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Abstract 
 

Spray dying is a dehydration technique used in the dairy industry for the preservation 

and creation of a wide range of valuable dairy products. However, challenges 

associated with stickiness development are often encountered during spray drying, 

particularly with spray dryer feed streams containing high levels of lactose, which can 

lead to lower yields, reduced powder quality and shorter runs. Stickiness in lactose-

containing powders is related to the glass transition phenomenon, in which a phase 

change occurs in the amorphous form of lactose, causing a decrease in the viscosity 

of the powder particle surface, leading to liquid bridging and ultimately stickiness 

between particles and/or to equipment surfaces. There is a wide variety of 

compositional and environmental factors that affect the rate and extent of stickiness 

development in dairy powders, such as the temperature and relative humidity of the 

air or the protein content of the powder.  

The first objective of this study was to investigate the influence of particle size on the 

physicochemical properties and stickiness behaviour of a selection of lactose-

containing dairy powders. Using a fluidisation technique, this work demonstrated 

that stickiness increased with decreasing particle size for lactose-containing dairy 

powders.   

Stickiness may be characterised using a number of different instrumental 

approaches, which can be categorised as direct/indirect or static/dynamic 

techniques. However, most methods provide a binary definition of stickiness (i.e., 

sticky or non-sticky), which while pragmatic, does not provide information regarding 

the mechanical relaxations which contribute to stickiness. Therefore, the second 

objective of this study was to examine the use of dynamic mechanical analysis (DMA) 

to characterise temperature- and humidity-induced relaxation behaviour of whey 

protein concentrate (WPC) powders; results were also compared to two other 

established techniques, differential scanning calorimetry (DSC) and a fluidisation 

method. The results demonstrated that while DMA may not be an accurate method 

for stickiness determination, it could prove useful as a complementary method when 
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combined with stickiness techniques (e.g., fluidisation) to provide more detailed 

information on the physical changes occurring during stickiness.   

Overall, the findings of this research will prove useful to dairy processors at 

minimising issues with stickiness during drying and may also potentially provide 

powder technologists with a new method for tracking the physical transitions that 

occur during stickiness development of dairy powders. 
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1.1 Introduction 

 

The dairy industry is a key component of the Irish economy, with approximately 7 

billion litres of milk processed annually (Food Drink Ireland, 2019). Spray drying is an 

essential dehydration technique that is widely used in the dairy industry for the 

production of a wide range of commodity and high-value dairy powders. One of the 

main challenges encountered by dairy processors, primarily during the spray drying 

stage of powder production, is that powders can become sticky. Although some 

advantages of stickiness exist, such as its exploitation in the agglomeration of 

powder, stickiness is generally considered to be a significant issue for the dairy 

industry. If powder sticks to drier walls it will eventually burn leading to reduced 

powder quality. In addition, excessive amounts of small powder particles or ‘fines’ in 

air filtration systems, such as cyclones and bag houses, will build up and block these 

systems, leading to lower product yields and longer processing times. All of these 

issues ultimately lead to economic losses and challenges with finished product 

quality for dairy producers. It is therefore essential that the product formulation and 

spray drying process be optimised in order to minimise issues with stickiness and 

maximise product yields. 

The stickiness behaviour of a powder is strongly influenced by the composition of the 

concentrate, with feeds containing high proportions of carbohydrate being the most 

susceptible to sticking. Lactose is the primary carbohydrate found in milk and will be 

present in solution in one of two anomeric forms; α- or β-lactose. However, when an 

aqueous lactose solution is concentrated very rapidly, such as during the spray drying 

process, the viscosity of the material increases so quickly that the mobility of the 

lactose molecules is reduced and they solidify without any ordered structure 

forming. Lactose that dries in this metastable, ‘glassy’ state is known as amorphous 

lactose, and this type of lactose is highly hygroscopic and thermodynamically 

unstable, which means it will readily change state when subjected to humid 

environments. This instability is the primary cause of problems during the processing 

and storage of powders with high lactose contents. However, other compositional 
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factors, such as the fat, protein or moisture content, can also play a significant role 

in the stickiness behaviour of dairy powders.  

Several techniques have been applied industrially in an attempt to address 

challenges associated with stickiness. These include the use of dehumidified air, the 

addition of free-flowing agents, the modification of the drying chamber to include 

wall-sweepers, cooling of spray dryer walls and the alteration of processing 

parameters in order to ensure the powder is maintained at a temperature below its 

sticking point (Boonyai et al., 2004). Caking is another powder handling issue that is 

closely related to stickiness and manifests as the formation of hard lumps or ‘cakes’ 

during the storage of previously free-flowing powder. However, caking is not the 

focus of this thesis and therefore will only be briefly discussed in this review in the 

interests of clarity and completeness. 

 

1.2 Mechanisms of stickiness 

1.2.1 Carbohydrate-based stickiness 

 

Stickiness is a surface phenomenon that occurs when powder particles come in 

contact with one another (cohesion) or equipment surfaces (adhesion) (Downton et 

al., 1982). Cohesion is an internal property and describes the forces that hold the 

particle together, whereas adhesion is an interfacial property that describes the 

forces that cause a particle to adhere to another surface (Boonyai et al., 2004). In 

order to prevent stickiness, forces greater than the cohesive and adhesive forces 

must be present. The extent of the cohesive or adhesive behaviour of the particle 

depends on the viscosity of the particle surface. If the viscosity is low enough, 

molecular mobility will increase and surface energy-driven viscous flow will occur. 

This allows liquid bridges to form between particles and/on equipment surfaces (Fig. 

1.1). If these liquid bridges can resist subsequent mechanical deformations sticking 

will occur (Downton et al., 1982). Using sucrose/fructose mixtures, Downton et al. 

(1982) estimated that sticking occurs when the particle surface viscosity decreases  
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Figure 1.1 Diagram showing the mechanisms of stickiness in dairy powder particles. 

to between 106 – 108 Pa s. In dairy powders, lactose is the primary cause of this 

change in viscosity, due to a phase change it undergoes to a less viscous state. During 

spray-drying, the temperature and relative humidity (RH) of the outlet air are the 

primary factors that determine the particle viscosity due to their effects on the 

lactose. In order for sticking to occur, the particles also need to be in contact with 

one another for a sufficiently long time in order for liquid bridges to form and 

cohesion to occur.  

1.2.1.1 Relationship between glass transition and stickiness 

 

The glass transition temperature (Tg) of an amorphous system can be defined as the 

temperature at which a material-specific change in physical state occurs. Below the 

Tg, the material is kinetically frozen in a ‘glassy’ state and may be stored for extended 
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periods without difficulty. However, at and above the Tg, the molecular mobility of 

the material will increase and the amorphous glass will change from a solid to a more 

‘rubbery’ state. The glass transition is generally observed over a temperature range 

but is most commonly reported as a single Tg value in the literature. For example, the 

Tg of anhydrous amorphous lactose has been reported as 101°C (Jouppila and Roos, 

1994a). In lactose-containing dairy powders, the Tg is primarily determined by the 

amorphous lactose content of the powder (Shrestha et al., 2007; Silalai and Roos, 

2010). Therefore, glass transition is closely related to stickiness, as the change in 

state of the amorphous lactose that occurs during the glass transition results in a 

reduction in the viscosity of the particle surface, leading to liquid bridging between 

particles and the onset of sticking. Furthermore, the susceptibility of a powder to 

sticking decreases as the Tg increases. However, it should be noted that glass 

transition is a bulk material property, whereas stickiness is a surface phenomenon, 

therefore some discrepancies can exist between glass transition and stickiness data.  

1.2.1.2 The use of T-Tg in stickiness determination 

 

The actual temperature at which sticking occurs, known as the sticking point 

temperature (T or SPT), usually occurs at temperatures greater than the Tg (Fig. 1.2). 

Many authors agree that the rate of stickiness development is related to the 

magnitude of the T-Tg, rather than the specific temperature and humidity conditions 

used to reach the sticking point (Foster et al., 2006; Murti et al., 2009; Paterson et 

al., 2005; Paterson et al., 2007). Roos and Karel (1991a) suggest that the sticking point 

temperature occurs approximately 10-15°C above the glass transition temperature. 

However, the extent to which the temperature must exceed the Tg before sticking 

occurs can vary significantly between powders as it is dependent on powder 

composition (Hogan et al., 2009). The measuring techniques used to determine both 

the Tg and SPT can also cause significant variation in the T-Tg values, even for the 

same powder. This is evident in the range of T-Tg values that have been reported for 

SMP; 29°C using a fluidised bed apparatus (Hogan et al., 2009; Hogan and 

O’Callaghan, 2010), 33.6°C using a particle gun (Murti et al., 2009), 14-22°C using a 

thermo-mechanical test (Ozmen and Langrish, 2002) and 23.3°C using a direct stirrer-
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type technique (Hennigs et al., 2001). It is therefore not possible to provide exact T-

Tg values for dairy powders due to the wide range of factors influencing both the 

measuring techniques and compositional variations between individual powders. 

 

 

Figure 1.2 Graph showing relationship between sticking point temperature (T) and 

glass transition temperature (Tg) for skim milk powder (SMP). Taken from Hogan and 

O’Callaghan (2010).  
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1.3 Overview of dairy products that are susceptible to sticking 

 

1.3.1 Products with high lactose contents 

 

1.3.1.1 Whey 

 

Whey is liquid produced as a by-product of various coagulation processes in the dairy 

industry, such as cheese, acid casein or Greek-style yoghurt production. Historically, 

the nutritional value and potential of whey was not realised, and it was regarded as 

a waste product, often used as animal feed or fertilizer. In more recent years, there 

has been much development in the area of whey utilisation and valorisation, and it 

is now considered an important raw material for the production of many high-value 

products. Whey is composed of a complex mixture of water, lactose, minerals, 

proteins and fat, but the proportion of these components can vary significantly 

depending on the type of whey. The composition of a typical cheese whey is 

approximately 6% total solids, comprising of about 75–76% lactose and 13–14% 

whey protein (Písecký, 2005).  

1.3.1.1.1 Sweet whey 

  

Sweet whey is produced as a by-product of cheese or rennet casein production. 

During the cheese production process rennet enzymes, such as chymosin, are used 

to cleave the κ-casein on the surface of the casein micelles, leading to the formation 

of a coagulum or ‘curd’ that will later become cheese. As this type of cheese is formed 

due to enzymatic precipitation, the pH of the resulting whey will remain close to the 

natural pH of milk, and is normally between pH 5.9 and 6.6. The process of cleaving 

the κ-casein releases para-κ-casein and glycomacropeptide (GMP). The release of 

this GMP contributes to the higher protein content of sweet (1-0.9%) compared to 

acid whey (~0.7-0.5%) (Chandrapala et al., 2015; Durham, 2000; Nishanthi et al., 

2017b). Salty whey is another type of cheese whey that is characterised by a high salt 

concentration that results from the addition of NaCl during the salting step of some 

hard cheese varieties, such as Cheddar. It should be noted that this high salt 
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concentration can cause issues during downstream processing, which will be 

discussed later in the review.   

1.3.1.1.2 Acid whey 

 

Acid whey is produced as a by-product of selected acidification processes, such as 

acid casein, cottage cheese or Greek-style yoghurt production. The production of acid 

casein involves the addition of acid (normally HCL) to decrease the pH of milk to the 

isoelectric point of the casein (~ pH 4.6), neutralising the negatively-charged casein 

micelles and causing them to precipitate out of solution. The whey produced from 

this process will therefore have a much lower pH, between 4.3 – 4.6, compared to 

sweet whey (Bylund, 1995). Acid whey also has a higher calcium (Ca) content 

compared to sweet whey as Ca is more soluble at lower pH and will therefore migrate 

with the whey protein in solution, rather than the casein fraction. Processing of acid 

whey is considerably more challenging than sweet whey due to its high lactic acid 

(LA) and mineral content (Nishanthi et al., 2017a), which cause fouling of membranes 

and stickiness to occur during spray drying (Bylund, 1995; Chandrapala and Vasiljevic, 

2017). The challenges associated with processing of acid whey are discussed in 

further detail later in the review (see Section 1.5.1.2).  

Greek-style yoghurt production also includes an acidification step, but it is bacteria 

that are responsible for the lowering of the pH. To produce Greek-style yoghurt the 

milk is first subjected to a high heat treatment step (90°C for 5 min) (Bong and 

Moraru, 2014), designed to denatured the whey proteins, exposing the active thiol 

groups and allowing them to engage in thiol–disulphide exchange reactions with 

caseins. These aggregated whey proteins will later become incorporated into the 

casein-based coagulum, lowering the overall protein content of the whey compared 

to whey from acid casein production. This lower protein content will have 

implications on the stickiness behaviour of the powder produced from this whey. The 

milk is then inoculated with starter culture bacteria (normally Streptococcus 

8hermophiles and Lactobacillus bulgaricus) and fermented for a given period of time 

(~6 h), or until the desired pH is reached. As the bacteria grow, they will convert the 
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lactose present into LA, gradually lowering the pH and causing the casein to 

precipitate out of solution. Traditionally, the curds are then separated and strained 

through a cloth bag until the desired solid content is reached. In larger scale 

production centrifugal separators or membranes are used to separate the curds and 

whey.  

1.3.1.1.3 Native whey 

 

Native whey (also referred to as virgin or ideal whey) is produced using a combination 

of various membrane processes (microfiltration, diafiltration and ultrafiltration) at 

low temperatures (~45-50°C) to concentrate the protein fraction of the defatted 

whey stream. As an evaporation step is not required, the proteins are not subjected 

to high temperatures and remain in their native state. These native proteins possess 

enhanced functional properties compared to partially denatured whey proteins, such 

as improved solubility, gelation and foaming properties (Heino et al., 2007). 

1.3.2 Whey processing 

 

Whey can be processed in a large number of different ways to produce a variety of 

quality products. These include whey powders, whey protein concentrate (WPC) 

powders, whey permeate powders and demineralised whey powders (Fig. 1.3). Due 

to its composition, whey must be processed as soon as possible after collection in 

order to prevent the growth of bacteria. It is recommended to cool the whey to less 

than 10°C if it is not being processed immediately (Písecký, 2012). If the whey is being 

stored for more than 15 h a pasteurisation step will be required. Regardless of the 

end product, the remaining fat and casein fines in the whey must first be separated 

out in order to increase the economic yield and also prevent problems during 

subsequent processing (Písecký, 2005). The casein fines are normally removed using 

a centrifugal clarifier and are often treated in the same way as cheese, and can be 

pressed and ripened to be used in cooking. Centrifugal separators are used to remove 

the remaining fat from the whey, and this whey cream by-product is often used in 

cheese-making to standardise cheese milk (Bylund, 1995).  
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Figure 1.3 Flow diagram of whey processing.  

1.3.2.1 Whey Protein concentrates  

 

The production of whey protein concentrate (WPC) is one of the most common ways 

to process whey due to its high product value and wide applications for use. These 

applications include the production of baby food, bakery products or sports nutrition 

products. WPCs are produced using a combination of ultrafiltration and diafiltration, 
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in order to concentrate the protein fraction to between 35 and 85% of the dry matter. 

The most common WPCs on the market are those that contain 35, 60 and 80% 

protein, with WPC 80 being the most common and most valuable (Písecký, 2012). 

The whey is usually first concentrated using ultrafiltration to a solids content of 25%; 

this is considered the upper limit for economic operation. The concentrate will then 

undergo diafiltration, which involves adding water to the feed/retentate in order to 

wash out low molecular weight components, until the desired protein content is 

achieved. Due to their higher protein content, WPC don’t tend to cause many issues 

with stickiness during spray drying. However, the powders do tend to be very light 

and fluffy with high contents of occluded air (i.e., low bulk density). 

1.3.2.2 Whey permeates 

 

Whey permeate is produced as a by-product of WPC production. Similarly to WPC, 

whey permeate is normally spray dried to produce whey permeate powder, which is 

often used as a bulking agent in products such as instant soups, sauces and 

confectionary (Písecký, 2005). The main constituent of these powders is lactose 

(~85%), which is present in a predominantly crystalline state, due to the pre-

crystallisation step that the concentrate undergoes after evaporation and before 

spray drying. The main aim of this step is to convert the amorphous lactose present 

into the crystalline state in order to create a less hygroscopic and more stable 

powder. The importance of this pre-crystallisation step and the type of crystals 

produced will be discussed in more detail later in the review (see Section 1.5.1.1). 

After crystallisation, the solution is spray-dried using an atomiser wheel, and the final 

moisture is normally removed from the powder in a vibrating fluid bed.  

1.3.2.3 Demineralised whey permeates 

 

Due to its high mineral content (8-12% dry weight), the applications of whey can be 

limited. For this reason, whey is often put through a demineralisation (or 

desalination) step in order to partially (25-30%) or almost fully (90-95%) remove the 

salts present. The partial demineralisation of whey is carried out using a process 

known as nanofiltration (NF), which uses ‘leaky’ RO membranes that allow through 
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small particle species with radii in the nanometer (10–9 m) range. These include 

certain monovalent ions, such as sodium and potassium, and small organic molecules 

such as urea. Partially demineralised concentrates are used in the production of ice-

cream and bakery products. 

High degree demineralisation (90-95%) is normally achieved using electrodialysis 

(ED). This is a membrane process during which ions are transported through non-

selective, semi-permeable membranes under the influence of a direct current (DC) in 

an electrodialysis cell. The membranes used are either cation- or anion-selective, 

which means they will either allow positive or negative ions to flow through. ED can 

be done in batch or continuous conditions and the extent of demineralisation is 

determined by factors such as ash content of the whey, residence time and viscosity. 

Due to the high cost of replacing membranes, it is often more economical to use an 

ion exchange process to achieve demineralisation levels of ≥ 70%. Ion exchange 

involves the use of resin beads, which are normally in fixed columns, to adsorb 

mineral ions from solution and replace them with either H+ or OH- ions. Their capacity 

for this is finite, so the adsorbed minerals must be removed and regenerated, 

normally using weak acid/bases, before re-use. One of the primary uses of highly 

demineralised whey powder (90-95%) is in the production of infant formula. 

1.3.3 High-fat products  

1.3.3.1 Full cream milk powder  

 

Full cream milk powder (FCMP), also known as whole milk powder (WMP), is 

produced by spray drying standardised, homogenized and pasteurised whole milk. 

FCMP generally has a fat content of between 26-28% (Kim et al., 2002). However, the 

fat content at the surface of the particle will be much higher, approximately 60-63% 

(Nijdam and Langrish, 2006), which can cause issues with stickiness during spray 

drying and subsequent storage. Soy lethicin is also commonly added to the powder 

during spray drying to produce instant full cream milk powder with improved 

functional properties, such as powder rehydration (Sanderson, 1978). The main 
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applications of FCMP are in the manufacture of chocolate, ice cream and other baked 

goods. 

 

1.4 Factors affecting stickiness 

 

As previously mentioned, lactose is the predominant cause of stickiness in dairy 

powders (Özkan et al., 2002; Silalai and Roos, 2010), primarily due to the influence 

of the glass transition on the viscosity of the particle surface. Therefore, increasing 

the amount of amorphous lactose in semi-crystalline dairy powders will increase the 

powders susceptibility to sticking (Hogan et al., 2009; Hogan and O'Callaghan, 2010). 

However, there are a wide variety of other compositional and environmental factors 

that will significantly influence the stickiness behaviour of dairy powders. Adhikari et 

al. (2001) reviewed many of these factors and assigned them a value based on their 

relative contribution to stickiness (Table 1.1). It should be noted that this review was 

written nearly 20 years ago and since then many new studies have emerged 

furthering our understanding on the influence of certain factors on the stickiness 

behaviour of powders. For example, in the review by Adhikari et al. (2001) the 

authors assigned protein a ‘negligible contribution’ to stickiness, yet in a study by 

Hogan and O'Callaghan (2010), the authors showed that protein can significantly 

affect the stickiness behaviour of a dairy powder. For this reason, an updated review 

of the factors influencing the stickiness of dairy powders and their effect on the glass 

transition is required. 
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Table 1.1 Factors affecting stickiness of dairy powders and their relative contribution 

to stickiness. Taken from Adhikari et al. (2001).    

 

1.4.1 Effect of protein 

 

Proteins are large molecules with high molecular weight and would therefore be 

expected to increase the Tg of dairy powders (Roos and Karel, 1991c). However, 

studies on the direct effect of protein on the Tg of dairy powders have reported mixed 

results. Maidannyk and Roos (2017) examined the Tg of protein/lactose powders at 

different protein:lactose ratios and water activities and found that in anhydrous 

conditions the Tg increased with increasing proportion of protein. Similarly, Haque 

and Roos (2004a) reported that the addition of various proteins (Whey Protein 

Isolate (WPI), albumin and gelatin) in 1:3 ratios to lactose, increased the Tg only 

slightly in the anhydrous state. However, mixed results were observed on Tg when 

these samples were humidified (up to aw of 0.44). In the study by Maidannyk and 

Roos (2017), the Tg decreased slightly with increasing protein content, whereas in the 

study by Haque and Roos (2004a) the Tg increased in the presence of protein at aw 

>0.33. Using theoretical Tg curves, derived from the Couchmann-Karasz equation, 

Hogan and O'Callaghan (2010) found that altering the protein content of a dairy 

powder only resulted in minor changes in the Tg. In contrast, Shrestha et al. (2007) 
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reported that adjusting the amount of protein in SMP/lactose mixtures did not affect 

the Tg of the different powders at equivalent water activities. In a subsequent study 

by Shrestha et al. (2008), the authors reported that increasing whey permeate 

addition (and therefore decreasing the protein fraction) of SMP decreased the Tg of 

the powder. Overall, these results suggest that proteins can increase the Tg in 

anhydrous conditions, but in multi-component systems where moisture is present, 

the influence of moisture sorption by amorphous lactose on the Tg may be more 

significant than that of protein.  

Although results on the direct influence of protein on the Tg of dairy powders are 

inconsistent, studies have shown that the addition of protein to dairy powders can 

have a protective effect against sticking, due to the impact on the T-Tg  (Hogan and 

O'Callaghan, 2010; Shrestha et al., 2008). Hogan and O'Callaghan (2010) 

superimposed stickiness curves on to Tg curves and found that the T-Tg increased as 

the proportion of protein in the powder increased. The authors suggested that the 

effects of proteins during stickiness development could be similar to those that occur 

during time-dependent lactose crystallisation, where the presence of protein has 

been shown to delay crystallisation due to protein-carbohydrate interactions. They 

hypothesise that competitive/preferential sorption of water by the proteins delays 

the uptake of water by amorphous lactose, hence delaying the physical change of the 

lactose from a ‘glassy’ to a more ‘rubbery’ state. The rate of stickiness development 

has also been shown to occur less rapidly in powders with higher protein contents 

(Silalai and Roos, 2010).  

1.4.2 Fat-induced stickiness 

 

Unlike carbohydrate-based stickiness, which occurs due to a phase change and a 

subsequent change in viscosity, fat-induced stickiness is a result of melting 

behaviour. Milk fat has a low melting point and liquefies at temperatures greater 

than room temperature, leading to the formation of relatively weak 

junctions/bridges between powder particles. If the powder is cooled, these bridges 

can crystallise and solidify to form much stronger bonds between particles (Rennie 
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et al., 1999). This is particularly problematic during powder storage, as it can lead to 

issues with caking (Foster et al., 2005a). Alternatively, liquefaction of fat can also 

cause softening of the powder particle, leading to deformation of the particle 

structure and a subsequent increase in the contact area between particles (Rennie 

et al., 1999). 

In a study by Rennie et al. (1999), the authors compared the cohesion of dry whole 

milk powder (WMP) and SMP and showed that the cohesion of WMP was nearly 

twice that of SMP at the same temperature. Özkan et al. (2002) also examined the 

differences in stickiness between SMP and WMP and showed that below the SPT, the 

cohesion (measured as torque) of the WMP was higher than that of the SMP. 

However, after the SPT, the SMP cohesion was much higher due to the influence of 

the glass transition on the lactose present. This study shows that although both fat 

and lactose can cause bridges/junctions to form between powder particles, these 

bridges are not equal in strength, and those formed by lactose are considerably 

stronger than those formed by fat.  

