromatography (HPLC) 

 Determination of plasma tryptophan and kynurenine 

Given that alterations in peripheral levels of tryptophan may affect central 5-HT and 

therefore serotonergic signalling, levels of tryptophan and kynurenine in plasma 

samples were determined as previously described (Fitzgerald et al., 2008). Briefly, 2µl 

of internal standard (3-Nitro-L-Tryosine) was added to 198µl of plasma prior to being 

deproteinised with 20µL of 4M perchloric acid. Samples were then centrifuged at 

20,000g for 15 minutes at 4°C. 100µl of supernatant was transferred to an HPLC vial 

for analysis via a 20ul injection volume. Stock solutions of each standard were 

prepared in HPLC-grade water, and working solutions were prepared, aliquoted, and 

stored at -80°C until analysis, at which point 20µl of 4M perchloric acid was added 

and vortexed. 20µl of standards and sample supernatants were vortexed and injected 

into the HPLC system which consisted of a Waters 510 pump (Waters Ireland, Dublin, 

Ireland), 717plus cooled autosampler, a 996 PDA detector, a Hewlett Packard 1046A 

Fluorescent Detector (Waters Ireland, Dublin, Ireland), a waters bus SAT/IN module 

and a croco-cil column oven. System components were used in conjunction with 

Waters Empower software (Waters Ireland, Dublin, Ireland). HPLC grade 

Acetonitrile, acetic acid and perchloric acid were obtained from Alkem/Reagecon 

(Cork, Ireland). All samples were injected into a reverse phase Luna 3μm C18 100Å 
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size LC column 150 × 2mm (Phenomenex), which was protected by Krudkatcher 

disposable pre-column filters (Phenomenex) and SecurityGuard cartridges 

(Phenomenex). The mobile phase consisted of 50mM acetic acid and 100mM zinc 

acetate with 3% (v/v) acetonitrile and was filtered through MilliporeSigma 0.45µm 

HV Durapore membrane filters (AGB) and vacuum degassed prior to use. Compounds 

were then eluted isocratically over a 30-minute period at a flow rate of 0.3ml min-1 

after injection. The column temperature was set to 30°C, and samples/standards were 

maintained at 4°C in the cooled autoinjector prior to injection. The fluorescence 

detector was set to an excitation wavelength of 254nm and 404nm emission 

wavelength. The UV detector was set to 330nm. Tryptophan and its metabolites were 

identified based on their characteristic retention times compared with injection 

standards, which were run at regular intervals during the sample analysis. The 

chromatograms obtained were analysed using the LabSolutions software (Shimadzu) 

and concentrations were determined using analyte/internal standard peak height ratios. 

Results are expressed as ng ml-1 of supernatant respectively. 

 

 Determination of CNS serotonin and tryptophan 

Levels of tryptophan in the brainstem and frontal cortex were measured as the 

brainstem projects serotonergic processes to many areas of the brain, and the frontal 

cortex plays a major role in behaviour. Measurement of serotonin was performed as 

described previously (Browne et al., 2011, 2012). Briefly, brain tissue was sonicated 

in 1000µl of chilled HPLC grade water spiked with an internal standard 4 ng/20 μl of 

N-methyl 5-HT (Sigma Chemical Co., UK) as internal standard. The homogenates 

were centrifuge at 20,000g at 4 °C for 15 min using a MIKRO 22 R refrigerated 
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centrifuge. 250μl of the resulting sample supernatant was then added to 250μl of 

HPLC mobile phase prior to injection. For tryptophan analysis, brain tissue samples 

were homogenised as described for monoamine analysis and 20 μl of 4M perchloric 

acid was added to 200μl of sample supernatant which were then centrifuged at 20,000g 

at 4 °C for 15 min using a MIKRO 22 R refrigerated centrifuge. Samples were 

subsequently analysed as described above for plasma tryptophan The mobile phase for 

5-HT analysis consisted of 0.1M citric acid, 0.1M sodium dihydrogen phosphate, 

0.01mM EDTA (Alkem/Reagecon, Cork), 5.6mM octane-1-sulphonic acid (Sigma) 

and 9% (v/v) methanol (Alkem/Reagecon, Cork) and pH was adjusted to pH 2.8 using 

4N sodium hydroxide (Alkem/Reagecon, Cork). Homogenates were then centrifuged 

at 14,000rpm for 15 minutes at 4°C following which 20µl of the supernatant was 

injected into the HPLC system consisting of an SCL 10-Avp system controller, LC-

10AS pump, SIL-10A autoinjector (with sample cooler maintained at 40 °C), CTO-

10A oven, LECD 6A electrochemical detector (Shimadzu) and an online Gastorr 

Degasser (ISS, UK). A reverse-phase column (Synergi 4u C18 250 × 4.6mm, 

Phenomenex) maintained at 30 °C was employed in the separation (flow rate 2 ml 

min-1), the glassy carbon working electrode combined with an Ag/AgCL reference 

electrode (Shimdazu) was operated at +0.8V and the chromatograms generated were 

analysed using Class-VP 5 software (Shimadzu). Serotonin and its metabolites were 

determined based on their characteristic retention times as determined by the injection 

standards which were run at regular intervals during the sample analysis. 

Concentrations were determined using analyte/internal standard peak heigh ratios and 

expressed as ng g-1 of tissue. 
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Ussing chamber studies 

Animals naïve to CRD were euthanised by decapitation and distal colonic segments 

were gently excised and placed in chilled Krebs solution (1.2mM NaH2PO4, 116mM 

NaCl, 4.8mM KCl, 1.2mM MgCl2, 25mM NaHCO3, 2.5mM CaCl2 and 10mM D-

glucose) for Ussing chamber experiments as previously described (Carroll et al., 2013; 

Hyland et al., 2015) to investigate potential involvement of secretomotor neurons in 

MS-induced visceral hypersensitivity and potential mechanism of action of CL-

316243. Seromuscular stripping was performed by blunt dissection under a 

stereomicroscope, and both longitudinal and circular muscle layers were removed. The 

resultant mucosal-submucosal segments were mounted onto vertical NaviCyte 

diffusion chambers (Harvard apparatus, Kent, UK) and were maintained at 37°C in 

Krebs solution and were constantly supplied with carbogen (95% O2 and 5% CO2). 

Tissues were voltage clamped to 0mV using an automatic voltage clamp (DVC-

1000/EVC-4000, World Precision Instruments, Saratosa, Florida, USA). Once a stable 

baseline had been obtained, tissues were treated basolaterally with CL-316243 (1µM) 

and changes in short circuit current (ISC) were recoded. The effects of the neurotoxin 

tetrodotoxin (300nM) on the CL-316243 response was also measured as well as the 

effect of CL-316243 on Ca2+-evoked ion transport. The effect of CL-316243 on 

neuronal- and cAMP-evoked secretomotor activity using veratridine (30µM) or the 

pro-secretory agent forskolin (10µM) was also assessed. All measurements were 

recorded continuously on a computer using the LabTrax data acquisition hardware and 

analysed using DataTrax software (World Precision Instruments, Saratosa, Florida, 

USA).  

 



101 
 

Statistical analysis 

Data were analysed using the statistical software package SPSS 28.0 (IBM) and were 

expressed as mean ± SEM. Data were assessed for normality using the Shapiro-Wilk 

test and Levene’s test for equality of variances. Any statistical outliers were removed 

prior to analysis using Grubb’s test. Normally distributed data were analysed using 

one-way ANOVA, two-way ANOVA, independent samples t-test, and Tukey’s HSD 

post hoc where appropriate. A p-value of 0.05 was set as the threshold of statistical 

significance. “n” indicates the number of animals per experimental group. 
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Results 

β3-AR agonism reverses maternal separation-induced visceral hypersensitivity 

To assess the potential of β3-AR agonism on visceral pain perception, the total number 

of pain behaviours as well as the threshold pressure to CRD were analysed. Firstly, to 

investigate the effect of MS on the total number of pain behaviours, independent 

samples t-test revealed a significant difference between NS-Vehicle and MS-Vehicle 

groups whereby MS animals displayed a higher total number of pain behaviours in 

response to CRD (NS-Vehicle; 10.75 ± 1.49, MS-Vehicle; 27.56 ± 2.81, t(23) = -

5.818, p < 0.001) (Figure 2A). Next, to investigate the effect of β3-AR agonism on 

the total number of pain behaviours in MS animals, one-way ANOVA revealed a 

significant main effect of pharmacological intervention (F(2,28) = 7.382, p = 0.003) 

with Tukey’s post hoc revealing specific differences between MS-Vehicle and both 

MS-0.1mg kg-1 (p = 0.003) and MS-1mg kg-1 (p = 0.02) groups whereby the total 

number of pain behaviours was decreased in both pharmacological intervention groups 

versus vehicle (Figure 2A). 

Similarly, independent samples t-test revealed a significant difference between NS-

Vehicle and MS-Vehicle groups whereby MS animals displayed a lower threshold 

pressure to CRD than their NS counterparts (NS-Vehicle; 50.91 ± 2.74, MS-Vehicle; 

29.67 ± 1.58, t(22.051) = 6.71, p < 0.001) (Figure 2B). When the effect of β3-AR 

agonism in MS animals was analysed, one-way ANOVA revealed a significant main 

effect of pharmacological intervention (F(2,29) = 6.404, p = 0.005) on threshold 

pressure to CRD. Further analysis using Tukey’s post hoc revealed significant 

differences between MS-Vehicle and MS-0.1mg kg-1 (p = 0.003) groups whereby the 
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threshold in the pharmacological intervention group was increased versus vehicle 

(Figure 2B). 

Figure 2. Maternal separation (A) Increases the total number of pain behaviours 

and (B) Decreases threshold pressure in response to CRD. ###Independent samples 

t-test NS-Vehicle versus MS-Vehicle, p ≤ 0.001. β3-AR agonism (A) Decreases the 

total number of pain behaviours at both doses of CL-316243 and (B) Restores the 

threshold pressure to near control levels at the 0.1mg kg-1 dose of CL-316243. *p ≤ 

0.05, **p ≤ 0.01 versus MS-Vehicle group. Data presented as Mean ± SEM. n = 9-16 

per group. NS=Non-separated; MS=Maternally separated. 

 

β3-AR expression in colonic submucosal plexus 

To examine the expression of β3-AR in colonic submucosal plexi, the number of β3-

AR+ve neurons expressed as a percentage of PGP9.5+ve neurons was analysed. 

Independent samples t-test showed no difference between the two groups (NS-

Control; 86.25 ± 2.76, MS-Control 85.85 ±0.77, t(7) = 0.124, p = 0.904) (Figure 

3A&B).  
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Figure 3. (A) Number of β3-AR+ve neurons expressed as a percentage of PGP9.5+ve 

neurons in the colonic submucosal plexus.  (B) Representative photomicrographs 

of the expression of β3-AR on PGP9.5+ve neurons. β3-AR staining in green, PGP9.5 

staining in red. Scale bar=100µm. Data presented as Mean ± SEM. n = 4-5 per group. 

AR=Adrenoceptor; NS=Non-separated; MS=Maternally separated. 

 

Activation of colonic submucosal neurons following colorectal distension  

To assess the activation of colonic submucosal neurons in response to CRD, the 

percentage of neurons with nuclear c-Fos staining was analysed. Two-way ANOVA 

revealed a significant main effect of pharmacological intervention (F(1,27) = 12.016, 

p = 0.002), but not of ELS (F(1,27) = 2.387, p = 0.134), nor of an 

ELS*pharmacological intervention interaction (F(1,27) = 1.339, p = 0.257) on the 

percentage of neurons with nuclear c-Fos+ve staining following CRD (Figure 4A). 

Further analysis using Tukey’s post hoc revealed a significant difference between NS-

Vehicle and NS-0.1mg kg-1 groups whereby the 0.1mg kg-1 dose of CL-316243 
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significantly decreased the percentage of neurons activated following CRD (p = 0.02) 

(Figure 4A).  

To further investigate the involvement of the β3-AR in this neuronal response to the 

noxious stimulus of CRD, the number of c-Fos+ve neurons was expressed as a 

percentage of β3-AR+ve neurons. Interestingly, two-way ANOVA revealed a 

significant main effect of pharmacological intervention (F(1,27) = 12.62, p = 0.001), 

but not of ELS (F(1,27) = 1.863, p = 0.184), nor of an ELS*pharmacological 

intervention interaction (F(1,27) = 0.886, p = 0.355) on the percentage of β3-AR+ve 

neurons activated in response to CRD (Figure 4B). Post hoc analysis using Tukey’s 

post hoc revealed a significant decrease in percentage of β3-AR+ve neurons activated 

in NS-0.1mg kg-1 versus NS-Vehicle animals (p = 0.024) (Figure 4B).  

Figure 4. Percentage of (A) Total c-Fos+ve neurons (B) β3-AR+ve neurons activated 

in response to CRD as noted by nuclear c-Fos staining. *p ≤ 0.05 versus NS-Vehicle 

group. Data presented as mean ± SEM. n = 5-10 per group. AR=Adrenoceptor; 

NS=Non-separated; MS=Maternally separated. 

 

β3-AR agonism alters central and peripheral levels of tryptophan 

To investigate the potential involvement of the central serotonergic system in the 

mechanism of action of β3-AR agonism against visceral hypersensitivity, first plasma 

levels of tryptophan were analysed. Two-way ANOVA revealed a main effect of 
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pharmacological intervention (F(2,39) = 30.128, p < 0.001), but not of ELS (F(1,39) 

= 0.262, p = 0.611), nor of an ELS*pharmacological intervention interaction (F(2,39) 

= 0.341, p = 0.713) on plasma levels of tryptophan. Further analysis using Tukey’s 

post hoc revealed significant differences between NS-Control and NS-1mg kg-1 groups 

(p < 0.001) as well as between NS-0.1mg kg-1 and NS-1mg kg-1 groups (p = 0.022) 

whereby the 1mg kg-1 dose of CL-316243 reduced plasma tryptophan versus both NS 

groups. Similarly, in MS animals the 0.1mg kg-1 and the 1mg kg-1 dose of CL-316243 

decreased plasma tryptophan versus control (p = 0.033 and p < 0.001 respectively) 

(Figure 5A). Two-way ANOVA also revealed a significant main effect of ELS 

(F(1,37) = 51.469, p < 0.001), of pharmacological intervention (F(2,37) = 21.269, p < 

0.001), and of an ELS*pharmacological intervention interaction (F(2,37) = 3.285, p = 

0.049) on the plasma kynurenine:tryptophan ratio. Tukey’s post hoc revealed that the 

1mg kg-1 dose of CL-316243 increased the plasma kynurenine:tryptophan ratio versus 

NS-Control (p < 0.001) and versus the 0.1mg kg-1 group (p = 0.004) (Figure 5B). 

Interestingly, the plasma kynurenine:tryptophan ratio was lower in MS-Control versus 

NS-Control animals (p = 0.047) as revealed by Tukey’s post hoc. Similarly, the 1mg 

kg-1 dose of CL31623 increased the plasma kynurenine:tryptophan ratio in MS 

animals (p = 0.05) (Figure 5B). This change in kynurenine:tryptophan ratio was 

independent of alterations in levels of kynurenine (data not shown). 

Central levels of tryptophan and 5-HT were also measured. Two-way ANOVA 

revealed a significant main effect of ELS (F(1,42) = 16.992, p < 0.001), and of 

pharmacological intervention (F(2,42) = 8.034, p = 0.001), but not of an 

ELS*pharmacological intervention interaction (F(2,42) = 0.791, p = 0.46) on 

brainstem levels of tryptophan. Post hoc analysis using Tukey’s did not reveal any 

significant differences between groups (Figure 5C). No significant main effect of ELS 
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(F(1,39) = 3.058, p = 0.088), nor of pharmacological intervention (F(2,39) = 0.571, p 

= 0.57), nor of an ELS*pharmacological intervention interaction (F(2,39) = 1.824, p 

= 0.175) on brainstem 5-HT levels was found using two-way ANOVA (Figure 5D). 

Significant main effects of ELS (F(1,41) = 14.593, p < 0.001), and of pharmacological 

intervention (F(2,41) = 7.572, p = 0.002) and of an ELS*pharmacological intervention 

interaction (F(2,41) = 3.466, p = 0.041), were noted on frontal cortex tryptophan 

levels. Tukey’s post hoc revealed that the 1mg kg-1 dose increased frontal cortex 

tryptophan levels in NS animals (p = 0.041), whereas the 0.1mg kg-1 dose increased 

frontal cortex tryptophan in MS animals (p = 0.05) (Figure 5E). Finally, two-way 

ANOVA revealed a significant main effect of ELS (F(1,42) = 6.473, p = 0.015), but 

not of pharmacological intervention (F(2,42) = 1.583, p = 0.217), nor of an 

ELS*pharmacological intervention interaction (F(2,42) = 1.743, p = 0.187) on frontal 

cortex levels of 5-HT and no significant differences between groups were noted 

(Figure 5F).  
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Figure 5. β3-AR agonism alters central and peripheral tryptophan levels. Effect of 

CL-316243 on (A) Plasma tryptophan (B) Plasma kynurenine:tryptophan ratio (C) 

Brainstem tryptophan (D) Brainstem serotonin (E) Frontal cortex tryptophan (F) 

Frontal cortex serotonin. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 relative to respective 

control group, &p ≤ 0.05, &&p ≤ 0.01 versus respective 0.1 mg kg-1 CL-316243 group, 

#p ≤ 0.05 MS-Vehicle versus NS-Vehicle. Data presented as mean ± SEM. n = 6-8 per 

group. 5-HT=Serotonin; NS=Non-separated; MS=Maternally separated.  

 

Characterisation of the effects of β3-AR modulation on electrophysiological 

measures of the colon 

To characterise the effects of modulation of the β3-AR on secretomotor activity of the 

colon both at baseline and in response to tissue challenge, the β3-AR agonist CL-

316243 was added to colonic tissue in the Ussing chamber.  
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Firstly, when the effect of the β3-AR agonist CL-316243 on baseline ISC was analysed, 

two-way ANOVA between the vehicle-treated and CL-316243-treated groups did not 

reveal a significant main effect of ELS (F(1,39) = 0.006, p = 0.936), nor of 

pharmacological intervention (F(1,39) = 0.648, p = 0.426), nor of an 

ELS*pharmacological intervention interaction (F(1,39) = 0.002, p = 0.969) (Table 

1A). When the effect of neural blockade with tetrodotoxin on the CL-316243 response 

was assessed, two-way ANOVA between the CL-316243-treated and CL-316243 + 

TTX-treated groups revealed a significant main effect of pharmacological intervention 

(F(1,40) = 13.21, p < 0.001), but not of ELS (F(1,40) = 1.9, p = 0.176), nor of an 

ELS*pharmacological intervention interaction (F(1,40) = 1.998, p = 0.165). Further 

analysis using Tukey’s post hoc revealed a significant difference between the NS-CL-

316243 and NS-CL-316243 + TTX group whereby short circuit current was higher in 

the CL-316243 + TTX-treated group (p = 0.005) (Table 1A). 

When the effect of CL-316243 on Ca2+-evoked secretory responses in colonic tissue 

was investigated, two-way ANOVA did not reveal a significant main effect of ELS 

(F(1,42) = 0.48, p = 0.492), nor of pharmacological intervention (F(1,42) = 0.105, p = 

0.747), nor of an ELS*pharmacological intervention interaction (F(1,42) = 0.648, p = 

0.425) on the second peak of bethanechol stimulation was noted by two-way ANOVA 

(Table 1B). 

Next, when the effect of CL-316243 on cAMP-evoked secretory response was 

assessed, two-way ANOVA revealed no significant main effect of ELS (F(1,43) = 

1.843, p = 0.182), nor of pharmacological intervention (F(1,43) = 3.311, p = 0.076), 

nor of an ELS*pharmacological intervention interaction (F(1,43) < 0.001, p = 0.995) 

on short circuit current (Table 1C).   
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Lastly, when the effect of CL-316243 on neurally-evoked secretory response was 

investigated, two-way ANOVA revealed a significant main effect of pharmacological 

intervention (F(1,36) = 6.467, p = 0.015), but not of ELS (F(1,36) = 0.846, p = 0.364), 

nor of an ELS*pharmacological intervention interaction (F(1,36) =0.018, p = 0.895) 

on short circuit current (Table 1D).  

 

Table 1. (A) Effects of neuronal blockade on the β3-AR agonist response. (B) Effect 

of β3-AR agonist on Ca2+-evoked secretory response after 45 minutes of incubation 

with bethanechol. (C) Effect of β3-AR agonist on cAMP-evoked secretory response. 

(D) Effects of β3-AR agonist on neuronally-evoked secretomotor response. Data 

presented as Mean ± SEM. n = 9-13 per group. TTX=Tetrodotoxin. *Significantly 

higher versus NS-CL-316243 alone, p = 0.005. 

Group Short circuit current (Mean ± SEM (µA.cm-2)) 

 Non-separated Maternally separated 

A. Effect of neural blockade with tetrodotoxin of the CL-316243 response 

Vehicle-treated 0.433 ± 0.978 0.648 ± 1.019 

CL-316243-treated 1.946 ± 2.372 2.019 ± 1.602 

CL-316243 + TTX *12.509 ± 2.439 6.667 ± 1.667 

B. Effect of β3-AR agonist on bethanechol (Ca2+) -evoked secretory response  

Vehicle-treated 92.847 ± 12.791 76.833 ± 11.656 

CL-316243-treated 80.769 ± 10.361 81.97 ± 6.117 

C. Effect of β3-AR agonist on forskolin (cAMP)-evoked secretory response  

Vehicle-treated 92.273 ± 11.973 110.5 ± 17.553 

CL-316243-treated 116.731 ± 14.233 135.128 ± 10.017 

D. Effects of β3-AR agonist on veratridine (neurally)-evoked secretomotor 

response  

Vehicle-treated 53.889 ± 5.312 67.037 ± 8.256 

CL-316243-treated 87.307 ± 15.16 97.13 ± 12.881 
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Discussion 

The current study aimed to assess the therapeutic potential of the β3-AR agonist CL-

316243 against ELS-induced visceral hypersensitivity and investigate possible 

serotonergic or colonic secretomotor activity-dependent mechanisms. We 

demonstrate that agonism of the β3-AR ameliorated ELS-induced visceral 

hypersensitivity and decreased the percentage of colonic submucosal neurons 

activated in response to the noxious stimulus of CRD. We also noted that CL-316243 

altered central and peripheral levels of tryptophan in the frontal cortex and plasma 

respectively without any change in 5-HT levels. Finally, we show that modulation of 

the β3-AR affects secretomotor activity in colonic tissue ex-vivo. Overall, these results 

support the use of CL-316243 against disorders of visceral pain and provide novel 

insights into the possible mechanisms of action of CL-316243 via central and 

peripheral tryptophan and secretomotor, fluid and electrolyte homeostasis.  

In agreement with the literature, we demonstrate that MS results in visceral 

hypersensitivity to CRD (O'Mahony et al., 2009; O'Mahony et al., 2020; O’Mahony 

et al., 2011; Yi et al., 2017). Visceral hyperalgesia was noted both by an increase in 

the total number of pain behaviours as well as a decrease in the threshold pressure 

before the first pain behaviour was displayed in the MS-Vehicle group versus non-

separated controls. Interestingly, we show that the 0.1mg kg-1 dose of CL-316243 was 

effective in both reducing the total number of pain behaviours as well as restoring the 

threshold pressure to control levels, while the 1mg kg-1 dose reduced the total number 

of pain behaviours only. This beneficial effect of CL-316243 has also been noted in 

another model using mustard oil to induce visceral pain (Cellek et al., 2007), however, 
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this is the first study to report the beneficial effect of CL-316243 against MS-induced 

visceral hypersensitivity.  

Next, we report that the abundance of β3-AR+ve neurons in colonic submucosal plexi 

is not significantly different between NS and MS animals. The expression of the β3-

AR in cholinergic neurons of the myenteric and submucosal plexi of the enteric 

nervous system has been noted previously (Cellek et al., 2007), however, we show 

here for the first time that there is no significant difference in the abundance of β3-

AR+ve neurons in colonic submucosal plexi between NS and MS animals. Given that 

in the visceral sensitivity assessment no dose-dependent difference was noted, the 

0.1mg kg-1 dose was used to assess CRD-induced enteric neuronal activation. Despite 

this equal abundance of β3-AR+ve neurons in NS and MS animals, we show that there 

appears to be fewer β3-AR+ve neurons activated in response to CRD in MS animals. 

Although this observation did not meet the threshold of statistical significance, it could 

suggest that this reduced activation of β3-AR+ve neurons may play a role in MS-

induced visceral hypersensitivity by decreasing inhibitory signalling mechanisms. The 

activation of these neurons in response to the noxious stimulus of CRD likely includes 

the mucosal afferents which are responsive to low-intensity tactile stimulation, but are 

unresponsive to stretch (Brierley and Gastroenterology, 2004), and the muscular 

afferents which are distension and stretch receptive (Brookes et al., 2013). 

Paradoxically, the 0.1mg kg-1 dose of CL-316243 further reduced the percentage of 

both total and β3-AR+ve neurons activated in response to CRD in NS animals only. 

This may be explained by the observation that GW427353, a human-selective β3-AR 

agonist decreased the excitability of submucosal enteric neurons in humans 

(Schemann et al., 2010). 
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When the effects of β3-AR agonism on tryptophan metabolism were assessed, we 

found that the 1mg kg-1 dose of CL-316243 significantly decreased plasma tryptophan 

in both NS and MS animals, whereas the 0.1mg kg-1 dose of CL-316243 reduced 

plasma tryptophan levels in both NS and MS animals, although only in the MS animals 

did this reach the threshold of statistical significance. This decrease in peripheral levels 

of tryptophan drove changes in the kynurenine:tryptophan ratio whereby the ratio was 

increased by the 1mg kg-1 dose of CL-316243 in both NS and MS animals with no 

change in plasma kynurenine being seen (data not shown). No changes in brainstem 

tryptophan or 5-HT were noted, however, an increase in frontal cortex tryptophan 

induced by the 1mg kg-1 dose of CL-316243 in NS animals and the 0.1mg kg-1 dose 

of CL-316243 in MS animals was seen. CL-316243 has been shown previously to 

increase brain tryptophan in mice (Lenard et al., 2003), as well as hypothalamic 5-HT 

(Conley et al., 2006). Importantly, these alterations in central and peripheral 

tryptophan levels do not translate into increased central 5-HT, suggesting that central 

serotonergic signalling does not play a role in the mechanism of action of CL-316243. 

Finally, CL-316243 alone had no effect on baseline ISC in colonic tissue. Interestingly, 

when the neurotoxin tetrodotoxin was added, the response to CL-316243 increased in 

both NS and MS tissues, although only significantly in the NS group. This may suggest 

that neural blockade with tetrodotoxin may be relieving inhibitory enteric neuronal 

input on secretomotor activity, which when relieved allows for alterations in 

secretomotor activity induced by CL-316243. This may also suggest a non-neuronal 

site of action for the β3-AR agonist as once inhibitory enteric nervous system input is 

relieved by tetrodotoxin, an increase in short circuit current is seen, suggesting that 

CL-316243 may be acting at a non-neuronal site. Alternatively, it has been shown that 

different classes of colonic submucosal neurons thought to be related to secretomotor 
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activity are tetrodotoxin-insensitive (Lomax et al., 2001), which suggests that these 

neurons that are insensitive to tetrodotoxin may be affecting secretomotor activity 

when neuronally-mediated inhibitory input is alleviated. Broadly, these secretomotor 

neurons are classified as cholinergic and non-cholinergic and have been further 

characterised in the rodent submucosal plexus as vasoactive intestinal 

peptide/neuropeptide Y/tyrosine hydroxylase/calretin-expressing non-cholinergic and 

vasoactive intestinal peptide/neuropeptide Y/tyrosine hydroxylase/calretin-expressing 

cholinergic neurons (Mongardi Fantaguzzi et al., 2009). Given the observation that 

short circuit current is non-significantly lower in MS tissue even when potential 

enteric nervous system-mediated inhibitory input is relieved, this may suggest that MS 

animals display altered secretomotor activity versus control animals. Previously, it has 

been shown that MS results in an increase in baseline ISC in pre-adolescent rats which 

decreased to the level of NS animals by PND30 (Gareau et al., 2006). This finding of 

decreased short circuit current in MS animals, albeit non-significant, suggests either a 

pro-absorptive or pro-secretory state that may result in a constipation or diarrhoeal 

phenotype. Although more evidence exists to support increased gastrointestinal 

motility following MS (Moloney et al., 2015b; O'Mahony et al., 2009), it has been 

shown previously that exposure to MS results in a constipation phenotype in 

adolescence but not in adulthood where an increased faecal pellet output is seen (Yi et 

al., 2017). Further, a study reported that an inherently viscerally hypersensitivity strain 

of rats, the Wistar-Kyoto, also display decrease baseline ISC versus Sprague Dawley 

controls, suggesting a possible link between secretomotor function and visceral 

sensitivity, however, when these Wistar-Kyoto rats were subjected to MS, they 

displayed an increase in cholinergic-induced ion transport (Hyland et al., 2015). A 

previous study in guinea pigs using another β3-AR agonist, SR58611A, reported that 
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its effects on colonic muscle relaxation were resistant to tetrodotoxin (De Ponti et al., 

1995), exhibiting potential differential mechanisms of action dependent upon the 

agonist used. 

Next, when the effect of the cholinomimetic bethanechol (Ca2+)-mediated 

secretomotor activity was investigated, we found no difference between the vehicle-

treated and CL-316243-treated tissues following 45 minutes of incubation. These data 

suggest that CL-316243 acts independently of Ca2+-evoked mechanisms to affect 

secretomotor activity.  

The effect of β3-AR agonism on neuronally and cAMP-evoked secretory response 

was also investigated. Here, CL-316243 augmented the tissue response to challenge 

with both forskolin and veratridine, although not significantly, suggesting that β3-AR 

agonism enhances neuronal responsivity in colonic tissue. It has been shown 

previously through removal of the myenteric ganglia that there are complete 

secretomotor circuits in the submucosal plexus of the rat colon (Christofi et al., 2004). 

Based on our results showing that β3-AR agonism reduces the number of colonic 

submucosal neurons activated in response to CRD, this may suggest that the activity 

of the β3-AR may differ between pharmacological and physical neuronal stimulation. 

The limitations of this study include that we did not further classify the type of neurons 

being activated in response to CRD. However, previous studies have shown a high 

level of expression of the β3-AR on cholinergic neurons (Coelho et al., 2017), and 

given the inhibitory role of cholinergic afferents in spinal pain mechanisms it would 

be reasonable to surmise that these neurons may play a role in the dampening down of 

the visceral pain response. 
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Overall, we demonstrate that CL-316243 ameliorates MS-induced visceral 

hypersensitivity and decreases the percentage of colonic submucosal neurons 

activated in response to the noxious stimulus of CRD. We also report changes in 

peripheral and frontal cortex tryptophan induced by CL-316243, however, these 

alterations do not translate into altered central 5-HT. Finally, we show that agonism 

of the β3-AR ex vivo results in increases in short circuit current in the presence of 

tetrodotoxin, supporting an ENS-mediated inhibitory input on β3-AR modulation of 

short circuit current. 

 

Conclusion 

The present study supports the β3-AR as a promising therapeutic target for visceral 

pain-associated disorders, the effects of which appear to act independently of central 

serotonergic signalling and secretomotor activity. Further studies are needed to 

elucidate precise mechanisms of action of β3-AR agonism against visceral 

hypersensitivity. 
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Abstract 

Nutritional approaches have emerged over the past number of years as suitable 

interventions to ameliorate the enduring effects of early life stress. Maternal separation 

(MS) is a rodent model of early life stress which induces widespread changes across 

the microbiota-gut-brain axis. Milk fat globule membrane (MFGM) is a neuroactive 

membrane structure that surrounds milk fat globules in breast milk and has been shown 

to have positive health effects in infants, yet mechanisms behind this are not fully 

known. Here, we investigated the effects of MFGM supplementation from birth on a 

variety of gut-brain signalling pathways in MS and non-separated control animals 

across the lifespan. Specifically, visceral sensitivity as well as spatial and recognition 

memory were assessed in adulthood, while gut barrier permeability, enteric nervous 

system and glial network structure were evaluated in both early life and adulthood. 

MS resulted in visceral hypersensitivity, which was ameliorated to a greater extent by 

supplementation with MFGM from birth. Modest effects of both MS and dietary 

supplementation were noted on spatial memory. No effects of MS were observed on 

enteric neuronal or glial networks in early life or adulthood, however an increase in 

the immunoreactivity of βIII-tubulin in adult colonic myenteric ganglia was noted in 

the MFGM intervention non-separated group. In conclusion, dietary supplementation 

with MFGM from birth is sufficient to block MS-induced visceral hypersensitivity, 

highlighting its potential value in visceral pain-associated disorders, but future studies 

are required to fully elucidate the mechanistic role of this supplementation on MS-

induced visceral pain.   
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Introduction 

Stressful events during the early postnatal period have been shown to have particularly 

detrimental effects on host development and physiology by leading to long-lasting 

perturbations in several systems including the gastrointestinal (GI), endocrine (Heim 

et al., 2002; O'Mahony et al., 2009; Rincel et al., 2019a), peripheral and central 

nervous systems (Juruena et al., 2020; O'Mahony et al., 2008; Osadchiy et al., 2019). 

Early life stress (ELS) has been previously shown to result in heightened visceral 

sensitivity (Coutinho et al., 2002; O'Mahony et al., 2009; O'Mahony et al., 2020; 

Videlock et al., 2009) characterised by a diffuse sensation of pain centred around the 

midline of the body and upper abdomen (Sikandar and Dickenson, 2012). The diffuse 

nature of the sensation of visceral pain results in poor localisation to the site of pain 

and is due to a paucity of visceral sensory innervation (Sikandar and Dickenson, 2012). 

ELS is also a known risk factor for the development of both stress-related psychiatric 

disorders such as depression and anxiety in humans (Cougle et al., 2010; Scott et al., 

2010) as well as functional GI disorders such as irritable bowel syndrome (Bradford 

et al., 2012). Dysfunctional communication between the gut and the brain via the 

microbiota-gut-brain axis is critical in the manifestation of these disorders, with 

studies showing a causal relationship between ELS, mood disorders, and gut 

dysfunction (Bradford et al., 2012) (for review see (Cryan et al., 2019; O’Mahony et 

al., 2011; Sánchez et al., 2001; Wilmes et al., 2021). Maternal separation (MS) is a 

well-established rat model of ELS and gut-brain axis dysfunction (O’Mahony et al., 

2011). In rats, MS has been shown to induce depressive and anxiety-like behaviours, 

increase gut epithelial barrier permeability and visceral sensitivity, and lead to stress 

hyper-responsivity (De Palma et al., 2015; Holschneider et al., 2016; McVey Neufeld 

et al., 2019; Moussaoui et al., 2017; O'Mahony et al., 2009; O’Mahony et al., 2011).  
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The enteric nervous system (ENS) is a network of neurons and glial cells embedded 

in the gut wall that is crucial for normal physiological GI function (Nezami and 

Srinivasan, 2010) and plays a key role in gut-brain axis signalling (Carabotti et al., 

2015). MS has been shown to negatively impact on the ENS by increasing colonic 

cholinergic activity resulting in alterations in cholinergic regulation of epithelial 

permeability (Gareau et al., 2007a). Epithelial barrier integrity has also been shown to 

be compromised following MS, leading to bacterial translocation (Moussaoui et al., 

2014). It has also been suggested that the ENS may play a role in the pathophysiology 

of visceral pain (Vergnolle, 2003). The ENS, spinal sensory afferent nerves, and 

enteric mast cells have been posited to play a role in visceral pain, however, 

mechanisms behind this are unclear (Wood, 2011).  

Dietary interventions as strategies to ameliorate MS-induced psychopathology have 

proven effective with studies in rats using probiotics reporting a reversal of MS-

induced depressive (Desbonnet et al., 2010) and anxiety-like behaviours (McVey 

Neufeld et al., 2019), as well as MS-induced gut barrier dysfunction (Gareau et al., 

2007b). Modulation of diet for the symptomatic relief of GI disorders has also proven 

effective with probiotics having been shown to reduce abdominal pain in children with 

irritable bowel syndrome (Guandalini et al., 2010), as well as reduce the frequency 

and intensity of abdominal pain occurrences in school-aged children with functional 

GI disorders (Newlove-Delgado et al., 2017). Other studies have also reported reduced 

abdominal pain following administration of different probiotics (Ducrotté et al., 2012; 

Gawrońska et al., 2007; Whorwell et al., 2006).  

In recent years, dietary interventions aimed at restoration of proper gut to brain 

communication have come to the fore as strategies for the management of symptoms 

of many mood disorders. For example, the Mediterranean diet has been shown to have 
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positive effects by reducing the symptoms of depression in humans (Dinan et al., 2019; 

McMillan et al., 2011; Opie et al., 2018), while a diet high in polyunsaturated fatty 

acids (PUFAs) has been shown to reduce the symptoms of anxiety in a cohort of 

undergraduate college students (Yehuda et al., 2005). A combination of 

eicosapentaenoic acid and docosahexaenoic acid (DHA), two PUFAs, has also been 

shown to reduce anxiety-like behaviour in rats (Pusceddu et al., 2015a) and reverse 

selective effects of ELS (Pusceddu et al., 2015b).  

