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Chapter 1

Introduction and overview

In this chapter the experimental and technological motivation for the studies performed in

each subsequent chapter is given, along with an overview of the contents of each chapter.

Section 1.1 provides a general introduction to the III-nitrides, as well as a motivation for the

study of InGaN quantum wells. The experimental properties of these systems are presented,

and the possible technological advantages which an improved understanding of these properties

would yield serves as a justi�cation for the study of each of the InGaN systems found in later

chapters. Section 1.2 summarises the contents of each section.

1.1 Background and motivation

The solid state lighting revolution is now well underway, with solid state lighting sources �nding

mass application and providing considerable energy savings in, amongst other things, tra�c

lights, street lamps, and coloured lighting for building exteriors. An important technological

step forward will be the replacment of current ine�cient uorescent and incandescent white light

sources now predominantly used for household lighting. This would lead to huge economic and

ecological bene�ts such as cheaper lighting (which can account for up to 40% of electricity use

in developing countries) [1] and greatly reduced greenhouse gas emissions [2]. Nitride-based

semiconductor devices are the most promising candidates for this eventual replacement [3],

making the understanding of their properties a pressing scienti�c issue.

The III-nitrides comprise the compounds of nitrogen (N) with aluminium (Al), galium (Ga),

and indium (In). The primary attraction of this material system lies in the nature and span of

the band-gaps of its constituent semiconductors. They are all direct-gap semiconductors, with

band gaps of 6.14 eV for AlN, 3.43 eV for GaN, and 0.64 eV for InN [4]. No other material

system can boast emission over such a wide spectral range, whilst maintaing a direct gap.

1
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However, it was not until the breakthroughs by I. Akasaki, H. Amano and S. Nakamura [3, 5{

7], culminating in the fabrication of e�cient bright blue light emitting diodes (LEDs), that the

rare properties of the III nitrides could be utilised for novel device applications. The importance

of this pioneering research was recognised when the Nobel Prize was conferred on I. Akasaki,

H. Amano and S. Nakamura in 2014.

Shortly after these breakthroughs, the large band-gaps and e�cient low wavelength emission

a�orded by the nitrides, found application in greatly increasing the capacity for optical storage

on Blu-Ray discs [8]. More importantly, with the possibility of producing all three primary

colours in LEDs, nitride devices o�er the potential to emit white light, replacing incandescent

and uorescent sources. Complementarily to emission, the band gap range also a�ords in nitride

materials the ability to absorb light at all visible wavelengths. This allows for the production

of higly e�cient solar cells, with early InGaN solar cells achieving already � 40% external

e�ciencies [9]. These visible spectrum applications lie within the remit of InGaN alloys, and

these are the primary subject of this work.

One of the main challenges faced today in the developement of nitride devices is the lack of

suitable substrates for �lm growth. The strong chemical bonds in nitride materials (which

have many advantages such as stability and resistence to degradation under conditions of high

current and intense light illumination) mean that high growth temperatures are needed during

device fabrication [3]. These high temperatures limit the substrate choice and so materials such

as sapphire and silicon carbide, whose lattice parameters di�er greatly from those of nitride

compounds, must be used. Because of this, poor quality epitaxial �lms with high extended

defect densities, of the order 109 cm�2, are produced [10, 11]. In semiconductor devices made

from other materials, this normally leads to low radiative recombination rates and thus low

device e�ciency. For example, dislocation densities as low as 103 cm�2 are known to quench

emission in GaAs [12]. However, the particularities of the microstructure of InGaN devices

appear to overcome these obstacles. Determining the mechanisms by which the microstructure

of these devices leads to the situation of high e�ciency in spite of a high defect density, is one

of the aims of this work.

Carrier localisation is the widely accepted explanation for the defect insensitivity of nitride-

based devices. Under this description, the carriers are localised to small regions of the In-

GaN devices such that they cannot di�use to defects and recombine non-radiatively. Exper-

imental evidence for localisation was discovered very soon after Nakamura's breakthrough in

1993 [13, 14]. Support for carrier localisation has since continued to mount. In particular

photoluminesence (PL) measurements in InGaN quantum wells (QWs) have revealed large

linewidths and large Stokes shifts between the PL peak and a broadened absorption edge, all

of which are indicative of localised carriers [15]. Furthermore, the PL peak energy in these

QW systems has shown an anomalous \S-shaped" dependence on temperature, whilst the peak
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energy in electroluminesence experiments shows a similar dependence on current density [16{

18]. These phenomena are imputed to the redistribution of carriers amongst localised states.

Another experimental peculiarity is that in time resolved PL measurements the decay times are

non-exponential and vary across the spectrum, consistent with a model of individually localised

electrons and holes [19]. And, importanly to this study, the decrease in device e�ciency with

increasing current, known as \e�ciency droop", has been attributed by some authors to the

saturation of localised states [18, 20, 21].

While these experiments corroborate the explanation for the defect insensitivity in InGaN

devices in terms of carrier localisation, they do not reveal the exact nature and cause of this

localisation. For example, localisation in InGaN QWs was formerly considered to be primarily

excitonic localisation at gross indium clusters [13] (In this context \gross" indium clusters are

nanometer-scale indium rich regions, resulting, for example, from the immiscibility of the In in

InGaN). However, increasingly careful structural studies have shown that in many cases this

gross clustering can be attributed to artefacts of the measurement process [22]. In particular,

Smeeton et. al. [23] concluded from transmission electron microscope (TEM) studies that the

gross indium clusters found in standard c-plane InGaN wells were in fact caused by electron

beam damage. Subsequent measurements using atom probe tomography (APT) and high

resolution transmission electron microscopy (HRTEM) with low exposure times on other c-

plane systems, revealed indium distributions that matched what would be expected in the

case of a random alloy [23, 24]. While these results make a strong argument against gross

indium clustering, there are still cases where it is argued to occur [25]. Other widely reported

sources of carrier localisation are well width uctuations (WWFs) [26, 27] and random alloy

uctuations [24, 28, 29]. In this work we focus our attention on the localising e�ects of WWFs

and random alloy uctuations.

Relevant to these localisation mechanisms, and the means by which WWFs are able to localise

carriers at all, is another challenge faced in nitride systems: due to the large ionicity of nitride

compounds, large spontaneous and strain dependent piezoelectric polarisation �elds in the

direction of the c-axis are present. These polarisation �elds result in electric �elds of up to

� 106 V cm-1 across c-plane InGaN/GaN QWs [30]. These �elds serve to separate charge

carriers in devices and reduce their e�ciencies. Because the built-in electric �elds increase with

the increasing strain that results at increasing indium contents, there is an increasing reduction

in device e�ciency as one increases the emission wavelength of InGaN devices. This contributes,

along with decreasing material quality and increasing lateral localisation, to what is known as

the 'green-gap' problem. The green-gap stands as a signi�cant barrier to the realisation of all

LED white light sources, given the lack of any other suitable material systems to emit in this

range [3, 31, 32].
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One way to circumvent the problems associated with these large built-in �elds is to grow

InGaN/GaN QWs on planes parallel to the spontaneous and piezoelectric polarisation vectors.

There are two such stable growth planes in the nitrides, the a-plane and the m-plane. However,

recent studies have suggested that InGaN/GaN QWs grown on the a-plane are susceptible to

indium clustering [25]. Since this work is focussed on the impact of random alloy uctuations,

we focus our attention on only the non-polarm-plane in wurtzite (WZ) QWs. Inm-plane InGaN

QWs, the lack of a built in �eld across the heterostructure separating the charge carriers is

manifest in PL studies as much shorter radiative recombination timescales, as well as single-

exponential decay times [33, 34]. This is indicative of exciton localisation, as the Coulomb

interaction is no longer negated by the built in �eld, and the carriers localise in the same spatial

position [34]. Furthermore, di�erences in the hole e�ective masses along the growth direction

and in the growth plane, combined with additional anisotropic strain-induced di�erences in the

growth plane, results in a breaking of valence band degeneracies, and the emission of light with

a high degree of optical linear polarisation [35, 36]. This has useful applications such as energy

e�cient backlit liquid crystal displays [2, 36].

However, problems associated with growth on m-plane subtrates, such as cost and poor indium

incorporation [37, 38], have led people to look for other ways around the green gap problem

in the nitrides. A promising route is through use of nitride crystals grown in the metastable

cubic/zincblende crystal phase. Like WZ nitride crystals grown on the m- and a-plane, the

crystal symmetry in the cubic nitrides produces no built-in �eld in the [001] growth direction.

In addition, cubic GaN has a band gap narrower by 0:2 eV [39] than that of WZ GaN. With the

small bandgap of cubic InN reduced also with respect to its WZ variant, this 30 nm headstart

towards the longer wavelengths means less indium need be incorporated in order to shift the

wavelength to the green and yellow spectral region. Furthermore, the bandstructure of the cubic

phase of GaN is such that the carriers have smaller e�ective masses, higher carrier mobilities,

higher doping e�ciency, and smaller Auger losses [37, 40]. This is an attractive prospect, given

the crucial role often attributed to Auger recombination in the e�ciecy droop of nitride-based

devices [41, 42]. Similarly to WZ nitride systems, cubic nitride systems also exhibit pronounced

evidence of localisation [40] .

The experimental results discussed above, when taken together, emphasise an important in-

terplay between the microscopic alloy uctuations, and the macroscopic e�ects of the built-in

�eld. Furthermore, results such as the "S-shaped\ temperature dependence of the PL peak

energy, the broadened PL full width at half maximum (FWHM), large Stokes shifts, and the

eventual e�ciency droop at high current densities, reveal that a large distribution of localised

states determine the properties of InGaN QWs. However, previous theoretical approaches have

generally not described simulatenously these three properties: atomistic level alloy uctuations,

macroscopic built in �eld in combination with larger scale structural inhomogeneities, and a

large density of localised states.
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Nevertheless, previous atomistic empirical pseudopotential [29, 43] and density functional the-

ory (DFT) [44, 45] calculations on bulk alloys, have con�rmed the importance of random alloy

uctuations as a fundamental mechanism for the localisation of valence band edge states in

both cubic and WZ InGaN. In particular, these studies have shown the importance of In-N-In

chains [29, 43{45], occuring naturally due to random alloy uctuations, as localisation sites.

When it comes to modelling InGaN wells however, the most common approach is continuum-

based [33, 46{48]. These studies have con�rmed the deleterious e�ects of the built in �elds

on device e�ciencies, and demonstrated localisation of conduction band states within WWFs.

Amongst these, the work of Watson-Parris [48] included approximately the e�ects of alloy

uctuations using a single-band e�ective mass approximation (EMA), through use of material

parameters which varied spatially in accordance with a random indium composition distribu-

tion. While this work achieved the simultaneous description of the aforementioned microscopic

and macroscopic localisation mechanisms, whilst also treating a large number of states, the

approximation cannot treat atomistic e�ects fully. Thus, this approach does not have su�-

cent resolution to treat e�ects such as In-N-In chains, or more generally the impact underlying

anion-cation structure, which has shown to be important in nitride systems [49].

Based on the studied experimental properties, and the theoretical corroboration of the funda-

mental mechanisms at play, we conclude that �rst principles theoretical approaches will provide

an incomplete description of these systems due to their incapacity to model the large numbers

of atoms needed to describe realistic QW structures. Neither will the small number of states

which it is computationally tractable to calculate using �rst principles methods be su�cient to

account for the phenomena attributed explicitly to the multiplicity of localised states, such as

the changing decay times across PL curves, and those attributed to the saturation of localised

states, such as e�ciency droop. Conversely the description of empirical continuum models will

be incomplete due to their neglect of the atomistic source of localisation, without which nitride

devices would not emit any light. Particularly well suited then, to the description of this mate-

rials system, are atomistic empirical models, which describe fully the atomistic structure, and

o�er the computational e�cacy necessary to treat realistically sized QWs.