1.4.2.1 Fat content at the surface  

 

Studies have shown that fat is not distributed homogenously throughout dairy 

powder particles as it tends to be over-represented at the surface (Foerster et al., 

2016; Kim et al., 2002; Nijdam and Langrish, 2006; Shrestha et al., 2007). This will 

have repercussions on the stickiness behaviour of a powder as stickiness is a surface 

phenomenon and will therefore be most affected by the surface (free) fat content. 

This is especially true for powders such as WMP, which can have surface fat contents 

of approximately 98% (Kim et al., 2005a). The proportion of fat at the surface of a 

powder is affected by factors such as the fat content of the bulk (Nijdam and Langrish, 

2006), processing conditions (Kim et al., 2009), degree of saturation of the fat (O'Neill 

et al., 2019) and type of fat (O'Neill et al., 2019). In an early study by Buma (1971), 

the authors found no correlation between free fat content and cohesion for powders 

of similar particle size. However, later studies by Fitzpatrick et al. (2007) showed that 

surface fat had a major influence on powder cohesion, with higher surface fat 
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contents leading to greater cohesiveness. Although a similar trend was reported by 

Foster et al. (2005a), the authors claimed that the increased cohesion is only 

observed when the fat bridges partly solidify due to a decrease in temperature.  

1.4.2.2 Relationship between fat and protein content 

 

Many fat-containing dairy powders, including WMP and fat-filled milk powder 

(FFMP), also contain proteins, which act as emulsifiers to encapsulate fat within the 

powder particles. During homogenisation, the proteins will adsorb to the newly 

formed oil-water interface, protecting the oil droplets against coalescence and 

providing stability to the emulsion during subsequent processing (Vega and Roos, 

2006). Fat can therefore exist in two main forms in powder particles: as free/non-

encapsulated fat, which consists of surface and inner fat, or encapsulated fat, which 

is located in the bulk of the powder. Proteins therefore play an essential role in 

preventing the creation of non-emulsified fat, which will manifest itself as free fat in 

the dried powder (O'Neill et al., 2019; Vignolles et al., 2007). In a study by Twomey 

et al. (2000), the authors found a linear relationship between the protein content of 

the milk and the free-fat content of the resultant spray dried powder. Fat is therefore 

thought to only cause significant issues with fouling and handling when fat contents 

are excessive enough that the encapsulation by proteins is inhibited (Kim et al., 

2005b). O'Neill et al. (2019) investigated the effects of varying protein content on 

spray-dried dairy emulsions, with the aim to find the optimal protein content that 

would produce a powder with the lowest possible free fat content, thus protecting 

against sticking. They reported that emulsions with between 2-5% w/w protein all 

produced powders with free fat contents below the typical levels found in industrially 

produced powders (4 g per 100 g) (O'Neill et al., 2019). 

1.4.3 Moisture content  

It is necessary to tightly control the moisture content of a dairy powder and its 

surrounding environment due to the effects of water on the glass transition 

phenomenon. It is well known that water acts as a plasticiser in an amorphous system 

by increasing the molecular mobility, causing the phase transition to occur at a lower 
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temperature. Many studies have shown that an increase in moisture leads to a 

decrease in the Tg of dairy powders (Haque and Roos, 2004b; Jouppila and Roos, 

1994a; Maidannyk and Roos, 2017; Roos and Karel, 1991c; Silalai and Roos, 2010; 

Shrestha et al., 2007; Shrestha et al., 2008,). Stickiness behaviour is therefore 

significantly affected by moisture content, as increasing aw/moisture content will 

decrease the Tg, resulting in a decrease in the SPT (Downton et al., 1982; Özkan et 

al., 2002; Silalai and Roos, 2010) and an increase in the rate of stickiness development 

(Murti et al., 2009). However, it should be noted that during spray drying, the Tg of 

the powder will actually increase as moisture is removed from the particles. Moisture 

uptake during storage is equally problematic, as this will cause the powder to adhere 

together in a process known as caking. The mechanisms of caking and the significance 

of moisture sorption on this process will be discussed in more detail later in this 

review (see Section 1.5.2.1).  

1.4.4 Particle size 

 

The size of powder particles depends on many factors, such as the conditions used 

during processing, type of atomisation and composition of the feed solution. Particle 

size is thought to play a role in stickiness behaviour as cohesive and adhesive forces 

are inversely related to particle size, with smaller particles demonstrating more 

cohesive behaviour and vice versa (Buma, 1971; Geldart et al., 1984; Modugno et al., 

2015; Rennie et al., 1999). Particle size may also influence stickiness due to the 

increased specific surface area (SSA) created by smaller particles. The increased 

contact areas between particles allows for the formation of more liquid bridges and, 

hence, an increase in stickiness. To date, very little research has been conducted on 

the relationship between particle size and stickiness in dairy powders. Hogan et al. 

(2009) compared the stickiness behaviour two SMP powder samples with volume 

mean diameter (D[3,4]) values of 61 and 130 µm using a fluidised bed apparatus, but 

found no significant difference in stickiness behaviour between the two samples. 

Although research on the relationship between stickiness and particle size may be 

limited, many studies (Carpin et al., 2017a; Modugno et al., 2015) have examined the 
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effect of particle size on caking in dairy powders and have shown that smaller 

particles have a higher tendency to cake, compared to larger particles.  

1.4.5 Molecular weight of carbohydrate component 

 

The Tg of amorphous carbohydrates can also be influenced by their molecular weight 

(Roos and Karel, 1991c). Therefore, the stickiness behaviour of a dairy powder may 

be influenced by the molecular weight of the amorphous carbohydrates present due 

to the relationship between stickiness and Tg. For example, Jouppila and Roos 

(1994a) showed that hydrolysing lactose into glucose and galactose in SMP 

significantly decreased the Tg of the powder, compared to the original. Conversely, 

some studies (O’Neill et al., 2019; Roos and Karel, 1991c; Silalai and Roos, 2011b) 

have also investigated the addition/substitution of certain high-molecular weight 

polymers, such as maltodextrins, to feeds before drying in an attempt to increase the 

overall Tg of the resulting powder. Furthermore, it should be noted that although 

these studies have shown that increasing the molecular weight of the carbohydrate 

component in dairy powders can successfully increase the overall Tg of the powder, 

no studies have yet to examine whether this would have a direct effect on the 

stickiness behaviour of these powders.  

 

1.5 Stickiness during processing and storage 

1.5.1. Processing  

1.5.1.1 Lactose pre-crystallisation  

 

During spray drying, water is removed too rapidly for crystallisation of the 

amorphous lactose to occur and the amorphous lactose present will dry in a ‘glassy’ 

state. In many dairy powders, it is the instability of this amorphous lactose that leads 

to problems with subsequent handling and storage, such as issues with stickiness and 

caking. For this reason, feeds containing high amounts of amorphous lactose are 

often subjected to a pre-crystallisation processing step before drying. Lactose 

crystallisation involves a series of complex reactions but can generally be divided into 
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three main steps; nucleation, growth and mutarotation. These steps are strongly 

influenced by the processing conditions used, such as the temperature, level of 

supersaturation and whether or not agitation and/or seeding are used. For whey 

solutions, pre-crystallisation normally occurs between the evaporation and spray 

drying processing stages. Once the concentrate has been evaporated to between 50-

60% total solids, it is flash-cooled to between 30-35°C and transferred into 

crystallisation tanks. These tanks are often equipped with stirrers to agitate the 

concentrate and cooling jackets to control the temperature. Once the tank is filled, 

lactose seeds (1 kg per 1000 kg concentrate) can also be added to initiate the 

crystallisation process. The tank is then gradually cooled, normally by approximately 

2-3°C/h to less than 20°C (Písecký, 2012). This pre-crystallisation step can take 

anywhere from 6 to 24 h to complete, depending on the product requirements and 

composition. In industry, a refractometer is commonly used to track the changes in 

crystallinity of the solution over time. Once the product has reached the desired level 

of crystallinity the concentrate is pumped to the spray dryer to be dried.  

1.5.1.1.1 Extent of crystallisation  

 

In theory, it would be desirable to crystallise 100% of the lactose present in the whey 

concentrate in order to prevent problems with stickiness. However, this is not 

possible due to the presence of impurities (e.g., proteins and minerals). Studies have 

shown that the addition of whey proteins to lactose solutions inhibited the growth 

of the lactose crystals (Gernigon et al., 2013; Mimouni et al., 2005). Conversely, the 

presence of whey proteins has also been shown to increase the rate of lactose crystal 

nucleation, as the proteins will bind water and therefore create areas of 

supersaturation (Gernigon et al., 2013; Mimouni et al., 2005). In a recent study by Ihli 

and Paterson (2015), the authors reported that oligosaccharides had a retarding 

effect on the nucleation and growth of α-monohydrate crystals. Salts can also affect 

lactose crystallisation through their interaction with water molecules, which will 

affect the solubility of the lactose in solution (Huppertz and Gazi, 2016). Studies 

examining the effects of other additives commonly found in whey, such as lactates, 

phosphates and citrates, on lactose crystallisation have found that they can also 
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accelerate crystal growth (Gernigon et al., 2013; Smart, 1988). The influence of lactic 

acid and calcium on lactose crystallisation will be discussed in detail in a later (see 

Section 1.5.1.2.2).   

Although it is not possible to crystallise all the lactose in whey solutions, the degree 

of crystallinity is still an important factor in determining the stability of the 

subsequent powder. Studies have shown that pre-crystallisation of lactose may not 

be effective at protecting against sticking if the lactose present has not reached a 

sufficient level of crystallinity. For example, in a study by Hogan and O’Callaghan 

(2010) investigating the stickiness behaviour of dairy powders with varying 

protein/lactose contents, the authors observed that pre-crystallisation of the lactose 

in the skim milk/permeate powder (lactose content 74% w/w) did not confer any 

increased stability against sticking, when compared to the powders that contained 

predominantly amorphous lactose. The authors hypothesised that this was because 

the lactose in the powder was only approximately 68% crystalline, and therefore the 

coverage of amorphous lactose at the surface may have meant that the powder 

particles behaved similarly to those containing predominantly amorphous lactose. 

Similarly, Bronlund and Paterson (2004) showed that the presence of even small 

amounts of amorphous lactose on the surface of lactose crystals can significantly 

increase the extent of the moisture sorbed by the powder. For this reason, 

commercial whey and whey permeate powders typically contain between 75-80% 

crystalline lactose. 

1.5.1.1.2 Crystal form and shape 

 

In an aqueous solution, lactose is present in both α and β crystalline forms. These 

forms exist in a reversible equilibrium and the conversion of one form to another is 

known as mutarotation. Mutarotation is a reversible reaction and is highly 

temperature dependent. As the α form is less soluble than the β form at a given 

temperature, the α form will reach the point of supersaturation before the β form, 

and will result in the formation of α-lactose monohydrate crystals (Westergaard, 

2010). Therefore, in the dairy industry, under normal processing conditions, the most 
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commonly found crystalline form of lactose is the α-lactose monohydrate form 

(Huppertz and Gazi, 2016). The α-lactose monohydrate crystals have one molecule 

of water per molecule of lactose incorporated into their structure and are the most 

stable crystalline form. In order for these crystals to form, the crystallisation 

conditions must be so that crystallisation occurs slowly and sufficient moisture is 

present. At temperatures greater than 93.5°C, anhydrous β-lactose crystals will form. 

These crystals contain no water molecules (anhydride), are less stable and will 

convert to the α-lactose form over time if sufficient moisture is present (Huppertz 

and Gazi, 2016). 

Lactose crystals can exist in many different shapes (habits) depending on the 

conditions during crystallisation, which determine the growth rate of the different 

faces of the crystal, hence influencing its final shape (Fig. 1.4).  An early study by 

Herrington (1934) determined that the level of supersaturation of the solution is the 

primary factor governing the shape of crystals during growth. The supersaturation 

level is highly temperature dependent, therefore different crystal habits will form 

based on the cooling rate used during crystallisation. For example, tomahawk-shaped 

 

Figure 1.4 Lactose crystal habits. Taken from Paterson (2017). A: prism (fast growth), 

B: prism (slow growth), C: diamond, D: pyramid, E+F: tomahawk, G: ‘fully developed’ 

tomahawk, H: 13 face crystal, I: profile view of H. 
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crystals normally form during slow evaporation/crystallisation conditions, whereas 

fast evaporation leads to higher levels of supersaturation and crystals with more 

needle-like morphologies (Parimaladevi and Srinivasan, 2014).  Furthermore, minor 

components sometimes found in whey and permeate, such as oligosaccharides, have 

also been shown to affect the shape of α-monohydrate crystals through their 

incorporation into the crystal lattice (Ihli and Paterson, 2015).  

1.5.1.2 Processing of acid whey  

 

Processing of acid whey is considerably more challenging compared to the majority 

of other whey types due to its high content of lactic acid (LA) and calcium (Ca). The 

presence of LA and Ca can cause a number of undesirable side effects for dairy 

processors, such as salt formation during evaporation and increased stickiness of the 

powder during spray drying. Because of these undesirable effects, some studies have 

investigated ways to reduce levels of LA during acid whey production. For example, 

Chandrapala et al. (2017) examined the feasibility of various combinations of NF and 

nano diafiltration (NDF) for the removal of LA from acid whey and found that with a 

combination of pH adjustments and NF, they could achieve an overall reduction in LA 

of ~ 66%. However, when minerals are also present, issues with fouling of the 

filtration membranes may also arise due to the effects of the salts on the protein-

protein interactions, increasing the overall particle size (Nishanthi et al., 2017b). It 

should also be noted that many of the studies conducted on LA and Ca are often 

conducted on simple mixtures of lactose, water and LA and/or Ca. In reality, acid 

whey is a much more complex, multi-component solution; therefore these simple 

mixtures may not be fully representative of the interactions occurring during acid 

whey processing. 

1.5.1.2.1 Precipitation of salts 

 

The first challenge that is commonly encountered during the processing of acid whey 

is the formation/precipitation of salts. LA and Ca can co-precipitate to form calcium 

lactate salts, which can increase the viscosity of the acid whey solution (Mimouni et 

al., 2007). Furthermore, Ca can also participate in the formation of salts with 
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phosphorus, to form Ca3(PO4)2 complexes (Písecký, 2012; Písecký, 2005). This 

problem is usually encountered during the evaporation step, causing deposits to 

build up on the tubes of the evaporator, damaging the equipment and impacting the 

final powder quality. One way of avoiding or minimising this issue is to put the 

concentrate through an ion-exchange or heat precipitation step before evaporation 

in order to remove/dissolve the minerals (Písecký, 2005). 

1.5.1.2.2 Lactose pre-crystallisation 

  

Various studies (Chandrapala et al., 2016; Saffari and Langrish, 2014; Wijayasinghe et 

al., 2015; Wijayasinghe et al., 2016) have examined the influence of the presence of 

LA and/or Ca on lactose crystallisation. They reported that the presence and ratio of 

LA to Ca can significantly influence the crystallisation of lactose due to the effects on 

lactose solubility and diffusion (Wijayasinghe et al., 2015; Wijayasinghe et al., 2016). 

LA will interact with water in lactose solutions, leading to the formation of a strong 

hydration layer consisting of LA and H3O+ ions around the lactose molecules, 

restricting the mobility of the water molecules and hindering the crystallisation of 

the lactose (Wijayasinghe et al., 2015). It is also thought that the presence of Ca in 

LA/lactose solutions can further strengthen this hydration layer due to the strong 

ion-dipole reactions that occur between Ca and water molecules (Wijayasinghe et 

al., 2016). The presence and ratio of LA to Ca will therefore affect crystallisation 

outputs such as crystal yield and size (Chandrapala et al., 2016). It is clear from these 

studies that the interactions between Ca, LA and lactose are very complex and still 

not fully understood. 

1.5.1.2.3 Effect on glass transition 

 

Lactic acid is highly hygroscopic and has a low Tg and can therefore act as a plasticiser 

in an amorphous system. Studies have shown that the presence of LA in high-lactose 

powders will decrease the overall Tg of the lactose, leading to issues with stickiness 

and caking (Chandrapala and Vasiljevic, 2017; Saffari and Langrish, 2014; Shrestha et 

al., 2006; Wijayasinghe et al., 2016). However, Wijayasinghe et al. (2016) reported 

that the addition of Ca alone to a lactose solution increases the overall Tg, and when 
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LA and Ca are present in combination, the effect of the Ca on the Tg actually 

dominates that of the LA. Furthermore, the overall yield of spray-dried lactose 

powders decreases significantly with increasing LA concentration, which is likely due 

to the higher amount of powder sticking to dryer walls etc. (Chandrapala and 

Vasiljevic, 2017; Saffari and Langrish, 2014). Saffari and Langrish (2014) also 

demonstrated that the addition of WPI (5% w/w) to lactose/LA solutions can increase 

the overall powder yield, presumably due to the protective effect of protein against 

sticking.  

1.5.1.3 Effect of spray drying on powder particles 

 

1.5.1.3.1. Surface composition 

  

Stickiness is a surface related phenomenon and is therefore likely to be more closely 

related to the surface rather than bulk composition of powder particles. Many 

studies (Foerster et al., 2016, Nijdam and Langrish, 2006; Shrestha et al., 2007) have 

compared the surface and bulk compositions of various dairy powders and have 

shown that the surface composition of a particle can differ significantly from the bulk. 

Protein and fat tend to be over-represented at the surface, whereas lactose is 

normally underrepresented. Furthermore, of all of the milk components, fat appears 

to show the greatest extent of migration to the surface (Shrestha et al., 2007). Studies 

have found the fat content at the surface of SMP, which generally contains 

approximately 1% fat in the bulk, to be anywhere from 8% (Nijdam and Langrish, 

2006), through 12% (Shrestha et al., 2007), to 18% (Kim et al., 2002). Nijdam and 

Langrish (2006) also showed that very small changes in the bulk fat content of a 

powder (for relatively low concentrations 0-5% fat) can significantly affect fat 

distribution at the surface. In contrast, Shrestha et al. (2007) observed very little 

change in the protein coverage at the surface (±4%) when the protein in the bulk of 

the powder was increased from 9 to 34%. This is most likely due to the position of 

the different milk components at the particle surface. For example, studies have 

shown that fat is present as a thin film at the outermost layer at the surface and 

proteins are generally located directly underneath this layer of fat (Foerster et al., 
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2016; Kim et al., 2002). This thin layer of fat would explain why changing the protein 

content of the bulk does not appear to affect the amount of protein at the surface.  

1.5.1.3.1.1. Fat at the surface of powder particles 

 

As previously discussed (Section 4.2.1), the dominant presence of fat at the surface 

is significant to dairy producers as it can impact the stickiness of the powder. Foerster 

et al. (2016) reported that it is the atomisation stage (and not the subsequent drying 

stage) that is responsible for the component segregation and surface predominance 

of fat in dairy powders. Foerster et al. (2016) suggest that this over-representation 

of fat is primarily due to emulsion film disintegration caused by the shear stress 

imposed during atomisation along the oil–water interfaces of lipid globules, and 

possibly further enhanced by subsequent migration of fat to the surface during 

drying due to the low diffusivity of fat globules. In the same study, fat accumulation 

at the particle surface was also found to be independent of the type of atomisation 

used during drying. During the production of spray dried dairy emulsions, the type of 

fat used can also influence the amount of fat at the surface of the particle, with 

sunflower oil showing significantly higher (9%) surface fat coverage compared to milk 

fat (O’Neill et al., 2019). In the same study, O’Neill et al. (2019), the authors also 

showed that differences exist in the fatty acid profiles of the fats at different locations 

(surface, inner, and encapsulated) of the particle, with more C:16 and C18 and less 

C18:1 and C18:2 in the inner fat, compared to the surface and encapsulated fat. 

Furthermore, this would suggest that the presence of one or more double bonds 

effects the migration of fat during particle formation.  

1.5.1.3.1.2 Factors influencing surface composition 

 

A number of different theories have been proposed to explain the mechanisms 

responsible for the distribution of milk components to the particle surface during 

spray drying, including differences in components surface activity, diffusivity and 

solubility (Foerster et al., 2016). However, the surface composition of a particle can 

also be affected by external factors, such as the conditions used during spray drying. 

For example, higher spray-drying temperatures can favour the migration of lactose 
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to the surface over protein (Kim et al., 2009; Nijdam and Langrish, 2006). Increasing 

the solids content of the feed has been shown to decrease surface fat coverage in 

SMP, and correspondingly increase lactose coverage (Kim et al., 2009). Kim et al. 

(2009) also examined the effect of particle size on surface composition of SMP but 

did not find any significant differences in surface composition between the various 

size fractions. However, the particle size range examined in the study was quite small 

(0-90 µm) and is not necessarily representative of the particle size distribution (PSD) 

seen in industrially-produced powders. In a subsequent study by Foerster et al. 

(2016), the authors found that protein migration to the surface was more distinct in 

larger droplets, however, this protein was hidden under the layer of fat on the 

outermost surface of the particle. The authors also reported that further enrichment 

of protein towards the surface region occurred during the drying stage. Although 

some studies have investigated the influence of surface fat on stickiness behaviour, 

there has been very little research carried out on the direct influence of the surface 

composition on the stickiness of different dairy powders.  

1.5.1.4 Optimisation of spray drying parameters 

 

Spray drying is an important method for the dehydration and preservation of many 

dairy products, but it can be challenging to optimise due to the complex 

interrelationships between feed composition, drying parameters and dryer design 

variables. Hence, one of the only ways for dairy processors to determine the effects 

of altering drying parameters on the final product is to run a series of time consuming 

and expensive trials. For this reason, new methods are now being developed with 

the aim of determining the optimal spray drying parameters (inlet/outlet 

temperature, flow rate, etc.) that will result in maximum drying efficiency for 

individual dairy concentrates, while also avoiding undesirable side effects, such as 

stickiness. One such method is the drying by desorption method developed by Schuck 

et al. (2009). This method uses a desorption technique to determine the moisture 

transfer kinetics (ratio of bound to unbound moisture) in the sample during drying. 

The sample is placed into the small compartment of the cell, while the larger 

compartment is filled with absorbent material and a relative humidity sensor is  
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placed on top of the cell (Fig. 1.5). A vapour pressure gradient is created in the cell 

and water transfer takes place from the sample to the absorbent material. The drying 

information, along with dryer specifications and desired product parameters, can 

then be entered into the accompanying SD2P software to give the optimal drying 

parameters for that individual concentrate. This method has significant economic 

importance for dairy producers, as it can not only be used to maximise the efficiency 

of the dryer, it can also help to improve the physical characteristics of the final 

powder. One limitation of this method is that is does not take into account the risk 

of stickiness development during drying. For this reason, Zhu et al. (2011) developed 

a new method, based on this desorption technique, to determine the dry Tg of a 

concentrate. The authors examined the relationship between concentrate 

evaporation rate, solid content, viscosity and Tg, and developed an equation for the 

prediction of the dry Tg of a concentrate using this information (solids content, 

evaporation rate and viscosity). The dry Tg values obtained from this desorption 

method were compared to the Tg values from DSC for four infant formulas and the 

 

Figure 1.5 Schematic representation of drying by desorption cell. Taken from Schuck 

et al. (2009). 
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predicted dry Tg values were found to be 18-30°C higher than those measured using 

DSC. The advantage of this method is that it is easy and fast for Industry to apply, as 

it is done on a wet concentrate. However, more work must be carried out in order to 

improve the accuracy of the Tg predictions. 

1.5.1.5 Other factors affecting stickiness during spray drying 

1.5.1.5.1 Humidity in air  

 

It is well known that the final moisture content of a powder is closely related to the 

outlet air temperature of the spray drier (Písecký, 2012). The higher the outlet 

temperature of the drier, the lower the moisture content of the powder (Písecký, 

2012). However, in a recent study by Schuck et al. (2008), the authors demonstrated 

that this is not always the case. They showed that there is no direct relationship 

between outlet air temperature and powder moisture content. The only constant 

relationship they observed, from all of the spray drying parameters they examined, 

was between the moisture content of the powder and the relative humidity of the 

outlet air. 

