
Title Single system image: A survey

Authors Healy, Philip D.;Lynn, Theo;Barrett, Enda;Morrisson, John P.

Publication date 2016-02-17

Original Citation Healy, P., Lynn, T., Barrett, E. and Morrison, J. P. (2016) 'Single
system image: A survey', Journal of Parallel and Distributed
Computing, 90-91(Supplement C), pp. 35-51. doi:10.1016/
j.jpdc.2016.01.004

Type of publication Article (peer-reviewed)

Link to publisher's
version

10.1016/j.jpdc.2016.01.004

Rights © 2016 Elsevier Inc. This is the preprint version of an article
published in its final form in Journal of Parallel and Distributed
Computing, available https://doi.org/10.1016/j.jpdc.2016.01.004.
This manuscript version is made available under the CC BY-NC-
ND 4.0 licence - https://creativecommons.org/licenses/by-nc-
nd/4.0/

Download date 2024-04-19 22:20:38

Item downloaded
from

https://hdl.handle.net/10468/4932

https://hdl.handle.net/10468/4932

Single System Image: A Survey

Philip Healya,b,∗, Theo Lynna,c, Enda Barretta,d, John P. Morrisona,b

aIrish Centre for Cloud Computing and Commerce, Dublin City University, Ireland
bComputer Science Dept., University College Cork, Ireland

cDCU Business School, Dublin City University, Ireland
dSoftware Research Institute, Athlone Institute of Technology, Ireland

Abstract

Single system image is a computing paradigm where a number of distributed computing
resources are aggregated and presented via an interface that maintains the illusion of
interaction with a single system. This approach encompasses decades of research using a
broad variety of techniques at varying levels of abstraction, from custom hardware and
distributed hypervisors through to specialized operating system kernels and user-level
tools. Existing classification schemes for SSI technologies are reviewed, and an updated
classification scheme is proposed. A survey of implementation techniques is provided
along with relevant examples. Notable deployments are examined and insights gained
from hands-on experience are summarised. Issues affecting the adoption of kernel-level
SSI are identified and discussed in the context of technology adoption literature.

Keywords: Single system image, distributed operating systems, distributed
hypervisors, technology adoption.

1. Introduction

The concept of seamlessly aggregating distributed computing resources is an attrac-
tive one, as it allows the presentation of a unified view of those resources, both to users
and to software at higher layers of abstraction. By hiding the distributed nature of the
resources, the effort required to utilize them effectively is diminished. This process of
transparent aggregation is said to provide a single system image (SSI) of the unified
resources.

Introductory surveys of the field have been published in the past by Buyya et al. [1, 2].
However, there have been many developments in the field in the years since their ap-
pearance. For example, promising new work has taken place on the implementation of
SSI via distributed hypervisors, while kernel-level SSI has not seen widespread adoption
despite early enthusiasm and several implementations. Within the broader sphere of

∗Corresponding author: Dr Philip Healy, Room 2-22, Western Gateway Building, University College
Cork, Western Road, Cork, Ireland. Phone: +353 21 4205935.

Email addresses: p.healy@cs.ucc.ie (Philip Healy), theo.lynn@dcu.ie (Theo Lynn),
ebarrett@research.ait.ie (Enda Barrett), j.morrison@cs.ucc.ie (John P. Morrison)

Preprint submitted to Journal of Parallel and Distributed Computing February 2, 2016

high-performance computing we have seen the rise of multicore systems, GPU acceler-
ation, virtualization and cloud computing. Given these developments, we feel that a
retrospective survey of the field, combined with an analysis of its current status and
future prospects, is timely.

SSI can be implemented at a number of levels of abstraction from custom hardware
and distributed hypervisors through to specialized operating system kernels and user-
level tools. At the highest level, message-passing libraries, such as MPI, could be said
to provide the application developer with the illusion of working on a multiprocessor
architecture even when the underlying execution platform is a loosely-coupled network
of workstations. However, the level of transparency presented to the user is inversely
proportional to the level of abstraction of the SSI implementation. For example, the
illusion of SMP provided by a message-passing library is present only in specially-written
application code whereas hardware-level implementations are transparent even to the
operating system.

Numerous implementations of SSI have been created over the years at each of the
levels of abstraction. A selection of these, organized by abstraction layer, is examined
in Section 3. Despite the diverse nature of the various implementations, a number of
recurring techniques can be identified. A number of those that appear most frequently
in the literature are surveyed in Section 4.

There is much to be learned from those who have gained hands-on experience by
deploying SSI technologies to testbeds and production systems. Similarly, there a wealth
of information has been published on the topic of performance comparisons and the
practical utilization of SSI clusters using a wide variety of application types. These
topics are examined in Section 5.

Despite the large body of work expended on the development of numerous freely-
available implementations, kernel-level SSI has never emerged as a mainstream cluster
computing technique. Many of these implementations are no longer actively maintained
at the time of writing, and the academic community seems, to a large extent, to have
moved on. On the other hand, promising new developments have taken place in the de-
velopment of distributed hypervisors that implement SSI (see Section 3.2). Furthermore,
the combination of kernel-level SSI implementations with virtualization and cloud com-
puting techniques has opened up new avenues of research. The issue of SSI adoption,
or lack thereof, is examined through the lens of relevant literature in Section 6. Our
conclusions in light of these observations are presented in Section 7.

2. Definition and Classification

Pfister [3] defines a single system image as “the illusion that a collection of other-
wise independent computing engines is a single computational resource”. Buyya et al. [2]
propose “the property of a system that hides the heterogeneous and distributed nature of
the available resources and presents them to users and applications as a single unified
computing resource”. Lottiaux et al. [4] use the following: “a physical or logical mecha-
nism giving the illusion that a set of distributed resources (memory, disk or CPU) forms
a unique and shared resource”. Interestingly, Pfister’s definition does not stipulate that
the resources must be distributed, while the other definitions do.

An important attribute of a single system image implementation is its transparency,
i.e., the level to which the discrete nature of the underlying resources is hidden from

2

Figure 1: Single system image boundaries and layers as proposed by various authors:
(a) Pfister [3] (b) Pfister (detailed) [3] (c) Buyya [1] (d) Baker and Buyya [5] (e) Hwang
et al. [6] and (f) our proposed scheme that extends Pfister’s through the addition of a
hypervisor layer.

the user. Pfister [3] proposes the related concept of a single system image boundary.
Boundaries define the levels of abstraction above which aggregated resources appear to
be unified, and below which they appear to be separate. Pfister goes on to present a
hierarchy of single system image levels, where seven boundary definitions are used to
assign SSI implementations to one of eight levels: memory and I/O, memory, under-
kernel, kernel, over-kernel toolkit, file system, subsystem and application. The eight
levels are grouped into three broad categories: user-space, kernel-level and hardware.
Buyya [1] proposes five levels: hardware, operating system, message passing interfaces,
language/compiler and tools. A later paper by Baker and Buyya [5] simplifies this to
three levels: hardware, operating system and applications/subsystems. Hwang et al. [6]
identify three overlapping levels: hardware/kernel, middleware and application software.
We will utilize Pfister’s three broad categories (hardware-level, kernel-level, user-level)
when classifying implementations, with the addition of a fourth: hypervisor-level. Figure
1 depicts the various SSI boundaries and layers that have been proposed.

The transparency provided by single system image is often described in terms of the
unification of spaces. These spaces can include:

• Memory Space Unification of memory space involves techniques such globally ad-
dressable shared memory and process-level distributed shared memory.

• Process Space A unified process space can be implemented by providing visibility

3

and control over the complete set of processes running across all cluster nodes.
Techniques such process checkpointing, placement and migration allow for trans-
parent load balancing across nodes.

• File Space Distributed file systems can be used to provide an aggregated hierarchy
of collections of files stored across a network.

• Device Space Unification of I/O devices can provide transparency and/or perfor-
mance. A cluster-wide virtual character device can be used to provide users with
transparent cluster-wide terminal output, while an application that performs ex-
tensive internal network I/O may benefit from the ability to harness all of the
network cards across a cluster.

Given the broad scope of the techniques that fall within the scope of the classifications
above, it is necessary to restrict the range of material covered in this survey. For example,
hardware-level techniques, such as distributed shared memory, or user-level techniques,
such as message-passing libraries, merit detailed surveys in their own right. A useful
filter is to consider whether the authors of relevant literature describe their work in terms
of implementing SSI. Furthermore, broadly-applicable techniques such as distributed file
systems are adequately covered by existing surveys; we will defer to these as appropriate.
We will therefore focus on novel techniques and implementations that are described in
terms of SSI and are not adequately covered by more specific surveys. This approach
naturally results in an emphasis on the operating system level, which comprises the
majority of work in the literature identified by the authors as SSI. However, we will
endeavour to highlight seminal and novel contributions at all levels.

3. Implementations

A brief description of each of the most notable SSI implementations, organized by level
of abstraction, is presented below. Some of these systems do not fit neatly into a single
level of abstraction. For example, kernel-level implementations are often accompanied by
a complementary suite of user-level tools. Where ambiguity is present, implementations
are assigned to the level of abstraction that best characterises the fundamental approach.

3.1. Hardware-Level

Hardware-level single system image involves the aggregation of discrete computing
units into a unified whole that is presented to the operating system. There is inconsis-
tency in the literature as to which technologies should be considered to be hardware SSI.
For example, SMP techniques are included in some descriptions [5] but not in others [1].
For our purposes, we will consider hardware systems to provide a single system image
only if an element of non-local communication is present; systems built around a local
bus, such as classical SMP, are excluded.

Cache coherent non-uniform memory access (ccNUMA) is a distributed shared mem-
ory (DSM) architecture where each processor has access to a private memory pool and
a global memory pool. Cache coherency ensures that potentially costly cache misses are
not incurred when non-local resources are accessed, although a performance penalty for
non-local resources is still present.

4

MIT Alewife was an early implementation of a hardware DSM [7] system where pas-
sive backplanes between nodes provide a hardware mesh networking topology to facili-
tate the distributed shared memory system. Each node is designated a portion of local
or private (unshared) memory and can access remote memory via the mesh network-
ing framework. Cache coherence is also supported through a software extended scheme
named LimitLess [8].

Additional implementations include the Stanford Dash multiprocessor system [9] im-
plements a ccNUMA style distributed shared memory system. The successor to the
Stanford Dash project, the Stanford FLASH multiprocessor [10], addressed the issue of
monetary cost through a combination of low-overhead message passing with cache coher-
ent shared memory. The FLASH architecture consists of multiple off-the-shelf processors,
each with a separate cache. The system’s main memory is distributed amongst the pro-
cessors. A node controller chip known as MAGIC (Memory And General Interconnect
Controller) integrates the memory controller, I/O controller and network interfaces and
a programmable protocol processor.

Brock et al. [11] detail a commodity ccNUMA system built from four commodity 4-
processor Fujitsu Teamserver SMPs. A cache coherent Fujitsu Synfinity [12] interconnect
connects the SMPs together providing the bandwidth necessary to implement DSM across
the systems. Through a resource set, applications are able to specify individual processor
and memory affinity to improve performance in the ccNUMA system. Similarly, the
NUMAchine [13] system, presented by Grbic et al., offers a ccNUMA based hardware
DSM implementation using off-the-shelf components. A custom Unix-based operating
system, Tornado, was developed to run the machine. A 48 processor DSM prototype
demonstrated a peak computational performance of 1.7 Gflops, with the peak bandwidth
at any point in the interconnect at 400Mb/s.

A number of commercial ccNUMA machines have been developed such as IBM’s
NUMA-Q [14], SGI’s Origin [15] family of servers and the Unisys ES7000 series [16].
More recently, commercial systems such as the SGI Altix 3000 [17] and HP’s Integrity
Superdome [18] offer multiprocessor DSMs supporting Intel Itanium processors. Correa
et al. [19] implemented a system of multiple memory access levels for their DSM ccNUMA
implementation, allowing for varying access overhead global depending relative levels of
the communicating processing nodes. As interconnect bandwidth is the limiting factor
for DSM systems, commercial systems employ expensive hardware interconnects such as
the NUMAlink high speed interconnect offering bandwidth of up to 15 Gb/s [20].

3.2. Hypervisor-Level

There have been several implementations of distributed hypervisors that provide a
single guest operating system instance with a single system image of an entire cluster.
This approach has the advantage of being largely transparent to the guest OS, eliminating
the need for far-reaching kernel modifications and hence allowing for a wider selection
of guest operating systems. These systems build a global resource information table of
aggregated resources such as memory, interrupts and I/O devices. A virtualized view
of these hardware resources is then presented to the guest operating system. Standard
distributed shared memory techniques are used to provide a global address space. The
single system image is maintained by alternating as necessary between the guest OS and
the hypervisor via trap instructions. Note that hypervisor-level virtualization is only one

5

of several proposed schemes for combining SSI and virtualization technologies; for a more
detailed discussion on this topic see Section 4.6.

ScaleMP’s vSMP product [21] is, at the time of writing, the only commercially avail-
able SSI distributed hypervisor. vSMP provides a single system image of commodity
clusters connected via Infiniband. An standard operating runs unmodified above the
hypervisor layer, and is presented with a unified view of the cluster as a single SMP ma-
chine. Up to 128 nodes can be connected, with a maximum of 1024 processors 256 TB of
memory per VM. Benchmarks by [22] indicate that although reading and writing remote
memory pages is about 20 times slower than local memory access, significant speedups
are still possible, with one OpenMP application achieving a speedup of 80 when run
across 104 cores.