In this work the tight-binding method is employed, whose localised basis set is ideal for the

e�cient treatment of atomistic phenomena. This model also accounts accurately for local strain

and polarisation uctuations arising from random alloy e�ects. It is used to study the electronic

and optical properties of c- and m-plane InGaN QWs. For the case of cubic InGaN, a semi-

empirical theoretical framework with which to analyse the system, with the completeness and

utility of the currently available tight-binding framework for WZ materials, is not yet available.

We thus turn after the description of the c- and m-plane systems, to the developement of such

a framework, begining with the description of the elastic and structural properties of the cubic

nitrides, and other III-V semiconductor matierials.
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1.2 Thesis outline and overview

Chapter 2, Theory and Methods, introduces the background for the di�erent components of

the theoretical framework used. Particular attention is given to the theory of �nite strain, the

use of which requires some justi�cation, given its extra complexity when compared with small

strain theory.

Chapter 3, Electronic properties of c-plane InGaN/GaN Quantum Wells, examines the elec-

tronic properties of WZ c-plane InGaN QWs. The calculations reveal that in c-plane structures,

the localisation of both electrons and holes is enhanced by the built-in �eld. In particular, we

�nd that the built-in �eld, in combination with structural inhomogeneities such as alloy uctu-

ations as well as WWFs, can lead to signi�cant electron localisation. Furthermore, the built-in

�eld acts against the Coulomb interaction to separate the electrons and holes along the growth

axis, leading to the situation of individually localised electrons and holes. This is consistent

with the non-exponential decay transients measured in time-dependent PL experiments on c-

plane structures and early simple models used to interpret them. Our study of the excited

states con�rms that localisation e�ects persist into the valence band, for at least 100 meV, and

therefore will play a role in determining device properties at ambient temperature. By studying

the localisation over many states and over di�erent indium conents, we �nd that increasing the

indium content in the QW increases the energy range over which localised carriers are found,

and that strong localisation e�ects are found for as little as 10% indium.

Chapter 4, Electronic properties of m-plane InGaN/GaN Quantum Wells, examines the elec-

tronic properties of InGaN QWs grown on the non-polar m-plane. For the m-plane system,

where the macroscopic built in �eld is absent, we �nd that the Coulombic interaction becomes

signi�cant, and electrons and holes are localised together as excitons at indium-rich regions of

the QW. This is consistent with the experimentally measured single exponential decay tran-

sients found in time resolved PL measurements performed on m-plane structures. Similarly to

the case of c-plane systems, we �nd that localisation e�ects in m-plane quantum wells persist

into the valence band over an energy range of at least 100 meV, and that these localisation

e�ects are such that they will signi�cantly a�ect the overlap between hole states, and thus the

transport properties of m-plane InGaN devices.

Chapter 5, Elastic Properties of zincblende III-V semiconductors, seeks to establish the theoret-

ical methods needed to model the promising cubic nitrides, starting with the elastic properties.

In a �rst step, the harmonic elastic properties are extracted from density functional theory

data. Relations amongst the determined elastic constants and Kleinman parameter are used

to illustrate shortcomings in the currently available valence force �eld models used to calculate

local strain and relaxed atomic positions in III-V semiconductor alloys. A new valence force
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�eld implementation is introduced which makes explicit use of elastic properties formerly ne-

glectd by ubiquitous valence force �eld models. The new method provides simple expressions

to derive a valence force �eld model, which is straightforward to apply to most III-V materials,

but which is not immediately applicable in its current form to III-N zincblende alloys. In a

second step, recognising the large strains that may occur in the semiconductor devices made

using higly lattice-mismatched materials such as InN and GaN, third order elastic properties

are extracted from density functional theory data. The DFT data are �tted to third order elas-

tic formulae, using �nite-strain theory. Finally, the utilisation of these properties in a valence

force �eld model is discussed, and an appropriate functional form is suggested.

In chapter 6, we present the conclusions drawn from the work presented in this thesis, as well

as an outlook and suggestions for further steps.





Chapter 2

Theory and Methods

In this chapter we present the theory behind the methods used in this work. In section. 2.1,

we discuss phenomena related to the elasticity of semiconductor materials, and in section. 2.2,

we present the tight binding method which we use to calculate the electronic properties of

InGaN/GaN quantum wells.

2.1 Elasticity in semiconductor materials

In this section we discuss the deformation of materials. The mathematical description of

deformation is discussed in section 2.1.1. The forces that arise in a material as a result of

this deformation and their relation to the material properties are discussed in section 2.1.2.

The microscopic phenomenon of internal strain, which lies outside the purview of the classical

macroscopic theory, is discussed in section 2.1.3.

2.1.1 The speci�cation of strain

When some part of a material is deformed, the atoms in all other parts in general also undergo

displacement. When a part of a material is displaced it may be displaced as a rigid body,

undergoing simultaneously rotation and translation, or it may be deformed, where the lengths

between atoms in that section of the material change. It is the fractional changes in the lengths

which occur with deformation that are physically signi�cant, and this is what the term strain

describes.

To arrive at a de�nition of strain, we will examine the means by which the positions of the

atoms in a material may be transformed during a deformation, starting with the simple one

dimensional case, and then extending the analysis to the two and three dimensional cases.

9
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(a)
O

x

P Q

∆x

(b)
O

x + u

P’ Q’

∆x + ∆u

Figure 2.1: (a) Unstrained and (b) strained state of an extensible 1D object

2.1.1.1 One-dimensional strain

Consider the extensible string in Fig. 2.1. The unstretched string is shown in Fig. 2.1(a). We

mark the origin O and two points on the string as P and Q. The point P is a distance x from

the origin, and Q is a distance �x from P. Treating the case of homogeneous stretching, the

coordinate, x, on the string is transformed to x0:

x0 = x+ u: (2.1)

We note that, if u were a constant, then eq. (2.1) would represent simply a translation. The

whole string would be moved to the right by an amount u, but not stretched. For stretching or

squeezing to occur the displacement, u, must change with material coodinate x. This is shown

in Fig. 2.1(b), where the length P'Q' is increased by amount �u. Thus, we may simply de�ne

the strain of the section PQ in this situation as:

increase in length

original length
=

P'Q'� PQ

PQ
=

�u

�x
: (2.2)

While the strain at the point P is de�ned as:

" = lim
�x!0

�u

�x
=
du

dx
=

�L

L0
; (2.3)

where L0 refers to the unstretched length of the whole string, and �L refers to the change in

length of the whole string. This strain measure, of length change relative to original length, is

referred to as the \engineering strain"; we note that ", the derivative of the displacement, is

equal to the engineering strain for the case of a homogeneous 1D deformation, and gives the

strain at any point in the material. This de�nition of strain as a derivative of the displacement

has the advantage that it does not depend on the origin and excludes translations from the

description of strain.
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It will be useful to express transformation from the unstrained coordinates to the strained

coordinates, and the strain itself, in terms of the deformation gradient, normally denoted by F :

x0 = Fx;

F =
dx0

dx
= 1 +

du

dx
;

" = F � 1:

(2.4)

So in the 1D case, the strain is exactly and uniquely speci�ed by the deformation gradient, or the

strain measure ". Furthermore, the observation that the di�erence between the transformation

between the strained and unstrained coordinates (the deformation gradient, F ), and the identity

matrix I (�1 in the 1D case here), is a good speci�cation of strain, will be useful in later

developments.

2.1.1.2 Two and three-dimensional strain

When moving to higher dimensions, the deformation gradient alone ceases to be a complete

speci�cation of the state of strain. The primary reason for this is that, while the deformation

gradient excludes rigid body displacements, it is a�ected by rigid body rotations. In two

dimensions, the deformation gradient is a tensor with the form:

F =

 
dx0

1

dx1

dx0

1

dx2
dx0

2

dx1

dx0

2

dx2

!
=

 
1 + du1

dx1
du1
dx2

du2
dx1

1 + du2
dx2

!
: (2.5)

While this no longer fully speci�es the strain of a given deformation, it still provides the change

in the position vector of a given point under uniform deformation:

r0 = F r: (2.6)

Here r0 is the position vector of a point after the deformation, and r is the undeformed position.

Following the procedure for the one dimensional case, we may seek a measurement for the strain

in terms of the di�erence between the deformation gradient, F, and the identity, I:

� = F� I =

 
du1
dx1

du1
dx2

du2
dx1

du2
dx2

!
: (2.7)

To examine the properties of this strain measure, in Fig. 2.2, the general displacement of an

extensible 2D body is shown. The changes in the displacement �u, shown in the �gure, are,
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x2

x1

P

Q2

Q1

∆x2

∆x1

P’

Q1’

Q2’

∆x2

∆u2

∆u1

∆x1 ∆u1

∆u2

Figure 2.2: General displacement of an extensible 2D object.

at a particular position, related to the tensor, �, by:

�u1 =
du1
dx1

�x1 +
du1
dx2

�x2; (2.8)

�u2 =
du2
dx1

�x1 +
du2
dx2

�x2; (2.9)

or, more concisely:

�ui = �ij�xj : (2.10)

Considering the line P'Q' in the �gure, we see that in two dimensions the tensor has the useful

property that it describes relative length changes in the material along a given axis:

�u1
�x1

=
@u1
@x1

= �11: (2.11)

Likewise, �22 describes the fractional length change of the material in the x2 direction.

To interpret the o�-diagonal terms, we look at a simpli�ed shear case shown in Fig.2.3. In this
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x2

x1
P Q1

∆u2

∆x1

Q2

Figure 2.3: Simple shear of a 2D body.

scenario it is clear that, referring to P'Q':

�u2
�x1

=
@u2
@x1

= �12 = tan �: (2.12)

For the case of Fig. 2.2, this interpretation also holds under conditions of small strains, dis-

placements, and rotations. We have without approximation:

tan � =
�u2

�x1 + �u1
; (2.13)

and under the condition that u1 and u2 are small compared with x1 and thus �u1 and �u2

are small compared with �x1, we have:

� � �u2
�x1

= �21; (2.14)

and the same arguments hold for �12. This shows that the intuitive relation to angle changes

exhibited in the simple shear case described by eq. (2.12), is retained in the case of more

complex deformations when the dispalcements and strains are small.

However, regardless of strain and displacement sizes, we see that this interpretation of �ij breaks

down when rotations are introduced. Take for example the rigid body rotation given by the
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transformation:
x0 = x cos � � y sin �;

y0 = x sin � + y cos �:
(2.15)

In this rigid body rotation no lengths have changed, and the shape of the material is the same,

i.e. it is not deformed or strained it is only rotated. However, the deformation gradient in this

case is given by:

F =

 
cos � � sin �

sin � cos �

!
: (2.16)

It is clear that the �ij de�ned from this F are nonzero for this case of zero strain; it cannot,

therefore, be used to measure the strain state in a material. Furthermore, it will be shown later

that the interpretation of �ij as a measure of realtive length changes and relative angle changes

depended on the complexity of the deformation, and also on the magnitude of the strains

involved. For this reason, in going from �ij to a more robust strain measure, the magnitude of

the strains involved is important.

In the next two sections we present two di�erent formulations of strain: in sec. 2.1.1.3 one

valid only in the realm of small strains but which o�ers great conceptual and computational

simplicity; and in sec. 2.1.1.4 another which is generally valid, but which loses to some extent

the intuitive physical interpretation.

2.1.1.3 In�nitesimal strains

For the case of small strains, and small rotations, the tensor �ij , for a rigid body rotation, is

given by:

� =

 
0 ��
� 0

!
: (2.17)

This is obtained by reference to eq. (2.16) and (2.7) in the regime of � << 1.