1.5.1.5.2 Seasonal variation 

 

As the air used in spray drying is generally heated ambient air, variations in the 

humidity of this air during different seasons must also be considered as it can affect 

the drying conditions, and ultimately the final moisture content of the powder. This 

will then have implications on the stickiness/caking behaviour of the powder. For 

example, warmer air during summer months will have higher humidity, meaning it 

will be holding more moisture than colder air. When this air is heated to the required 

inlet temperature, it will be holding more moisture and will therefore reduce the 

drying capacity of the drier. Trying to combat this issue by increasing the inlet 

temperature will only result in more evaporation occurring within the drier, which 

will raise the outlet air humidity and ultimately increase the final moisture content 

of the powder. An increase in the relative humidity of the ambient air can also lead 

to an increase in energy consumption and a decrease in the thermal efficiency of the 

drier (Kajiyama and Park, 2010). It is therefore not efficient to run spray dryers at the 
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same conditions throughout the year. The most effective way to avoid problems with 

stickiness, and maximise the drier efficiency, is through inlet air dehumidification, as 

this allows for the reduction and constant control of the humidity of the air supply to 

the drier (Nielsen, 2017). This will also result in a reduction in the humidity of the 

outlet air, which will reduce the final moisture content of the powder.  

1.5.2 Stickiness during storage (caking) 

1.5.2.1 Introduction to caking  

 

Caking can be described as the undesirable clumping/agglomerating of powder 

particles resulting in the formation of lumps of varying size and hardness during the 

storage of powders. It negatively impacts the quality of dairy powders by impairing 

their functionality, leading to economic losses for the producer. Caking is closely 

related to stickiness, as both are surface-related phenomena that are strongly 

influenced by the physical changes that occur during the transition of an amorphous 

material from a higher to a lower viscosity state. There are two distinct differences 

between both phenomena; the time dependency and whether or not the particles 

are in motion. Stickiness usually occurs quite quickly during powder drying (seconds 

to minutes), whereas caking is a much slower process that can occur after weeks or 

months of storage. Furthermore, stickiness occurs between moving powder particles 

and/or equipment surfaces, while caking occurs between stationary particles. The 

different mechanisms of caking can be more precisely described as amorphous 

caking, humidity caking and mechanical caking, and have recently been discussed in 

detail in a review by Carpin et al. (2016). A very simple and general explanation of 

the most common caking process in lactose powders, amorphous caking, can be 

described as follows; water absorption by amorphous lactose, increase in the 

molecular mobility of the system causing liquid bridging and particle agglomeration 

to occur, often followed by lactose crystallisation and irreversible consolidation of 

bridges to form a solid cake.  
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1.5.2.1.1 Factors influencing caking 

  

Because of the influence of the glass transition, many of the factors that influence 

the stickiness behaviour of a powder will also influence the tendency of a powder to 

form a cake. For example, moisture plays a critical role in both stickiness and caking 

due to its effect on the Tg. The hygroscopicity of a powder is therefore one of the 

primary indicators of whether or not a powder will cake during storage. Moreover, 

the amount of amorphous material present in the powder will influence caking as 

higher amorphous lactose contents will lead to increased moisture sorption 

(Listiohadi et al., 2005). Storage temperature also has a significant influence on 

caking, as increasing the temperature beyond the Tg will cause thermal plasticisation 

to occur in a process known as sintering. Similarly to stickiness, the greater the 

difference between the Tg and process/storage temperature (T-Tg), the greater the 

extent of caking (Foster et al., 2006). Therefore, the RH and temperature conditions 

at which a powder is stored must be tightly controlled in order to avoid/minimise 

issues with caking (Aguilera et al., 1995). Surface fat content has also been shown to 

influence caking strength as liquid fat bridges between particles will crystallise and 

solidify when temperatures decrease to form strong bonds (Foster et al., 2005a). 

Studies by Carpin et al. (2017a) and Modugno et al. (2015) have also investigated the 

effect of particle size on caking and have found that lactose powders with smaller 

particle size distributions (PSD) have an increased tendency to cake, due to enhanced 

particle interactions.  

1.5.2.2 Moisture sorption 

 

Water acts as a plasticiser to reduce the Tg and the overall stability of a powder. It is 

therefore necessary to determine the moisture sorption tendency of a powder in 

order to take the necessary measures to prevent stickiness/caking from occurring. 

The most common method for determining the water sorption behaviour in foods is 

through the use of moisture sorption isotherms, such as those shown in Fig. 1.6. 

Moisture sorption isotherms provide information on the water sorption capacity of 

a sample as a function of aw at a constant temperature, and for dairy powders can be 
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good indicators of the amount of water that a powder is likely to sorb from the 

surrounding air. Powder hygroscopicity is a similar indicator, where a hygroscopicity 

classification (eg. slightly hygroscopic) is given to a powder to describe how likely it 

is to sorb moisture. Hygroscopicity can be defined as the final moisture content of a 

powder after it has been subjected to a humid environment under normal conditions 

(Schuck et al., 2012), and corresponds to a certain point on the moisture sorption 

isotherm.  

Various studies (Berlin, 1968; Foster, 2005) have used moisture sorption isotherms 

to show that the sorption behaviour of dairy powders, such as SMP, can be 

successfully predicted from the contribution of the primary milk components of that 

powder. These mainly include carbohydrates, proteins and other smaller hygroscopic 

components, such as minerals.  For example, amorphous lactose is extremely 

hygroscopic and will readily sorb moisture from the surrounding air (Ibach and Kind, 

2007). Increasing the amount of amorphous lactose in dairy powders has been shown 

to significantly increase moisture absorption (Shrestha et al., 2007). In contrast, 

crystalline lactose is non-hygroscopic and absorbs very little moisture (Bronlund and 

Paterson, 2004). Proteins generally adsorb moisture at lower RHs (Schuck et al., 

2012). For example, Silalai and Roos (2010) reported that at low aw values (< 0.33), 

water sorption increased with increasing protein content for a variety of milk protein 

concentrate (MPC) powders. Moisture sorption/hygroscopicity can also be 

influenced by particle size, as smaller particles will have more surface area available 

for sorption to occur. Smaller particles have been shown to absorb more moisture in 

both crystalline lactose (Carpin et al., 2017a) and sucrose powders (Mathlouthi and 

Roge, 2003). This could be due to the larger SSA or a higher amount of impurities, 

such as hygroscopic salts, often found in the smaller size fractions (Carpin et al., 

2017b).  
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Figure 1.6 Graph showing typical moisture sorption isotherms of a variety of dairy 

powders: Skim milk/permeate blend (15% protein) (◊), Skim milk/permeate blend 

(25% protein) (□), skim milk powder (SMP) (x), milk protein concentrate (55% 

protein) (+) and milk protein concentrate (80% protein) (o). Taken from Hogan and 

O'Callaghan (2010).  

1.5.2.2.1 Time-dependent crystallisation during storage 

 

The stability of milk powders during storage is dependent on the physic state of the 

primary compounds. In the case of powders such as whey permeates, it is primarily 

the physical state of the lactose that will determine the storage stability, due to the 

influence of the glass transition. For example, powders containing high amounts of 

amorphous lactose will undergo time-dependent crystallisation if subjected to 

temperature and RH conditions that exceed the Tg during storage. This phenomenon 

is generally undesirable as it may lead to the formation of solid cakes in the powder.  

The crystallisation process will begin with the amorphous lactose absorbing moisture 

from the surrounding air due to its hygroscopic nature, causing an increase in 

molecular mobility. The lactose molecules will then re-arrange themselves from their 
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unorganised amorphous structure into structured crystalline arrays. As the lactose 

crystallises, water of crystallisation will be released, which will be characterised as a 

loss of adsorbed water (Bronlund and Paterson, 2004; Jouppila and Roos, 1994a; 

Jouppila and Roos, 1994b; Silalai and Roos, 2010). However, in powders with 

sufficient protein contents, the water released during crystallisation may be re-

absorbed by the proteins present (Haque and Roos, 2004a; Hogan and O'Callaghan, 

2010; Ibach and Kind, 2007; Shrestha et al., 2007). There are a wide variety of factors 

that influence the time-dependent crystallisation of amorphous lactose. During 

exposure to humid conditions, higher temperature and relative humidity conditions 

lead to faster crystallisation rates (Ibach and Kind, 2007). Increasing the amorphous 

lactose content of a powder has also been shown to increase the moisture sorption 

(Bronlund and Paterson, 2004) and decrease the RH at which time-dependent 

crystallisation begins (Haque and Roos, 2004a; Hogan and O'Callaghan, 2010; 

Shrestha et al., 2007). Various studies (Chandrapala and Vasiljevic, 2017; Haque and 

Roos, 2004a; Haque and Roos, 2004b; Hogan and O'Callaghan, 2010; Ibach and Kind, 

2007; Jouppila and Roos, 1994a; Silalai and Roos, 2010,) have examined the time-

dependent crystallisation of amorphous lactose in dairy powders and have shown 

that the milk components present, such as proteins and salts, delay crystallisation 

compared to pure lactose systems. 

1.5.2.2.2 Methods for determining moisture sorption/hygroscopicity 

  

Moisture sorption isotherms are most commonly determined using the static 

gravimetric method described by Stitt (1958), in which dried samples are placed in 

desiccators containing saturated salt solutions in temperature controlled conditions. 

This subjects the samples to a constant temperature and RH environment. The 

samples are weighed periodically until equilibrium is reached. The data obtained 

from these experiments are often fitted to a mathematical model, such as the 

Guggenheim, Anderson, de Boar (GAB) model, which is widely used in the dairy 

industry for modelling sorption isotherms (Bronlund and Paterson, 2004; Foster et 

al., 2005b; Jouppila and Roos, 1994b). The advantage of this static method is that it 

is very simple and does not require specialised equipment. Hygroscopicity is 
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calculated in a very similar way, subjecting the sample to a certain RH (normally 75%), 

and weighing the sample until an equilibrium is reached. This information, along with 

the moisture content of the sample, is then entered into a formula to produce a value 

for the hygroscopicity (Schuck et al., 2012). It should also be noted that there are 

more automated techniques available to measure moisture sorption isotherms. One 

such method is dynamic vapour sorption (DVS), which has been used to measure the 

moisture sorption in a wide range of dairy powders, including spray dried 

lactose/protein powders (Kelly et al., 2016), dairy powders with different vegetable 

oils (Kelly et al., 2014), MPC powders (Kelly et al., 2015), WMP (Murrieta-Pazos et al., 

2011) and SMP (Murrieta-Pazos et al., 2011). 

 

1.6. Methods to determine stickiness 

 

A wide variety of techniques have been developed and studied to determine the 

stickiness behaviour of dairy powders (Table 1.2).  An important factor that needs to 

be considered for these techniques is the time dependence of stickiness. Techniques 

that estimate stickiness development over shorter time scales (seconds or minutes) 

would be more representative of the changes that occur during spray drying, as 

opposed to those that track changes in stickiness over longer time scales. 

Furthermore, it should be noted that all these methods are on a lab-scale, and 

therefore the stickiness information gathered for individual powders may not be 

directly comparable to what is occurring within the spray drier. A short summary of 

the most relevant methods for stickiness determination in dairy powders and some 

of their main advantages/disadvantages will be discussed in the subsequent sections. 

1.6.1 Direct measurements 

 

The direct measurement techniques are based on the measurement of a property of 

the powder, such as the viscosity or resistance to shear, and can be further classified 

as conventional, pneumatic or in situ techniques. The primary objective of these 

techniques is to gradually increase the humidity of a sample in order to determine 
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the stickiness, as the glass transition changes from a solid to a more liquid state. 

However, it should be noted that during spray drying the opposite is actually 

occurring, as moisture is desorbed and the glass transition is changing from a liquid 

to a solid state (Huppertz and Gazi, 2016). While direct methods provide good 

indications of the conditions leading to stickiness development, they are not direct 

indications of how stickiness will occur in the spray drier due to differences in particle 

trajectories, air velocities etc. 

 

Table 1.2 Overview of various techniques used for stickiness determination of dairy 

powders. Modified from O’Callaghan and Hogan (2013). 

Technique Conditioned 

air 

Controlled 

particle velocity 

Reference 

Wall deposition No No Ozmen and Langrish 

(2003) 

Sticky-point tester No 

 

No Hennigs et al., (2001) 

Ozkan et al., (2002) 

Cyclone stickiness 

test 

Yes No Boonyai et al. (2002) 

Boonyai et al., (2006) 

Fluidisation/ Fluid 

bed 

Yes No Hogan et al., (2009) 

Hogan et al., (2010) 

Murti et al., (2010) 

Particle gun Yes Yes Chatterjee (2004) 

Paterson et al., (2007) 

Zuo et al., (2007) 

Murti et al., (2009) 

Blow test Yes No Brooks (2000) 

Paterson et al., (2001) 
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1.6.1.1 Conventional methods 

 

One of the first stickiness measurement techniques was a thermo-mechanical test 

developed by Lazar et al. (1956), which was conducted on spray-dried tomato 

powder (Fig. 1.7). The technique involved placing a sample of known moisture 

content into a test tube which was submerged in a heating medium. The temperature 

of the sample was increased at a specific rate during the course of the experiment, 

and an impeller placed in the sample and turned manually until there was a sharp 

increase in the force required to stir the sample, which represented the change in 

viscosity of the sample and therefore the sticking point temperature. This technique 

has been modified and improved over the years and is now also used for stickiness 

determination of dairy powders (Fig. 1.7). Brennan et al. (1971) introduced a motor-

driven propeller and later, Hennigs et al. (2001) designed a sealed sample flask and 

added measurement of electric resistance output from the stirrer. A disadvantage of 

the method used by Hennigs et al. (2001) was that a void could form in the powder, 

causing the powder to stick to the outer particles without successfully determining 

the sticky-point temperature. A similar viscometer-based technique was developed 

by Özkan et al. (2002) to measure the stickiness behaviour of SMP and WMP. This 

technique involved placing the powder sample into a sample cup that was contained 

inside a temperature-controlled jacket. After the sample had equilibrated to the 

surrounding temperature an L-shaped propeller was placed in the centre of the 

sample and a viscometer was used to measure the torque required to stir the sample. 

Similar to the method developed by Lazar et al. (1956), the sticking point 

temperature was determined as the point where a sharp increase in the torque 

occurred. One limitation that is common to all the methods described above is that 

they are static methods, and therefore do not accurately represent the conditions 

within the spray drier.  
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Figure 1.7 Schematic diagram showing the evolution of the sticky-point 

measurement device first created by Lazar et al. (1956). Modified from Boonyai et al. 

(2004).  
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1.6.1.2. Pneumatic methods 

 

Pneumatic methods, such as the fluidisation or cyclone stickiness tests, involve the 

use of an air stream that comes into contact with the powder, and therefore more 

closely represent the stickiness behaviour of a powder during spray drying, compared 

to the static methods discussed in Section 1.6.1.1. Hogan et al. (2009) and Murti et 

al., (2010) both designed miniature fluidised bed systems to characterise the 

stickiness of a variety of dairy powders. The design used by Hogan et al. (2009) can 

be seen in Fig. 1.8. This method involved suspending powder samples in an air stream 

that had been humidified by passing it through vessels containing water that are 

submerged in a water bath. The RH of the air is then increased by increasing the 

temperature of the water bath at a constant rate. The sticking point is determined as 

the temperature at which the powder ceases fluidising and air channels develop in 

the powder. An advantage of this fluidisation method is that it measures both 

cohesion and adhesion, as it allows collision of individual particles against one 

another while also simulating impaction of particles against the chamber wall. 

However, it should be noted that the results from this fluidisation method cannot be 

directly compared to the conditions during spray drying due to the differences 

particle velocities. Boonyai et al. (2006) reported using a cyclone stickiness test to 

measure the sticking point temperature of various food powders, including whey 

powder. The apparatus consists of a cyclone test chamber, where the stickiness 

behaviour is observed, along with air heaters, a humidification chamber and a 

dehumidification tube. A pre-conditioning step is required before testing the sample 

in order to stabilise the conditions in the humidification chamber. After equilibration, 

a small amount of sample (~1 g) is introduced into the top of the cyclone chamber. 

The sample is carried along in the air stream which moves in a rotary motion. After a 

few minutes sticky behaviour can be observed as the particles begin to stick to one 

another and the chamber wall.   
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Figure 1.8 Schematic diagram of fluidisation apparatus for stickiness determination 

of dairy powders. Taken from Hogan et al. (2009). 

Paterson et al. (2001) reported using the blow test method for measuring the 

stickiness of powders (Fig. 1.9). This method measures the air flow rate (L/min) 

required to blow a channel into a bed of powder. The air used to blow through the 

powder bed was pre-conditioned to a desired temperature and RH, but unlike other 

methods was kept constant throughout the course of the experiment. This method 

may be subject to some error due to imperfections in the bed surface and 

fluctuations in the conditions during the experiment. It should also be noted that 

while this method has been used to measure ‘stickiness’ in some studies (Paterson 

et al., 2001; Paterson et al., 2005), it is perhaps more accurate to categorise this as a 

method for measuring the caking strength of powder due to the static nature of the 

particles in the bed of powder.  

 



Chapter 1 
 
 

41 
 

  

Figure 1.9 Schematic diagram of the blow test method used for measuring powder 

stickiness. Taken from Paterson et al. (2005). 

 

 

Figure 1.10 Schematic diagram of the particle gun (including modifications) used for 

measuring powder stickiness.  Taken from Murti et al. (2009) 
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Chatterjee (2004), and later Zuo et al. (2007), Paterson et al. (2007) and Murti et al. 

(2009), used a particle gun apparatus to determine the stickiness of powders when 

they collide with equipment surfaces (adhesion) (Fig. 1.10). The temperature and 

humidity of the air stream can be controlled using a combination of heating elements 

and air pressure regulators. A venturi is used to accelerate the air through the particle 

gun. A fixed amount of powder (25 g) is dropped into a glass funnel at the top of the 

vortex chamber and travels through the 103 cm long perspex tube at a velocity of 20 

m/s. When the powder exits the tube it adheres to a stainless steel plate and the 

plate is weighed to determine the mass of powder that has adhered to the plate. This 

apparatus works under the assumption that the surface layer of the particles 

instantly equilibrates with the contacting air, and that this small layer is sufficient to 

cause stickiness in powders. Some advantages of this method compared to other 

stickiness techniques are that the higher air velocities are more representative of 

those used during spray drying and that it also accounts for particle contact with the 

drier walls. Fig. 1.11 shows a plot for % deposition for SMP, where the temperature 

was kept constant (77°C) and the RH was gradually increased (Murti et al., 2009). 

Figure 1.11 Deposition (%) of skim milk powder (SMP) using the particle gun 

apparatus. Taken from Murti et al. (2009). 
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In order for the techniques mentioned above to be useful to dairy processors, it must 

be possible to relate the experimental information back to the operating conditions 

used during spray drying. For this reason, the results obtained for the many of these 

methods can be represented as a point on a graph of air temperature (representing 

the outlet temperature of a spray dryer) as a function of RH. If the stickiness 

behaviour has been tested at a variety of temperatures or RHs, these points can be 

graphed and connected to form a curve, known as a ‘stickiness curve’ (Fig. 1.12). The 

area below the curve represents the temperature and RH conditions where powders 

would not be expected to cause problems with stickiness. This stickiness curve 

provides operators with useful information on the safe operating conditions for a 

given powder.  

 

 

Figure 1.12 Typical stickiness curve for skim milk powder (SMP), showing ‘sticky’ and 

‘non-sticky’ zones. Modified from O’Donoghue et al. (2019). 
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1.6.2 Indirect methods 

 

Indirect methods measure changes in a physical property of the material that can be 

indirectly correlated to stickiness. For example, during the glass transition, changes 

occur in the heat capacity as well as the viscoelastic and dielectric properties of the 

material. Hence, there are a wide range of techniques that can be used to measure 

such changes. Two of the most commonly used methods in the dairy industry are 

differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). A 

brief summary of each method is given below. 

1.6.2.1 Differential scanning calorimetry 

 

Differential scanning calorimetry (DSC) is a thermo-analytical technique that is 

commonly used to determine the glass transition temperature (Tg) of foods, including 

dairy powders (Haque and Roos, 2004a; Haque and Roos, 2004b; Jouppila and Roos, 

1994a; Maidannyk and Roos, 2017; Ozmen and Langrish, 2002; Silalai and Roos, 2010; 

Silalai and Roos, 2011b). This method measures the change in specific heat that 

occurs during phase transitions by comparing the sample to a reference sample of a 

known specific heat capacity. Both samples are heated over a defined time and are 

maintained at the same temperature throughout the experiment. The amount of 

heat required to maintain the sample at the same temperature as the reference can 

then be measured. For example, if a solid melts to a liquid it will absorb heat and 

therefore require more heat in order to maintain it at the same temperature as the 

reference sample. Similarly, if the sample undergoes a phase change from liquid to 

solid state, such as during crystallisation, the reaction will release heat and less heat 

will be required to raise the sample temperature. These changes can then be 

represented on a graph of heat flow as a function of temperature, known as a DSC 

thermogram (Fig 1.13). However, it should be noted that these phase transitions do 

not occur at a precise temperature, but rather over a region with three defined 

parameters; the onset (Tgi), midpoint (Tgm) and endset (Tge) temperature. It is 

therefore important when referring to Tg values in the literature to specify which Tg 

value (i.e., onset, midpoint or endset) is being reported. 
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Figure 1.13 Differential scanning Calorimetry (DSC) thermogram showing glass 

transition in non-crystalline whey powder at 0.22 aw. Taken from Schuck et al. (2005).  

1.6.2.2 Dynamic mechanical analysis 

Dynamic mechanical analysis (DMA) is a technique used to measure changes in the 

viscoelastic behaviour of a material. This method involves subjecting the sample to a 

sinusoidal force and measuring the resulting strain in the material, given as the 

storage (Eʹ) and loss (Eʺ) moduli. The storage modulus describes the amount of 

energy stored in the sample, i.e., the elasticity, whereas the loss modulus describes 

the energy lost from the sample and is an indication of viscosity. During the glass 

transition, as the material ‘relaxes’ into a stable (crystalline) state, there will be a 

considerable decrease in storage modulus and a corresponding increase in the loss 

modulus. Theoretical values, known as α-relaxation temperatures (Ta), can then be 

determined from the changes in the storage and loss moduli. For example, the Ta 

onset is calculated from the onset of the decrease in the storage modulus and the Ta 

peak is determined as the peak of the curve of the loss modulus (Fig. 1.14). These α-

relaxations normally occur above the Tg and can be generally related to changes in 
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Figure 1.14. Graph showing Ta onset (storage modulus) and Ta peak (loss modulus) 

values of a whey protein concentrate powder using dynamic mechanical analysis. 

Taken from O’Donoghue et al. (unpublished data).  

 

stickiness behaviour, as both are associated with changes in viscoelastic behaviour. 

Silalai and Roos (2011b) used this DMA method to determine the mechanical α-

relaxations of a range of SMP-maltodextrin powders (Fig. 1.15). They compared these 

results to the results obtained from a sticky point tester, modified from the design 

by Lazar et al. (1956), and found that the a-relaxation results were good indicators 

for stickiness development. However, these mechanical relaxations are dependent 

on the frequency used (Silalai and Roos, 2010), hence a range of frequencies is 

normally analysed.  This method may therefore provide a potential option for 

measuring the stickiness of powders that cannot be measured using the direct 

methods outlined above, e.g., powders with very high fat contents.  

 

30

40

50

60

70

80

90

100

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 20 40 60 80 100 120

G
'' 

(M
 P

a)

G
' (

M
 P

a)

Temperature (°C)

Ta peak

Ta onset 



Chapter 1 
 
 

47 
 

 

Figure 1.15 Graphs showing storage (A) and loss (B) moduli of a skim milk powder 

(SMP)/maltodextrin mix at different water activities. Modified from Silalai and Roos 

(2011b).
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Objectives 
 

The main objective of the research reported in this thesis was to develop a deeper 

understanding of the compositional and analytical factors affecting stickiness 

development in dairy powders. The work presented was performed with a view to 

minimise the occurrence and severity of stickiness during the spray drying of lactose-

containing dairy powders, and also to investigate a new method which could 

potentially provide dairy powder technologists with a more mechanistic 

understanding of stickiness development.  

The aims of the research are as follows: 

 To characterise the bulk and surface compositions of various size fractions of 

different lactose-containing dairy powders, and to investigate whether 

differences exist in the stickiness behaviour and hygroscopicity of these 

fractions. 