Kaneda et al. present the Virtual Multiprocessor [23], a distributed hypervisor for
the IA-32 architecture. The hypervisor runs within host OS instances across a cluster
and in turn provides a single system image to a guest OS instance via paravirtualization.
A testbed system was constructed that used the Virtual Multiprocessor to create an 8-
way virtual SMP from eight workstations connected by Gigabit Ethernet. A Fibonacci
number calculator was used for performance evaluation. The results showed increased
speedup (up to 6.6) for coarse-grained tasks. Finer task granularity results in severely
reduced speedup (less than 2).

Chapman and Heiser present the vNUMA system [24], a bare-metal distributed hy-
pervisor for the Itanium architecture that uses paravirtualization of to run an unmodified
guest operating system instance at a low privilege level. As the Itanium architecture is
not perfectly virtualizable, several sensitive but non-faulting instructions must be re-
placed by faulting instructions in order to ensure that control passes between guest and
host as appropriate. A testbed was constructed from two workstations connected by
Gigabit Ethernet. The testbed was then used to conduct a performance analysis using
three benchmarks from the SPLASH-2 suite, with good speedups being observed in two
cases but poor performance in the third. The overhead resulting from virtualization and
kernel paging was found to be low compared to the well-known overhead associated with
the distributed shared memory technique.

Peng et al. present the Distributed Virtual Machine Manager (DVMM) [25], a bare-
metal distributed hypervisor for the IA-32 architecture that relies on hardware virtualiza-
tion through the VT-x processor extension. Guest OS instances run unmodified, although
kernel-level ccNUMA support is required. The system’s reliance on hardware-level func-
tionality implies better performance than Virtual Multiprocessor and vNUMA, although
no benchmarks are available to confirm this. Another claimed advantage is the ability
to utilize multi-core and/or SMP machines. Song and Xiao[26] describe implementation
details of the low-level communications mechanism used to unify the processor, memory,
I/O and interrupt spaces. A similar paper by Yong [27] appears to describe the same
system. A theoretical model of DVMM (now titled CloudDVMM) and benchmarking
data are provided in [28] and [29].

Wang et al. present NEX [30], an extension of the Xen hypervisor that uses a system
of distributed co-operating hypervisors to provide a single system image of an SMP
machine to unmodified guest operating system instances. This is achieved by integrating
a shared memory protocol into Xen’s hardware virtualization functionality. QEMU’s
device model implementation is used to emulate peripheral devices, with shared memory
implementations of DMA and MMIO support used to provide a unified I/O space. A

6

similar Xen-based system is proposed by Ma et al. [31].
MetalSVM [32] is a bare-metal hypervisor for Intel’s Single-chip Cloud Computer

(SCC) platform. The SCC is composed of 48 P54C cores arranged as a 6 × 4 mesh of
dual-core tiles on a single die. Message passing buffers are provided to allow for high-
performance communication between tiles. MetalSVM implements a hypervisor that runs
on all SCC cores and unifies the distributed memory spaces into a single shared virtual
memory. The hypervisor is implemented using a minimal custom kernel that runs on
each SCC core. A standard Linux kernel runs above and is presented with a unified
view of the SCC as a single SMP machine. RockyVisor [33] takes a similar approach to
SCC virtualization but runs a full Linux kernel on each SCC core. A modified version
of the lguest kernel module is deployed in each instance, which cooperate to implement
a distributed hypervisor. The distributed hypervisor runs a single cross-SCC Linux
operating system that is presented with a view of the SCC as a single SMP machine.

3.3. Kernel-Level

The kernel-level approach to single system image encompasses a broad variety of
techniques that seek to transparently unify distributed resources. There have been nu-
merous implementations, with the oldest dating back to the 1970s. There are two basic
approaches in terms of design philosophy: dedicated distributed operating systems and
adaptations of existing operating systems. The latter approach can be further divided
into over-kernel and under-kernel implementations. Under-kernel (or “under-ware” [34])
systems seek to transparently preserve existing APIs, such as POSIX. As a result, ex-
isting application code can run without modification. In contrast, over-kernel systems
provide additional or extended APIs that allow for efficient utilization of distributed
resources. For example, preserving POSIX file pointer semantics for distributed file sys-
tems requires a global lock on the pointer; an over-kernel implementation could provide
alternative API calls that do not have this requirement. Existing operating systems can
be adapted to support single system image semantics in two ways: either by forking the
codebase of the OS in question, or by maintaining a patchset that is applied against
mainline releases.

Dedicated distributed operating systems are an extensive field of study in their own
right. Numerous books and surveys, such as that by Tanenbaum and Van Renesse [35],
are available that provide comprehensive overviews of contemporary systems. We will
therefore restrict our treatment in Section 3.3.1 to a brief overview of the most notable
dedicated distributed operating systems, focusing on single system image aspects. Fork-
and patch-based extensions to existing operating systems will be examined individually
in subsequent subsections.

3.3.1. Distributed Operating Systems

LOCUS [36] is a Unix-compatible distributed operating system designed and devel-
oped by Bruce Walker at UCLA between 1979 and 1983, before being spun off as a
commercial entity (Locus Computing Corporation). Single system image functionality
is provided via a unified file space, process space and I/O space. File replication is
performed automatically. A resolution mechanism is provided that integrates editing
conflicts automatically where possible. If resolution cannot be performed automatically
then access to the file is disabled and a mail is sent to the user inviting him/her to perform

7

manual resolution. Transparent remote access is provided to character devices and IPC
channels only; raw devices are not aggregated but can be accessed through process migra-
tion. Remote execution of programs across heterogeneous CPU architectures (PDP-11
and VAX 750) is supported. A token-based scheme is used to mediate distributed access
to resources such as shared memory segments, pipes and file pointers. Some technology
from LOCUS eventually made its way, via a circuitous route, into OpenSSI (see Section
3.3.6).

Rozier et al. present Chorus [37], a microkernel-based distributed operating system.
Chorus adopts a message-passing approach at the lowest implementation levels through
a flexible system of distributed ports and actors. As a consequence, it was possible for
O’Connor et al. to add migration functionality using a combination of minimal kernel
modifications and a user-space server [38]. The aggressively distributed nature of the
operating system allows for transparent unification of the process, I/O and filesystem
spaces. A UNIX-compatible version of Chorus, titled Chorus/MiX, was released during
the early 1990s.

V [39] is a distributed operating system developed by David Cheriton at Stanford
University during the 1980s. Perhaps the most distinguishing feature of V is its unique
approach to process migration. By using a process management scheme similar to that
developed for the earlier Thoth system [40], multiple V processes can share an address
space, making them akin to threads in more conventional systems. However, they can
still be migrated independently. A file-oriented device management scheme is provided,
allowing distributed processes to access devices transparently as files. Processes that
attempt to access device files are suspended until new values are available, simplifying
the implementation of processes that perform device I/O. The multi-pass memory copy
algorithm used for VM migration in V has since become the standard approach to VM
migration, including VMWare’s implementation [41].

Ousterhout et al. present Sprite [42], an experimental network operating system de-
veloped at the University of California at Berkeley during the late 1980s. Although de-
veloped from scratch as a new operating system, the kernel API is similar to that of 4.3
BSD. Network transparency is provided via a fully-transparent network file system and
process migration, both of which are implemented through a sophisticated distributed
virtual memory system. Caching of remote memory pages is performed automatically
in order to improve performance. In order to maintain consistency, the caching of re-
mote files is disabled when they are opened concurrently by another process. Process
migration can be performed manually via a shell command or automatically based on
the relative loads on the processing nodes.

Amoeba [43] is a network operating system developed by Andrew Tannenbaum and
colleagues at the Free University of Amsterdam during the 1980s and early 1990s.
Amoeba provides a rich parallel and distributed programming environment, including
a custom parallel programming language (Orca). In addition, a UNIX compatibility
layer is available. A globally-shared location transparent filesystem is provided. Process
placement is supported, but not automatic process migration. However, it is possible
to checkpoint a process manually and restart it on a separate machine. A technical
comparison of Amoeba with Sprite was performed by Douglis et al. [44].

GENESIS [45] is a distributed operating system that was developed at Deakin Uni-
versity during the late 1990s. Its primary focus is as a platform for parallel applications
that provides a single system image and natively supports both the message passing

8

and distributed shared memory programming models. GENESIS utilizes a client-server
microkernel architecture, and the resulting low-level messaging mechanisms are used to
efficiently implement the programming model semantics. A global scheduler uses in-
formation gathered by a resource discovery manager to efficiently manage cluster-wide
process placement and migration. Processes can be created and migrated in groups.
Unified file and device spaces are provided, based on their implementation in the earlier
RHODOS system [46].

3.3.2. BProc

The Beowulf Distributed Process Space (BProc) [47] is a process migration system
implemented by Erik Hendriks as a patchset for the Linux kernel. A master/slave model
is used, where processes running on the slaves appearing transparently as local processes
on the master. As a result, a single-system image of a cluster-wide process space is
presented to users of the master node. Modified kernels are required for both masters
and slaves. Migration can only take place via an API call from user code, although this
call can take place transparently via a library or command-line tool. Once a process has
been migrated, I/O requests are not redirected back to the master, so care must therefore
be taken to ensure that shared file systems are used where appropriate. BProc has been
successfully used for large deployments, such as the 1, 000+ node Pink and Lightning
clusters at Los Alamos (see Section 5).

3.3.3. OSF/1 AD TNC

OSF/1 AD TNC [48] is an extended version of the OSF/1 operating system devel-
oped to provide transparent access to multicomputers. This work was performed during
the early 1990s as a collaboration between the Open Software Foundation and Locus
Computing Corporation and utilises the Mach 3.0 microkernel developed at Carnegie
Mellon University. Compatibility is provided with the System V, POSIX and 4.3 BSD
APIs. The OSF/1 file system was extended to provide a unified name space, location
transparency and remote device handling. A caching mechanism is provided to improve
performance when interacting with remote files, and a message-based token protocol is
used to synchronize file access. A unified process space and process migration are imple-
mented via a virtual process layer that directs process operations to the node where the
physical process is located. System calls are provided for remote forking, migration and
execution. Automated load levelling is provided via daemons that implement the load
levelling algorithm originally developed for MOS (see Section 3.3.5 below). OSF/1 AD
TNC was shipped with the Intel Paragon XP/S Supercomputer and used in deployments
of up to 512 nodes.

3.3.4. Solaris MC

Solaris MC [49] is a prototype multi-computer operating system developed at Sun
Microsystems Laboratories during the early-to-mid 1990s. It was implemented through
modification of the Solaris operating system and provides a number of SSI features while
preserving ABI/API compatibility with existing Solaris applications. At the code level,
this is achieved by utilising functionality and techniques from the Spring distributed
operating system [50] – in particular the use of IDL and CORBA to implement distributed
objects using C++. Kernel hooks were added to the source code for Solaris 2.4 and
2.5 in order to interface with the C++ code where appropriate. A global file system,

9

titled Proxy File System (PXFS), was implemented by extending the existing Solaris file
system via the vnode interface, allowing the file system to be implemented without kernel
modifications. A global process space is provided, with the /proc interface extended
providing details of all processes in the cluster. Remote execution of processes was
implemented, although remote forks and process migration, though planned, were not
implemented. A global I/O space is provided that allows cluster-wide access to I/O
devices, with the Solaris device naming scheme extended to include the cluster node
device names. A packet filter and routing scheme are used to ensure that network
connectivity is identical for all applications regardless of cluster node placement.

Solaris MC places a strong emphasis on support for high cluster availability. This
is implemented by the cluster membership monitor (CMM), a software component that
uses a distributed membership protocol to reach a global agreement on the current cluster
configuration. Testing was performed on sixteen dual-processor SPARCstation machines,
with parallel makes and multiple copies of a commercial database used to generate work-
loads. Although Solaris releases were available under an open source license from 2005
to 2010, the source for Solaris MC has not been released to the larger community.

3.3.5. MOSIX and Derivatives

MOSIX (Multicomputer Operating System for Unix, earlier incarnations were referred
to simply as MOS) is one of the oldest and perhaps the best-known SSI kernel patchsets.
Its origins can be traced back to early work by Amnon Barak on process migration for
version 6 of Bell Labs Unix in the late 1970s [51]. Support for version 7 of Bell Labs
Unix [52], AT&T Unix System V [53], and Berkeley Unix [54] followed later. From the
late 1990s onward development focused exclusively on Linux [55, 56]. MOSIX continues
to be actively maintained and developed at the time of writing, and is freely available,
albeit under a license that prohibits modification and redistribution.

Process migration in MOSIX is not completely transparent, as a distinction is made
between processes that can be migrated and regular Linux processes. Users explicitly
specify which processes are suitable for migration by launching them using the mosrun

command. This distinction is intended to prevent the migration of processes that are
unsuitable, either for efficiency reasons or due to their semantics, e.g., ps. The mosrun

command can also be used for process placement, where a normal Linux process is
automatically launched on a lightly-loaded remote node.

MOSIX bases automatic process migration decisions on information gathered from
running process and the load across the cluster environment. Process metrics include the
memory usage, rate of system calls, and the volume of IPC and I/O communications.
Cluster node metrics include processing capacity, CPU load, and free memory [57]. A
randomized gossip algorithm is used to maintain a distributed bulletin board containing
the cluster metrics [58]. Process reassignments can be triggered by a change in the
number of processes or their profiles, or a change in the utilization or number of cluster
nodes. An opportunity cost algorithm is used to decide whether processes should be
migrated and, if so, to which cluster nodes [59].