Milk fat globule membrane (MFGM) is a triple layer membrane structure that 

surrounds milk fat globules secreted by mammary epithelial cells during lactation and 

has been shown to potentially confer health benefits and may be responsible for some 

of the benefits of breastfeeding (Bourlieu and Michalski, 2015; Brink and Lönnerdal, 

2020). Breastfeeding has been shown to confer several beneficial effects on health 

including on cognitive scores (Quigley et al., 2012) and lowering the risk of obesity 

later in life (Owen et al., 2005). Not only this, but exclusive breastfeeding for a longer 

duration has been shown to reduce the incidence of GI tract infections in infants 

(Kramer et al., 2001). It has been proposed that MFGM exerts effects on 

neurodevelopment and cognitive function with preclinical evidence showing changes 

in brain development in piglets following dietary supplementation with prebiotics, 

MFGM, and lactoferrin (Mudd et al., 2016). Furthermore, studies in humans have 

reported higher cognitive scores in the Bayley scales of infant development at 12 

months of age in those whose diets were supplemented with MFGM (Timby et al., 

2014). MFGM has also been shown to have beneficial effects on gut physiology 

whereby MFGM altered intestinal epithelial architecture. Specifically, it was observed 

that MFGM increased ileal and jejunal villus length, indicators of intestinal health, in 

a dose-dependent manner (Bhinder et al., 2017).  
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We have previously shown that post-weaning administration of MFGM ameliorated 

MS-induced visceral hypersensitivity and lead to an improvement in spatial learning 

and memory (O'Mahony et al., 2020). We also noted that administration of MFGM 

from weaning facilitated a faster return of stress-induced corticosterone levels to 

baseline, whilst also exerting effects on the gut microbiota at the family and genus 

level. However, it is unclear if interventions would induce greater effects if they began 

at an earlier timeframe. Thus, based on existent evidence as mentioned above, this 

current study aimed to lead a novel investigation into the effect of supplementation 

with MFGM from birth on MS-induced behavioural and GI physiological changes in 

early life and adulthood, with a particular focus on visceral sensitivity. 
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Methods 

Animals and housing 

Male and female Sprague Dawley rats (approximately 8 weeks of age) were purchased 

from Envigo, UK and were mated in the Biological Services Unit, Western Gateway 

Building, University College Cork, and subsequent offspring were used in this study. 

The day of birth was designated as postnatal day 0 (PND0). Dams and littermates were 

housed in large plastic breeding cages (15 x 22 x 9cm) in a humidity- and temperature-

controlled room set to 21°C ± 1°C. The light/dark cycle was set to 12 hours (light 

phase 7am-7pm). All experiments were conducted in accordance with European 

Directive 2010/63/EEC, the requirements of S.I No 543 of 2012 and approved by the 

Animal Experimentation Ethics Committee of University College Cork. 

 

Maternal separation model 

Maternal separation was carried out as described previously (O'Mahony et al., 2009). 

Briefly, at PND0 litters were randomly assigned to maternally separated (MS) or non-

separated (NS) groups. At PND2, the litters assigned to MS were moved from the main 

colony room to an adjacent room maintained at the same temperature (21 ± 2°C) and 

lighting conditions. The dam was first removed from the home cage and placed into a 

smaller holding cage, following which, the pups (entire litters) were gently transferred 

together into a small cage where they remained for 3 hours. Cages containing the pups 

were placed on heating pads set to 30–33°C and were filled with 3cm of bedding so 

the pups could thermoregulate as needed. The dam was returned to the home cage and 

transferred back to the main colony room for this time period to avoid communication 

between the dam and the pups. After the 3-hour separation, dams were again brought 
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into the adjacent room and pups were returned to their original home cages. NS litters 

were also transported to the same room as the MS groups to avoid the confound of 

transportation stress but were otherwise left undisturbed in their home cages with their 

dams with the exception of weekly cage cleaning. This procedure was repeated daily 

from PND2 to PND12 inclusive. The period of separation was carried out at the same 

time each day (9am–12pm). At PND21, offspring were sexed and weaned, and male 

offspring were used for the remainder of the study.  

 

Dietary interventions and experimental design 

Diets 

Two custom rodent diets (control diet and MFGM-enriched diet) were used in this 

study and were formulated by Mead Johnson Nutrition based on AIN‐93G 

specifications. The composition of the two diets is listed in Supplementary Table 1. 

Both the control and the MFGM-containing diets contained DHA/ARA oil 5.3 g/kg, 

however, the MFGM diet differs from the control diet by the inclusion of whey protein 

concentrate MFGM‐10 15.9 g/kg. Food pellets containing both the control diet and 

MFGM-enriched diet were provided to pregnant dams from two days prior to the birth 

of the pups. Dietary supplementation continued throughout the lifespan of all 

experimental animals including during behavioural testing. All experimenters were 

blinded as to the type of diet administered. Upon completion of the experiments and 

subsequent data analysis, experimenters were informed of the contents of the diets.  
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Experimental design 

Male offspring were divided into four experimental groups: NS-Control, MS-Control, 

NS-MFGM and MS-MFGM (see Figure 1) and were tested at two different life stages; 

PND21 and PND100. At PND21, offspring from each experimental group were culled 

by decapitation (n = 8-9 per group) and ileum and colon segments were gently excised 

and used for ex vivo intestinal permeability and immunohistochemistry experiments. 

At weaning, the remaining offspring were randomly group‐housed (2-3 per cage) and 

underwent behavioural tests and visceral sensitivity assessment in adulthood (see 

Figure 1). Following the assessment of visceral sensitivity, adult offspring (PND100) 

were culled by decapitation (n = 11-12 per group) and ileum and colon segments were 

removed and used for ex vivo intestinal permeability and immunohistochemistry 

experiments. From both PND21 and PND100 animals, the entire GI tract (from 

stomach to anus) was removed, and the length of the small intestine and colon was 

measured. The weight of the caecum including its contents was also measured. Body 

weight was recorded at PND21 (prior to culls in early life), at PND60 (prior to 

behavioural assessment) and at PND100 (prior to culls in adulthood). Experimental 

design and timeline are shown in Figure 1. 

 

 

Figure 1: Overview of experimental groups and procedures. 
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Behavioural procedures 

Behavioural assessment began at 10 weeks of age (PND70) in male offspring from 

each of the experimental groups. Between each test, animals were given a minimum 

of 1 week of a washout period to reduce the impact of the behavioural battery on 

subsequent behavioural tests as much as possible.  

 

Novel object recognition 

The novel object recognition test was carried out on PND70 and provides a readout of 

recognition memory and exploratory behaviour. The protocol used was adapted from 

Bevins and Besheer (Bevins and Besheer, 2006). The test was carried out over 2 days. 

On day 1, animals were allowed to freely explore the testing apparatus, a rectangular 

arena equipped with an overhead camera, for 10 minutes (habituation phase). No 

bedding was used, and the container was wiped with 70% ethanol in between each 

animal to remove odour cues. On day 2, two identical objects were placed in adjacent 

corners approximately 5cm from the wall of the arena, and animals were allowed a 

10-minute exploration period (acquisition training period). Following the acquisition 

training period, animals were removed from the arena for a period of 1 hour. After this 

time, animals were returned to the arena, which this time contained one “familiar” 

object (the same used in the acquisition training period) and one “novel” object that 

the animals had not encountered previously. Interactions between the animal and the 

two objects were recorded by the overhead camera for 5 minutes for later analysis. 

The objects were cleaned before each trial with 70% ethanol to remove odour cues. 

The time spent exploring each of the objects was scored blinded using EthoVision 

(Noldus, UK). Exploratory behaviour was defined as orienting the nose towards the 
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object at a distance of less than 2cm, or direct contact with the object. A discrimination 

index was calculated according to the following formula: 

(t[novel] − t[familiar])/(t[novel] + t[familiar]). As rats are naturally explorative, a 

decrease in the discrimination index compared with controls indicates a deficit in 

recognition memory. 

 

Morris water maze 

The Morris Water Maze (MWM) was performed at PND77, using a protocol adapted 

from (O’Mahony et al., 2014). The MWM is used to assess spatial learning and 

reference memory of rodents, and it relies on distal cues to navigate from different 

start locations around the perimeter of an open swimming arena to find a submerged 

escape platform. Spatial learning is assessed across repeated trials, and spatial and 

reference memory is determined by preference for the platform area when the platform 

is absent (O’Mahony et al., 2014). The maze used was a circular pool 180cm in 

diameter and was filled with water (21°C ± 1°C) to a depth of 31cm. A transparent 

platform with a diameter of 10cm was placed in the middle of one of the quadrants so 

that it was submerged up to 3cm below the level of the water and was not visible from 

the surface. Four spatial cues were arranged around the maze to provide landmarks 

that would aid navigation to the platform. The test was conducted over 5 days. The 

animals received 4 days of training that consisted of 4 trials per day (acquisition 

training). At the beginning of each trial, animals were placed in 1 of 4 starting positions 

facing the wall of the tank and allowed to swim for 120 seconds or until it located the 

escape platform. A different starting position selected in a semi-randomised pattern 

was used for each of the 4 trials on a given day. If the animal was unable to locate the 
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platform within the allocated 120 seconds, the researcher gently guided the animal to 

the platform and detained it there for 30 seconds. On the fifth day of the test (probe 

trial), the platform was removed, and the animals were placed in a novel starting 

position and allowed to explore the arena for 60 seconds. The amount of time spent in 

the quadrant where the platform was situated previously was recorded using 

EthoVision (Noldus, UK) and was scored by an observer blinded to the experimental 

groups. Increased latency to find the platform and a decrease in the time spent in the 

quadrant where the platform was previously with respect to control animals is 

indicative of spatial memory deficits. 

 

Visceral sensitivity assessment through colorectal distension  

The colorectal distension (CRD) protocol was carried out as previously described 

(O'Mahony et al., 2009) on PND91. Animals were fasted for 16 hours prior to the start 

of the procedure. Animals were lightly anaesthetised with isoflurane and a 6-cm long 

polyethylene balloon with a connecting catheter was inserted into the colon, 1cm 

proximal to the anus. The catheter was secured to the tail of the animal with surgical 

tape to prevent displacement. Animals were allowed to recover from the anaesthesia 

for 10 minutes prior to the start of the procedure. The CRD paradigm used was an 

ascending phasic distension from 0 to 80mmHg over an 8-minute period. Air inflation 

and pressure were monitored during the procedure using a customised barostat 

(Distender Series II, G and J Electronics, Toronto, ON, Canada). Pain behaviours were 

identified as abdominal retraction, withdrawal and stretching (O'Mahony et al., 2012). 

A trained observer, blinded to the experimental groups, scored each animal for the 
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threshold pressure, when the first pain behaviour was observed, as well as the total 

number of pain behaviours displayed across all pressure ranges by each animal.  

 

Ex-vivo permeability assessment 

Intestinal permeability was assessed ex vivo. Distal ileum (a 1.5cm segment taken 2cm 

proximally to the caecum) and middle colon (a 1.5cm segment) specimens of PND21 

and PND100 animals were mounted into vertical NaviCyte diffusion chambers with a 

4mm round aperture (0.126cm2 exposed tissue area). No seromuscular stripping was 

performed. 4mls of Krebs buffer (1.2mM NaH2PO4, 116mM NaCl, 4.8mM KCl, 

1.2mM MgCl2, 25mM NaHCO3, 2.5mM CaCl2 and 10mM D-glucose) was added to 

both the mucosal and serosal chambers for colonic specimens. For ileum specimens, 

10mM mannitol was added to the mucosal chamber to avoid activation of 

sodium/glucose co-transporters in the epithelial cells of the small intestine and the 

associated increase in tight junction permeability (Turner et al., 1997). Chambers were 

continuously supplied with carbogen (95% O2 and 5% CO2). Tissues were not 

clamped, and electrophysiological measures were not recorded. Transepithelial 

permeability was investigated by measuring mucosal to serosal flux of 4kDa 

Fluorescein isothiocyanate (FITC)-dextran (FD4, Sigma-Aldrich, Ireland) using a 

sampling method as described previously (Golubeva et al., 2017). Briefly, FITC was 

added to the mucosal chamber to a final concentration of 2.5mg/ml and 200µl samples 

were taken from the serosal chamber every 30 minutes for the following 180 minutes. 

Samples taken were measured at 485nm excitation/535nm emission wavelengths. 

FITC mucosal to serosal flux was presented in µg/hour/cm2.  
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Immunohistochemistry of colonic frozen sections 

Colonic segments (1.5cm specimens adjacent to those used in the ex vivo permeability 

assessment) were collected from PND21 and PND100 animals from each of the 

experimental groups. Colonic segments were flushed with a 10mM Phosphate-

buffered saline (PBS) and 10mM glucose solution and fixed in 4% paraformaldehyde 

(PFA) at 4°C for 4 hours. Following the fixation period, segments were washed in 

10mM PBS and any excess PFA was dabbed off. Colonic segments were then placed 

in a cryoprotective solution comprised of 30% sucrose in 10mM PBS and 0.02% NaN3 

for 72 hours at 4°C to prevent microbial growth. Colonic samples were then washed 

in 10mM PBS and embedded in optimal cutting temperature (OCT) medium (VWR 

chemicals, Dublin, Ireland). Colonic samples were frozen at -20°C and then placed at 

-80°C until sectioning. Colonic samples were sectioned at 16µm thickness using a 

cryostat (Leica CM1900, Germany) and sections were mounted on Superfrost Plus 

slides for immunohistochemistry as previously described (Caputi et al., 2017b). 

Briefly, colonic frozen sections were thawed at room temperature for 15 minutes and 

then rinsed with three washes of 5 minutes with Tris-buffered saline (TBS). Sections 

were dried and incubated with 0.05M NH4Cl for 20 minutes at room temperature. 

After three 5-minute washes with TBS, colonic sections were blocked and 

permeabilised with blocking solution A (4% goat serum and 0.3% Triton X-100 in 

TBS) or blocking solution B (3% horse Serum and 0.3% Triton X-100 in TBS) for 90 

minutes at room temperature. Colonic sections were incubated with chicken anti-βIII-

tubulin (1:100, ab41489, abcam, UK) and mouse biotin-conjugated HuC/D (1:50, 

Thermo Fisher Scientific, cat no A-21272, UK) diluted in 0.5% goat serum in TBS, or 

with rabbit monoclonal [EP1576Y] anti-S100β (1:200, ab52642 abcam, UK) diluted 

in 0.5% horse serum in TBS overnight in a humidity chamber at 4°C. After three 10-
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minute washes with TBS, sections were incubated with the following secondary 

antibodies:- goat anti-chicken IgG Alexa Fluor 568-conjugated (1:500, Thermo Fisher 

Scientific, cat no A-11041) and streptavidin Alexa Fluor 488-conjugated (1:500, 

Thermo Fisher Scientific, cat no S32354) diluted in TBS and 0.5% goat serum, or 

donkey anti-rabbit IgG Alexa Fluor 488-conjugate (1:500, Thermo Fisher Scientific, 

cat no A-21206) diluted in TBS and 0.5% horse serum. Sections were incubated with 

secondary antibodies for 2 hours at room temperature. Following three 10-minute 

washes with TBS, colonic sections were incubated with 4′,6-diamidino-2-

phenylindole (DAPI; 1:1000, Thermo Fisher Scientific) diluted in TBS and 0.5% goat 

serum or 0.5% horse serum for 30 minutes at room temperature. After three 10-minute 

washes with TBS, sections were dried and mounted with Polyvinyl Alcohol DABCO 

mounting medium and stored in the dark at -20°C until analysis. 

 

Immunohistochemistry of colonic whole mount preparations 

Freshly isolated middle-proximal colon segments (a 3-cm long segment from PND21 

animals and a 5-cm long segment from PND100 animals of each of the experimental 

groups) were gently flushed with a 10mM PBS and 10mM glucose solution to remove 

any luminal content. Colonic segments were then tied with string at one end and filled 

with 4% PFA (in 10mM PBS) before being tied off at the other end. Segments were 

then placed in fixative solution (4% PFA in 10mM PBS) for 2 hours (PND21) or 4 

hours (PND100) at room temperature to ensure fixation from the inside and outside of 

the tissue. After two 30-minute washes in 10mM PBS, colonic segments were placed 

in a solution of 10mM PBS and 0.02% NaN3 to prevent microbial growth and were 

stored at 4°C until analysis. For immunohistochemistry experiments, colonic segments 
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were divided into 0.5cm segments, opened along the mesenteric border, and placed as 

a flat sheet onto Sylgard-coated dishes with the mucosal side down. Using a dissecting 

microscope, tissues were separated into two layers: the outer musculature with 

adhering serosa, and the submucosa/mucosa. The circular muscle was removed to 

yield whole mount sections of longitudinal muscle with the myenteric plexus attached 

(LMMP) as previously performed (Brun et al., 2013). LMMP preparations were gently 

stretched and pinned down on the bottom of Sylgard-coated dishes and washed in 

PBS-T (PBS with 1% Triton X-100) for 45 minutes with gentle agitation. After 

blocking nonspecific binding sites with PBS-T containing 4% goat serum for 1.5 hours 

at room temperature, LMMPs were incubated overnight at room temperature with 

mouse biotin-conjugated HuC/D (1:100, Thermo Fisher Scientific, cat no A-21272, 

UK) diluted in PBS-T and 4% goat serum. Three 15-minute washes with PBS-T were 

carried out following the incubation period and LMMPs were incubated with 

streptavidin Alexa Fluor 488-conjugate (1:500, Thermo Fisher Scientific, cat no 

S32354) diluted in PBS-T and 4% goat serum for 2 hours at room temperature. 

Following this, three 10-minute washes with PBS-T were carried out. LMMPs were 

mounted on glass slides using Polyvinyl Alcohol DABCO mounting medium and 

stored in the dark at -20°C until analysis. 

 

Confocal image acquisition and analysis 

Images of colonic frozen sections and LMMP preparations were acquired using an 

Olympus FV1000 confocal laser scanning microscope equipped with an oil immersion 

60x objective lens for colonic frozen sections and 40x, 20x and 10x objective lenses 

for LMMP preparations. The immunoreactivity of βIII-tubulin, HuC/D, and S100β in 
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colonic frozen sections was determined as previously described (Stenkamp-Strahm et 

al., 2013). Four full-thickness images per animal were taken using the 60x objective 

lens and were processed as maximum intensity projections. A tracing tool was used to 

define the muscularis externa or the myenteric ganglia in order to estimate tissue area. 

βIII-tubulin, HuC/D, and S100β staining in the muscularis externa and/or the 

myenteric ganglia were then thresholded in a blinded fashion to allow Fiji Image J 

software (version 1.52e) to estimate stained areas within muscularis externa or 

myenteric ganglia. Density index calculations (stained area/area of muscularis externa 

or myenteric ganglia) were generated. In colonic LMMP preparations, changes in the 

number of HuC/D+ neurons were assessed in PND21 and PND100 animals from each 

of the experimental groups. For cell quantification, five to ten visual fields were 

blindly chosen within the areas where the myenteric plexus was intact and acquired 

using a 20x objective (for anti-HuC/D staining in colonic specimen at PND21; 636 x 

636μm/visual field) and a 40x objective (for anti-HuC/D staining in colonic specimen 

at PND100; 318 x 318μm/visual field). HuC/D+ myenteric neurons were blindly 

quantified and expressed as neuronal count per visual field.  

 

Statistical analysis  

Data were analysed using the statistical software package SPSS 24.0 (IBM) and were 

expressed as mean ± SEM. Differences between the experimental groups were 

assessed using: a two-way ANOVA, repeated measures two-way ANOVA, mixed 

design ANOVA, and LSD Fisher post-hoc test where appropriate. A p-value of 0.05 

was set as the threshold of statistical significance. “n” indicates the number of animals 

per experimental group. 
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Results 

Perinatal coadministration of DHA and MFGM does not alter rat body weight 

or gastrointestinal anatomy 

The coadministration of DHA and MFGM from birth was well tolerated by the animals 

and there was no change in body weight observed throughout the lifespan of the 

animals from each of the experimental groups (data not shown). Food intake was also 

not affected between experimental groups. No changes in either small intestine or 

colon length, or caecum or spleen weight were observed at PND21 or PND100 in 

animals exposed to MS or the dietary intervention (data not shown).  

 

Coadministration of DHA and MFGM reduces maternal separation-induced 

visceral hypersensitivity 

Two-way ANOVA revealed a significant main effect of early life stress (F(1,39) = 

14.785, p < 0.001) and of diet (F(1,39) = 5.213, p = 0.028) on threshold pressure in 

response to CRD. No diet*early life stress interaction was observed (F(1,39) = 0.272, 

p = 0.61). LSD Fisher post hoc test revealed a significant decrease in threshold 

pressure in MS-Control animals compared to NS-Control animals (p = 0.003) and 

MFGM administration significantly restored threshold pressure to near control levels 

in MS-MFGM compared to MS-Control animals (p = 0.05) (Figure 2A). Two-way 

ANOVA revealed a significant main effect of early life stress (F(1,35) = 25.124, p < 

0.001) as well as of diet (F(1,35) = 11.484, p = 0.002) on the total number of pain 

behaviours displayed in response to CRD. No diet*early life stress interaction was 

noted (F(1,35) = 2.553, p = 0.12). LSD Fisher post hoc test revealed a significant 

increase in the total number of pain behaviours displayed by MS-Control animals 
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compared to the NS-Control group (p < 0.001) and that the total number of pain 

behaviours displayed by MS-MFGM animals was significantly less than that of the 

MS-Control group (p = 0.001) (Figure 2B).  

 

Perinatal coadministration of DHA and MFGM improves spatial learning 

without affecting reference memory in the Morris water maze 

Animals successfully learned the location of the platform over the four training days 

as shown by a repeated‐measures two‐way ANOVA which revealed a significant main 

effect of time (F(3,105) = 104.522, p < 0.001) and of diet with respect to time (F(3,105) 

= 2.713, p = 0.049). However, during the acquisition training, no effect of early life 

stress with respect to time was found (F(3,105) = 0.563, p = 0.64), nor was there a 

diet*early life stress interaction with respect to time (F(3,105) = 0.229, p = 0.88) 

(Figure 2C). Further investigation using a mixed design ANOVA with trial day as the 

repeated measures factor and diet as the independent factor revealed that diet 

approached the threshold of statistical significance as a main effect between NS-

Control and NS-MFGM on day one only (F(1,22) = 3.866, p = 0.06) (Figure 2D). A 

significant effect of diet was also noted by mixed design ANOVA with trial day as the 

repeated measures factor and diet as the independent factor between MS-Control and 

MS-MFGM on day one (F(1,21) = 4.337, p = 0.05) and day four only (F(1,21) = 4.704, 

p = 0.04) (Figure 2E). Mixed design ANOVA with trial day as the repeated measures 

factor and ELS as the independent factor also revealed an effect of early life stress 

between NS-Control and MS-Control on day 4 only (F(1,21) = 5.158, p = 0.034) 

(Figure 2F). No differences were observed in the percentage of time spent in the 

platform quadrant during the probe trial between animals from each experimental 
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group, suggesting that reference memory was not affected by MFGM administration 

or MS (data not shown). 

 

Maternal separation and MFGM do not affect recognition memory in the novel 

object recognition test 

A two-way ANOVA revealed no effect of diet (F(1,41) = 1.018, p = 0.32), nor of a 

diet*early life stress interaction effect (F(1,41) = 0.098, p = 0.76) on the discrimination 

index in the novel object recognition test  (Figure 2G). 
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Figure 2. (A&B) Perinatal MFGM administration reduced maternal separation-

induced visceral hypersensitivity. Maternal separation resulted in visceral 

hypersensitivity as marked by (A) the significantly lower threshold pressure observed 

in MS-Control animals compared to the NS-Control group. **p ≤ 0.01 MS Control vs 

NS-Control. (B) the significantly higher number of pain behaviours in MS-Control 
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animals when compared to NS-Control. ***p ≤ 0.001 MS-Control vs NS-Control. 

MFGM administration was able to significantly (A) increase the threshold pressure 

to near control levels in MS-MFGM animals. #p ≤ 0.05 MS-MFGM vs MS-Control 

(B) reduce the number of pain behaviours exhibited by MS-MFGM animals. ###p ≤ 

0.001 MS-MFGM vs MS-Control. Data is presented as mean ± SEM. n = 10-11 per 

group. (C-F) Spatial memory is influenced by MFGM intervention in the MWM. 

(C) A main effect of diet and time but not of early life stress was observed on spatial 

learning. (D) A trend towards a decrease in the time taken to reach the platform was 

observed on day 1 of the acquisition training in NS-MFGM animals when compared 

with NS-Control animals. p = 0.06 NS-MFGM vs NS-Control. (E) Administration of 

MFGM reduced the time taken by MS-MFGM animals to locate the platform on day 

1 and 4 of acquisition training. *p ≤ 0.05 MS-MFGM vs MS-Control. (F) Maternally 

separated animals fed the control diet took longer to locate the platform on day 4 of 

the acquisition training when compared to NS-Control animals. *p ≤ 0.05 MS-Control 

vs NS-Control. Data is presented as mean ± SEM. n = 11-12 per group. (G) Maternal 

separation and MFGM do not affect recognition memory in the novel object 

recognition test. Data presented as mean ± SEM. n = 11-12 per group. 

 

Intestinal permeability in early life or adulthood was not affected by maternal 

separation or dietary interventions 

A two-way ANOVA revealed no effect of early life stress on transepithelial 

permeability of the ileum to 4kDa FITC at PND21 (F(1,29) = 0.16, p = 0.69) (Figure 

3A) or PND100 (F(1,40) = 0.021, p = 0.88) (Figure 3B). Likewise, no effect of diet 

on transepithelial permeability of the ileum to FITC was noted at PND21 (F(1,29) 

<0.001, p = 0.99) (Figure 3A) or PND100 (F(1,40) = 0.014, p = 0.91) (Figure 3B). 

No diet*early life stress interaction on transepithelial permeability of the ileum to 

FITC was noted at PND21 (F(1,29) = 1.529, p = 0.23) (Figure 3A) or PND100 

(F(1,40) = 3.411, p = 0.07) (Figure 3B). With respect to the colon, a two-way ANOVA 

revealed no effect of early life stress on transepithelial permeability of colonic 

segments to 4kDa FITC at PND21 (F(1,32) = 0.037, p = 0.85) (Figure 3C) or PND100 

(F(1,39) = 0.216, p = 0.65) (Figure 3D). Similarly, no effect of diet on transepithelial 

permeability of the colon to FITC was noted at PND21 (F(1,32) = 0.162, p = 0.69) 

(Figure 3C) or PND100 (F(1,39) = 0.032, p = 0.86) (Figure 3D). 
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Figure 3. No effect of maternal separation or perinatal coadministration of MFGM 

and DHA on small and large intestinal permeability in early life or adulthood. 

Transepithelial flux of FITC-dextran 4kDa, detected in the serosal chambers after 180 

minutes of incubation in the Ussing chamber apparatus, of ileal segments from 

animals at (A) PND21 or (B) PND100 and of colonic segments from animals at (C) 

PND21 or (D) PND100. Data presented as mean ± SEM. n = 7-11 per group for 

PND21 and n = 9-12 per group for PND100. 
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No effect of maternal separation or perinatal dietary intervention on neuronal 

and glial architecture of the enteric nervous system in early life 

The immunoreactivity of βIII-Tubulin, a neuronal marker present in the nerve fibres 

of all subsets of neurons in the ENS, was evaluated in the muscle layer of colonic 

frozen section from PND21 animals. A two-way ANOVA showed no effect of early 

life stress (F(1,31) = 2.168, p = 0.15), nor of diet (F(1,31) = 1.777, p = 0.19), nor of a 

diet*early life stress interaction (F(1,31) = 0.717, p = 0.40) on βIII-Tubulin 

immunofluorescence in the colonic muscle layer of PND21 animals (Figure 4A and 

4C). The density index of βIII-Tubulin in the colonic myenteric ganglia was also 

assessed, and no differences were induced by early life stress (F(1,30) = 3.315, p = 

0.08), nor by diet (F(1,30) = 0.045, p = 0.83), nor by a diet*early life stress interaction 

(F(1,30) = 0.007, p = 0.93) (Figure 4A and 4D). Colonic frozen sections were also 

stained for HuC/D, a pan-neuronal cell body marker in the ENS, and no effect of early 

life stress (F(1,31) = 0.001, p = 0.98), nor of diet (F(1,31) = 0.187, p = 0.67), nor of a 

diet*early life stress interaction (F(1,31) = 1.952, p = 0.17) on HuC/D 

immunoreactivity was observed in colonic myenteric ganglia from PND21 animals. 

(Figure 4A and 4E). Enteric glial networks were also investigated in early life. A two-

way ANOVA revealed no effect of early life stress (F(1,29) < 0.001, p = 0.99), nor of 

diet (F(1,29) = 0.001 p = 0.98), nor of a diet*early life stress interaction (F(1,29) = 

2.071, p = 0.16) on density index of the enteric glial marker S100β in myenteric 

ganglia of PND21 animals. (Figure 4B and 4F). 
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Dietary intervention but not maternal separation affects enteric neuronal 

processes in adulthood in colonic myenteric ganglia 

In colonic frozen sections of PND100 animals, a two-way ANOVA showed no effect 

of early life stress (F(1,27) = 0.099, p = 0.76), nor of diet (F(1,27) = 1.749, p = 0.2), 

nor of a diet*early life stress interaction (F(1,27) = 2.634, p = 0.12) on the 

immunoreactivity of βIII-Tubulin in the colonic muscle layer (Figure 4G and 4I). The 

immunofluorescence of βIII-Tubulin in the colonic myenteric ganglia was also 

assessed, and no differences were induced by early life stress (F(1,26) = 0.03, p = 

0.86), however, there was a significant effect of diet (F(1,26) = 6.772, p = 0.015), and 

a diet*early life stress interaction (F(1,26) = 5.98, p = 0.022). LSD Fisher post hoc test 

revealed a significant increase in βIII-Tubulin immunoreactivity in the myenteric 

ganglia of NS-MFGM animals when compared to the NS-Control group (p = 0.001) 

(Figure 4G and 4J). Colonic frozen sections were also stained for HuC/D, however 

no effect of early life stress (F(1,27) = 0.066, p = 0.8), nor of diet (F(1,27) = 3.314, p 

= 0.08), nor of a diet*early life stress interaction (F(1,27) = 0.381, p = 0.54) on HuC/D 

immunoreactivity was noted (Figure 4G and 4K). The immunoreactivity of the enteric 

glial marker S100β was also investigated at PND100. A two-way ANOVA revealed 

no effect of early life stress (F(1,27) = 0.199, p = 0.66), nor of diet (F(1,27) = 1.216, 

p = 0.28), nor of a diet*early life stress interaction (F(1,27) = 1.079, p = 0.31) on 

density index of S100β in myenteric ganglia of PND100 animals (Figure 4H and 4L). 
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Figure 4. No effect of maternal separation or dietary intervention on enteric 

neuronal or glial networks in early life. (A) Representative confocal 

photomicrographs showing the distribution of βIII-Tubulin (red), HuC/D (green) and 

of S100β (green, B) in colonic frozen sections of PND21 animals from each of the 

experimental groups. Analysis of immunofluorescence of βIII-tubulin in (C) colonic 

muscle layer or (D) myenteric ganglia and of (E) HuC/D or (F) S100β in colonic 

myenteric ganglia of PND21 animals from each experimental group. Cell nuclei were 

stained with DAPI (blue). Scale bars = 30 µm. CM = Circular Muscle; LM = 

Longitudinal Muscle; MG = Myenteric Ganglia. Diet but not maternal separation 

affects enteric neuronal representation in adulthood. (G) Representative confocal 

photomicrographs showing the distribution of βIII-Tubulin, (red), HuC/D (green) and 



143 
 

of S100β (green, H) in colonic frozen sections of PND100 animals from each 

experimental group. Analysis of density index of βIII-tubulin in (I) colonic muscle 

layer or (J) myenteric ganglia and of (K) HuC/D or (L) S100β in colonic myenteric 

ganglia of PND100 animals from each experimental group. Cell nuclei were stained 

with DAPI (blue). Scale bars = 30 µm. ***p ≤ 0.001 NS-MFGM vs NS-Control. Data 

presented as mean ± SEM. n = 7-8 per group. 

 

No effect of maternal separation or diet on enteric nervous system in early life: 

whole-mount colonic preparations 

Two-way ANOVA showed no effect of early life stress (F(1,26) = 2.754, p = 0.11), 

nor of diet (F(1,26) = 0.003, p = 0.95), nor of a diet*early life stress interaction 

(F(1,26) = 0.008, p = 0.93) on the number of HuC/D-stained cells in colonic whole 

mount preparations in early life (Supplementary Figure 1A and 1C). Similarly, no 

differences in HuC/D-stained cells in colonic whole mount preparations at PND100 

were induced by early life stress (F(1,29) = 1.087, p = 0.31), nor by diet (F(1,29) = 

1.228, p = 0.28), nor by a diet*early life stress interaction (F(1,29) = 0.093, p = 0.76) 

(Supplementary Figure 1B and 1D). 
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Discussion 

We have previously shown that post-weaning administration of MFGM attenuated the 

effects of ELS in rats (O'Mahony et al., 2020). The mechanisms underpinning such 

effects were unknown but may involve changes in ENS function and intestinal 

permeability (Bhinder et al., 2017; Ortega-Anaya and Jiménez-Flores, 2019; Yu et al., 

2021b). In this study, the diet of the dams was supplemented with MFGM from two 

days prior to birth of the pups and continued throughout the lifespan of the offspring 

to assess its potential in reversing the effects of ELS. MFGM was selected as the 

candidate intervention as it has been shown to have beneficial health effects both 

preclinically (Mudd et al., 2016) and clinically on neurodevelopment (Hernell et al., 

2016), and narrow the gap in cognitive performance between formula-fed and 

breastfed infants. MFGM has also been shown to reduce the incidence of infections 

(Hernell et al., 2016). However, the mechanistic potential of MFGM in reduction of 

ELS-induced deficits has not yet been extensively explored.   

This study is to our knowledge the first to investigate the effect of dietary 

supplementation with MFGM from birth on rat ENS and behaviour following 

exposure to ELS. The MS model is a robust model of ELS and gut-brain axis 

dysfunction in rats (Botschuijver et al., 2019; Cowan et al., 2019; O'Mahony et al., 

2009; O’Mahony et al., 2011; Rincel et al., 2019b).  

Visceral sensation from the gut has been shown previously to be heavily influenced 

by ELS with exposure to stress during the stress hyporesponsive period in early life 

resulting in heightened sensitivity of the GI tract (Felice et al., 2015; O'Mahony et al., 

2012). In line with this, we found that MS resulted in visceral hypersensitivity in 

response to the noxious stimulus of colorectal distension. This was noted both by an 
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increased total number of pain behaviours observed in response to distension of the 

colorectal region and by a decreased threshold to this stimulus. Supplementation with 

MFGM reduced this, normalising the number of pain behaviours and threshold 

pressure to near control levels. This is in agreement with our previous study showing 

that supplementation with MFGM after weaning ameliorated MS-induced visceral 

hypersensitivity (O'Mahony et al., 2020), supporting the potential value of MFGM 

against visceral pain-associated disorders.  

We noted that animals exposed to ELS displayed a deficit in spatial memory in the 

Morris water maze on the final day of the acquisition training, suggesting that initially 

the MS group learned the location of the platform as fast as the NS group, with this 

effect having tapered off by day 4. This impaired cognitive performance has been 

previously noted following a longer MS paradigm where the authors suggest that the 

effects of MS on spatial memory are related to changes in the postnatal development 

of the hippocampus (Cao et al., 2014). Interestingly, we noted that MS MFGM-treated 

animals displayed significantly better cognitive performance on day 1 and day 4 of the 

acquisition training compared to the MS control diet animals, highlighting the 

potential benefit of MFGM on brain function, particularly on learning. Interestingly, 

a subtle deficit in visuospatial memory was noted in a cohort of patients with irritable 

bowel syndrome (Kennedy et al., 2014c), strengthening the link between impaired 

cognition and visceral pain-associated disorders such as irritable bowel syndrome. 

Interestingly, the MS-induced deficits in our current study were much more modest 

than what we have previously shown (Felice et al., 2014; McVey Neufeld et al., 2019; 

O'Mahony et al., 2009; O'Mahony et al., 2020). This may be due to the fact that the 

control diet used in the present study was enriched with DHA, a polyunsaturated fatty 



146 
 

acid that has been shown to have pro-cognitive effects (Lauritzen et al., 2016; Mulder 

et al., 2018). 

MS has previously been shown to result in deficits in recognition memory (O'Mahony 

et al., 2020), yet here we do not observe this deficit potentially due to the addition of 

DHA in the control diet masking any ELS-induced memory deficits. 

The gut barrier serves as a physical barrier between the luminal content, enteric 

microbiota and the host and serves to protect the host from invading pathogens 

(Odenwald and Turner, 2017). The gut microbiota plays an important role in proper 

sensation of pain, and it may be seen that germ-free mice display a blunted 

inflammatory-induced pain response (Amaral et al., 2008). Importantly, it has been 

shown that the gut microbiota plays an important role in visceral sensation, with male 

germ-free mice showing baseline visceral hypersensitivity (Luczynski et al., 2017), 

while female germ-free mice do not, but instead display microbiota-dependent 

modulation of visceral pain across the oestrous cycle (Tramullas et al., 2021). 

Similarly, early life antibiotic-induced depletion of the gut microbiota results in altered 

sensation of visceral pain in adulthood (O’Mahony et al., 2014). MS has been shown 

previously to affect transepithelial barrier permeability as noted by an increased flux 

of Horseradish peroxidase in maternally separated rats (Gareau et al., 2007a; Gareau 

et al., 2006). Other studies have also reported MS-induced increases in transepithelial 

permeability (Barreau et al., 2004; Oines et al., 2012; Söderholm et al., 2002). 

However, a study using a combination of pre- and probiotics reported normalisation 

of intestinal barrier function following MS (García-Ródenas et al., 2006) while a 

probiotic, VSL#3, was successful in preventing MS-induced visceral pain, and also 

tightened the gut epithelial barrier (Dai et al., 2012). This increase in transepithelial 

permeability may lead to bacterial translocation from the gut, feeding into the 
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manifestation of visceral pain. Therefore, we hypothesised that epithelial barrier 

permeability plays a role in MS-induced visceral hypersensitivity. However, no effect 

of either MS or dietary intervention was noted at either life stage. This is in agreement 

with a previous study, which found no effect of MFGM on transepithelial barrier 

permeability to FITC-dextran (Bhinder et al., 2017). Possible reasons behind the 

protection of epithelial barrier permeability against the effects of MS include the 

presence of DHA in the control diet. DHA has been shown to be effective against 

increased permeability as a result of the addition of interleukin-4 to a monolayer of 

human colon-derived carcinoma cells (Willemsen et al., 2008).  