 To compare the α-relaxation temperatures, derived from the storage and loss 

modulus using DMA, of a variety of whey protein concentrate (WPC) powders 

with the results from other more established methods for stickiness 

characterisation and glass transition determination, such as the fluidisation 

method and differential scanning calorimetry, respectively. 
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Abstract 

 

This study investigated the compositional and physicochemical properties of 

different whey permeate (WPP), demineralised whey (DWP) and skim milk powder 

(SMP) size fractions. Bulk composition of WPP and DWP was significantly (P < 0.05) 

influenced by powder particle size; smaller particles had higher protein and lower 

lactose contents. Microscopic observations showed that WPP and DWP contained 

both larger lactose crystals and smaller amorphous particles. Bulk composition of 

SMP did not vary with particle size. Surface composition of the smallest SMP  fraction 

(<75 um) showed significantly lower protein (-9%) and higher fat (+5%) coverage 

compared to non-fractionated powders. For all powders, smaller particles were more 

susceptible to sticking. Hygroscopicity of SMP was not affected by particle size; 

hygroscopicity of semi-crystalline powders was inversely related to particle size.  This 

study provides insights into differences between size fractions of dairy powders, 

which can potentially impact the sticking/caking behaviour of fine particles during 

processing. 
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2.1 Introduction 

  

Stickiness and hygroscopicity of powders, especially those with high carbohydrate 

contents, are major challenges for the dairy industry, particularly during the spray 

drying process. Sticky powders can become deposited on the walls of the spray drier 

and block bag-houses and cyclones, decreasing process efficiency, product yield and 

quality. Stickiness is a surface phenomenon that occurs when the surface of powder 

particle reaches a critical viscosity (between 106 and 108 Pa.s), which allows for the 

formation of liquid bridges, causing cohesion between colliding particles and/or 

adhesion to equipment surfaces (Downton et al., 1982). The viscosity of the particle 

surface is governed by many factors, such as moisture content, the physical state of 

lactose and temperature (Downton et al., 1982; Hogan et al., 2009). A wide variety 

of techniques have been developed over the years in order to determine the 

conditions at which powders becomes sticky, with sticking temperature (T) usually 

reported as a function of relative humidity (RH) (Boonyai et al., 2006; Hogan et al., 

2009; Intipunya et al., 2009; Lazar et al., 1956; Murti et al., 2009; Paterson et al., 

2005; Paterson, et al., 2007). 

Powders containing large amounts of amorphous lactose are particularly susceptible 

to sticking as amorphous carbohydrates are thermodynamically unstable and 

undergo a phase transition from a ‘glassy’ to ‘rubbery’ state around a critical 

temperature, known as the glass transition temperature (Tg). This transition is also 

highly dependent on humidity due to the plasticisation effect of water, which lowers 

Tg (Haque and Roos, 2004a; Jouppila and Roos, 1994a; Ozmen and Langrish, 2002; 

Roos and Karel, 1991c). As the Tg is exceeded, the molecular mobility of the system 

will increase and the particle surface viscosity will decrease, leading to the onset of 

sticking (Foster et al., 2006). As a consequence of this, stickiness is commonly 

encountered during spray drying due to high temperature and RH conditions. The 

temperature difference between the Tg and sticking point temperature, known as 

the T-Tg, has been extensively studied and is often used to describe the sticking 

behaviour of dairy powders (Hennigs et al., 2001;  Hogan et al., 2009; Murti et al., 

2009; Ozmen & Langrish, 2002; Paterson et al., 2005; Paterson et al., 2007). It should 
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be noted that the T-Tg can vary depending on the measurement technique used 

(Paterson et al., 2005; Paterson et al., 2007) and the composition of the powder 

(Hogan et al., 2009). T-Tg values reported for SMP vary from 14-22 °C, using a thermo-

mechanical test (Ozmen and Langrish, 2002), 23.3 °C, using a direct stirrer-type 

technique (Hennigs et al., 2001), 25-34 °C, using a variety of fluidised bed apparatus 

(Hogan and O'Callaghan, 2010; Hogan et al., 2009; Murti et al., 2010) to 31.5-33.6 °C 

using a particle gun (Murti et al., 2009; Murti et al., 2010).  

In order to minimise processing and product quality challenges associated with 

stickiness, feeds containing large amounts of lactose, such as whey and whey 

permeates, are often subjected to a pre-crystallisation step before drying in order to 

convert the majority of the amorphous lactose (typically 75-80%) into the more 

stable, crystalline form. However, it is not possible to fully crystallise all of the 

dissolved lactose. Resulting powders are therefore semi-crystalline in nature, as they 

contain both lactose crystals and a proportion of amorphous lactose (~20-25% of 

total lactose), in addition to other milk components (Bansal and Bhandari, 2016). 

These components differ in diffusivity and molecular weight and therefore may not 

be distributed evenly between size fractions (Meerdink and van’t Riet, 1995), leading 

to differences in stickiness behaviour. 

Particle size is thought to play a role in powder stickiness as it has been shown to 

have a significant effect on the cohesive and adhesive strength of dairy powders 

(Rennie et al., 1999). As previously mentioned, it is commonly observed in industrial 

settings that the fines exiting the spray dryer with the exhaust air often stick to the 

surfaces of the air filtration systems (e.g., cyclones and bag houses). However, to 

date, very little research has been carried out investigating the effect of particle size 

on the stickiness of dairy powders. As part of a study by Hogan et al. (2009), the 

authors examined the differences in stickiness behaviour between two SMP samples 

of different particle sizes (D[4,3] values of 130 and 61 µm) but did not find any 

significant difference between the stickiness of the two size fractions.  
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The hygroscopicity of a dairy powder describes its final moisture content after 

exposure to humid air at a constant temperature. Hygroscopicity is closely linked 

with stickiness, as increased moisture content increases the rate of stickiness 

development (Murti et al., 2009). Various studies (such as Carpin et al., 2017a and 

Haque and Roos, 2004b) have investigated the influence of particle size on water 

absorption by different dairy powders. Haque and Roos (2004b) examined the 

differences in water uptake of coarse and fine amorphous lactose/protein powders 

and found that the fine particles absorbed slightly more water than the coarse 

powder particles at relative vapour pressures (RVP) ≤ 33.2%. Similarly, Carpin et al. 

(2017a) found that for crystalline lactose powders, smaller particles showed an 

increase in water absorption compared to larger particles at RHs > 50%. Rogé and 

Mathlouthi (2000) also showed the same effect of particle size on water uptake for 

crystalline sucrose.  

Many studies (Kim et al., 2002; 2005a; 2009; Nijdam and Langrish, 2006; Shrestha et 

al., 2007) have compared the bulk and surface compositions of various dairy powders 

and found that the proportions of protein, fat and lactose on the surface of the 

particle can be significantly different from those in the bulk of the powder. While 

such observations are useful, information on the relationship between particle size 

and surface composition is limited. Kim et al. (2009) sieved a commercial SMP and 

examined the surface composition of various size fractions but found no significant 

effect of particle size on surface composition. However, the range of particle sizes 

examined in the study by Kim et al. (2009) was very small (between 0-90 µm) and 

therefore not representative of the range of particle sizes typically found in 

industrially produced powders. To the author’s knowledge, there are no published 

studies available on the relationships between particle size and surface composition 

of semi-crystalline dairy powders, such as whey permeates.  

The objectives of this study were to characterise the bulk and surface compositions 

of various size fractions within different dairy powders, and to investigate whether 

differences exist in the stickiness behaviour and hygroscopicity of these fractions. In 

particular, the stickiness behaviour of the smaller size fractions, or fines, was of 
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interest, as excessive stickiness in this fraction can be a limiting factor during spray 

drying.   

 

2. 2 Materials and methods 

 

2.2.1. Materials 

 

Demineralised whey powder (DWP), whey permeate powder (WPP) and skim milk 

powder (SMP) were supplied by local dairy ingredient companies. Saturated salt 

solutions magnesium chloride (MgCl2), potassium carbonate (K2CO3) and sodium 

chloride (NaCl) were purchased from Sigma Aldrich (Co. Wicklow, Ireland).  

2.2.2. Powder fractionation 

 

Powders were sieved using a laboratory test sieve shaker (Octagon 200 test sieve 

shaker, Endecotts Ltd, London, UK) using three different sieve sizes (250, 150 and 75 

µm). The powders were sieved in batches of 300 g at amplitude 7 for 4 min. The 

powder in each sieve was then weighed in order to determine the proportion of each 

size fraction in the original powder. Two batches of the WPP and four batches of the 

DWP and SMP were sieved in total. All fractions were well mixed, stored in airtight 

plastic containers and analysed within 2 months.  

2.2.3. Particle size distribution 

  

The particle size distributions (PSD) of each powder fraction were measured by laser 

light scattering using a Mastersizer 3000 (Malvern Instruments Ltd., UK), equipped 

with an Aero S dry powder dispersion unit. Particle size measurements were 

recorded as the volume mean diameter (D[4,3]).  

2.2.4. Powder composition 

 

Total moisture was determined by Karl-Fischer titration using a 784 KFP Titrino auto-

titration system (Metrohm AG, Herisau, Switzerland) as described by GEA (2006). 
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Protein determination was carried out using a LECO Nitrogen Analyser FP-638 (LECO 

Corporation, Michigan, USA), using a nitrogen-to-protein conversion factor of 6.38. 

Non-protein nitrogen (NPN) content was measured using the Kjeldahl method, after 

precipitation of intact proteins using trichloroacetic acid (TCA). In the absence of an 

accurate method to measure whey:casein ratio in heat treated SMP, the ratio was 

taken to be 20:80. Lactose content was measured using a lactose assay kit 

(Megazyme K-LOLAC, Ireland). It should be noted that there was an insufficient 

amount of powder to test the x < 75 µm fraction of the DWP for lactose and NPN, so 

a simple linear regression was carried out to extrapolate the data. For the SMP 

fractions, lactose content was assumed to be the same as the original powder. Fat 

content was analysed by Röse-Gottlieb (IDF, 1987). Ash content was determined 

after overnight incineration in a muffle furnace at 550°C. Water activity (aw) was 

determined using a Novasina Labmaster.aw (Novatron Scientific Ltd., UK). Free 

moisture was determined by oven drying at 86°C for 6 h.  

2.2.5. Lactose crystallinity 

 

Lactose crystallinity (%) was calculated according to the formula described by Schuck 

& Dolivet (2002): 

𝐵𝑊𝐿. 19

𝐿
 ×  100 

where BWL is the bound water content in the lactose (g kg-1) and L is the lactose 

content (g kg-1).  

The BWL was calculated according to the following formula: 

BWL = TW – FW – (0.0152.CC) – (0.005.WPC) – (0.0155.MSSC) 

where TW: total water content (g kg-1), FW: free water content (g kg–1), CC: casein 

content (g kg-1), WPC: whey protein content (g kg-1) and MSSC: milk salt solution 

content (g kg-1). 
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2.2.6. Scanning electron microscopy 

  

Scanning electron microscopy (SEM) was carried out with a field-emission scanning 

electron microscope (FE-SEM, Zeiss Supra 40 VP Gemini, Darmstadt, Germany) at 

2.00 kV. Powder samples were mounted on double-sided carbon tape attached to 

SEM stubs and lightly coated with chromium (Emitech K575X, Ashford, UK) prior to 

analysis. Images were taken at 500 X magnification.  

2.2.7. Stickiness 

 

Powder stickiness was determined using a fluidisation technique previously 

described by Hogan et al. (2009). Stickiness curves were generated by plotting the air 

(dry bulb) temperature against the RH (calculated from the saturated air 

temperature and absolute humidity) at which fluidisation ceased. To determine the 

effect of surface fat on stickiness behaviour, stickiness curves were generated for 

powders washed in petroleum ether, as described by Kim et al. (2005a). 

2.2.8. Powder fluidisation velocity 

 

Minimum air fluidisation velocities were determined using an Anton Paar MCR 302 

rheometer (Graz, Austria), equipped with a powder cell attachment. An 80 mL bed of 

powder was subjected to an increasing air flow (from 0–5 L min-1) and the minimum 

air velocity required to fluidise the powder was determined by studying the pressure 

drop across the powder bed and dividing by the cross-sectional area. The air used to 

fluidise the powders in the powder cell was in compliance with ISO 8573.1, class 

1.3.1, with a dew point of -20°C and 0.8 kg moisture/kg dry air. All analysis was 

conducted at room temperature (~20°C). The air velocity (m s-1) passing through each 

fluid bed in the stickiness apparatus was determined by dividing the total air flow 

rate (3.5 L min-1) by 5 (for each fluid bed) and then dividing by the cross sectional 

area of one fluid bed. 
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2.2.9. Differential scanning calorimetry 

  

Powders were analysed without pre-equilibration under controlled atmosphere 

conditions.  The water activity (aw) of the different size fractions varied slightly from 

0.34-0.36, 0.28-0.36 and 0.30-0.31 for the DWP, WPP and SMP, respectively. Glass 

transitions in the three powders were measured using a Q2000 differential scanning 

calorimeter (DSC; TA Instruments, Crawley, UK) as described by Murphy et al. (2015). 

Hermetically sealed differential scanning calorimetry (DSC) aluminium pans, 

containing between 14-24 mg of powder, were heated in a nitrogen purged 

environment using the following method; heating from 0 to 60°C at 5°C min-1, cooling 

from 60°C to -10°C at 10°C min-1, and finally heating at 5°C to an end temperature of 

100°C. The Tg midpoint values were calculated from the second heating cycle and all 

analyses were completed in at least duplicate. T-Tg values were calculated as the 

difference between sticky point temperature (T) and Tg, and represent a single point 

between both curves at the aw of the powder. For powders washed with petroleum 

ether Tg values of the original powder were used. 

2.2.10. Hygroscopicity  

 

Powder hygroscopicity was measured according to the method described by Schuck 

et al. (2012). Powder samples (~2 g) were placed in desiccators over saturated salts 

of K2CO3 at 43% RH. The samples were equilibrated and weighed at regular intervals 

until a constant weight was observed. 

Hygroscopicity was calculated using the following formula:  

((𝑤2 − 𝑤1 − 𝑤0)  ×  1000) + (𝑤1  ×  𝑀)

(𝑤2 −  𝑤0)  ×  10
 

Where w0 = vial weight (g), w1 = sample weight (g), w2 = weight of vial after 

equilibration (g), M = % free moisture (% w/w)  
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2.2.11. Surface analysis of powders 

 

X-ray photoelectron spectroscopy (XPS) measurements were made using a Kratos 

AXIS Ultra spectrometer (Kratos Analytical Ltd., Manchester, UK). The relative 

amounts of protein, fat and lactose at the powder surface were determined using a 

matrix formula created from the elemental compositions of the pure milk 

components, according to the method described by Faldt et al. (1993). It should be 

noted that after calculation the WPP tested in this study gave a slight negative 

surface fat value for all size fractions. Considering that the fat content of the powder 

was negligible (~0.1% w/w), the equations were adjusted in order to remove fat; fat 

content of WPP surfaces were considered to be “not determined” (N.D.). 

2.2.12. Statistical analysis 

 

All analysis was carried out in at least duplicate. Statistical analysis was carried out 

by subjecting data sets to one-way ANOVA with a least significant difference (LSD) 

test using SPSS for Windows Regression Models (IBM Ireland Ltd., Dublin, Ireland) 

statistical analysis package. A level of confidence of P ≤ 0.05 was used.   

 

2.3 Results  

 

Table 2.1 Proportion (% w/w) of each size fraction in original demineralised whey 

powder (DWP), whey permeate powder (WPP) and skim milk powder (SMP), 

separated using 250 µm, 150 µm and 75 µm sieves.  

 x > 250 µm 

% 

250 > x > 150 µm 

% 

150 > x > 75 µm 

 % 

x < 75 µm 

% 

DWP (n = 4) 6.52 ± 2.27 69.2 ± 3.74 22.6 ± 5.33 1.65 ± 0.62 

WPP (n = 2) 5.36 ± 1.49 21.1 ± 1.79 66.0± 3.77 7.60 ± 0.50 

SMP (n = 4) 1.42 ± 0.07 38.1 ± 1.12 54.0 ± 1.85 6.53 ± 0.79 
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2.3.1. Powder characterisation 

2.3.1.1 Particle size fractions and bulk composition of powders 

 

The proportion of each size fraction in the original powders is shown in Table 2.1. In 

all three powders studied the majority of particles were between 250 and 75 µm. 

However, in DWP the majority of powder particles were between 250 and 150 µm, 

compared to WPP and SMP, which mostly contained particles in the range 150 - 75 

µm. Bulk compositional differences were observed between the various size fractions 

of the original semi-crystalline powders (Table 2.2). For DWP and WPP, smaller 

particles contained higher levels of protein and lower levels of lactose compared to 

larger particles. The same trend was not seen for SMP, which showed no significant 

variation (P > 0.05) in bulk composition between size fractions. Mineral content of 

DWP and WPP was also significantly higher (P ≤ 0.05) in smaller size fractions. In a 

similar study by Carpin et al. (2017a), the authors also observed higher protein and 

mineral contents for smaller particles of crystalline lactose powder. The average non-

protein nitrogen (NPN) content, expressed as a percentage of total nitrogen, was 

4.60 ± 0.01, 13.5 ± 2.29 and 35.6 ± 10.6% across all size fractions of SMP, DWP and 

WPP, respectively.  

As expected, DWP and WPP contained a higher amount of lactose (80.2 ± 1.27 and 

87.3 ± 0.83%, respectively) compared to SMP (48.5 ± 6.11%). The majority of lactose 

in DWP and WPP was in the crystalline form (α-lactose monohydrate). This is a result 

of the pre-crystallisation step that occurs before spray drying, in which the majority 

of amorphous lactose present is converted into the more stable, crystalline form. 

However, for all size fractions studied, DWP contained higher levels of non-crystalline 

lactose compared to WPP. In WPP, the smaller particles contained much higher levels 

of amorphous lactose (40.1% of total lactose in x < 75 µm fraction) compared to 

larger particles (8.60% of total lactose in x > 250 µm fraction). A similar trend was 

also observed for DWP. Furthermore, representation of SMP crystallinity in terms of 

α-lactose monohydrate is not ideal, as unlike during the manufacture of DWP and 

WPP, a pre-crystallisation step is not performed prior to drying; therefore any lactose 

crystals present may consist of mixtures of α- and β-lactose (Jouppila and Roos, 
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1994a). Therefore, caution should be exercised when interpreting SMP crystallinity 

values (as α-lactose monohydrate) from Table 2.2. 

2.3.1.2. Surface composition of powders 

 

Surface compositions differed from bulk compositions in the three powders 

examined (Table 2.3). Protein and fat contents were higher at the particle surface, 

while lactose concentrations at the surface were lower than in the bulk. These 

findings are consistent with other studies in which it was also reported that protein 

and fat preferentially migrate to the surface of the particle during drying (Nijdam and 

Langrish, 2006; Shrestha et al., 2007). 
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Table 2.2 Bulk composition of original and fractionated demineralised whey powder (DWP), whey permeate powder (WPP) and skim milk powder (SMP).a 

a For each powder, different superscript letters within the same column represent a significant difference (P ≤ 0.05) 

b  True protein = (Total nitrogen – Non-protein nitrogen) x 6.38 

c As α-lactose monohydrate 

d Extrapolated value for non-protein nitrogen and lactose 

e Assumed lactose value 

 Size fraction  
(µm) 

True Proteinb  
(% w/w) 

Fat 
 (% w/w) 

Total Lactose 
(% w/w) 

Ash 
(% w/w) 

Total Moisture  
(% w/w) 

Free Moisture  
(% w/w) 

Crystalline Lactosec 
(% of Lactose)  

DWP Original 11.4 ± 0.28a 1.11 ± 0.02a 80.2 ± 1.27a 0.70 ± 0.15ac 4.93 ± 0.15a 1.75 ± 0.01a 73.8 
 x > 250 8.23 ± 0.04b 0.85 ± 0.00b 88.3 ± 1.05b 0.49 ± 0.15ab 4.93 ± 0.06a 1.34 ± 0.01b 76.2 
 250 > x > 150 10.8 ± 0.18c 1.04 ± 0.01c 79.4 ± 0.28a 0.77 ± 0.10ac 4.99 ± 0.22a 1.71 ± 0.05a 76.9 
 150 > x > 75 11.8 ± 0.13d 1.16 ± 0.00d 75.4 ± 0.61c 0.79 ± 0.01c 5.10 ± 0.12a 1.86 ± 0.10a 79.9 
 x < 75d 21.4 ± 0.09e 1.95 ± 0.03e 71.6 1.43 ± 0.11d 5.13 ± 0.08a 3.10 ± 0.26c 50.5 
WPP Original 3.52 ± 0.05a 0.08 ± 0.01a 87.3 ± 0.83a 6.77 ± 0.03a 5.63 ± 0.13a 1.65 ± 0.00a 84.0 
 x > 250 0.54 ± 0.02b 0.08 ± 0.01a 99.2 ± 0.94b 1.59 ± 0.02b 5.18 ± 0.28b 0.38 ± 0.00b 91.4 
 250 > x > 150 2.89 ± 0.07c 0.11 ± 0.01a 93.1 ± 3.19c 5.89 ± 0.11c 5.57 ± 0.12a 1.46 ± 0.00c 81.6 
 150 > x > 75 3.47 ± 0.05d 0.10 ± 0.05a 83.7 ± 1.10a 7.68 ± 0.01d 5.63 ± 0.06a 1.86 ± 0.01d 82.4 
 x < 75 6.01 ± 0.01e 0.13 ± 0.01a 70.5 ± 0.06d 12.9 ± 0.12e 5.59 ± 0.10a 3.14 ± 0.00e 59.9 
SMP Original 36.4 ± 0.56a 1.06 ± 0.07a 48.5 ± 6.11 7.31 ± 0.02a 5.52 ± 0.14a 5.05 ± 0.00a 3.28 
 x > 250e 36.1 ± 0.03a 0.94 ± 0.01b 48.5 ± 6.11 7.19 ± 0.03b 5.57 ± 0.13a 5.04 ± 0.01a 10.9 
 250 > x > 150e 36.3 ± 0.05a 0.95 ± 0.02b 48.5 ± 6.11 7.24 ± 0.01bc 5.47 ± 0.02a 5.12 ± 0.10a 2.20 
 150 > x > 75e 36.4 ± 0.05a 0.93 ± 0.02b 48.5 ± 6.11 7.23 ± 0.03bd 5.50 ± 0.04a 5.07 ± 0.01b 8.80 
 x < 75e 36.5 ± 0.06a 1.00 ± 0.03ab 48.5 ± 6.11 7.25 ± 0.03cd 5.51 ± 0.03a 5.13 ± 0.07a 3.66 
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Table 2.3 Surface composition of original and fractionated demineralised whey 

powder (DWP), whey permeate powder (WPP) and skim milk powder (SMP), given in 

percentage protein, fat and lactose coverage.a b 

 Size fraction 

(µm) 

Crude Protein  

(% w/w) 

Fat  

(% w/w) 

Lactose 

 (% w/w) 

DWP Original 41.2 ± 0.50ac 28.4 ± 2.72a 30.4 ± 2.16a 

  x > 250 42.3 ± 1.00bc 28.3 ± 0.85a 29.4 ± 0.21a 

 250 > x > 150 44.0 ± 0.50b 26.7 ± 0.44a 29.3 ± 0.93a 

 150 > x > 75 41.6 ± 1.00ac 26.2 ± 3.51a 32.1 ± 2.45a 

 x < 75 39.4 ± 1.00a 27.9 ± 0.14a 32.3 ± 0.84a 

WPP  Original 54.2 ± 0.00a n.dc 35.4 ± 0.25a 

 x > 250 45.8 ± 3.98b n.dc 36.5 ± 1.27a 

 250 > x > 150 54.6 ± 1.49a n.dc 36.5 ± 0.51a 

 150 > x > 75 51.8 ± 3.49ab n.dc 35.4 ± 0.76a 

 x < 75 49.7 ± 0.50ab n.dc 35.2 ± 1.01a 

SMP  Original 52.4 ± 0.98a 9.56 ± 1.60a 35.9 ± 0.56a 

 x > 250 47.6 ± 1.95b 18.5 ± 3.25b 32.5 ± 1.43b 

 250 > x > 150 47.6 ± 0.00b 12.2 ± 0.84ac 38.7 ± 0.98ac 

 150 > x > 75 47.2 ± 0.49b 11.0 ± 1.76ac 40.2 ± 1.13c 

 x < 75 43.8 ± 0.49c 14.8 ± 1.20bc 39.7 ± 1.76cd 

a For each powder, different superscript letters within the same column represent a 

significant difference (P ≤ 0.05). 

b percentage coverage is on a dry basis 

c n.d – not determined 

Many studies have shown that the surface fat content of dairy powders is 

significantly higher than the bulk composition (Kim et al., 2009; Nijdam and Langrish, 

2006). In the present study, fat coverage of the original SMP was found to be 9.56 ± 

1.60%, which is considerably higher than the 1.06 ± 0.07% fat found in the bulk of the 

powder. Kim et al. (2009) reported a higher surface fat content of 18% for a 
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commercial SMP with a bulk composition of approximately 1% fat, whereas Nijdam 

and Langrish (2006) reported a surface fat content of approximately 8% for a SMP 

with 1.10% bulk fat content. Foerster et al. (2016) demonstrated that, for industrially 

spray-dried powders, it is the atomisation stage (and not the subsequent drying 

stage), which is the primary determinant of surface composition, and is responsible 

for overrepresentation of surface fat. It is thought that fat globules are ruptured 

during atomisation and are spread homogenously over the droplet surface, creating 

a thin film of fat. At lower fat concentrations (between 0-5%) small changes in bulk 

fat content of the powder can also cause significant increases in the fat content at 

the surface (Nijdam and Langrish, 2006). This may have implications on powder 

stickiness and caking ability, as a higher fat content at the surface can potentially 

create a more cohesive particle and promote the formation of weak bridges between 

particles (Nijdam and Langrish, 2006).  