In the early 2000s it was decided to change the license of future MOSIX releases
away from the GPL open source license. As a result, in 2002 a fork of the last GPL
release of MOSIX was created by Moshe Bar [60]. The fork, titled openMosix, was
developed separately from the original MOSIX branch. Improvements to the initial

10

code base included auto-configuration and node discovery functionality, and new user-
land tools. Cluster-specific Linux distributions were created that integrated openMosix,
such as clusterKnoppix and Chaos [61]. Further development was halted in 2008, when
the developers wound up the project [62]. The reason given for the termination of the
project was that the increasing popularity of virtualization and multicore processors
eliminated much of the market for SSI clustering (see Section 6.3). Development of the
openMosix codebase has continued through the creation of another open source project,
titled LinuxPMI [63].

3.3.6. OpenSSI and Predecessors

The OpenSSI project, led by Bruce Walker (one of the LOCUS developers), is an
attempt to draw together a number of Linux and Unix clustering technologies in order
to create an “ideal” cluster operating system [64]. The starting point for the design
was the observation that Linux clustering technologies could be grouped into six broad
categories: high performance, load-levelling, web service, storage, database and high
availability. An ideal cluster operating system would address all of these use cases by
improving the availability, scalability and managability of the Linux kernel.

A large part of the implementation originated with code from NonStop Clusters
for Unixware project [34], which was contributed by Hewlett-Packard. This code had
originated with Locus Computing Corporation but had been further developed in the
interim by a number of companies: Platinum, Tandem, Compaq and SCO. During this
process, the code base had been ported to AIX, OSF/1 AD, Unix SVR4.x and Unix
SVR5. The NonStop Clusters code was used to implement cluster membership, IPC,
process management, process migration, clustered filesystems and clusterwide device
access. Supported IPC mechanisms include pipes, FIFOs, message queues, semaphores,
shared memory and sockets. IBM’s distributed lock manager (DLM) [65], implemented
as a kernel component and integrated with the cluster membership system, was added as
a general-purpose means of maintaining cache coherency. Code from the Linux Virtual
Server project (see Section 3.4) was integrated in order to support network-based load
leveling. Process-level load-leveling decision algorithms were adapted from MOSIX. User
Mode Linux functionality was included as a development aid. Support for a number of
cluster filesystem systems was included, including OpenGFS [66] and Lustre [67].

At the time of writing, work on OpenSSI appears to have stalled. The last stable re-
leases (for Fedora Core 3, RHEL 3 and Debian Sarge) were in 2005. The last development
release was in 2008.

3.3.7. Kerrighed

Kerrighed [68, 69] is a single-system image implementation for Linux, developed at
INRIA during the early-to-mid 2000s. It is implemented as a small (less than 200 lines)
patch to the Linux kernel itself along with a number of kernel modules and support-
ing userland tools. Kerrighed offers the most transparent single system image of all
the patchset-based implementations, to the point that the characteristics of individual
cluster nodes, such as their load, can be impossible to determine [70]. Much of this trans-
parency results from the use of software abstractions referred to as containers and linkers
[71]. These essentially act as shims between operating system components, implement-
ing a unified cluster-wide address space without requiring modification to the dependant

11

components. Sequential consistency for distributed memory managed by containers is
implemented via a write invalidation protocol.

Uniquely for a Linux-based system, Kerrighed’s distributed memory model allows
for thread migration, albeit with the attendant inefficiencies caused by OS-managed
remote paging (see Section 5). Process migration, process placement and process check-
point/restart are all supported via a global scheduler. All remote process functionality is
implemented using a technique referred to as process extraction, where “ghost processes”
are used as placeholder for the address space, file handles, signal data and process ID
of a remote process. The checkpointing mechanism supports shared memory parallel
applications.

Since 2006, the development of Kerrighed has been lead by Kerlabs, a company spun
out from INRIA. Various improvements and extensions to Kerrighed were implemented
during the late 2000s as part of the XtreemOS research project [72]. The resulting system
was titled LinuxSSI, and included enhancements to checkpointing, network transparency,
scheduling, packaging and testing. The last official Kerrighed release (3.0) was in 2010,
although some Ubuntu porting work was carried out by Kerlabs in 2012. However, at the
time of writing it is unclear whether or not the project is still under active development.

3.3.8. Clondike

Clondike (CLuster Of Non-Dedicated Inter-operating KErnels) [73] is a Linux patch-
set designed to create usable computing clusters from networks of workstations. A client-
server model is employed, where a set of permanent core nodes can assign processes to
detached nodes, which are workstations available on the local network. The goal is to
assign processes to detached nodes when they are idle, and migrate these processes away
when user activity resumes. The owners of workstations retain full administrative control
over their workstations, and security measures are in place to prevent guest processes
from performing potentially malicious actions, such as accessing file system resources
outside of the shared cluster filesystem. A kernel patch and kernel modules are used im-
plement the client and server functionality, with NFS used as the shared filesystem. Both
process placement and migration are supported. A subset of system calls are forwarded
from guest processes to the core nodes, providing partial transparency.

3.4. User-Level

Ghormley et al. present GLUnix (Global Layer Unix) [74], an implementation of SSI
on Solaris at the user mode level in the form of a runtime library, command-line tools
and an API. Remote execution of unmodified applications is supported, although appli-
cation support via the API is required to access more advanced features such as parallel
execution. Process migration is not supported, and a shared file system across cluster
nodes is assumed. The authors concluded that user-mode privileges were insufficient to
implement a fully transparent Unix SSI due to issues around terminal I/O, signals and
device access, amongst others. This realisation led to the development of SLIC [75], a
system that allows for the installation of minimal trusted kernel extensions.

A number of Java Virtual Machine implementations have been created that provide
a single system image of a cluster to Java applications. The underlying rationale is that
performance gains through parallel execution can be achieved with little effort through
the transparent use of distributed processors and memory, resulting in a global thread

12

space and global memory space. An early implementation was Java/DSM [76], which
was built using the existing TreadMarks DSM library. CoJVM [77] and follows a similar
approach, but uses a home-based rather than a homeless protocol. JESSICA [78] allows
for thread migration rather than thread placement to improve load balancing. DISK [79]
differs from the preceding implementations in that it uses Java objects rather than pages
as the unit of shared memory. cJVM [80] also uses a shared object model, and supports
three remote access methods: method shipping, thread migration and object migration.

Tan et al. present Shell over a Cluster (SHOC) [81], a variant of the Bourne-again
(Bash) Unix Shell that provides a single system image of a cluster via a command-line
interface. A shared file system across cluster nodes is assumed. A load manager process
executes on each cluster node, maintaining a cluster-wide load state by periodically
sampling and broadcasting the local load while receiving broadcasts from other nodes.
The load manager is consulted whenever a command is entered in order to determine
the cluster node on which to launch the resulting process. Furthermore, long-running
processes are automatically migrated if a suitable underloaded target node is available.
A forall extension of the Bash for construct is provided to facilitate scatter/gather
operations.

Zhang presents Linux Virtual Server (LVS) [82], an implementation of single system
image at the network service level. LVS allows scalable and highly available virtual net-
work servers to be created by aggregating clusters of commodity servers. Architecturally,
this is achieved by load balancing over a pool of cluster nodes running individual service
instances but sharing a common storage backend. The required load balancing function-
ality was implemented by modifying the TCP/IP stack of the Linux kernel. Initially,
this was achieved through patchsets that implemented various techniques (network ad-
dress translation, IP tunneling and direct routing), although some of this functionality
has since been integrated into the mainline Linux kernel. User-space administration and
monitoring tools are also provided. LVS was included in Red Hat’s Piranha clustering
product, and its successor, titled Enterprise Linux Cluster Suite [83].

4. Techniques

A wide variety of implementation techniques have been devised in order to aggregate
and unify distributed resources. Work has also been published on security issues and the
unification of resources beyond the cluster level by integrating with grids and clouds. As
in Section 3 our treatment will reflect the prominence of the kernel-level approach in the
literature. Furthermore, we will defer to existing surveys where possible.

4.1. Process Placement and Migration

There are two broad approaches to the provision of unified process spaces: placement
and migration [84]. Placement, also referred to as remote invocation, is a non-preemptive
action that transfers the information required to start the process to another node before
execution commences. In contrast, migration is a preemptive action that transfers the
state of an already running process to another node. When a process is being migrated,
the first step is typically to checkpoint the process, i.e., record the aspects of its state
necessary for a later restart [85]. Process state can include attributes such as the register
set, memory space and file handles. Some implementations, such as MOSIX, transfer

13

the memory space completely during the migration phase. Others, such as Kerrighed,
migrate memory pages as necessary when they are referenced by the migrated process.
The level of transparency of the unified process space also varies. For example, MOSIX
differentiates between local processes and those migrated in or out. In contrast, Kerrighed
provides a completely unified process space, with the ps command listing all processes
running across the cluster. Although migration is usually implemented as part of a
larger single system image design effort, isolated implementations such as CRAK (a
Linux module) [86] have also been developed. A number of previous surveys of process
migration tools and techniques have captured the then state of the art, such as those
by Smith [87], Nuttall [88] and Milojičić et al. [89]. Table 1 summarises the process
management capabilities of the systems surveyed in Section 3.3.

4.2. Distributed File Systems

In the context of SSI, distributed file systems are typically used to provide a unified
file system abstraction across nodes. This is achieved by providing location transparency
and network transparency. Location transparency is provided if file system paths do not
identify the node that the file is physically stored. Network transparency is provided if
file operations can be applied equally to local and remote files. Dedicated distributed
operating systems, such as LOCUS, have tended to implement custom filesystems to
achieve the desired level transparency, while extensions to pre-existing operating systems
often leverage existing distributed systems such as NFS. Surveys dealing specifically with
distributed file systems (DFSs) have been published by Satyanarayanan [90], and Levy
and Silberschatz [91]. These give a good overview of both general purpose DFSs and
those developed as part of larger distributed operating system efforts, such as Sprite and
Locus. A later survey by Thanh et al. [92] deals with contemporary general purpose
systems and proposes a taxonomy.

Early versions of MOSIX used standard NFS [54], although a more advanced MOSIX-
specific alternative (DFSA) was developed later that improved performance by inte-
grating with the process migration mechanism [93]. These options were preserved in
openMosix [94]. Kerrighed similarly can be configured to use either NFS or KerFS, an
experimental system with better performance but reduced stability [95]. OpenSSI can
integrate with a number of file systems and distributed storage solutions, such as GFS,
OpenGFS, Lustre, OCFS and DRBD [4]. Clondike has been configured to use both NFS
and v9FS, a Linux port of the Plan 9 file system [95]. Table 1 includes a column for the
file systems available for the systems surveyed in Section 3.3.

4.3. Aggregation of Peripheral Devices

Techniques for presenting unified device spaces range from hardware-level approaches
through to APIs. The majority of systems referred to in Section 3.3 implement kernel-
level device aggregation to varying degrees of sophistication; the reader is referred to
the publications cited there for further details. For the remainder of this section we will
focus our attention for the most part on notable non-kernel approaches.

Ho et al. [96] present a system that provides a single I/O space for distributed block
storage via a device driver implementation. The device drivers cooperate in a peer-to-
peer fashion, with each maintaining a local buffer cache. Non-local I/O requests are
redirected to the appropriate peer. A distributed locking scheme is implemented at the

14

Implementation Placement Migration DSM Transparency Extension
Amoeba Yes No No Complete No
BProc Yes Yes No Partial Yes, Linux
Chorus No Yes No Complete No
Clondike Yes Yes No Partial Yes, Linux
GENESIS Yes Yes Yes Complete No
LOCUS Yes Yes No Complete No
Kerrighed Yes Yes Yes Complete Yes, Linux
MOSIX Yes Yes No Partial Yes, various
OpenSSI Yes Yes No Complete Yes, Linux
OSF/1 AD TNC Yes Yes Yes Complete Yes, OSF/1
Solaris MC Yes No No Complete Yes, Solaris
Sprite No Yes No Complete No
V No Yes Yes Complete No

Implementation Filesystems
Amoeba Custom
BProc NFS
Chorus Custom
Clondike NFS, v9FS
GENESIS Custom
LOCUS Custom
Kerrighed NFS, Custom (KerFS)
MOSIX NFS, Custom (DFSA)
OpenSSI GFS, OpenGFS, Lustre, OCFS and DRBD
OSF/1 AD TNC Custom (UFS, PFS)
Solaris MC Custom (PXFS)
Sprite Custom
V Custom

Table 1: A summary of the capabilities of selected kernel-level SSI implementations: the
name of the implementation, whether process placement is supported, whether process
migration is supported, whether distributed shared memory across processes is supported,
whether the unified process space is fully transparent; whether the implementation is
based on an existing operating system; and whether the implementation uses a custom
or pre-existing filesystem (shown separately).

15

buffer cache level in order to maintain consistency. The device driver implementation
presents a view of a single large disk to the OS layers above. Petal [97], developed at
DEC, is a similar system that uses the Paxos algorithm to maintain consistent global
state.

Hypervisor-level SSI implementations (see Section 3.2) typically host a single guest
operating system on one of the cluster nodes. Relying on the shared memory implemen-
tation to transfer data via Ethernet to another for cluster node for later retransmission
via Ethernet is inefficient. An obvious optimization is to transfer data using the locally-
available NIC when possible. An extension to the DVMM distributed hypervisor that
addresses this issue is presented in [98]. The extension aggregates the NIC resources
across the cluster and presents them to the guest OS as a unified virtual NIC while opti-
mizing data transfers in order to reduce unnecessary network traffic. MOSIX implements
a similar scheme at the kernel level, allowing migrated processes to communicate directly
via sockets rather than routing all communications through home nodes [57].