Previous studies have shown that ELS affects the morphology and functionality of the 

ENS. Piglets exposed to early life adversity (early weaning stress) displayed a higher 

veratridine (activates voltage-gated sodium channels resulting in neuron 

depolarisation)-induced short circuit current in the ileum than late weaning controls 

(Medland et al., 2016). Moreover, early weaning increased the number of ileal 

submucosal neurons in adulthood compared to late weaning controls. However, how 

ELS impacts upon development of the ENS is not yet known. Here we show that both 

the immunoreactivity of HuC/D and βIII-Tubulin in both the colonic myenteric 

ganglia and the colonic muscle layer at PND21 was unaffected by ELS. However, an 

increase in the density index of βIII-Tubulin in colonic myenteric ganglia was noted 

at PND100 in the NS MFGM-treated group only. Similarly, no effect of either ELS or 

dietary intervention on enteric glial structure was noted at either PND21 or PND100. 

The same may be said for the colonic whole mount preparations where no effect of 

ELS or MFGM supplementation was noted at PND21 or PND100 (Supplementary 

Figure 1).  
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Despite a clear mechanism of action, MFGM supports immune function in vitro by 

decreasing cytokine production following splenocyte stimulation (Zanabria et al., 

2014). It was observed that the effects of MFGM did not occur under non-stimulatory 

conditions, therefore potentially suggesting MFGM may act in conditions that, in part, 

simulate a stressed condition. Immune changes may be one of the driving factors of 

ELS-induced visceral hypersensitivity as MS can cause immune dysregulation 

including upregulation of cytokines and growth factors which can sensitise peripheral 

nociceptors and thus amplify visceral pain perception (Fuentes and Christianson, 

2018). It is therefore reasonable to suggest that the effects on the immune system 

induced by MFGM are likely to reduce the impact of ELS on visceral pain perception. 

As was previously shown, the microbiome of MFGM-enriched formula fed rat pups 

more closely resembles that of rat pups consuming their dam’s milk (Bhinder et al., 

2017), and we have shown previously that MFGM can alter gut microbiota 

composition (O'Mahony et al., 2020), possibly suggesting a mechanistic link between 

MFGM, the gut microbiota, and the immune system. 

In summary, MS resulted in visceral hypersensitivity and a deficit in spatial memory 

– effects that were buffered by the addition of MFGM to the DHA-enriched diet. The 

potential mechanisms of action of MFGM on memory-dependent tasks may lie in the 

lipid content of MFGM. It has been suggested that the complex lipids comprising 

MFGM form the integral basis for neonatal brain development and is evidenced by 

studies reporting enhanced cognitive development in infants following dietary 

supplementation with gangliosides, a complex lipid component of MFGM (Gurnida 

et al., 2012). Another constituent part of MFGM, sphingolipids play a major role in 

lipid membrane function and dynamics, and thus may alter brain composition and 
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function (Posse de Chaves and Sipione, 2010) and induce behavioural changes (Mühle 

et al., 2013; Schverer et al., 2020).  

 

Conclusions 

Overall, we add further evidence for the beneficial effects of MFGM in the reduction 

of ELS-induced visceral hypersensitivity. This occurs independent of changes at the 

level of the enteric nervous system and intestinal permeability. This has clinical 

relevance in terms of a potential nutritional intervention for irritable bowel syndrome, 

for which visceral hypersensitivity is a hallmark.  
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Supplementary material 

Supplementary table 1. Breakdown of dietary components of both control and 

MFGM-enriched diets. DHA = docosahexaenoic acid; ARA = Arachidonic acid; 

MFGM = Milk fat globule membrane. 

Ingredient Control diet (g/kg) MFGM diet (g/kg) 

Casein 200 187.04 

L-cysteine 3 3 

Corn starch 392.372 392.464 

Maltodextrin 132 132 

Sucrose 100 100 

Lactose, monohydrate 7.5 7.5 

Soybean oil 64.7 61.52 

DHA/ARA oil 5.3 5.3 

Cellulose 50 50 

Mineral mix 13.4 13.4 

Calcium phosphate, dibasic 7.2 6.95 

Vitamin mix 15 15 

Choline Bitartrate 2.5 2.5 

Thiamine HCL 0.01 0.01 

Vitamin K1 0.002 0.002 

TBHQ antioxidant 0.014 0.014 

Whey protein concentrate MFGM-10 

enriched 

- 15.9 
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Supplementary Figure 1. No effect of either maternal separation or diet on the 

number of HuC/D positive cells in colonic whole mount preparations at PND21 or 

PND100. (A) Representative confocal photomicrograph of colonic whole mount 

preparation at PND21 showing pan neuronal marker HuC/D (green). (B) 

Representative confocal photomicrograph of colonic whole mount preparation at 

PND100 showing pan neuronal marker HuC/D (green). (C) No effect of diet or 

maternal separation on the number of HuC/D positive cells at PND21. (D) No effect 

of diet or maternal separation on the number of HuC/D positive cells at PND100. 

Scale bar = (A) 100µm or (B) 40µm. Data presented as Mean ± SEM. n = 5-9 for 

PND21 and n = 8-9 per group for PND100. 
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Abstract 

Visceral hypersensitivity (VH) is a hallmark of many functional gastrointestinal 

disorders including irritable bowel syndrome and is categorised by a dull, diffuse 

sensation of abdominal pain. Recently, the gut microbiota has been implicated in VH 

in male mice, but the effects in females have yet to be explored fully. To this end, we 

now show that somewhat surprisingly, female germ-free mice have similar visceral 

pain responses to colorectal distension (CRD) as their conventional controls. 

However, we show that although sensitivity to CRD is oestrous cycle stage-dependent 

in conventional mice, it is not in germ-free mice. Further, ovariectomy (OVX) induced 

VH in conventional but not germ-free mice, and induced weight gain regardless of 

microbiota status. Finally, we show that oestrogen-replacement ameliorated OVX-

induced VH. Taken together, this study provides evidence for a major role of female 

sex hormones and the gut microbiota in sensation of visceral pain in females.  
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Graphical abstract 

 

 

 

 

 

 

 

 

 

 

 

 



155 
 

Introduction 

Visceral pain is a common and complex occurrence categorised by a diffuse, often 

dull sensation of pain centred around the midline and upper abdomen originating from 

some, but not all internal organs (Cervero and Laird, 1999; Sikandar and Dickenson, 

2012). It has been reported that 25% of adults experience intermittent abdominal pain 

during their lifetime, highlighting the need for a better understanding of the 

pathophysiology of this disorder (Collett, 2013; Drewes et al., 2020). Visceral pain-

associated disorders such as irritable bowel syndrome (IBS) are more commonly 

presented in women; however, to date the majority of preclinical studies on visceral 

pain are carried out exclusively in males, with their results being generalised to include 

females in terms of treatment of these disorders (Lee et al., 2018b). This raises the 

issue of sex differences in treatment strategies and supports the notion that these 

treatments for disorders should not follow a singular approach across sexes.  

The oestrous cycle is the term used to describe the female reproductive cycle in rodents 

and is similar to the menstrual cycle in humans. In rodents, this cycle has four phases: 

(i) proestrus, (ii) estrus, (iii) metestrus, and (iv) diestrus, and lasts between 4 and 5 

days (Byers et al., 2012a). During this time, circulating gonadal hormone levels 

fluctuate. For example, levels of oestrogen are highest during proestrus and lower in 

diestrus (Hong and Choi, 2018). Interestingly, it has been shown that the visceral pain 

response varies across the oestrous cycle (Moloney et al., 2016b). However, not all 

studies agree on the specific changes in visceral pain perception across the oestrous 

cycle, with some reporting heightened visceral sensation when in proestrus versus 

metestrus/diestrus, or the converse (Giamberardino et al., 1997; Ji et al., 2008). 
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Ovariectomy (OVX) in rodents is used to cease the main production of female gonadal 

hormones (Lemini et al., 2015) and is a useful experimental model to investigate the 

specific effects of sex hormones on physiological parameters. Moreover, the effects 

of OVX on visceral pain processing are unclear as it has been shown that OVX results 

in a reduction in the visceromotor response (VMR) to colorectal distension (CRD) (Ji 

et al., 2003), or has no effect on visceral pain perception in rats (Traub et al., 2014). 

Here, we investigate the impact of OVX in female mice. 

The gastrointestinal (GI) tract is home to between 10 and 100 trillion microbial cells 

which comprise the gut microbiota (Blaser, 2014; Gilbert et al., 2018; Lynch and 

Pedersen, 2016). The gut microbiota forms an essential component of the bidirectional 

communication between the gut and the nervous system, the microbiota-gut-brain 

axis, which has received increasingly more attention in recent years for its apparent 

role in the pathophysiology of many disorders of the gut-brain axis including IBS, a 

functional GI disorder characterised by visceral pain (Bhattarai et al., 2016; Collins, 

2014; Margolis et al., 2021; Mayer et al., 2015b; Wilmes et al., 2021). 

There is also an increasing realisation that signalling across the microbiota-gut brain 

axis is sex dependent (Jaggar et al., 2020; Jašarević et al., 2016). There is substantial 

evidence for the influence of gonadal hormones on the gut microbiota and vice versa 

(Tetel et al., 2018), with differences being observed between male and female rodents, 

as well as effects of gonadectomy and hormone replacement on the microbiota 

(Jašarević et al., 2016; Org et al., 2016). Altered levels of steroid hormones seen in 

germ-free (GF) mice, which are devoid of a microbiota and are sterile in 

microbiological terms (Spichak et al., 2018), further validates the interaction between 

the microbiota and gonadal hormones (Kamimura et al., 2019).  
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There is an increasing emphasis on the role of the microbiota in pain responses, 

particularly in visceral pain (Defaye et al., 2020; Luczynski et al., 2017; O' Mahony 

et al., 2017; Rea et al., 2017; Rea et al., 2019; Theodorou et al., 2014). We have 

previously shown that the gut microbiota plays a role in the mediation of visceral pain, 

whereby male GF mice displayed visceral hypersensitivity (VH) to CRD which was 

reduced following microbial colonisation of the GI tract (Luczynski et al., 2017). 

Furthermore, it has also been shown that modulation of the gut microbiota in rodents 

by use of antibiotics in early life induces VH (O'Mahony et al., 2014). Moreover, 

manipulation of the gut microbiota using probiotic bacterial species including strains 

of Bifidobacterium, Lactobacillus, and Streptococcus (Dai et al., 2012; McKernan et 

al., 2010; Miquel et al., 2016; Verdú et al., 2006), as well as their soluble mediators 

(McVey Neufeld et al., 2020) has been shown to reduce the visceral pain response. 

The underlying sex-dependent effects on visceral pain processing remain largely 

unexplored, particularly in the context of the gut microbiota. In this study, we 

investigated the role of the gut microbiota in the visceral pain response in female mice 

across the oestrus cycle and in response to OVX. 
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Methods 

Experimental model and subject details 

For this study, naïve Swiss Webster germ-free and conventional females aged between 

6 and 10 weeks old were used. All animals were group housed and littermates were 

randomly assigned to each experimental group. All experiments were conducted in 

accordance with the guidelines of European Directive 86/609/ EEC and the 

Recommendations 2007/526/65/EC and were approved by the Animal 

Experimentation Ethics Committee of University College Cork. All efforts were made 

to reduce the number of animals used for the study and minimise animal suffering. 

 

Method details 

Animals 

Swiss Webster breeding pairs for germ-free (GF) and conventionally colonised (CC) 

groups were supplied by Taconic (Germantown, New York, USA) and first-generation 

female offspring were used for all experiments. GF mice were group housed in flexible 

film gnotobiotic isolators maintained at 21 ± 1°C with 55-60% relative humidity under 

a 12-hr light/dark cycle in the University College Cork GF Unit. CC mice were group 

housed in the standard animal facility and maintained under the same temperature, 

relative humidity, and light/dark cycle as the GF unit. Both GF and CC mice were age 

matched and fed the same autoclaved pelleted diet (Special Diets Services, product 

code 801010). Surgery, testing, or euthanasia occurred between 6 and 10 weeks of 

age. All experimenters were blinded as to the experimental groups until scoring was 

completed. 
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Experimental timeline 

This study was performed to address two questions as set out in the objectives and the 

experiments were designed as follows: 

(i) Visceral sensitivity assessment in CC and GF mice following ovariectomy with 

sham control. 

(ii) Visceral sensitivity assessment in ovariectomised CC E2 pellet-implanted mice 

with placebo control. 

 

Ovariectomy 

Ovariectomy (OVX) was carried out as previously described (O’Leary et al., 2009) in 

6-week-old animals under germ-free conditions. Ketamine (90mg/kg) and Xylazine 

(10mg/kg) (both Abbeyville Veterinary, Ireland) anaesthetic mix was administered 

intraperitoneally to induce anaesthesia for ovariectomy surgeries. An area of the dorsal 

surface of the animal was shaved and sterilised with 70% ethanol and a small 2cm 

incision was made in the centre of this area. The fat pad of the left ovary was located 

laterally to this incision and a 0.5cm incision made through the abdominal wall to 

access the ovary. The ovary was gently taken out through the incision by pulling the 

accompanying fat and the ovary was then removed and the uterus gently replaced into 

the abdominal cavity. The incision site was then sutured, and the same procedure was 

carried out on the other side to remove the right ovary. The initial incision was then 

also sutured closed and cleaned with sterile saline. To control for the effect of the 

surgery on the study outcomes, the surgery was performed in the same manner, with 

the exception of the removal of the ovaries (i.e., the ovaries were gently pulled through 

the incision site but were immediately returned) to form the sham-OVX group. All 
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animals received the anti-inflammatory drug carprofen (5mg/kg, s.c., Carprofen, 

Norbrook) 1 day after the surgery. 

 

17β-oestradiol pellet implantation 

17β-Oestradiol (E2) pellet implantation was carried out as previously described 

(Ingberg et al., 2012). The pellets, 0.1mg E2/pellet (21-day release, IRA, FL, USA cat. 

No. E-121) or placebo (0.1mg/pellet, 21-day release, IRA, FL, USA cat. No. C-111) 

were implanted 1 week after the ovariectomy procedure when the animals were 7 

weeks old. Animals were anaesthetised with isoflurane (1.5-2% for induction) and the 

pellet was then inserted subcutaneously into the dorsal aspect of the neck using a 

stainless-steel reusable precision trocar with regular medical point needle (IRA, FL. 

USA, cat. No. MP-182). The animal was then monitored for up to 20 min following 

pellet insertion. The same procedure was carried out for the placebo group with a 

placebo pellet being implanted in place of the E2 pellet to control for the effects of the 

surgery. 

 

Colorectal distension 

Animals were removed from the germ-free facility to undergo colorectal distension 

(CRD) as previously described (Luczynski et al., 2017; Tramullas et al., 2012) in 9-

10-week-old animals. The CRD apparatus used consisted of a barostat (Distender 

Series II, G and J Electronics, Toronto, ON, Canada) and a transducer amplifier 

(LabTrax 4, World Precision Instruments, Sarasota, FL). A custom-made 

polyurethane balloon (2cm length x 1cm inflated diameter) was tied over a PE60 

catheter with silk 4.0. Prior to securing the balloon to the catheter, several holes were 
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punched in the distal 20mm of the tubing with a 27-gauge needle to allow for inflation 

of the balloon. Mice were lightly anaesthetised with isoflurane (2% vapor in oxygen, 

IsoFlo, Abbot, UK) and the lubricated balloon along with a connecting catheter were 

inserted into the colon, 0.5cm proximal to the anus. The catheter was secured to the 

base of the tail with tape to prevent removal or displacement. Animals were allowed 

a recovery time of 10 min prior to the commencement of the CRD procedure. The 

balloon was connected to the barostat system and an ascending phasic distension 

protocol from 10 to 80mmHg consisting of three 20s pulses at each pressure with a 5-

minute inter-pulse interval was used. The visceromotor response (VMR) to CRD was 

quantified by the pressure changes observed within the colonic distending balloon 

during the procedure and the average of the three consecutive pulses for each pressure 

were used. For each animal, pain threshold was designated as the pressure which 

exceeded the mean baseline activity plus three times the standard deviation. Following 

the visceral sensitivity assessment, the balloon was carefully removed, and the animals 

were sacrificed within 4 hours. 

 

Identification of stages of oestrous 

To investigate the effect of the different stages of the oestrous cycle on visceral pain 

perception, vaginal cytology was used. A vaginal swab using a saline-soaked cotton 

swab (saline was used to help preserve the morphology of cells taken as water may 

disturb the structure of the cells, potentially confounding the interpretation of the stage 

of oestrous (Cora et al., 2015)) was collected by gentle insertion of the cotton swab 

into the vaginal canal of the restrained animals. The cotton swab was slowly and gently 

rotated against the vaginal wall and then removed. Cells collected during the swab 
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were transferred to a dry glass slide and imaged under a light microscope. The stage 

of the oestrous cycle was determined based on the type and shape of the cells present 

(Caligioni, 2009). For the purpose of this study, the stages of oestrous were grouped 

as follows; proestrus/estrus and metestrus/diestrus due to previous reports of 

heightened visceral sensitivity to tactile stimulation when in metestrus/diestrus versus 

proestrus/estrus (Giamberardino et al., 1997; Gonzalez and Carrasquillo, 2019). 

 

Quantification and statistical analysis 

All data were assessed for normality using the Shapiro-Wilk test and Levene’s test for 

equality of variances. Normally distributed data were analysed using repeated 

measures two-way ANOVA or mixed deign ANOVA followed by post hoc testing 

using Bonferroni correction. A p-value of 0.05 was set as the threshold of statistical 

significance and all data are presented as Mean ± SEM. Significant outliers identified 

in the analysis were excluded. All statistical testing was performed using SPSS version 

27 (IBM Statistics). Detailed statistical reporting is listed throughout the results 

section under the relevant subheadings and in the figure legends. The number of 

animals used per experiment are as follows with n representing the individual animal: 

• To investigate the role of the microbiota in the visceral pain response, 2 groups 

were generated: CC and GF (n = 10 per group). 

• To analyse the impact of the oestrous cycle on the visceral pain response, 4 

groups were used: CC (P/E), CC (M/D), GF (P/E), GF (M/D) (n = 8, 14, 9, 10 

per group respectively). 

• For investigation into the effects of female sex hormones on visceral pain 

perception, 2 experiments were run: Firstly using 4 groups to observe the effect 
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of cessation of production of oestrogen: CC-Sham, CC-OVX, GF-Sham, GF-

OVX (n = 12, 10, 10, 12 per group respectively) and secondly to investigate 

hormone replacement with E2: CC-OVX-Placebo, CC-OVX-E2 (n = 13, 14 

per group respectively). 
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Results 

Absence of microbiota does not affect the visceral pain response to colorectal 

distension in female mice 

To assess the role of the microbiota in the visceral pain response, the response to CRD 

in GF and conventionally colonised (CC) animals was investigated (see methods). To 

investigate the effect of cessation of production of circulating sex hormones, 6-week-

old animals were ovariectomised or underwent sham surgery (see methods). These 

animals underwent CRD at 9 weeks of age. 

Interestingly, unlike what we have previously shown in male mice (Luczynski et al., 

2017), a lack of microbiota did not affect the VMR to CRD in female mice. A mixed 

design ANOVA with pressure as the repeated measures factor and microbiota status 

as the independent factor showed a main effect of pressure (F(4,52) = 33.3, p < 0.001) 

but not of microbiota status with respect to pressure (F(4,52) = 0.7, p = 0.62) nor of 

microbiota status alone (F(1,13) = 0.8, p = 0.402) (Figure 1) when oestrous cycle stage 

was not taken into account. 
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Figure 1. Absence of microbiota does not affect the visceral pain response to 

colorectal distension in female mice. No differences observed in the visceromotor 

response (VMR) in response to colorectal distension between conventional and germ-

free animals. Data presented as Mean ± SEM. n = 10 per group. 

 

Ovariectomy induces an increase in body weight in both conventional and germ-

free mice 

Here, we observed that OVX induced an increase in body weight in both conventional 

and GF mice as reported previously (Ding et al., 2017) as found by a repeated 

measures 2-way ANOVA by a main effect of time (F(5,175) = 235.8, p < 0.001), of 

OVX with respect to time (F(5,175) = 21.5, p < 0.001), of microbiota status with 

respect to time (F(5,175) = 9.9, p < 0.001) but not of microbiota status*OVX with 

respect to time (F(5,175) = 0.6, p = 0.7) (Figure 2A). Significant main effects of OVX 

(F(1,35) = 10.6, p = 0.003) and of microbiota status (F(1,35) = 7.1, p = 0.012) but not 

of a microbiota status*OVX interaction (F(1,35) = 0.01, p = 0.921) on body weight 

gain were also noted (Figure 2A). 

Further analysis using Bonferroni post hoc revealed specific differences in body 

weight between CC-Sham and CC-OVX groups on day 15 (p = 0.043), and day 19 (p 

= 0.023), and between GF-Sham and GF-OVX groups on day 12 (p = 0.047), day 15 
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(p < 0.001), and day 19 (p = 0.004), whereby the OVX groups weighed more than 

sham controls. 

 

Oestrous cycle modulation of visceral pain is driven by microbiota-dependent 

mechanisms 

In conventional females, a mixed design ANOVA with pressure as the repeated 

measures factor and oestrous cycle stage as the independent factor revealed a main 

effect of pressure (F(4,80) = 21, p < 0.001) but not of oestrous stage with respect to 

pressure (F(4,80) = 1.6, p = 0.171). A main effect of oestrous stage alone was also 

noted (F(1,20) = 12.4, p = 0.002) (Figure 2B). Post hoc analysis using Bonferroni 

correction revealed significant differences between CC animals in proestrus/estrus 

versus when in metestrus/diestrus at pressures of 65mmHg (p = 0.004), and 80mmHg 

(p = 0.037), whereby the VMR to CRD was lower in conventional animals during 

proestrus/estrus versus when in metestrus/diestrus (Figure 2B). 

No significant differences in VMR across the oestrous cycle were noted in germ-free 

animals using a mixed design ANOVA with pressure as the repeated measures factor 

and oestrous cycle stage as the independent factor reporting a main effect of pressure 

(F(4,64) = 22.5, p < 0.001) but not of oestrous stage with respect to pressure (F(4,64) 

= 0.4, p = 0.819) nor an effect of oestrous stage alone (F(1,16) = 2, p = 0.176) (Figure 

2B). 

When data were grouped by (1) stage of oestrous and (2) microbiota status, repeated 

measures 2-way ANOVA also revealed a main effect of pressure (F(4,144) = 43.5, p 

< 0.001) but not of group with respect to pressure (F(12,144) = 0.8, p = 0.6). A main 

effect of group was also noted (F(3,36) = 5.9, p = 0.002). Further analysis using 
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Bonferroni post hoc revealed significant differences between conventional animals in 

proestrus/estrus versus when in metestrus/diestrus at pressures of 65mmHg (p = 

0.041), whereby conventional females in proestrus/estrus displayed lower VMR to 

CRD versus conventional females in metestrus/diestrus (Figure 2B). 

 

Figure 2. Ovariectomy induced an increase in body weight in both conventional and 

germ-free mice and oestrous cycle modulation of visceral pain was driven by 

microbiota-dependent mechanisms (A) Ovariectomy (OVX) induced an increase in 

body weight in female mice regardless of microbiota status. *p ≤ 0.05 for 

conventionally colonised ovariectomised versus sham group, #p ≤ 0.05, ##p ≤ 0.01, 

###p ≤ 0.001 for germ-free ovariectomised versus sham group. n = 7–12 per group. 

Data presented as Mean ± SEM. (B) Oestrous Cycle modulates visceral pain 

perception in conventional animals only. #p ≤ 0.05, ##p ≤ 0.01 conventionally 

colonised proestrus/estrus versus metestrus/diestrus group. n = 8–14 per group. Data 
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presented as Mean ± SEM. VMR, visceromotor response; GF, germ-free; CC, 

conventionally colonised. 

 

Ovariectomy induces visceral hypersensitivity in a microbiota-dependent 

manner 

A repeated measures two-way ANOVA revealed a main effect of pressure (F(4,132) 

= 61.3, p < 0.001) but not of microbiota status with respect to pressure (F(4,132) = 

0.6, p = 0.696) nor of OVX with respect to pressure (F(4,132) = 1.1, p = 0.347) or of 

microbiota status*OVX with respect to pressure (F(4,132) = 0.5, p = 0.75) on VMR 

to CRD. Further, no effect of microbiota status alone was noted (F(1,33) = 1.2, p = 

0.281). However, main effects of OVX (F(1,33) = 5, p = 0.032) and of microbiota 

status*OVX were noted (F(1,33) = 8.1, p = 0.008) (Figure 3A). 

For conventional females, a mixed design ANOVA with pressure as the repeated 

measures factor and OVX as the independent factor revealed a main effect of pressure 

(F(4,68) = 37.1, p < 0.001), but not OVX with respect to pressure (F(4,68) = 1, p = 

0.413). However, a main effect of OVX alone was noted (F(1,17) = 11.7, p = 0.003). 

Post hoc analysis using Bonferroni correction revealed significant differences in the 

VMR to CRD between CC-Sham and CC-OVX animals at pressures of 40mmHg (p 

= 0.05) and 65mmHg (p = 0.02), whereby the VMR to CRD was higher in 

ovariectomised animals. A mixed design ANOVA with pressure as the repeated 

measures factor and OVX as the independent factor in GF females revealed a main 

effect of pressure (F(4,64) = 25.1, p < 0.001) but not of OVX with respect to pressure 

(F(4,64) = 0.6, p = 0.65), nor of OVX alone (F(1,16) = 0.2, p = 0.65) (Figure 3B). 
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Figure 3. Ovariectomy induced visceral hypersensitivity in a microbiota-dependent 

manner (A) Ovariectomy induced visceral hypersensitivity in conventional females. 

*p ≤ 0.05 conventionally colonised ovariectomised versus sham group. (B) No effect 

of ovariectomy on perception of visceral pain in germ-free females. Data presented as 

Mean ± SEM. n = 10–12 per group. VMR, visceromotor response; OVX, ovariectomy. 

 

Hormone replacement with 17β-oestradiol reverses ovariectomy-induced 

visceral hypersensitivity in conventional females 

To assess the role of female sex hormones in the visceral pain response, 6-week-old 

CC animals were ovariectomised or underwent sham surgery. At 7 weeks old, these 

animals underwent 17β-oestradiol (E2) pellet or placebo implantation to investigate 

the role of E2 on perception of visceral pain (see methods). Finally, these animals 

underwent CRD at 10 weeks of age (see Figure 4A for experimental design). 

Finally, to investigate the impact of oestrogen in mediating the effects of female 

circulating sex hormones on the visceral pain response, ovariectomised E2 pellet-

implanted animals underwent CRD. A mixed design ANOVA with pressure as the 

repeated measures factor and treatment as the independent factor revealed that E2 

reduced the VMR to CRD by a main effect of pressure (F(4,84) = 47.5, p < 0.001), of 
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hormone replacement with respect to pressure (F(4,84) = 2.9, p = 0.026) and of 

hormone replacement alone (F(1,21) = 20.6, p < 0.001) (Figure 4B). Significant 

differences in the VMR to CRD were noted by post hoc analysis using Bonferroni 

correction at pressures of 40mmHg (p = 0.024), 65mmHg (p = 0.01), and 80mmHg (p 

= 0.005), whereby the VMR of E2 pellet-implanted animals was lower than that of 

controls (Figure 4B). 

 

Figure 4. Hormone replacement with 17β-oestradiol reversed ovariectomy-induced 

visceral hypersensitivity in conventional females (A) Experimental timeline. (B) 17β-

Oestradiol reversed ovariectomy-induced visceral hypersensitivity in conventional 

mice. *p ≤ 0.05, **p ≤ 0.01 ovariectomised with oestradiol versus placebo group. n = 

13–14 per group. Data presented as Mean ± SEM. n = 13–14 per group. VMR, 

visceromotor response; OVX, ovariectomy. 
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Discussion 

This study aimed to investigate the role of the microbiota and female sex hormones in 

OVX-induced visceral pain. We show that OVX-induced VH is dependent on the gut 

microbiota and that visceral pain is modulated across the oestrous cycle in a 

microbiota-dependent manner. We also noted that OVX induced an increase in body 

weight regardless of microbiota status, and hormone replacement with E2 ameliorated 

OVX-induced increases in visceral sensitivity in conventional mice. Overall, these 

results highlight the major regulatory role of the gut microbiota on sensation of 

visceral pain, as well as the potential benefit of female sex hormones in lessening the 

pain response to a noxious visceral stimulus. 

Here, we show that contrary to our previous work in male mice (Luczynski et al., 

2017), no difference was seen between control and GF female mice in the pain 

response to CRD when the stage of the oestrous cycle was not accounted for. While 

there are several reports of sex differences in the functioning of the microbiota-gut-

brain axis (Audet, 2019; Darch et al., 2021; Jaggar et al., 2020), we show for the first 

time that the gut microbiota is an important factor in sex differences in the visceral 

pain response. Here we show that the visceral pain response is modulated by the 

oestrous cycle in conventionally colonised control mice but not in GF mice, further 

supporting the role of the gut microbiota in appropriate sensation of visceral stimuli. 

Specifically, we show a lesser pain response to CRD during proestrus/estrus than 

during the metestrus/diestrus stages, and that this stage-dependent difference in the 

visceral pain response is reliant upon a full complement of gut microbiota. 

It has been seen previously that perception of visceral pain varies across the oestrous 

cycle with female rats displaying a lower threshold to CRD in proestrus and estrus 
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versus metestrus and diestrus (Moloney et al., 2016b). Mechanisms behind this stage-

dependent increase in VMR may lie in the heightened oestrogen levels seen in 

proestrus which has been shown to be protective against visceral pain (Cao et al., 

2012). It has also been noted that GF mice have altered sex hormone levels, and 

colonisation of these mice increases reproductive capability, highlighting the link 

between the microbiota and sex hormones (Wallace et al., 2018). Furthermore, human 

studies have shown that women who harbour a more diverse gut microbiota display 

higher levels of oestradiol, supporting the relationship between the gut microbiota and 

gonadal hormones (Shin et al., 2019). Also, women with higher serum oestradiol 

levels had more Bacteroidetes and less Firmicutes than those with lower serum 

oestradiol, and the genera Slackia and Butyricimonas significantly correlated with 

serum oestradiol levels. Interestingly, the gut microbiota has been shown to 

significantly affect oestrogen levels whereby microbial richness and diversity 

correlated with circulating oestrogen levels (Flores et al., 2012). Hence, there is a clear 

association between gonadal hormones and the gut microbiota, which contributes to 

sex differences in the pain response. 

Interestingly, in our study, OVX resulted in VH in control but not microbiota-deficient 

GF mice. Previous studies have shown that OVX results in visceral hyperalgesia to 

mechanical (von Frey) and thermal (hot plate) stimuli (Sanoja and Cervero, 2008), as 

well as to intracolonic capsaicin administration (Sanoja and Cervero, 2005). OVX has 

also been shown to cause shifts in the gut microbiota (Mendes et al., 2017; Wang et 

al., 2016). Specifically, OVX in rats resulted in increases in Escherichia coli and 

Bacteroides fragilis as well as a decrease in Clostridium leptum, Faecalibacterium 

prausnitzii, and Lactobacillus. As the gut microbiota plays a major role in visceral 

pain (O' Mahony et al., 2017), and GF mice are devoid of a gut microbiota, this could 
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explain why OVX in GF animals did not result in VH. Reasoning behind a more 

pronounced effect of OVX on the VMR at higher distension pressures may include 

the observation that as distension pressure increases, so too does the VMR due to 

increased activation of visceral nociceptors and increased pressure in the colorectal 

region. Thus, the effect of OVX on visceral pain perception may be more pronounced 

at a higher distension pressure versus a lower pressure. This finding supports the role 

of the microbiota in the manifestation of VH. 

Oestrogen has been shown to upregulate neuronal activation in the central and 

peripheral nervous systems including at the level of the dorsal root ganglia in the spinal 

cord, GI tract, and enteric nervous system, thus exerting effects on visceral pain 

processing (Sun et al., 2019). The antinociceptive effects of oestrogen have also been 

shown previously, whereby the expression of substance P, a neuropeptide related to 

pain, was downregulated in lumbar dorsal root ganglia neurons in OVX rats implanted 

with 17β-Oestradiol pellets (Sarajari and Oblinger, 2010). Here, we show that OVX-

induced VH was ameliorated by hormone replacement via E2 pellet implantation. 

Oestrogen receptors ERα and ERβ are capable of modulating the visceral pain 

response by regulation of activity of sensory neurons (Meleine and Matricon, 2014), 

and oestradiol has been shown to inhibit voltage-gated calcium channels of primary 

afferent neurons of the dorsal root ganglia in rats (Lee et al., 2002). Oestrogen receptor 

activation has been shown previously to have analgesic effects in a visceral pain model 

in mice (Zielińska et al., 2017), and the gut microbiota is also capable of metabolising 

oestrogens via microbial-derived β-glucuronidase, which then act via ERα and Erβ 

(Baker et al., 2017). ERβ knockout in mice revealed that ERβ affects gut microbiota 

composition (Menon et al., 2013) and that sex hormones affect the gut microbiota, 

thus posing a potential mechanism of action of E2 on visceral pain processing. Overall, 
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from the results herein and from existing literature, it is clear that the gut microbiota 

plays a major role in control of oestrogenic activity which modulates the visceral pain 

response. 

An increase in body weight following OVX has been reported previously both in rats 

(Sharma et al., 2017) and in mice (Ding et al., 2017). Notably, here we show that this 

increase in body weight after OVX is independent of gut microbiota status. This OVX-

induced weight gain has previously been attributed to the loss of circulating oestrogen 

as it is seen that exogenous addition of a phytoestrogen reduced OVX-induced weight 

gain (Sharma et al., 2017).  

 

Conclusions 

In summary, we report that visceral pain is modulated across the oestrous cycle in a 

microbiota-dependent manner. This is, to our knowledge, the first study to 

demonstrate reversal of OVX-induced VH to CRD by oestrogen replacement therapy 

by E2 pellet implantation. 

 

Limitations 

While this study provides a novel insight into the role of the microbiota in VH, further 

studies are needed to uncover exact molecular mechanisms behind oestrous cycle 

modulation of visceral pain and the role the microbiota plays in this modulation. 
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Abstract 

Both before and after birth, extensive immune system development is observed. In the 

pre-adolescent period in rodents, an increase in immune activation has been noted to 

be both required and protective against immunopathologies later in life. However, the 

specific changes induced by early life stress on the developing immune system in this 

early pre-adolescent period are not well understood. Stressors in early life can have 

detrimental effects on physiology and behaviour in adulthood in both rodents and 

humans, which extends to dysregulation of the immune system. Here, using the 

maternal separation (MS) model of early life stress, we investigated whether there 

were sex-specific pre-adolescent changes in plasma and gastrointestinal levels of pro- 

and anti-inflammatory cytokines using a pro-inflammatory panel 1 day prior to and 1 

day after weaning. Here, we show that MS increased spleen weight in males only and 

report sex-dependent immune changes in the pre-adolescent period. Specifically, we 

noted an increase in interleukin (IL)-5 and IL-13 in males, yet a decrease in IL-5 in 

females in the control groups at postnatal day (PND)22 compared to PND20 

Moreover, a decrease in interferon (IFN)-γ and an increase in IL-6 in males due to 

maternal separation was noted whereas a decrease in IL-5 in females was seen at 

PND20. No changes were noted in ileal cytokine levels. Overall, we report differential 

sex-dependent pre-adolescent changes in circulating cytokine levels which are 

blocked by maternal separation. Interestingly, the majority of immunological changes 

observed in this study are found in males. This study adds evidence for the sex 

differences observed in the immune literature and suggests a complex interplay 

between early life stress and pre-adolescent changes in immune profiles which may 

affect later physiology and behaviour.  
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Introduction 

Early postnatal life is a period which sees continuation of development throughout the 

systems of the body which require appropriate stimulation for optimal development 

(Renz et al., 2012). These systems include the gastrointestinal (GI), microbial, 

immune, as well as central and peripheral nervous systems, which are all involved in 

complex crosstalk via the gut-brain axis through a myriad of both direct and indirect 

pathways (Cryan et al., 2019; Jena et al., 2020). The immune system is comprised of 

lymphoid organs such as the spleen, thymus, and bone marrow as well as immune 

molecules such as cytokines. Approximately 70% of the immune system is located in 

the gut in the form of gut-associated lymphoid tissue, a component of mucosal-

associated lymphoid tissue (Vighi et al., 2008) which interacts with GI function and 

allows tolerance or mounting of an immune response against the luminal content. The 

innate immune system of the GI tract interacts with the gut microbiota and its’ 

metabolites and includes the mucous layer, intestinal epithelial layer, and 

haematopoietic immune cells. In early life, the immune system undergoes major 

development. It is seen that in neonatal mice, the epithelium has a lower turnover, the 

mucous layer is much thinner, and there are very few mature Paneth cells, secretory 

cells that release antimicrobial molecules, versus adult mice (Kalbermatter et al., 

2021). The postnatal development of the immune system has been reviewed 

previously (Georgountzou and Papadopoulos, 2017). 

There is extensive postnatal development of the immune system, with early neonatal 

immunity being thought of as immature given the lack of exposure to pathogens (Jain, 

2020). Early postnatal life is a time of great change for the developing immune system 

as it must tolerate colonisation of the GI tract. It is also seen that new-borns are highly 
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susceptible to infection due to the immature immune system. Sex differences in 

immune system responses also exist. It has been reported that females mount a 

stronger immune response than males, leading to a faster removal of pathogens (Klein 

and Flanagan, 2016). Further, it is seen that pre-pubertal males display higher levels 

of inflammation as well as higher levels of regulatory T cells, required for peripheral 

tolerance and prevention of autoimmunity, and immunoglobulin A, an antibody 

responsible for fighting infection. However, it is also seen that autoimmune disorders 

are more prevalent in women (Klein, 2012; Lotter and Altfeld, 2019).  