Particle size can affect surface composition due to differences in droplet drying times, 

allowing more or less migration of certain milk components to the particle surface. 

For example, Foerster et al. (2016) reported that protein migration to the particle 

surface was more prominent in droplets with larger diameters. The authors 

suggested that this may be due to the surface activity of the protein and differences 

in diffusivity between the various milk components. In keeping with those 

observations, Table 2.3 shows that there was a significant difference (P ≤ 0.05) in the 

amount of protein at the surface between the largest and the smallest size fraction 

of SMP (47.6 ± 1.95% and 43.8 ± 0.49%, respectively). However, in a similar study 

investigating differences in surface composition of various size fractions of SMP, Kim 

et al. (2009) observed no significant effect of particle size on surface composition. It 

should be noted that the particle size range used in their study was very small (0-90 

µm) and therefore the differences in size may not have been large enough to show 

any significant change in surface composition. For DWP and WPP, no clear influence 

of particle size on surface composition was observed (Table 2.3). However, 

disproportionately high levels of crude protein were observed at the surface of WPP 

powders in comparison to DWP, especially when considering the protein contents of 
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the bulk powders (Table 2.2). This may indicate a greater diffusivity of nitrogenous 

compounds in WPP particles during drying. 

2.3.1.3. Particle morphology 

 

Scanning electron micrographs of the three original powders and their size fractions 

are shown in Fig. 2.1. For DWP and WPP, the semi-crystalline nature of the powders 

could be clearly seen, as they consisted of a mixture of sharp-edged lactose crystals 

and less regular/more globular amorphous powder particles. The non-crystalline 

particles in DWP appeared to be more spherical in shape compared to WPP. This may 

be due to the higher protein content of DWP, as protein formulation has been shown 

to influence particle morphology (Maa et al., 1997). The x < 75 µm fraction of WPP 

also appeared to be comprised of smaller particles compared to the equivalent size 

fraction of DWP and SMP (Fig. 2.1, Sections 5A-C), which could have implications for 

the flowability of the powder (Fu et al., 2012). SEM images of SMP showed that the 

powder consisted mostly of agglomerated particles, and that the degree of 

agglomeration decreased with decreasing particle size.  

The scanning electron micrographs from the two semi-crystalline powders also 

revealed differences in the types of lactose crystals present. In Fig. 2.1 (section B1) 

prism shaped crystals can be seen, whereas the crystals seen in Fig. 2.1 (section B3) 

had the characteristic tomahawk shape. Factors such as the level of supersaturation 

(Herrington, 1934; Parimaladevi and Srinivasan, 2014) and the impurities present 

(Garnier et al., 2002; Visser and Bennema, 1983) during crystallisation can affect the 

final lactose crystal shape. For example, Parimaladevi and Srinivasan (2014) showed 

that higher levels of supersaturation promoted the formation of prism shaped 

crystals, whereas Visser and Bennema (1983) concluded that tomahawk shaped 

crystals form as a result of the interference of β-lactose on the crystallisation process.  
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Figure 2.1 Scanning electron micrographs of (A) demineralised whey powder (DWP), 

(B) whey permeate powder (WPP) and (C) skim milk powder (SMP) and their size 

fractions; (1) original, (2) x > 250 µm, (3) 250 > x > 150 µm, (4) 150 > x > 75 µm and 

(5) x < 75 µm, at 500 X magnification. 
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Another distinguishing feature from the SEM micrographs is the presence of small 

particulates on the surface of the lactose crystals in both of the semi-crystalline 

powders. This is likely due to the foam of the mother liquor adhering to the crystal 

surface during spray drying. Similar particulates were also observed by Kalab et al. 

(1991) in DWP, who describe them as ‘lace–like ornamentations’ on the surface of 

the lactose crystals.  

2.3.1.4. Glass transition temperature 

 

Studies have shown that the Tg of a powder containing amorphous sugar is closely 

associated with the stickiness of that powder (Paterson et al., 2005), as the Tg 

signifies a decrease in surface viscosity and an increase in molecular mobility 

(Downton et al., 1982). The aw of the original powders varied slightly at 0.34, 0.27 

and 0.31 for the DWP, WPP and SMP, respectively (Table 2.4).  For the three powders 

studied, the Tg midpoint of the original powders decreased as the amorphous lactose 

content of the powders increased; this is in keeping with other studies in which 

amorphous lactose content has been shown to have the greatest influence on Tg 

(Jouppila and Roos, 1994a, Shrestha et al., 2007).   
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Table 2.4 Water activity (aw), glass transition temperature (Tg), sticking point 

temperature (T) and difference between sticking point temperature and glass 

transition temperature (T-Tg) for the original and fractionated demineralised whey 

powder (DWP), whey permeate powder (WPP) and skim milk powder (SMP), before 

and after surface fat removal.a  

 Size fraction  

 

(µm) 

Water 

activity     

(aw) 

Tg  

(midpoint) 

(°C) 

T 

 

(°C) 

T-Tg 

 

(°C) 

T-Tg 

(after washing) 

(°C) 

DWP Original 0.34  48.5 ± 0.03a 68.1 19.6 n.dd 

 x > 250 0.36  47.5 ± 0.13b 67.7 20.2 n.dd 

 250 > x > 150 0.34  48.8 ± 0.01a 68.5 19.7 n.dd 

 150 > x > 75 0.35  49.1 ± 0.01a 42.9 -6.24 104 

 

WPP 

 

 

 

 

SMP 

x < 75  

Original 

x > 250 

250 > x > 150 

150 > x > 75 

x < 75 

Original 

x > 250 

250 > x > 150 

150 > x > 75 

x < 75 

0.34  

0.27  

0.36  

0.29  

0.28  

0.28  

0.31 

  

0.30  

0.31  

0.31  

0.31  

48.6 ± 0.48a 

56.2 ± 1.26a 

50.0 ± 0.83b 

53.7 ± 0.05c 

54.1 ± 0.36c 

56.4 ± 0.30a 

37.7 ± 0.08a 

33.4 ± 0.21b 

39.3 ± 0.12c 

39.3 ± 0.93c 

38.2 ± 0.08ac 

n.d.b 

70.9 

58.2 

68.7 

62.5 

n.d.b 

58.3 

65.1 

60.6 

30.3 

n.d.b 

n.d.b 

14.7 

8.20 

15.0 

8.35 

n.d.b 

20.6 

31.7 

21.3 

-9.00 

n.d.b 

n.d.c 

n.d.d 

n.d.d 

n.d.d 

n.d.d 

n.d.d 

n.d.d 

n.d.d 

n.d.d 

27.8 

11.5 

a For each powder, different superscript letters within the same column represent a 

significant difference (P ≤ 0.05) 

b T-Tg could not be calculated as stickiness could not be determined (n.d.). 

c Not enough powder remaining to wash surface 

d Not analysed 
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2.3.2. Powder stickiness and hygroscopicity 

2.3.2.1. Stickiness of non-fractionated powders 

 

Stickiness curves were generated for each powder by plotting the RH against the dry 

bulb temperature at which the powder became sticky. The areas above and below 

the curves represent the ‘sticky’ and ‘non-sticky’ zones respectively. Fig. 2.2 shows 

the stickiness curves for the original DWP, WPP and SMP. For all three powders 

examined, as the dry bulb temperature increased, the RH at which the powder 

became sticky decreased. The susceptibility of the powders to sticking increased in 

the order DWP < WPP < SMP, with SMP exhibiting sticky behaviour at the lowest 

temperature/RH conditions. Similar results were found by Hogan et al. (2009), who 

compared the stickiness of various dairy powders, including DWP and SMP.  

 

 

Figure 2.2 Stickiness curves of the three original powders examined in the study; (■) 

demineralised whey powder (DWP), (   ) whey permeate powder (WPP) and (▲) skim 

milk powder (SMP). 
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Of the two semi-crystalline powders examined, WPP was found to be more 

susceptible to sticking than DWP, despite the fact that WPP had a higher Tg midpoint 

and would therefore be expected to have a higher sticking temperature. This may be 

explained by the higher protein content of DWP (11.4 ± 0.28%) compared to WPP 

(3.52 ± 0.05%); increasing the protein content of lactose-containing powders has 

been shown to significantly increase the T-Tg, and therefore protect against sticking 

(Hogan and O'Callaghan, 2010). This occurs due to the preferential sorption of water 

by the proteins, which reduces the amount of water available in the system and 

therefore reduces the rate of plasticisation of amorphous lactose (Hogan and 

O'Callaghan, 2010; Shrestha et al., 2007). This observation was supported by the T-

Tg values obtained in this study for WPP and DWP (Table 2.4). In relation to surface 

composition, WPP was found to have a higher percentage of crude protein at the 

surface compared to DWP. However, this crude protein value is misleading as it is not 

possible to differentiate between true protein and NPN using XPS. Based on the bulk 

composition of the powders, it is probable that a greater proportion of the crude 

protein at the WPP surface is NPN, which may not have had the same retarding effect 

as higher molecular weight components on Tg and stickiness (Roos and Karel, 1991c). 

2.3.2.2. Influence of particle size on stickiness 
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Figure 2.3 Stickiness curves showing  the (   ) original, (Χ) x > 250 µm, (▲) 250 > x > 

150 µm, (■) 150 > x > 75 µm fractions of the three powders examined; (a) 

demineralised whey powder (DWP), (b) whey permeate powder (WPP) and (c) skim 

milk powder (SMP). 

Fig. 2.3 demonstrates the relationship between particle size and stickiness. Smaller 

particles were more susceptible to sticking in all three powders tested. Stickiness is 

thought to be influenced by particle size as smaller particles have a higher specific 

surface area (SSA), which promotes interaction and formation of liquid bridges with 
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one another and/or equipment surfaces. Likewise, inter-particle distance in a given 

volume will also be affected, resulting in an increase in collision frequency for smaller 

particles. Another explanation for the increased stickiness observed for the smaller 

fractions of the semi-crystalline powders could be due to a higher amorphous lactose 

content, compared to the larger fractions (Hogan and O'Callaghan, 2010, Hogan et 

al., 2009). However, these results do not agree with the findings by Hogan et al. 

(2009) who did not observe any effect of particle size on the stickiness of two SMP 

fractions with D[4,3] values of 130 and 61 µm. The D[4,3] values of the 250 > x > 150 

and 150 > x > 75 µm fractions of SMP examined in this study were 124 and 83.2 µm, 

respectively. A possible explanation for this disparity may be the use of a vibrating 

element in the apparatus used by Hogan et al. (2009), which may have served to 

disrupt inter-particular cohesion in the smaller size fractions. It should also be noted 

that the stickiness behaviour of the smallest fraction (x < 75 µm) of each sample could 

not be determined due to excessive stickiness under ambient conditions (i.e., air 

channels developed instantly in the powder and no further fluidisation was 

observed).   

For both of the semi-crystalline powders there was no significant difference (P > 0.05) 

in the amount of lactose present at the surface across the various size fractions (Table 

2.3). However, as previously mentioned, the crystallinity of the lactose in the bulk of 

the semi-crystalline powders was found to be much higher in larger particles (Table 

2.2). While it is not possible to measure the crystallinity of the lactose at the particle 

surface, these results may suggest that there could be a higher proportion of 

amorphous lactose at the surface of smaller particles, which would likely have 

contributed to their sticking behaviour (Murti, 2006).  This may also explain the 

increased stickiness and lower T-Tg values (Table 2.4) observed for smaller size 

fractions of WPP and DWP. For SMP, slightly lower protein and higher lactose 

contents at the surface of the smaller particles may have accounted for increased 

stickiness; however, the surface compositional differences observed between 

fractions were not sufficient to explain the significant differences seen in Fig 2.3. For 

two of the size fractions (i.e., the 150 > x > 75 µm fractions of the DWP and SMP) the 
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T-Tg had a negative value (Table 2.4), indicating stickiness occurred prior to glass 

transition – an observation that contradicts many years of published literature. In 

light of these findings, further investigation was undertaken to determine if these 

observations were due to a) fluidisation issues or b) contribution of surface fat to 

stickiness. 

In order to investigate whether the results obtained for the x < 75 µm fraction were 

due to poor fluidisation characteristics of the powder, the minimum air velocity 

required to fluidise each powder fraction was determined by measuring the pressure 

drop across an 80 mL fluid bed using a powder flow rheometer. For all size fractions 

tested, the minimum air velocity required to fluidise powders in the rheometer (data 

not shown) was lower than that passing through the fluid beds (0.12 m s-1). These 

findings suggest that the poor fluidisation observed for the x < 75 µm samples in the 

stickiness apparatus was likely due to powder stickiness, which inhibited fluidisation 

due to cohesion between powder particles and/or adhesion of powder particles to 

the walls of the fluid bed. 

Although the amorphous lactose content is considered the predominant cause of 

stickiness in dairy powders, fat present at the particle surface has also been shown 

to contribute (Özkan et al., 2002). In order to investigate the contribution of surface 

fat to particle stickiness, a petroleum ether wash was used to remove the surface fat 

from the 150 < x < 75 µm fractions of all three powders and the x < 75 µm fraction of 

SMP. The stickiness behaviour of these fractions was then re-tested and the results 

are presented in Fig. 2.4. Both DWP and SMP showed significant improvements in 

stickiness behaviour for all size fractions after washing (i.e., higher temperature and 

RH conditions were required for the powders to become sticky). In particular, the 150 

< x < 75 µm fraction of DWP showed a very significant reduction in stickiness, which 

may be due to the higher amount of surface fat (26.2 ± 3.51%) removed, compared 

to the equivalent SMP fraction (11.0 ± 1.76%). The results for the x < 75 µm fraction 

of SMP are also particularly significant, as the stickiness of the previous sample 

containing surface fat could not be determined using the stickiness rig at all. It should 
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also be noted that the stickiness of WPP could not be re-tested due to extreme caking 

of the powder after washing. 

 

 

Figure 2.4 Stickiness curves showing the (   ) original, (■) 150 > x > 75 µm (before 

surface fat removal), (+) 150 > x > 75 µm (after surface fat removal) and (●) x < 75 

µm (after surface fat removal) fractions of (a) skim milk powder (SMP) and (b) 

demineralised whey powder (DWP). 
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Particle size and lactose crystallinity of the three powder fractions were re-tested 

after washing in order to determine whether any other changes in physicochemical 

properties of the powders might have affected the stickiness results. The results 

showed that although there was no change in particle size, the lactose crystallinity of 

each powder did increase slightly, most likely as a result of exposure to atmospheric 

conditions during the evaporation of petroleum ether. The 150 > x > 75 µm fraction 

of DWP had the greatest increase in crystallinity after washing, from 79.9 to 98.0%. 

The SMP fractions showed smaller increases in crystallinity, from 8.80 to 11.2% for 

the 150 > x > 75 µm fraction and 3.66 to 4.05% for the x < 75 µm fraction. The larger 

increase in lactose crystallinity observed in DWP is likely to have contributed to the 

considerable improvement in the stickiness behaviour of this powder fraction after 

washing. Overall, it is difficult to determine the individual influence of the fat removal 

and the change in lactose crystallinity on the stickiness behaviour of these powder 

fractions, but considering the magnitude of the change in stickiness behaviour, it is 

likely a combination of both of these factors. Furthermore, if the surface fat is 

contributing to stickiness, this, in combination with a higher SSA (and contact 

between small particles), may help explain the increased stickiness observed in the 

original x < 75 µm fractions.  

2.3.2.3. Hygroscopicity 

 

Hygroscopicity of the powders is shown in Table 2.5. Of the three powders examined, 

SMP was the most hygroscopic (7.62 ± 0.03 at 43% RH), classifiable as a ‘slightly 

hygroscopic powder’ (Table 2.5). The values obtained for SMP at 43% RH, are 

predominantly due to the amorphous lactose content (46.9%) of the powder 

(Listiohadi et al., 2005), in combination with a relatively high protein content (36.4 ± 

0.56%). The two semi-crystalline powders absorbed less moisture than SMP due to 

their higher crystalline lactose content (Bronlund and Paterson, 2004). Of these, WPP 

was more hygroscopic (3.74 ± 0.02 at 43% RH) than DWP (2.17 ± 0.00 at 43% RH), 

which may be due to its higher mineral content (Ibach and Kind, 2007; Shrestha et 

al., 2008).  
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Table 2.5 Hygroscopicity of the original and fractionated demineralised whey powder 

(DWP), whey permeate powder (WPP) and skim milk powder (SMP) at 43% relative 

humidity (RH). Classification of powder hygroscopicity at 43% relative humidity (RH) 

was modified from Schuck et al. (2012).a 

 Size fraction 

(µm) 

Hygroscopicity at 

43% RH 

Classification  

at 43% RHb 

DWP Original 2.71 ± 0.00a Non-hygroscopic 

 x > 250 2.00 ± 0.00b Non-hygroscopic 

 250 > x > 150 2.61 ± 0.07c Non-hygroscopic 

 150 > x > 75 2.94 ± 0.02d Non-hygroscopic 

 x < 75 5.00 ± 0.00e Slightly hygroscopic 

WPP Original 3.74 ± 0.02a Non-hygroscopic 

 x > 250 0.78 ± 0.01b Non-hygroscopic 

 250 > x > 150 3.22 ± 0.05c Non-hygroscopic 

 150 > x > 75 4.23 ± 0.02d Non-hygroscopic 

 x < 75 7.20 ± 0.03e Slightly hygroscopic 

SMP Original 7.62 ± 0.03a Slightly hygroscopic 

 x > 250  7.61 ± 0.02a Slightly hygroscopic 

 250 > x > 150 

150 > x > 75 

x < 75 

7.78 ± 0.01b 

7.60 ± 0.01a 

7.68 ± 0.03c 

Slightly hygroscopic 

Slightly hygroscopic 

Slightly hygroscopic 

a For each powder, different letters within the same column represent a significant 

difference (P ≤ 0.05).  

b Note: Non-hygroscopic powder:  ≤4.5; Slightly hygroscopic powder: 4.6-8.0; 

Hygroscopic powder: 8.1-11.0; Very hygroscopic powder: 11.1-14.5; Extremely 

hygroscopic powder: ≥14.5 

 

Particle size can also affect the hygroscopicity of a powder as moisture uptake occurs 

primarily on the particle surface. As such, smaller particle sizes have a relatively larger 

exchange surface for water absorption to occur, and vice versa. In the current study, 

powder hygroscopicity increased linearly with decreasing particle size for both DWP 
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and WPP (Table 2.5). Carpin et al. (2017a) observed similar water uptake in smaller 

size fractions of crystalline lactose powders. This water absorption is likely due to the 

increased amount of hygroscopic components, such as amorphous lactose, proteins 

and minerals, present in smaller fractions. However, the same pattern was not 

observed for the SMP sample, which showed very little variation in hygroscopicity 

across all size fractions (7.60 ± 0.01 – 7.78 ± 0.01 at 43% RH). These results suggest 

that the influence of particle size on powder hygroscopicity appears minimal, and 

that differences in hygroscopicity observed between size fractions of the same 

powder may be primarily due to differences in composition.  

 

2.4 Conclusions 

 

The results presented show that significant differences in composition, stickiness 

behaviour and hygroscopicity exist between the various size fractions of SMP, WPP 

and DWP. There was a clear distinction observed between powders – DWP and WPP 

were semi-crystalline powders consisting of mixtures of crystalline lactose and non-

crystalline particles, while SMP was composed of largely agglomerated, non-

crystalline particles. This distinction was a key determinant in both the fractionation 

and physicochemical behaviours of resultant powders. 

 Bulk composition of semi-crystalline powder fractions (DWP and WPP) was greatly 

affected by particle size; large size fractions were more crystalline compared to 

smaller fractions, which also had higher protein contents. Smaller size fractions 

exhibited greater tendency towards stickiness and hygroscopicity, leading to the 

conclusion that differences in bulk composition were the most significant 

contributory factor to the differences in physicochemical behaviour. In contrast, bulk 

composition did not vary across SMP size fractions.  

Hygroscopicity of all SMP size fractions was relatively constant, again suggesting that 

bulk composition was the major determinant for water absorption, rather than 

particle size. Stickiness behaviour of all three powders, however, was closely related 
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to size, with smaller size fractions exhibiting higher stickiness. It was suggested that 

this was due to a combination of increased particle surface area and fat coverage.  

Overall, this study shows that significant differences exist in stickiness and 

hygroscopic properties of dairy powders as a function of both composition and 

particle size. The increased susceptibility of fine particles to stickiness/hygroscopicity 

is particularly interesting and should be better incorporated into spray drying 

operational procedures.  
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Abstract 

 

There are a wide variety of methods currently available to characterise the stickiness 

behaviour of dairy powders, such as those that directly measure changes in particle 

cohesion/adhesion when subjected to higher temperatures and humidities, or the 

indirect approaches that track changes in a specific property of the material, such as 

the heat capacity or viscoelasticity. In the current study, the mechanical α-relaxation 

results for a selection of model whey protein concentrate (WPC) powders with 

varying protein contents were compared to methods for stickiness and glass 

transition determination. The α-relaxation temperatures (Ta) were derived from both 

the storage and loss moduli using dynamic mechanical analysis (DMA). The glass 

transition temperatures (Tg) of the WPC powders were determined using differential 

scanning calorimetry (DSC), and the stickiness behaviour was characterised using a 

fluidisation technique. For the lower protein powders (~19.3% and 35.7% protein 

w/w), the mechanical α-relaxation temperatures, determined from the storage 

modulus of the DMA (Ta onset), were in good agreement with the fluidisation results, 

whereas for higher protein powders (~53.4 and 69.1% protein w/w), the fluidisation 

results compared better to the results determined from the loss moduli of the DMA 

(Ta peak). The temperature difference between the sticking temperature and glass 

transition temperature (T-Tg) was found to be dependent on the point on the curves 

from which the T-Tg was determined, as well as the measuring technique used. This 

study demonstrates that DMA is a useful technique to complement stickiness 

characterisation of dairy powders. In particular, the data generated by DMA in 

relation to storage and loss modulus changes show promise as a means of attaining 

increased understanding of the mechanism of stickiness.  
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3.1 Introduction 

 

Stickiness of powders is a major challenge encountered by dairy processors, 

especially during the spray drying of products with high lactose contents, as it leads 

to lower powder yields and inferior powder quality. Stickiness in lactose-containing 

powders occurs predominantly due to the glass transition phenomenon, in which a 

phase change occurs in the amorphous material on exposure to high temperature 

and/or relative humidity (RH) conditions. This lowers the viscosity of the powder 

particle surface, allowing liquid bridges to form between particles, resulting in 

cohesion between particles and/or adhesion to equipment surfaces. A considerable 

amount of work has been performed developing stickiness characterisation 

techniques that can estimate the temperature and RH conditions at which individual 

dairy powders will become sticky (Boonyai et al., 2002; Chuy and Labuza, 1994; 

Hogan et al., 2009; Özkan et al., 2002; Paterson et al., 2001; Silalai and Roos, 2011b; 

Zuo et al., 2007,). This information has become useful to dairy processors at helping 

to minimise challenges during spray drying, allowing for the alteration of drying 

parameters to ensure that temperature and RH conditions within dryers are such 

that powder stickiness is avoided. Furthermore, these methods are also beneficial to 

dairy scientists to allow them to gain a deeper understanding of the wide variety of 

factors affecting the stickiness behaviour of dairy powders. 