Virtual OpenCL (VCL) provides an API-level abstraction of the GPUs distributed
across a cluster [99]. Allocation is performed through context requests that may specify
a number of GPUs. Depending on the size of the request, the VCL runtime environment
may allocate one or more GPUs installed in a single machine or a collection of devices
spanning several machines. Contexts can be utilized in a transparent fashion using the
standard OpenCL programming model. VCL was used as the basis of an extended
OpenMP implementation that simplifies the task of writing scatter/gather applications
that leverage multiple OpenCL kernels across distributed CPUs and GPUs [100]. A
VCL cluster composed of 25 AMD Radeon GPUs was constructed that was capable
of computing 25 billion SHA1 hashes per second using the HashCat password recovery
algorithm [101].

SGI’s Reconfigurable Application-Specific Computing (RASC) devices extend the Al-
tix system infrastructure (see Section 3.1) by directly attaching FPGA coprocessors to
the NUMAlink fabric [102]. This arrangement places the FPGAs as peers of the CPUs
within the coherency domain of the system, allowing for low-latency, high-bandwidth
access. A development environment is provided that supports the use of both high-level
(e.g., Handel-C, Mitrion-C) and low-level (e.g., Verilog, VHDL) hardware description
languages for generating FPGA configurations. A single system image of the available
FPGAs is provided by the RASC Abstraction Layer (RASCAL), a software stack that
performs automatic wide scaling across multiple FPGAs [103].

4.4. Security Issues

Most kernel-level SSI implementations assume a trusted network where only autho-
rized nodes are allowed, with security measures in place at the cluster perimeter. In
practise, this would typically be enforced using VLANs and/or subnets. Security warn-
ings about the dangers of untrusted networks are to be found in the manuals for the
leading systems: BProc, MOSIX, openMosix and Kerrighed. These systems are not
hardened against malicious network packets, leaving them vulnerable to denial-of-service
attacks. A National Vulnerability Database entry (CVE-2002-2079) for MOSIX and
openMosix was created to this effect in 2002. The MOSIX manual [57] lists a number
of potential security vulnerabilities that should be guarded against: theft of super-user
rights, IP masquerading by hostile entities, leaking of multi-cluster passwords, and unau-
thorized job migration. The latter issue is addressed in MOSIX through the use of client

16

and server keys; servers will only accept jobs if their key matches that presented by the
client.

Latter [104] considers the security issues that arise when kernel-level SSI systems
are deployed across wide area networks, such as multi-site corporate networks or the
Internet, rather than in restricted subnets. A security analysis of openMosix is performed
and a number of problematic areas are identified: node discovery relies on multicast, no
authentication mechanism is in place to prevent malicious nodes from joining clusters,
and communications between nodes are neither encrypted nor validated. A number of
improvements and best practices are suggested: the addition and removal of nodes to
the cluster should be securely negotiated, IPSEC should be used to create secure inter-
node VPN tunnels, and packet filtering should be used to exclude external traffic from
vulnerable ports. Additionally, the Layer-2 Tunneling Protocol could be used to provide
a virtual Class B network inside the IPSEC tunnel mesh between cluster nodes. The
performance implications of the proposed security enhancements are not considered.

Kačer and Tvrd́ık [105] examine security issues around process migration, where
processes that have access to sensitive information can potentially be compromised after
migration to malicious nodes. Potential threats are identified: running processes may
be modified so that unauthorized file access is attempted on the home node; processes
may be migrated with sensitive information in their memory space; and, processes may
be modified before being migrated elsewhere. A process labeling method, referred to
as stigmata is proposed that addresses these concerns. Performing a sensitive actions
results in a process being permanently labeled with an appropriate stigma. Any stigmata
assigned to a process are inherited by its children. The presence of a stigma can prevent
a process from being migrated to an untrusted node. Attempting to perform a sensitive
action while migrated results in the guest process being terminated and its state restored
from a checkpoint on a node with appropriate permissions.

Šťava and Tvrd́ık [95] consider issues around filesystem security that arise when SSI
systems are deployed to non-dedicated clusters. Authentication and privacy issues are
addressed, in particular the enforcement of access control to sensitive files in the absence
of administrative control over all cluster nodes. The Clondike kernel-level SSI implemen-
tation in conjunction with the v9fs filesystem from the Plan 9 operating was used as the
starting point. The OpenSSL library was used to augment v9fs with authentication and
encryption mechanisms. Access control was implemented using a configuration mecha-
nism that allows access to files and directories to be restricted to trusted nodes. Migrated
processes are assigned private filesystem namespaces with the privileges of the process
owner. A performance evaluation was performed, and the authors note an almost 20-fold
increase in mounting time when authentication is enabled. Furthermore, a significant
throughput decrease of up to 50% was observed when encryption is enabled.

4.5. Grid Integration

MOSIX has been extended with a grid management system that enables the creation
of federated clusters-of-clusters [106]. Automatic resource discovery is implemented via
a randomized gossip algorithm. Inter-cluster process migration is supported, with LZOP
compression of process memory used to minimize transfer times. A sandboxing scheme,
based on the interception of system calls, is used to ensure that migrated processes cannot
access local resources. The system adapts automatically to the addition and removal of
new clusters. Users can control which of their cluster machines are available for use by

17

other grid members via the creation of cluster partitions. Local processes take precedence
over those of guests, and a flood control system is in place to prevent local machines from
becoming overloaded with guest processes. An economy-aware extension was developed
that allows inter-cluster process migrations to be scheduled via a spot market [107].

XtreemOS [108] is an operating system that transparently utilizes grid resources at
the kernel level. Secure resource management is provided through the implementation of
virtual organizations. One of the three available flavors of the system integrates with the
LinuxSSI patchset, enabling access to federated grid resources on single system image
clusters (see Section 3.3.6). Transparent integration of out-of-cluster compute resources
into SSI clusters is not supported. However, the implementation of checkpointing and
process group migration features allow jobs to be migrated from one cluster to another
[109].

4.6. Virtualization and Cloud Integration

SSI and virtualization are closely-related techniques in that they both abstract re-
sources on behalf of the user. SSI implementations allow a collection of discrete physical
machines to be presented to the user in the guise of a single virtual machine. Similarly,
virtualization hypervisors and IaaS implementations allow physical machines to be pre-
sented to the user in the guise of a collection of discrete virtual machines. From the
user’s point of view, a collection of machines exposed via SSI is effectively aggregated
into a logical whole, while the same machines exposed via virtulization and IaaS would
appear as a diverse collection of discrete entities. However, the approaches ar somewhat
similar in that they divorce the resources available to an OS from the physical hardware.

The earliest work on virtualization was performed by IBM in the 1960s, with systems
such as the CP-67 and VM/370 pioneering providing the first widely adopted implemen-
tations [110]. The theoretical foundations for virtualization were developed by Goldberg,
Popek and others in the late 1960s and early 1970s [111]. These were developed further
by Robin [112] into the common classification of hypervisors into three types, where Type
1 hypervisors that run directly on the physical hardware, Type 2 hypervisors that are
hosted within a conventional operating system environment, and hybrid hypervisors that
execute privileged instructions in software. This interpretation of Goldberg’s work has
been challenged, however, with some commentators arguing that practically all hypervi-
sors are technically Type 1 according to Goldberg’s original definition [113]. Furthermore,
container-based virtualization, a lighter-weight alternative to full virtualization, has since
become popular. Container-based schemes avoid running a full hypervisor by using the
same operating system instance for both the host and guests. Implementations include
LXC (Linux), Zones (Solaris) and Jails (FreeBSD) [114].

Possible combinations of SSI with virtualization technology are examined by Gallard
et al. [115]: Type 1 virtualization via SSI and vice versa, Type 2 virtualization via
SSI and vice versa, and containers on SSI and vice versa. Each scenario is evaluated
in terms of what the authors identify as the advantageous capabilities of virtualization:
isolation, server consolidation, application portability, virtual machine portability and
suspend/restart. Examples of SSI on Type 1 and 2 virtualization are given in Section 3.2
above. More complex arrangements in the form of multi-level arrangements of virtualiza-
tion and SSI are proposed in a follow-on paper [116]. In these architectures, portability
is delivered by virtualization while resource aggregation is provided by SSI. This layer-

18

ing would allow applications written for a given processor to take advantage of all the
resources in a cluster even if the cluster uses another processor architecture.

Maoz et al. [117] present a system that extends MOSIX by allowing processes to be
launched in virtual machines, which can themselves be migrated. A virtual machine
that encapsulates a job is created automatically on submission. A simple inter-cluster
file sharing scheme is supported through the specification of a list of files to be packed
into the VM. A pool of cached VM instances can be used to reduce job startup time.
Redirection of the VM I/O streams and signals back to the launch node is performed
automatically. Two migration modes are supported: fold, where running processes are
migrated back to the home-node VM before the VM itself is migrated, and no-fold, where
the home-node VM and its distributed processes are migrated separately. The no-fold
mode was found to have better performance, but requires the MOSIX to be running at
both migration endpoints.

The on-demand nature of the cloud paradigm enables various techniques for scaling
applications at the VM, network and platform levels [118]. Tools that simplify the
creation of scalable cloud-based compute clusters by bridging the gap between IaaS and
PaaS are increasingly available. For example, the Nimbus project has developed a suite
of tools that simplify the execution of scientific computing applications in the cloud by
automating the tasks of instantiating, configuring, monitoring, repairing and scaling IaaS
clusters [119]. Creating an SSI instance from a pool of virtual resources provisioned from
an IaaS provider affords the ability to leverage the “on-demand” nature of IaaS to quickly
and easily adjust the size of the resource pool.

A number of scenarios that combine the XtreemOS grid operating system (see Sec-
tion 4.5) with cloud technologies are proposed by Morin et al. [120]. One of these is
the creation of a large virtual SMP machine using the SSI flavour of XtreemOS. This
scenario is proposed as a means of creating on-demand SMP virtual machine instances
incorporating much more processing power than the CPU maximum typically offered by
IaaS providers. The creation of XtreemOS SSI clusters from compute resources federated
across multiple IaaS providers is proposed by Kielmann et al. [121].

ElasticSSI [122] is a proposal to implement on-demand provisioning of SSI clusters
via a PaaS interface. The number of virtual machines that comprise individual clusters
would be adjusted through the application of elastic scaling. The automation of the
scaling process would result in clusters that are self-optimizing with respect to resource
utilization; virtual resources would be allocated and released based the value of system
load metrics, which in turn would be dependent on the resources allocated. The scaling
process would be transparent to the end user as the SSI implementation would maintain
the illusion of interacting with a single OS instance. Heterogeneity could be introduced
into the resource pool by allocating virtual machine instances of varying types based on
the value of metrics such as system-wide CPU load and memory utilization. Pfister [123]
proposed a similar scheme for combining multiple multicore virtual machines provisioned
via IaaS.

The factored operating system (fos) [124], developed at MIT, provides a single system
image across both multicore machines and cloud virtual machines. This characteristic
feature of this approach is that the operating system is factored into function-specific
services, where each service is distributed into spatially distributed servers. Operating
system specific functions such as file system access and physical memory allocation are
performed by a combination of one or more servers known collectively as a fleet. Each

19

server resides on a single core with applications running on separate cores. The system
is implemented as a paravirtualized machine in order to facilitate deployment to public
clouds.

MOSIX Reach the Clouds (MOSRC) is an extension to MOSIX that allows migrated
processes to access files without copying them to the remote execution environment [57].
This allows applications to leverage commercial clouds to process locally-stored data or
vice versa. MOSRC is intended for situations where organizations do not wish to store
data with commercial cloud providers, or wish to conveniently process data that is stored
remotely.

4.7. Miscellaneous

Scyld ClusterWare [125] is a cluster management software suite that provides a single
system image of a cluster at the configuration level. Changes to the configuration on the
master are pushed out automatically to compute nodes, maintaining a consistent cluster-
wide operating environment. By providing a central point of configuration, compute
nodes can be added, updated and reprovisioned easily. Support for distributed process
spaces using BProc is also included.

Plurix [126] (not to be confused with the Brazilian operating system of the same
name) is a distributed shared memory operating system implemented using Java. A
custom compiler is used to provide access to the low-level hardware resources, such
as device registers, that are not normally available to Java applications. The memory
available in cluster nodes is organized into Distributed Heap Storage (DHS) containing
both data and code. The DHS is page-based, allowing hardware MMU functionality to
leveraged in order to efficiently trigger network transfers of heap segments. A token-
based transactional consistency model is used, ensuring that only one node at a time
enters the commit phase. Automatic process migration is performed via a load balancing
mechanism. Details of the application development process are vague, but it appears to
be based on standard Java code.

5. Deployment, Utilization and Benchmarking

Brock et al. [11] describe a 16-way ccNUMA system constructed at IBM from four
individual four-way SMP machines. A Synfinity switch was used to provide the cache-
coherent interconnect. The system featured a total 16 350MHz Intel Xeon processors and
4GB of RAM. A performance monitoring card was used to observe traffic on the intercon-
nect, allowing remote memory accesses to be monitored without affecting performance.
A set of APIs that provided a resource set abstraction was provided in order to allows
applications fine-grained control over memory and processor affinity. The performance
of six applications from the Splash-2 benchmark were evaluated. The authors concluded
that the results were “not ideal” but more than adequate for several applications.