As developmental processes are still ongoing in the early postnatal period, it is perhaps 

no surprise that any insult, such as stress, during this early life critical window may 

result in widespread detrimental effects. Depending on the type, severity, and duration 

of the stressor, immune responsivity may be increased or decreased (Dhabhar, 2014; 

Seiler et al., 2020). Other factors that play a major role in immune responsivity include 

genetics, prior exposure, age, and environmental factors including mode of feeding 

and delivery (MacGillivray and Kollmann, 2014; Taneja, 2018). Stress may also affect 

the release of pro- and anti-inflammatory cytokines under unstimulated conditions or 

in response to immune challenge (Carlsson et al., 2014).  

One well-established model of stress during early life in rodents is maternal separation 

(MS), which involves separating pups from their mothers in the early postnatal period. 

The effects of MS on the immune system are generally reported to result in a pro-

inflammatory state, including increased pro-inflammatory cytokine signalling in brain 

regions related to stress-related psychiatric disorders (Dutcher et al., 2020; Roque et 

al., 2016). However, some studies have reported a downregulation of cytokine genes 

following MS (Dimatelis et al., 2012), highlighting the need for characterisation of 

these effects. 



179 
 

Other more naturalistic events in early life that impact on physiology and behaviour 

include weaning from the mother in the pre-adolescent period in rodents, which may 

also be considered stressful for a variety of reasons. At weaning, pups are subjected to 

different housing conditions and are no longer in the presence of the mother. Weaning 

also brings about a change in diet whereby pups are solely sustained on a solid food 

diet and are no longer breastfed, which in turn leads to vast expansion of the microbial 

communities residing in the GI tract, resulting in a spike in immune activation. This 

cascade of events is referred to as “the weaning reaction” (Al Nabhani et al., 2019). 

This vigorous immune reaction described by Al Nabhani and colleagues was also 

shown to be necessary for optimal immune system development as inhibition of this 

weaning reaction led to inflammatory pathologies later in life, likely due to immune 

dysregulation due to blocking of proper immune imprinting. Interestingly and 

similarly to MS, it has been seen in piglets that weaning results in impairments in gut 

barrier function as marked by an increase in transepithelial permeability and reduction 

in transepithelial electrical resistance (Hu et al., 2013b; Moeser et al., 2007). This 

increased gut barrier permeability may lead to bacterial translocation and initiate an 

immune response. It has also been suggested that these immune changes may 

predispose to pathology in later life (Mahmoud et al., 2016). Similarly, it has been 

shown that weaning induces upregulation of cells producing IFN-γ among other 

cytokines for at least 2 weeks following weaning (de Groot et al., 2021). However, the 

specific changes in gut and circulating immune profiles in the early pre-adolescent 

period is unknown, as is the impact of MS on these pre-adolescent changes in immune 

profiles. 
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The objective of this study was to investigate and characterise the impact of early life 

stress (ELS) on pre-adolescent changes in circulating and ileal immune profiles in 

male and female rats. 
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Methods 

Animals and housing 

Male and female Sprague Dawley rats (approximately 10 weeks of age) were 

purchased from Envigo, UK and were mated in the Biological Services Unit, Western 

Gateway Building, University College Cork, and consequent male and female 

offspring were used in this study. The day of birth was designated as postnatal day 0 

(PND0). Dams and littermates were housed in large plastic breeding cages (15 x 22 x 

9cm) in a humidity- and temperature-controlled room set to 21°C ± 1°C. The light/dark 

cycle was set to 12 hours (light phase 7am-7pm).  

Samples were collected 1 day prior to, and 1 day post weaning which occurred at 

PND21. At PND20, male and female pups were removed from the home cage and 

culled for sample collection. At PND21, the remaining littermates were weaned and 

housed separately by sex. At PND22, the remaining male and female offspring were 

culled for sample collection as described below. All experiments were conducted in 

accordance with European Directive 2010/63/EEC, the requirements of S.I No 543 of 

2012 and approved by the Animal Experimentation Ethics Committee of University 

College Cork. 

 

Experimental design 

Male and female offspring were divided into 8 experimental groups to investigate pre-

adolescent changes in circulating and gut immune profiles and the consequent impact 

of maternal separation (MS) on these changes. The sample collection timepoints were 

PND20 and PND22 (1 day prior to, and 1 day after weaning), where animals of both 
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sexes were divided as follows; Male MS, Male non-separated (NS), Female MS, 

Female NS. These same groups were formed for both the PND20 and PND22 

timepoints, resulting in 8 experimental groups (see Figure 1). 

 

Figure 1. Experimental design. MS: Maternal Separation, NS: Non-Separated, 

PND; Postnatal day. 

 

Maternal separation  

Maternal separation was carried out as previously described (O'Mahony et al., 2009). 

Briefly, at PND0 litters were randomly assigned to maternally separated (MS) or non-

separated (NS) groups. At PND2, the litters assigned to MS were moved from the main 

colony room to an adjacent room maintained at the same temperature (21 ± 2°C) and 

lighting conditions. The dam was first removed from the home cage and placed into a 

smaller holding cage, following which the pups (entire litters) were gently transferred 

together to a small cage where they remained for 3 hours. Cages containing the pups 

were placed on a heating pad set at 30–33°C and were filled with 3cm of bedding so 

pups could thermoregulate as needed. The dam was returned to the home cage and 

transferred back to the main colony room without her pups for this time period to avoid 

communication between the dam and her pups. After the 3-hour separation, dams were 
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again brought into the adjacent room and pups were returned to their original home 

cages. NS litters were also transported to the same room as the MS groups to avoid 

the confound of transportation stress but were otherwise left undisturbed in their home 

cages with their dams with the exception of weekly cage cleaning. This procedure was 

repeated daily from PND2 to PND12 inclusive. The period of separation was carried 

out at the same time each day (9am–12pm). At PND21, offspring were sexed and 

weaned, and both male and female offspring were used for the remainder of the study.  

 

Sample collection  

Animals were culled by decapitation at PND20 and PND22 (hereafter referred to as 

P20 and P22) and plasma and ileal samples were collected as follows: 

Plasma collection: Whole trunk blood was collected into an EDTA-coated blood 

collection tube and placed on ice. Whole blood was spun down in a centrifuge at 3500x 

g at 4°C for 15 minutes. Following this, plasma was removed and frozen at -80°C until 

later analysis. 

Ileal sample collection: The entire GI tract from stomach to anus was removed and 

sub-dissected into the small intestine, caecum, and colon. The small intestine was 

flushed with 10mM PBS to remove any luminal content and a 1.5cm segment of distal 

ileum, 2cm proximal to the caecum, was gently excised and snap frozen at -80°C until 

later analysis. 
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Gross anatomical measures 

Gross anatomical measures including spleen weight (corrected for body weight), body 

weight, and measures of the gastrointestinal tract were taken at the time of cull. 

 

Plasma cytokine measurements 

Circulating cytokines in the plasma were measured using a V-PLEX pro-inflammatory 

panel 2 rat kit (cat no. K15059D, MSD) as per manufacturers’ directions with the 

exception that plasma samples were not diluted prior to adding to the plate. Cytokines 

measured included interferon gamma (IFN-γ), interleukin (IL)-10, IL-13, IL-1β, IL-4, 

IL-5, IL-6, keratinocyte chemoattractant/growth-related oncogene (KC/GRO), and 

tumour necrosis factor alpha (TNF-α).  

 

Homogenisation of ileal tissue 

Based on the findings of (Al Nabhani et al., 2019) in changes of cytokine expression 

in the ileum, pre-adolescent changes in the gut immune profile were investigated in 

ileal tissue. To assess immune markers in gut tissue, tissue was homogenised, and the 

homogenate used for assessment of the levels of pro- and anti-inflammatory cytokines. 

2 tablets of protease inhibitor (cat no. 589297001, Merck) were dissolved in 45ml of 

PBS with 5ml foetal bovine serum. Ileal tissue was carefully transferred to a PCR-

grade 2ml screw cap tube containing 2.3mm beads. 500µl of the protease-PBS-FBS 

solution was added to each tube. Samples were then placed in a bead beater (MP 

FastPrep-24, MP Biomedicals) and homogenised for 30 seconds at full speed. Samples 
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were kept on ice for 15 minutes before the homogenate was collected. Samples were 

frozen and stored at -80°C until later analysis. 

 

Ileal cytokine measurements 

Levels of cytokines in the ileum were measured using a custom V-PLEX pro-

inflammatory panel 2 rat kit to measure IL-10, IL-1β, IL-6, KC/GRO, and TNF-α 

performed as per manufacturer’s instructions with the exception that the homogenate 

from ileum samples was not diluted prior to plating. Concentration readings were then 

normalised to tissue weight. 

 

Statistical analysis  

All data were assessed for normality using the Shapiro-Wilk test and Levene’s test for 

equality of variances. Normally distributed data were analysed using three-way 

ANOVA, two-way ANOVA and Tukey’s post hoc where appropriate. A p-value of 

0.05 was set as the threshold of statistical significance and all data are presented as 

Mean ± SEM. All statistical testing was performed using SPSS version 28 (IBM 

Statistics). 
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Results 

Early life stress induced sex-dependent increases in spleen weight, but not in body 

weight or gross measures of the GI tract  

The weight of the spleen was used as an indicator of general immune activation. When 

spleen weight was normalised to body weight, two-way ANOVA revealed a 

significant main effect of ELS (F(1,20) = 24.15, p < 0.001) on normalised spleen 

weight in males (Figure 2A). Further analysis using Tukey’s post hoc revealed that 

the normalised spleen weight of MS animals at P20 and P22 was higher than that of 

their NS counterparts (p = 0.014 and p = 0.009 respectively) (Figure 2A). In females, 

no differences in normalised spleen weight were noted (Figure 2B). 

No differences were noted in body weight or measurements of the different elements 

of the GI tract (data not shown).  

Figure 2. Sex-dependent alterations in spleen weight induced by maternal 

separation. (A) Maternally separated males at P20 and P22 displayed higher 

normalised spleen weight versus NS controls *p ≤ 0.05, **p ≤ 0.01. (B) In females, no 

change in normalised spleen weight was noted. Data presented as Mean ± SEM. n = 

4-9 per group for males and n = 8 per group for females. 
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Differential sex-dependent pre-adolescent changes in circulating cytokines  

To investigate the effect of MS and pre-adolescent changes on plasma cytokine levels, 

the data was initially split by sex. In males, a two-way ANOVA revealed a significant 

main effect of age (F(1,21) = 5.202, p = 0.033) and ELS (F(1,21) = 7.286, p = 0.013) 

on plasma levels of IFN-γ. Further analysis using Tukey’s post hoc revealed a trend 

towards a significant decrease in plasma IFN-γ levels in the P20 MS versus P20 NS 

males (p = 0.06) (Figure 3A). Two-way ANOVA revealed a significant main effect 

of an age*ELS interaction (F(1,22) = 6.870, p = 0.016) on plasma levels of IL-13. 

Tukey’s post hoc revealed a significant difference between the P20 NS and P22 NS 

groups whereby the P22 NS males displayed higher circulating levels of IL-13 (p = 

0.03) (Figure 3C). Analysis of plasma levels of IL-1β by two-way ANOVA revealed 

a significant main effect of age (F(1,16) = 11.318, p = 0.004), of ELS (F(1,16) = 7.762, 

p = 0.013), and of an age*ELS interaction (F(1,16) = 7.267, p = 0.016). Further 

analysis by Tukey’s post hoc revealed significant decrease in IL-1β levels in the P20 

MS versus P20 NS groups (p = 0.017) and in the P22 NS versus P20 NS groups (p = 

0.006) (Figure 3D). Analysis of circulating levels of IL-5 by two-way ANOVA 

revealed a significant main effect of age (F(1,20) = 6.308, p = 0.021), and of an 

age*ELS interaction (F(1,20) = 5.347, p = 0.032). Tukey’s post hoc revealed a 

significant increase in IL-5 levels in the P22 NS versus P20 NS males (p = 0.017) 

(Figure 3F). Analysis of plasma levels of IL-6 by two-way ANOVA revealed a 

significant main effect of ELS (F(1,18) = 11.093, p = 0.004). Tukey’s post hoc 

revealed a significant increase in plasma IL-6 levels in the P20 MS versus P20 NS 

males (p = 0.015) (Figure 3G). All analyses on the other cytokines measured did not 

reveal significant changes. 
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In females, two-way ANOVA revealed a significant main effect of an age*ELS 

interaction (F(1,26) = 10.182, p = 0.004) on circulating levels of IL-5. Further analysis 

using Tukey’s post hoc revealed a significant decrease in IL-5 levels in P20 MS versus 

the P20 NS females (p = 0.025), and a trend towards a decrease in the P22 NS versus 

P20 NS females (p = 0.06) (Figure 3O). Again, no further differences in the other 

cytokines measured were noted. 
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Figure 3. Differential sex-dependent pre-adolescent changes in circulating 

cytokines. In males: (A) IFN-γ (B) IL-10 (C) IL-13; higher levels of IL-13 in NS males 

at P22 versus P20 NS group; *p ≤ 0.05 (D) IL-1β; P20 NS males displayed a 

significant increase in IL-1β plasma levels versus P20 MS and P22 MS groups; *p ≤ 

0.05, **p ≤ 0.01 (E) IL-4 (F) IL-5; P22 NS males show higher circulating levels of 

IL-5 versus P20 NS group; *p ≤ 0.05 (G) IL-6; P20 MS males show higher levels of 

IL-6 versus P20 NS animals; *p ≤ 0.05 (H) KC/GRO (I) TNF- α. In females: (J) IFN-

γ (K) IL-10 (L) IL-13 (M) IL-1β (N) IL-4 (O) IL-5; P20 NS females showing higher 

circulating levels of IL-5 versus P20 MS animals; *p ≤ 0.05 (P) IL-6 (Q) KC/GRO (R) 
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TNF- α. Data presented as Mean ± SEM. n = 3-9 per group for males, n = 4-8 per 

group for females. 

 

When analysed together, with sex, ELS, and age as independent variables, three-way 

ANOVA revealed a significant main effect of age (F(1,30) = 16.842, p < 0.001), of 

ELS (F(1,30) = 7.914, p = 0.009), and of an age*ELS*sex interaction (F(1,30) = 4.199, 

p = 0.049) on circulating IL-1β levels. Further analysis using Tukey’s post hoc 

revealed a trend towards decreased levels of IL-1β in P20 MS versus P20 NS males (p 

= 0.06) as well as lower levels of IL-1β in P22 NS versus P20 NS males (Figure 4D). 

Analysis of circulating IL-5 levels by three-way ANOVA revealed a significant main 

effect of sex (F(1,46) = 5.247, p = 0.027), and of an age*ELS*sex interaction (F(1,46) 

= 12.189, p = 0.001). Further analysis with Tukey’s post hoc revealed significant 

differences between P20 NS males and P20 NS females whereby IL-5 levels were 

higher in the females (p = 0.004), between P20 NS and P20 MS females whereby the 

MS females displayed lower IL-5 levels (p = 0.008), and between P20 NS and P22 NS 

females whereby P22 females displayed lower levels of IL-5 (p = 0.035) (Figure 4F). 

No further differences in the other cytokines measured were revealed. 
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Figure 4. Differential sex-dependent effects of early life stress on circulating 

cytokine levels. (A) IFN-γ (B) IL-10 (C) IL-13 (D) IL-1β; P20 NS males show higher 

levels of IL-1β versus P22 NS males; *p ≤ 0.05 (E) IL-4. (F) IL-5; P20 NS females 

display higher levels of IL-5 versus P20 NS males, P20 MS females, and P22 NS 

females *p ≤ 0.05, **p ≤ 0.01 (G) IL-6 (H) KC/GRO (I) TNF- α. Data presented as 

Mean ± SEM. n = 3-9 per group. 

 

No pre-adolescent changes in ileal cytokines evident at P22  

To investigate pre-adolescent changes in cytokines in the gut in response to maternal 

separation, the data was first split by sex. In males no differences in ileal levels of any 

of the cytokines measured were noted (Figure 5A-E). Similarly in females, no 

changes in the levels of the cytokines measured were noted (Figure 5F-J). 
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Figure 5. No pre-adolescent changes in ileal cytokines between the sexes. (A) IL-10 

(B) IL-1β (C) IL-6 (D) KC/GRO (E) TNF-α (F) IL-10 (G) IL-1β (H) IL-6 (I) KC/GRO 

(J) TNF-α. Data presented as Mean ± SEM. n = 2-9 per group for males and n = 3-8 

per group for females. 

 

To investigate sex differences in ileal cytokine levels age, sex, and ELS were used as 

independent variables. When ileal levels of KC/GRO were assessed, three-way 

ANOVA revealed a significant main effect of age (F(1,45) = 7.503, p = 0.009), of sex 

(F(1,45) = 5.146, p = 0.028), and of an ELS*sex interaction (F(1,45) = 6.576, p = 

0.014) (Figure 6D). Further analysis using Tukey’s post hoc revealed that ileal levels 

of KC/GRO were higher in P22 MS females versus P22 MS males (p = 0.03) (Figure 

6D). No differences in the other cytokines measures were noted (Figure 6 A-C, E). 
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Figure 6. Sex-dependent differences in ileal cytokine levels. (A) IL-10 (B) IL-1β (C) 

IL-6 (D) KC/GRO; higher levels of KC/GRO were noted in the P22 MS female group 

versus the P22 MS male group, *p ≤ 0.05. (E) TNF-α. Data presented as Mean ± SEM. 

n = 2-9 per group. 

 

A summary of the results highlighting ELS-induced and pre-adolescent-related 

changes on circulating and gut cytokines can be seen in Table 1 and 2 respectively. 

Table 1. Summary of pre-adolescent changes and effects of early life stress on 

circulating cytokines. *p = 0.06. P - Postnatal day; NS – Non-separated; MS – 

maternally separated; ↑ - increase; ↓ - decrease. 

Cytokine ELS effect Pre-adolescent 

Change 

Sex Difference 

IFN-γ ↓ in P20 MS vs P20 NS 

males 

- - 

IL-5 ↓ in P20 MS vs P20 NS 

females 

↑ in P22 NS vs P20 NS 

males 

↓ in P22 NS vs P20 NS 

females* 

Higher in NS 

females at P20 

versus P20 males 

IL-6 ↑ in P20 MS vs P20 NS 

males 

 - 

IL-13 - ↑ in P22 NS vs P20 NS 

males 

- 
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Table 2. Summary of pre-adolescent changes and changes induced by early life 

stress on gut cytokines. P - Postnatal day; NS – Non-separated; MS – maternally 

separated; ↑ - increase; ↓ - decrease. 

Cytokine ELS effect Pre-adolescent Change Sex Difference 

KC/GRO - - Higher in MS females 

versus MS males at P22 

 

 

 

 

 

 



195 
 

Discussion 

Here, for the first time, we characterise pre-adolescent changes in circulating and gut 

immune profiles and investigate the effects of ELS on these changes in male and 

female rats. Interestingly, we report different changes in circulating cytokines 

depending on sex. Of interest, these pre-adolescent changes only occurred in NS 

animals for circulating cytokine levels, with no specific changes being seen in ileal 

cytokine levels, suggesting that MS blocks these normal pre-adolescent changes. 

Interestingly, MS induced different alterations in circulating cytokine levels in males 

versus females. This may suggest that MS exerts differential effects on systemic versus 

gut immunity or a different temporality for immune changes in the pre-adolescent 

period. While there are studies investigating changes in the immune system in this pre-

adolescent period by using the early weaning model, the impact of appropriate 

weaning on the immune system in this early pre-adolescent period is not known.  

MS resulted in increased spleen weight in male rats only which has been reported 

previously in the literature (Thornton et al., 2021), while some studies have indicated 

no change (Roque et al., 2014; Savignac et al., 2011). Similarly, Thornton and 

colleagues reported no difference induced by MS in the spleen weight of females as 

we also noted here. However, this is the first study to investigate these changes in this 

early pre-adolescent period. This increased spleen weight suggests general immune 

activation or an inflammatory state. This sex-dependent effect of MS has been widely 

reported in the literature, with males being more susceptible to the effects of MS than 

females. 

We noted pre-adolescent changes in IL-5, a pro-inflammatory cytokine that has been 

suggested to play a role in eosinophilic asthma (Pelaia et al., 2019) given its role in 
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eosinophil differentiation, survival, recruitment, and degranulation. IL-5 is also 

closely linked with B-cell differentiation. Specifically, we found that IL-5 was 

elevated at the P22 timepoint in control male rats compared to their P20 controls, while 

this cytokine was decreased at this same timepoint in control females, indicating a 

differential sex response in these pre-adolescent changes. An increase in IL-5 

production in male children with asthma has been reported following stress (Chen et 

al., 2006). Interestingly, IL-5 treatment in mice resulted in the production of TGF-β1 

in the spleen, which resulted in a suppression of antigen-specific immune response of 

CD4+ T cells in vitro (Nakagome et al., 2007), suggesting that this increase in IL-5 

seen in males may result in suppression of the immune system, leaving the host 

susceptible to infection. We also noted that circulating levels of IL-13 were higher in 

P22 NS versus their P20 counterparts. IL-13 is an anti-inflammatory cytokine that 

modulates human B cells and monocytes, and may inhibit the release of inflammatory 

cytokines (Dembic, 2015). Similarly to IL-5, excessive amounts of IL-13 are seen in 

pathogenic conditions such as asthma, and anti-IL-13 drugs have been trialled against 

asthma (Mannon and Reinisch, 2012).  

When the effect of ELS on plasma immune profiles were investigated, it was noted 

that IFN-γ was present at a lower level in male P20 MS rats in comparison to their 

control counterparts. IFN-γ is a pro-inflammatory cytokine and macrophage activator 

and plays a key role in protective cellular immunity (Kak et al., 2018). Low cytokine 

production, particularly IFN-γ in early life has been associated with an increased risk 

for sensitisation to allergens (Stern et al., 2007), suggesting that low levels of IFN-γ 

in early life may predispose to immune-related disorders.  

MS was also associated with lower plasma IL-5 in female P20 MS rats relative to the 

NS controls at this age. The observed lower levels of IL-5, a known pro-inflammatory 
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cytokine, suggest that MS results in a lesser inflammatory process in females versus 

in males. Given that IL-5 has been shown to be increased following stress, this 

paradoxical decrease in MS females highlights the need for further investigations of 

the impacts of MS in females.  

An increase in IL-6 in P20 MS males versus their NS counterparts was also seen. IL-

6 is categorised as a pro-inflammatory cytokine, however, depending upon the 

conditions used, its effects have been described as pro- or anti-inflammatory (Scheller 

et al., 2011). The term “inflammation-responsive” cytokine has been used for this 

reason as IL-6 itself does not directly induce inflammation (Philippou et al., 2012).  

IL-6 has been shown previously to be decreased in the blood of MS animals under 

baseline conditions at PND15 (Roque et al., 2016). However, interestingly in this 

study by Roque and colleagues, blood IL-6 levels were shown to be increased 

following a consequent stressor. However, as this data was generated from rodents at 

PND15, 1 day after the conclusion of the stress hyporesponsive period where 

biological responsivity to stress is altered. Similarly, another study reported increased 

circulating IL-6 levels in MS samples following consequent stimulation with 

concanavalin A (Desbonnet et al., 2010). IL-6 has been suggested to play a role in the 

aetiology of depression, and has even been suggested to be suitable as a marker to 

classify subtypes of major depressive disorder (Ting et al., 2020). This is further 

reinforced by studies reporting higher IL-6 in those who were abused or neglected in 

early life (Munjiza et al., 2018), and it is known that ELS is associated with increased 

risk for development of stress-related psychiatric disorders such as depression (Syed 

and Nemeroff, 2017). Our data may shed some light on changes in cytokine levels due 

to MS outside of the stress hyporesponsive period.   
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Interestingly, the changes in circulating cytokine levels induced by ELS only occurred 

at P20, prior to weaning with no changes induced by ELS following weaning. Further, 

any pre-adolescent changes noted were in NS animals. This suggests a complex 

interplay between pre-adolescent changes and ELS whereby any pre-adolescent 

changes in circulating cytokine levels may have been blocked by MS as no alterations 

in cytokine levels due to weaning were noted in MS animals. 

Interestingly, when investigating pre-adolescent changes due to weaning in the gut 

immune profile in the ileum, no changes in cytokines were noted. The only difference 

noted was that KC/GRO was higher in P22 MS females versus their male counterparts. 

KC/GRO is a powerful neutrophil chemoattractant and is stimulated in keratinocytes, 

monocytes, and macrophages in response to stimuli including TNF-α and microbial-

borne signals (Shea-Donohue et al., 2008). Interestingly, mice deficient in KC/GRO-

α displayed an exaggeration response to DSS-induced colitis (Shea-Donohue et al., 

2008), highlighting the protective role of KC/GRO in the intestinal response to 

inflammatory insult. The fact that no pre-adolescent changes or impact of ELS was 

noted on ileal cytokine levels suggests that the circulating immune factors react 

initially, with any possible changes in the gut taking longer to be expressed. Given that 

the timepoints used were P20 and P22, this window may have been too narrow to 

detect changes in the gut immune response. It has also been shown that an increase in 

the number of lymphocytes secreting cytokines in the gut was increased at 1 and 2 

weeks after weaning, supporting the slower expression of change in the gut versus in 

circulation (Vázquez et al., 2000). Another study reported upregulation of IL-1β, IL-

6, and TNF-α mRNA along the intestine up to 2 days post-weaning, suggesting that 

the pre-adolescent changes in immune profiles involves changes in gene expression 

first, followed by changes in cytokine levels after a time (Pié et al., 2004). 
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The sex differences in cytokine levels reported in this study reflect the difference in 

immune responses between the sexes. These sex differences are thought to stem from 

circulating sex hormones such as oestradiol and androgens (Klein and Flanagan, 

2016), however, it is not likely that variations in these circulating sex hormones may 

be impacting on cytokine levels at this pre-adolescent period as oestrous cycling in 

female rats is not thought to begin until at least PND30 (Westwood, 2008). It has been 

reported that cytokine production differs between the sexes whereby peripheral blood 

mononuclear cells from males produces more IL-10 and TNF when exposed to a viral 

synthetic ligand or lipopolysaccharide respectively (Moxley et al., 2002; Torcia et al., 

2012). Further, the efficacy of antigen-presenting cells and phagocytic activity of 

macrophages are higher in females, suggesting that there are inherent sex differences 

in immune responses (Spitzer, 1999; Weinstein et al., 1984). 

In summary, in contrast to circulating levels of cytokines, no pre-adolescent changes 

in ileal cytokines were noted. Further, any ELS-induced changes to circulating 

cytokines were only noted at the P20 timepoint in the circulation. Together, this may 

suggest that pre-adolescent changes in cytokines first take place in the circulation, 

which may then induce changes in the GI immune profile in a slower manner. 

Alternatively, it may be suggested that MS blocks systemic pre-adolescent changes in 

cytokines given the absence of circulating cytokine changes in the MS groups, which 

may play a role in the manifestation of MS-induced behavioural and physiological 

changes. These findings also support the reports of MS-induced immune dysregulation 

in the literature. Overall, we characterise pre-adolescent changes due to weaning on 

the circulating immune profile and the consequent effect of MS. 
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Limitations  

While the current study investigates several cytokines both in circulation and in gut 

tissue, whether these changes in cytokine levels seen affect physiology and behaviour 

at these timepoints is not clear. Further, the exact cause of these changes is unclear 

and the question of whether it is solely the dietary change, change in housing 

conditions, absence of the mother, or a function of all of these is responsible requires 

further investigation. Future studies should further delve into the ramifications of the 

changes in the immune profile in this pre-adolescent period, possibly using timepoints 

that are further apart. It should also be noted that the apparent changes in IL-1β in the 

plasma and IL-10 in ileal tissue are subject to scrutiny as these cytokines in many of 

the samples from these groups were below the limit of detection of the inflammatory 

panel used. 
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Abstract 

Psychological stress affects maternal gastrointestinal (GI) permeability, leading to 

low-grade inflammation, which can negatively affect foetal development. We 

investigated a panel of circulating markers as a biological signature of this stress 

exposure in pregnant women with and without the stress-related GI disorder irritable 

bowel syndrome (IBS). Markers of GI permeability and inflammation were measured 

in plasma from healthy and IBS cohorts of women at 15- and 20-weeks’ gestation. 

Biomarkers were evaluated with respect to their degree of association to levels of 

stress, anxiety, and depression as indicated by responses from the Perceived Stress 

Scale, State-Trait Anxiety Inventory, and Edinburgh Postnatal Depression Scale. High 

levels of stress were associated with elevations of soluble CD14, lipopolysaccharide 

binding protein (LBP), and tumour necrosis factor–α while anxiety was associated 

with elevated concentrations of C-reactive protein (CRP) in otherwise healthy 

pregnancies. Prenatal depression was associated with higher levels of soluble CD14, 

LBP, and CRP in the healthy cohort. High levels of prenatal anxiety and depression 

were also associated with lower concentrations of tryptophan and kynurenine, 

respectively, in the IBS cohort. These markers may represent a core maternal 

biological signature of active prenatal stress, which can be used to inform intervention 

strategies via stress reduction techniques or other lifestyle approaches. Such 

interventions may need to be tailored to reflect underlying GI conditions, such as IBS. 
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Introduction 

Maternal prenatal stress is associated with several unfavourable pregnancy outcomes, 

including preterm birth (Lilliecreutz et al., 2016) and low infant birth weight (Khashan 

et al., 2014), while anxiety and depression early in pregnancy are considered risk 

factors for preeclampsia, a potentially fatal complication of pregnancy (Maher et al., 

2017). Prenatal stress is also associated with altered programming of the developing 

foetal brain and an increased likelihood of behavioural problems manifesting during 

childhood and diagnosis of psychopathology in later life (Glover, 2019). Preclinical 

studies have demonstrated that induction of prenatal stress impedes optimum cognitive 

(Chan et al., 2018), behavioural (Gur et al., 2019), and psychosocial (Gur et al., 2017) 

development in the offspring. These findings are supported by prospective studies in 

humans, with neurodevelopmental ramifications encompassing temperamental and 

behavioural difficulties (Hartman et al., 2020), cognitive impairments (Laplante et al., 

2004), and a hyperactive stress response along the hypothalamic-pituitary-adrenal axis 

(Van den Bergh et al., 2017).  

Delineation of the molecular pathways that link prenatal stress to neurodevelopment 

is a critical first step in identifying biological risk factors associated with adverse 

outcomes. Conventional pathways of translocation of maternal glucocorticoids 

(Weinstock, 2008) and proinflammatory cytokines (Patterson, 2009) across the 

placenta and their direct action on the developing foetal brain have been the focus of 

many mechanistic studies in this area. It is becoming increasingly apparent, however, 

that alternative indirect routes may be more relevant to eliciting the downstream 

effects of prenatal stress, via neuroimmune interactions along the microbiota-gut-brain 

axis (Cryan et al., 2019). 
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A loss of gastrointestinal (GI) barrier integrity allows bacterial components, such as 

lipopolysaccharides (LPS) contained in the cell walls of gram-negative bacteria, to 

migrate into the general circulation and contribute to a systemic proinflammatory state 

(Power et al., 2014). In confirmation of this, functional and/or compositional 

alterations in the gut microbiota modify intestinal barrier permeability (Vaarala et al., 

2008). Concomitantly, acute psychological stress has been shown to increase 

permeability of the small intestine (Vanuytsel et al., 2014), whereas disruption of the 

intestinal mucosal barrier has been implicated in the inflammatory pathophysiology of 

depression (Kelly et al., 2015). The state of chronic, low-grade inflammation that 

results from increased gut permeability is also known to negatively affect 

neurodevelopment (Jiang et al., 2018).  

A mechanistic pathway implicated in this negative impact is the alteration in 

tryptophan (Trp) availability due to increased degradation of this essential amino acid 

along the kynurenine (Kyn) pathway (Notarangelo and Pocivavsek, 2017; O'Mahony 

et al., 2015). Altered gut microbiota profile, elevated gut permeability, low-grade 

inflammation, and Trp degradation along the Kyn pathway are all traits characteristic 

of irritable bowel syndrome (IBS), a highly prevalent functional disorder of the GI 

tract (Black and Ford, 2020; Clarke et al., 2009a; Enck et al., 2016; Kennedy et al., 

2014a). Notably, stress is implicated in the pathogenesis of IBS, with its trademark 

symptoms, including intestinal sensitivity, motility, and permeability as well as 

mucosal immune activation, each shown to be exacerbated in the presence of 

psychological stresses (Qin et al., 2014). It is also well established that rates of 

psychiatric disorders, particularly anxiety and depression, are elevated among patients 

with IBS (Black et al., 2020a; Fond et al., 2014). 
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Here we investigate whether GI permeability and systemic inflammation are elevated 

in mothers who experience higher levels of stress, anxiety, and depression during 

pregnancy, and whether this stress signature is potentially augmented in women with 

IBS. We investigated circulating markers of these pathophysiological functions in the 

first and second trimester of pregnancy to identify associations that may serve as 

biological indicators of active prenatal maternal stress in a healthy cohort and in 

women with IBS. We anticipate that an assemblage of molecular indicators related to 

these processes, whose augmentation points to adverse pregnancy and 

neurodevelopmental outcomes, will aid in screening for at-risk pregnant women and 

informing appropriate intervention strategies aimed at counteracting the effects of 

prenatal maternal stress via either stress reduction techniques or other lifestyle 

approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 207 

Methods 

Study cohort.  

The Screening for Pregnancy Endpoints (SCOPE) study (Kenny et al., 2014) was a 

collaborative project that established a unique international pregnancy biobank toward 

the identification of biomarkers that could be used to predict adverse pregnancy 

outcomes. The present study consisted of a subset (n = 209) of healthy nulliparous 

women with singleton pregnancies recruited to the Cork cohort of the SCOPE study 

(n = 1774) between November 2004 and January 2011. Women were excluded if 

underlying medical conditions indicated a high risk of preeclampsia, spontaneous 

preterm birth, or delivering a small for gestational age infant. Enrolled subjects 

underwent assessment by a SCOPE research midwife at 15 ± 1 (visit 1) and 20 ± 1 

(visit 2) weeks’ gestation. Demographic and clinical characteristics were obtained 

from subjects during the first visit, including the self-reported presence of IBS, defined 

as a combination of frequent diarrhoea and/or constipation accompanied by abdominal 

pain and sensation of bloating. Using this classification, all women with IBS and no 

exclusion criteria (n = 105) were included in the study together with an equivalent 

number of healthy women selected randomly from women with no exclusion criteria 

and no IBS (n = 104). Subject demographics, together with lifestyle characteristics 

collected at both visits, are presented in Supplemental Table 2. Heparinised blood 

samples were also collected before 12pm on the morning of each visit from which 

plasma was extracted for long-term storage in the SCOPE pregnancy biobank. 
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Assessment of maternal psychological status.  

Subjects completed a number of clinically validated questionnaires at each visit in 

order to gauge prenatal levels of stress, anxiety, and depression. The Perceived Stress 

Scale (PSS) (Cohen et al., 1983) was used to evaluate the degree to which subjects 

perceived more generalised forms of stress in the month before assessment by 

appraising their feelings as to how they were able to handle daily hassles, how often 

they felt nervous and stressed, and how often they felt things were going well. The 

short form of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI) 

(Marteau and Bekker, 1992) was used to assess the degree to which subjects 

experienced anxiety-related symptoms or emotions at the time of assessment. Finally, 

the Edinburgh Postnatal Depression Scale (EPDS) (Cox et al., 1996) was used to 

determine the presence of depressive symptoms in subjects in the week prior to 

assessment. Lower quartile (PSS - 7.5; STAI - 23.3; EPDS - 2.5) and upper quartile 

scores (PSS - 17; STAI - 40; EPDS - 9.5) of time point averages were derived from 

the complete Cork cohort of the SCOPE study and used as cut-offs to define low - 

(<25th percentile), moderate - (25th to <75th percentile), and high - (≥75th percentile) 

scoring groups for each of the psychological evaluations. Mean scores across both 

visits were subsequently used to stratify subjects from the present healthy and IBS 

cohorts into appropriate scoring groups, as outlined in Figure 7. A justification for the 

inclusion of each marker as it relates to GI permeability, systemic inflammation, and 

Trp metabolism is presented in Supplemental Table 1.  
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Measurement of gut permeability markers 

Levels of circulating intestinal fatty acid binding protein (IFABP) and Soluble CD14 

(sCD14) (Quantikine Immunoassays, R&D Systems, Bio-Techne), lipopolysaccharide 

binding protein (LBP) (Hycult Biotech), and anti-endotoxin core antibodies 

(EndoCAb IgA IgG IgM, Hycult Biotech) were determined using commercially 

available quantitative ELISAs. For each assay, samples were analysed in duplicate 

according to the manufacturers’ instructions with absorbances measured at 450nm on 

a Synergy HT BioTek plate reader (Mason Technology). Results were calculated on a 

4-parameter logistics curve generated using Gen5 BioTek Microplate Data Collection 

and Analysis software (Mason Technology). Inter- and intra-assay coefficients of 

variation for each assay are presented here respectively as follows: IFABP (5.8% and 

5.5%), sCD14 (2.5% and 5.8%), LBP (5.1% and 2.7%), anti-endotoxin IgA (5.9% and 

9.1%), anti-endotoxin IgG (8.8% and 9.0%), and anti-endotoxin IgM (5.2% and 

9.9%). 