To arrive at a reasonable de�nition of strain, the part of �ij corresponding to rotation must

be eliminated. We observe in eq. (2.17), that in the regime of small strains, a pure rotation is

given by an antisymmetrical tensor. Furthermore, it is the case that any second-rank tensor

can be expressed as the sum of a symmetric, ", and an anti-symmetric, $ij , tensor [50]. Thus:

�ij = "ij +$ij ; (2.18)

where

"ij =
1

2
(�ij + �ji) and $ =

1

2
(�ij � �ji) : (2.19)

In separating out the symmetric from the anti-symmetric parts of �ij we have separated out

rotation from strain. Therefore, the symmetric part of �ij , "ij , represents the strain in the
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material, and is una�ected by either translation or rotation, within the regime of small strains.

In terms of the derivatives of the displacements, it is given (in 2D, the 3D case being similar):

" =

0@ @u1
@x1

1
2

�
@u1
@x2

+ @u2
@x1

�
1
2

�
@u2
@x1

+ @u1
@x2

�
@u2
@x2

1A : (2.20)

And in terms of the deformation gradient tensor, this tensor is given by:

" =
1

2

�
FT + F

�� I: (2.21)

Because of the assumptions made in its derivation, " is referred to as the \small strain tensor"

or the \in�nitesimal strain tensor".

This strain measure has the advantage of computational simplicity, and also a very intuitive

interpretation; referring to Fig. 2.2, we have:

"11 =
�Lx1
Lx10

; "12 = �12;

"21 = �21; "22 =
�Lx2
Lx20

;

(2.22)

where we have that �12 = �21, as a result of the removal of pure rotations. These quantities

represent the change, after strain, in the angle between lines of the object originally parallel to

x1 and the x2 axis, and the change in the angle between lines originally parallel to x2 and the

x2 axis, respectively.
�Lx1
Lx10

and "22 =
�Lx2
Lx20

represent the relative length changes in the x and

y directions in the material.

For all its advantages in the regime of small strain, this strain tensor becomes an increasingly

inappropriate measure of strain as the magnitudes of the strains and rotations increase. For

example, without making the approximation of small angles, and using eq. (2.21), the strain

tensor, for an unstrained body rotated through an angle �, is given by:

" =

 
1� cos � 0

0 1� cos �

!
: (2.23)

This implies that by simply rotating a body we are stretching it in its x and y directions,

which is not acceptable. This result highlights the fact that a rotation matrix being a purely

anti-symmetric matrix is an approximation which depends on a small magnitude of rotation.

Futhermore, if we consider the deformation of Fig. 2.3, we would note that the length PQ1 is

actually changed on shearing, becoming
p

�x21 + �u22, rather than simply �x1. This is not

recorded in the in�nitesimal strain tensor however, which would only tell us what the tangents

of the angle changes between the lines in the sheet are. So the interpretation of the "ij terms

has changed, and also it is apparent that for large shear strains even the relative length changes
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are no longer fully described. The more complicated the combination of strains applied, the

less appropriate the in�nitesimal strain tensor is.

In the next section a strain measure which does not make any approximations about the

magnitudes of the deformations applied to a material is introduced.

2.1.1.4 Finite strains

In the previous section, use was made of the approximation of small angles to eliminate rotations

from the deformation gradient by its decomposition into symmetric and anti-symmetric parts.

Here, we make no restriction to a particular region of strain or rotation, but rely instead on

the general property of rotation matrices that: [51]

RT = R�1 or RTR = I: (2.24)

Now, returning to the de�nition of F given in eq. (2.5), we note that this deformation gradient

tensor captures not only strain but also rotation, and that we would like to remove rotations

from it so that we have a pure measure of strain. To do this we make use of the property of

rotation matrices in eq. (2.24), and note that FTF is therefore a quantity which depends only

on the state of strain of the body in question. We further note that for the unstrained case this

function of strain will be I. This leads to the Green-Lagrange or �nite strain tensor, �, de�ned

as: [52]

� =
1

2

�
FTF� I

�
; (2.25)

where the factor 1
2 ensures that � reduces to " in the limit of in�nitesimal strain. We will from

now on refer to � as the Lagrangian strain.

Given the initial state of a body, and the Lagrangian strain tensor, a relation between the

initial coordinates and the strain tensor give an exact expression for the changes of length of

line elements in the body [52, 53]. The relation is most easily expressed in the simple tensor

notation of Landau and Lifshitz [53]. The distance between two close together points in the

material, are before deformation (dl), and after deformation (dl0):

dl =
q
dx21 + dx22 + dx23 and dl0 =

q
(dx1 + du1)

2 + (dx2 + du2)
2 + (dx3 + du3)

2;

(2.26)

with the di�erence between these then being given in terms of the �nite strain and the initial

distances as:

dl02 � dl2 = 2�ijdxidxj : (2.27)
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x1

x2

L0

Lf

∆L

Figure 2.4: Simple �nite strain of a 2D body.

In terms of the familiar displacement gradients, the components of the Lagrangian strain are

given by:

�11 =
@u1
@x1

+
1

2

 �
@u1
@x1

�2
+

�
@u2
@x1

�2
+

�
@u3
@x1

�2!
;

�22 =
@u2
@x2

+
1

2

 �
@u1
@x2

�2
+

�
@u2
@x2

�2
+

�
@u3
@x2

�2!
;

�33 =
@u3
@x3

+
1

2

 �
@u1
@x3

�2
+

�
@u2
@x3

�2
+

�
@u3
@x3

�2!
;

�23 =
1

2

�
@u2
@x3

+
@u3
@x2

�
+

1

2

�
@u1
@x2

@u1
@x3

+
@u2
@x2

@u2
@x3

+
@u3
@x2

@u3
@x3

�
;

�13 =
1

2

�
@u1
@x3

+
@u3
@x1

�
+

1

2

�
@u1
@x1

@u3
@x3

+
@u2
@x1

@u2
@x3

+
@u3
@x1

@u3
@x3

�
;

�12 =
1

2

�
@u1
@x2

+
@u2
@x1

�
+

1

2

�
@u1
@x1

@u2
@x3

+
@u2
@x1

@u2
@x3

+
@u3
@x1

@u2
@x3

�
:

(2.28)

Comparing this with eq. (2.20), we con�rm that in the case of small displacements and strains,

the Lagrangian strain components, �ij , become equal to those of the in�nitesimal strain tensor,

"ij , i.e., the in�nitesimal strains are the linearised version of the Lagrangian strains.

To illustrate the advantages (exact relation to relative length changes in a material and rota-

tional invariance) and disadvantages (lack of simple intuitive physical interpretation) in this

strain measure, we consider two simple deformations. In Fig. 2.4, a simple stretching in the x1

direction is applied to a 2D sheet. We recall that in this situation the in�nitesimal strain has

the very simple and intuitive form:

"11 =
@u

@x
=

�L

L0
; (2.29)
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x2

x1
P Q1

∆u2

∆x1

∆L

PQ
1

Q2

Figure 2.5: Simple �nite strain of a 2D body: stretching associated with shear indicated.

the Lagrangian strain, however, is given by:

�11 =
@u

@x
+

1

2

�
@u

@x

�2
=

�L

L0
+

1

2

�
�L

L0

�2
: (2.30)

The di�erence between these two measures shows that, for simple strains, the Lagrangian

strains lose the one to one correpsondance with the relative length changes in the material.

However, the complicated relation of the Lagrangian strains to the relative length changes,

holds for all types of deformation, which is not true for the in�nitesimal case. The Lagrangian

strain thus o�ers a continuous, unique and monotonic function of the displacement gradients,

and relative length changes which can be used to characterise the strain state of the material.

An illustration of an aspect of strain captured by the Lagrangian strain tensor but missed by

the in�nitesimal tensor is shown in Fig. 2.5, where a simple shear (which comprises a pure shear

and a rotation) is applied to a 2D body. In this case, the in�nitesimal shear strain is given by:

"12 =
1

2

�
@u1
@x2

+
@u2
@x1

�
=

1

2

D

L
; (2.31)
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where we have written �x1 = L and �u2 = D, to show the in�nitesimal strain tensors corre-

spondence with the \engineering shear" in this context. However, as we have seen before, the

interpretation of this strain component as the change in angles between two orthogonal lines

in the material is dependent on the amount of strain. In this simple case, the Lagrangian shear

strain has the same form:

�12 =
1

2

@u2
@x

=
1

2

D

L
: (2.32)

However, the Lagrangian strain also captures an e�ect not descirbed by the in�nitesimal ten-

sor: the stretching of the line segment PQ. From Fig. 2.5 is is clear that the simple shear

deformation applied involves not only a change in the angles between lines in the material, but

also a stretching of lines; the line PQ, which was originally of length L, is stretched to lengthp
L2 +D2. The �11 component of the Lagrangian strain tensor describes this stretching:

�11 =
1

2

�
@u2
@x2

�2
=

1

2

�
D

L

�2
: (2.33)

We may interpret this by considering the relative length change:

�L

L0
=

p
L2 +D2 � L

L
=

s
1 +

�
D

L

�2
� 1; (2.34)

which, Taylor expanding to second order, yields:

�L

L0
� 1

2

�
D

L

�2
; (2.35)

showing that the Lagrangian strain captures aspects of stretching which are missed by the

in�nitesimal strain tensor.

For these reasons the Lagrangian strain tensor is to be preferred when dealing with larger

strains.

2.1.2 The relation between stress and strain

When a body is put into a state of strain, it ceases to be in equilibrium and forces arise in

the body which tend to return it to equilibrium. These internal forces which occur in a body

when it is deformed are described in terms of stresses. In the macroscopic theory of elasticity,

these internal forces are considered \near-action" forces, which act from any point only to

neighbouring points. From this it follows that the forces exerted on any part of a body by

surrounding parts act only on the surface of that part, and stresses may be de�ned as the

internal forces per unit area on a part of a body.
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Because for each surface of a body there can be forces in three directions, the stress is described

mathematically by a second order tensor, denoted by �:

� =

0BB@
�11 �12 �13

�21 �22 �23

�31 �32 �33

1CCA : (2.36)

The stress component �ij refers to the force in the xi direction on the face of the material

segment perpendicular to the xj axis. From the condition of zero net moment of forces on a

portion of the body, it can be shown [53] that �ij = �ji. This stress tensor, comprising the

forces per unit area on each surface of a deformed body, is called the Cauchy stress.

Associated with this departure from equilibrium is also an increase in the free energy of the

body, which depends on the amount of strain. The Helmholz free energy can thus be expanded

in the Lagrangian strain as [54, 55]:

�0 =
1

2!
Cijkl�ij�kl +

1

3!
Cijklmn�ij�kl�mn: (2.37)

Here the function  is the Helmholtz free energy per unit mass, and �0 is the unstrained

mass density. Note that all considerations of the Helmholtz free energy are made here under

conditions of constant temperature. The constants Cijkl measure the strength of the material's

response to strain, and are called the elastic constants.

Within the regime of in�nitesimal strains, rotations and displacements, the assumption that

the deformed con�guration is the same as the undeformed con�guration is valid. Using this

approximation, the above energy can be derived using the small strain, ", and the Cauchy

stress, �, and provides a relation between them. The free energy is determind by considering

the work done per unit volume by the internal stresses when the state of deformation of a

body is changed. This furnishes the expression for the incremental work done, and thus the

incremental change in the free energy (per unit volume), of [53]:

�0d = �ijd"ij =) �ij = �0
@ 

@"ij
: (2.38)

Considering then eq. (2.37) within the small strain regime (� = "; expansion only to second

order). We obtain:

�0 =
1

2
Cijkl"ij"kl; (2.39)

which from eq. (2.38), furnishes an expression for Hooke's law:

�ij = Cijkl"kl: (2.40)
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Following from the symmetry of the " and � tensors [50, 56], we have also that Cijkl = Cjikl =

Cijlk, and the Voigt contraction can be employed also for the elastic constants.