A 1024-node SSI cluster, titled Pink, was deployed at Los Alamos National Labs
in 2003 [127]. At the time, it was the world’s largest single system image cluster. A
Myrinet interconnect was used to provide high-speed network connectivity between the
1024 dual-processor 2.4 GHz Intel Xeon compute nodes, each containing 2GB of mem-
ory. The resulting system had a theoretical performance of 9.6 Teraflops, with a nominal

20

price/performance ratio of 0.625 USD per Megaflop. BProc was used to provide sin-
gle system image at the kernel level. Pink was built as a proof-of-concept testbed for
Lightning, a similar 1408-node cluster later deployed to production.

Kofahi et al. [128] evaluate the performance of a MOSIX deployment on a six-node
Linux cluster with a Fast Ethernet interconnect. Execution times were recorded for
applications with two implementations: one using migratable processes and another using
LAM MPI. The rationale of this approach is that MOSIX’s load balancing functionality
might result in better efficiency than a message passing approach. The applications
considered were an unnamed CPU-bound computation (apparently busy waiting) both
with and without background load, and a matrix multiplication application. In all cases
the MOSIX approach was found to perform better, with speedups ranging from negligible
values to greater than 1.5.

A comparison of openMosix, OpenSSI and Kerrighed was performed by Lottiaux et
al. [4]. The feature sets of the three systems are compared in a number of areas, includ-
ing transparency, process management, IPC management, fault tolerance and hardware
support. A comparative performance evaluation is provided for a number of common
features: process migration, stream migration and file system bandwidth. A limited
comparison of shared memory performance was performed. This activity was limited
by the fact that only Kerrighed has native shared memory support; OpenSSI provides
limited support for System V shared memory segments, while openMosix has no built-in
support for shared memory. Only Kerrighed exhibited a speedup for benchmark appli-
cations that utilize System V shared memory. The authors conclude that, at the time of
writing, OpenSSI was the most stable of the three systems while Kerrighed offered the
best performance.

Osiński and Niewiadomska-Szynkiewicz [70] performed a similar three-way compari-
son between openMosix, OpenSSI and Kerrighed. Evaluation was performed on a hetero-
geneous three-node cluster. Two applications were considered: a Monte Carlo simulation
and a an application comprised of a series of system calls. The results mirrored those
of Lottiuax: Kerrighed was found to be the best-performing system in terms of speedup
but was not found to be stable; attempting to run the Monte Carlo application with
large numbers of processes resulted in cluster-wide system crashes. Interestingly, de-
tailed load balancing results for Kerrighed could not be obtained due to the extent of
the transparency it provides, i.e., it was not possible to determine the load on individual
cluster nodes. OpenSSI performed best in terms network bandwidth utilization for the
Monte Carlo simulation, but was again surpassed by Kerrighed during the system calls
benchmark.

A library, titled gthreads, allows OpenMP applications to run unmodified across Ker-
righed clusters. This is achieved by providing an implementation of the POSIX threads
interface that hooks into Kerrighed modules [129]. In effect, the entire cluster is exposed
to the OpenMP runtime environment as a single SMP machine. An optimization is pro-
vided that avoids the maintenance of cross-cluster memory coherency for thread-private
data. Implementation of POSIX thread synchronization primitives, such as locks and
semaphores, is delegated to the corresponding Kerrighed module. Performance evalua-
tion was performed by running a water flow modeling application of four-node cluster
comprising four compute nodes, each with 512 MB of memory and a single Pentium III
500MHz processor, connected by a 100Mb Ethernet network. Evaluation of the applica-
tion’s performance on a true four-way SMP machine determined a speedup of 3.62. In

21

contrast, the speedup on the virtual SMP machine was 0.46, i.e., a slowdown of greater
than two. The authors conclude that this approach “won’t result in efficient code when
executed on a SSI operating system” and that “specific work should be done to take
into account the specifics of SSI operating systems.” Nevertheless, results obtained on
more modern hardware would be of interest. The authors also reference optimization
techniques that could be used to improve performance [130].

6. Adoption of Kernel-level SSI

Kernel-level SSI seemed to be on the cusp of emerging as a mainstream technique
during late 1990s, and features prominently in introductory books on cluster computing
from this period [131, 132, 5]. Pfister’s 1998 book [131] devoted an entire chapter to the
benefits of kernel-level SSI. Just over a decade later, he posed the following question in
his blog: “Why hasn’t SSI taken over the world?” He went on to highlight the lack of
adoption of kernel-level SSI as follows: “After last-minute. . . pull-outs and half-hearted
product introductions by so many major industry players - IBM, HP, Sun, Tandem,
Intel, SCO - you have to ask what’s wrong.” There is an established and rich literature
on the adoption of technology that may provide some answers. While a deep discussion
of technology adoption literature is outside the scope of this article, extant research may
provide a lens through which we may begin to understand the failure of kernel-level SSI
to be adopted widely.

This section provides an overview of the claimed benefits and drawbacks associated
with kernel-level SSI, and examines the extent to which virtualization technology com-
petes against it. Finally, key technology adoption literature is used to analyse the failure
of kernel-level SSI to be adopted as a mainstream technology. Three specific perspectives
are considered: diffusion of innovation, standards of economics and disruptive innovation.

Most modern clusters use freely-available open source operating systems, with Linux
being the most popular. As a result, cluster administrators are free to choose their
preferred operating system without regard to cost. As several SSI implementations, such
as Kerrighed, are themselves freely available, the issue of selling SSI in a commercial
sense does not arise; the choice of whether or not to adopt it depends largely on utility
rather than cost.

An assessment of the lack of adoption of process migration, which could be considered
a sub-field of kernel-level SSI, was performed by Milojičić et al. [89]. The authors identify
a number of misconceptions that they believe are widely held: that implementations of
process migration are complex, entail unacceptable costs, lack support for transparency,
and lack support for heterogeneity. In contrast, they identify what they regard as the
true barriers to adoption: lack of applications, lack of infrastructure, lack of necessity,
and sociological factors. These are themes that arise again during our discussion below,
except applied more broadly to kernel-level SSI as a whole.

6.1. Claimed Benefits

Kernel-level SSI seeks to diminish the effort required to utilize distributed computing
resources through transparent aggregation. Claimed benefits typically center on the
ability of transparency to simplify the administration and use of clusters. Administrators
can take advantage of transparency to manage the cluster-wide OS as a single unit.

22

Similarly, features such as distributed file systems and process migration allow users to
use familiar tools and abstractions in a transparent fashion while working with distributed
resources. More specifically, Buyya et al. [1, 2] identify the following benefits of SSI:

• A simple, straightforward view of all system resources and activities from any node
in the cluster.

• Users do not need to concern themselves with where in the cluster their applications
will run.

• Resources can be used transparently irrespective of their physical location.

• Users can work with familiar interfaces and commands.

• Administrators can manage the entire cluster as a single entity.

• Reduced risk of operator errors, resulting in improved performance, reliability, and
higher availability.

• Avoids the need for skilled administrators.

• Simplifies system management and thus reduces cost of ownership.

6.2. Drawbacks

The literature and anecdotal evidence suggest a number of drawbacks that hinder the
deployment of SSI clusters in practise. These include:

• Performance and Scalability Most kernel-level SSI implementations attempt to
mimic the behaviour of familiar single-node operating systems as closely as possi-
ble. Unsurprisingly, many single-node OS features, such as file position pointers,
were not designed with horizontal scalability in mind. Distributed implementations
of these features necessitate the implementation of system-wide shared resources
protected by locks, leading to severe contention issues at scale. This leads to a con-
flict between the desire to accurately mimic the features provided by single-node
OSes and the inability of those features to scale [123].

• Security As discussed earlier in Section 4.4, most kernel-level SSI implementations
assume a trusted network where only authorised nodes are allowed, with security
measures in place at the cluster perimeter. SSI implementations are vulnerable to
a number of potential security vulnerabilities that are likely to be unacceptable to
enterprise IT departments.

• Concurrent Application Instances Many applications have been designed and im-
plemented under the assumption that they will execute in a unary fashion on a
single OS instance at a time. One of the reasons for the success of virtualization is
that the isolation provided by virtual machines allows many of these of these unary
applications to be consolidated on a single physical machine. Conversely, a single
system image implementation would be forced to either modify the application or
else run a single instance irrespective of the number of cluster nodes. For exam-
ple, a scalable web serving cluster might utilize multiple instances of the Apache

23

web server running on multiple physical or virtual machines, which are clustered
together to load balance incoming requests. Replicating this arrangement using
process migration would be difficult, as a host of issues, such as contention for
ports and files, would arise if multiple instances of Apache were run simultaneously
[123].

• Cluster Availability Ease of management is often cited as a benefit of SSI operating
systems. However, occasionally the operating system itself must be upgraded. The
favoured approach for updating clusters is to roll out updates to one node at a
time. This staggered approach to updating ensures that the cluster maintains high
availability during the update process. Newly-updated nodes are typically evalu-
ated thoroughly and tested for problems before subsequent nodes are examined.
This is a time consuming but proven approach. SSI implementations can simplify
this by simultaneously updating the entire cluster. However, under this scenario a
single faulty update can potentially bring the entire cluster offline. This is a risk
that many cluster administrators do not appear to be willing to take [123].

• Application Placement Distributed systems are often carefully managed by expert
system administrators who place applications on specific nodes in order to maximise
overall system performance and reduce interference among competing processes
[133, 134]. One of the advantages of SSI is that processes are migrated between
nodes in a seamless manner. However, this feature can be a double-edged sword
as automated migrations may result in placements that are obviously suboptimal
to a human operator. For example, a number of I/O intensive processes may be
migrated to the same cluster node, resulting in the locally-available I/O bandwidth
being saturated.

• Installation Conflicts Most contemporary kernel-level SSI implementations are im-
plemented as patchsets against individual kernels. The installation process involves
downloading the kernel source, applying the patchset then compiling and installing
the new kernel along with required support utilities. Cluster-level configuration
may also be required if auto-discovery is not supported. Many Linux distributions
ship with modified versions of mainline kernel releases. This can potentially lead
to conflicts between the distribution and SSI patchsets.

Some of the issues outlined above can be solved or mitigated. Modern configuration
management tools (such as CFEngine, Chef and Puppet) simplify the task of updating
cluster nodes. Issues with multiple instances of the same application can be addressed
with container migration (see Section 4.6). Control over application placement could be
implemented through the provision of suitable support tools. Installation and support
issues can be resolved given the appropriate level of resourcing – an easy to install MOSIX
virtual machine image is available, and commercial support for Kerrighed is advertised
by Kerlabs.

Other issues, such as the limitations of distributed shared memory, are fundamental
and intractable given the current state of computing technology. Given the well-known
fallacies of distributed computing [135] it could be argued that the transparency provided
by SSI implementations will often be a “leaky abstraction” [136]. This is particularly
true for the majority of clusters that rely on commodity Ethernet networks rather than

24

high-performance cache-coherent interconnects such as SGI’s Altix [17]. Whether kernel-
level SSI implementations are truly suitable for use as general-purpose cluster operating
systems is therefore open to debate.

Furthermore, SSI operating systems are composed of separable concepts and com-
ponents, each of which has competition and/or is potentially more useful when used in
isolation. Configuration management tools such Puppet and Chef provide centralised
administration. Distributed file systems such as NFS and Lustre are widely used in
non-SSI clusters. Distributed process and job management can be achieved using queue
managers, such as PBS, rather than process migration. Fine-grained parallelism can be
achieved through the use of programming libraries such MPI and openMP. Increasingly,
users interact with clusters through higher-level platforms such as Apache Spark. Al-
though these views of the system are far from transparent, transparency, as noted above,
brings its own issues.

6.3. Competition from Virtualization

As noted in Section 4.6, SSI and virtualization are orthogonal approaches in some
respects as the former involves the aggregation of resources in a unified whole, while
the latter involves the division of resources into discrete virtual machines. From an ad-
ministration point of view, however, both approaches can be very similar: distributed
virtualization systems, such as VMware ESX, aggregate distributed computing resources
and present them as a single, unified, whole with a centralized point of administration
[137]. Tellingly, this transparency is presented to administrators as a management aid
rather than to end users in the form of additional operating system functionality. Mi-
gration is supported, but at the VM rather than the process level [41].

From the users’ point of view, discrete OS instances afford heterogeneity, familiarity
and isolation. Application code can be run unmodified. Parallelism can be supported by
running standard parallel processing frameworks across collections of virtual machines.
It could therefore be argued that virtualization has, to a large extent, usurped the role
intended for SSI operating systems. Under this analysis, the advocates for SSI were
correct in their assessment of the value of techniques such as aggregation and migration
but misjudged the level of abstraction at which this functionality is most useful: at the
VM or container level rather than the process level.

That the ascendancy of virtualization coincided with the decline of SSI was not lost
on researchers in the field. In the tellingly-titled report “Is Virtualization Killing Single
System Image Research?”, Gallard et al. [116] point to the rise of virtualization tech-
nology for the decline of SSI, which they identify as providing competing capabilities.
The abandonment of the openMosix project cited as evidence. The members of the
openMosix project themselves gave the following rationale for its discontinuation [62]:
“The increasing power and availability of low cost multi-core processors is rapidly mak-
ing single-system image (SSI) clustering less of a factor in computing. The direction of
computing is clear and key developers are moving into newer virtualization approaches
and other projects.”