There are a wide variety of methods available to determine the stickiness behaviour 

of dairy powders, which can be classified as either direct or indirect techniques. 

Direct methods are perhaps the most accurate, as they measure the changes in a 

property of the powder, such as the viscosity or resistance to shear. One of the 

original direct stickiness measurement techniques is a propeller-driven device first 

created by Lazar et al. (1956) for use on tomato powder, in which the force required 

to move a stirrer in a bed of powder was measured. This method was later modified 

and used for stickiness characterisation of dairy powders by Chuy and Labuza (1994), 

Hennigs et al. (2001) and Özkan et al. (2002). However, as this method is performed 

under static conditions, the results are likely to be more representative of the 

interactions that occur during storage of powders, due to the increased inter-particle 



Chapter 3 
 
 

81 
 

surface contact (Hogan et al., 2009). In contrast, pneumatic methods, in which the 

particles come into direct contact with an air stream of increasing/alternating RH, 

may be considered to be more accurate, as they most closely simulate the conditions 

that occur during spray drying. Examples of pneumatic methods that have been used 

to characterise the stickiness behaviour of dairy powders include; the fluidisation rigs 

used by Hogan et al. (2009) and Murti et al. (2010), the blow test method developed 

by Brooks (2000) and Paterson et al. (2001), the cyclone stickiness test first reported 

by Boonyai et al. (2002), and the particle gun created by Zuo et al. (2007). However, 

the stickiness curves generated from these methods can also differ due to differences 

in air velocities (Murti et al., 2010), particle trajectories and contact times between 

particles and the air stream. 

One indirect approach that has been well established and commonly used to 

estimate stickiness development in dairy powders is the determination of glass 

transition temperature (Tg). The Tg can be defined as the temperature at which the 

glass transition takes place, and is normally determined either by measurement or 

estimation using mathematical modelling, such as the Couchman-Karasz equation 

(Couchman and Karasz, 1978); the measurement approach is considered more 

precise, as it allows tracking of changes that occur in a specific property of the 

material during the phase change. For example, differential scanning calorimetry 

(DSC) measures the changes that occur in specific heat capacity of the sample during 

the glass transition, and has been widely used to determine the Tg of dairy powders 

(Chuy and Labuza, 1994; Haque and Roos, 2004a; Haque and Roos, 2004b; Jouppila 

and Roos, 1994a; Maidannyk and Roos, 2017; O'Donoghue et al., 2019; Ozmen and 

Langrish, 2002; Silalai and Roos, 2010; Silalai and Roos, 2011b). It should be noted 

that while the glass transition determination is not a stickiness test method, a 

relationship does exist between the Tg and sticking point temperature (SPT), which 

can be used to roughly estimate the sticking temperature. One of the first studies to 

compare the Tg to the SPT, which was determined using the method by Lazar et al. 

(1956), reported that the SPT was approximately 10-15°C higher than the Tg onset 

(Roos and Karel, 1991b). However, the extent to which the temperature must exceed 
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the Tg in order for sticking to occur is not consistent, even for the same powder, as it 

depends on a wide variety of factors, such as the powder composition (Hogan et al., 

2009), exposure time (Karel et al., 1994) and the methods used to determine both 

the SPT and Tg (Boonyai et al., 2004). This is evident in the range of T-Tg values that 

have been reported for skim milk powder (SMP); 20.6°C (O’Donoghue et al., 2019), 

29°C (Hogan et al., 2009), 33.6°C (Murti et al., 2009), 14-22°C (Ozmen and Langrish, 

2002) and 23.3°C (Hennigs et al., 2001). The determination of Tg alone is therefore 

not an accurate method for stickiness characterisation, as although there is a 

correlation between the SPT and Tg, it is difficult to predict the precise temperature 

above the Tg that sticking will occur (Boonyai et al., 2004). Hence, further research is 

required in order to develop an empirical relationship for predicating SPT, using Tg.  

Another indirect method that has recently been related to the stickiness 

phenomenon is dynamic mechanical analysis (DMA), also referred to as dynamic 

mechanical thermal analysis (DMTA), which has been used in many studies to 

determine mechanical α-relaxations of amorphous food materials (Fan and Roos, 

2016; Fan and Roos, 2017; Silalai and Roos, 2011a; Silalai and Roos, 2011b). 

Mechanical α-relaxations describe the changes in the physical state of the material 

around the glass transition and could therefore also be good indications of the 

changes in viscosity that occur during stickiness development. Furthermore, as DMA 

is a highly sensitive method, it may provide an opportunity to develop a greater 

understanding of the mechanisms of stickiness development (i.e., changes in 

viscoelastic behaviour) when the results are compared to other binary (i.e., 

sticky/non-sticky) methods. The DMA method involves subjecting the sample to a 

sinusoidal force and measuring the amount of energy stored (storage modulus) and 

lost (loss modulus) from the sample. During the glass transition, as the material 

‘relaxes’ from an amorphous into a crystalline state, there will be a sudden decrease 

in the storage modulus (Eʹ) and a corresponding increase in the loss modulus (Eʺ). 

Silalai and Roos (2011b) compared the results obtained from DMA to a sticky point 

tester, modified from the design by Lazar et al. (1956), and found that the α-

relaxation temperatures (calculated from the peak of the loss modulus) were good 
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indicators for stickiness development for SMP/maltodextrin mixes. However, the 

sticky point tester used in that study is a viscometry-based technique, which may not 

produce the most accurate stickiness characterisation results compared to 

pneumatic techniques. Furthermore, the SMP/maltodextrin powders examined in 

this study are also not representative of the wide range of dairy powders currently 

on the market. For example, the primary carbohydrate in the majority of the powders 

was maltodextrin (rather than lactose) and the highest protein content powder 

examined in that study was that of the original SMP (~35% w/w).  

The objective of the current study is to compare the α-relaxation temperatures (Ta) 

derived from the storage and loss moduli using DMA to methods commonly used to 

measure phase transitions (DSC) and stickiness behaviour (fluidisation) for a selection 

of whey protein concentrate (WPC) powders. When compared to the fluidisation 

method, DMA may also provide an opportunity to gain a greater understanding of 

the mechanical changes occurring during stickiness development.  

  

3.2 Materials and methods 

3.2.1 Materials 

 

Whey protein concentrate (WPC) 80 powder and whey permeate powder (WPP) 

were supplied by local dairy companies. Model WPC powders were produced for this 

purpose of this study by mixing the WPC 80 and WPP and reconstituting with water 

at different proportions to produce WPCs with target protein contents of 20, 35, 50 

and 65% (w/w). These WPC80/permeate solutions were then spray dried using an 

Anhydro three-stage drier with fines return to the top of the drier (SPX Flow 

Technology, Soeborg, Denmark), using a two-fluid nozzle atomiser. Solid contents of 

the concentrates were 42, 40, 36 and 32% for the WPC 20, 35, 50 and 65, 

respectively. All powders were dried using inlet and outlet temperatures of 180 and 

80°C, respectively, and the final stage of drying was completed in an external fluid 

bed at 60°C. The WPC powders were then stored in foil bags at 16°C prior to analysis. 

All analysis was carried out within 6 months of manufacture.   
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3.2.2 Powder composition 

 

Protein content was determined using a LECO Nitrogen Analyser FP-638 (LECO 

Corporation, Michigan, USA), using a nitrogen-to-protein conversion factor of 6.38. 

Fat content was determined by Röse-Gottlieb (IDF, 1987). Ash content was analysed 

after overnight incineration in a muffle furnace at 550°C. Free moisture was 

determined after drying in an oven at 86°C for 6 h. Lactose content was calculated by 

difference. Particle size was measured by laser light scattering using a Mastersizer 

3000 (Malvern Instruments Ltd., UK), equipped with an Aero S dry powder dispersion 

unit. 

3.2.3 Stickiness by fluidisation 

 

In the current study, a fluidisation technique, previously described by Hogan et al. 

(2009), was used to determine the sticking point temperature (SPT) (Tf) of each 

powder. Stickiness curves were generated for each sample by plotting the air (dry 

bulb) temperature against the relative humidity (RH) (calculated from the saturated 

air temperature and absolute humidity) at which fluidisation ceased.  

3.2.4 Powder equilibration 

 

Powder samples (2 g) were transferred into glass vials and dried overnight in a 

vacuum oven (Jeio Tech 665L Vacuum Oven OV-12, Fisher Scientific, Leicestershire, 

UK) at 45°C. The dried samples were equilibrated in evacuated desiccators over 

saturated salt solutions of LiCl, CH3COOK, MgCl2 and K2CO3 (Sigma Chemical Co., St. 

Louis, Mo., USA), with corresponding relative water vapour pressures (RVPs) of 11.4, 

23.1, 33.2 and 44.1%, respectively, at room temperature (23-24°C) for 14 d.  

3.2.5 Differential scanning calorimetry 

 

A differential scanning calorimeter (DSC Q2000; TA Instruments, Crawley, UK) was 

used to determine the glass transition temperatures (Tg) of the equilibrated powders, 

as described by Murphy et al. (2015). Hermetically sealed DSC aluminium pans, 

containing ~16 mg of powder, were heated in a nitrogen purged environment using 
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an empty aluminium pan as a reference. The samples were subjected to the following 

thermal profile; heating from approximately 40°C below to 40°C above the Tg at 5°C 

min-1, cooling back to 50°C below the Tg at 10°C min-1, and finally heating at 5°C min-

1 to an end temperature of 50°C above the Tg. The Tg onset values were determined 

from the second heating cycle using the TA Universal Analysis software. All analyses 

were completed in duplicate. T-Tg values were calculated by extracting the equation 

of the lines for the stickiness and glass transition curves and subtracting the y values 

at a given RH (x value).  

3.2.6 Dynamic mechanical analysis 

 

A dynamic mechanical analyser (DMA Q800, TA Instruments, New Castle, UK) with 

35 mm dual cantilever clamp was used to determine the α-relaxation temperature 

(Ta) of the equilibrated powders. Approximately 400 mg of equilibrated powder was 

loaded into a stainless steel powder sample tray and the surface of the powder bed 

was levelled off and covered with a stainless steel lid. The powder sample tray and 

lid were then inserted into the clamp and tightened using a screw driver with a set 

torque (level 8). The analyses were carried out dynamically at a heating rate of 

2°C/min, from approximately 50°C below the onset temperature of the decrease in 

storage modulus to 50°C above the onset temperature at frequencies of 1.0, 5.0, 

10.0, and 20.0 Hz. However, it was found that there was no significant difference in 

the temperature at which the storage modulus decreased at frequencies greater 

than 10.0 Hz. Therefore, all the Ta values were determined at 10 Hz. Ta was 

determined from the onset in the decrease in the storage modulus (Ta onset), and 

the peak of the loss modulus (Ta peak), using the TA Universal Analysis software. A 

liquid nitrogen tank (50 L; CFL-50, Cryofab Inc, Kenilworth, USA) was connected to 

the dynamic mechanical analyser for cooling below room temperature. The Ta of 

each powder with various RVPs was measured in duplicate. Prior to sample analysis, 

the dynamic mechanical analyser was regularly calibrated using a stainless steel bar. 
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3.3 Results  

 

3.3.1 Relationship between powder composition and glass transition temperature 

 

The composition and particle size of each powder is reported in Table 3.1. Protein 

contents for the WPC 20, 35, 50 and 65 were 19.3, 35.7, 53.4 and 69.1 (% w/w), 

respectively. Particle size has been shown to affect the stickiness behaviour of dairy 

powders (O’Donoghue et al., 2019); however, in the present study, there was very 

little difference in particle size between the four powders (D[4,3] values of 106 – 118 

µm), therefore it is unlikely to be a contributing factor in their stickiness behaviour.  

The Tg onset of the WPC powders are reported in Table 3.2. As expected, all four 

powders showed a decrease in Tg onset with increasing water activity (aw) (Haque 

and Roos, 2004a; Jouppila and Roos, 1994a; Ozmen and Langrish, 2002; Shrestha et 

al., 2007; Silalai and Roos, 2010,). This is due to the plasticising effect of water on the 

amorphous material, which increased the molecular mobility of the system, 

Table 3.1 Composition of whey protein concentrate (WPC) powders with protein 

contents ranging from ~20 (WPC 20) to ~65% (WPC 65). 

 a Calculated by difference 

b D[4,3] = volume mean diameter  

 

Sample Protein 

(% w/w) 

Fat 

(% w/w) 

Lactosea 

(% w/w) 

Ash 

(% w/w) 

Free moisture 

(% w/w) 

Particle size 

D[4,3]b (µm) 

WPC 20 19.3 ± 0.02 1.31 ± 0.04 66.2 7.34 ± 0.01 5.90 ± 0.01 106 

WPC 35 35.7 ± 0.20 3.19 ± 0.06 48.6 6.36 ± 0.00 6.11 ± 0.08 118 

WPC 50 53.4 ± 0.15 4.15 ± 0.02 32.8 5.59 ± 0.24 4.07 ± 0.14 118 

WPC 65 69.1 ± 0.38 5.33 ± 0.03 17.5 4.23 ± 0.00 3.90 ± 0.05 115 
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resulting in a decrease in Tg (Roos and Karel, 1991a). Studies have shown that the 

amorphous lactose content is the main determinant of the Tg in dairy powders 

(Shrestha et al., 2007; Silalai and Roos, 2010). In the current study, the Tg onset was 

also found to decrease with increasing lactose content. This trend was more 

pronounced in samples with aw ≥ 0.33. This may be due to the increased moisture 

availability in higher aw samples, resulting in increased water plasticisation of the 

amorphous lactose. 

3.3.2 Powder fluidisation analysis 

 

 Stickiness curves for each powder were generated using the fluidisation approach 

by plotting the dry bulb temperature against the RH at which sticking occurred (Fig. 

3.1). The area above the stickiness curve represents the temperature and RH 

conditions where problems with stickiness are likely to occur, whereas the area 

below the curve represents the conditions considered safe during spray drying. For 

all four powders examined, as the dry bulb temperature increased, the RH at which 

the powder became sticky decreased. The susceptibility of the powders to sticking 

decreased in the order WPC 20 > WPC 35 > WPC 50 > WPC 65, with WPC 65 

demonstrating the least sticky behaviour. This was expected, as the stickiness of  

 

Table 3.2 Onset temperatures for glass transition (Tg) of whey protein concentrate 

(WPC) powders with protein contents ranging from ~20 (WPC 20) to ~65% (WPC 65), 

stored at different water activities (aw). 

Sample 0.11 aw 0.23 aw  0.33 aw 0.44 aw 

WPC 20 63.2 ± 0.56 50.6 ± 0.00 37.1 ± 0.25 18.6 ± 0.07 

WPC 35 62.2 ± 0.01 49.9 ± 0.17 40.9 ± 0.60 21.6 ± 0.01 

WPC 50 64.4 ± 0.13 47.6 ± 0.30 44.8 ± 0.26 33.7 ± 0.42 

WPC 65 67.8 ± 0.23 52.4 ± 0.10 47.3 ± 0.23 42.7 ± 0.03 
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Figure 3.1 Stickiness curves for whey protein concentrate (WPC) powders; (   ) WPC 

20, (■) WPC 35, (▲) WPC 50 and (X) WPC 65, determined using the fluidisation 

technique. 

dairy powders has been shown to decrease with increasing protein content (Hogan 

and O’Callaghan, 2010; Silalai and Roos, 2010). There is limited information available 

on the stickiness characterisation of WPC powders; however, the SPT results 

obtained for the WPC 35 powder are similar to those reported by O’Donoghue et al. 

(2019), for SMP using the same fluidisation method. 

3.3.3 Dynamic mechanical analysis 

 

Fig. 3.2 shows the mechanical α-relaxations for the WPC 65 over a range of aw (0.11-

0.44). As expected, significant changes occurred in the molecular mobility of the 

powder with increasing temperature. The magnitude of these changes, especially for 

the loss moduli (Fig. 3.2, b), were found to increase with increasing aw, and this 

general trend was evident in all powders examined. The increased magnitude of the 

changes with increasing aw is a result of the plasticizing effect of water, which 

increases the molecular mobility of the system (Silalai and Roos, 2011b). This causes 

a decrease in the viscosity of the particle surface, leading to the onset of sticking 

(Downton et al., 1982).  

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Te
m

p
er

at
u

re
 (
°C

)

Relative humidity (%)



Chapter 3 
 
 

89 
 

 

 

Figure 3.2 Storage (b) and loss (b) moduli of whey protein concentrate (WPC) 65 

powder at selected water activites (aw) of 0.11 (    ), 0.23 (      ), 0.33 (           ), and 

0.44 (       ). 

In the current study, the magnitude of the changes in the α-relaxations was also 

found to be dependent on powder composition (Fig 3.3). The higher the protein 
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content of the powder, the smaller the magnitude of the change in the moduli (Fig 

3.3). Many studies (Fan and Roos, 2016; Maidannyk and Roos, 2017; Silalai and Roos, 

2011b) also observed that increasing the protein content of dairy systems led to 

smaller temperature induced changes in the magnitude of the moduli, when 

measured using DMA. This suggests an increase in the stiffness of these samples, 

which is likely due to the higher molecular weight of proteins, compared to lactose. 

In the present study, similarly to the effect of aw, this trend was more pronounced in 

the loss moduli compared to the storage moduli. As the storage modulus is a measure 

of the elasticity/stiffness of a material (Menard, 2002), it is likely that changes in the 

stiffness of the sample are more subtle compared to the loss modulus, which 

indicates changes in viscosity. 
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Figure 3.3 Storage (b) and loss (b) moduli of various whey protein concentrate (WPC) 

powders; WPC 20 (     ), WPC 35 (      ), WPC 50 (           ), and WPC 65 (       ), at a water 

activity (aw) of 0.23. 

The DMA profiles or ‘curves’, generated from the α-relaxation temperatures of the 

storage and loss moduli, are presented in Fig 3.4. The α-relaxation temperatures used 

to generate the curves were (a) Ta onset – determined from the onset of the decrease 

in the storage modulus, and (b) Ta peak – determined from the peak of the loss 

modulus. All analysis was carried out at the same frequency (10 Hz), as the α-

relaxation temperature has been shown to be frequency dependent (Silalai and Roos, 

2011a; Silalai and Roos, 2011b; Kalichevsky et al., 1992). Fig. 3.4 shows that Ta onset 

values were consistently lower than Ta peak values for all powders, as expected 

(Kalichevsky et al., 1992; Rahman et al., 2007). For the WPC 20 and 35 powders, the 

Ta onset and Ta peak results were in good agreement, with average ∆T values across 

the four water activities of 8.26 ± 2.27 and 6.42 ± 1.29°C for WPC 20 and 35, 

respectively. The Ta peak data obtained for the WPC 35 also compare well to Ta peak 

values (i.e., X⁰ vs Y⁰ at Z aw) reported by Silalai and Roos (2011a) for SMP at the same 

frequency (10 Hz). The average ∆T between the Ta onset and Ta peak values for the 

WPC 50 was slightly greater at 12.2 ± 9.85°C; however, ∆T at high aw was much more 
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pronounced (~20°C), as can be seen in Fig. 3.4 (c). For WPC 65, the average ∆T was 

the greatest of all the powders at 21.8 ± 3.09°C. Studies comparing the α-relaxation 

temperatures determined from the storage and loss moduli of DMA  method 

reported a difference of ~20°C (Kalichevsky et al., 1992) and ~17°C (Rahman et al., 

2007) between the Ta onset and Ta peak values for samples of amylopectin and 

spaghetti, respectively. 
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Figure 3.4 Α-relaxation curves determined from the Ta onset (  ) and the Ta peak (■) 

values of the dynamic mechanical analysis (DMA) method for whey protein 

concentrate (WPC) powders; (a) WPC 20, (b) WPC 35, (c) WPC 50 and (d) WPC 65. 
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Similar to the stickiness results obtained from the fluidisation method, Ta onset was 

found to decrease with increasing aw for both moduli (Fig 3.4). Silalai and Roos 

(2011a) and Maidannyk and Roos (2017) also observed a similar effect of aw on Ta 

peak for selected dairy powders using DMA. However, unlike the fluidisation results, 

there was no clear influence of protein/lactose content on the Ta values of the WPC 

powders from the results determined from either modulus across the range of water 

activities. In contrast, other studies (Fan and Roos, 2016; Maidannyk and Roos, 2017; 

Silalai and Roos, 2011a) have generally found that the presence of protein increased 

the Ta peak values of dairy powders.  

3.3.4 Comparison of α-relaxation, stickiness and glass transition curves 

 

The Ta values determined from the storage and loss moduli of the DMA method were 

compared to the stickiness curves (obtained using the fluidisation method) and the 

glass transition curves (Fig. 3.5). For the lower protein powders (WPC 20 and 35), the 

Ta onset results were closer to those generated using the fluidisation method, 

compared to the Ta peak results. Furthermore, for these powders, the stickiness 

curves generated using the fluidisation method and the storage moduli (Ta onset) of 

DMA were almost identical (Fig. 3.5 a,b). In contrast, for the higher protein powders 

(WPC 50 and 65), the Ta peak results were closer to the fluidisation results. Fig. 3.5 

also demonstrates that as the protein content of the powder increased (i.e., lactose 

content decreased), the Ta onset curve moved away from the fluidisation curve and 

closer to the glass transition curve. Furthermore, for the WPC 65 powder, the Ta 

onset results of DMA and the glass transition curve were almost indistinguishable. 

This would suggest that, for powders with higher protein contents, the Ta onset 

values obtained from the DMA method may be more representative of the changes 

occurring during the glass transition, rather than stickiness development.  
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Figure 3.5 Stickiness curve for the fluidisation technique (   ) and α-relaxation 

profiles for the storage (■) and loss (X) modulus of the dynamic mechanical analysis 

(DMA) method, and the glass transition curve (▲) for the whey protein concentrate 

(WPC) powders; (a) WPC 20, (b) WPC 35, (c) WPC 50 and (d) WPC 65. 
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It has been reported that the mechanical α-relaxation behaviour, measured using 

DMA, follows the mobility of the lactose in the milk protein matrix (Silalai and Roos, 

2011b). For the current study, considering that protein and lactose exist in separate 

phases in dairy solid systems, it is likely that the higher protein content of the WPC 

65 retarded the movement of the lactose, consequently affecting the structural 

relaxations. Fan and Roos (2016) found a similar effect of protein on the enthalpy 

relaxations measured by DSC in lactose/protein mixes. The authors concluded that 

the presence of protein could affect the enthalpy relaxation results by physically 

blocking the movement of the lactose. It may therefore be the case that for 

samples with higher protein contents, the stiffness of the sample is so great that 

the storage modulus determined using DMA and DSC are measuring the same 

structural relaxation changes. Furthermore, it should also be noted that the DMA 

method has been frequently used for determination of glass transition (Bengoechea 

et al., 2007; Hallberg and Chinachoti, 1992; Kalichevsky et al., 1992; Kararli et al., 

1990; Menard, 2002; Rahman et al., 2007; Siebenmorgen et al., 2004); however, 

the value reported as the Tg can vary between the onset in the drop of the storage 

modulus, the peak of the loss modulus, or the onset or peak of the tan  𝛿 curve 

(Menard, 2002).   

As previously mentioned, in a study by Silalai and Roos (2011b), the authors 

compared the results from DMA to the stickiness method modified from the design 

by Lazar et al. (1956) and concluded that the DMA method was a good indication of 

stickiness in SMP/maltodextrin mixtures. However, the method developed by Lazar 

et al. (1956) is a propeller-driven, viscometry technique, and like the DMA method, 

is performed under relatively static conditions.  In contrast, the fluidisation rig used 

in the current study is a pneumatic technique performed under dynamic conditions. 