In this work we treat two crystal systems, zincblende (ZB) and wurtzite (WZ). For ZB the

elastic sti�ness tensor has the form (in contracted Voigt notation) [50]:

CZB =

0BBBBBBBBBB@

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

1CCCCCCCCCCA
; (2.41)

whilst for WZ, we have [50]:

CWZ =

0BBBBBBBBBB@

C11 C12 C13 0 0 0

C12 C11 C12 0 0 0

C13 C12 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C11�C12
2

1CCCCCCCCCCA
: (2.42)

If one would like to treat larger strains, and non-linear elasticity, one must accept that the

approximations used to derive eqs. (2.40) and (2.39) become invalid when non-linear e�ects

become important; this is because the small-strain tensor is de�ned in the undeformed con�gu-

ration, and the Cauchy stress is de�ned in the deformed con�guration. As these con�gurations

become increasingly di�erent, the small-strain and Cauchy stress become decreasingly work-

conjugate [52] (The work done on the system when the strain state is changed by a stress is no

longer well described by the product of the Cauchy stress and the small-strain [57]). Further-

more, the Lagrangian strain, which is appropriate for large deformations, is also de�ned in the

undeformed con�guration. So the Lagrangian strain is also not work-conjugate to the Cauchy

stress, i.e. the Cauchy stress is not given as the derivative of the energy with respect to the

Lagrangian strain.

The relationship between the Cauchy stress and the Lagrangian strain has, however, been

presented by Murnaghan [52]. Following a rather more lengthy derivation than that in which

small strains are assumed, the stress-strain relation obtained is given by:

� =
1

det(F)
F

@ 

@�ij
FT : (2.43)
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The tensor @ 
@�ij

is from here denoted by t, and is known as the 2nd Piola-Kircho� stress

tensor [57], which is de�ned in the undeformed con�guration. Because it is de�ned in the

undeformed con�guration, and because it is appropriate to large strains, we shall refer to t as

the Lagrangian stress from here on.

Further details of the theory of �nite strain, as well as third order elastic constants, are provided

as needed in Chapter 5

2.1.3 Internal strain

For crystals whose atoms occupy sites with inversion symmetry, the position of every atom in

the crystal under a deformation is given by eq. (2.6). However, for crystals whose atoms sit on

sites lacking inversion symmetry, the transformation given by eq. (2.6) does not fully specify

the positions, and the atoms of the crystal exhibit an additional sublattice displacement. This

may be accounted for with the amended transformation:

r0 = F r+ u: (2.44)

We note that only the relative displacement of the sublattices are important, and therefore, in

the case of a two atom ZB cell, eq. (2.44) need be applied to only atoms of one of the sublattices,

conventionally chosen to be that which corresponds to the central atom of the tetrahedron of

a primitive cell. For crystals with many di�erent sublattices, many u vectors will need to be

speci�ed. This vector u is known as the internal strain [58].

While this phenomenon has been studied from as early as 1954, as described in Born and

Huang's seminal \Dynamical Theory of Crystal Lattices" [58], it was the popular 1962 paper

by Kleinman [59], that motivated the �rst experimental measurements [60].

In his work, Kleinman sought to determine the deformation potential associated with shear

strain in silicon, but was faced with the indeterminacy of the separation between the two

atoms of the primitive cell, for a given shear. While the applied macroscopic shear strain will

give the position of every atom at a lattice point, without knowing the nature of the bonds

and forces on the central atom (the second basis atom), its equilibrium position cannot be

known. The situation is shown in Fig. 2.6. Here the applied strain, in Voigt notation, is:

" =
�

0; 0; 0; �2 ;
�
2 ;

�
2

�
.

To circumvent this indeterminacy, Kleinman estimates the internal strain via the assumption

of a \bond-bending" model. This model assumes that \all shears take place through the

mechanism of bond-bending", and as such, only the angles between the bonds change, but

the lengths do not change. Thus, in the left hand side of Fig. 2.6, the forces on the unit cell

associated with the shear are shown as green arrows along the cell faces, tending to bend the
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Figure 2.6: E�ect of uniform shear strain on single ZB tetrahedron. (left) Shears are shown
as bond bending forces represented by green lines, bonds between atoms represented by red
lines before cell is deformed. (right) Deformed cell with di�erent internal strain corresponding
to � = 0 or � = 1.

bonds. Under this assumption of shear leading only to a bending of the bonds, the internal

strain u is such that the distance between the central atom and atom A of Fig. 2.6 is the same

as that between the central atom and the others, B, C, and D. This is shown on the right side

of Fig. 2.6, where the bonds in question are shown in blue.

Kleinman also investigated the situation where the atom remains in the centre of the tetrahe-

dron, i.e. the bonds resist bending so strongly that instead of bending, some bonds elongate and

others contract. This is shown by the red bonds on the right �gure of Fig. 2.6. This scenario,

which contradicts the predictions of most interatomic potentials, yielded a deformation poten-

tial with the incorrect sign compared to the experimental one, validating the bond-bending

assumption and the predictions of interatomic potentials [59].

In reality, it is rarely the case that the bonding in a solid is such that the forces resisting bond

bending are completely overwhelmed by the forces resisting bond stretching/compressing, or

vice-versa. The amount by which the central atom moves along the threefold axis along which

the strain is applied depends on the relative strengths of bond-bending to bond-stretching

forces. Kleinman characterised this distance, and the ratio of the forces, with the dimensionless

parameter �, which has since become known as the \Kleinman parameter". Using this, the

sublattice displacement in a ZB crystal is described to �rst order in the strain by [59, 61]:

uZB =
�a0

4
�"4;

a0
4
�"5;

a0
4
�"6

�
: (2.45)

In crystals with a larger basis there will be the possibility of internal strains leading to sublattice

displacements between each of the basis atoms/sublattices. The four-atom WZ unit cell is
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shown in Fig. 2.7. The atomic positions in this unit cell will be given after strain (utilising

4-atom WZ unit cell
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p
p

P
B

p

p
p
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P
D

P
p

p
p
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yz

aWZ

cWZ

u0cWZ

Figure 2.7: 4-atom WZ unit cell.

notation in �gure and ref. [62]) by:

rWZ
A = [0; 0; 0] ;

rWZ
B = (I+ ") rWZ

B;0 + uWZ
1 ;

rWZ
C = (I+ ") rWZ

C;0 + uWZ
2 ;

rWZ
D = (I+ ") rWZ

D;0 + uWZ
3 ;

(2.46)

where there are three unique sublattice displacements, uWZ
i . These internal strains have the

form: [62]

uWZ
1 = c0

�
�1"xz + �5"xy; �1"yz + �5

("xx � "yy)

2
; �2 ("xx + "yy)� �3"zz

�
;

uWZ
2 = a0

�
��4"xy; � ("xx � "yy)

2
�4; 0

�
;

uWZ
3 = uWZ

1 + uWZ
2 � 2c0

�
�5"xy; �5

("xx � "yy)

2
; 0

�
:

(2.47)

A full, thermodynamically rigourous development for all crystal structures of the theory of

internal strain has been given by Cousins [63, 64]. This more rigourous development will be

drawn on in chapter 5, building on the introduction of internal strain and Kleinman's description

for ZB materials presented in this section.
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2.1.4 Piezoelectricity and spontaneous polarisation

Piezoelectricity is the production of an internal polarization within a material in response to

the presence of a strain. In general, the piezoelectric response of a material to a strain will

be aniosotropic, with the direction of the produced polarisation depending on the symmetry

properties of the material in question.

Up to �rst-order, the piezoelectric polarisation, which is a tensor of the �rst rank, will be

related to the strain, which is a tensor of the second rank, by a tensor of third rank. This

relation is given below [50]:

Pi = eijk"jk; (2.48)

where Pi is the component of the polarisation vector along the i axis, and eijk are the compo-

nents of the piezoelectric tensor.

This tensor will be subject to a reduction in the number of independent variables due to the

symmetries of the tensors it relates, as well as crystal symmetries and physical considera-

tions [50]; the Voigt contraction can thus be utilised to facilitate a concise matrix notation. In

the two crystal systems that will be studied in this work, these matrices are given, with the

contracted Voigt notation of (jk) ! J , by:

e
(ZB)
iJ =

0BB@
0 0 0 e14 0 0

0 0 0 0 e14 0

0 0 0 0 0 e14

1CCA ; (2.49)

and

e
(WZ)
iJ =

0BB@
0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

1CCA ; (2.50)

for ZB and WZ crystals, respectively.

Further details of the piezoelectricity in these crystals at a microscopic level, its incorporation

into the tight binding formalism, and its relation to internal strain, can be found elsewhere [58,

65{67].

In addition to the polarisation due to piezoelectricity, we note also that in wurtzite III-N

materials in equillibrium, the asymmetry of the bonds results in a spontaneous polarisation in

the c-axis direction. In the three nitrides the spontaneous polarisation increases on magnitude

going from GaN to AlN [68].
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2.2 Tight binding method

To study the electronic properties of a solid, the time-independent Schrodinger equation must

be solved for the single particle energies and wavefunctions:

Ĥ nk = En (k) nk: (2.51)

Here Ĥ is the Hamiltonian operator,  nk is the wavefunction associated with wavevector k in

the nth band, and En (k) is its energy.

For the case where spin-orbit coupling is neglected (justi�ed for the nitride systems treated in

this work [66]), the single electron Hamiltonian is given:

Ĥ = � ~
2

2m0
r2 + V (r) ; (2.52)

with the �rst term representing the kinetic energy of an electron, and the second term, V (r),

representing the crystal potential as a function of position. Within the one-electron approxi-

mation this potential includes the averaged e�ects of all other electrons as well as the nuclei

making up the solid. Because the nuclei and orbiting electrons are positioned at the sites

of the crystal which are periodic in space, the potential, V (r), is also periodic in space, i.e.

V (r) = V (r+R), where R is a Bravais lattice vector. And because the potential has this

periodicity, so too do the electronic charge densities. This result is known as Bloch's theorem,

which states that the crystal eigenstates,  nk, can be written in the form:

 nk = eik�runk (r) ; (2.53)

where unk (r) shares the periodicity of the lattice, i.e. unk (r) = unk (r+R), and eik�r is a plane

wave which describes the symmetry of a crystal, as well as the delocalised nature of electrons

in a solid.

In the tight binding model it is assumed that these extended states can be accurately described

using a linear combination of the atomic orbitals of the atoms that make up the solid. A natural

choice for this linear combination is a collection of Bloch sums of atomic orbitals.

A Bloch sum over a given atomic orbital, ��, associated with the basis atom, l, can be written

as:

��l (r;k) =
1p
N

X
j

eik�rjl�� (r� rjl) (2.54)

where � represents the di�erent types of atomic orbitals (s,p,d etc.), the sum over j is a sum

over all unit cells in the crystal, with the position vector, rjl, being the position of the basis
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atom l in the unit cell j, and N refers to the total number of primitive cells included in the

sum.

The cell periodic eigenstates of the crystal Hamiltonian Ĥ are expressed in a basis of these

Bloch sums as:

 nk (r) =
X
�;l

an�l (k)��l (r;k) : (2.55)

To express the Hamiltonian in terms of this basis and arrive at a means to obtain the crystal

wave functions we substitute eq. (2.55) into eq. (2.51), and multiply on the left by the conjugate

of the Bloch sum of an arbitrary orbital at the basis atom m, ���m (r;k), where the superscript

`�' represents the complex conjugate operation. Then integrating over the whole crystal and

using Dirac bracket notation to represent the resulting inner products, we obtain:

X
�;l

an�l

�
h��mjĤj��li � Enh��mj��li

�
= 0: (2.56)

Note that we have left the position r, and wave vector k dependence implicit, for the sake of

a more concise notation. This equation is usefully described in terms of the Hamiltonian and

overlap matrices, where: [69]

H�m�l (k) = h��mjĤj��li and S�m�l (k) = h��mj��li; (2.57)

are the Hamiltonian and overlap matricies, respectively.