  

Measurement of proinflammatory markers 

Serum concentrations of 4 cytokines (IFN-γ, TNF-α, IL-6, IL-18) and 5 chemokines 

(IL-8, IP-10, MCP-1, SDF-1α, MIF) were determined using the Meso Scale U-PLEX 

platform (Meso Scale Diagnostics). This customised multiplex biomarker kit is a high 

sensitivity electrochemiluminescence (ECL) immunoassay. Circulating levels of C- 

reactive protein (CRP) were also assessed by means of ECL immunoassay using the 

V-PLEX Human CRP Kit (Meso Scale Diagnostics). For each assay, samples were 

analysed in duplicate according to the manufacturers’ instructions with ECL measured 

on a QuickPlex SQ 120 multiplex imager (Meso Scale Diagnostics). Concentrations 
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were calculated from a standard curve calculated using a 4-parameter logistic fit using 

Workbench 4.0 software (Meso Scale Diagnostics). The inter- and intra-assay 

coefficients of variation are presented here respectively as follows: IFN-γ (8.7% and 

9.5%), TNF-α (6% and 10.3%), IL-6 (6.4% and 9.8%), IL-18 (5.6% and 4.8%), IL-8 

(5.4% and 7.2%), IP-10 (6.6% and 6.1%), MCP-1 (6.6% and 6.2%), SDF-1α (9.1% 

and 8.6%), MIF (12.4% and 10.9%), and CRP (1.5% and 1.8%).  

 

Measurement of tryptophan metabolites 

To determine the levels of Trp and Kyn, 198μL of plasma was spiked with internal 

standard (2μL) (3-Nitro l-tyrosine) before being deproteinised by the addition of 20μL 

of 4M perchloric acid. Samples were centrifuged at 20,000g on Hettich Mikro 22R 

centrifuge (AGB) for 15 minutes at 4°C and 100μL of supernatant transferred to an 

HPLC vial for analysis. Stock solutions of each standard were prepared in HPLC-

grade water. Working dilutions were prepared from the stock standards, aliquoted in 

suitable vials, and stored at –80°C until required for analysis, at which point 20μL of 

4M perchloric acid was also added and vortexed. Then 20μL of standards and sample 

supernatants were vortexed and 20μL of the supernatant was injected into the HPLC 

system (consisting of a CBM-20A system controller, a UV-Vis SPD-10A detector for 

Kyn, a fluorescence RF-20A detector for Trp, an LC-20AD pump, a CTO-20AC 

column oven at 30°C, a SIL-20AC HT autosampler, and a Prominence DGU-205R 

degasser). All samples were injected onto a reverse phase Luna 3μm C18(2) 100A size 

LC column 150 × 2mm (Phenomenex), which was protected by Krudkatcher 

disposable pre-column filters (Phenomenex) and SecurityGuard cartridges 

(Phenomenex). The mobile phase consisted of 50mM acetic acid and 100mM zinc 
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acetate with 3% (v/v) acetonitrile and was filtered through MilliporeSigma 0.45μm 

HV Durapore membrane filters (AGB) and vacuum degassed prior to use. Compounds 

were eluted isocratically over a 30-minute run time at a flow rate of 0.3mL/min after 

a 20μL injection. The columns were maintained at a temperature of 30°C, and 

samples/standards were kept a 4°C in the cooled autoinjector prior to injection. The 

fluorescence detector was set at an excitation wavelength of 254nm and an emission 

wavelength of 404nm. The UV detector was set at 330nm. l-Trp and its metabolite 

Kyn were identified by their characteristic retention times as determined by injection 

standards, which were run at regular intervals during the sample analysis. 

Chromatograms were analysed using the LabSolutions software (Shimadzu) and 

concentrations determined using analyte/internal standard peak height ratios. Results 

were expressed as ng/mL of supernatant.  

 

Statistics 

All data are presented as mean ± SEM, unless otherwise indicated. A 2-way repeated 

measures ANOVA was run to elucidate differences between healthy and IBS cohorts 

across gestational time points on biomarker concentrations using SPSS, version 25.0 

(IBM Statistics). An equivalent analysis was also performed for each cohort 

individually to determine the effect of different scoring groups for each stress measure 

over time on each biomarker, with Tukey’s HSD used for post-hoc analysis between 

individual scoring groups. Perceived stress, anxiety, and depression scores were also 

investigated as continuous response variables against each biomarker in multiple 

linear regression models carried out in R. Biomarker coefficients adjusted for age, 

BMI, socioeconomic status, smoking status, and alcohol intake prior to participation 
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in the study are reported. Statistical significance was accepted at the p<0.05 level of 

confidence for all models. 

 

Study approval 

The research described received approval from the Clinical Research Ethics 

Committee of the Cork Teaching Hospitals (protocol number: APC1004; approval 

number: APC-D-14). Informed consent was obtained from all participants, who were 

free to withdraw from the study at any time. 
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Results 

Healthy cohort associations 

Associations between maternal perceived stress and biomarker levels in the 

healthy cohort.  

Significant differences in PSS scoring groups across gestational time points are 

outlined in Figure 1. sCD14, LBP, and TNF-α levels were found to significantly 

increase in the high-scoring group (110.96 ± 43.5ng/mL, p = 0.033; 4.27 ± 1.57μg/mL, 

p = 0.021; 0.62 ± 0.26pg/mL, p = 0.049; respectively) compared with the low-scoring 

group. Conversely, IL-8 concentrations were observed to be significantly lower in the 

high-scoring group (–0.45 ± 0.16pg/mL, p = 0.018) compared with moderate scorers. 

Significant differences in biomarker levels between scoring groups were not 

complemented by the presence of linear associations between circulating biomarkers’ 

concentrations and PSS scores in healthy participants, as outlined in Supplemental 

Table 4. 
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Figure 1. Differences in PSS scoring groups across gestational timepoints in the 

healthy cohort (n = 22/54/28 from Low/Moderate/High). (A) Heatmap of normalised 

biomarker means across scoring groups and time-points. Individual boxes are 

represented on a scale from red to blue. Darker red boxes represent markers whose 

concentrations were found to be at least one standard deviation lower than the mean 

concentration across stress group and time point. Darker blue boxes represent 

markers whose concentrations were found to be at least than one standard deviation 

higher than the mean concentration across stress group and time point. Lower z-

scores are evident for LBP, sCD14 and TNF-α in the low scoring group at 15 and 20 

weeks; and for IL-8 in the high scoring group at 15 and 20 weeks. Significant 

differences between PSS scoring groups are illustrated for (B) LBP, (C) sCD14, (D) 

IL-8 and (E) TNF-α (2-way ANOVA with Tukey’s HSD). *p < 0.05. 

 

Associations between maternal anxiety and biomarker levels in the healthy 

cohort 

Significant differences in STAI scoring groups across gestational time points are 

outlined in Figure 2. sCD14 levels were found to significantly increase in the high- 

(113.02 ± 42.46ng/mL, p = 0.025) and low-scoring groups (100.72 ± 38.36ng/mL, p 

= 0.027) compared with moderate scorers. LBP levels were also observed to increase 

with high (5.56 ± 1.95μg/mL, p = 0.015) compared with moderate scores for 

measurements taken at 20 weeks’ gestation, with concentrations significantly 
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increasing from 15 weeks’ gestation (3.01 ± 1.14μg/mL, p = 0.019) for high-scoring 

participants only. Meanwhile, CRP levels were found to be significantly higher in the 

high-scoring group compared with moderate- (3.43 ± 1.09μg/mL, p = 0.006) and low-

scoring groups (3.39 ± 1.33μg/mL, p = 0.032). Significant differences in LBP and 

CRP levels between scoring groups were complemented by the presence of positive 

linear associations between their circulating concentrations and STAI scores in both 

simple and adjusted models, as outlined in Supplemental Table 5. Additional positive 

associations with STAI scores are noted for simple and adjusted models of the 

Trp/Kyn ratio at 15 weeks’ gestation, as well as for IL-6 and covariate-adjusted IP-10 

and Trp/Kyn ratio at 20 weeks’ gestation. 

Figure 2. Differences in STAI-scoring groups across gestational time points in the 

healthy cohort (n = 18/70/16 from low/moderate/high). (A) Heatmap of normalised 

biomarker means across scoring groups and time points. Individual boxes are 

represented on a scale from red to blue. Darker red boxes represent markers whose 

concentrations were found to be greater than 1 standard deviation lower than the 

mean concentration across stress group and time point. Darker blue boxes represent 
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markers whose concentrations were found to be greater than 1 standard deviation 

higher than the mean concentration across stress group and time point. Lower z-

scores are evident for intestinal fatty acid binding protein (IFABP) in the low-scoring 

group at 20 weeks. Higher z-scores are evident for IL-6 in the low-scoring group at 

15 weeks; for IFABP, anti-endotoxin IgG, IL-8, and tryptophan/kynurenine ratio 

(Trp/Kyn ratio) in the high-scoring group at 15 weeks; and for LBP, C-reactive 

protein (CRP), and IFN-γ–induced protein 10 (IP-10) in the high-scoring group at 20 

weeks. Significant differences between STAI-scoring groups are illustrated for (B) 

LBP, (C) sCD14, and (D) CRP (2-way ANOVA with Tukey’s HSD). *p < 0.05. MCP-

1, monocyte chemoattractant protein-1; MIF, macrophage migration inhibitory 

factor; SDF-1α, stromal cell-derived factor 1α. 

 

Associations between maternal depression and biomarker levels in the healthy 

cohort.  

Significant differences in EPDS scoring groups across gestational time points are 

outlined in Figure 3. sCD14, LBP, and CRP levels were found to significantly 

increase in the high-scoring group (113.87 ± 47.09ng/mL, p = 0.046; 4.41 ± 

1.74μg/mL, p = 0.035; 2.71 ± 1.13μg/mL, p = 0.048; respectively) compared with low 

scorers, as well as compared with moderate scorers (2.56 ± 0.97μg/mL, p = 0.026) in 

the case of CRP. Concentrations of sCD14 and TNF-α were also observed to be 

elevated in the moderate-scoring group (93.02 ± 37.43ng/mL, p = 0.039; 0.66 ± 

0.21pg/mL, p = 0.006; respectively) compared with the low-scoring group. Significant 

differences in LBP levels between scoring groups were in line with the presence of 

positive linear associations, as outlined in Supplemental Table 6, between its 

circulating concentrations and EPDS scores observed at 20 weeks’ gestation in both 

simple and adjusted models. For both moderate- and high-scoring groups, IL-8 levels 

at 20 weeks’ gestation were noted to be significantly decreased compared with 15 

weeks’ gestation (–0.30 ± 0.09pg/mL, p = 0.001; –0.36 ± 0.16pg/mL, p = 0.035; 

respectively). A negative association was also noted between circulating IL-8 levels 
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and EPDS scores at 20 weeks’ gestation, although this association was no longer 

significant in the adjusted model.  

Figure 3. Differences in EPDS scoring groups across gestational time points in the 

healthy cohort (n = 24/61/19 from low/moderate/high). (A) Heatmap of normalised 

biomarker means across scoring groups and time points. Individual boxes are 

represented on a scale from red to blue. Darker red boxes represent markers whose 

concentrations were found to be greater than 1 standard deviation lower than the 

mean concentration across stress group and time point. Darker blue boxes represent 

markers whose concentrations were found to be greater than 1 standard deviation 

higher than the mean concentration across stress group and time point. Lower z-

scores are evident for LBP, sCD14, and TNF-α in the low-scoring group at 15 and 20 

weeks and for IL-8 and SDF-1α in the high-scoring group at 20 weeks. Higher z-scores 

are evident for IFABP and Trp/Kyn ratio in the high-scoring group at 15 weeks and 

for CRP in the high-scoring group at 15 and 20 weeks. Significant differences between 

EPDS-scoring groups are illustrated for (B) LBP, (C) sCD14, (D) CRP, (E) TNF-α, 

and (F) IL-8 (2-way ANOVA with Tukey’s HSD). *p < 0.05. 
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IBS cohort associations 

Associations between maternal perceived stress and biomarker levels in the IBS 

cohort 

Significant differences in PSS scoring groups across gestational time points are 

outlined in Figure 4. Anti-endotoxin IgG levels were found to be significantly higher 

in the high-scoring group compared with moderate- (30.12 ± 9.15 IgG median units 

(GMU)/mL, p = 0.004) and low-scoring groups (25.69 ± 10.22 GMU/mL, p = 0.036). 

This is supported by the presence of a positive association between circulating IgG 

levels and PSS scores, although this association was no longer significant in the 

adjusted model. In contrast, IP-10 concentrations were found to be significantly higher 

in the low-scoring group compared with moderate- (40.10 ± 12.99pg/mL, p = 0.007) 

and high-scoring groups (39.04 ± 16.23pg/mL, p = 0.047) for measurements taken at 

15 weeks’ gestation. However, IP-10 levels at 20 weeks’ gestation were also noted to 

be significantly decreased compared with 15 weeks’ gestation (–29.56 ± 9.23pg/mL, 

p = 0.003) in low-scoring participants. No further linear relationships were observed 

between biomarkers’ concentrations and PSS scores in the IBS cohort. 
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Figure 4. Differences in PSS-scoring groups across gestational time points in the 

IBS cohort (n = 29/55/21 from low/moderate/high). (A) Heatmap of normalised 

biomarker means across scoring groups and time points. Individual boxes are 

represented on a scale from red to blue. Darker red boxes represent markers whose 

concentrations were found to be at least 1 standard deviation lower than the mean 

concentration across stress group and time point. Darker blue boxes represent 

markers whose concentrations were found to be at least 1 standard deviation higher 

than the mean concentration across stress group and time point. 

Higher z-scores are evident for IP-10 and Kyn in the low-scoring group at 15 weeks 

and for anti-endotoxin IgG in the high-scoring group at 15 weeks. Significant 

differences between PSS-scoring groups are illustrated for (B) anti-endotoxin IgG and 

(C) IP-10 (2-way ANOVA with Tukey’s HSD). *p < 0.05. GMU, IgG median units. 

 

Associations between maternal anxiety and biomarker levels in the IBS cohort.  

Significant differences in STAI scoring groups across gestational time points are 

outlined in Figure 5. Anti-endotoxin IgA and IgG levels were observed to be 

significantly higher in the high-scoring group compared with the low-scoring groups 
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(11.59 ± 4.51 IgA median units (AMU)/mL, p = 0.031; 26.76 ± 11.11 GMU/mL, p = 

0.047; respectively). Anti-endotoxin IgA differences between scoring groups were in 

line with the positive linear association the biomarker exhibited with STAI scores in 

both simple and adjusted models. A positive association also existed between 

circulating IgG levels and STAI scores, although this association was no longer 

significant in the adjusted model. Conversely, Trp levels were found to be significantly 

decreased in the high-scoring group compared with moderate- (–707.88 ± 

289.38ng/mL, p = 0.044) and low-scoring groups (–1111.14 ± 380.08ng/mL, p = 

0.013). In addition, both IFN-γ and IP-10 concentrations at 20 weeks’ gestation were 

noted to be significantly decreased compared with 15 weeks’ gestation (–7.39 ± 

3.49pg/mL, p = 0.049; –34.34 ± 14.79pg/mL, p = 0.034; respectively) in low-scoring 

participants. In contrast, IFN-γ levels were elevated at 20 weeks’ gestation compared 

with the first visit (8.20 ± 4.0pg/mL, p = 0.049) in the high-scoring group. 

Figure 5. Differences in STAI-scoring groups across gestational time points in the 

IBS cohort (n = 19/53/33 from low/moderate/high). (A) Heatmap of normalised 

biomarker means across scoring groups and time points. Individual boxes are 

represented on a scale from red to blue. Darker red boxes represent markers whose 

concentrations were found to be greater than 1 standard deviation lower than the 
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mean concentration across stress group and time point. Darker blue boxes represent 

markers whose concentrations were found to be greater than 1 standard deviation 

higher than the mean concentration across stress group and time point. Lower z-

scores are evident for anti-endotoxin IgA and IgG in the low-scoring group at 15 and 

20 weeks, for TNF-α in the low-scoring group at 15 weeks, and for Trp and Kyn in the 

high-scoring group at 20 weeks. Higher z-scores are evident for Trp and Kyn in the 

low-scoring group at 15 weeks and for IFN-γ in the high-scoring group at 20 weeks. 

Significant differences between STAI-scoring groups are illustrated for (B) anti-

endotoxin IgA, (C) anti-endotoxin IgG, (D) IFN-γ, (E) IP-10, and (F) Trp (2-way 

ANOVA with Tukey’s HSD). *p < 0.05. 

 

Associations between maternal depression and biomarker levels in the IBS cohort 

Significant differences in EPDS scoring groups across gestational time points are 

outlined in Figure 6. Anti-endotoxin IgA and IgG levels were found to be significantly 

higher in the high-scoring group compared with moderate (9.22 ± 3.72 AMU/mL, p = 

0.039; 20.74 ± 8.34 GMU/mL, p = 0.038; respectively) and low-scoring groups (10.87 

± 4.04 AMU/mL, p = 0.022; 22.13 ± 9.05 GMU/mL, p = 0.042; respectively). 

Differences between scoring groups were in line with a positive linear association 

exhibited with EPDS scores in the case of anti-endotoxin IgA, but not IgG, for both 

simple and adjusted models. Conversely, Kyn concentrations were found to be 

significantly higher in the in the low-scoring group compared with moderate- (34.2 ± 

12.13ng/mL, p = 0.017) and high-scoring groups (40.89 ± 14.13ng/mL, p = 0.014). 

These differences between scoring groups were in line with a negative linear 

association exhibited with EPDS scores for the simple but not the adjusted model. 

Additionally, both IFN-γ and IP-10 concentrations were found to be significantly 

higher in the low-scoring group compared with moderate scores (12.86 ± 4.21pg/mL, 

p = 0.008; 32.52 ± 12.63μg/mL, p = 0.031; respectively) for measurements taken at 

15 weeks’ gestation. However, IFN-γ levels at 20 weeks’ gestation were noted to be 

significantly elevated compared with 15 weeks’ gestation (8.39 ± 3.97pg/mL, p = 
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0.040) in moderate-scoring participants, while in the low-scoring group IP-10 levels 

decreased at 20 weeks’ gestation compared with the first visit (–26.37 ± 8.34pg/mL, 

p = 0.004).  

 

Figure 6. Differences in EPDS-scoring groups across gestational time points in the 

IBS cohort (n = 32/50/23 from low/moderate/high). (A) Heatmap of normalised 

biomarker means across scoring groups and time points. Individual boxes are 

represented on a scale from red to blue. Darker red boxes represent markers whose 

concentrations were found to be greater than 1 standard deviation lower than the 

mean concentration across stress group and time point. Darker blue boxes represent 

markers whose concentrations were found to be greater than 1 standard deviation 

higher than the mean concentration across stress group and time point. Lower z-

scores are evident for Trp in the high-scoring group at 20 weeks. Higher z-scores are 

evident for IFN-γ in the low-scoring group at 15 weeks; for IL-6 in the high-scoring 

group at 20 weeks; and for anti-endotoxin IgA, IgG, and IgM in the high-scoring 

group at 15 and 20 weeks. Significant differences between EPDS-scoring groups are 

illustrated for (B) anti-endotoxin IgA, (C) anti-endotoxin IgG, (D) IFN-γ, (E) IP-10, 

and (F) Kyn (2-way ANOVA with Tukey’s HSD). *p < 0.05. 
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Differences in biomarkers between healthy and IBS cohorts 

Biomarker concentrations between cohorts across gestational time points are outlined 

in Supplemental Table 3. Cohort-independent effects revealing significant increases 

for measurements taken at 20 weeks’ gestation compared with 15 weeks’ gestation 

were noted for LBP as the mean differences (0.97 ± 0.22μg/mL, p = 0.000), TNF-α 

(0.07 ± 0.03pg/mL, p = 0.034), IL-6 (0.06 ± 0.03pg/mL, ± = 0.017), and IL-18 (71.09 

± 7.26pg/mL, p = 0.000). Conversely, week 20 measurements were observed to be 

significantly decreased compared with 15 weeks’ gestation for anti-endotoxin IgG (–

2.51 ± 0.91 GMU/mL, p = 0.006), MCP-1 (-2.49 ± 1.23pg/mL, p = 0.043), and SDF-

1α (-38.86 ± 10.78pg/mL, p = 0.001), irrespective of cohort. Cohort-specific effects 

of time were observed, where levels at 20 weeks’ gestation were found to be 

significantly decreased for IL-8 (–0.23 ± 0.07pg/mL, p = 0.001) and Trp (–460.22 ± 

1477.57ng/mL, p = 0.008) compared with 15 weeks’ gestation in healthy and IBS 

participants, respectively. For measurements taken at 20 weeks’ gestation, between 

group effects observed include significant increases in IFN-γ (5.00 ± 2.24pg/mL, p = 

0.034) as well as significant decreases in both Trp (–556.52 ± 255.57ng/mL, p = 0.031) 

and Kyn (–18.29 ± 8.27ng/mL, p = 0.028) in the IBS cohort compared with the healthy 

cohort. Significant within or between cohort effects were not observed for IFABP, 

sCD14, anti-endotoxin IgA, anti-endotoxin IgM, CRP, IP-10, MIF, or Trp/Kyn ratio. 
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Figure 7. Stratification of perceived stress, anxiety, and depression measures into 

low-scoring (PSS ≤ 7.5; n = 22 and 29 | STAI ≤ 23.3; n = 18 and 19 | EPDS ≤ 2.5; n 

= 24 and 32), moderate-scoring (PSS > 7.5 and < 17; n = 54 and 55 | STAI > 23.3 

and < 40; n = 70 and 53 | EPDS > 2.5 and < 9.5; n = 61 and 50), and high-scoring 

groups (PSS ≥ 17; n = 28 and 21 | STAI ≥ 40; n = 16 and 33 | EPDS ≥ 9.5; n = 19 

and 23) for healthy and IBS cohorts, respectively. 
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Discussion 

Biological associations with stress during healthy pregnancy  

The present study identifies several molecular candidate markers that exhibit the 

potential to discern expectant mothers’ level of active stress during the first 2 

trimesters of pregnancy in healthy individuals and patients with IBS. In the healthy 

cohort circulating levels of GI permeability markers sCD14 and LBP were found to 

be elevated in participants reporting high levels of perceived social stress and 

depression compared with those reporting low levels. LBP concentrations also 

exhibited a positive linear relationship with participants’ reported level of anxiety, 

even after adjusting for common demographic and lifestyle confounders. Additionally, 

LBP levels were only found to increase across trimester visits in individuals reporting 

the highest levels of anxiety. A strong case is presented for the systemic inflammatory 

marker CRP, whose high concentrations distinguished those reporting the highest 

levels of anxiety and depression from all others. Further support is derived from CRP’s 

positive linear relationship with anxiety scores, even in adjusted models. Another 

notable potential biomarker identified in healthy participants is TNF-α, whose 

circulating concentrations were found to be elevated in participants reporting the 

highest levels of perceived social stress compared with those reporting low levels.  

Observed concentrations of sCD14 and LBP in the healthy cohort were in line with 

reported findings that GI integrity is undermined by high levels of psychological 

distress (Vanuytsel et al., 2014). It comes as no surprise that such consistent changes 

are observed for this biomarker in the context of active stress exposure. Indeed, both 

play a key role in initiating the innate immune response to the presence of gram-

negative bacteria, working in tangent to present bacterial LPS to its signalling receptor 
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complex, MD-2/Toll-like receptor 4 in monocytes (Kitchens and Thompson, 2005). 

Notably, LBP concentrations are reported to fall between 5 and 15μg/mL in healthy 

populations (Gallay et al., 1994). Corresponding levels are observed in the present 

study for the healthy cohort with the prominent exception of participants falling within 

the high-scoring categories of all reported stress measures (range of means, 16.16–

20.10μg/mL). Modest elevations in LBP levels, equivalent to those presented here in 

response to prenatal stress, have previously been reported to exist under conditions of 

chronic inflammation, such as obesity (Gonzalez-Quintela et al., 2013) and non-

alcoholic fatty liver disease (Ruiz et al., 2007). Indeed, these elevations were found to 

correspond with an upregulated expression of proinflammatory cytokines in these 

studies. A notable divergence in the stress-mediated effects on sCD14 levels 

manifested for measures of anxiety, where moderate scores exhibited significantly 

lower concentrations than the lowest (p = 0.027) or highest (p = 0.025) reported levels. 

There is precedent within the literature for positive effects being elicited by mild to 

moderate levels of maternal stress, particularly in the form of anxiety (DiPietro et al., 

2006).  

The present study also shows that noted associations between elevated CRP levels and 

increased risk for psychological distress and depression among the general population 

(Wium-Andersen et al., 2013) hold under conditions of pregnancy. 

Indeed, CRP was found to be the most robust indicator of a shift toward a 

proinflammatory phenotype in response to prenatal stress among healthy participants. 

Notably, this acute-phase reactant has been reported to reliably signify the presence of 

inflammation, even when interpretation from other proinflammatory markers remains 

ambiguous (Karadag et al., 2008). Corresponding findings in relation to TNF-α under 

conditions of perceived social stress have notable implications for the cytokine’s 
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potential role as a marker of stress levels, particularly given the role it plays in 

regulating Trp metabolism via effects on IDO (Robinson et al., 2005). Previously, 

equivocal results dependent upon the stress stimulus under investigation have been 

reported regarding the effects of psychological distress on serum TNF-α levels 

(Chandrashekara et al., 2007). More recently, prenatal stress has been noted to 

potentiate the effects of a proinflammatory diet on maternal TNF-α concentrations 

(Lindsay et al., 2018). An additional, somewhat paradoxical discovery from the 

present study was that plasma levels of the proinflammatory chemokine IL-8 were 

found to be attenuated in participants reporting the highest levels of perceived social 

stress and depression. Interestingly, this finding concurs with recently reported 

observations in vitro where cortisol exposure was shown to decrease levels of IL-8 

secretion from female peripheral blood mononuclear cells (Da Pozzo et al., 2018). 

Other inflammatory markers were not found to be associated with perceived stress, 

anxiety, or depression. In agreement, Brann et al. (Bränn et al., 2017) examined the 

association between the expression of 74 inflammation-related genes late in pregnancy 

and the subsequent onset of postpartum depression and failed to find any significant 

association for inflammatory markers examined in the present study, including IL-6, 

IP-10, MCP-1, and IL-18. The absence of any significant effect for IL-6 in particular 

further compounds the conflicting findings in the literature (Osborne and Monk, 

2013), agreeing with the lack of any correlation with depression scores observed by 

Blackmore et al. (Blackmore et al., 2011) at either 18- or 32-weeks’ gestation, but 

contrasting with reports of positive associations with depressive symptoms in the 

second trimester (Sherer et al., 2018) as well as trait anxiety and depression scales late 

in pregnancy (Maes et al., 2000).  
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Here we note increases in Trp and Kyn from 15 to 20 weeks’ gestation in the healthy 

pregnant women. We also noted no association between inflammatory factors and Trp 

in the healthy cohort.  

 

Biological associations with stress confounded by IBS.  

A different picture presents itself in the case of the IBS cohort, where neither sCD14 

nor LBP were found to be capable of distinguishing between incremental groupings 

for any of the stress measures reported in the present study. Instead, robust indications 

of stress-induced changes on gut permeability are provided by the anti-endotoxin 

antibodies IgG, whose circulating levels were found to be discernibly elevated at the 

highest reported levels of all stress measures, and IgA, which exhibited similar 

findings for reported levels of anxiety and depression. Positive linear associations 

were also noted between confounder-adjusted concentrations of anti-endotoxin IgA 

and participants’ self-reported levels of anxiety and depression. Promising findings in 

relation to proinflammatory markers in the healthy cohort were also not found to be 

replicated in the IBS cohort. These obvious differences with regard to the association 

of stress and markers of gut permeability between IBS and non-IBS women have not 

been shown before (Edwards et al., 2017). While we know the microbiome and gut 

mucosal inflammation change during a normal healthy pregnancy, we do not know 

what happens with respect to permeability of the gut wall. Here we see that having 

IBS leads to a very different biological signature in the plasma potentially due to the 

already predisposed gut wall, microbiome, and stress system. While we had assumed 

mothers with IBS would respond to a greater degree to higher stress, anxiety, and 

depression scores, we did not expect this very different profile. This study indicates 



  

 229 

the significance of the gut-associated changes in IBS and the need for specific 

screening and perhaps different intervention strategies.  

Equivalent findings were not identified in relation to either sCD14 or LBP under 

conditions of IBS, a disorder traditionally posited to be characterised by an increased 

GI response to stress (Qin et al., 2014). It is plausible that dysregulation of immune 

signalling pathways under conditions of IBS pathophysiology conceal any potential 

effects of stress-induced enhancements in gut permeability elicited by these mediators 

of the innate immune response. Supporting this assertion, evidence has recently 

emerged establishing several autoimmune diseases, for which dysregulated signalling 

between immune cells is a hallmark feature (Arakelyan et al., 2017), as risk factors for 

IBS independent of the presence of psychological distress (Koloski et al., 2019). 

Indeed, serum concentrations of LBP and sCD14 have been demonstrated to decrease 

or remain unchanged under conditions of autoimmunity, such as type 1 diabetes 

mellitus, despite the presence of elevated levels of LPS (Aravindhan et al., 2015). 

Under such conditions the present study finds IgA and IgG antibodies targeted against 

LPS reliably serve as markers of endotoxin exposure, signifying changes in gut 

permeability under high levels of self-reported stress. Interestingly, a similar role for 

these antibodies has previously been reported in patients with major depressive 

disorder (Maes et al., 2008) where serum IgM and IgA against LPS were significantly 

elevated in such cases. 

Here we note potential biomarkers for healthy pregnant women during active stress 

that are indicative of increased GI permeability whereas having the stress-related GI 

disorder, IBS, is a major confounder to this biomarker panel.  
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We do not show any evidence for increased metabolism along the Kyn pathway as 

previously reported in IBS in the non-pregnant state (Clarke et al., 2009b). This is not 

entirely unexpected because we did not note a marked inflammatory phenotype in our 

IBS cohort. We did see increased production of certain inflammatory markers in the 

IBS group with higher anxiety and depression scores, but there was not a clear 

association between inflammation and Trp metabolism; hence, other factors are 

clearly involved. Lower levels of Trp were present in the women with higher anxiety 

scores, which has been seen previously (Songtachalert et al., 2018). A reduction in 

Kyn was also seen in those with higher depression scores. These differences were 

observed in the IBS cohort only. This is comparative to a previous study showing an 

association between lower Kyn levels and depression during pregnancy (Nazzari et 

al., 2020). 

 

Conclusions.  

In conclusion, the present study identifies 2 circulating markers of GI permeability 

(LBP and sCD14) as well as 2 inflammatory markers (CRP and TNF-α) capable of 

differentiating low and high levels of prenatal maternal stress during otherwise healthy 

pregnancy. Significantly, although these distinctions were not found to hold under 

conditions of IBS, endotoxin core antibodies (IgA and IgG) were found to serve as 

reliable indicators of GI permeability in such cases. Taken together, these biomarkers 

demonstrate the potential to form the core of a biological signature that could serve as 

an early warning indicator of high active levels of prenatal maternal stress in women 

who do not report having IBS. Clinical application of such a signature could inform 

suitable intervention strategies aimed at counteracting the effects of prenatal maternal 
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stress either via stress reduction techniques or microbiota-targeted nutritional 

approaches, but it should be noted that having IBS is a major confounder to the validity 

of these markers. Follow-up studies investigating whether these markers demonstrate 

any appreciable associations with developmental consequences for the offspring are 

indicated. 

 

Limitations.  

As a consequence of utilising samples from a pregnancy biobank, there are several 

limitations associated with the present study. First, although several validated self-

reported measures of stress were utilised, no physiological assessment was 

implemented. Indeed, developmental associations with physiological measures of 

stress, such as salivary cortisol, have previously been shown to be distinct from self-

reported assessments (Bennet et al., 2016), and their investigation is warranted in 

future studies. Second, in contrast to other investigations into the developmental 

effects of prenatal stress, which have utilised both generalised and pregnancy-specific 

assessments of anxiety (Bennet et al., 2016; Davis and Sandman, 2010), only a 

generalised form of anxiety is reported on by the present study. This is of relevance 

considering that pregnancy-related anxiety measures have previously been 

demonstrated to be a superior indicator of certain developmental effects over broader 

assessments of state anxiety (Davis and Sandman, 2010). Furthermore, measurements 

were only taken at 2 time points, 5 weeks apart from each other, with no measurements 

taken in the third trimester of pregnancy. Given that developmental consequences have 

been associated with the onset of prenatal stress late in pregnancy (Moss et al., 2017; 

Simcock, 2017), investigations focusing on these parameters at later time points are 
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justified. Also, given all but 5 subjects included in this study were white, investigation 

of stress-associated changes in the circulating biomarkers presented here is warranted 

in other ethnic groups. It should be noted that cases of IBS among participants were 

self-reported, and as such the possibility cannot be discounted that results may have 

varied compared with a clinically diagnosed population suffering from functional GI 

disorders. Finally, given the exploratory nature of this study, associations between 

individual biomarkers and stress scores are presented on their own merits without 

adjustment for comparisons made for the other biomarkers investigated. Accordingly, 

significant associations between stress indicators and circulating biomarkers noted 

here require validation in future studies. 
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Supplementary material 
Gut Permeability 

Intestinal Fatty Acid Binding Protein (IFABP) Small, water-soluble cytosolic proteins which are easily released into the circulation upon enterocyte membrane integrity loss. Basal levels of have been reported 

to reflect the physiological turnover rate of enterocytes (Grootjans et al., 2010). 

Lipopolysaccharide Binding Protein (LBP) An acute phase protein involved in initiation of host defence against Gram-negative bacteria by binding to bacterial lipopolysaccharide (LPS) and presenting it 

to the cell surface pattern recognition receptors CD14 and TLR4 (Le Roy et al., 2001). 

Soluble CD14 (sCD14) Released by macrophages upon stimulation with endotoxin and acts as a co-factor, along with LBP, to mediate LPS recognition and initiate an innate immune 

response (Le Roy et al., 2001). 

Endotoxin Core Antibodies (IgA; IgG; IgM) EndoCAb assays detect immunoglobulins against the inner core of endotoxin which is highly conserved across the whole range of Gram-negative microbiota 

(Grootjans et al., 2010). Previously shown to be upregulated in cases of major depression indicating an increased translocation of LPS from gram negative 

enterobacteria into the circulation (Maes et al., 2008). 

Systemic Inflammation 

C Reactive Protein (CRP) Acute phase protein which have been shown to be a valid biomarker of low-grade systemic inflammation (Karadag et al., 2008). 

Pro-Inflammatory Cytokines 

Interferon Gamma (IFN-γ) Significantly induced in response to psychological stress (Maes et al., 1998), IFN-γ is associated with disturbances of serotonergic signalling through activation 

of IDO, the rate-limiting enzyme for tryptophan degradation (Myint et al., 2013). 

Tumour Necrosis Factor Alpha (TNF-α) Significantly increased in response to psychological stress, TNF-α is involved in activating the HPA axis and causing the release of cortisol (Dunn, 2000). 

Attenuation of TNF-α signalling was shown to prevent placental defects caused by mild maternal immune activation in early pregnancy (Carpentier et al., 

2011). IFN-γ-induced IDO expression is also potentiated by TNF- α (Robinson et al., 2005). 

Interleukin 6 (IL-6) Implicated as a mediating factor in processes leading from maternal inflammation to alterations in foetal brain development (Rudolph et al., 2018). 

Interleukin 18 (IL-18) Stress induced increases in IL-18 is found to be dependent upon the presence of microbiota derived LPS in the circulation (Maslanik et al., 2012). Also found 

to suppress neuronal survival and differentiation in embryonic neural progenitor culture (Liu et al., 2005) . 

Pro-Inflammatory Chemokines 

Interleukin 8 (IL-8 / CXCL8) Postulated biomarker of chronic stress (Fukuda et al., 2008), whose concentrations are found to correlate between maternal and neonatal serum (Shimoya et al., 

1997). Its expression was also found to correlate positively with the severity of preeclampsia (Sun et al., 2016) and high maternal serum levels were found to 

be indicative of preterm labour (von Minckwitz et al., 2000). 

Interferon Gamma-induced Protein 10 

(IP-10 / CXCL10) 

Highly expressed in response to IFN-γ, with significantly high concentrations observed in patients with preeclampsia (Gotsch et al., 2007) as well as mother 

who deliver pre-term (Aminzadeh et al., 2012). 

Monocyte Chemoattractant Protein 1 

(MCP-1 / CCL2) 

Significantly increased in women in response to prolonged psychosocial stress (Asberg et al., 2009) as well as populations suffering from generalised anxiety 

disorder (Ogłodek et al., 2015b). MCP-1 concentrations in cord blood were found to be associated with intrauterine inflammation, premature birth, and neonatal 

complications (Otsubo et al., 2017). 

Stromal cell-derived Factor 1 

(SDF-1 α / CXCL12) 

Implicated in regulating interactions between the immune and nervous systems (Guyon, 2014), circulating levels are found to be elevated in populations 

suffering from depression (Ogłodek et al., 2014), generalised anxiety disorder (Ogłodek et al., 2015b) and post-traumatic stress disorder (Ogłodek et al., 2015a). 

Macrophage Migration Inhibitory Factor 

(MIF) 

Exhibits a similar circadian rhythm to plasma cortisol and promotes the expression of a large panel of pro-inflammatory molecules by antagonising cortisol-

mediated pro-inflammatory cytokine suppression (Petrovsky et al., 2003). 

Tryptophan Metabolism 

Tryptophan (Trp) Amino acid whose inflammatory mediated breakdown is associated with enhanced sensitivity to anxiety (Kim and Jeon, 2018) and depression (Lanser et al., 

2020).  

Kynurenine (Kyn) Metabolite of tryptophan whose production is implicated in both inflammatory and neurological conditions (Davis and Liu, 2015). 

Kynurenine : Tryptophan Ratio (Kyn/Trp) A measure of tryptophan degradation along the Kyn pathway which may represent a key mediator of the physiological consequences of altered 

immunoregulation (Clarke et al., 2009b). 