6.4. Analysis

Technology adoption literature focuses considerably on the process of technology dif-
fusion and the factors influencing technology adoption decisions. Rogers [138] suggests

25

five characteristics that influence the adoption decision of any given technology: relative
advantage, compatibility, complexity, trialability and observability. Depietro et al. [139]
extended the adoption debate by recognising that in addition to those characteristics
identified by Rogers, characteristics of the adopting organisation such as communica-
tion, and control and the environment in which the organisation operates, also play an
important role. In the case of interorganizational systems, Iacovou et al. [140] suggest
that perceived benefits, organizational readiness, and external pressure play a role in
adoption. External pressure is generated from competitive factors and the relative power
of trading partners.

Research has found that early adopters are more likely to be large firms [141, 142],
firms for whom an innovation is more likely to be most profitable [141, 143], and firms
with strong competitive positions [144]. Eveland and Tornatzky [145] list five elements of
context that influence technology adoption and diffusion, namely: (i) scientific complex-
ity, (ii) technological fragility, (iii) level of post-sale support, (iv) organisational impact,
and (v) the ease of productization. Similarly, research by Davis et al. [146] found that
perceived usefulness and ease of use were the most significant determinants of technology
adoption; recent research suggests that interorganizational trust has a significant positive
influence on these factors [147].

Another strand of technology literature focuses on the economic costs and benefits of
the technology adoption including both switching costs and network effects [148, 149].
Fichman and Kemerer [150] argue that software innovations are more likely to become
dominant technologies when they score highly on both diffusion of innovation and eco-
nomics of standards criteria. They also suggest that expectations about the technology’s
chances of dominance with positive expectations being reinforced by a strong scientific
base and a clear match between the technology’s unique strengths and industry trend.
Recent research on technology adoption has seen the emergence of more integrative stud-
ies that bring these various perspectives together [151].

Dedrick and West [152] suggest that a distinction needs to be made between the
adoption of an innovation and an adoption of a variant of the same fundamental technol-
ogy. Bower and Christensen [153] classified innovations as either sustaining or disruptive
with the former being the more prevalent. Sustaining innovations typically involve the
evolution of existing products and services by adding value or functionality; by contrast,
disruptive innovation creates new value networks and therefore impacts entire markets
[154]. Rigby et al. [155] propose three tests for establishing the disruptiveness of a given
innovation:

1. Does the innovation target customers who in the past haven’t been able to “do it
themselves” for lack of money or skills?

2. Is the innovation aimed at customers who will welcome a simple product?

3. Will the innovation help customers do more easily and effectively what they are al-
ready trying to do? Christensen [154] notes that for an innovation to be disruptive,
the incumbent product and service offerings must overserve the existing market
needs.

6.4.1. Diffusion of Innovation Perspective

As noted in Section 6.1, the claimed benefits of kernel-level SSI center on ease of use
and ease of administration. However, there is little empirical evidence that SSI is more

26

effective in diminishing the utilization effort of distributed computing resources in relative
terms (e.g., in the case of virtualization) or for generalised use cases. Furthermore, the
drawbacks identified in Section 6.2 may actively work against its adoption.

Pfister [123] reported on his experience of two IBM focus groups on SSI. One group
included IBM customers running departmental servers with little knowledge of clusters;
the other with operational knowledge of running clusters. The former found the pre-
sentation on SSI too complex - they could neither understand what SSI was nor why
someone would need it. The latter “were amazed that it was possible, and thought it was
really neat, although some expressed doubt that anybody could actually make it work.” In
both focus groups, the IBM customers would not adopt SSI. The academic literature and
this anecdotal evidence suggests that for most enterprise IT departments SSI would be
a complex technology to adopt. This complexity impacts the likelihood of adoption in a
number of ways. It requires a new skillset and a change to operational practices; both
of which require an upfront training investment. Furthermore, maintenance and support
for SSI installations is likely to suffer from the limited number of SSI specialists and both
a relatively small experience base and SSI professional community. This complexity also
has knock-on effects on trialability and observability. Even limited SSI trials require
a significant human resource and system investment and the key impact, efficiency in
utilising distributed computing resources through transparent aggregation is difficult to
observe by definition. SSI as a technology is difficult for peers to observe in that it is
used on systems that perform a backend rather than public-facing role.

6.4.2. Standards of Economics Perspective

It would appear from this analysis that SSI did not have the necessary character-
istics suggested by Rogers [138]. An analysis from the perspective of the economics of
standards literature also provides insights in to SSIs failure to evolve in to a mainstream
technology. SSI failed to achieve increasing returns of adoption from those sources crit-
ical to software adoption, namely learning by using, positive network externalities and
technological inter-relatednesss [150]. Firstly, the relatively small community of devel-
opers working on SSI resulted in a slow accumulation of experience in developing and
applying the technology. Significant technical shortfalls remained and a base of experi-
ence developers did not evolve. Secondly, SSI, as a technology, did not scale sufficiently
even at an early stage to benefit strongly from positive network effects. Given the niche
use scenarios, it is unlikely whether network effects would be strong even if adoption
increased. Thirdly, SSI did not have a large base of compatible products and services.
In fact, as discussed earlier SSI was both incompatible with other software products and
operational practices. Furthermore, it is clear from the comments in IBM focus groups
and the literature that SSI also suffered from a strong prior technology drag. The in-
stalled base of prior technologies including operating systems, applications and associated
programming models retarded adoption.

SSI did have a number of large, financially stable and influential sponsors; IBM,
Sun Microsystems, Intel, Tandem, SCO and SGI, amongst others, explored the technical
and commercial feasibility of SSI. Notwithstanding this, it is clear from Pfister [3] that,
at least in the case of IBM, these sponsors found it difficult to identify a commercial
market for SSI; customer expectations were low. A decline in interest in SSI within the
academic community is also evident from the reduction of publication activity observed

27

by employing the n-gram frequency analysis technique from the field of Culturomics [156]
(see Figure 2).

Despite the presence of strong sponsors, the combined effect of these factors is that
SSI may have suffered from a reluctance of these sponsors to further commercialise SSI
from what Farrell and Saloner [157] refer to as symmetric inertia. Symmetric inertia
arises when firms only moderately favour a change to a new technology and therefore are
not individually sufficiently motivated to drive the technology forward. In the case of
SSI, the factors would appear to have retarded the development of the SSI community
and network to a critical mass and introduced sponsor fear of a risk of stranding caused
by “backing the wrong horse”. The resulting excess inertia could explain SSI adoption
failure.

6.4.3. Disruptive Innovation Perspective

SSI also fails to meet the tests laid out by Christensen [154]. Firstly, SSI did not target
customers who in the past haven’t been able to “do it themselves” for lack of money or
skills. SSI remained relatively costly and required specialised knowledge. Similarly, SSI
failed the second test in that it was not simpler but rather more complex to execute than
existing solutions. Thirdly, while SSI might deliver the same or better performance, it
was not perceived to be easier to execute. Incumbent product and service offerings were
not over-serving the existing market needs.

From the analysis above, it would appear SSI did not score highly on criteria relating
to diffusion of innovation criteria, economics of standards or disruptive innovation. To
paraphrase Eveland and Tornatzky [145], SSI was scientifically complex, technologically
fragile, required specialized rare post-sale support, had low organisational impact, and
was not easy to productise.

7. Conclusion

Single system image embodies a rich variety of techniques and implementations with
a history going back over three decades. Many systems were developed in academic or
industrial contexts and are no longer available. Nevertheless, details of their implemen-
tation have been published in the literature, resulting in a significant body of work that
can be exploited in future SSI implementations and related areas such as distributed
file systems. Other implementations are available under open source licenses, allowing
development to continue into the future given sufficient interest.

Notwithstanding some notable exceptions, such as the as the inclusion of BProc in the
Scyld ClusterWare product, kernel-level SSI has gained little traction in the marketplace.
The distributed hypervisor approach to SSI is an exciting development but remains
immature. The rise of virtualization has been cited in some quarters as the primary cause
of the demise of kernel-level SSI. We believe that this view is over-simplistic. Nevertheless,
it is possible that the availability of virtualized clusters will lead to renewed interest in
the kernel-level SSI approach. Whether or not this comes to pass, it appears that the
future of SSI is bound closely with that of virtualization and cloud technologies.

In terms of the virtualization versus SSI debate, the market has spoken – virtual-
ization has been found to be useful as a mainstream general-purpose technology while
kernel-level SSI has not. The isolation and consolidation provided by virtualization

28

 0

 10

 20

 30

 40

 50

 1980 1985 1990 1995 2000 2005 2010

Fr
e
q

u
e
n
cy

Year

Google Books

(a) Number of publications containing the “single system image” trigram in the Google Books
corpus (version 20090715) between 1980 and 2008. At the time of writing, n-gram frequency
data is unavailable for years after 2008.

 0

 50

 100

 150

 200

 250

 300

 350

 1980 1985 1990 1995 2000 2005 2010

Fr
e
q

u
e
n
cy

Year

Google Scholar

(b) Number of publications found for the “single system image” search term in Google Scholar
for each publication year between 1980 and 2011. Data collected on September 27 2012.

Figure 2: Yearly frequency of publications containing the “single system image” trigram
as a proxy for academic interest. A peak in frequency during the early-to-mid 2000s is
evident.

29

clearly have major benefits, while the resource sharing and aggregation that characterize
SSI would appear to be orthogonal to this approach. Much of the novel recent work on
SSI has been on distributed hypervisors, which are themselves a form of virtualization
and hence stand in contrast to the classic kernel-level approach. Increasingly, a trend is
emerging towards a combination of outsourcing to public clouds and consolidation of in-
house resources via virtualization. Barring a technological sea-change it is difficult to see
how SSI operating systems will defy this trend to become widely installed on bare-metal
hardware in the foreseeable future.

Despite the lack up uptake for kernel-level SSI, it must be remembered that there was
a reason for the initial enthusiasm for the approach: it provides a very convenient method
of parallelizing workloads that lend themselves to process migration or distributed shared
memory. As noted above, it is clear that most organizations are not willing to devote
resources to running a dedicated SSI cluster. However, there are some compelling advan-
tages to a combination of both technologies, in the form of virtualized SSI clusters (see
Section 4.6). This approach allows SSI clusters to be used only for those workloads at
which they excel. The consolidation provided by virtualization allows clusters dedicated
to other roles, such as message-passing and map/reduce processing, to exist simultane-
ously on the same physical hardware. SSI then becomes another tool in the parallel
toolbox that is used where appropriate. Time will tell if the availability of easy-to-install
virtual clusters will lead to renewed interest.

Acknowledgements

The authors wish to thank Ian Lee for helping to gather the data depicted in Figure 2.
The research work described in this paper was supported by the Irish Centre for Cloud
Computing and Commerce, an Irish national technology centre funded by Enterprise
Ireland and the Irish Industrial Development Authority.

References

[1] R. Buyya, Single system image: need, approaches, and supporting HPC systems, in: The 1997
International Conference on Parallel and Distributed Processing Techniques and Applications,
Proceedings, Las Vegas, Nevada, USA, 1997, pp. 1106–1113.

[2] R. Buyya, T. Cortes, H. Jin, Single system image, International Journal of High Performance
Computing Applications 15 (2) (2001) 124–135.

[3] G. Pfister, The varieties of single system image, in: IEEE Workshop on Advances in Parallel and
Distributed Systems, Proceedings, 1993, pp. 59–63.

[4] R. Lottiaux, B. Boissinot, P. Gallard, G. Vallée, C. Morin, OpenMosix, OpenSSI and Kerrighed:
A comparative study, Research Report RR-5399, INRIA (2004).

[5] M. Baker, R. Buyya, Cluster computing at a glance, High Performance Cluster Computing: Ar-
chitecture and Systems 1 (1999) 3–47.

[6] K. Hwang, G. C. Fox, J. J. Dongarra, Distributed and Cloud Computing: From Parallel Processing
to the Internet of Things, Elsevier/Morgan Kaufmann, 2012.

[7] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim,
K. Mackenzie, D. Yeung, The MIT Alewife machine: architecture and performance, in: 22nd
Annual International Symposium on Computer Architecture, Proceedings, IEEE, 1995, pp. 2–13.

[8] D. Chaiken, J. Kubiatowicz, A. Agarwal, LimitLESS directories: A scalable cache coherence
scheme, SIGOPS Operating Systems Review 25 (Special Issue) (1991) 224–234.

[9] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz,
M. S. Lam, The Stanford Dash multiprocessor, Computer 25 (3) (1992) 63–79.

30

[10] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin, D. Nakahira,
J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, J. Hennessy, The Stanford FLASH multipro-
cessor, in: 21st Annual International Symposium on Computer Architecture, Proceedings, IEEE,
1994, pp. 302–313.

[11] B. C. Brock, G. D. Carpenter, E. Chiprout, M. E. Dean, P. L. De Backer, E. N. Elnozahy, H. Franke,
M. E. Giampapa, D. Glasco, J. L. Peterson, R. Rajamony, R. Ravindran, F. L. Rawson III, R. L.
Rockhold, J. Rubio, Experience with building a commodity Intel-based ccNUMA system, IBM
Journal of Research and Development 45 (2) (2001) 207–227.

[12] Y. Koyanagi, T. Horie, T. Miyoshi, M. Ishii, Synfinity II - a high-speed interconnect with 2
GBytes/sec self-configurable physical link, in: Hot Interconnects 9., IEEE, 2001, pp. 23–29.

[13] A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux, K. Loveless, N. Manjikian,
S. Srbljic, M. Stumm, Z. Vranesic, Z. Zilic, Design and implementation of the NUMAchine multi-
processor, in: 35th Annual Design Automation Conference, Proceedings, ACM, 1998, pp. 66–69.