To make this solvable, we draw on the following propositions for the simpli�cation of the overlap

matrix:

1. The orbitals on a given atomic site are orthogonal.

2. Atom-like orbitals are orthogonal with respect to those on neighboring sites.

The �rst is a standard result of the fact that the eigenfunctions of a given Hamiltonian are

orthogonal, and the atomic orbitals are eigenfunctions of the atomic Hamiltonians. The second,

the assertion that the overlap between orbitals on di�erent atomic sites is negligible, is justi�ed

given the decay of an orbital away from the site it is centred on and can in any case be

guaranteed by the procedure of L�owdin orthogonalisation [70]. Using these assumptions, the

overlap matrix is greatly simpli�ed:

S�m�l (k) = ����ml; (2.58)

where �ij is the Kronecker delta.
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Turning now to the Hamiltonian expressed in the tight binding basis, we substitute eq. (2.54)

into the expression for H�m�l in eq. (2.57), and after performing some manipulation of the

sums [69], obtain:

H�m�l (k) =
X
jj0

eik�(rjl�rj0m)h��
�
r� rj0m

� jĤj�� (r� rjl)i; (2.59)

where h��
�
r� rj0m

� jĤj�� (r� rjl)i make up the matrix elements of the crystal Hamiltonian

between the atomic orbitals �� and ��, situated in the j and j0th unit cell, on the atomic sites

l and m, respectively.

Because the atomic-like basis functions used, ��, decay exponentially outside of the atomic site

upon which they are centred, H�m�l becomes very small for cases where the atom denoted l

is far from that denoted by m. This allows for the simpli�cation of treating only interactions

between orbitals situated on nearest neighbour atoms. Thus the sum in eq. (2.59) can be

restricted to run over only pairs of nearest neighbours. With these approximations made to

H�m�l(k) and S�m�l(k), the secular equation, eq. 2.56, may be written in an explicitly nearest

neighbour formulation:

X
�;l

an�l

0@ nnX
j=0

eik�(r0l�rjl)h�� (r� r0m) jĤj�� (r� rjl)i � En�nm���

1A = 0: (2.60)

In eq. 2.60, the sum over j includes now 0, describing a self interaction, and nearest neighbour

atoms, with the k-dependence of the Hamiltonian depending on the geometry of the crystal

being modelled. For example, in a simple cubic crystal, this will be a sum over the six nearest

neighbours, whilst in a tetrahedral solid there are four terms.

In the semi-empirical tight binding approach employed in this work, the interaction elements,

h�� (r� r0m) jĤj�� (r� rjl)i, are treated as adjustable parameters which are set and optimised

according to the results of ab initio calculations or experiment. To begin the discussion of

�tting these elements, we note that the diagonal `on-site' elements have a di�erent meaning

and �tting procedure to those of the o� diagonal elements. These are elements of the kind

H�l�l � h�� (r� r0l) jĤj�� (r� r0l)i, and since the Hamiltonian in the part of the crystal over

which the ��l will have a large magnitude will be strongly determined by the isolated atomic

Hamiltonian for the atom located at that point, these self energies follow similar trends to the

atomic eigenvalues. And while they will not be identical due to the e�ect of other atoms and

electrons in the crystal, the atomic eigenvalues serve as a good starting point in the �tting of

these matrix elements.

Since di�erent orbitals on the same site are orthogonal, we have:

H�l�l = E���� (2.61)
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In supercell calculations, the e�ects of external potentials, strain, or crystal asymmetries are

normally incorporated via adjustements to these eigenvalues. Details of the particular method-

ologies used for these adjustments are given in chapter 3.

For orbitals on di�erent sites, the interaction terms h��ljHj��mi, are not so easily assigned.

Because these inner products are related to the probability of an electron with the atomic wave

function �� on the site l transfering to the atomic orbital �� on site m, they are also known as

`hopping' matrix elements. In the assignment of these hopping matrix elements, we make use

of the approximation introduced by Slater and Koster [71], whereby the three centre integrals

involved in these matrix elements are characterised in terms of simpler two centre integrals,

and direction cosines.

For the sp3 basis utilised in this work, there are two types of interaction between the atomic

orbitals: � interactions, which involve a head-on overlap between two orbitals, or � interactions,

which involve sideways overlaps. These are illustrated graphically in Fig. 2.8. The di�erent

types of these interactions are:

� Vss� - interaction between any two s orbitals on neighbouring atoms

� Vsapc� - an s orbital on an anion in a � bond with a p orbital on a cation

� Vscpa� - an s orbital on a cation in a � bond with a p orbital on an anion

� Vpp� - � bond between two p orbitals on neighbouring atoms

� Vpp� - � bond between two p orbitals on neighbouring atoms

However, unless we are dealing with a simple cubic crystal, the atoms and bonds will not be

so oriented that they can all be described as either � or � bonds. The orbitals must thus be

resolved along the bond vector joining the atoms, and perpendicular to it. The interaction

between a p state and another p state, can then be split into Vpp� and Vpp� using direction

cosines. This is illustrated in Fig. 2.9.

If we denote the direction cosines of the bond vector joining the atomic sites on which two

states sit, as lx, ly and lz, then the Slater Koster formalism gives the interaction parameters

for any crystal as:

hsjĤjsi = Vss�; (2.62)

hsjĤjpxi = lx(Vsp�); (2.63)

hpxjĤjpxi = l2x(Vpp�) + (1� l2x)(Vpp�); (2.64)

hpxjĤjpyi = lxly(Vpp�)� lxly(Vpp�): (2.65)
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Figure 2.8: Two centre integral parameters for s and p type orbitals. Taken with permission
from C.Coughlan [72].

With the interactions between di�erent orbitals at neighbouring sites in the crystal thus char-

acterised, the Hamiltonian of the bulk crystal, H�l�m can be written down. For the wurtzite

structures considered in this work, this Hamiltonian wil be comprise interactions between 4

orbitals on 4 basis atom sites, and will therefore have 16x16 elements. This hamiltonian can

be diagonalised analytically at each k-point giving the energy dispersion En (k), for each band,
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Figure 2.9: The resolution of two px orbitals into components with directions normal and
parallel to the bond vector. Taken with permission from C.Coughlan [72].

as a function of the tight binding parameters. The parameters are then varied to obtain val-

ues of En (k) which agree with experimntal or ab. inito band structures at chosen values of

n and k, i.e. to reproduce featuers of chosen bands at chosen k-points. The parameters used

in this work were obtained via �tting to band structures calculated using density functional

theory (DFT) within the Heyd-Scuseria-Ernzerhof (HSE) screen exchange hybrid functional

scheme [73], whilst also taking into account experimentally determined band gaps. Generally,

and in this work, the �tting is such that the most weight is put on the �ttings around k = 0,

particularly at the valence band edge, given the importance of the energies in this region in de-

termining the optical properties of semiconductors. The splittings between the di�erent bands

and the e�ective masses in these regions are thus reproduced by the optimised tight binding

parameters.

The method by which the di�erent parameterised bulk tight-binding models are applied to

large alloy supercells, incorporating e�ects of local strain, built in �eld and local polarisation

ucutations, is detailed with references in chapter 3.





Chapter 3

Electronic properties of c-plane

InGaN/GaN Quantum Wells

In this chapter we present a detailed theoretical analysis of the electronic structure of c-plane

InGaN/GaN quantum wells with indium contents varying between 10% and 25%. The elec-

tronic structure of the quantum wells is treated by means of an atomistic tight-binding model,

accounting for variations in strain and built-in �eld due to random alloy uctuations. Our

analysis reveals strong localisation e�ects in the hole states. These e�ects are found not only

in the ground states, but also the excited states. We conclude that localisation e�ects persist

to of order 100 meV into the valence band, for as little as 10% indium in the quantum well,

giving rise to a signi�cant density of localised states. We �nd, from an examination of the

modulus overlap of the wave functions, that the hole states can be divided into three regimes of

localisation. Our results also show that localisation e�ects due to random alloy uctuations are

far less pronounced for electron states. However, the combination of electrostatic built-in �eld,

alloy uctuations and structural inhomogeneities, such as well-width uctuations, can never-

theless lead to signi�cant localisation e�ects in the electron states, especially at higher indium

contents. Overall, our results are indicative of individually localised electron and hole states,

consistent with the experimentally proposed explanation of time-dependent photoluminescence

results in c-plane InGaN/GaN QWs.

3.1 Introduction

Nitride semiconductors have attracted considerable interest for a variety of di�erent applica-

tions, ranging from photovoltaic cells up to optoelectronic devices such as light-emitting devices

(LEDs) [74]. For instance, the cornerstone of modern light-emitting devices (LEDs) operating

33
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in the blue to green spectral region are InGaN/GaN quantum wells (QWs) grown along the crys-

tallographic c axis [1, 3, 75, 76]. The success of these devices is remarkable given the extremely

high defect densities (> 108 cm�2) in InGaN/GaN materials, which mainly originate from the

large lattice mismatch between GaN and the underlying substrate, sapphire (16%) [11, 77]. The

widely accepted explanation for the defect-insensitive e�ciency of InGaN - based devices is that

carrier localisation e�ects introduced by alloy uctuations prevent di�usion to non-radiative

recombination centres. Using positron annihilation measurements, Chichibu et al. [77] demon-

strated the presence of such carrier localisation e�ects in nitride-based alloys. In addition

to these measurements, photoluminescence (PL) spectroscopy studies by di�erent groups also

gave clear indications that the optical properties of c-plane InGaN/GaN QWs are signi�cantly

a�ected by localisation phenomena. For example, temperature dependent PL measurements

have shown that the PL peak energy follows an \S-shaped" temperature dependence [16{18, 76].

This particular form of the shift of the PL peak position is attributed to the redistribution of

carriers between di�erent localised states [17, 78, 79]. Furthermore, time-dependent PL mea-

surements revealed non-exponential decay transients and that the decay times extracted from

the curves vary across the PL curve [16, 19, 34]. Morel et al. [80] proposed as an explanation

for this that the radiative recombination process in c-plane InGaN/GaN QWs is dominated

by individually localised carriers. The varying spatial separations of these separately localised

carriers, both in the c-plane and perpendicular to it, lead to variations in the radiative recom-

bination time. Using this assumption, Morel et al. [80] were able to obtain a good agreement

between theoretical predictions and the experimental data.

Even though, as discussed above, there is considerable experimental evidence for the importance

and presence of localisation e�ects due to alloy uctuations, it is only recently that these e�ects

have been considered in theoretical studies. The applied theoretical frameworks range from

modi�ed continuum-based descriptions [48, 81], which account for alloy uctuations via spatial

variation of material properties, such as the e�ective mass or band o�sets, up to fully atomistic

models [31, 44, 45]. These studies have focused mainly on ground state properties, which

are important to understand and explain experimental studies at low temperature; however,

in order to understand the results of experiments conducted at ambient temperature, as well

as the transport properties of the system, many excited states must be considered. Already

the \S-shaped" temperature dependence of the PL peak position indicates that excited states

exhibit localisation features. These localised states modify the form of the density of states in

such a way that there is a smooth tail of states at the low energy end of the density of states in

a QW structure [82, 83]. Because of this, these states are often referred to as \tail states" [21].

In this chapter we address the impact of random alloy uctuations on the localisation features

of both ground and excited states in c-plane InGaN/GaN QWs systems. To cover the ex-

perimentally relevant indium composition ranges, we analyse InGaN/GaN QWs with indium

contents of 10%, 15% and 25%. Furthermore, since experimental studies highlight also that
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structural inhomogeneities, such as well width uctuations, impact the electronic and opti-

cal properties of nitride-based heterostructures signi�cantly [27], we include these e�ects in

our atomistic analysis. Our theoretical framework is based on an atomistic sp3 tight-binding

(TB) model, which includes e�ects such as strain and polarisation �eld variations due to the

considered random alloy uctuations.