These two types of methods (static vs. dynamic) therefore measure particle 

interactions under very different conditions. Firstly, static techniques often involve 

the humidification of powders in desiccators until a desired water activity is reached, 

which may take days, or even weeks, to complete. Furthermore, the viscometer-

based technique requires an additional 20-30 min of pre-conditioning before testing 
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in order for the sample to equilibrate to the desired temperature (Silalai and Roos, 

2010). This may lead to physical changes within certain components of the powder, 

especially at higher water activities, e.g., water migration and lactose crystallisation. 

In contrast, the powder in the fluidisation apparatus undergoes a very short 

conditioning time of several seconds, as the powder comes in contact with the 

fluidising air. The particle interactions for both methods are also very different. The 

powder in the viscometer-based technique is in the form of a bed, where particle 

interactions would be high due to the close contact. However, in the fluidisation 

method, the particles are suspended in a stream of air and would therefore come 

into contact less frequently, compared to the viscometer technique. Therefore, it is 

quite likely that these two types of methods would produce different stickiness 

results. An example of this can be seen in the study by Murti et al. (2010), in which 

the authors found a 10-15°C difference in the SPTs of the same powder when 

measured using a fluid bed and a particle gun. Although these are both pneumatic 

methods, the air velocities and particle trajectories vary greatly between the two 

methods. Similarly, in the current study, the SPT/Ta reported for the WPC 65 powder 

at an aw of approximately 0.33 were very different at 70°C and 45°C, for the 

fluidisation and DMA (Ta onset) method, respectively. 

3.3.5 Comparison of T-Tg results from different measurement techniques 

  

As previously mentioned, the temperature at which sticking occurred in dried 

amorphous carbohydrate solutions was reported to be approximately 10-15°C above 

the Tg (Roos and Karel, 1991b). The T-Tg therefore represents the temperature 

increment above the Tg at which the decrease in surface viscosity has become 

sufficient in order for sticking to occur. Many studies have demonstrated that the T-

Tg for dairy powders depends on factors such as the powder composition (Hogan et 

al., 2009) and measurement techniques used (Boonyai et al., 2004). The current 

study therefore provides an opportunity to compare the various T-Tg values obtained 

for the same powders using different measurement techniques (DMA and 

fluidisation). 
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Table 3.3 Difference between temperature (Tf or Ta) and glass transition temperature 

(Tg), determined for whey protein concentrate (WPC) powders with protein contents 

ranging from ~20 (WPC 20) to ~65% (WPC 65), at the midpoint of the curve and at 

15% relative humidity (RH) using the fluidisation or dynamic mechanical analysis 

(DMA) approach. 

Method Sample T-Tg at mid pt 

(°C) 

T-Tg at 15% RH 

(°C) 

Fluidisation WPC 20 18.1 13.2 

 WPC 35 23.1 19.9 

 WPC 50 22.7 29.5 

 WPC 65 18.0 28.4 

DMA (storage) WPC 20 18.3 18.1 

 WPC 35 21.5 21.1 

 WPC 50 15.1 19.5 

 WPC 65 -1.14 -2.35 

DMA (loss) WPC 20 26.6 28.1 

 WPC 35 27.9 28.4 

 WPC 50 27.1 22.7 

 WPC 65 20.6 17.7 

 

 The T-Tg values for the fluidisation and DMA method (Ta onset and Ta peak) at 

selected points along the stickiness/α-relaxation curves are provided in Table 3.3. 

The T-Tg values were determined at two points along the curves for comparison; 

firstly at the midpoint (x value) of the stickiness/α-relaxation curves, and secondly at 

15% RH. This RH was chosen as it was considered representative of industrial spray 

drying conditions (Schuck et al., 2008). Tf-Tg results for the DSC and fluidisation 
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method, using the midpoint of the stickiness curves, ranged from 18.0-23.2°C across 

the four water activities, but did not display any obvious trend. In contrast, the Tf-Tg 

values determined at 15% RH show a general trend of increasing T-Tg with increasing 

protein content, with the exception of the WPC 65 (Table 3.3). In a study by Hogan 

and O'Callaghan (2010), the authors reported that T-Tg (determined from the 

midpoint of the stickiness curves) increased with increasing protein content for 

selected dairy powders. This is likely due to the preferential sorption of water by the 

proteins, which delays the rate at which the glass transition occurs, therefore 

delaying the development of stickiness (Hogan and O'Callaghan, 2010). It should also 

be noted that in the study by Hogan and O'Callaghan (2010), the authors used the 

Couchman-Karasz equation to predict the Tg values, which may present a possible 

reason for the discrepancies in the results between the two studies. Although limited 

information has been reported on T-Tg values for WPC powders, the Tf-Tg values 

obtained for the WPC 35 sample (23.1 and 19.9°C for the midpoint and 15% RH, 

respectively), are in good agreement with T-Tg values reported for SMP of 20.6°C and 

23.3°C by O’Donoghue et al. (2019) and Hennigs et al. (2001), respectively. 

The Ta-Tg results from DSC and the storage modulus of DMA (Ta onset), at both the 

midpoint and at 15% RH, show an overall decrease in T-Tg with increasing protein 

content for WPC powders, with the exception of the WPC 20. However, other studies 

have reported that the T-Tg of dairy powders increased with increasing protein 

content (Hogan and O'Callaghan, 2010; Silalai and Roos, 2010). Nevertheless, for the 

lower protein powders, the Ta-Tg values determined from the storage modulus are in 

good agreement with the Tf-Tg results found from the fluidisation method in the 

current study (Table 3). However, for the higher protein powders, the Ta-Tg values 

determined from the storage modulus are considerably lower than the Tf-Tg 

fluidisation results. Furthermore, as seen in Fig 3.5 (d), the α-relaxation curve 

generated from the storage modulus of DMA intersects the glass transition curve for 

the WPC 65 powder at an aw of ~0.40. Therefore, in the current study, negative T-Tg 

values were observed for WPC 65 at aw ≤ 0.40 (Table 3), i.e., the reported α-relaxation 

temperatures (Ta onset) occurred below the Tg. Many studies (Hogan and 
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O'Callaghan, 2010; Hogan et al., 2009; Ozmen and Langrish, 2002) have shown that 

the stickiness curve typically tracks the glass transition curve for dairy powders, an 

observation which is also evident in the current study for the fluidisation and glass 

transition curves of all four powders (Fig 3.5). However, in the case of the DMA (Ta 

onset) curve of the WPC 65 powder, the intersection with the glass transition curve 

is likely due to the fact that the DMA appears to also be measuring the same 

structural transition as the DSC.   

In the study by Silalai and Roos (2011a), the authors compared stickiness results to 

the α-relaxation results from the loss modulus (Ta peak). In the present study, the Ta-

Tg values calculated from the peaks of the loss moduli range from 20.6-27.9°C and 

17.7-28.4°C for the four WPC powders at the midpoint and 15% RH, respectively. 

Maidannyk and Roos (2017) reported similar Ta-Tg results of ~20-30°C for a variety of 

humidified WPI/lactose powders measured using DMA (Ta peak) and DSC. Similarly, 

Bengoechea et al. (2007) reported Ta-Tg values in the range of ~25-40°C when 

comparing the Ta peak values from DMA to the Tg values measured by DSC for 

samples of casein and soy protein isolate (SPI). In the present study, the Ta-Tg results 

obtained from the loss modulus (Ta peak) were consistently higher than the 

equivalent results for the storage modulus (Ta onset) (Table 3.3). While the T-Tg 

results for the lower protein powders were higher than those reported for the 

fluidisation technique, the T-Tg values found for the loss modulus are more 

representative of the fluidisation results for the higher protein powders. Overall, 

these T-Tg results suggest that for powders with protein contents less than 

approximately 45% w/w, the results obtained from the Ta onset values of the DMA 

method compare well to the T-Tg obtained from the fluidisation technique, and those 

reported in the literature. However, for higher protein powders, the T-Tg results 

determined from the Ta peak values of the DMA method may be more representative 

of the fluidisation results. 
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3.4 Conclusions 

 

DMA was shown to be an interesting complementary technique to other commonly 

applied methods for measurement of phase transitions (Tg by DSC) and stickiness 

behaviour (fluidisation technique) for some dairy powders. The data demonstrated 

that the comparability to other techniques depends on the composition of the 

powder and the modulus used (Ta onset or Ta peak). The storage modulus results 

were in good agreement with the stickiness results from the fluidisation technique 

for lower protein dairy powders (<45% protein w/w), whereas for powders with 

higher protein contents (~45-65% protein w/w), the results from the loss modulus 

were found to be more accurate. While DMA may not be a suitable method for 

stickiness determination, it has potential as a complementary technique that would 

provide more detailed information on the visco-elastic changes occurring during 

stickiness development. For example, the results of the current study suggest two 

different mechanisms of stickiness development; for the lower protein powders 

stickiness occurs following a reduction in powder stiffness, however, for the higher 

protein powder, there appears to be a two-stage mechanism involving a reduction in 

stiffness followed by a significant change in viscosity. It should also be noted that 

DMA is commonly used for Tg determination, and in the current study the Ta onset 

results were found to be almost identical to the Tg results obtained using DSC method 

for the WPC 65. Overall, further research should be carried out in order to gain a 

deeper understanding of the relationship between Ta onset, Ta peak, Tg and stickiness 

results.  
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Chapter 4: General discussion and future work  
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4.1 General discussion and conclusions 

 

Powder stickiness is a significant challenge faced by dairy processors during spray 

drying that can lead to considerable economic losses, due to increased down time 

and reduced powder quality. It is therefore crucial to understand the mechanisms 

causing stickiness in dairy powders and the factors responsible for its development, 

in an attempt to minimise its occurrence and severity. In order to do this successfully, 

good stickiness characterisation techniques that are simple, fast and accurate are 

essential. However, many of these methods provide binary data (i.e., sticky vs. non-

sticky), which while useful, does not help to explain the mechanisms behind 

stickiness development. The main focus of this work was therefore to gain a deeper 

understanding of the factors affecting stickiness development and also to explore 

alternative techniques for stickiness determination. The research presented in this 

thesis examined the influence of particle size on the stickiness development of three 

lactose-containing dairy powders. The use of dynamic mechanical analysis (DMA) as 

a complementary material characterisation technique was also investigated using a 

selection of whey protein concentrate (WPC) powders, firstly to compare the results 

to other established stickiness and glass transition determination methods, and 

secondly to provide more detailed information on the mechanical changes occurring 

during stickiness development.  

 In Chapter 2 of this thesis, stickiness was shown to increase with decreasing particle 

size in commercial skim milk, whey permeate and demineralised whey powders. One 

challenge commonly faced by dairy processors during spray drying is blocking of air 

filtration systems (e.g., cyclones and bag houses) by fine powder particles in the 

exhaust air. However, with the exception of the preliminary work done by Hogan et 

al. (2009), there are no studies published directly investigating the effect of particle 

size on the stickiness behaviour of dairy powders. In the current study, a fluidisation 

technique was used because it is a dynamic method that more closely represents the 

conditions within the spray drier compared to other static stickiness characterisation 

techniques. However, it should also be noted that the stickiness results obtained 

from the fluid bed are not directly comparable to what is happening in the spray drier 
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due to differences in the air velocities. Commercial powders were also chosen in 

order to keep the results as relevant to industry as possible. This study confirmed a 

commonly-encountered observation in the dairy industry; that smaller particles, or 

‘fines’, exhibit stickier behaviour than larger particles, leading to the blocking of air 

filtration systems. This was suggested to occur for a variety of reasons, such as; a 

greater proportion of amorphous lactose in smaller particles compared to larger 

particles, the increased hygroscopicity of smaller particles and the possible influence 

of surface fat, in combination with the increased specific surface area (SSA). This 

study also highlighted the compositional (bulk and surface) and structural differences 

between the different size fractions of dairy powders containing predominately semi-

crystalline or amorphous lactose. For example, bulk composition was shown to be 

affected by particle size for the two semi-crystalline powders, with protein content 

reported to increase with decreasing particle size, whereas bulk composition of the 

agglomerated powder containing predominantly amorphous lactose did not vary 

with particle size. These differences in bulk composition were found to be the most 

significant factor contributing to the differences in physicochemical behaviour (e.g., 

stickiness and hygroscopicity) of these powders.  

In Chapter 3 of this thesis, the results from DMA were compared to methods 

commonly used to measure phase transitions (Tg by DSC) and stickiness behaviour 

(fluidisation technique) of dairy powders and DMA was shown to strongly 

complement these methods. For dairy powder technology researchers, it is essential 

that stickiness characterisation techniques are accurate enough to be able to detect 

small changes in stickiness behaviour between samples. The advantages of DMA are 

that it is a highly sensitive method, is relatively simple to perform, and as it measures 

changes in mechanical relaxations; it may also provide a more detailed 

understanding of the changes in viscoelastic properties that occur during stickiness 

development. The inspiration for this work came, in part, from a study by Silalai and 

Roos (2011b), in which the authors compared the results from DMA to a sticky point 

tester and reported that DMA was a good indicator of stickiness development. 

However, in the study by Silalai and Roos (2011b), the analysis was conducted on 
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SMP/maltodextrin powders, which are not very representative of the wide variety of 

dairy powders produced at large volumes commercially. Therefore, in the current 

study, a selection of whey protein concentrate powders with a range of 

protein/lactose contents were chosen. The use of DMA also generated data for a 

number of mechanical parameters (e.g., storage and loss moduli), from which 

different values can be determined; the work presented in this thesis compared two 

data points (Ta onset - the temperature of the onset of the decrease in the storage 

modulus, and Ta peak - the peak temperature of the loss modulus). The DMA results 

were compared against differential scanning calorimetry (DSC) and a fluidisation 

method, as they are both considered to be well established and accurate methods 

for glass transition and stickiness determination, respectively. The results showed 

that for lower protein powders (< ~45% protein w/w), the Ta onset values obtained 

by DMA agreed well with the stickiness results generated using the fluidisation 

method. Overall, the results from this study show that while DMA may not be a 

suitable technique to directly characterise the stickiness behaviour of dairy powders, 

it may provide more detailed information about the changes occurring in the visco-

elastic properties of the powder during stickiness development. DMA may therefore 

be more useful as a method used for academic study, rather than one that can be 

implemented directly by industry on-site. However, further research should be 

carried out on the DMA method as this study also found a link between the glass 

transition results and the Ta peak results for the highest protein powder. 

In conclusion, this work has contributed to the understanding of a relatively well-

described phenomenon, by demonstrating that the stickiness behaviour of a dairy 

powder should not be determined from the bulk of the powder, as the effect of 

particle size needs to be considered. This information is particularly useful for dairy 

processors as they can incorporate these findings into their operational procedures, 

for example, by changing their drying conditions to alter the particle size distribution 

of their powders and minimise the amount of fines produced, and therefore reduce 

issues with stickiness development during drying. However, as the methods used in 

this research are on a lab scale, the final test of these results will be validation using 
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an industrial spray drier. In addition, for academic readers, this work has provided an 

excellent comparison of DMA with another method used to measure phase 

transitions, DSC, and has also shown a relationship with the stickiness phenomenon. 

Furthermore, DMA may also provide an opportunity to develop a more mechanistic 

understanding of stickiness development (i.e., stiffness reduction vs. changes in 

surface viscosity) in dairy powders; however, further research is required. Depending 

on the results, this could potentially provide an alternative, very sensitive method to 

complement stickiness determination which could prove useful to the research 

community and ultimately benefit manufacturers.  

4.2 Recommendations for future work 

 

Some suitable follow-up studies to the work presented in this thesis include: 

 Investigation into the role of surface fat on the stickiness of lactose-

containing dairy powders 

 Further evaluation of DMA as a complementary stickiness characterisation 

technique using a wider selection of dairy powders and greater range of 

parameters (e.g., different frequencies) 

 Evaluation of the effect of particle size on the mechanism of stickiness using 

DMA 

 Investigation into the use of DMA for powders considered unsuitable for the 

traditional stickiness methods outlined in this paper (i.e., powders with high 

fat or protein contents). 



References 
 
 

108 
 

References 

 

Adhikari, B., Howes, T., Bhandari, B. & Truong, V. (2001). Stickiness in foods: a review 

of mechanisms and test methods. International Journal of Food Properties, 4, 

pp. 1-33. 

Aguilera, J., Del Valle, J. & Karel, M. (1995). Caking phenomena in amorphous food 

powders. Trends in Food Science & Technology, 6, pp. 149-155. 

Bansal, N., & Bhandari, B. (2016). Functional milk proteins: Production and 

utilization—Whey-based ingredients. In Advanced Dairy Chemistry (pp. 67-

98). Springer, New York, USA. 

Bengoechea, C., Arrachid, A., Guerrero, A., Hill, S. E. & Mitchell, J. R. (2007). 

Relationship between the glass transition temperature and the melt flow 

behavior for gluten, casein and soya. Journal of Cereal Science, 45, pp. 275-

284. 

Bong, D. & Moraru, C. (2014). Use of micellar casein concentrate for Greek-style 

yogurt manufacturing: Effects on processing and product properties. Journal 

of Dairy Science, 97, pp. 1259-1269. 

Boonyai, P., Bhandari, B. & Howes, T. (2002). Development of a novel testing device 

to characterize the sticky behavior of food powders - a preliminary study. 

Proceedings of the International Conference on Innovations in Food 

Processing Technology and Engineering, Bangkok, Thailand. 

Boonyai, P., Bhandari, B. & Howes, T. (2004). Stickiness measurement techniques for 

food powders: a review. Powder Technology, 145, pp. 34-46. 

Boonyai, P., Howes, T., & Bhandari, B. (2006). Applications of the Cyclone Stickiness 

Test for Characterization of Stickiness in Food Powders. Drying Technology, 

24(6), pp. 703-709. 

Brennan, J., Herrera, J. & Jowitt, R. (1971). A study of some of the factors affecting 

the spray drying of concentrated orange juice, on a laboratory scale. 

International Journal of Food Science & Technology, 6, pp. 295-307. 



References 
 
 

109 
 

Bronlund, J., & Paterson, T. (2004). Moisture sorption isotherms for crystalline, 

amorphous and predominantly crystalline lactose powders. International 

Dairy Journal, 14(3), pp. 247-254.  

Brooks, G. (2000). The sticking and crystallisation of amorphous lactose. Doctoral 

dissertation, Massey University. 

Buma, T. (1971). Free fat in spray-dried whole milk. 5. Cohesion; determination 

influence of particle size, moisture content and free-fat content. Nederlands 

melk-en zuiveltijdschrift. 

Bylund, G. (1995). Dairy Processing Handbook. Lund, Sweden: Tetra Pak processing 

systems AB.  

Carpin, M., Bertelsen, H., Bech, J., Jeantet, R., Risbo, J. & Schuck, P. (2016). Caking of 

lactose: A critical review. Trends in Food Science & Technology, 53, pp. 1-12. 

Carpin, M., Bertelsen, H., Dalberg, A., Bech, J., Risbo, J., Schuck, P., & Jeantet, R. 

(2017a). How does particle size influence caking in lactose powder?. Journal 

of Food Engineering, 209, pp. 61-67.  

Carpin, M., Bertelsen, H., Dalberg, A., Roiland, C., Risbo, J., Schuck, P. & Jeantet, R. 

(2017b). Impurities enhance caking in lactose powder. Journal of Food 

Engineering, 198, pp. 91-97. 

Chandrapala, J., Duke, M. C., Gray, S. R., Weeks, M., Palmer, M. & Vasilievic, T. (2017). 

Strategies for maximizing removal of lactic acid from acid whey–Addressing 

the un-processability issue. Separation and Purification Technology, 172, pp. 

489-497. 

Chandrapala, J., Duke, M. C., Gray, S. R., Zisu, B., Weeks, M., Palmer, M. & Vasilievic, 

T. (2015). Properties of acid whey as a function of pH and temperature. 

Journal of Dairy Science, 98, pp. 4352-4363. 

Chandrapala, J. & Vasilievic, T. (2017). Properties of spray dried lactose powders 

influenced by presence of lactic acid and calcium. Journal of Food 

Engineering, 198, pp. 63-71. 

Chandrapala, J., Wijayasinghe, R. & Vasilievic, T. (2016). Lactose crystallization as 

affected by presence of lactic acid and calcium in model lactose systems. 

Journal of Food Engineering, 178, pp. 181-189. 



References 
 
 

110 
 

Chatterjee, R. (2004). Characterising stickiness of dairy powders. Doctoral 

dissertation, Massey University. 

Chuy, L. E. & Labuza, T. P. (1994). Caking and stickiness of dairy‐based food powders 

as related to glass transition. Journal of Food Science, 59, pp. 43-46. 

Couchman, P. & Karasz, F. (1978). A classical thermodynamic discussion of the effect 

of composition on glass-transition temperatures. Macromolecules, 11, pp. 

117-119. 

Downton, G. E., Flores-Luna, J. L., & King, C. J. (1982). Mechanism of stickiness in 

hygroscopic, amorphous powders. Industrial & Engineering Chemistry 

Fundamentals, 21(4), pp. 447-451.  

Durham, R. J. (2000). Development of a process for the purification of lactose from 

whey. Doctoral dissertation, University of Western Sydney, Hawkesbury. 

Faldt, P., Bergenstahl, B., & Carlsson, G. (1993). The surface coverage of fat on food 

powders analyzed by ESCA (electron spectroscopy for chemical analysis). 

Food Structure, 12(2), pp. 225-234. 

Fan, F. & Roos, Y. H. (2016). Structural relaxations of amorphous lactose and lactose-

whey protein mixtures. Journal of Food Engineering, 173, pp. 106-115. 

Fan, F. & Roos, Y. H. (2017). Structural strength and crystallization of amorphous 

lactose in food model solids at various water activities. Innovative Food 

Science & Emerging Technologies, 40, pp. 27-34  

Fitzpatrick, J., Barry, K., Cerqueira, P., Iqbal, T., O’Neill, J. & Roos, Y. (2007). Effect of 

composition and storage conditions on the flowability of dairy powders. 

International Dairy Journal, 17, pp. 383-392. 

Foerster, M., Gengenbach, T., Woo, M. W., & Selomulya, C. (2016). The impact of 

atomization on the surface composition of spray-dried milk droplets. Colloids 

and Surfaces B: Biointerfaces, 140, pp. 460-471.  

Food Drink Ireland (2019). Dairy Industry Ireland [online]. Available at: 

https://www.fooddrinkireland.ie/Sectors/FDI/FDI.nsf/vPages/Dairy~dairy-

industry-ireland-(dii)!OpenDocument [Last assessed 19/09/2019].  

https://www.fooddrinkireland.ie/Sectors/FDI/FDI.nsf/vPages/Dairy~dairy-industry-ireland-(dii)!OpenDocument
https://www.fooddrinkireland.ie/Sectors/FDI/FDI.nsf/vPages/Dairy~dairy-industry-ireland-(dii)!OpenDocument


References 
 
 

111 
 

Foster, K. D., Bronlund, J. E. & Paterson, A. T. (2005a). The contribution of milk fat 

towards the caking of dairy powders. International Dairy Journal, 15, pp. 85-

91. 

Foster, K. D., Bronlund, J. E. & Paterson, A. T. (2005b). The prediction of moisture 

sorption isotherms for dairy powders. International Dairy Journal, 15, pp. 

411-418. 

Foster, K. D., Bronlund, J. E., & Paterson, A. T. (2006). Glass transition related 

cohesion of amorphous sugar powders. Journal of Food Engineering, 77(4), 

pp. 997-1006.  

Fu, X., Huck, D., Makein, L., Armstrong, B., Willen, U., & Freeman, T. (2012). Effect of 

particle shape and size on flow properties of lactose powders. Particuology, 

10(2), pp. 203-208. 

Garnier, S., Petit, S., & Coquerel, G. (2002). Influence of supersaturation and 

structurally related additives on the crystal growth of α-lactose monohydrate. 

Journal of Crystal Growth, 234(1), pp. 207-219. 

GEA (2006). GEA Niro method No. A 1d. Total Moisture (KF Titration). Available at:  

https://www.gea.com/en/binaries/A%201%20d%20-

%20Total%20Moisture%20(KF%20Titration)_tcm11-30903.pdf [Last 

accessed 1 Feb. 2019]. 

Geldart, D., Harnby, N. & Wong, A. (1984). Fluidization of cohesive powders. Powder 

Technology, 37, pp. 25-37. 