[14] T. Lovett, R. Clapp, STiNG: A CC-NUMA computer system for the commercial marketplace, in:
23rd Annual International Symposium on Computer Architecture, Proceedings, IEEE, 1996, pp.
308–308.

[15] J. Laudon, D. Lenoski, The SGI Origin: a ccNUMA highly scalable server, in: ACM SIGARCH
Computer Architecture News, Vol. 25, ACM, 1997, pp. 241–251.

[16] Unisys, Es7000/one enterprise server technical overview (Apr. 2007).
[17] M. Woodacre, D. Robb, D. Roe, K. Feind, The SGI R© AltixTM 3000 global shared-memory archi-

tecture (2003).
[18] Hewlett-Packard, HP Integrity Superdome 2 user service guide (Sep. 2012).
[19] M. Côrrea, R. Chanin, A. Sales, R. Scheer, A. Zorzo, Multilevel load balancing in NUMA com-

puters, in: 20th ACM Symposium on Operating Systems Principles, Proceedings, 2005, pp. 1–9.
[20] SGI, SGI R© NUMAlinkTMindustry leading interconnect technology, Tech. rep. (2005).
[21] ScaleMP, vSMP Foundation from ScaleMP, Datasheet (2014).
[22] D. Schmidl, C. Terboven, A. Wolf, D. A. Mey, C. Bischof, How to scale nested OpenMP applica-

tions on the ScaleMP vSMP architecture, in: IEEE International Conference on Cluster Computing
(CLUSTER), Proceedings, IEEE, 2010, pp. 29–37.

[23] K. Kaneda, Y. Oyama, A. Yonezawa, A virtual machine monitor for providing a single system
image, in: 17th IPSJ Computer System Symposium, Proceedings, 2005, pp. 3–12.

[24] M. Chapman, G. Heiser, Implementing transparent shared memory on clusters using virtual ma-
chines, in: USENIX Annual Technical Conference, Proceedings, USENIX Association, 2005, pp.
23–23.

[25] J. Peng, X. Long, L. Xiao, DVMM: A distributed VMM for supporting single system image on
clusters, in: 9th International Conference for Young Computer Scientists, Proceedings, 2008, pp.
183 –188.

[26] Z. Song, L. Xiao, Research and design of inter-communication in DVMM, in: ISECS Interna-
tional Colloquium on Computing, Communication, Control, and Management, Proceedings, Vol. 4,
IEEE, 2009, pp. 546–549.

[27] L. Yong, Single system image with virtualization technology for cluster computing environment, in:
Third International Conference on Convergence and Hybrid Information Technology, Proceedings,
Vol. 2, 2008, pp. 796–801.

[28] L. Ruan, J. Peng, L. Xiao, X. Wang, CloudDVMM: Distributed virtual machine monitor for cloud
computing, in: Green Computing and Communications (GreenCom), IEEE, 2013, pp. 1853–1858.

[29] L. Ruan, J. Peng, L. Xiao, M. Zhu, Distributed virtual machine monitor for distributed cloud
computing nodes integration, in: Grid and Pervasive Computing, Springer, 2013, pp. 23–31.

[30] X. Wang, M. Zhu, L. Xiao, Z. Liu, X. Zhang, X. Li, NEX: Virtual machine monitor level single
system support in Xen, in: First International Workshop on Education Technology and Computer
Science, Proceedings, Vol. 3, 2009, pp. 1047–1051.

[31] B. Ma, M. Zhu, L. Xiao, Implementation of single system image under virtualized environment,
in: Scalable Computing and Communications; Eighth International Conference on Embedded
Computing, Proceedings, 2009, pp. 232–237.

[32] S. Lankes, P. Reble, C. Clauss, O. Sinnen, The path to MetalSVM: Shared virtual memory for
the scc, in: 4th Many-core Applications Research Community (MARC) Symposium, Proceedings,
Potsdam, Germany, 2011.

[33] J.-A. Sobania, P. Tröger, A. Polze, Towards symmetric multi-processing support for operating
systems on the scc, in: 4th Many-core Applications Research Community (MARC) Symposium,
Proceedings, 2011.

31

[34] B. Walker, D. Steel, Implementing a full single system image UnixWare cluster: Middleware vs.
underware, in: International Conference on Parallel and Distributed Processing Techniques and
Applications, Proceedings, 1999.

[35] A. S. Tanenbaum, R. Van Renesse, Distributed operating systems, ACM Computing Surveys
(CSUR) 17 (4) (1985) 419–470.

[36] B. Walker, G. Popek, R. English, C. Kline, G. Thiel, The LOCUS distributed operating system,
ACM SIGOPS Operating Systems Review 17 (5) (1983) 49–70.

[37] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann, C. Kaiser,
S. Langlois, P. Léonard, et al., Overview of the Chorus distributed operating systems, in: Com-
puting Systems, 1991.

[38] M. O’Connor, B. Tangney, V. Cahill, N. Harris, Micro-kernel support for migration, Distributed
Systems Engineering 1 (4) (1994) 212.

[39] D. Cheriton, The V distributed system, Communications of the ACM 31 (3) (1988) 314–333.
[40] D. R. Cheriton, M. A. Malcolm, L. S. Melen, G. R. Sager, Thoth, a portable real-time operating

system, Communications of the ACM 22 (2) (1979) 105–115.
[41] M. Nelson, B.-H. Lim, G. Hutchins, Fast transparent migration for virtual machines, in: USENIX

Annual Technical Conference, Proceedings, 2005, pp. 391–394.
[42] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, B. Welch, The Sprite network operating

system, Computer 21 (2) (1988) 23–36.
[43] S. J. Mullender, G. Van Rossum, A. Tananbaum, R. Van Renesse, H. Van Staveren, Amoeba: A

distributed operating system for the 1990s, Computer 23 (5) (1990) 44–53.
[44] F. Douglis, J. K. Ousterhout, M. F. Kaashoek, A. S. Tanenbaum, A comparison of two distributed

systems: Amoeba and Sprite, Computing Systems 4 (4) (1991) 353–384.
[45] A. Goscinski, M. Hobbs, J. Silcock, GENESIS: an efficient, transparent and easy to use cluster

operating system, Parallel Computing 28 (4) (2002) 557–606.
[46] D. De Paoli, A. Goscinski, M. Hobbs, G. Wickham, The RHODOS microkernel, kernel servers and

their cooperation, in: IEEE First International Conference on Algorithms and Architectures for
Parallel Processing, Proceedings, Vol. 1, IEEE, 1995, pp. 345–354.

[47] E. Hendriks, BProc: The Beowulf distributed process space, in: 16th International Conference on
Supercomputing, Proceedings, ACM, 2002, pp. 129–136.

[48] R. Zajcew, P. Roy, D. Black, C. Peak, P. Guedes, B. Kemp, J. LoVerso, M. Leibensperger, M. Bar-
nett, F. Rabii, et al., An OSF/1 UNIX for massively parallel multicomputers, in: Winter USENIX
Conference, Proceedings, 1993, pp. 449–468.

[49] Y. A. Khalidi, J. M. Bernabeu, V. Matena, K. Shirriff, M. Thadani, Solaris MC: a multicomputer
OS, in: USENIX Annual Technical Conference, Proceedings, 1996, pp. 191–204.

[50] J. G. Mitchell, J. J. Gibbons, G. Hamilton, P. B. Kessler, Y. A. Khalidi, P. Kougiouris, P. W.
Madany, M. N. Nelson, M. L. Powell, S. R. Radia, An overview of the Spring system, in: CompCon
Spring’94, Proceedings, 1994, pp. 122–131.

[51] A. B. Barak, A. Shapir, UNIX with satellite processors, Software: Practice and Experience 10 (5)
(1980) 383–392.

[52] A. Barak, A. Litman, MOS: a multicomputer distributed operating system, Software: Practice
and Experience 15 (8) (1985) 725–737.

[53] A. Barak, NSMOS–MOS port to the Nationals 32000 family architecture, in: 2nd Israel Conference
on Computer Systems and Software Engineering, Proceedings, 1987, pp. 1–8.

[54] A. Barak, O. Laden, Y. Yarom, The NOW MOSIX and its preemptive process migration scheme,
Bulletin of the IEEE Technical Committee on Operating Systems and Application Environments
7 (2) (1995) 5–11.

[55] A. Barak, O. La’adan, The MOSIX multicomputer operating system for high performance cluster
computing, Future Generation Computer Systems 13 (4) (1998) 361–372.

[56] A. Barak, O. La’adan, A. Shiloh, Scalable cluster computing with MOSIX for Linux, 5th Annual
Linux Expo, Proceedings.

[57] A. Barak, A. Shiloh, The MOSIX Cluster Operating System for High-Performance Computing on
Linux Clusters, Multi-Clusters and Clouds (2012).

[58] L. Amar, A. Barak, Z. Drezner, M. Okun, Randomized gossip algorithms for maintaining a dis-
tributed bulletin board with guaranteed age properties, Concurrency and Computation: Practice
and Experience 21 (15) (2009) 1907–1927.

[59] A. Keren, A. Barak, Opportunity cost algorithms for reduction of I/O and interprocess communi-
cation overhead in a computing cluster, IEEE Transactions on Parallel and Distributed Systems.
14 (1) (2003) 39–50.

32

[60] J. Sloan, High performance Linux clusters with OSCAR, Rocks, openMosix, and MPI, O’Reilly,
2004.

[61] J. Bilbao, G. Garate, A. Olozaga, A. del Portillo, Easy clustering with openMosix, in: 9th WSEAS
International Conference on Computers, Proceedings, 2005, pp. 1–6.

[62] openMosix, openMosix project officially ends, Press Release, Tel Aviv (March 2008).
[63] B. S. Ahmed, K. Samsudin, A. R. Ramli, Architectural review of load balancing single system

image, Journal of Computer Science 4 (9) (2008) 752.
[64] B. J. Walker, Open single system image (openSSI) Linux cluster project, Tech. rep. (2003).
[65] K. Thomas, Programming Locking Applications, IBM Corporation, 2001.
[66] B. Cahill, What is OpenGFS?, White Paper (2004).
[67] P. Schwan, Lustre: Building a file system for 1000-node clusters, in: 2003 Linux Symposium,

Proceedings, 2003.
[68] G. Vallée, R. Lottiaux, L. Rilling, J.-Y. Berthou, I. D. Malhen, C. Morin, A case for single system

image cluster operating systems: the Kerrighed approach, Parallel Processing Letters 13 (02)
(2003) 95–122.

[69] C. Morin, P. Gallard, R. Lottiaux, G. Vallée, Towards an efficient single system image cluster
operating system, Future Generation Computer Systems 20 (4) (2004) 505–521.

[70] P. Osiński, E. Niewiadomska-Szynkiewicz, Comparative study of single system image clusters,
Evolutionary Computation and Global Optimization 169 (2009) 145–154.

[71] R. Lottiaux, C. Morin, Containers: A sound basis for a true single system image, in: First
IEEE/ACM International Symposium on Cluster Computing and the Grid, Proceedings, IEEE,
2001, pp. 66–73.

[72] M. Novak, M. Fertré, J. Parpaillon, P. Linnell, Final prototype of LinuxSSI, Deliverable D2.2.11,
XtreemOS (2010).

[73] M. Kačer, D. Langr, P. Tvrd́ık, Clondike: Linux cluster of non-dedicated workstations, in: IEEE
International Symposium on Cluster Computing and the Grid, Proceedings, Vol. 1, IEEE, 2005,
pp. 574–581.

[74] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat, T. E. Anderson, GLUnix: A global
layer Unix for a network of workstations, Software Practice and Experience 28 (9) (1998) 929–961.

[75] D. P. Ghormley, D. Petrou, S. H. Rodrigues, T. E. Anderson, SLIC: An extensibility system for
commodity operating systems, in: USENIX Annual Technical Conference, Proceedings, Vol. 98,
1998.

[76] W. Yu, A. Cox, Java/DSM: A platform for heterogeneous computing, Concurrency: Practice and
Experience 9 (11) (1997) 1213–1224.

[77] M. Lobosco, A. Silva, O. Loques, C. L. de Amorim, A new distributed JVM for cluster computing,
in: Euro-Par 2003 – Parallel Processing, Springer, 2003, pp. 1207–1215.

[78] M. J. M. Ma, C.-L. Wang, F. C. M. Lau, JESSICA: Java-enabled single-system-image computing
architecture, Journal of Parallel and Distributed Computing 60 (10) (2000) 1194–1222.

[79] M. Surdeanu, D. Moldovan, Design and performance analysis of a distributed Java virtual machine,
IEEE Transactions on Parallel and Distributed Systems 13 (2002) 6.

[80] Y. Aridor, M. Factor, A. Teperman, cJVM: A single system image of a JVM on a cluster, in: 1999
International Conference on Parallel Processing, Proceedings, 1999, pp. 4–11.

[81] C. Tan, C. Tan, W. Wong, Shell over a cluster (SHOC): towards achieving single system image
via the shell, in: 2002 IEEE International Conference on Cluster Computing, Proceedings, 2002,
pp. 28 – 36.

[82] W. Zhang, Linux virtual server for scalable network services, in: Ottawa Linux Symposium, Pro-
ceedings, 2000, pp. 1–10.

[83] K. Shiraz, Red Hat Enterprise Linux Cluster Suite, Linux Journal 2007 (163).
[84] P. Krueger, M. Livny, A comparison of preemptive and non-preemptive load distributing, in: 8th

International Conference on Distributed Computing Systems, Proceedings, 1988, pp. 123–130.
[85] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa, S. Jiang, Current practice and a direction forward in

checkpoint/restart implementations for fault tolerance, in: First Workshop on System Management
Tools for Large-Scale Parallel Systems, Proceedings, Denver, CO, 2005.