Our calculations reveal that random alloy uctuations lead to strong hole wave function lo-

calisation e�ects in both ground and excited states. We �nd here that over an energy range

of order 100 meV a signi�cant density of localised valence states is expected. The presented

data also indicates that these localised states signi�cantly a�ect the probability for transferring

carriers from one site/state to another. When studying whether or not the hole wave functions

overlap with each other, three di�erent regimes become apparent. The �rst corresponds to

\strongly localised states" with almost no spatial overlap with all other states considered. The

second and third regimes consist of what we refer to as \semi-localised states" and \delocalised

states", respectively, where the spatial overlap is signi�cantly increased with respect to the

\strongly localised" states. Our data also shows that the number of states, and therefore the

energy range, constituting each of these regimes, depends on the indium content of the system

in question.

While our calculations reveal that random alloy uctuations lead to very strong hole wave

function localisation e�ects, the situation is di�erent for the electron states. Compared with

the hole states, the alloy uctuations lead to much less pronounced electron wave function

perturbations. The primary sources of the localisation of electron states are the electrostatic

built-in �eld, and well width uctuations, present in c-plane InGaN/GaN heterostructures.

Also for the excited electron states, localisation e�ects are strongly reduced compared with the

holes.

The combination of macroscopic built-in �eld, random alloy and well width uctuations leads

to a spatial separation of electron and hole wave functions both in the c plane and perpen-

dicular to it. In standard continuum-based models, InGaN/GaN QWs are treated as ideal

one-dimensional systems, which can be described by averaged material parameters. These

approaches can account only for the spatial separation of electron and hole wave functions

along the growth direction due to the presence of the built-in �eld. Thus, in contrast to the

here applied fully atomistic three-dimensional approach, in-plane spatial separations are not

captured. Our results indicate that electrons and holes are individually localised and that the

wave function overlap should therefore also depend on the relative in-plane position of the carri-

ers. Therefore, the here obtained �ndings are consistent with the \pseudo 2-D donor-acceptor

pair system" proposed by Morel et al. [80] to explain time-dependent PL results of c-plane

InGaN/GaN QWs.
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The chapter is organised as follows. In Sec. 3.2, we introduce the components of our theoretical

framework. In Sec. 3.3 we discuss the QW model system under consideration and the input

from available experimental structural data. The results of our calculations are presented in

Sec. 3.4. We �rst address ground state properties in Sec. 3.4.1 before turning to the excited

states in Sec. 3.4.2. We relate our theoretical data to experimental �ndings in Sec. 3.5, before

summarising our work in Sec. 3.6.

3.2 Theoretical Framework

In this section we briey introduce the atomistic theoretical framework used to study the

electronic structure of c-plane InGaN/GaN QWs with varying indium content. The approach

can be divided into three main components.

First, the large lattice mismatch between InN and GaN (approx. 11%) gives rise to a strain

�eld in InGaN/GaN heterostructures. To treat this strain �eld on an atomistic level, and thus

account for the microscopic random alloy uctuations, we employ a valence-force-�eld (VFF)

model based on that introduced by Martin [84]. The energy per atom in this model is given

by:
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In this equation, the rij and r0ij are the strained an equillibrium bond lengths between atoms

i and j, and �ijk and �0ijk are the strained and equillibrium bond angles, centred on atom i,

between bonds rij and rik. The force constants, kr, k� represent resistance to changes in bond

lengths and angles away from their equillibrium values. krr and kr� describe forces that tend

to change one bond length in response to the change of a neighbouring bond, or to change the

angle between two bonds in response to the change in length of one of those bonds, respectively.

The sums over j involving these force constants, are sums over 4 tetrahedral neighbours for

kr, and sums over the 6 angles about atom i, for k�, krr and kr�. Z�i is the e�ective charge

of atom i, e is the elementary charge, �0 is the permitivity of free space, �r is the dielectric

constant of the material in question, and �M is the Madelung constant. The last two terms

represent the Coulombic interactions in the crystal, with the prime on the �rst electrostatic

sum indicating that the summation is taken over all atoms in the in�nite crystal, and not just

nearest neighbours. The second term on the last line is a linear repulsive term, whose purpose is
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to screen the linear part of the Coulomb interaction between nearest neighbours, and preserve

the symmetry of the elastic constants, and stability of the crystal [84].

After �tting the force constants and e�ective charges to correctly reproduce elastic constants

and internal strains (using the method of Keting [61], as described in Chapter 5), our VFF

includes electrostatic e�ects explicitly and reproduces important real-wurtzite system attributes

such as non-ideal c=a ratios and internal parameters u. More details of the model are given in

Ref. [44]. We have implemented this model in the software package LAMMPS [85], minimising

the energy to obtain the relaxed atomic positions and correct strain state of the system under

investigation.

Second, the strong intrinsic electrostatic built-in �elds in nitride heterostructures have to be

included to achieve a realistic description of the electronic structure of c-plane InGaN/GaN

QWs. In wurtzite III-N materials the lack of inversion symmetry leads to a non-vanishing sum

of electric dipole moments and thus to a macroscopic electric polarisation. This polarisation has

two contributions, one of which is strain independent, known as the spontaneous polarisation,

and the other of which is the strain dependent piezoelectric polarisation [30]. In addition to the

macroscopic polarisation, random alloy uctuations lead also to local polarisation variations. To

account for these local variations, we utilise a recently developed local polarisation theory [66],

capable of accounting for both the macroscopic and local intrinsic polarisation. The model

receives input for its material parameters from HSE DFT calculations [66]. The starting point

for this approach is to split the wurtzite polarisation vector, made up of spontaneous and

piezoelectric contributions, into macroscopic and microscopic terms:

Pi =

macroscopicz }| {
6X
j=1

e0ij"j +

microscopicz }| {
P spi � e

V0

Z0
i

N0
coor

0@�i � 3X
j=1

(�ij + "ij)�j;0

1A (3.2)

The macroscopic term is the so called clamped-ion contribution where ions are not allowed to

move and this part is related to the piezoelectric coe�cients e0ij [30]. The local contribution

involves the deformation of the nearest neighbor environment around the atom under consid-

eration. With this a dipole moment for each tetrahedron can be de�ned over the entire cell.

From this the corresponding polarisation (dipole moment/volume) can be calculated.

The �nal step is to calculate the related built-in potential. Usually this is done by solving

Poisson's equation, r� (�r ) = r�P. However, since we are dealing with an atomic wurtzite

grid this becomes di�cult. Firstly because the discretisation of the medium is irregular, given

the strain in the crystal. And secondly, because we solve Poisson's equation using a a �nite dif-

ference or polynomial interpolation scheme, the solution involves the calculation of derivatives

requiring the use of interpolations which smear out the e�ects of the abrupt local discontinuities

in the polarisation, which motivated the developement of the local polarisation model in the
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�rst place. To circumvent this problem use is made of the multipole expansion of a distribution

of electric charges, from which the the electrostatic potential at position r due to the presence

of a point dipole at r0 can be calculated. In doing so we avoid the aforementioned numerical

problems arising from solving Possion's equation by, for instance, a �nite di�erence method on

a strained wurtzite crystal structure. Consequently, we �nd the situation that the macroscopic

component of the built-in potential, which is e�ectively the potential one would expect in a

capacitor, is modi�ed in the QW region by local uctuations superimposed on the potential

slope in the QW region. The details of the local polarisation and point dipole method are

described in Ref. [66].

Thirdly, to determine the e�ects of alloy, strain and built-in potential uctuations on the

electronic structure of InGaN/GaN QWs, we use an atomistic, nearest neighbor sp3 TB model.

Here we use an atomic basis of 4 orbitals on each of the 4 atoms in the wurtzite basis, these

have the symmetries of s, px, py, and pz, in accordance with the outermost valence orbitals of

InN and GaN. Because we are dealing with light atoms, spin-orbit coupling introduces energetic

shifts of only a few meV, and is therefore neglected. Before treating the InGaN alloy we start

from the binary materials InN and GaN. The required TB parameters are determined by �tting

the TB bulk band structures of InN and GaN to those calculated using HSE hybrid-functional

DFT, as described in Chapter 2. The details of this �tting, and the parameters obtained, along

with the HSE DFT bandstructures, are provided in Ref. [66]. Due to the minimal basis used

in sp3 TB, the description of the conduction band at the L- and M -valleys is less accurate.

However, from our HSE-DFT calculations we �nd that, for the nitrides, there is a very large

energetic separation between the conduction band minimum at the �-point and the M and

L valleys [66]. Because of this, the evolution of the energy gap is dominated by the band

structure around k = 0; thus, since the TB model used here captures well the valence band

and the conduction band at �, it is particularly suitable for treating nitride semiconductors.

Equipped with this knowledge about the binary materials, we can then treat the InGaN alloy

on a microscopic level. To this end, at each atomic site, the TB parameters are set according to

the bulk values of their constituent atoms. For the cation sites (Ga,In), there is no ambiguity

in assigning the on-site and nearest neighbor TB matrix elements, since these always have

nitrogen atoms as their nearest neighbors. However, the nearest neighbor environment of the

anions (N) will vary depending on the local indium distribution. To treat this e�ect, di�erent

approaches have been used in the literature. One ansatz is to start already at the bulk band

structure level and use the same on-site TB matrix elements for N in InN and GaN. In doing

so the ambiguity for the N-atom on-site energies in an InGaN alloy is removed. However, by

assuming the same N-atom on-site energies in InN and GaN, one e�ectively �xes the band o�set

between InN and GaN. Such an approach limits the transferability of the TB parameters to

other systems. Given these arguments, we apply here another widely used approach to treat the

on-site energies of a common atom species in an alloy. The assignment here is performed using
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weighted averages for the on-site energies, where the weights are determined by the number of

nearest neighbor In or Ga atoms. This is a widely used and benchmarked approach to treat

alloys in an atomistic TB framework [44, 86{88]. The band o�set is included by shifting the

InN on-site TB parameters by the valence band o�set �EVB = 0:62 eV. The value for �EVB

is taken from HSE-DFT calculations [89].

Strain and built-in potential e�ects are included in the description as on-site corrections to the

TB Hamiltonian. The procedure is detailed in Ref. [66].

Finally, having determined the TB Hamiltonian for an alloyed supercell, the task remains to

obtain the energies and states of interest. However, to accurately treat random alloy e�ects,

very large supercells are needed, and the tight binding Hamiltonian will be of size 4Nx4N, N

is the total number of atoms in the system. As N increases to accomodate the size of a typical

InGaN QW, the diagonalisation problem becomes increasingly intractable. Furthermore, given

that the optical properties of the InGaN QWs are governed by the states near the band gap,

the calculation of all the valence states from bands below those at the valence band edge is a

waste of computational resources. To circumnavigate this misuse of resources we use the folded

spectrum method [90]. This method avoids solving the conventional Schordinger equation:

Hj ni = Enj ni; (3.3)

in favour of:

(H � ErefI)2 j i = (En � Eref )2 j ni: (3.4)

The lowest eigenstate, and the �rst obtained via the variational method, is now the eigenstate

closest to Eref . Using this method, the single particle states are obtained in the band gap

region for k = 0.

This framework has already been successfully applied to other wurtzite III-N alloys, such as

AlGaN and AlInN [91, 92]. And similar approaches have been used also to e�ectively describe

other alloy systems, such as GaBiAs/GaAs QWs [93].

Having discussed the theoretical framework, we introduce the model c-plane InGaN/GaN QW

systems in the next section.