Supplementary Table 1. Explanation of how the biological characteristics investigated in the present study serve as molecular indicators of gut 

permeability, inflammation and tryptophan degradation associated with heightened levels of prenatal stress. 
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Healthy (N = 

104) 

IBS (N = 

105) 

Age (Years) 30.06±3.99 30.68±4.33 

BMI at 15 Week Visit (kg/m2) 24.4±3.97 24.94±3.86 

Alcohol Exposure in 1st Trimester (Weeks) 4.97±4.29 4.73±4.72 

Alcohol Intake at 20 Week Visit (Units per Week) 0.21±0.52 0.25±0.78 

Ethnicity 
  

Caucasian 95.19% 100% 

Asian 0.96% - 

Indian 3.85% - 

Marital Status 
  

Partner 93.33% 10.48% 

Single 6.67% 89.52% 

Years in Education 
  

< 12yrs 0.95% 1.9% 

12-13yrs 60.95% 64.76% 

>13yrs 38.10% 33.33% 

Employment Status 
  

Full Time 84.76% 76.19% 

Part Time 10.48% 7.62% 

Student 1.9% - 

Homemaker 0.95% 2.86% 

Unemployed 1.9% 9.52% 

Sickness Beneficiary - 1.9% 

Other - 1.9% 

Socioeconomic Index (SEI)* 
  

Low (SEI < 24) 12.50% 17.14% 

High (SEI ≥ 24) 87.50% 82.86% 

Type of Maternity Care 
  

Public 74.04% 69.52% 

Private 25.96% 30.48% 

Cigarettes Smoked (15 Week Visit) 
  

None 94.23% 89.52% 

1-5 per Day 3.85% 7.62% 

6-10 per Day 1.92% 2.86% 

Cigarettes Smoked (20 Week Visit) 
  

None 92.31% 88.58% 

1-5 per Day 4.81% 5.71% 

6-10 per Day 2.88% 5.71% 

Supplementary Table 2. Descriptive statistics for demographic and lifestyle characteristics 

for healthy and IBS cohorts. Continuous variables are presented as mean ± SD. * Maternal 

Socioeconomic index (SEI) calculated using the New Zealand Socioeconomic Index guide 

(Galbraith et al., 2003). 
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Supplementary Table 3. Descriptive statistics are outlined for each stress score and biomarker across gestational time-points for healthy and IBS 

cohorts. Data is presented as mean ± SD. Effects between cohorts are highlighted in bold. Cohort specific effects across time-points are also 

highlighted in bold and underlined. Significance levels (* P<0.05; ** P<0.01; *** P<0.001) are indicated in the appropriate columns.  Significance 

is also indicated in the Time column where biomarker levels differ across time-points irrespective of cohort.  

  
Healthy 

 
IBS  

Time Week 15 Week 20 
 

Week 15 Week 20 

Stress Scores       

PSS  13.9 ± 6.8 11.6 ± 6.8  13.4 ± 6.5 10.2 ± 6.6 

STAI  31.6 ± 10.6* 31.4 ± 9.9  35.8 ± 12.7* 32.6 ± 11.9 

EPDS  6.3 ± 4.7 5.3 ± 4.3  6.8 ± 4.9 4.8 ± 4.5 

Gut Permeability 
      

IFABP (pg/mL) 
 

5.9 ± 3.0 5.7 ± 2.5 
 

5.7 ± 2.8 5.6 ± 2.7 

LBP (μg/mL) *** 14.9 ± 5.7 15.5 ± 6.3 
 

15.1 ± 6.0 16.3 ± 6.4 

sCD14 (ng/mL) 
 

920.3 ± 164.7 900.7 ± 167.4 
 

897.5 ± 189.3 900.1 ± 169.1 

Anti-Endotoxin IgA (AMU/mL) 
 

35.2 ± 17.1 35.3 ± 17.8 
 

36.3 ± 16.5 35.4 ± 15.6 

Anti-Endotoxin IgG (GMU/mL) ** 53.9 ± 38.3 52.4 ± 38.1 
 

56.3 ± 40.3 52.8 ± 35.1 

Anti-Endotoxin IgM (MMU/mL) 
 

54.5 ± 23.6 55.1 ± 22.0 
 

56.2 ± 25.9 56.2 ± 23.7 

Systemic Inflammation 
      

CRP (μg/mL) 
 

5.5 ± 3.8 5.6 ± 3.8 
 

5.8 ± 4.0 5.8 ± 4.0 

Pro-Inflammatory Cytokines 
      

IFN-γ (pg/mL) 
 

18.6 ± 13.7 18.0 ± 11.9* 
 

19.2 ± 14.3 23.0 ± 20.7* 

TNF-α (pg/mL) * 0.917 ± 0.914 0.965 ± 0.979 
 

0.741 ± 0.701 0.833 ± 0.812 

IL-6 (pg/mL) * 0.564 ± 0.366 0.576 ± 0.352 
 

0.538 ± 0.381 0.646 ± 0.528 

IL-18 (pg/mL) *** 424.1 ± 147.1 481.2 ± 168.7 
 

400.9 ± 144.6 485.9 ± 191.6 

Pro-Inflammatory Chemokines 
      

IL-8 (pg/mL) 
 

2.6 ± 0.9** 2.4 ± 0.7** 
 

2.5 ± 0.9 2.6 ± 1.0 

IP-10 (pg/mL) 
 

170.6 ± 58.9 171.6 ± 61.9 
 

174.0 ± 57.2 177.8 ± 66.1 

MCP-1 (pg/mL) * 118.8 ± 31.1 115.1 ± 27.7 
 

110.2 ± 28.8 108.9 ± 25.5 

SDF-1α (pg/mL) *** 939.9 ± 220.1 900.9 ± 232.4 
 

948.6 ± 219.9 909.8 ± 217.7 

MIF (ng/mL) 
 

23.2 ± 16.7 22.3 ± 14.6 
 

21.5 ± 16.2 20.7 ± 14.6 

Tryptophan Metabolism 
      

Trp (ng/mL)  6523.3±1786.7 6638.9±1821.4*  6568.5±1571.9* 6108.3±1331.7* 

Kyn (ng/mL) 
 

197±50.9 205.3±55.9* 
 

198.3±55.6 188.4±45.7* 

Kyn/Trp 
 

0.031±0.006 0.031±0.006 
 

0.03±0.006 0.031±0.007 



  

236 
 

Supplementary Table 4. Regression coefficients and confidence intervals are presented for 

linear models where PSS scores are regressed against biomarker levels both in isolation (rows 

with clear background) as well as adjusted for age, BMI, socioeconomic index, smoking status 
and alcohol intake (rows with shaded background). Significant coefficients are highlighted in 

bold (* P<0.05; ** P<0.01; *** P<0.001). 

 
Healthy IBS  

Week 15 Week 20 Week 15 Week 20  
β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Gut Permeability 
       

IFABP 0.0001 (-0.0003 – 0.0005) 0.0003 (-0.0001 – 0.0007) -0.0002 (-0.0006 – 0.0001) 0.0001 (-0.0003 – 0.0004) 
 

0.0001 (-0.0002 – 0.0005) 0.0002 (-0.0002 – 0.0007) -0.0001 (-0.0005 – 0.0002) 0 (-0.0004 – 0.0004) 

LBP 0.1019 (-0.0901 – 0.2939) 0.1624 (-0.0063 – 0.3311) -0.0274 (-0.201 – 0.1462) 0.0191 (-0.1443 – 0.1825) 
 

0.1007 (-0.0879 – 0.2893) 0.1463 (-0.0189 – 0.3114) -0.026 (-0.201 – 0.149) -0.0023 (-0.1661 – 0.1615) 

sCD14 0.0047 (-0.0019 – 0.0113) 0.004 (-0.0024 – 0.0105) -0.0019 (-0.0074 – 0.0036) -0.0016 (-0.0078 – 0.0046) 
 

0.0031 (-0.0036 – 0.0098) 0.0021 (-0.0045 – 0.0087) -0.0013 (-0.0067 – 0.004) -0.0019 (-0.0081 – 0.0042) 

Anti-Endotoxin IgA -0.0094 (-0.0728 – 0.054) -0.0164 (-0.077 – 0.0442) 0.0476 (-0.015 – 0.1102) 0.051 (-0.0151 – 0.1172) 
 

-0.0158 (-0.079 – 0.0474) -0.0101 (-0.071 – 0.0503) 0.0461 (-0.0188 – 0.111) 0.0401 (-0.0258 – 0.106) 

Anti-Endotoxin IgG 0.0117 (-0.0164 – 0.0399) 0.0029 (-0.0255 – 0.0313) 0.0288 (0.0035 – 0.0541)* 0.0296 (0.0004 – 0.0588)* 
 

0.0033 (-0.0256 – 0.0322) 0.0044 (-0.024 – 0.0329) 0.0215 (-0.0037 – 0.0467) 0.0224 (-0.0071 – 0.0518) 

Anti-Endotoxin IgM 0.0309 (-0.0146 – 0.0764) 0.023 (-0.026 – 0.072) 0.0297 (-0.0102 – 0.0696) 0.0299 (-0.0137 – 0.0736) 
 

0.024 (-0.0226 – 0.0705) 0.019 (-0.0298 – 0.0677) 0.0235 (-0.0157 – 0.0627) 0.0247 (-0.018 – 0.0675) 

Systemic Inflammation 
       

CRP 0.1495 (-0.1345 – 0.4335) 0.1791 (-0.1069 – 0.4652) -0.0389 (-0.3028 – 0.2251) 0.0817 (-0.1779 – 0.3413) 
 

0.1325 (-0.1485 – 0.4136) 0.1378 (-0.1499 – 0.4255) 0 (-0.2633 – 0.2634) 0.1287 (-0.1322 – 0.3897) 

Pro-Inflammatory Cytokines 
       

IFN-γ -0.0268 (-0.1056 – 0.052) -0.0014 (-0.092 – 0.0893) -0.0394 (-0.1118 – 0.033) 0.0178 (-0.0325 – 0.068) 
 

-0.0074 (-0.086 – 0.0712) -0.0014 (-0.0903 – 0.087) -0.0272 (-0.1016 – 0.0472) 0.0069 (-0.0429 – 0.0568) 

TNF-α 0.8678 (-0.3041 – 2.0398) 0.7697 (-0.325 – 1.8644) -0.0208 (-1.51 – 1.4683) 0.3277 (-0.9558 – 1.6112) 
 

0.678 (-0.4891 – 1.8452) 0.664 (-0.4226 – 1.7505) 0.1576 (-1.3264 – 1.6415) 0.4399 (-0.8199 – 1.6998) 

IL-6 0.0461 (-2.9141 – 3.0063) 0.0767 (-3.0022 – 3.1557) 0.6293 (-2.106 – 3.3647) 1.1606 (-0.8009 – 3.1221) 
 

-0.0948 (-3.0734 – 2.8838) 0.3091 (-2.8641 – 3.4823) 0.8531 (-1.8962 – 3.6025) 1.0233 (0.9473 – 2.9939) 

IL-18 -0.0013 (-0.0087 – 0.006) 0.0011 (-0.0053 – 0.0075) -0.0055 (-0.0126 – 0.0016) -0.0026 (-0.008 – 0.0028) 
 

0 (-0.0077 – 0.0077) 0.0021 (-0.0042 – 0.0084) -0.0064 (-0.0133 – 0.0005) -0.003 (-0.0083 – 0.0023) 

Pro-Inflammatory Chemokines 
      

IL-8 -0.6673 (-1.8985 – 0.564) -1.4563 (-3.032 – 0.1192) 0.5453 (-0.6327 – 1.7232) 0.7839 (-0.2466 – 1.8144) 
 

-0.7488 (-1.9715 – 0.4739) -1.1998 (-2.756 – 0.3563) 0.5271 (-0.6479 – 1.702) 0.6588 (-0.3784 – 1.696) 

IP-10 -0.0077 (-0.0261 – 0.0106) 0.0065 (-0.011 – 0.0239) -0.0168 (-0.0348 – 0.0011) 0.0035 (-0.0123 – 0.0193) 
 

-0.0035 (-0.0221 – 0.015) 0.0094 (-0.0079 – 0.0268) -0.0163 (-0.0345 – 0.002) 0.0021 (-0.0134 – 0.0176) 

MCP-1 -0.0304 (-0.0647 – 0.0039) -0.0293 (-0.0678 – 0.009) -0.0136 (-0.0497 – 0.0225) -0.0122 (-0.053 – 0.0286) 
 

-0.0327 (-0.0666 – 0.0012) -0.0277 (-0.0664 – 0.011) -0.015 (-0.051 – 0.0209) -0.0098 (-0.0497 – 0.03) 

SDF-1 α -0.0032 (-0.008 – 0.0017) -0.0012 (-0.006 – 0.0034) -0.001 (-0.0057 – 0.0038) 0.001 (-0.0038 – 0.0058) 
 

-0.0028 (-0.0077 – 0.0021) -0.0009 (-0.006 – 0.0039) -0.0007 (-0.0054 – 0.0041) 0.0022 (-0.0026 – 0.0069) 

MIF 0.047 (-0.017 – 0.111) 0.0389 (-0.035 – 0.1128) -0.0217 (-0.086 – 0.0425) -0.0178 (-0.0889 – 0.0534) 
 

0.0335 (-0.0298 – 0.0969) 0.0318 (-0.0406 – 0.1041) -0.0147 (-0.0779 – 0.0485) -0.0104 (-0.0797 – 0.0588) 

Tryptophan Metabolism 
      

Trp -0.0005 (-0.0012 – 0.0002) 0.0001 (-0.0006 – 0.0007) -0.0006 (-0.0014 – 0.0002) -0.0005 (-0.0014 – 0.0004) 

 -0.0006 (-0.0013 – 0.0001) -0.0001 (-0.0008 – 0.001) -0.0002 (-0.001 – 0.0006) -0.0004 (-0.0013 – 0.0005) 

Kyn -0.0097 (-0.0344 – 0.0149) -0.0007 (-0.023 – 0.0213) -0.0155 (-0.0372 – 0.0062) -0.0119 (-0.0388 – 0.015) 
 

-0.0099 (-0.0359 – 0.0161) 0.0001 (-0.023 – 0.023) -0.0052 (-0.0276 – 0.0172) -0.0042 (-0.0318 – 0.0234) 

Kyn/Trp 158.7 (-57.6 – 374.9) 49.5 (-184.4 – 283.4) 33.5 (-167.9 – 235.1) 21.7 (-170.2 – 213.6) 

 201.5 (-28.6 – 431.6) 173.7 (-93.9 – 441.4) 36.9 (-172.6 – 246.4) 73.8 (-116.4 – 264.1) 
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Supplementary Table 5. Regression coefficients and confidence intervals are presented for 

linear models where STAI scores are regressed against biomarker levels both in isolation 

(rows with clear background) as well as adjusted for age, BMI, socioeconomic index, smoking 
status and alcohol intake (rows with shaded background). Significant coefficients are 

highlighted in bold (* P<0.05; ** P<0.01; *** P<0.001). 

 
Healthy IBS 

 
Week 15 Week 20 Week 15 Week 20  

β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Gut Permeability 
        

IFABP 0.0004 (-0.0002 – 0.001) 0.0003 (-0.0003 – 0.001) -0.0002 (-0.0009 – 0.0005) 0 (-0.0007 – 0.0007)  

0.0004 (-0.0001 – 0.001) 0.0003 (-0.0004 – 0.001) 0 (-0.0007 – 0.0006) -0.0001 (-0.0008 – 0.0006) 

LBP 0.355 (0.0562 – 0.6537)* 0.3785 (0.116 – 0.641)** -0.0512 (-0.3739 – 0.2714) -0.0011 (-0.3049 – 0.3026)  

0.3434 (0.0514 – 0.6355)* 0.3713 (0.114 – 0.628)** -0.048 (-0.3649 – 0.2689) -0.0045 (-0.3062 – 0.2971) 

sCD14 0.0015 (-0.0092 – 0.0121) 0.0061 (-0.0041 – 0.0164) -0.003 (-0.0132 – 0.0073) -0.0028 (-0.0143 – 0.0086)  

-0.0007 (-0.0113 – 0.0099) 0.0046 (-0.0059 – 0.0151) -0.0025 (-0.0122 – 0.0072) -0.0025 (-0.0138 – 0.0089) 

Anti-Endotoxin IgA -0.0636 (-0.1635 – 0.0363) -0.0905 (-0.1851 – 0.004) 0.1385 (0.0251 – 0.2518)* 0.1429 (0.0229 – 0.2628)*  

-0.077 (-0.1754 – 0.0214) -0.0811 (-0.1762 – 0.014) 0.1562 (0.0423 – 0.2701)** 0.1212 (0.0021 – 0.2402)* 

Anti-Endotoxin IgG 0.0075 (-0.0373 – 0.0523) -0.012 (-0.0571 – 0.033) 0.0507 (0.0041 – 0.0973)* 0.06 (0.0065 – 0.1134)*  

-0.0087 (-0.0542 – 0.0368) -0.015 (-0.0601 – 0.0306) 0.0345 (-0.0111 – 0.0802) 0.0494 (-0.0042 – 0.1031) 

Anti-Endotoxin IgM -0.0063 (-0.0729 – 0.0666) -0.0321 (-0.1099 – 0.046) 0.0433 (-0.0304 – 0.117) 0.0515 (-0.0289 – 0.1319)  

-0.0117 (-0.0854 – 0.0619) -0.0296 (-0.1074 – 0.048) 0.0338 (-0.0371 – 0.1047) 0.0318 (-0.0467 – 0.1103) 

Systemic Inflammation 
       

CRP 0.507 (0.0651 – 0.949)* 0.5535 (0.1092 – 0.998)* -0.0364 (-0.5223 – 0.4496) 0.2129 (-0.2639 – 0.6897)  

0.443 (0.0077 – 0.8784)* 0.5476 (0.0999 – 0.995)* 0.1371 (-0.3372 – 0.6113) 0.3911 (-0.0824 – 0.8646) 

Pro-Inflammatory Cytokines 
       

IFN-γ -0.0038 (-0.1291 – 0.1215) 0.0615 (-0.818 – 0.2048) -0.0565 (-0.1901 – 0.077) 0.0502 (-0.042 – 0.1424)  

0.0335 (-0.0901 – 0.157) 0.0552 (-0.0862 – 0.1967) -0.0393 (-0.1736 – 0.095) 0.0412 (-0.0497 – 0.132) 

TNF-α 1.001 (-0.8678 – 2.8698) 0.4221 (-1.3294 – 2.1735) -0.0942 (-2.8349 – 2.6465) 0.3857 (-1.9783 – 2.7497)  

0.7949 (-1.0483 – 2.6381) 0.3924 (-1.3526 – 2.1373) 0.6591 (-2.0153 – 3.3336) 0.892 (-1.4126 – 3.1966) 

IL-6 3.9587 (-0.6733 – 8.5908) 4.9178 (0.1289 – 9.707)* -0.0487 (-5.0883 – 4.9909) 1.3612 (-2.2633 – 4.9856)  

4.1484 (-0.4653 – 8.762) 4.9628 (-0.0001 – 9.9258) 1.6192 (-3.3397 – 6.5782) 1.7171 (-1.8928 – 5.327) 

IL-18 -0.0021 (-0.0137 – 0.0096) 0.001 (-0.0092 – 0.011) -0.0101 (-0.0232 – 0.0031) -0.0062 (-0.0162 – 0.0037)  

-0.0017 (-0.0138 – 0.0104) 0.0019 (-0.0081 – 0.012) -0.0105 (-0.023 – 0.002) -0.0059 (-0.0156 – 0.0038) 

Pro-Inflammatory Chemokines 
      

IL-8 0.6362 (-1.3244 – 2.5968) -1.3959 (-3.9218 – 1.13) 1.2011 (-0.9631 – 3.3652) 0.751 (-1.1609 – 2.6628)  

0.3766 (-1.5617 – 2.3149) -1.3615 (-3.8592 – 1.136) 1.609 (-0.4943 – 3.7126) 0.8559 (-1.8928 – 5.327) 

IP-10 0.019 (-0.0099 – 0.048) 0.0248 (-0.0025 – 0.0521) -0.0203 (-0.0537 – 0.013) 0.0123 (-0.0167 – 0.0412)  

0.0244 (-0.0044 – 0.0532) 0.0275 (0.0001 – 0.055)* -0.024 (-0.0572 – 0.0091) 0.0062 (-0.0222 – 0.0346) 

MCP-1 0.0109 (-0.0443 – 0.0661) -0.0052 (-0.067 – 0.0567) -0.0103 (-0.0769 – 0.0563) -0.0084 (-0.0836 – 0.0668)  

0.006 (-0.0483 – 0.0603) -0.0135 (-0.076 – 0.049) -0.0063 (-0.0714 – 0.0588) -0.0025 (-0.0755 – 0.0705) 

SDF-1 α -0.0006 (-0.0085 – 0.0072) -0.0015 (-0.009 – 0.006) -0.007 (-0.0157 – 0.0016) -0.0038 (-0.0126 – 0.005)  

-0.0006 (-0.0083 – 0.0072) -0.0031 (-0.011 – 0.0045) -0.0071 (-0.0155 – 0.0013) -0.0024 (-0.0111 – 0.0062) 

MIF 0.0435 (-0.0588 – 0.1457) 0.0765 (-0.0404 – 0.1933) -0.0181 (-0.1365 – 0.1004) -0.0138 (-0.1449 – 0.1173)  

0.0271 (-0.0731 – 0.1273) 0.0744 (-0.0405 – 0.1893) -0.0221 (-0.1363 – 0.092) -0.0205 (-0.1472 – 0.1062) 

Tryptophan Metabolism 
      

Trp -0.0005 (-0.0018 – 0.0007) -0.0003 (-0.0015 – 0.001) -0.0012 (-0.0026 – 0.0002) -0.0007 (-0.0023 – 0.001) 

 -0.0009 (-0.0021 – 0.0003) -0.0008 (-0.002 – 0.0005) -0.0005 (-0.002 – 0.0009) -0.0006 (-0.0022 – 0.001) 

Kyn 0.0082 (-0.035 – 0.0514) -0.0002 (-0.0388 – 0.038) -0.0302 (-0.0695 – 0.0091) -0.0234 (-0.0718 – 0.025) 
 

0.0052 (-0.0382 – 0.0487) -0.0018 (-0.041 – 0.0377) -0.0099 (-0.0494 – 0.0296) -0.0086 (-0.0561 – 0.0388) 

Kyn/Trp 456.6 (88.6 – 824.6)* 209.3 (-197.9 – 616.6) -27.2 (-393.4 – 339.02) -88.2 (-433.4 – 256.9) 

 583.6 (218.3 – 948.8)** 481.5 (27.8 – 935.2)* -50.6 (-419.5 – 318.3) 21.9 (-306.6 – 350.5) 
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Supplementary Table 6. Regression coefficients and confidence intervals are presented for 
linear models where EPDS scores are regressed against biomarker levels both in isolation 

(rows with clear background) as well as adjusted for age, BMI, socioeconomic index, smoking 

status and alcohol intake (rows with shaded background). Significant coefficients are 

highlighted in bold (* P<0.05; ** P<0.01; *** P<0.001). 

 

 
Healthy IBS  

Week 15 Week 20 Week 15 Week 20  
β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Gut Permeability 
        

IFABP 0.0002 (-0.0001 – 0.0004) 0.0003 (0 – 0.0006) 0 (-0.0003 – 0.0002) 0.0001 (-0.0002 – 0.0003)  

0.0002 (-0.0001 – 0.0004) 0.0003 (0 – 0.0006) 0.0001 (-0.0002 – 0.0003) 0 (-0.0002 – 0.0003) 

LBP 0.1183 (-0.0128 – 0.2495) 0.148 (0.0332 – 0.2632)* -0.0019 (-0.1246 – 0.1209) 0.0167 (-0.0988 – 0.1321)  

0.1161 (-0.0136 – 0.2458) 0.1355 (0.0217 – 0.249)* 0.0013 (-0.1199 – 0.1226) 0.0007 (-0.114 – 0.1153) 

sCD14 0.0043 (-0.0003 – 0.008) 0.0039 (-0.0005 – 0.0083) -0.0019 (-0.0058 – 0.002) -0.0002 (-0.0045 – 0.0042)  

0.0032 (-0.0014 – 0.0078) 0.0026 (-0.0019 – 0.0072) -0.0016 (-0.0053 – 0.0021) -0.0002 (-0.0046 – 0.0041) 

Anti-Endotoxin IgA 0.0004 (-0.0434 – 0.0441) -0.0083 (-0.05 – 0.0335) 0.0496 (0.006 – 0.0933)* 0.055 (0.009 – 0.101)*  

-0.0048 (-0.0487 – 0.0392) -0.0063 (-0.0483 – 0.036) 0.0521 (0.008 – 0.0962)* 0.0466 (0.0011 – 0.0921)* 

Anti-Endotoxin IgG 0.0011 (-0.0183 – 0.0206) -0.0055 (-0.025 – 0.0141) 0.0172 (-0.0007 – 0.0352) 0.0184 (-0.0023 – 0.0391)  

-0.0052 (-0.0252 – 0.0149) -0.0055 (-0.025 – 0.014) 0.011 (-0.0066 – 0.0286) 0.0128 (-0.0079 – 0.0335) 

Anti-Endotoxin IgM 0.0103 (-0.0213 – 0.0419) 0.0006 (-0.0334 – 0.0345) 0.0227 (-0.0054 – 0.0508) 0.0285 (-0.0021 – 0.0591)  

0.0065 (-0.026 – 0.0389) -0.002 (-0.036 – 0.032) 0.0188 (-0.0083 – 0.0458) 0.0243 (-0.0054 – 0.054) 

Systemic Inflammation 
       

CRP 0.1273 (-0.0679 – 0.3225) 0.1401 (-0.0566 – 0.3369) -0.0102 (-0.1966 – 0.1763) 0.0491 (-0.1343 – 0.2325)  

0.1179 (-0.0767 – 0.3124) 0.1143 (-0.0856 – 0.3141) 0.0342 (-0.148 – 0.2163) 0.0925 (-0.09 – 0.2751) 

Pro-Inflammatory Cytokines 
       

IFN-γ -0.0223 (-0.0766 – 0.032) -0.012 (-0.0744 – 0.0504) -0.0335 (-0.0845 – 0.0175) 0.0154 (-0.02 – 0.0508)  

-0.0093 (-0.0638 – 0.0453) -0.0125 (-0.074 – 0.0494) -0.0264 (-0.0777 – 0.025) 0.0092 (-0.0256 – 0.0441) 

TNF-α 0.35 (-0.4634 – 1.1634) 0.3978 (-0.3599 – 1.1555) 0.142 (-0.9091 – 1.193) 0.3703 (-0.5341 – 1.2748)  

0.2062 (-0.6087 – 1.0212) 0.314 (-0.4452 – 1.0732) 0.3116 (-0.7139 – 1.3371) 0.5047 (-0.3733 – 1.3827) 

IL-6 0.038 (-2.0024 – 2.0785) 0.7396 (-1.3778 – 2.857) 0.866 (-1.0599 – 2.7919) 0.8236 (-0.5612 – 2.2085)  

-0.0574 (-2.1257 – 2.0109) 0.9197 (-1.281 – 3.1204) 1.2008 (-0.6906 – 3.0922) 0.7828 (-0.5948 – 2.1604) 

IL-18 -0.0006 (-0.0056 – 0.0045) 0.0015 (-0.0029 – 0.0059) -0.0022 (-0.0073 – 0.0028) -0.0007 (-0.0045 – 0.0032)  

0.0002 (-0.0051 – 0.0056) 0.0021 (-0.0023 – 0.0065) -0.0028 (-0.0076 – 0.0021) -0.0008 (-0.0045 – 0.0029) 

Pro-Inflammatory Chemokines 
      

IL-8 
-0.1936 (-1.0462 – 0.659) 

-1.14 (-2.2208 – -

0.0592)* 0.5813 (-0.246 – 1.4087) 0.4919 (-0.2374 – 1.2212)  

-0.2429 (-1.097 – 0.6112) -0.992 (-2.0694 – 0.0854) 0.6275 (-0.1792 – 1.4342) 0.4493 (-0.2768 – 1.1754) 

IP-10 0.0011 (-0.0116 – 0.0138) 0.0064 (-0.0056 – 0.0184) -0.0116 (-0.0243 – 0.0011) 0.0057 (-0.0054 – 0.0168)  

0.0041 (-0.0088 – 0.0169) 0.0085 (-0.0036 – 0.0205) -0.0117 (-0.0243 – 0.0009) 0.0044 (-0.0064 – 0.0152) 

MCP-1 -0.0124 (-0.0363 – 0.0115) -0.0155 (-0.042 – 0.0112) 0.0025 (-0.0231 – 0.028) -0.0002 (-0.0291 – 0.0287)  

-0.0132 (-0.037 – 0.0106) -0.0146 (-0.042 – 0.012) 0.003 (-0.022 – 0.028) 0.0019 (-0.026 – 0.0298) 

SDF-1 α -0.0023 (-0.0057 – 0.001) -0.0014 (-0.005 – 0.002) -0.0011 (-0.0044 – 0.0022) -0.0008 (-0.0042 – 0.0026)  

-0.0021 (-0.0055 – 0.0013) -0.0011 (-0.0044 – 0.002) -0.0009 (-0.0042 – 0.0023) 0 (-0.0033 – 0.0033) 

MIF 0.0325 (-0.0116 – 0.0766) 0.0147 (-0.0364 – 0.0648) -0.0272 (-0.0724 – 0.0179) -0.0152 (-0.0654 – 0.0351)  

0.0246 (-0.0193 – 0.0686) 0.0113 (-0.0392 – 0.0618) -0.0254 (-0.0689 – 0.0182) -0.0112 (-0.0596 – 0.0372) 

Tryptophan Metabolism 
      

Trp -0.0002 (-0.0007 – 0.0003) 0.0001 (-0.0004 – 0.0006) -0.0004 (-0.001 – 0.0001) -0.0004 (-0.0011 – 0.0002) 

 -0.003 (-0.0008 – 0.0002) 0 (-0.0005 – 0.0006) -0.0001 (-0.0007 – 0.0004) -0.0003 (-0.0009 – 0.0003) 

Kyn -0.0041 (-0.0219 – 0.0137) -0.0007 (-0.0166 – 0.015) -0.0176 (-0.032 – -0.003)* -0.0165 (-0.0349 – 0.0019) 
 

-0.0045 (-0.0233 – 0.0143) 0.0001 (-0.0167 – 0.0169) -0.0099 (-0.025 – 0.0052) -0.0105 (-0.0291 – 0.0081) 

Kyn/Trp 91.8 (-64.4 – 248.1) -11.6 (-181.4 – 158.3) -84.9 (-224.4 – 54.5) -40 (-172.9 – 92.9) 

 120 (-47.4 – 287.5) 58.3 (-140.5 – 257.1) -106.6 (-246.9 – 33.8) -4.8 (-134.5 – 125.7) 
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Chapter 7 
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1. Overview and summary 

In this thesis, it was demonstrated that early life stress (ELS) induces dysfunction of 

the communication pathways within the gut-brain axis, specifically leading to 

increased risk of developing visceral hypersensitivity. Further, novel insights into 

potential strategies to reduce the incidence of ELS-induced visceral hypersensitivity 

as well as an interrogation of the role of the gut microbiota and female sex hormones 

in the perception of this type of pain are also provided. The immune profile in the early 

pre-adolescent period was then characterised and the impact of ELS on these changes 

was also investigated. Finally, a panel of biomarkers indicative of the impact of 

prenatal stress on maternal gut health was identified.  

Firstly, we were able to successfully reduce ELS-induced visceral hypersensitivity in 

adulthood using the candidate pharmacological intervention, a β3-adrenoceptor (AR) 

agonist CL-316243 (Chapter 2). Here, we report for the first time that CL-316243 

reduced the total number of pain behaviours in response to colorectal distension 

(CRD) in our model of ELS. We then investigated potential mechanisms and found 

that this beneficial effect on visceral pain did not occur via the central serotonergic 

system or changes in secretomotor function. 

In Chapter 3, again using the maternal separation (MS) model of ELS, we report that 

MS-induced visceral hypersensitivity was reversed by the dietary intervention with 

milk fat globule membrane (MFGM). We report that there was no effect of MS or the 

dietary intervention on either recognition memory or intestinal permeability in the 

colon or ileum. Further, no impact of MS was noted on either neuronal or glial 

networks in early life or adulthood, however, MFGM supplementation resulted in an 

increase in the density index of β3-Tubulin in the colonic myenteric ganglia in 
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adulthood. The mechanism of action of MFGM appears to be independent of changes 

in intestinal permeability or the enteric nervous system (ENS). 

In Chapter 4, the role of the gut microbiota and female sex hormones in the perception 

of visceral pain was investigated. We report that while female germ-free (GF) mice 

display similar visceral pain responses to their conventional counterparts, sensitivity 

to CRD is oestrous cycle stage-dependent in conventional animals only. Further, 

ovariectomy-induced visceral hypersensitivity in conventional animals was revered by 

exogenous addition of 17β-oestradiol, highlighting the role of female sex hormones 

and the gut microbiota in the perception of visceral pain.  

In Chapter 5, alterations in immune profiles in both male and female rats in the early 

pre-adolescent period as well as the consequent impact of MS were investigated. Here, 

we report sex-dependent pre-adolescent changes and consequent effects of MS on the 

circulating immune profile. Of note, these pre-adolescent changes in the circulating 

immune profile were only noted in non-separated (NS) groups, whereas any impact of 

MS on the circulating immune profile was only noted at PND20, suggesting that MS 

may block these pre-adolescent changes in the circulating cytokine levels given that 

any MS-induced changes occurred only at the earlier timepoint. Finally, MS led to an 

increase in normalised spleen weight in males only, which is suggestive of general 

immune activation, and no pre-adolescent changes or effect of MS were noted on ileal 

cytokine levels. Together, these findings suggest that these pre-adolescent changes 

begin in the circulation, with any change in the gut immune profile likely taking longer 

to appear, and MS blocks systemic pre-adolescent changes in the cytokine immune 

profile which may play a role in the manifestation of MS-induced behavioural and 

physiological alterations. 
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Finally, we investigated potential circulating biological markers of prenatal maternal 

stress in pregnant women with or without the disorder of gut-brain axis interactions 

irritable bowel syndrome (IBS) (Chapter 6). Here, we report the potential use of 

markers of systemic inflammation and gastrointestinal (GI) permeability as 

biomarkers for prenatal maternal stress and anxiety in the healthy cohort. This chapter 

provides evidence for the use of these biological signatures as markers of prenatal 

maternal stress which could inform treatment strategies to negate the impacts of this 

stress on the foetus and the mother. 

Overall, the results obtained from Chapters 2-6 of this thesis support the use of MFGM 

and CL-316243 as effective treatment strategies against MS-induced visceral pain and 

highlight a major modulatory role of female sex hormones and the gut microbiota in 

visceral pain perception. Moreover, we report that markers of systemic inflammation 

and GI permeability are reliable biomarkers for prenatal maternal stress in a healthy 

cohort of pregnant women. A summary of the investigations incorporated into this 

thesis is available in Figure 1. 
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Figure 1. Summary of investigations in this thesis. 
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2. Strategies to treat disorders of early life stress 

Stress in early life is a known risk factor for the development of many stress-related 

psychiatric disorders including depression and anxiety as well as disorders of gut-brain 

axis interactions including IBS, for which visceral hypersensitivity is a hallmark 

(Wilmes et al., 2021). This thesis provides insight into ELS-induced dysfunction of 

the gut-brain axis and potential therapeutic treatments. Given the current world 

climate, research into the impact of stressors in early life on the gut-brain axis is of 

even more importance. With the global population only now beginning to exit a 

pandemic brought on by COVID-19, the long-term effects of this virus both on 

physical and mental health is as yet unknown. However, results from studies carried 

out during the pandemic are already available, reporting poorer mental health in young 

people as a result of COVID-19 (Chadi et al., 2022; Han et al., 2021). Increasingly 

more studies have also reported this same negative impact on mental health in adults 

(Bridgland et al., 2021; Rudenstine et al., 2021; Thorndike et al., 2022). 

Further, the outbreak of war in the Ukraine is having major impacts on the residents 

of the Ukraine as well as the world population. The Russo-Ukrainian war has already 

resulted in the displacement of more than 14 million people, and undoubtedly this 

conflict will have irrevocable consequences on physical and mental health.  

It is well known that while the stress of this unnecessary brutality is having adverse 

effects on the people of the Ukraine, the negative consequences of this stress may be 

transmitted to the next generation, perpetuating the damage caused by this war.  
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2.1. Visceral pain 

Visceral pain, or pain centred around the midline of the body originating from the 

viscera is a hallmark of the disorder of gut-brain axis interactions IBS and has a 

worldwide prevalence of between 30 and 90% in patients with IBS (Bouin et al., 2002; 

Ludidi et al., 2012; Posserud et al., 2007; van der Veek et al., 2008). IBS, and 

associated visceral hypersensitivity, displays a female predominance (Lovell and 

Ford, 2012b), however there is currently no satisfactory or particularly efficacious 

treatment, highlighting the need for further research into treatment strategies for 

visceral pain. Given that visceral pain is the most common form of pain resulting from 

disease (Cervero, 2000), there is a pressing need to identify novel and effective 

treatment strategies. As the overall aim of this thesis was to provide novel insights into 

ELS-induced dysfunction of the gut-brain axis, the impact of MS on a wide range of 

behavioural and physiological readouts was assessed. The implications of the findings 

of this thesis will be discussed in this section. 