Gernigon, G., Baillon, F., Espitalier, F., Le Floch-Fouéré, C., Schuck, P. & Jeantet, R. 

(2013). Effects of the addition of various minerals, proteins and salts of 

organic acids on the principal steps of α-lactose monohydrate crystallisation. 

International Dairy Journal, 30, pp. 88-95. 

Hallberg, L. & Chinachoti, P. (1992). Dynamic mechanical analysis for glass transitions 

in long shelf‐life bread. Journal of Food Science, 57, pp. 1201-1229. 

Haque, M. K., & Roos, Y. (2004a). Water plasticization and crystallization of lactose in 

spray‐dried lactose/protein mixtures. Journal of Food Science, 69(1), pp. 23-

29.  



References 
 
 

112 
 

Haque, M. K., & Roos, Y. (2004b). Water sorption and plasticization behavior of spray‐

dried lactose/protein mixtures. Journal of Food Science, 69(8), pp. 384-391.  

Heino, A. T., Uusi‐Rauva, J. O., Rantamaki, P. R. & Tossavainen, O. (2007). Functional 

properties of native and cheese whey protein concentrate powders. 

International Journal of Dairy Technology, 60, pp. 277-285. 

Hennigs, C., Kockel, T., & Langrish, T. (2001). New measurements of the sticky 

behavior of skim milk powder. Drying Technology, 19(3-4), pp. 471-484.  

Herrington, B. (1934). Some physico-chemical properties of lactose: II. Factors 

influencing the crystalline habit of lactose. Journal of Dairy Science, 17(8), pp. 

533-542.  

Hogan, S., & O'Callaghan, D. (2010). Influence of milk proteins on the development 

of lactose-induced stickiness in dairy powders. International Dairy Journal, 

20(3), pp. 212-221.  

Hogan, S., O'Callaghan, D., & Bloore, G. (2009). Application of fluidised bed stickiness 

apparatus to dairy powder production. Milchwissenschaft, 64(3), pp. 308-

311.  

Huppertz, T. & Gazi, I. (2016). Lactose in dairy ingredients: Effect on processing and 

storage stability1. Journal of Dairy Science, 99, pp. 6842-6851. 

Ibach, A., & Kind, M. (2007). Crystallization kinetics of amorphous lactose, whey-

permeate and whey powders. Carbohydrate Research, 342(10), pp. 1357-

1365.  

IDF. (1987). Determination of fat content – Rose Gottlieb reference method. IDF 

Standard 9C. International Dairy Federation, Brussels, Belgium.  

Ihli, J. & Paterson, A.H.J., (2015). Effect of galacto-oligosaccharide concentration on 

the kinetics of lactose crystallisation. International Dairy Journal, 41, pp. 26-

31. 

Intipunya, P., Shrestha, A., Howes, T., & Bhandari, B. (2009). A modified cyclone 

stickiness test for characterizing food powders. Journal of Food Engineering, 

94(3-4), pp. 300-306. 

Jouppila, K., & Roos, Y. (1994a). Glass transitions and crystallization in milk powders. 

Journal of Dairy Science, 77(10), pp. 2907-2915.  



References 
 
 

113 
 

Jouppila, K. & Roos, Y. (1994b). Water sorption and time-dependent phenomena of 

milk powders. Journal of Dairy Science, 77, pp. 1798-1808. 

Kajiyama, T. & Park, K. J. (2010). Influence of air parameters on spray drying energy 

consumption. Revista Brasileira de Produtos Agroindustriais, Campina 

Grande, 12, pp. 45-54. 

Kalab, M., Caric, M., & Milanovic, S. (1991). Composition and structure of 

demineralized spray-dried milk permeate powder. Food Structure, 10(4), pp. 

327-332.  

Kalichevsky, M., Jaroszkiewicz, E., Ablett, S., Blanshard, J. & Lillford, P. (1992). The 

glass transition of amylopectin measured by DSC, DMTA and NMR. 

Carbohydrate Polymers, 18, pp. 77-88. 

Kararli, T. T., Hurlbut, J. B. & Needham, T. E. (1990). Glass–rubber transitions of 

cellulosic polymers by dynamic mechanical analysis. Journal of 

Pharmaceutical Sciences, 79, pp. 845-848. 

Karel, M., Anglea, S., Buera, P., Karmas, R., Levi, G. & Roos, Y. (1994). Stability-related 

transitions of amorphous foods. Thermochimica Acta, 246, pp. 249-269. 

Kelly, G. M., O’Mahony, J. A., Kelly, A. L., Huppertz, T., Kennedy, D. & O'Callaghan, D. 

J. (2015). Influence of protein concentration on surface composition and 

physico-chemical properties of spray-dried milk protein concentrate 

powders. International Dairy Journal, 51, pp. 34-40. 

Kelly, G. M., O'Mahony, J. A., Kelly, A. L. & O'Callaghan, D. J. (2016). Water sorption 

and diffusion properties of spray-dried dairy powders containing intact and 

hydrolysed whey protein. LWT-Food Science and Technology, 68, pp. 119-126. 

Kelly, G. M., O’Mahony, J. A., Kelly, A. L. & O’Callaghan, D. J. (2014). Physical 

characteristics of spray-dried dairy powders containing different vegetable 

oils. Journal of Food Engineering, 122, pp. 122-129. 

Kim, E. H.-J., Chen, X. D., & Pearce, D. (2002). Surface characterization of four 

industrial spray-dried dairy powders in relation to chemical composition, 

structure and wetting property. Colloids and Surfaces B: Biointerfaces, 26(3), 

pp. 197-212.  



References 
 
 

114 
 

Kim, E. H.-J., Chen, X. D., & Pearce, D. (2005a). Effect of surface composition on the 

flowability of industrial spray-dried dairy powders. Colloids and Surfaces B: 

Biointerfaces, 46(3), pp. 182-187.  

Kim, E. H.-J., Chen, X. D. & Pearce, D. (2005b). Melting characteristics of fat present 

on the surface of industrial spray-dried dairy powders. Colloids and Surfaces 

B: Biointerfaces, 42, pp. 1-8 

Kim, E. H.-J., Chen, X. D., & Pearce, D. (2009). Surface composition of industrial spray-

dried milk powders. 2. Effects of spray drying conditions on the surface 

composition. Journal of Food Engineering, 94(2), pp. 169-181.  

Lazar, M., Brown, A., Smith, G., Wong, F., & Lindquist, F. (1956). Experimental 

production of tomato powder by spray drying. Food Technology, 10(3), pp. 

129-134.  

Listiohadi, Y. D., Hourigan, J., Sleigh, R. W., & Steele, R. J. (2005). Role of amorphous 

lactose in the caking of [alpha]-lactose monohydrate powders. Australian 

Journal of Dairy Technology, 60(1), p. 19.  

Maa, Y.-F., Costantino, H. R., Nguyen, P.-A., & Hsu, C. C. (1997). The effect of 

operating and formulation variables on the morphology of spray-dried 

protein particles. Pharmaceutical Development and Technology, 2(3), pp. 

213-223.  

Maidannyk, V. & Roos, Y. 2(017). Water sorption, glass transition and “strength” of 

lactose–Whey protein systems. Food Hydrocolloids, 70, pp. 76-87. 

Mathlouthi, M. & Roge, B. (2003). Water vapour sorption isotherms and the caking 

of food powders. Food Chemistry, 82, pp. 61-71. 

Meerdink, G., & van't Riet, K. (1995). Modeling segregation of solute material during 

drying of liquid foods. AIChE Journal, 41(3), pp. 732-736. 

Menard, K. P. (2002). Dynamic Mechanical Analysis. Encyclopedia of Polymer Science 

and Technology. John Wiley & Sons, Inc. 

Mimouni, A., Bouhallab, S., Famelart, M.-H., Naegele, D. & Schuck, P. (2007). The 

formation of calcium lactate crystals is responsible for concentrated acid 

whey thickening. Journal of Dairy Science, 90, pp. 57-65. 



References 
 
 

115 
 

Mimouni, A., Schuck, P. & Bouhallab, S. (2005). Kinetics of lactose crystallization and 

crystal size as monitored by refractometry and laser light scattering: effect of 

proteins. Le Lait, 85, pp. 253-260. 

Modugno, C., Paterson, A. H. & McLeod, J. (2015). Lactose caking: influence of the 

particle size distribution and the water content. Procedia Engineering, 102, 

pp. 114-122. 

Murphy, E. G., Roos, Y. H., Hogan, S. A., Maher, P. G., Flynn, C. G., & Fenelon, M. A. 

(2015). Physical stability of infant milk formula made with selectively 

hydrolysed whey proteins. International Dairy Journal, 40, pp. 39-46.  

Murrieta-Pazos, I., Gaiani, C., Galet, L., Cuq, B., Desobry, S. & Scher, J. (2011). 

Comparative study of particle structure evolution during water sorption: skim 

and whole milk powders. Colloids and Surfaces B: Biointerfaces, 87, pp. 1-10. 

Murti, R. A. (2006). The effect of lactose source on the stickiness of dairy powders. 

M.E. thesis, Massey University, Palmerston North, New Zealand. 

Murti, R. A., Paterson, A. T. H., Pearce, D. L., & Bronlund, J. E. (2009). Stickiness of 

skim milk powder using the particle gun technique. International Dairy 

Journal, 19(3), pp. 137-141. 

Murti, R. A., Paterson, A. T .H., Pearce, D. L & Bronlund, J. E. (2010). The influence of 

particle velocity on the stickiness of milk powder. International Dairy Journal, 

20, pp. 121-127. 

Nielsen, B. (2017). Whatever The Weather. Dairy Industries International. 

Nijdam, J., & Langrish, T. (2006). The effect of surface composition on the functional 

properties of milk powders. Journal of Food Engineering, 77(4), pp. 919-925.  

Nishanthi, M., Chandrapala, J. & Vasilievic, T. (2017a). Compositional and structural 

properties of whey proteins of sweet, acid and salty whey concentrates and 

their respective spray dried powders. International Dairy Journal, 74, pp. 49-

56. 

Nishanthi, M., Vasilievic, T. & Chandrapala, J. (2017b). Properties of whey proteins 

obtained from different whey streams. International Dairy Journal, 66, pp. 76-

83. 



References 
 
 

116 
 

O’Callaghan, D. & Hogan, S. (2013). The physical nature of stickiness in the spray 

drying of dairy products—a review. Dairy Science & Technology, 93, pp. 331-

346. 

O'Donoghue, L. T., Haque, M. K., Kennedy, D., Laffir, F. R., Hogan, S. A., O'Mahony, J. 

A. & Murphy, E. G. (2019). Influence of particle size on the physicochemical 

properties and stickiness of dairy powders. International Dairy Journal, 98, 

pp. 54-63. 

O’Neill, G. J., Hollingsworth, A., Harbourne, N. & O'Riordan, E. D. (2019). Reducing 

stickiness in spray dried dairy emulsions. Food Hydrocolloids, 90, pp. 330-340. 

Özkan, N., Walisinghe, N., & Chen, X. D. (2002). Characterization of stickiness and 

cake formation in whole and skim milk powders. Journal of Food Engineering, 

55(4), pp. 293-303.  

Ozmen, L., & Langrish, T. (2002). Comparison of glass transition temperature and 

sticky point temperature for skim milk powder. Drying Technology, 20(6), pp. 

1177-1192. 

Parimaladevi, P., & Srinivasan, K. (2014). Influence of supersaturation level on the 

morphology of α-lactose monohydrate crystals. International Dairy Journal, 

39(2), pp. 301-311.  

Paterson, A. (2017). Lactose processing: From fundamental understanding to 

industrial application. International Dairy Journal, 67, pp. 80-90. 

Paterson, A., Bronlund, J. & Brooks, G (2001). The blow test for measuring the 

stickiness of powders.  AIChE Annual Meeting, 2001. 

Paterson, A. H., Bronlund, J. E., Zuo, J. Y., & Chatterjee, R. (2007). Analysis of particle-

gun-derived dairy powder stickiness curves. International Dairy Journal, 

17(7), pp. 860-865.  

Paterson, A. H., Brooks, G., Bronlund, J., & Foster, K. (2005). Development of 

stickiness in amorphous lactose at constant T− Tg levels. International Dairy 

Journal, 15(5), pp. 513-519.  

Písecky, J. (2005). Spray drying in the cheese industry. International Dairy Journal, 15, 

pp. 531-536. 



References 
 
 

117 
 

Písecky, J. (2012). Handbook of milk powder manufacture. Copenhagen, Denmark: 

GEA Process Engineering A/S.  

Rahman, M. S., Al-Marhubi, I. M. & Al-Mahrouqi, A. (2007). Measurement of glass 

transition temperature by mechanical (DMTA), thermal (DSC and MDSC), 

water diffusion and density methods: a comparison study. Chemical Physics 

Letters, 440, pp. 372-377. 

Rennie, P. R., Chen, X. D., Hargreaves, C., & Mackereth, A. (1999). A study of the 

cohesion of dairy powders. Journal of Food Engineering, 39(3), pp. 277-284.  

Rogé, B., & Mathlouthi, M. (2000). Caking of sucrose crystals: effect of water content 

and crystal size. Zuckerindustrie, 125(5), pp. 336-340.  

Roos, Y. & Karel, M. (1991a). Phase transitions of mixtures of amorphous 

polysaccharides and sugars. Biotechnology Progress, 7, pp. 49-53. 

Roos, Y. & Karel, M. (1991b). Plasticizing effect of water on thermal behavior and 

crystallization of amorphous food models. Journal of Food Science, 56, pp. 38-

43. 

Roos, Y., & Karel, M. (1991c). Water and molecular weight effects on glass transitions 

in amorphous carbohydrates and carbohydrate solutions. Journal of Food 

Science, 56(6), pp. 1676-1681. 

Saffari, M. & Langrish, T. (2014). Effect of lactic acid in-process crystallization of 

lactose/protein powders during spray drying. Journal of Food Engineering, 

137, pp. 88-94. 

Sanderson, W. (1978). Instant milk powders. Manufacture and keeping quality.  20. 

International Dairy Congress, Paris (France), 26 Jun 1978.  

Schuck, P., Blanchard, E., Dolviet, A., Méjean, S., Onillon, E. & Jenatet, R. (2005). 

Water activity and glass transition in dairy ingredients. Le Lait, 85, pp. 295-

304. 

Schuck, P., & Dolivet, A. (2002). Lactose crystallization: determination of α-lactose 

monohydrate in spray-dried dairy products. Le Lait, 82(4), pp. 413-421.  

Schuck, P., Dolivet, A., Méjean, S. & Jenatet, R. (2008). Relative humidity of outlet air: 

the key parameter to optimize moisture content and water activity of dairy 

powders. Dairy Science & Technology, 88, pp. 45-52. 



References 
 
 

118 
 

Schuck, P., Dolivet, A., Méjean, S., Zhu, P., Blanchard, E. & Jeantet, R. (2009). Drying 

by desorption: a tool to determine spray drying parameters. Journal of Food 

Engineering, 94, pp. 199-204. 

Schuck, P., Jeantet, R., & Dolivet, A. (2012). Analytical methods for food and dairy 

powders. West Sussex: John Wiley & Sons. 

Shrestha, A. K., Adhikari, B. P., Howes, T. E. & Bhandari, B. R. (2006). Effect of lactic 

acid on spray drying behavior of acid-whey and study of their glass transition 

temperature. Journal of Food Science and Technology Nepal, 2, pp. 57-62. 

Shrestha, A. K., Howes, T., Adhikari, B. P., & Bhandari, B. R. (2008). Spray drying of 

skim milk mixed with milk permeate: effect on drying behavior, 

physicochemical properties, and storage stability of powder. Drying 

Technology, 26(2), pp. 239-247.  

Shrestha, A. K., Howes, T., Adhikari, B. P., Wood, B. J., & Bhandari, B. R. (2007). Effect 

of protein concentration on the surface composition, water sorption and 

glass transition temperature of spray-dried skim milk powders. Food 

Chemistry, 104(4), pp. 1436-1444. 

Siebenmorgen, T., Yang, W. & Sun, Z. (2004). Glass transition temperature of rice 

kernels determined by dynamic mechanical thermal analysis. Transactions of 

the ASAE, 47, pp. 835-839. 

Silalai, N. & Roos, Y. H. (2010). Roles of water and solids composition in the control 

of glass transition and stickiness of milk powders. Journal of Food Science, 75, 

pp. 285-296. 

Silalai, N. & Roos, Y. H. (2011a). Coupling of dielectric and mechanical relaxations 

with glass transition and stickiness of milk solids. Journal of Food Engineering, 

104, pp. 445-454. 

Silalai, N. & Roos, Y. H. (2011b). Mechanical relaxation times as indicators of 

stickiness in skim milk–maltodextrin solids systems. Journal of Food 

Engineering, 106, pp. 306-317. 

Smart, J. (1988). Effect of whey components on the rate of crystallization and 

solubility of α-lactose monohydrate. New Zealand Journal of Dairy Science 

and Technology, 23, pp. 275-289. 



References 
 
 

119 
 

Stitt, F. (1958). Moisture equilibrium and the determination of water content of 

dehydrated foods. Fundamental Aspects of the Dehydration of Foodstuffs, pp. 

67-88. 

Twomey, M., Keogh, M., O'Kennedy, B., Auty, M. & Mulvihill, D. (2000). Effect of milk 

composition on selected properties of spray-dried high-fat and skim-milk 

powders. Irish Journal of Agricultural and Food Research, pp. 79-94. 

Vega, C. & Roos, Y. (2006). Invited review: spray-dried dairy and dairy-like 

emulsions—compositional considerations. Journal of Dairy Science, 89, pp. 

383-401. 

Vignolles, M.-L., Jeantet, R., Lopez, C. & Schuck, P. (2007). Free fat, surface fat and 

dairy powders: interactions between process and product. A review. Le Lait, 

87, pp. 187-236. 

Visser, R., & Bennema, P. (1983). Interpretation of the morphology of alpha-lactose 

hydrate. Netherlands Milk and Dairy Journal, 37, pp. 109-137.  

Westergaard, V. (2010). Milk Powder Technology: Evaporation and Spray Drying. 

Copenhagen: GEA Niro. 

Wijayasinghe, R., Vasilievic, T. & Chandrapala, J. (2015). Water-lactose behavior as a 

function of concentration and presence of lactic acid in lactose model 

systems. Journal of Dairy Science, 98, pp. 8505-8514. 

Wijayasinghe, R., Vasilievic, T. & Chandrapala, J. (2016). Lactose behaviour in the 

presence of lactic acid and calcium. Journal of Dairy Research, 83, pp. 395-

401. 

Zhu, P., Méjean, S., Blanchard, E., Jeantet, R. & Schuck, P. (2011). Prediction of dry 

mass glass transition temperature and the spray drying behaviour of a 

concentrate using a desorption method. Journal of Food Engineering, 105, pp. 

460-467. 

Zuo, J. Y., Paterson, A. H., Bronlund, J. E. & Chatterjee, R. (2007). Using a particle-

gun to measure initiation of stickiness of dairy powders. International Dairy 

Journal, 17, pp. 268-273.



Appendix 
 

120 
 

Appendix 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 
 

121 
 

 



Appendix 
 

122 
 

 



Appendix 
 

123 
 

 

 



Appendix 
 

124 
 

 

 



Appendix 
 

125 
 

 

 



Appendix 
 

126 
 

 

 



Appendix 
 

127 
 

 

 



Appendix 
 

128 
 

 

 



Appendix 
 

129 
 

 

 



Appendix 
 

130 
 

 


	Declaration
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Nomenclature (where applicable units included in parentheses)
	Abbreviations
	Chapter 1: Literature Review
	1.1 Introduction
	1.2 Mechanisms of stickiness
	1.2.1 Carbohydrate-based stickiness
	1.2.1.1 Relationship between glass transition and stickiness
	1.2.1.2 The use of T-Tg in stickiness determination


	1.3 Overview of dairy products that are susceptible to sticking
	1.3.1 Products with high lactose contents
	1.3.1.1 Whey
	1.3.1.1.1 Sweet whey
	1.3.1.1.2 Acid whey
	1.3.1.1.3 Native whey


	1.3.2 Whey processing
	1.3.2.1 Whey Protein concentrates
	1.3.2.2 Whey permeates
	1.3.2.3 Demineralised whey permeates

	1.3.3 High-fat products
	1.3.3.1 Full cream milk powder


	1.4 Factors affecting stickiness
	1.4.1 Effect of protein
	1.4.2 Fat-induced stickiness
	1.4.2.1 Fat content at the surface
	1.4.2.2 Relationship between fat and protein content

	1.4.4 Particle size
	1.4.5 Molecular weight of carbohydrate component

	1.5 Stickiness during processing and storage
	1.5.1. Processing
	1.5.1.1 Lactose pre-crystallisation
	1.5.1.1.1 Extent of crystallisation
	1.5.1.1.2 Crystal form and shape
	1.5.1.2 Processing of acid whey
	1.5.1.2.1 Precipitation of salts
	1.5.1.2.2 Lactose pre-crystallisation
	1.5.1.2.3 Effect on glass transition

	1.5.1.3 Effect of spray drying on powder particles
	1.5.1.3.1. Surface composition
	1.5.1.3.1.1. Fat at the surface of powder particles
	1.5.1.3.1.2 Factors influencing surface composition


	1.5.1.4 Optimisation of spray drying parameters
	1.5.1.5 Other factors affecting stickiness during spray drying
	1.5.1.5.1 Humidity in air
	1.5.1.5.2 Seasonal variation


	1.5.2 Stickiness during storage (caking)
	1.5.2.1 Introduction to caking
	1.5.2.1.1 Factors influencing caking

	1.5.2.2 Moisture sorption
	1.5.2.2.1 Time-dependent crystallisation during storage
	1.5.2.2.2 Methods for determining moisture sorption/hygroscopicity



	1.6. Methods to determine stickiness
	1.6.1 Direct measurements
	1.6.1.1 Conventional methods
	1.6.1.2. Pneumatic methods

	1.6.2 Indirect methods
	1.6.2.1 Differential scanning calorimetry
	Figure 1.14. Graph showing Ta onset (storage modulus) and Ta peak (loss modulus) values of a whey protein concentrate powder using dynamic mechanical analysis. Taken from O’Donoghue et al. (unpublished data).



	Objectives
	Chapter 2: Influence of particle size on the physicochemical properties and stickiness of dairy powders
	Abstract
	2.1 Introduction
	2. 2 Materials and methods
	2.2.1. Materials
	2.2.2. Powder fractionation
	2.2.3. Particle size distribution
	2.2.4. Powder composition
	2.2.5. Lactose crystallinity
	2.2.6. Scanning electron microscopy
	2.2.7. Stickiness
	2.2.8. Powder fluidisation velocity
	2.2.9. Differential scanning calorimetry
	2.2.10. Hygroscopicity
	2.2.11. Surface analysis of powders
	2.2.12. Statistical analysis

	2.3 Results
	2.3.1. Powder characterisation
	2.3.1.1 Particle size fractions and bulk composition of powders
	2.3.1.2. Surface composition of powders
	2.3.1.3. Particle morphology
	2.3.1.4. Glass transition temperature

	2.3.2. Powder stickiness and hygroscopicity
	2.3.2.1. Stickiness of non-fractionated powders
	2.3.2.2. Influence of particle size on stickiness
	2.3.2.3. Hygroscopicity


	2.4 Conclusions

	Chapter 3: Comparison of differential scanning calorimetry and dynamic mechanical analysis with a fluidisation method for stickiness determination of whey protein powders
	Abstract
	3.1 Introduction
	3.2 Materials and methods
	3.2.1 Materials
	3.2.2 Powder composition
	3.2.3 Stickiness by fluidisation
	3.2.4 Powder equilibration
	3.2.5 Differential scanning calorimetry
	3.2.6 Dynamic mechanical analysis

	3.3 Results
	3.3.1 Relationship between powder composition and glass transition temperature
	3.3.2 Powder fluidisation analysis
	3.3.3 Dynamic mechanical analysis
	3.3.4 Comparison of α-relaxation, stickiness and glass transition curves
	3.3.5 Comparison of T-Tg results from different measurement techniques

	3.4 Conclusions

	Chapter 4: General discussion and future work
	4.1 General discussion and conclusions
	4.2 Recommendations for future work

	References
	Appendix