3.3 InGaN/GaN QW System

Here we introduce the QW systems to which we apply our theoretical framework. The QW

structures being studied are similar in indium contents to QWs studied experimentally in

Ref. 26. To model c-plane InxGa1�xN/GaN QWs we use � 82,000 atom supercells (equivalent

to a system size of � 10 nm � 9 nm � 10 nm) with periodic boundary conditions. The QW in
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these supercells is around 3.5 nm wide. These supercell dimensions have been chosen such that

the experimentally reported carrier localisation lengths of 1:1 � 3:1 nm [26] can be accommo-

dated within the cell without spurious coupling to periodic replicas. Following Refs. [22{24, 94],

we assume that InGaN is a random alloy and distribute indium atoms at the cation sites of the

active region with a probability given by the nominal indium content of the alloy composition

in question. In doing so we do not assume any preferential orientation or correlation of indium

atoms. To examine the impact of the microscopic indium con�guration on the electronic struc-

ture, we consider twenty di�erent random atomic con�gurations for each composition studied.

These con�gurations are generated for nominal indium contents of 10% , 15% and 25% , which

cover the experimentally relevant range of indium contents [26]. It should be noted that we

are interested here in general trends rather than a detailed statistical analysis of the results.

Such an analysis would require signi�cantly more random con�gurations. However, for our

purposes, to shed light on trends and basic properties of the InGaN/GaN QWs with varying

indium content, including e�ects of random alloy uctuations, a sample of twenty di�erent

con�gurations per alloy content is su�cient.

In Refs. [26] and [95], well-width uctuations were observed at the upper interface [GaN on

InGaN] of c-plane InGaN/GaN QWs. The reported diameters range from 5 to 10 nm and

heights of one to two monolayers are observed. We include a well-width uctuation with a

diameter of 5 nm and a height of two monolayers sitting in the center of the upper region of

our QW. Consistent with previous approaches to the modeling of these features, the shape of

the well-width uctuation is assumed to be disk-like [44, 48]. We are mainly interested in the

impact of random alloy uctuations on the electronic properties, therefore, we do not attempt

to study the e�ects of well width uctuations varying in size and shape. This would require

very detailed experimental information as input into our model and is beyond the scope of the

present work. However, assuming a single type of well width uctuation does give an indication

of the mechanisms by which any well-width uctuation, in combination with random alloy and

built-in �eld e�ects, could a�ect carrier localisation features.

3.4 Results

In this section we present the results of our theoretical analysis. We start with ground state

properties in Sec. 3.4.1, and focus then in detail on excited states in Sec. 3.4.2.

3.4.1 Ground state properties

A �rst quantitative measure for the impact of alloy uctuations on the electronic structure of

c-plane InGaN/GaN QW systems is given by the variation in ground state transition energies



Chapter 3: Electronic properties of c-plane InGaN Quantum Wells 41

1.8

2

2.2

2.4

2.6

2.8

3

2 4 6 8 10 12 14 16 18 20

E
g
(e
V
)

n

10% InN
15% InN
25% InN

Figure 3.1: Single-particle ground state transition energies (band gap) in the here-considered
c-plane InxGa1�xN/GaN QWs for the n di�erent random microscopic con�gurations. The
indium content in the well is x = 0:1 (10%, black square), x = 0:15 (15%, open blue circle)
and x = 0:25 (25%, red solid circle). The average transition energies for each indium content
are indicated by the dashed lines.

about their con�gurational average. In Fig. 3.1, the energy of the ground state transition, Eg,

is plotted against the con�guration number, n, for each nominal indium concentration [10%,

15% and 25%]. For each case the average transition energy is indicated by a dashed line. The

values obtained for the 10% (black square), 15% (open blue circle) and 25% (solid red circle)

indium systems are 2:871 eV, 2:533 eV and 1:964 eV, respectively. As expected, the transition

energy shifts to lower energies with increasing indium content, due to the lower band gap of

InN with respect to GaN. Apparent from Fig. 3.1 is the signi�cant spread in transition energies

about their averages across all indium contents. This demonstrates that random alloy e�ects

are important for as little as 10% indium in the well. The uctuations in Eg are also consistent

with the large PL linewidths observed experimentally [15, 19, 26, 96, 97]. These calculated

average transition energies will be compared to experimental PL peak energies reported in the

literature in Sec. 3.5.

To investigate the origin of the variance of the transition energies, we look now to the variation

of the corresponding electron and hole ground state energies about their respective averages.

In Fig. 3.2 the electron ground state energies, Ee
GS [Fig. 3.2 (a)], and hole ground state energies,

Eh
GS [Fig. 3.2 (b)], are plotted as a function of the con�guration number, n. The average ground
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Figure 3.2: (a), Electron ground state energy, Ee
GS, and (b), hole ground state energy, Eh

GS,
in an InxGa1�xN/GaN QW as function of the di�erent random microscopic con�gurations, n.
The indium content x in the well is x = 0:10 (10%, black square), x = 0:15 (15%, blue circle)
and x = 0:25 (25%, red solid circle). The average ground state energies are indicated by dashed
lines.

state energies are again indicated as dashed lines. The data are shown for the di�erent indium

contents x. The average hole ground state energy increases with increasing indium content since

the valence band o�set increases. For 10% [x = 0:1, black square], 15% [x = 0:15, blue circle]

and 25% [x = 0:25, red solid circle] indium the average energies are 334 meV, 489 meV and

785 meV, respectively [cf. Fig. 3.2 (b)]. The zero of energy is taken as the valence band edge of

the unstrained bulk GaN. However, due to the macroscopic built-in potential and random alloy

uctuations, the valence and conduction band edges will vary with position across the QW

structure, with the calculated hole energies then including a contribution from these factors.

For the comparison with the experiment only the transition energies are relevant, which are

independent of the choice of the zero of energy. The average ground state energies of the

electrons likewise decrease with increasing indium content, since the conduction band o�set is

increased [cf. Fig. 3.2 (a)]. The average electron ground state energies are 3:205 eV, 3:022 eV

and 2:763 eV for 10%, 15% and 25% indium, respectively.

On comparison of the variations in Fig. 3.2 (a) and (b), in general, it is evident that the

hole ground state energy, Eh
GS, is very sensitive to the con�guration number, n. This further

indicates that the alloy microstructure plays an important role for the valence band states.

More speci�cally, from Fig. 3.2 we �nd that the Eh
GS values vary between � �100 meV around

their average energies whilst the electron ground state energies, Ee
GS, vary at most from the

average by � �50 meV. However, for the electron ground states, the large value of �50 meV

arises mainly from the 15% indium case while for 10% and 25% indium we �nd only � �10

meV and � �20 meV, respectively. Furthermore, for the 15% indium case, the spread in the
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Figure 3.3: Isosurface plots of the electron (red), j e1j
2, and hole (green), j e1j

2, ground state
charge densities in the In0:10Ga0:90N/GaN QW. The light (dark) isosurface corresponds to 10%
(50%) of the maximum charge density. The results are shown perpendicular (\Side View") and
parallel (\Top View") to the c-axis. In this and the following two �gures, the dashed lines in the
side view indicate the QW interfaces; as a guide to the eye, the circular well width uctuation
is also given by the dashed line in the \Top View". The results are shown for three di�erent
random microscopic con�gurations (Con�gs 9, 13, and 20).

electron ground state energies about their average energy is comparable with the spread in the

energies of the hole states.

To shed more light on the results shown in Fig. 3.2 (a) and (b), Figs. 3.3, 3.4 and 3.5 show

isosurfaces of the electron (red) and hole (green) ground state charge densities for selected

con�gurations in the case of 10%, 25% and 15% indium in the QW, respectively. The \Side

View" for each of these cases is a view perpendicular to the c-axis, while the \Top View" is

a view looking down the c-axis. The light and dark isosurfaces correspond to 10% and 50%

of the respective maximum charge density values. The selected con�gurations correspond to

situations with positive and negative deviations from the average ground state energy plus one

con�guration that is close to the average value.

We analyse in a �rst step con�gurations n = 9; 13 and 20 of the 10% indium case. The

corresponding charge densities are displayed in Fig. 3.3. In general we �nd that the electron

and hole wave functions are spatially separated along the c-axis due to the presence of the

electrostatic built-in �eld. Looking at con�gurations 9 and 20, we see from the electron charge

densities that they are almost spread across the entire c-plane in the QW region. However, a

closer inspection also reveals that the ground state electron wave functions are a�ected by the
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presence of the random alloy uctuations. This is evinced by the lower probability densities

in certain parts of the QW region. For con�gurations 9 and 20 we �nd also that the assumed

well width uctuation is of secondary importance. A di�erent behaviour in our calculations is

observed when looking at con�guration 13, where the charge density is localised very strongly

in the well-width uctuation. This particularity of the ground state wave function, con�ned

in the well-width uctuation, is also reected in the energy value, which shows the largest

absolute deviation from the average [cf. Fig. 3.2 (a)]. However, we stress here again that we

have assumed only a particular type of well-width uctuation. We will discuss the importance

of the well-width uctuation in more detail below.

For the hole ground states the situation is di�erent. Looking at the charge densities (green

isosurfaces) in Fig. 3.3, much stronger localisation e�ects are visible for all con�gurations.

The \strength" and spatial position of the localisation changes greatly from con�guration to

con�guration. This behaviour reects the sensitivity of the hole ground state energies to a

particular microscopic con�guration, as seen in Fig. 3.2 (b). In general this sensitivity to

the alloy microstructure can be attributed to the larger e�ective mass of the holes [98, 99],

when compared to the electrons, and their associated tendency to be localised at In-N-In

chains, as shown by DFT calculations [45, 100]. It is important to note that the observed

hole localisation features both in-plane as well as along the c-axis are vastly di�erent from

a standard continuum-based description. When looking at con�guration 13, the hole wave

function localises near the bottom QW/barrier interface. This situation might be expected

from a continuum-based description. However, a fully continuum-based description would not

account for the clearly visible in-plane localisation e�ect, since in such an approach InGaN/GaN

QWs are usually treated as one dimensional systems. For con�gurations 9 and 20, the wave

functions are localised in regions clearly above the bottom QW interface. This would also not

be expected from a continuum description. This strong localisation experienced by the holes

validates the aforementioned conclusion that random alloy uctuations signi�cantly impact the

system properties for as little as 10% indium in the QW. The results shown in Fig. 3.3 also

indicate that the wave function overlap between electron and hole ground states is not only

a�ected by the spatial separation along the growth direction but also by the spatial separation

in the c-plane. We will come back to this observation in Sec. 3.5 where we discuss the observed

results with respect to experimental data.

Before turning to the 15% indium case, we focus on the 25% indium results, shown in Fig. 3.4,

in the next step. When looking at the electron charge densities (red) of the here displayed

con�gurations 4, 13 and 15, it is evident that the electron wave functions are all localised by

the well-width uctuation. This results from the increased built-in �eld in the 25% indium

case when compared with the 10% indium case [cf. Fig. 3.3]. Since the well-width uctuation

introduces an extra in-plane/lateral con�nement for the electron wave functions, one could

expect larger variations in the corresponding electron ground state energies when compared
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Figure 3.4: Isosurface plots of the electron (red), j e1j
2, and hole (green), j h1 j

2, ground state
charge densities in the In0:25Ga0:75N/GaN QW. The light (dark) isosurface corresponds to 10%
(50%) of the maximum charge density. The results are shown perpendicular (\Side View")
and parallel (\Top View") to the c-axis for three di�erent random microscopic con�gurations
(Con�g 4, 13, and 15).

with the 10% indium system, where the considered well-width uctuations are only of secondary

importance. This is because di�erent microscopic con�gurations of the indium atoms in the

well-width uctuation will lead to di�erent e�ective con�ning regions for the electrons. For

instance, a concentration of indium in the centre of the well width uctuation (con�guration

13) can lead to a ground state with a very di�erent energy from that of a con�guration where

the indium is concentrated near the barrier material (con�guration 15); the state near the

barrier is e�ectively con�ned in a smaller region and will have its energy increased by the

e�ects of the barrier. This picture of small changes in indium content leading to large changes

in con�nement and energy is consistent with the data shown in Fig. 3.2 (a), and discussed

above. Turning to the hole ground states, we �nd a similar behaviour as in the 10% indium

case with strong localisation features for each con�guration. In con�gurations 13 and 15 the

hole wave function is localised close to the bottom QW interface, while the hole ground state

wave function in con�guration 4 is localised two monolayers above the lower QW interface.