 

2.1.1. Relationship between early life stress and visceral hypersensitivity 

The relationship between ELS and visceral hypersensitivity has been extensively 

explored in the literature. As previously stated, it is well known that a history of ELS 

is a risk factor for development of disorders of gut-brain axis interactions such as IBS 

(O'Mahony et al., 2017), particularly in females (Bradford et al., 2012). Rodent models 

of ELS such as MS have been reproducibly shown to result in visceral hypersensitivity 

throughout the lifespan (McVey Neufeld et al., 2020; Moloney et al., 2016b; 

O'Mahony et al., 2009; Vilela et al., 2017; Yi et al., 2017). In agreement with the 

literature, in this thesis we observed that MS resulted in visceral hypersensitivity in 
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adulthood (Chapter 2 and 3) as noted both by an increased total number of pain 

behaviours and a decrease in the threshold pressure to CRD. In this thesis, potential 

mechanisms by which MS predisposes to visceral pain in later life were also 

investigated. Examinations into changes at the level of central serotonergic signalling, 

colonic submucosal neuronal activation in response to CRD, and colonic secretomotor 

function did not reveal any significant differences between NS and MS groups 

(Chapter 2). However, through observation of the results of Chapter 2 it may be seen 

that although no difference in the abundance of β3-AR+ve colonic submucosal neurons 

between NS and MS groups was noted, MS resulted in a non-significant decrease in 

the percentage of colonic submucosal neurons (both c-Fos+ve and β3-AR+ve) activated 

in response to CRD. A limited number of studies have investigated the impact of MS 

on the ENS, with reports of an increase in cholinergic enteric neurons (Gareau et al., 

2007a), a decrease of neuronal nitric oxide synthase (nNOS) positive myenteric 

neurons (Li et al., 2017). However, we did not reveal any impact of MS on the 

parameters investigated including central serotonergic signalling and measures of the 

ENS. 

Further investigations in this thesis revealed that MS also does not act at the level of 

intestinal permeability or ENS changes, at least under the experimental conditions we 

used (Chapter 3) suggesting that MS may be exerting effects on visceral pain 

perception via other mechanisms. Our finding of no effect of MS on the intestinal 

epithelial barrier is not in agreement with the literature reporting an increase in the 

permeability of this barrier following MS (Gareau et al., 2007b; Moussaoui et al., 

2017), with some studies proposing that this increased permeability plays a major role 

in the manifestation of behavioural and biochemical alterations associated with MS 

(Rincel et al., 2019a). As previously mentioned, the lack of effect of MS at the levels 
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of intestinal permeability may be due to the inclusion of docosahexaenoic acid (DHA) 

in the control diet which has shown to be protective against insults that increase 

intestinal permeability. The same may also be said for the ENS where no impact of 

MS was noted. DHA has a neuroprotective capacity and may have been shielding the 

ENS against the deleterious effects of MS. Studies investigating these potential 

protective properties have shown that supplementation with DHA improved distress 

behaviours following intracerebroventricular administration of corticotropin releasing 

hormone (Takeuchi et al., 2003). Further studies have reported beneficial effects of 

DHA on reprogramming of the stress response, reversal of stress-induced behavioural 

changes and neuronal apoptosis (Pusceddu et al., 2016), and interestingly post-mortem 

levels of DHA are lower in the orbitofrontal cortex of patients with major depressive 

disorder (McNamara et al., 2007), further supporting the role of this polyunsaturated 

fatty acid (PUFA) in protection against stress-induced alterations in behaviour. 

It is thought that visceral hypersensitivity is manifested via central or peripheral 

sensitisation, or dysregulation of the descending pain pathways (Sengupta, 2009). As 

is stated in the general introduction of this thesis, hypothalamic-pituitary-adrenal 

(HPA) axis activity and stress interact to affect visceral sensitivity. It is also well 

known that ELS results in HPA axis dysregulation. Therefore, it would be reasonable 

to assume that ELS, through dysregulation of HPA axis activity, feeds into the 

manifestation of visceral hypersensitivity. However, while this is a plausible 

hypothesis, the exact mechanisms behind the long-lasting impact of ELS on visceral 

sensitivity are unclear and thus, this thesis investigated potential mechanisms by which 

ELS may exert its deleterious effects on visceral sensitivity as mentioned above, while 

also investigating the role of the gut microbiota and female sex hormones in visceral 

pain perception.  
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2.1.2. Investigation into factors that modulate the visceral pain response 

There is a litany of factors that are known to modulate the visceral pain response. 

These factors are outlined in detail in the general introduction of this thesis and include 

the gut microbiota, sex hormones, neurotransmitters including noradrenaline (NA) and 

serotonin (5-HT), as well as the immune system and stress. Here, we provide novel 

insight into the gut microbiota and female sex hormones as modulators of the visceral 

pain response (Chapter 4). The insights into these factors that modulate the visceral 

pain response provide justification to exploit both the gut microbiota and female sex 

hormones in the treatment of visceral pain-associated disorders. 

A previous study from this lab carried out in male GF mice revealed that the gut 

microbiota regulates the visceral pain response (Luczynski et al., 2017) whereby male 

GF mice display baseline visceral hypersensitivity versus their conventional 

counterparts. However, whether this is also true of female GF mice was heretofore 

unknown. We show for the first time that female GF mice do not display this same 

baseline visceral hypersensitivity and are insensitive to ovariectomy-induced visceral 

pain which was seen in their conventional controls (Chapter 4). Together these 

findings strongly support a major role for the gut microbiota in the regulation of the 

visceral pain response given that in its absence, i.e. in a GF condition, an appropriate 

visceral pain response is lost. Moreover, these results also highlight the importance of 

sex differences in visceral pain that are also seen in the literature (Prusator and 

Greenwood-Van Meerveld, 2016). Sex differences in visceral pain are also seen 

following unpredictable odour-shock in early life which induced visceral 

hypersensitivity in female, but not male rats (Chaloner and Greenwood-Van Meerveld, 

2013). Further, ovariectomy reversed this ELS-induced visceral hypersensitivity, and 

exogenous addition of oestradiol restored the viscerally hypersensitive phenotype, 
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highlighting the major role of female sex hormones in visceral sensation. Here, we 

show that cessation of production of ovarian hormones via ovariectomy resulted in 

visceral hypersensitivity which was reversed by 17β-oestradiol. Although this finding 

is in stark contrast with the findings of Chaloner and Greenwood-Van Meerveld, the 

authors performed ovariectomy following exposure to ELS whereas in Chapter 4 of 

this thesis, animals were ovariectomised without being exposed to a stressor, 

suggesting an interaction between ELS and oestrogen on perception of visceral pain. 

Ovariectomy alone without the provision of an additional stressor has been shown in 

the literature to result in a decrease (Ji et al., 2003), or increase (Garrido-Suárez et al., 

2015) in visceral sensitivity in rats, however, when paired with an additional stimulus 

(visceral pain-inducing stressor or compound such as capsaicin or mustard oil), an 

increase (Chaloner and Greenwood-Van Meerveld, 2013; Sanoja and Cervero, 2005) 

or decrease (Lu et al., 2007) in the visceral pain response is seen. Together, these 

reports suggest that stress and oestrogen exert a complex and intertwined effect on 

visceral pain processing. It has also been shown previously that 17β-oestradiol 

treatment in rats exposed to stress resulted in altered visceral nociceptive processing 

in the brain, resulting in visceral hypersensitivity, (Hubbard et al., 2016), further 

highlighting the complex interplay between female gonadal hormones and stress and 

their joint effects of the visceral pain response. 

In the present study, we used GF mice whereas in the above cited studies, conventional 

animals were used. It is well known and accepted that GF animals display altered 

neurochemistry, HPA axis responsivity, and immune responses (Luczynski et al., 

2016a); all factors that are known to play a role in the perception of visceral pain. 

Further, given the role of the gut microbiota and bacterial metabolites in the sensation 

of visceral pain as outlined in the general introduction of this thesis, the lack of the gut 
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microbiota in GF animals likely also plays an important role in the alterations in 

visceral pain perception seen in this chapter. Therefore, it may be surmised that by 

virtue of the use of GF animals, the alterations mentioned above may lead to a 

differential effect of oestrogen on visceral pain perception and may thus explain the 

differences seen versus other studies that report the pro-nociceptive properties of 

oestrogen (Ji et al., 2008; Moloney et al., 2016b). Interestingly, we show that the 

visceromotor response (VMR) to CRD in conventional females in the proestrus/estrus 

stages of the oestrous cycle when oestrogen is at its highest, is lower than that of the 

conventional females in metestrus/diestrus, suggesting that gonadal hormones are anti-

nociceptive in our study. However, this female sex hormone-dependent decrease in 

VMR is not seen in the GF females, suggesting that they may be insensitive to the 

effects of oestrogen on perception of visceral pain, or the levels of these sex hormones 

present in GF animals is not sufficient to induce an effect in these animals. This finding 

of decreased sensitivity to pain during proestrus/estrus is in contrast with the findings 

of another study in rats reporting the opposite (Moloney et al., 2016b), highlighting 

the need for further research into the effects of female sex hormones on visceral pain 

perception. It has been observed that the pro-nociceptive effects of oestrogen may be 

mediated by activation of the G protein-coupled oestrogen receptor (ER) which results 

in spinal nociception (Deliu et al., 2012), or via spinal ERα (Ji et al., 2011), or at the 

level of the amygdala (Myers et al., 2011). Conversely, activation of ERβ results in a 

reduction in the response to CRD (Cao et al., 2012). Moreover, GF animals have been 

shown to have altered levels of female sex hormones versus conventional animals and 

thus the levels of oestrogen seen in the GF female mice may have been subthreshold 

to induce visceral pain in these animals as is reported in some studies above. 
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These results support a major modulatory role of both the gut microbiota and female 

gonadal hormones in the normal perception of visceral sensitivity. While there is no 

consensus on whether oestrogen is pro- or anti-nociceptive in the literature (Sun et al., 

2019), future studies should fully investigate the effects of ELS on oestrogen-mediated 

alterations in visceral pain. 

 

2.1.3. Novel treatment strategies for disorders of visceral pain 

As mentioned previously, a wide range of microbiota-targeted and pharmacological 

interventions aimed at treatment of disorders of the gut-brain axis have been 

investigated. In the context of disorders associated with ELS such as IBS, while 

progress has been made in the field, there is currently no satisfactory treatment and 

given the increasing prevalence of disorders of gut-brain axis interactions over the past 

number of years (Nakov et al., 2022), there is a need for the identification of effective 

interventions against visceral pain-associated disorders. A table of the 

pharmacological interventions that have shown promise in the varying subtypes of IBS 

is available in the introduction of this thesis (Table 2). However, prior to the 

development of safe and effective interventions, the complex mechanisms behind 

disorders of visceral pain must first be unravelled. The efficacy of two candidate 

interventions against ELS-induced dysfunction of the gut-brain axis will be discussed. 

The efficacy of CL-316243, a pharmacological intervention aimed at agonism of the 

β3-AR, against ELS-induced visceral pain was assessed. Here, in agreement with the 

limited literature available on the use of CL-316243 against disorders of visceral pain, 

we found that CL-316243 was effective in ameliorating the ELS-induced visceral pain 

as noted by a decrease in the total number of pain behaviours and an increase in the 
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threshold pressure before a pain behaviour was displayed. Previous studies reporting 

the efficacy of β3-AR agonists against visceral pain have proposed that the mechanism 

of action of this pharmacological intervention is mediated by the release of 

somatostatin (Cellek et al., 2007). Somatostatin, a regulatory neuropeptide involved 

in control of motility and secretomotor activity released from enteroendocrine cells 

and enteric neurons, has been suggested to play a role in the visceral pain response. 

Studies administering somatostatin analogues such as octreotide report a decrease in 

visceral pain perception preclinically (Mulak et al., 2015; Su et al., 2001) and in both 

healthy (Hasler et al., 1993; Plourde et al., 1993), and IBS cohorts (Bradette et al., 

1994; Schwetz et al., 2004a). Moreover, β3-AR agonists have been shown to be 

effective against diarrhoea (Cellek et al., 2007), and slow GI transit in mice (Fletcher 

et al., 1998), which when coupled with its analgesic effects further support their use 

as therapies for disorders of gut-brain axis interactions such as IBS which displays 

visceral hypersensitivity as well as alterations in GI motility.  

Although one potential mechanism of action of β3-AR agonists is proposed to be 

somatostatin-mediated, we aimed to investigate other signalling pathways and 

physiological changes that are known to be relevant to visceral pain perception. 

Overall, we noted that CL-316243 reduced the percentage of c-Fos+ve and β3-AR+ve 

colonic submucosal neurons in response to CRD, altered central and peripheral 

tryptophan levels, and did not affect secretomotor activity in the colon. While 

alterations in central and peripheral tryptophan were observed, these changes did not 

translate to increased central 5-HT, a known regulator of the pain response, suggesting 

that CL-316243 acts independently of the central serotonergic system. Moreover, we 

did not note an effect of CL-316243 alone on colonic secretomotor activity, however 

in the presence of tetrodotoxin, a resultant increase in short circuit current was found. 
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This finding suggests that there may be an alleviation of inhibitory ENS-mediated 

input which when alleviated allows for modulation of secretomotor activity via 

activity at the β3-AR. From the above results, we can conclude that the candidate 

pharmacological intervention CL-316243 is sufficient to reduce visceral 

hypersensitivity resultant of exposure to ELS, and its mechanism of action does not 

involve the central serotonergic system, nor alterations at the level of secretomotor 

activity. This pharmacological intervention may also have relevance in the treatment 

of IBS given its analgesic properties and its ability to modulate motility. 

Given the increasing awareness of the accessibility of the gut microbiota as an avenue 

for treatment of disorders of the gut brain axis, dietary interventions are receiving 

increasingly more attention. We explored the potential of MFGM against ELS-

induced dysfunctions in behaviour with a particular focus on visceral pain (Chapter 

3). We report that life-long dietary supplementation with MFGM ameliorates MS-

induced visceral hypersensitivity and reduces the impact of MS on spatial memory. 

While very few studies have investigated the efficacy of MFGM in the amelioration 

of ELS-induced visceral hypersensitivity, we have shown previously in this lab that 

post-weaning administration of MFGM to rats exposed to MS reduced visceral 

hypersensitivity (O'Mahony et al., 2020). A similar degree of reduction in the total 

number of pain behaviours and increase in threshold pressure seen between Chapter 

3 of this thesis and the above cited study, suggesting that the benefit of MFGM was 

not augmented by the prolonged exposure to the diet pre-weaning. We also 

investigated possible mechanisms of action of MFGM against MS-induced visceral 

hypersensitivity. We reported that this mechanism is independent of changes at the 

level of the ENS or intestinal permeability. Again, these findings have the caveat of 

the inclusion of DHA in the control diet, which has protective effects on the two 
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parameters as mentioned above, which may have masked any true effects of MFGM 

on these GI measures. Dietary supplementation with MFGM has also been suggested 

to aid in the reduced prevalence of diarrhoea in children (Zavaleta et al., 2011), and 

ameliorate Escherichia coli-induced changes in stool frequency and GI complaints 

(Ten Bruggencate et al., 2015), however, other studies also report no beneficial effect 

of MFGM on diarrhoea predominance (Billeaud et al., 2014), highlighting the need 

for further research into this dietary intervention as a treatment for symptoms 

associated with IBS. 

While the exact mechanisms of action behind the beneficial effect of MFGM on 

visceral pain and infection are unknown, it has been shown that MFGM modulates the 

gut microbiota (O'Mahony et al., 2020). Previous studies have also proposed that this 

dietary intervention plays a role in shaping the gut microbiota in early life (He et al., 

2019). Specific effects of MFGM on the gut microbiota include an increase in the 

abundance of both Barnsiella and Flavonifractor and a decrease in Lachnospiraceae. 

Functionally, Barnsiella has been linked with beneficial effects in the gut due to the 

conferring of pathogen resistance, while Flavonifractor consumes GABA which may 

impact upon neurotransmission relevant to pain while Lachnospiraceae is associated 

with GI-related diseases such as Crohn’s disease and colitis. Given the major role of 

the gut microbiota in the perception of visceral pain as evidenced in this thesis, it 

would stand to reason that the modulation of the gut microbiota by MFGM may prove 

to be a mechanism of action against MS-induced visceral hypersensitivity. 
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2.2. Biomarkers for disorders of early life stress 

Biomarkers are defined as “A defined characteristic that is measured as an indicator 

of normal biological processes, pathogenic processes, or biological responses to an 

exposure or intervention, including therapeutic interventions” (FDA-NIH, 2016). The 

use of these biological markers is crucial in the development of treatment strategies 

for a wide range of disorders including anxiety and depression as mentioned in the 

general introduction of this thesis. Through this thesis, a number of biomarkers for 

prenatal maternal stress in humans are proposed (Chapter 6) as well as a 

characterisation of immune changes in the early pre-adolescent period and the 

consequent impact of ELS on these changes in rats (Chapter 5). 

We report the suitability of markers associated with GI permeability and inflammation 

as biomarkers for prenatal maternal stress and depression in healthy pregnant females. 

Stress during pregnancy can exert detrimental effect on both the mother and the 

developing foetus, resulting in complications of pregnancy including preeclampsia, 

preterm birth, low infant birth weight, as well as predisposing the offspring to the 

development of depression, anxiety, and autism spectrum disorders. Given the many 

complications that arise as a result of a stressful maternal experience, there is a great 

need for the development of biomarkers to aid in the early identification and treatment 

of these disorders, which could prevent any negative consequences on foetal 

development and maternal health. We propose that sCD14, LBP, and TNF-α together 

are promising biomarkers for prenatal maternal stress, while CRP may be useful in the 

identification of maternal anxiety in healthy pregnancies. Further, we found that 

sCD14, LBP, and CRP together were positively associated with prenatal maternal 

depression, highlighting their possible use as a biomarker for maternal depression. 
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It is well known that the experience of stress may result in inflammation, however, the 

mechanisms by which prenatal maternal stress may affect foetal programming are still 

not clear. The experience of stress during pregnancy and the resultant inflammation 

has been suggested to be a major contributor to alterations in foetal programming, 

leading to possible neuropsychiatric disorders in the offspring (Hantsoo et al., 2019). 

Further, prenatal maternal stress has been shown to result in inflammation in the 

uterine environment and lead to alterations in serotonergic signalling which has been 

proposed to play a causative role in the apparition of neuropsychiatric disorders in the 

offspring (Chen et al., 2020). Moreover, the connection between stress and gut barrier 

dysfunction has been extensively explored (Kelly et al., 2015), as has the link between 

both of these with depression (Cruz-Pereira et al., 2020; Trzeciak and Herbet, 2021). 

From the evidence outlined herein, it stands to reason that biomarkers for depression, 

anxiety, and possibly other stress-related neuropsychiatric disorders should include 

markers of the major contributors to the disorder; these being markers of GI 

permeability and inflammation. 

While the mechanisms by which prenatal maternal stress affects foetal programming 

are still being uncovered, it is known that inflammation may directly alter foetal 

neurodevelopment via cytokine signalling (Dammann and O'Shea, 2008; Ratnayake 

et al., 2013).  

In early life there is a priming of the immune system due to the vast expansion of the 

gut microbiota, and this vigorous immune reaction has been shown to be required for 

normal immune imprinting and protection against immunopathologies later in life (Al 

Nabhani et al., 2019). However, the specific changes in the immune system in the early 

pre-adolescent period are not known, nor is the impact of early life stress on this 

immune priming. We aimed to characterise both these changes in the immune system 
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in the early pre-adolescent period as well as the consequent impact of our model of 

ELS (Chapter 5). We report moderate pre-adolescent changes in circulating cytokine 

levels involving an increase in both IL-5 and IL-13 in males, whereas a decrease in 

IL-5 was seen in females. MS resulted in an increase in normalised spleen weight and 

plasma IL-6, and a decrease in plasma IFN-γ in males, and a decrease in IL-5 in 

females. Interestingly, any changes in circulating cytokines induced by MS were only 

noted at PND20, whereas any pre-adolescent changes in circulating cytokines were 

noted in NS groups only, suggesting that MS blocks these pre-adolescent changes. 

While the functional effect of these noted changes cannot be extrapolated, it appears 

that MS results in a state of general immune activation as noted by the increased spleen 

weight and higher levels of IL-6 and leads to alterations in the normal pre-adolescent 

changes in the immune system at this early timepoint. This may have ramifications on 

later life immunity. 

 

2.3. Methods to reduce the impacts of stress on mother and child 

We have shown that ELS results in visceral hypersensitivity. Therefore, one major 

avenue to ameliorate or even prevent these negative effects would be to reduce stress 

in both the mother and the offspring. Research into methods of accomplishing this are 

far-reaching and include interventions based on music (Corbijn van Willenswaard et 

al., 2017), mindfulness, and exercise (Alderdice et al., 2013) to reduce maternal stress 

and anxiety during pregnancy. While the results of such studies investigating these 

interventions as methods to reduce maternal stress are mixed, it has been seen that the 

above-mentioned interventions as well as psychosocial interventions have shown 

efficacy in women displaying mental health issues (Song et al., 2015; Stoll et al., 
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2018). Given the reported efficacy of these interventions against maternal stress, 

further studies should investigate whether such interventions are also capable of 

negating the deleterious effects of stress on foetal development. 

Further, given that data from this thesis suggests the use of biomarkers related to both 

inflammation and heightened GI permeability, this could suggest that increased 

maternal GI permeability could be playing a role in the psychological effects of stress. 

Increased GI permeability is seen in patients with major depressive disorder (Ohlsson 

et al., 2019) and is thought to be a causative mechanism by which systemic 

inflammation occurs in cases of disease (Mokkala et al., 2016). An obvious 

intervention to aid in the reduction of this inflammation would be to return GI 

permeability to normal physiological levels. This may be achieved through the use of 

probiotics such as Lactobacillus and Bifidobacterium which have been shown to 

improve gut barrier function (Rose et al., 2021). Restoration of gut barrier function 

could prevent the systemic inflammation seen, which would also protect the 

developing foetus. These observations suggest that targeting the mother by reducing 

the impacts of ELS may be a more effective strategy for protecting both the mother 

and developing foetus from the deleterious effects of ELS. 
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3. Beyond visceral pain: other applications of treatment 

strategies identified in this thesis 

While both the dietary and pharmacological interventions explored in this thesis 

display efficacy against ELS-induced visceral pain, they have been shown to be 

beneficial in the treatment of other disorders or dysfunction of the gut-brain axis. The 

concept of repurposing existing medications and treatment strategies is not new, and 

this process saves time and money and given that the candidate intervention already 

has proven safety in humans, the likelihood of adverse reactions related to health is 

lessened (Pushpakom et al., 2019). Examples of some treatment strategies that have 

undergone successful repurposing against disorders of pain include gabapentin, 

originally indicated for epilepsy but has since been repurposed to treat neuropathic 

pain, ibudilast, used in the treatment of asthma and now for neuropathic pain, and 

topiramate which was originally used in the treatment of fungal infections but is now 

also used for treatment of irritable bowel disease (Rudrapal et al., 2020). Here, the 

potential other applications of the dietary and pharmacological interventions 

investigated in this thesis will be discussed. 

 

3.1. β-3 adrenoceptor agonists 

The β3-AR agonist CL-316243 displayed efficacy in reversing ELS-induced visceral 

pain. However, pharmacological interventions targeting the β3-AR have seen many 

other uses over the past number of decades. CL-316243 has been shown to impact on 

metabolism by increasing energy expenditure and improving glucose tolerance 

(Himms-Hagen et al., 1994; Xiao et al., 2015). Moreover, CL-316243 ameliorated 
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high fat diet-induced metabolic dysfunction in rats (Ding et al., 2021). In healthy 

women, the β3-AR agonist mirabegron increased resting energy expenditure and 

increased brown adipose tissue metabolic activity (O’Mara et al., 2020) which has 

relevance for metabolic disorders related to obesity. Beneficial effects as an anti-

obesity drug have also been reported. Through the expression of the β3-AR in white 

and brown adipocytes, CL-316243 leads to increased thermogenesis in the brown 

adipose tissue (Atgié et al., 1997) and a reduction in fat stores in obese mice (Ghorbani 

et al., 1997). Further anti-diabetic and anti-obesity effects of β3-AR agonists have 

been noted in rodents (Edwards et al., 2021; Ghorbani et al., 2012; Xie et al., 2021), 

as well as some promising results via improvement of glucose homeostasis in obese 

insulin-resistant humans (Finlin et al., 2020). 

Other agonists of the β3-AR including mirabegron are also used in the treatment of 

overactive bladder syndrome, a symptom set categorised by urinary urgency and/or 

incontinence. While the exact aetiology of overactive bladder syndrome is unclear and 

likely multi-factorial in nature, it has been suggested that it is related to either 

increased sensory afferent signalling or abnormal detrusor muscle excitability (Palmer 

and Choi, 2017). It is known that activation of the β3-AR results in detrusor muscle 

relaxation, therefore treatment strategies aimed at improving the symptoms of 

overactive bladder syndrome are agonists of the β3-AR. CL-316243, the 

pharmacological intervention investigated in Chapter 2 of this thesis has been shown 

to decrease purinergic nerve-mediated contractions of the detrusor muscle in mice 

(Fong et al., 2019). Mirabegron has been shown to decrease the frequency of rhythmic 

bladder muscle contractions, reducing the symptoms of overactive bladder syndrome 

including urinary frequency and episodes of urgency (Chapple et al., 2014; Kelleher 

et al., 2018; Takasu et al., 2007). Another agonist of the β3-AR, solabegron has also 
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shown promise in the treatment of overactive bladder syndrome in a similar manner 

to mirabegron (Ellsworth and Fantasia, 2015; Ohlstein et al., 2012). Overall, agonists 

of the β3-AR either alone or in combination with anti-muscarinic agents have been 

suggested to be favourable treatments for overactive bladder syndrome.  

 

3.2. Milk fat globule membrane 

As alluded to in the discussion on Chapter 3, MFGM has been shown to have 

beneficial effects of several parameters related to both health and disease. 

Supplementation of the infant’s diet with MFGM has been shown to lessen the 

prevalence of infection including acute otitis media and associated fever (Timby et al., 

2015) as well as reduce the number of febrile episodes in children (Veereman-Wauters 

et al., 2012). Interestingly, dietary supplementation with MFGM significantly reduced 

the oral level of Moraxella catarrhalis (Timby et al., 2017), a pathogen commonly 

observed in otitis media, suggesting that there may be a microbiome-mediated 

mechanism of action.  

Moreover, MFGM supplementation narrows the differential in cognitive development 

between breastfed and formula-fed infants (Timby et al., 2014) and improved 

intelligence quotient scores in hand and eye coordination (Gurnida et al., 2012), 

supporting its role in promoting neurodevelopment. Other studies have reported 

beneficial effects of MFGM on metabolic changes seen in poorly nourished children 

(Lee et al., 2018a). Further beneficial effects of MFGM supplementation are noted in 

adulthood; MFGM in combination with exercise improved agility in middle aged 

adults (Ota et al., 2015) as well as improved measures of frailty (weight loss, 

exhaustion, slow walking speed) (Kim et al., 2015) and agility (Yoshinaka et al., 2018) 
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in elderly adults. These observations support the benefit of MFGM supplementation 

on measures of health and has been extensively reviewed (Abd El-Salam and El-

Shibiny, 2020; Ambrożej et al., 2021; Brink and Lönnerdal, 2018; Herrmann et al., 

2021). 

The positive effects of MFGM seen in Chapter 3 also provide further evidence for the 

benefits of breastfeeding. Breastfeeding is a highly effective method of providing 

MFGM and other nutrients to the developing infant, and as such is the gold standard 

for infant nutrition.  

Overall, MFGM has displayed promising results in promoting neurodevelopment, 

reducing infection severity, as well as promoting health in older adults. 
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4. Future directions 

This section proposes alternative experimental approaches to better understand how 

these treatments and novel factors modulate the visceral pain response as well as 

further investigations into biomarkers for prenatal maternal stress. 

 

4.1. Efficacy of these novel treatments in other models of visceral 

pain 

This thesis supports the efficacy of both MFGM and CL-316243 against MS-induced 

visceral pain. However, it is not known whether these treatment strategies are effective 

in other models of visceral pain. As outlined in the introduction of this thesis, there 

are many preclinical models of visceral pain which could be used to further 

characterise the effect and potential mechanisms behind the action of these therapies. 

Firstly, the activity of both MFGM and CL-316243 in a spontaneously viscerally 

hypersensitive rat strain, the Wistar-Kyoto strain would be of interest as there is a 

known difference in visceral sensitivity between Sprague Dawley rats used in the 

course of the work of this thesis and the Wistar-Kyoto strain (O’Mahony et al., 2013). 

As it has been proposed that there is a difference in endocrine and molecular pathways 

between Wistar-Kyoto and Sprague Dawley rats, the investigation of the ability of the 

treatments investigated in this thesis against other models of visceral pain would allow 

for a better understanding of the mechanism of action. The same could be said for the 

water avoidance stress model of visceral pain, which may involve different pathways 

than seen in the Wistar-Kyoto rats. 

To investigate whether the mechanisms of action of these treatments is mediated by 

the gut microbiota, the use of antibiotics would be of benefit. The efficacy of the 
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dietary intervention MFGM in a microbiota-depleted state would inform whether the 

effects of this intervention are mediated by the gut microbiota as it has been seen that 

MFGM results in alterations in gut microbiota composition (O'Mahony et al., 2020). 

However, whether these changes in the gut microbiota are causative or correlative in 

the mechanism of action of MFGM is unknown. Further, by carefully choosing the 

type of antibiotics to be used and targeting with gram-positive or gram-negative 

bacteria, one could narrow down the classification of the bacteria that may be playing 

a role in the mechanism of action. However, studies have shown that antibiotic 

administration in itself results in visceral hypersensitivity (O’Mahony et al., 2014), or 

reduced visceral sensitivity (Hoban et al., 2017), so caution must be used when 

interpreting results. An alternative method for delineating the role of the gut 

microbiota in the mechanism of action of MFGM against stress-induced visceral pain 

could involve the use of GF animals. As shown in this thesis, female GF mice do not 

display the same baseline visceral hypersensitivity that male GF mice do, therefore 

this experimental approach would provide important insight into the differential sex-

dependent regulation of the visceral pain response by the gut microbiota and 

potentially MFGM.  

If the efficacy of MFGM and CL-316243 in the above models was to be assessed, it 

would allow for a better characterisation of the effects and potential mechanisms of 

these treatment strategies. 

 

4.2. Translational value of these interventions 

In the course of this thesis, research was carried out both in vivo and in humans. As 

already stated in this thesis, MS is a well-established, reproducible rodent model of 
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ELS and a similar phenotype that is observed in rats following exposure to MS can be 

seen in humans who experience stress in early life (Syed and Nemeroff, 2017). This 

observation supports the face validity of this model. While the ultimate test of an 

interventions capacity to ameliorate these stress-induced deficits is its effect in a 

clinical population, preclinical research provides a strong foundation upon which to 

build these clinical studies. Here, we report that a dietary intervention provided from 

early life throughout the lifespan is sufficient to reduce MS-induced visceral 

hypersensitivity, while the candidate pharmacological intervention, which was 

administered in adulthood, also showed benefit in reducing visceral hypersensitivity 

resultant from exposure to ELS. These 2 interventions provide different avenues of 

treatment; the dietary intervention as an intervention to undertake during the 

experience of this stress and the pharmacological intervention to negate these effects 

in later life. Evidence from this thesis further supports the value of preclinical models 

as methods to inform future preclinical and clinical studies. 

 

4.3. Alternative methodological approaches to further develop the 

findings of this thesis 

Aside from the use of alternative preclinical models of visceral pain to assess the 

efficacy of these therapeutic approaches, alterations in the methodology of how these 

experiments could be carried out may also provide mechanistic insight. 

The efficacy of CL-316243 against ELS-induced visceral hypersensitivity was 

assessed in Chapter 2. In this chapter, the pharmacological intervention was delivered 

via oral gavage to recapitulate the normal route of administration in humans using 

other β3-AR agonists for treatment of a range of disorders as mentioned above. 

Another more mechanistic approach would be the utilisation of β3-AR knockout 
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animals to investigate the phenotype in the absence of the β3-AR. Given that one 

potential mechanism of action of β3-AR agonists against visceral pain involved the 

β3-AR-mediated release of somatostatin, one could hypothesise that these β3-AR 

knockout animals would likely not display heightened visceral pain, but rather would 

have impaired NA-induced inhibitory input on visceral pain, leading to altered visceral 

sensitivity. However, there are other mechanisms of visceral pain modulation that are 

independent of the β3-AR, so whether a knockout of this receptor would majorly alter 

visceral sensation is as yet unknown. While no study to date has investigated the 

visceral sensitivity of animals with a β3-AR knockout, it has been seen that these 

animals display an increased susceptibility to diet-induced obesity (Preite et al., 2016) 

and decreased occurrence of brown adipocytes in white fat, indicative of altered 

thermogenesis (Jimenez et al., 2003). 

In Chapter 3 of this thesis, leading on from a previous study in this lab investigating 

the effect of post-weaning administration of MFGM (O'Mahony et al., 2020), we 

administered MFGM in the diet throughout the lifespan of the animals. While this 

experimental approach provides novel insight into the impact of life-long dietary 

supplementation with MFGM on ELS-induced visceral hypersensitivity, to be more 

clinically relevant the impact of supplementation with MFGM in early life only should 

be investigated. Rationale for this is based on the observation that MFGM is being 

supplemented to infant formula in order to minimise the gap in cognition between 

breastfed and formula-fed infants as mentioned above. To better recapitulate this real-

world situation, the diet of the neonatal rats should be supplemented with MFGM from 

birth until weaning. Focusing on this critical time period from the lifespan may provide 

valuable insight into the structural, behavioural, and neurochemical changes induced 

by this dietary intervention. Further studies should also aim to assess the efficacy of 
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this novel dietary intervention against visceral pain in humans through clinical trials 

in patients with IBS given the beneficial effects of this treatment on GI symptoms as 

discussed above. 

In Chapter 4 of this thesis, the role of the gut microbiota and female sex hormones in 

perception of visceral pain was investigated. To build on these findings further, the 

levels of circulating gonadal hormones should be measured and compared to a 

conventional control to fully investigate the hormonal alterations induced by the GF 

status. Once assessed, the levels of these circulating gonadal hormones may inform 

further on the differences found between our results and the findings of other studies 

reporting pro-nociceptive effects of oestrogen. 

A characterisation of changes in the immune profile of pre-adolescent rats and the 

impact of MS on these changes was carried out in Chapter 5. While this chapter was 

purely descriptive in nature, it provides a strong basis for further investigations into 

the sex- and age-specific changes in the immune system in the early pre-adolescent 

period and its shared interaction with ELS. Future studies should investigate these 

changes further to provide information on specific immune changes in this early stage 

of life. Building on these changes, the behavioural and physiological correlates of 

these alterations in cytokine levels should also be investigated. These further 

experiments would advise on whether these cytokine changes are simply in response 

to different housing and feeding conditions, or whether this immune reaction impacts 

upon both the GI tract and CNS structurally to exert changes at a behavioural and 

molecular level to confer this protection against pathologies in later life as reported 

(Al Nabhani et al., 2019). 
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While several potential biomarkers for prenatal maternal stress in healthy women were 

proposed in Chapter 6, only self-reported measures of stress were used. Further studies 

should assess biological readouts of stress such as cortisol to standardise the amount 

of stress these women are experiencing. Further, the findings of this chapter are from 

samples taken at 15- and 20-weeks gestation, the applicability of these biomarkers 

both in the first and third trimester of pregnancy would also be of importance given 

the vast endocrine changes that occur across pregnancy (Moya et al., 2014; Soma-

Pillay et al., 2016). 
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5. Overall conclusions 

This thesis provides data that supports the use of novel dietary and pharmacological 

interventions against ELS-induced visceral pain using the MS model (Chapters 2 and 

3). Further, we highlight the role of female sex hormones and the gut microbiota in 

the appropriate sensation of visceral pain (Chapter 4) as well as characterise the impact 

of MS on the pre-adolescent immune profile (Chapter 5). Finally, we propose the 

utilisation of specific markers related to GI permeability and inflammation as 

biomarkers for prenatal maternal stress (Chapter 6). 

Initially, we characterised the effect of MS on GI, CNS, and behavioural parameters 

and found that MS resulted in visceral hypersensitivity to CRD. This heightened 

visceral sensitivity was ameliorated by agonism of the β3-AR and life-long dietary 

supplementation with MFGM, mechanisms of which appear to be independent of 

changes at the level of the central serotonergic signalling and secretomotor activity, as 

well as at the level of the ENS and intestinal permeability changes respectively.  

Subsequently, the role of the gut microbiota and female sex hormones in the visceral 

pain response were assessed. Here, we found that the absence of the gut microbiota in 

female mice does not impact on visceral sensitivity, however the oestrous cycle 

modulated the visceral pain response in a microbiota-dependent manner. Further, 

female GF mice were insensitive to ovariectomy-induced visceral pain, and addition 

of exogenous oestradiol to conventional mice reversed this ovariectomy-induced 

visceral pain. Together, these results support a major modulatory role for the gut 

microbiota and female sex hormones in the perception of visceral pain. 

Next, given the important role of the immune system in the pain response, we sought 

to investigate the specific changes in the immune profile of pre-adolescent pups. Here 
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we report modest changes in cytokine levels in the circulation as well as an increase 

in spleen weight in males and suggest that MS blocks this immune response which 

may be required for normal development.  

Finally, we propose the use of markers of GI permeability and inflammation as 

biomarkers for maternal stress, anxiety, and depression with the idea that they may be 

used clinically to aid in the prevention of complications of pregnancy and foetal 

development arising from prenatal stress exposure. 

The findings of this thesis present a need for further investigations into ELS-induced 

dysfunction of the gut-brain axis as well as potential treatment options. Given the 

safety of both MFGM and CL-316243 in humans as outlined in this discussion, this 

thesis presents an opportunity for the use of these interventions against disorders of 

visceral pain. Further, the work carried out in the course of this thesis may aid future 

studies exploring therapeutic options for treatment of disorders of gut-brain axis 

interactions. 
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Abstract 

Background: The gastrointestinal microbiota has emerged as a key regulator of gut- 

brain axis signalling with important implications for neurogastroenterology. There is 

continuous bidirectional communication between the gut and the brain facilitated by 

neuronal, endocrine, metabolic, and immune pathways. The microbiota influences these 

signalling pathways via several mechanisms. Studies have shown compositional and 

functional alterations in the gut microbiota in stress-related psychiatric disorders. Gut 

microbiota reconfigurations are also a feature of irritable bowel syndrome (IBS), a gut-

brain axis disorder sharing high levels of psychiatric comorbidity including both anxiety 

and depression. It remains unclear how the gut microbiota alterations in IBS align with 

both core symptoms and these psychiatric comorbidities. 