[86] H. Zhong, J. Nieh, CRAK: Linux checkpoint/restart as a kernel module, Technical Report CUCS-
014-01, Department of Computer Science, Columbia University (2001).

[87] J. Smith, A survey of process migration mechanisms, ACM SIGOPS Operating Systems Review
22 (3) (1988) 28–40.

[88] M. Nuttall, A brief survey of systems providing process or object migration facilities, ACM SIGOPS
Operating Systems Review 28 (4) (1994) 64–80.

33

[89] D. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, S. Zhou, Process migration, ACM Computing
Surveys (CSUR) 32 (3) (2000) 241–299.

[90] M. Satyanarayanan, A survey of distributed file systems, Annual Review of Computer Science
4 (1) (1990) 73–104.

[91] E. Levy, A. Silberschatz, Distributed file systems: Concepts and examples, ACM Computing
Surveys (CSUR) 22 (4) (1990) 321–374.

[92] T. D. Thanh, S. Mohan, E. Choi, S. Kim, P. Kim, A taxonomy and survey on distributed file
systems, in: Fourth International Conference on Networked Computing and Advanced Information
Management, Proceedings, Vol. 1, IEEE, 2008, pp. 144–149.

[93] L. Amar, A. Barak, A. Shiloh, The MOSIX direct file system access method for supporting scalable
cluster file systems, Cluster Computing 7 (2) (2004) 141–150.

[94] K. Buytaert, et al., The OpenMosix HOWTO, The Linux Documentation Project.
[95] M. Šťava, P. Tvrd́ık, File system security in the environment of non-dedicated computer clusters,

in: Eighth International Conference on Parallel and Distributed Computing, Applications and
Technologies, Proceedings, IEEE, 2007, pp. 445–452.

[96] R. S. C. Ho, K. Hwang, H. Jin, Single I/O space for scalable cluster computing, in: 1st IEEE
Computer Society International Workshop on Cluster Computing, Proceedings, 1999, pp. 158–
166.

[97] E. K. Lee, C. A. Thekkath, Petal: distributed virtual disks, SIGOPS Operating System Review
30 (5) (1996) 84–92.

[98] Z.-l. Jiang, M.-f. Zhu, L.-m. Xiao, An approach to implementing the NIC virtualization by the hy-
brids of single system image and hardware-assisted virtualization technologies, in: ISECS Interna-
tional Colloquium on Computing, Communication, Control, and Management, 2009, Proceedings,
Vol. 4, 2009, pp. 577–582.

[99] A. Barak, A. Shiloh, The Virtual OpenCL (VCL) cluster platform, in: Intel European Research
& Innovation Conference, Proceedings, Leixlip, Ireland, 2011, pp. 196–200.

[100] A. Barak, T. Ben-Nun, E. Levy, A. Shiloh, A package for OpenCL based heterogeneous computing
on clusters with many GPU devices, in: IEEE International Conference on Cluster Computing,
Proceedings, 2010, pp. 1–7.

[101] J. M. Gosney, Password cracking HPC, in: Passwordsˆ12, Oslo, Norway, 2012.
[102] SGI, Reconfigurable Application-Specific Computing User’s Guide (2008).
[103] H. Cofer, M. Fouquet-Lapar, T. Gamerdinger, C. Lindahl, B. Losure, A. Mayer, J. Swoboda,

T. Utsumi, Creating the world’s largest reconfigurable supercomputing system based on the scal-
able SGI R© Altix R© 4700 system infrastructure and benchmarking life-science applications, Recon-
figurable Computing: Architectures, Tools and Applications (2008) 268–273.

[104] I. Latter, Security and openMosix; securely deploying SSI cluster technology over untrusted net-
working infrastructure, White Paper, Macquarie University (2003).

[105] M. Kačer, P. Tvrd́ık, Protecting non-dedicated cluster environments by marking processes with
stigmata, in: International Conference on Advanced Computing and Communications, 2006, Pro-
ceedings, IEEE, 2006, pp. 107–112.

[106] A. Barak, A. Shiloh, L. Amar, An organizational grid of federated MOSIX clusters, in: 2005
IEEE International Symposium on Cluster Computing and the Grid, Proceedings, Vol. 1, 2005,
pp. 350–357.

[107] L. Amar, J. Stößer, E. Levy, A. Shiloh, A. Barak, D. Neumann, Harnessing migrations in a market-
based grid OS, in: 9th IEEE/ACM International Conference on Grid Computing, Proceedings,
2008, pp. 85–94.

[108] T. Cortes, C. Franke, Y. Jégou, T. Kielmann, D. Laforenza, B. Matthews, C. Morin, L. P. Prieto,
A. Reinefeld, XtreemOS: A vision for a grid operating system, Technical Report #4, XtreemOS
(2008).

[109] J. Mehnert-Spahn, T. Ropars, M. Schoettner, C. Morin, The architecture of the XtreemOS grid
checkpointing service, Euro-Par 2009 – Parallel Processing (2009) 429–441.

[110] R. J. Creasy, The origin of the VM/370 time-sharing system, IBM Journal of Research and De-
velopment 25 (5) (1981) 483–490.

[111] R. P. Goldberg, Architecture of virtual machines, in: Workshop on Virtual Computer Systems,
Proceedings, ACM, 1973, pp. 74–112.

[112] J. S. Robin, C. E. Irvine, Analysis of the Intel Pentium’s ability to support a secure virtual machine
monitor, in: 9th conference on USENIX Security Symposium, Proceedings, 2000.

[113] A. Liguori, The myth of Type I and Type II hypervisors, Tales of a Code Monkey (Blog), Online;
accessed July 24 2013.

34

[114] S. Soltesz, H. Pötzl, M. Fiuczynski, A. Bavier, L. Peterson, Container-based operating system
virtualization: a scalable, high-performance alternative to hypervisors, ACM SIGOPS Operating
Systems Review 41 (3) (2007) 275–287.

[115] J. Gallard, G. Vallée, A. Lèbre, C. Morin, P. Gallard, S. L. Scott, Complementarity between virtu-
alization and single system image technologies, in: Euro-Par 2008 Workshops – Parallel Processing,
Springer, 2009, pp. 43–52.

[116] J. Gallard, A. Lèbre, G. Vallée, P. Gallard, L. Scott, Stephen, C. Morin, Is virtualization killing
single system image research?, Research Report RR-6389, INRIA (2007).

[117] T. Maoz, A. Barak, L. Amar, Combining virtual machine migration with process migration for
HPC on multi-clusters and grids, in: 2008 IEEE International Conference on Cluster Computing,
Proceedings, 2008, pp. 89–98.

[118] L. M. Vaquero, L. Rodero-Merino, R. Buyya, Dynamically scaling applications in the cloud, ACM
SIGCOMM Computer Communication Review 41 (1) (2011) 45–52.

[119] P. Marshall, H. Tufo, K. Keahey, D. LaBissoniere, M. Woitaszek, Architecting a large-scale elastic
environment: Recontextualization and adaptive cloud services for scientific computing, in: 7th
International Conference on Software Paradigm Trends, Proceedings, Rome, Italy, 2012.

[120] C. Morin, Y. Jégou, J. Gallard, P. Riteau, Clouds: a new playground for the XtreemOS grid
operating system, Parallel Processing Letters 19 (03) (2009) 435–449.

[121] T. Kielmann, G. Pierre, C. Morin, XtreemOS: a sound foundation for cloud infrastructure and
federations, Grids, P2P and Services Computing (2010) 1–5.

[122] P. Healy, J. Morrison, R. Walshe, ElasticSSI: Self-optimizing metacomputing through process
migration and elastic scaling, ERCIM News 90.

[123] G. Pfister, Multi-multicore Single System Image/Cloud Computing. A good idea?, The Perils of
Parallel (Blog), Online; accessed September 26 2012.

[124] D. Wentzlaff, C. Gruenwald III, N. Beckmann, K. Modzelewski, A. Belay, L. Youseff, J. Miller,
A. Agarwal, An operating system for multicore and clouds: mechanisms and implementation, in:
ACM symposium on Cloud computing, Proceedings, 2010, pp. 3–14.

[125] D. Becker, B. Monkman, Scyld CluserWareTM: An innovative architecture for maximixing return
on investment in Linux clustering, Penguin Computing (2006).

[126] R. Goeckelmann, M. Schoettner, S. Frenz, P. Schulthess, Plurix, a distributed operating system
extending the single system image concept, in: Canadian Conference on Electrical and Computer
Engineering, Proceedings, Vol. 4, 2004, pp. 1985–1988.

[127] G. Watson, M. Sottile, R. Minnich, S. Choi, E. Hertdriks, Pink: A 1024-node single-system image
Linux cluster, in: Seventh International Conference on High Performance Computing and Grid in
Asia Pacific Region, Proceedings, 2004, pp. 454–461.

[128] N. Kofahi, S. Al Zahrani, S. M. Hussain, MOSIX evaluation on a Linux cluster, International Arab
Journal of Information Technology 3 (1) (2006) 62–68.

[129] D. Margery, G. Vallée, R. Lottiaux, C. Morin, J.-Y. Berthou, Kerrighed: A SSI cluster OS running
OpenMP, Research Report RR-4947, INRIA (2003).

[130] G. Krawezik, F. Cappello, Performance comparison of MPI and three openMP programming
styles on shared memory multiprocessors, in: Fifteenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, Proceedings, 2003, pp. 118–127.

[131] G. Pfister, In Search of Clusters: The Ongoing Battle in Lowly Parallel Computing, Prentice-Hall,
1998.

[132] K. Hwang, Z. Xu, Scalable Parallel Computing: Technology, architecture, programming, McGraw-
Hill, 1998.

[133] B. Urgaonkar, A. Rosenberg, P. Shenoy, Application placement on a cluster of servers, International
Journal of Foundations of Computer Science 18 (05) (2007) 1023–1041.

[134] C. Tang, M. Steinder, M. Spreitzer, G. Pacifici, A scalable application placement controller for
enterprise data centers, in: 16th International Conference on World Wide Web, Proceedings, 2007,
pp. 331–340.

[135] A. Rotem-Gal-Oz, Fallacies of distributed computing explained, White Paper (2006).
[136] J. Spolsky, Joel on Software, Apress, 2004.
[137] A. Muller, S. Wilson, Virtualization with VMware ESX Server, Syngress Publishing, 2005.
[138] E. M. Rogers, The Diffusion of Innovations, Fifth Edition, Simon and Schuster, 2003.
[139] R. Depietro, E. Wiarda, M. Fleischer, The context for change: Organization, technology and

environment, The Processes of Technological Innovation (1990) 151–175.
[140] C. L. Iacovou, I. Benbasat, A. S. Dexter, Electronic data interchange and small organizations:

adoption and impact of technology, MIS Quarterly (1995) 465–485.

35

[141] S. Davies, The Diffusion of Process Innovations, CUP Archive, 1979.
[142] P. Attewell, Technology diffusion and organizational learning: The case of business computing,

Organization Science 3 (1) (1992) 1–19.
[143] E. von Hippel, The Sources of Innovation, Oxford University Press, 1988.
[144] A. Davila, M. Gupta, R. Palmer, Moving procurement systems to the Internet: the adoption and

use of e-procurement technology models, European Management Journal 21 (1) (2003) 11–23.
[145] J. D. Eveland, L. G. Tornatzky, The deployment of technology, The Processes of Technological

Innovation (1990) 117–148.
[146] F. D. Davis, R. P. Bagozzi, P. R. Warshaw, Extrinsic and intrinsic motivation to use computers

in the workplace, Journal of Applied Social Psychology 22 (14) (1992) 1111–1132.
[147] M. Obal, Why do incumbents sometimes succeed? Investigating the role of interorganizational

trust on the adoption of disruptive technology, Industrial Marketing Management 42 (6) (2013)
900–908.

[148] P. Klemperer, Markets with consumer switching costs, The Quarterly Journal of Economics 102 (2)
(1987) 375–394.

[149] M. L. Katz, C. Shapiro, Network externalities, competition, and compatibility, The American
Economic Review 75 (3) (1985) 424–440.

[150] R. G. Fichman, C. F. Kemerer, Adoption of software engineering process innovations: The case
of object-orientation, Sloan Management Review 34 (2).

[151] T. Oliveira, M. F. Martins, Literature review of information technology adoption models at firm
level, The Electronic Journal Information Systems Evaluation 14 (1) (2011) 110–121.

[152] J. Dedrick, J. West, Why firms adopt open source platforms: a grounded theory of innovation and
standards adoption, in: MISQ Special Issue Workshop: Standard Making: A Critical Research
Frontier for Information Systems, Seattle, WA, 2003, pp. 236–257.

[153] J. L. Bower, C. M. Christensen, Disruptive technologies: catching the wave, Harvard Business
Review, 1995.

[154] C. Christensen, The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail,
Harvard Business Press, 1997.

[155] D. K. Rigby, C. M. Christensen, M. Johnson, Foundations for growth: How to identify and build
disruptive new businesses, MIT Sloan Management Review 43 (3) (2002) 22–32.

[156] J. Michel, Y. Shen, A. Aiden, A. Veres, M. Gray, J. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Or-
want, et al., Quantitative analysis of culture using millions of digitized books, Science 331 (6014)
(2011) 176–182.

[157] J. Farrell, G. Saloner, Standardization, compatibility, and innovation, The RAND Journal of
Economics (1985) 70–83.

36