Methods: In this review, we highlight common and disparate features of these micro- 

bial signatures as well as the associated gut-brain axis signalling pathways. Studies 

suggest that patients with either IBS, depression or anxiety, alone or comorbid, pre- 

sent with alterations in gut microbiota composition and harbor immune, endocrine, and 

serotonergic system alterations relevant to the common pathophysiology of these 

comorbid conditions. 

Key results: Research has illustrated the utility of fecal microbiota transplantation in 

animal models, expanding the evidence base for a potential causal role of disorder- 

specific gut microbiota compositions in symptom set expression. Moreover, an ex- citing 

study by Constante and colleagues in this issue highlights the possibility of counteracting 

this microbiota-associated aberrant behavioral phenotype with a pro- biotic yeast, 

Saccharomyces boulardii CNCM I-745. 

Conclusions and inferences: Such data highlights the potential for therapeutic tar- 

geting of the gut microbiota as a valuable strategy for the management of comorbid 

psychiatric symptoms in IBS. 
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anxiety, comorbidity, depression, IBS, microbiota-gut-brain axis 
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1 | INTRODUCTION 

 

Irritable bowel syndrome (IBS), now regarded as a disorder of gut- 

brain axis interactions, is one of the most prevalent gastrointestinal 

disorders, with varying incidence rates around the globe, constituting 

20–50% of the gastrointestinal workload.1,2 IBS is characterized by 

abdominal pain and altered bowel movement without overt struc tural 

or biochemical abnormalities.3 While the understanding of IBS has been 

improved in recent years, concurrent with some effective therapeutic 

options becoming available, many IBS patients present with psychiatric 

comorbidities, a subset that is much more difficult to treat. This 

significant cohort includes approximately 44% and 25% of IBS patients 

presenting at gastroenterology clinics with comorbid anxiety and 

depression respectively.4 Moreover, the co-occurrence of psychiatric 

comorbidities is associated with IBS symptom sever- ity5,6), while some 

studies show the efficacy of specific antidepressants in reducing IBS 

symptomatology.7 

Psychiatric disorders, such as anxiety disorders (hereafter referred 
to as anxiety) and major depressive disorder (hereafter referred to as 
depression) are among the most prevalent mental health problems 
worldwide. It is estimated that approximately 10% of the global 
population suffers from these disorders each year.8,9 Although there has 
been extensive research into the pathophysiology of depression and 
anxiety, their diagnosis is still symptom based, with treatment options 
remaining suboptimal and stubbornly focused on targeting monoamine 
neurotransmitter pathways.10 Independently, IBS, depression, and 
anxiety are complex heterogenous disorders with an already difficult 
clinical management profile made more challenging when combined in 
comorbid gastrointestinal and psychiatric phenotypes.3,8,9 

Research in the last decade or more points toward a role of the gut-

brain axis in both IBS and psychiatric disorders.11–13 The gut is  in 

continuous bidirectional communication with the brain through 

neuronal, endocrine, and immune signalling pathways. The important 

role the gut microbiota plays in regulating these routes of 

communication to influence brain function and behavior has seen this 

axis renamed to reflect this and it is now termed the microbiota-gut- 

brain axis.14 

The clinical care of IBS patients with psychiatric comorbidity is 

complex with treatment failure common. Repositioning IBS as a 

disorder of gut-brain axis interactions, along with recognition of the 

important role played by the gut microbiota in symptom expression, 

has led to calls for integrated clinical management models that blend 

medical management with behavioral and dietary interventions.15 Here, 

we outline why the success of this approach for this partic ular subset 

of comorbid IBS patients demands greater focus on the common 

ground, and the diverging routes, that might explain why particular 

microbiota configurations lead to distinct clinical representations of 

IBS. As of now, the mechanisms underpinning these co- morbidities are 

not fully known. A recent study also highlighted the bidirectional nature 

of this comorbidity by showing that psychiatric symptoms are 

predictive for the development of IBS, while IBS is also predictive of 

depression and anxiety later in life.16 Interestingly, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
most comorbid IBS patients develop gastrointestinal symptoms be- fore 

psychiatric comorbidities.16 After a summary of the communication 

pathways of the microbiota-gut-brain axis, we will analyze the latest 

literature on psychiatric comorbidities in IBS. This review will focus in 

particular on alterations in the gut microbiota reported in IBS, 

depression, and anxiety and in IBS with comorbid anxiety and 

depression. We will discuss how gut microbiota signatures associated 

with these disorders might impact on gut-brain axis signalling pathways 

and the therapeutic implications of these observations. 

 

 
2 | SIGNALLING PATHWAYS OF T HE  

MICROBIOT A-GUT-BRAIN AXIS   

 
Understanding the role of the gut microbiota in IBS and its psychiat ric 

comorbidities requires an appreciation of the signalling pathways of the 

microbiota-gut-brain axis. The main routes of communication are 

summarized in Figure 1 and include neuronal, immune, and endocrine 

host signalling pathways, as well as the microbial production or 

regulation of bioactive molecules such as neurotransmitters, their 

precursors and short-chain fatty acids (SCFAs). 

Neuronal communication along the microbiota-gut-brain axis is mostly 

mediated by the autonomic nervous (ANS), with the enteric nervous 

system (ENS) arm regulating important mechanisms locally in the 

gastrointestinal tract. One of the most important routes of 

communication is the vagus nerve. The vagus nerve connects the brain 

to all visceral organs among others and relays information via 80% 

afferent and 20% efferent fibers.17–19 A portion of afferent axonal 

endings are located in the mucosa of the GI tract. These afferents are 

thought to contain a wide array of receptors, making them able to 

detect signals such as gut hormones, neurotransmitters, and bacterial 

metabolites.14 

A major player in endocrine signalling of the microbiota-gut- brain axis 

is the hypothalamic-pituitary-adrenal (HPA) axis, the major stress axis of 

the body, whose activation results in the release of glucocorticoids. This 

endocrine signalling pathway can be restrained 

 

Key Points 

• Gut microbiota alterations are a feature of IBS. However, 

the functional implications of these compositional 

reconfigurations remains unclear. 

• There are common and disparate features of these 

microbial signatures associated with IBS and IBS with 

psychiatric comorbidities but the neurobiological 

implications require elaboration. 

• Improving our understanding of the role of gut 

microbiota in driving specific gut-brain axis signalling 

pathways important for the cardinal gastrointestinal and 

psycho- logical features of IBS will be critical to accrue 

therapeutic benefits. 
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FI G U R E 1   Summary of microbiota-gut-brain axis signalling pathways. There are a number of important routes of communication in the 

microbiota-gut-brain axis that may be relevant for the expression of gastrointestinal and psychiatric symptoms in IBS. It is well known that 

stress, a major predisposing factor for the development of both IBS and depression in later life, may also impact on gut microbiota composition 

and function. (1) Neuronal, (2) Endocrine, (3) Immune and (4) Microbial signalling pathways are also associated with specific symptom sets. 

Alterations in the composition and function of the microbiota have been reported in IBS, depression, and anxiety. These alterations can, for 

example, result in dysregulation of monoamine signalling and alterations in microbial metabolites which may be related to systemic 

inflammation. It is also now appreciated that the prominent gastrointestinal features of IBS including constipation, diarrhea and visceral pain 

may worsen the associated comorbid psychiatric symptoms such as anxiety and depression. It is still unclear if IBS with psychiatric comorbidity 

represents a distinct clinical entity that can be explained on the basis of converging gut-brain axis signalling pathways. 

 
 

at brain-level by negative feedback of glucocorticoids acting on 

glucocorticoid receptors. Both IBS and psychiatric disorders show 

dysregulation of the HPA axis.20,21 It is now appreciated that the 

microbiota plays a key role in the priming and regulation of this axis, 

shown initially by increased stress response in germ-free animals, 

which is reversed by colonization with specific bacteria or a more 

complete microbiota.22,23 In turn, it has long been known but recently 

reinforced in the preclinical literature that stress exposures can also 

modify gut microbiota composition and function.14,24 

The crosstalk between the microbiota and the hosts’ immune 

system mostly takes place at the mucosa either by direct contact 

or through molecules secreted by the microbiota and is essential for 

priming and education of the immune system.25 The communica tion 

is facilitated by microbe-associated molecular patterns, which are 

sensed by colonocytes and immune cells through pattern recognition 

receptors such as toll-like receptors (TLRs), triggering an immune 

response by the secretion of cytokines. The impact of the gut 

microbiota on the immune system extends to the brain, shown by 

changes in microglia morphology and gene expression profile in germ-

free animals.26,27 

An important topic in the context of inflammation in the gut-brain axis 

is the integrity of the intestinal barrier. Changes in intestinal 
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TA B L E 1 Gut signatures associated with IBS, depression, anxiety, and comorbid IBS. 
 

 
Taxonomic rank 

 
IBS 

 
Depression 

 
Anxiety 

Comorbid IBS and Depression 

Phylum Firmicutes: Bacteroidetes ↑58 Actinobacteria↑51 

Bacteroidetes↓51 

Firmicutes↓45  

Order   Enterobacterales↑ 51  

Family Lactobacillaceae↑52 

Enterobacteriaceae↑46 

Prevotellaceae↓51 Enterobacteriaceae↑51 

Ruminococcaceae↓45 

 

Genus Bacteroides↑52 

Bifidobacterium↓52 

Faecalibacterium↓52 

Eubacterium↑58 

Faecalibacterium↓51 

Sutturella↓51 

Coprococcus↓51 

Eggerthella↑51 

Escherichia/Shigella↑51 

Subdoligranulum↓51 Dialister↓51 

Bacteriodes ↑63 Faecalibacterium 

↑63 Lachnospiraceae↑63 

↑ indicates increase, ↓ indicates decrease. 

 

permeability creates a passage for bacteria and their products from the 

lumen to the ENS, immune cells and systemic circulation, which can 

evoke an immune response. Increased intestinal permeability is 

associated with low-grade inflammation, a neurobiological feature of 

both IBS and depression.28,29 

Another form of communication in the microbiota-gut-brain axis is 

via microbial metabolites, such as SCFAs and neurotransmitters. SCFAs 

are mostly used as an energy source by the host, for example, 

butyrate is the primary energy source for colono cytes. The SCFAs not 

utilized by colonocytes enter the systemic circulation and other tissues 

including the brain.30 SCFAs can activate a set of G-protein coupled 

receptors, FFAR2 and FFAR3 being the most investigated. They are 

found in tissues such as the colon, the heart, and immune cells. FFAR3 

is also expressed in the peripheral nervous system in enteric plexi, the 

portal nerve and autonomic and sensory ganglia,31 which further 

implicates their involvement in gut-brain signalling.32 

The microbiota can produce a wide range of neuroactive molecules that 

have implications for behavior, mood, and cognition. Many of these 

neurotransmitters (GABA, noradrenaline, serotonin) are involved in 

both gastrointestinal and brain function. One of the most important 

neurotransmitters in terms of the microbiota-gut- brain axis is 

serotonin. Serotonin is an important signalling molecule in both the 

central nervous system (CNS) and the ENS and is produced from the 

precursor tryptophan, an essential amino acid.33 The majority of 

serotonin is synthesized by enterochromaffin cells. However, most 

tryptophan is metabolized along the kynurenine pathway, whose end 

products have neuroactive properties and are N-methyl-D-aspartate 

(NMDA) receptor antagonists and agonists.34 In contrast to serotonin, 

both tryptophan and kynurenine can cross the blood brain barrier and 

are further metabolized in the brain by glial cells.35 

The microbiota can directly modulate the levels of tryptophan 

and its metabolites by producing or utilizing tryptophan them- selves.36 

The third major pathway of tryptophan metabolism is microbial and 

results in indoles and its derivates, such as indole-3- acetic acid (IAA), 

indole-3-propionic acid (IPA) ligands of the aryl hydrocarbon receptor 

(AhR).37 AhR is a key regulator of the immune system, involved in the 

function of macrophages, dendritic cells, and 

neutrophils.38 For example, a lack of AhR ligand-producing bacteria is 

associated with increased intestinal inflammation.39 

Although the majority of serotonin is synthesized by the host, its 

production is strongly modulated by gut bacteria. Studies in germ- free 

animals showed that the levels of tryptophan, serotonin, and 

kynurenine are significantly different from conventional animals in the 

gut lumen, plasma, and the brain, both at baseline and follow ing 

acute stress exposures.23,40–32 One of the theories involving the role of 

tryptophan in affective disorders is that the more tryptophan is 

converted into its alternative metabolites, the less tryptophan can 

enter the brain via the circulation, decreasing central levels of 

serotonin.43 

 
 

3 | GUT MICROBIOTA COMPOSITIONAL 

ALTERATIONS ASSOCIATED WITH DISORDERS OF 

THE GUT-BRAIN AXIS 

 
There is a growing body of evidence suggesting alterations in gut 

microbiota composition or function in psychiatric disorders,44 which has 

been associated with increased levels of inflammation.45 It is generally 

thought that gastrointestinal and psychiatric disorders are associated 

with decreased alpha diversity (richness, evenness, and biodiversity of 

the microbiome).46–48 However, while some published articles show 

reduced alpha diversity in these disorders, other studies found no 

changes.49,50 

Table 1 summarizes changes in relative abundance of specific bacteria 

associated with IBS, depression, and anxiety, based on the findings 

in these systematic reviews, in comparison with the relatively few 

studies looking at IBS with comorbid anxiety and de- pression. Overall, 

these disorders present an altered gut microbiota signature but likely 

due to the heterogeneity of these disorders, conflicting results are 

common. However, two recent metanalyses identified the gut 

microbiota signatures most consistently found in depression, anxiety, 

and IBS.51,52 These changes in microbial abundance were hypothesized 

to play functional roles in these disorders. For example, the increased 

abundance of strains such as Escherichia in anxiety has been 

hypothesized to lead to increased secretion of exotoxins potentially 

inducing inflammatory processes impacting on 
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the CNS.53 In relation to IBS, it was hypothesized that the metabolic 

products of the strains Lactobacillaceae and Bacteroides, such as organic 

acids or toxins respectively, may contribute to the IBS pathology by 

causing bloating or inflammation peripherally.52 

Fewer studies have investigated the microbiota using the more 

informative shotgun metagenomic approach. One such study found 

that numerous species of the genus Bifidobacterium such as B. ado- 

lescentis, B. longum, B. dentium are increased in depressed patients.54 

This was unexpected because Bifidobacterium strains are commonly 

used as probiotics with preclinical evidence supporting their possible 

use for the treatment of psychiatric disorders,55 although whether a 

particular microbial member of the gut microbiota should be considered 

beneficial or harmful depends on context. The most recent study using 

metagenomic assessment identified 47 species with altered relative 

abundances in patients with depression compared to healthy controls. 

Most of the enriched species belonged to the genera Bacteroides, 

whereas the depleted species belonged to the genera Blautia, 

Eubacterium and Clostridium.53 The largest study to date, which 

included a discovery and validation cohort, showed that Coprococcus 

spp. and Dialister are both depleted in depression.56 In addition, the 

study by Valles-Colomer and colleagues56 conducted a module-based 

analysis, profiling microbial pathways with neuroactive potential 

involved in microbiota-gut-brain axis communication. They showed 

that depression and quality of life were associated with GABA and 

DOPAC, a metabolite of dopamine. Interestingly, GABA has also been 

linked to visceral pain perception.57 

Some studies aimed to subdivide IBS patients with and without distinct 

microbial signatures. For example, IBS patients characterized by an 

increased Firmicutes:Bacteroidetes ratio show increased abundance of 

strains of SCFA-producing eubacteria as well as flagel lin producing 

bacteria,58 which are associated with increased visceral hypersensitivity 

and low-grade inflammation.59,60 Interestingly, it was the patients 

showing a similar gut microbiota signature com- pared to healthy 

controls were linked to comorbid depression.58 Similarly, a distinct gut 

microbiota signature was shown with in- creased IBS symptom severity. 

However, in this study, psychiatric comorbidities were associated with 

the gut microbiota signatures reported in severe cases of IBS.61 

Relatively few studies have directly assessed the gut microbiota 

signatures associated with psychiatric comorbidities in IBS. A recent 

study, analyzing the therapeutic effect of fecal microbiota 

transplantation (FMT), showed that IBS patients and healthy controls 

show higher alpha diversity compared to IBS with comorbid depression. 

Similarly, comorbid IBS patients clustered differently from IBS patients 

and healthy controls in a beta-diversity analysis.62 Research has also 

suggested that patients with IBS and depression show a similar gut 

microbiota imbalance characterized by either high levels of Bacteriodes 

or Prevotella.63 Further analysis showed that comorbid patients show a 

similar enterotype to healthy controls, characterized by dominant 

genera including Bacteroides, Faecalibacterium and Lachnospiraceae. 

However, differences were shown in the composition of non-dominant 

bacteria. Of note is that the presence of depression at baseline was 

associated with lasting effect of 

FMT in IBS-related quality of life and fatigue in patients with non- 

constipated IBS.64 

There have not yet been extensive attempts to address the gut 

microbiota in IBS patients with comorbid anxiety. De Palma and 

colleagues identified indicator species, rather than taxonomic 

differences in relative abundances per se, of the genera Eggerthella, 

Blautia, Copcrococcus, Streptococcus and Clostridium, which were as- 

sociated with the disease state of comorbid anxiety.65 However, this 

was based on a small number of IBS subjects with and without anxi ety, 

making definitive conclusions about a distinct comorbid anxiety related 

gut microbiota signature difficult. 

While it is hard to confidently compare results derived from single 

studies to that of meta-analyses, it does appear possible that comorbid 

patients cluster differently than patients with one of the disorders 

alone. However, there is a greater need for studies includ ing a clinical 

diagnosis of IBS patients with comorbid depression and anxiety rather 

than the more common approach of assessing depres sion and anxiety 

scores. 

 

 
4 | SIGNALLING PATHWAYS ALTERED IN 

GASTROINTESTINAL AND PSYCHIATRIC DISORDERS 

 
It has been theorized that the low-grade inflammation, such as in- 

creased cytokine levels66 associated with depression, stems from in- 

creased intestinal permeability67,68 which in turn results in increased 

contact of the immune system to bacteria. Similarly, anxiety is associated 

with a distinct inflammatory state.69,70 Increased inflammatory 

signalling may dysregulate the HPA axis, which is associated with 

symptoms of anxiety and depression.71 Bacteria showing a higher 

relative abundance in depression and anxiety, including Eggerthella 

and Enterobacterales, are associated with increased intestinal in- 

flammation and permeability.72 This low-grade inflammation can be 

further exacerbated by the loss of SCFA-producing bacteria, such as 

Faecalibacterium, which have anti-inflammatory properties.73 

IBS is similarly associated with low-grade intestinal and systemic 

inflammation.74 Studies showing an increased production of pro-

inflammatory cytokines in IBS patient-derived PBMCs also indicate an 

association with anxiety symptoms.75 Low-grade intestinal inflammation 

characterized by increased eosinophil and mast cell numbers in the 

descending colon may drive the gastrointestinal pathology of IBS.76 

Mucosal inflammation driven by changes in microbiota composition and 

strains including Prevotella is associated with overall immune 

dysregulation.77 In conjunction with this, it has been shown that IBS 

patients show altered tryptophan metabolism with a shift toward the 

kynurenine pathway.78 This change has been linked to an altered pro-

inflammatory state via activa tion of TLRs.79 Kazemi et al.80 additionally 

showed an improved kynurenine/tryptophan ratio in the blood of the 

subjects using a probiotic mix containing L. helveticus and B. longum. 

Psychiatric comorbidities in IBS can potentially be linked to increased 

neuroinflammation triggered by the systemic inflammation seen in 

these 
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disorders.66,69,74 These changes are thought to also be in part 

modulated by changes in SCFA production.32 In addition, microglia 

activation has been observed in animal models of stress-induced 

changes in the microbiota-gut-brain axis.81 Changes of the gut 

microbiota signature in these disorders could potentially evoke simi- 

lar changes relevant for the pathophysiology. 

Affective disorders are believed to be mainly caused by dysregulation 

of neurotransmitters in the brain. For example, the majority of current 

medications for depression and anxiety act by increasing the level of 

monoamines in the synapses.8,9 The level of these neurotransmitters 

in the brain is also strongly affected by the gut microbiome. Germ-

free animals show altered neurotransmitter concentrations in the brain 

in addition to reduced anxiety-like behaviors23,82 and these 

serotonergic system alterations are differentially modulated by acute 

stress.42 Interestingly, one of the common therapeutic interventions for 

IBS are antidepressants. While tricyclic antidepressants (TCAs) are 

recognized to be an effective treatment in IBS, selective serotonin 

reuptake inhibitors are not as efficacious.83 However, serotonin plays 

an important role in gastrointestinal motility whereby antagonism of 

the serotonin 5-HT3 receptor improves stool quality84 and decreases 

motility in diarrhea-predominant IBS (IBS-D) patients.85 5-HT4 receptor 

agonist have also proven useful in relief of constipation.86 Serotonin is 

also a modulator of visceral pain as 5HT-3 antagonism increased 

colonic compliance87 and agonism of 5HT-4 reduced sensitivity to rectal 

distension.88 The involvement of serotonin in mood disorders has also 

been extensively studied, particularly in depression, however, its 

precise neurobiological role in psychiatric disorders is likely of greater 

complexity than heretofore appreciated.89 Overall, serotonin is a key 

signalling molecule in the gut- brain axis implicated in the core 

symptoms experienced by IBS and patients with psychiatric 

comorbidity. 

IBS has frequently been associated with structural brain 

changes. For example, one study showed reduced volumes in multiple 

cortical and limbic structures in female IBS patients compared to 

healthy controls.90 However, the majority of the differences were 

associated with early-life trauma and not IBS alone per se, 

highlighting the importance of early-life stress in this disorder.90 

Other studies showed alterations in white matter of IBS patients 

between basal ganglia, thalamus, and prefrontal cortex (PFC).91 

Interestingly, when grouping IBS patients based on the microbiota 

profile, patients characterized by a reduced Firmicutes:Bacteriodetes 

ratio present alterations in the anterior insula, the motor cortex and the 

ventral PFC. Furthermore, increasing volume of the posterior insula, 

was associated with changes in SCFA metabolism and glutamate 

metabolism.92 Similarly, patients with depression show structural brain 

alterations such as reduced hippocampal volume.9,93 These alterations 

are accompanied by reduced expression of BDNF in the 

corresponding brain regions and in the serum.94,95 Interestingly, 

reduced serum levels of BDNF have also been reported in comorbid IBS 

patients.96 It has been shown that brain BDNF levels are modulated 

by the microbiota with germ-free animals showing reduced BDNF 

expression in the 

hippocampus.22,23 However, mechanisms behind the regulation of 

BDNF by the microbiota are still unclear. Future studies should  

identify brain regions and circuits, such as the thalamus or pre- 

frontal areas important for the modulation of sensory information and 

emotions, common across these pathologies responsible for the 

symptom presentation. 

 

 
5 | PRECLINICAL MODELS FOR COMORBID IBS 

 
Part of the difficulty in gaining mechanistic insights in IBS with 

psychiatric comorbidity pertains to the limited availability of pre- clinical 

animal models of complex heterogenous behavioral phenotypes. 

Nevertheless, some options do go some way toward recapitulating a 

relevant constellation of gastrointestinal and psychiatric symptoms. 

 

 
5.1 | MATERNAL SEPARATION 

 
Maternal separation is a well-established rodent model of early-life 

stress and results in widespread changes across the microbiota-gut-

brain axis.97 The maternal separation paradigm does not just model the 

animal behavioral correlates of one specific disorder but rather 

recapitulates several aspects of stress-induced psychiatric disorders 

and produces robust and reproducible changes across the microbiota-

gut-brain axis. These alterations include perturbations in gut 

microbiota,97 which are detectable in adulthood, increases in anxiety- 

and depressive-like behaviors98,99 as well as development of visceral 

hypersensitivity,100 a hallmark of IBS thought to explain the abdominal 

pain which is a dominant characteristic of this disorder.101 

In terms of maternal separation-induced alterations in signalling 

pathways of the microbiota-gut-brain axis, this early-life stress 

exposure has also been shown to alter central neurotransmitter levels, 

particularly monoamines such as serotonin and noradrenaline.102,103 As 

serotonin plays an important role in gut to brain communication with 

respect to mood104 and descending pain pathways,105 changes in levels 

may adversely affect gut function and communication with the CNS. 

Interestingly, maternal separation has also been shown to alter central 

serotonin transporter expression.106 It has been seen that maternal 

separation also results in upregulation of TLR4 in the paraventricular 

nucleus of mice as well as visceral hypersensitivity, which is blocked by 

inhibition of TLR4 signalling,107 supporting the notion of stress-induced 

dysregulation of gut-brain axis signalling. 

Maternal separation has also been shown to cause reprogramming of 

the HPA axis, leading to profound effects on endocrine signalling 

whereby both baseline97,108 and stress-induced109 corticosterone 

levels are increased. Dysregulation of the HPA axis by ma- ternal 

separation may be likened to clinical cases of IBS where stress reactivity 

and recovery is altered, and early-life stress is a known risk 

factor.110,111 
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5.2 | FECAL MICROBIOTA TRANSPLANTATION 

 
FMT studies in rodents currently provide the strongest evidence for 

an involvement of the gut microbiota, both in the expression of specific 

symptoms and the alterations in gut-brain axis signalling pathways of 

relevance to the pathophysiology of IBS and affective disorders. 

Multiple studies have used FMT to investigate gastrointestinal, 

behavioral and molecular alterations associated with IBS. Animals in 

receipt of a microbiota transplant from IBS patients with predominant 

constipation or patients with chronic constipation developed delayed GI 

transit and alterations in intestinal contractions, which was 

accompanied by decreased levels of SCFAs.112,113 Conversely, a study 

using fecal material from diarrhea-predominant IBS patients (IBS-D) 

developed increased gastrointestinal transit. Furthermore, they showed 

associations between the gut microbiota, IBS, and psychiatric 

comorbidities. 

Studies showing a disturbed gut microbiota profile in patients 

with depression linked these alterations to disrupted tryptophan 

metabolism and intestinal low-grade inflammation.47 This was achieved 

by FMT of depressed patients to rats, which induced a similar 

behavioral and molecular phenotype to the donors. Two studies using 

a similar approach linked the microbiota-induced depression in mice to 

alterations in the CREB signalling pathway in the olfactory bulb114 and 

alterations of carbohydrate and amino acid metabolism.115 The latest 

study transferring the microbiome of depressed patients into mice 

showed alterations in neurotransmitter levels in the brain and 

inflammatory markers in the serum.116 

Earlier studies indicated the rodent-to-rodent transfer of anxiety-like 

behaviors117 and human-to-rat transfer of visceral hypersensitivity.118 

Taken together, FMT studies confirm the individual adoptive transfer 

of both the cardinal features of IBS (visceral hypersensitivity, altered 

motility) as well as the psychiatric comorbidity (depression and anxiety-

like behaviors).14 Germ-free mice colonized with fecal microbiota of IBS-

D patients with comorbid anxiety showed, in addition to gastrointestinal 

motility alterations, increased anxiety-like behavior,65 which was absent 

in mice receiving the donor material from patients with IBS only and 

associated with increased immune activation in the colon. This study 

confirms the simultaneous transfer of multiple phenotypes via the gut 

micro- biota, positioning FMT studies as a useful preclinical approach 

to study IBS with psychiatric comorbidity. 

In this issue, leading on from their previous study,65 Constante 

and colleagues119 investigated the treatment of comorbid anxiety in 

IBS using FMT in germ-free mice treated with the probiotic 

Saccharomyces boulardii CNCM I-745 (S. bou). Treatment with S. bou 

improved anxiety-like behavior, but not gastrointestinal motility 

alterations in mice. These results go a step beyond implicating this 

microbiota configuration in comorbid symptom expression by con- 

firming that an intervention targeting this microbiota can improve 

symptoms relevant to anxiety. The microbiota profiles revealed 

differences between the mice transplanted with material from the IBS 

patient and the healthy control, which were in part normalized by S. 

bou treatment. On the molecular level, they showed a role of 

indoles (microbial metabolites of tryptophan) and immune activation in 

IBS with comorbid anxiety. While no clear association was shown 

between the gut microbiota compositional differences and alterations 

in indole levels, they nicely linked the anxiolytic effect of S. bou to 

increased indole production. S. bou increased both the levels of IAA 

in the feces as well as the expression of bacterial genes relevant for 

indole alkaloid synthesis, possibly by increasing the abundance of 

indole producing bacteria, such as Lactobacillus. However, the 

associated increase in AhR activity failed to reach significance posing 

the questions of if, and by which mechanisms, the increased indole 

production induces the anxiolytic effects. Conversely, the authors 

reported increased expression of the capsaicin receptor TRPV1 in 

colonic tissue of mice with comorbid IBS- associated microbiota. This 

receptor, important for the modulation of nociception, is mainly found 

on neurons of the peripheral nervous system. While TRPV1 expression 

was associated with the anxiety- like behavior, it was not modulated by 

S. bou. Altogether, this study reports some interesting observations 

which are potentially relevant to comorbid IBS treatment. 

As provocative and timely as the study is, the authors use a single 

donor for FMT into mice, in contrast to recommendations for the use 

of multiple individual donors made recently by Walter and col- 

leagues.120 The authors previous work showed the successful trans- 

plantation of phenotypes via the use of multiple donors, providing 

strong evidence for the gut microbiota in both IBS specifically and its 

comorbidities.65 It is not clear from the current study whether the 

beneficial effects of S. bou are applicable to a wider range of 

microbiome compositions of different IBS patients or indeed how 

well it applies to different comorbidities such as depression. Gut mi- 

crobial signatures of different donors could be differentially affected by 

S. bou, leading to different outcomes. It would also be interesting to 

see how effective S. bou treatment is against IBS patients without 

psychiatric comorbidities and whether some of the other cardinal 

features of IBS including visceral hypersensitivity were impacted. This 

raises the question of whether the mechanisms described are 

exclusively altered in comorbid patients or if they also generalize to 

other subgroups of IBS. The authors recommend that the first point of 

study in future clinical trials in IBS should be in the subpopulation with 

this psychiatric comorbidity. These considerations aside, this study 

brings important additional insights, expanding on the results reported 

in previous studies with mechanistic insights and highlighting the 

therapeutic possibilities of S. bou. 

 

 

6 | THE GUT MICROBIOTA: A NOVEL TARGET 

FOR TREATING PSYCHIATRIC 

COMORBIDITIES IN IBS 

 
Currently, treatment options for IBS revolve around symptom control. 

Some of the more common medications in the treatment of IBS are 

antispasmodics or TCAs.121 Antispasmodics, exerting their effects by 

relaxation of intestinal smooth muscle, are currently not 

recommended by the new clinical guidelines by the American 
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college of gastroenterology although only those currently available in 

the United States were evaluated.122 TCAs such as amitriptyline mainly 

improve visceral pain, possibly by acting on the -, dopamine- and 

acetylcholine system.123 The dose of TCA used is often below that 

employed in the treatment of depression so the extent to which 

psychiatric comorbidities are potentially treated by gut-brain 

neuromodulatory agents is unclear.121 The integration of psychological 

behavioral approaches into gastroenterology practice is now more 

routinely considered,124 building on the success of gut-focused 

hypnotherapy as an option in treatment-refractory IBS.125 The use of 

food supplements and diet as treatment options has recently been 

evaluated in this journal.126 These varied approaches reflect a 

willingness to target multiple levels of the gut-brain axis to deliver 

gastrointestinal symptom relief. 

One important implication of the study from Constante and 

colleagues119 is the potential for therapeutic targeting of the gut mi- 

crobiota to alleviate the comorbid psychiatric symptoms. Does this 

mean that specific features of the comorbid gut microbiota lead in- 

dependently to the cardinal and behavioral features of IBS? The use of 

a single probiotic strain then, based on the results of this study, is 

unlikely to be sufficient to improve the global symptom profile in IBS. It 

has of course long been appreciated that the beneficial effects of specific 

probiotics are strain specific and a number of therapeutic options can 

be considered for targeting the gut microbiota to im- prove gut-brain 

axis signalling pathways.127 

 
 

6.1 | PREBIOTICS AND PROBIOTICS 

 
Consideration of probiotic (defined as “live microorganisms which when 

administered in adequate amounts confers a health benefit on the 

host”128) and prebiotic (defined as “a substrate that is selectively utilized 

by host microorganisms conferring a health benefit”129) use for 

treatment of IBS symptoms and associated psychiatric comorbidities 

has increased in recent years (for review see130). Although the exact 

mechanisms of action of specific prebiotics and probiot ics have not 

been fully elucidated, it has been seen that different prebiotic blends 

such as polydextrose, galactooligosaccharide and probiotics such as 

Lactobacillus rhamnosus GG ameliorated ma- ternal separation-

induced anxiety-like behavior as well as altering hippocampal levels of 

stress-related genes.131 Similarly, a prebiotic blend combined with milk 

fat globule membrane, the bioactive fraction of breastmilk, attenuated 

maternal separation-induced visceral hypersensitivity and facilitated 

faster return to baseline of stress- induced corticosterone levels.132 

Evidence supporting the role of prebiotics and probiotics against 

IBS symptoms is not purely preclinical whereby IBS patients 

administered B. longum subsp. longum 35624 (formerly B. infantis 35624) 

for 8 weeks reported a reduction in IBS symptomatology with respect 

to abdominal pain, bloating and bowel movement difficulty as well as 

normalization of the anti-inflammatory: pro-inflammatory cytokine 

ratio.133 Several other studies have assessed the efficacy of this 

treatment with varying degrees of success (for review see130). It can be 

seen above and from recent technical reviews and clinical guide- lines 

that while some prebiotic and probiotics have shown promise in the 

symptomatic treatment of IBS specifically in the context of a single 

trial, the jury remains out on making strong recommendations.134,135 

Additional and robust clinical studies are required to determine if we 

can achieve benefits for associated comorbid psychiatric conditions. 

 

 
6.2 | THERAPEUTIC FECAL MICROBIOTA 

TRANSPLANTATION 

 
In recent years, evaluation of the use of FMT from healthy donors as 

a treatment option for gastrointestinal disorders has increased. There 

are multiple studies showing the benefits of FMT as a treatment for 

IBS, further supporting the role of the microbiota in this disorder. The 

use of a single FMT in IBS patients improved the gastrointestinal 

symptoms in a subset of patients for a prolonged duration.136,137 

Furthermore, studies showed that the use of FMT additionally 

improved symptoms of affective disorders, providing evidence for a 

causal role of the microbiota in psychiatric comorbidities in IBS.62,138 A 

double-blind, randomized, placebo- controlled study investigating the 

effect of FMT in IBS patients showed the effectiveness of FMT as a 

treatment option and determined that the presence of depression 

at baseline is predictive of successful treatment.64 While these 

studies look promising for treatment, FMT is currently not 

recommended as a treatment option, as evidence is still limited and 

large double-blind, placebo-controlled trials are required to determine 

the treatment efficacy.122,139 There are a number of important factors 

to consider in the selection of suitable donors, including microbiota 

pro- file, in addition to FMT dose that may be critical to a successful 

FMT.140 Interestingly, European guidelines on donor selection for 

the use of FMT in clinical practice does recommend exclusion of 

subjects with a history of psychiatric conditions.141 

 
 

7 | CONCLUSION 

 
Evidence continues to accumulate in support of the view that the strong 

link between gastrointestinal and psychiatric disorders is mediated 

by the microbiota-gut-brain axis. Individually these disorders share 

similar pathophysiological mechanisms, such as increased pro-

inflammatory states or changes in monoamine levels. Many questions 

remain surrounding the nature of the clinical entity that sits at the 

intersection between IBS, depression, and anxiety (Figure 2). It is 

plausible to conceptualize common dysfunctions in gut-brain axis 

signalling pathways that define this troublesome subset of patients. 

While this may be a preferable conclusion from a treatment 

perspective, the reality hinted at by Constante and colleagues118 is more 

complex and may develop around a number of diverging targets. 
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FI G U R E 2   A microbial perspective on the intersection 

between IBS, depression, and anxiety. There is currently 

a poor understanding of the nature of the clinical entity 

that sits at the intersection between IBS, depression, and 

anxiety. One possibility is that a comorbid gut microbiota 

drives aberrant signalling along the gut-brain axis, leading 

to the manifestation of both gastrointestinal and 

behavioral symptom sets. Increased research efforts are 

required to understand why specific microbiota 

configurations lead in some cases to IBS and in others 

IBS with psychiatric comorbidity. 

 
 
What this intriguing study does not answer is why specific 

microbiota configurations, compositional or functional, lead 

in some cases to IBS and in others IBS with psychiatric 

comorbidity. This is an important missing piece in the 

puzzle that requires increased re- search focus as the 

current evidence is insufficient to draw definitive 

conclusions. Animal models of IBS with psychiatric 

comorbidity hold promise to help disentangle the molecular 

mechanisms at play and to expand on the associations 

identified between the gut microbiota, pain pathways and 

indole production.119 It will be important to tread carefully 

in this regard and not to assume that the signalling 

pathways implicated in the benefits of particular 

interventions automatically double as a neurobiological 

basis for psychiatric comorbidity in IBS. Improving our 

understanding of how the relevant signalling pathways for 

depression and anxiety overlap with, or deviate from, those 

important for the cardinal gastrointestinal features of IBS 

will be critical. Despite the complexity of these interactions, 

therapeutic targeting of the gut microbiota for the 

management of comorbid psychiatric symptoms in IBS may 

be a strategy worth the effort involved. 
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