Due to the increased built-in �eld in the 25% indium case one would expect that the hole wave

functions are localised near the bottom interface. In this sense, with the hole wave function not

being localised near the bottom QW interface, one could expect that con�guration 4 represents

an extreme case. This is con�rmed in the large deviation of its ground state energy from the

average ground state energy, as displayed in Fig. 3.2 (b). When looking at the \Top View"
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Figure 3.5: Isosurface plots of the electron (red), j e1j
2, and hole (green), j e1j

2, ground state
charge densities in the In0:15Ga0:85N/GaN QW. The light (dark) isosurface corresponds to 10%
(50%) of the maximum charge density. The results are shown perpendicular (\Side View")
and parallel (\Top View") to the c-axis for three di�erent random microscopic con�gurations
(Con�g 3, Con�g 4, Con�g 8).

of the electron and hole ground state charge densities, we �nd that electron and hole wave

functions are separately localised due to the built-in �eld, random alloy uctuations and well

width uctuations. Again, the wave function overlap between electrons and holes is not only

a�ected by the spatial separation along the growth direction but also in the c-plane. When

looking, for instance, at the charge densities of the electron and hole wave functions from

con�guration 15, we �nd that electron and hole wave functions are localised at similar in-plane

positions. This is in contrast to con�guration 4 and 13, where we are left with a clear spatial

separation also in the c-plane. Again, we will come back to the importance of these properties

in Sec. 3.5.

We now turn to the 15% indium case. Here we have selected con�gurations 3, 4 and 8. The

corresponding electron and hole ground state charge densities are displayed in Fig. 3.5. As

discussed above, the variation in the hole ground state energies [cf. Fig. 3.2 (b)] is comparable

to the variations observed in the 10% and 25% indium case, respectively. The isosurfaces of

the hole charge densities (green) displayed in Fig. 3.5, show also a similar behaviour as in

the 10% and 25% indium systems. However, in comparison with the 10% or 25% indium

case, the electron ground state energies in the 15% indium system show much larger variations

[cf. Fig. 3.2 (a)]. When looking at the isosurfaces of the electron charge densities (red) for
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con�gurations 3, 4 and 8, the origin of this behaviour becomes clear. In terms of the importance

of the well-width uctuation, the 15% indium case represents an intermediate situation. For

example, in the case of con�guration 8, the electron wave function is mainly localised inside the

well width uctuation, while con�guration 4 shows still signi�cant charge density contributions

outside the well-width uctuation. From this one could expect that the energies of these

di�erent con�gurations are very di�erent, and indeed this is con�rmed by Fig 3.2 (a). In

summary, the presence of the well-width uctuation in combination with the built-in �eld

explains the initially surprising result of the stronger variation in the electron ground state

energies for the 15% indium case in our calculations.

Overall, even though we have considered here only one particular type of well-width uctuation,

our results clearly demonstrate that their presence can contribute signi�cantly to variations in

both transition energies and localisation e�ects. It should also be mentioned that our results

for electrons are consistent with the work by Watson-Parris et al. [48, 101], who studied the

impact of well-width uctuations on the electronic structure of InGaN QWs in the framework

of a modi�ed e�ective mass approach. In the study by Watson-Parris et al. [48, 101], disk-

shaped well-width uctuations with diameters ranging from 5 nm to 20 nm have been studied.

The inuence of these uctuations on the electron wave function localisation characteristics

has been analysed for c-plane InGaN/GaN QWs with indium contents between 5% and 25%.

At 10% indium content, the results with and without well-width uctuations are similar in

terms of the electron ground state localisation length. Only a slight decrease in the localisation

length is observed when the well-width uctuations are included, indicating that well-width

uctuations for lower indium contents are of secondary importance, consistently with our results

[cf. Fig. 3.3]. Watson-Parris et al. [48, 101] showed also that at 25% indium, well width

uctuations lead to a signi�cant reduction of the electron ground state localisation length,

when compared to a calculation without well width uctuations. This corroborates our earlier

mentioned conclusion that the importance of well width uctuations in localising the electron

wave functions will depend on the indium content. Therefore, even though we have assumed

only one particular type of well-width uctuation, our presented results provide a �rst indication

of the importance of well-width uctuations on the electronic structure of c-plane InGaN/GaN

QWs with di�erent indium contents.

So far our discussion of localisation e�ects has been based on inspecting the charge densities

of the electron and hole ground state wave functions. To study localisation e�ects now on

a more quantitative basis we use the metric of the inverse participation ratio (IPR) [102].

This provides a more objective measure of localisation and also allows the examination and

comparison of the localisation characteristics of many states at once. The participation ratio

was �rst introduced by Bell [103] to assess the localisation properties of atomic vibrations. In

that context it gave insights into the fraction of the total number of atoms in the system which

participate e�ectively in the vibrations of a particular normal mode. The IPR is the inverse of



Chapter 3: Electronic properties of c-plane InGaN Quantum Wells 48

this quantity, and is commonly used as a measure of localisation in TB models [102, 104]. In

our TB formalism, a carrier wave function,  , is given by:

 =
NX
i

N�X
�

ai��i� ; (3.5)

where the index i runs over the N lattice sites, and the index � denotes the di�erent orbitals

in our sp3 TB basis at each site. The term ai� represents the amplitude of the wavefuntion,  ,

constructed with the basis �i�, at the site i. On the basis of Eq. (3.5) the IPR may be de�ned

as:

IPR =
NX
i=1

 X
�

jai�j2
!2

=

 
NX
i=1

X
�

jai�j2
!2

: (3.6)

For a completely localised state, which will be expressible in terms of orbitals at only one

atomic site, the IPR will be one; for a completely delocalised state, which is comprised of a

linear combination of equal parts of orbitals at all atomic sites, the IPR will be N�1; and for

a state which is intermediate between localised and delocalised, the IPR varies continuously

between one and N�1.

In the following we have normalised the calculated IPR values to the IPR value of the electron

ground state with the largest IPR value (1:529x10�4) in the 10% indium case, which is con�gu-

ration 13, shown in Fig. 3.3 (b). Therefore, the normalised IPR values, gIPR, can exceed values

of one and can be interpreted as giving the extent to which the state under consideration is

more or less localised than the electron ground state of con�guration 13 shown in Fig. 3.3. Nor-

malising the IPR values in this way gives a more intuitive and visual picture of the localisation

properties of the state in question.

The ground state electron and hole gIPR values are shown as a function of their respective

energies in Fig. 3.6. Figure 3.6 (a), (b) and (c) correspond to the electron ground states in the

10%, 15% and 25% indium content systems, respectively. The data for the holes is depicted

in Fig. 3.6 (d), (e) and (f). Figure 3.6 con�rms that the hole states are, in general, far more

localised than the electron states [please note the di�erent scales]. More speci�cally, we �nd hole

states which are up to 350 times more localised than the electron ground state to which they are

normalised, and never less than 5 times more localised. Furthermore, Fig. 3.6 reveals that thegIPR values of the hole states signi�cantly vary between di�erent con�gurations, highlighting

again that the hole ground states are very sensitive to the microscopic alloy structure.

To discuss the results in more detail, we start with the gIPR values of the electron ground states

[Fig. 3.6 (a), (b), and (c)]. When comparing the electron gIPR values for the di�erent indium

contents, we �nd that in general the gIPR values increase with increasing indium content. Since

the macroscopic strain increases with increasing indium content, the piezoelectric built-in �eld

increases as well. Thus, with increasing indium content an increasing con�nement (along the
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Figure 3.6: Electron and hole ground state normalised inverse participation ratios (gIPR)
plotted as a function of the ground state energies, EGS, of each of the 20 microscopically
di�erent con�gurations, for nominal indium contents of 10%, 15% and 25%. The IPRs are
normalised to that of the 10% electron ground state with the higest IPR, which is Con�g 13
(cf. Fig. 3.3). [Note di�erent scales]

c-axis) for the electron ground state can be expected. Additionally, with increasing indium

content, the considered well-width uctuation becomes increasingly important and adds an

extra in-plane con�nement. This is consistent with the trends observed across Fig. 3.6(a-c) for

the electron gIPR values.

However, when looking at the holes [Fig. 3.6 (d), (e), and (f)], we see that this trend is not as

clearly visible as in the electron case. This arises from several factors. For instance, in the 10%

indium case [cf. Fig. 3.6 (d)], we have three exceptionally strongly localised states. Their gIPR

values are of the order of, or even exceed, the maximum values of the 15% [Fig. 3.6 (e)] and

25% [Fig. 3.6 (f)] indium case. Therefore, to treat these exceptional states accurately, a larger

number of con�gurations would have to be considered to perform more reliable statistical aver-

ages. However, this is beyond the scope of the present study. Here we are mainly interested in

identifying general trends and to gain �rst insights into the e�ects of random alloy uctuations

on the electronic structure of c-plane InGaN/GaN QWs with varying indium contents.

Based on the results presented, the argument of an increased built-in �eld with increased

indium content, used to explain the trends in the electron ground states, cannot be directly



Chapter 3: Electronic properties of c-plane InGaN Quantum Wells 50

applied to the hole states. The reason for this is that the hole states show not only a strong

localisation along the growth direction, it is also evident from Figs. 3.3, 3.4 and 3.5 that the

hole localisation has a very strong in-plane localisation component. This component is not

greatly a�ected by the presence of the macroscopic built-in �eld along the growth direction.

Thus the localisation behaviour of the hole states is less dominated by the macroscopic built-in

�eld and governed more by uctuations in the local indium environment. Consistent with this,

we �nd very large changes in the gIPR values of the ground state hole wave functions between

di�erent con�gurations at nominally the same indium content, even though the macroscopic

built-in �eld should be very similar for a �xed indium content. Further to this, we note a

tendency for localisation (gIPR) to increase as the holes become more strongly con�ned, with a

general rise from left to right in each of Fig. 3.6 (d),(e), and (f); nevertheless, the uctuations

in the gIPR values are about as large as the trend itself.

So far we have focused our attention on localisation e�ects in ground state properties. This

provides key information for experiments performed at low temperatures. However, when

the optical properties of c-plane InGaN/GaN QWs are studied experimentally at ambient

temperature, or when InGaN based devices are operating at room temperature, excited states

become relevant. Thus a knowledge of the localisation characteristics of excited electron and

hole states is also important for understanding c-plane InGaN QWs. This is the focus of the

next section.

3.4.2 Excited states

After studying the ground state localisation properties by means of the gIPR values, here we

apply the same metric to the excited states. We start by investigating, in Fig. 3.7, selected

con�gurations for 10%, 15% and 25% indium before looking at results averaged over the 20

di�erent random con�gurations, considered for each composition. The bene�t of studying

selected con�gurations �rst is that we can then display the results both as a function of the

energy and the state number. This is not possible for the averaged data where the data is

best displayed as a function of the state number. This stems from the fact that the ground

state energies uctuate signi�cantly between di�erent con�gurations [cf. Fig. 3.2,3.6]. The

con�gurations selected here have a ground state gIPR value which is close to the average gIPR

of all the ground states of that indium content, for electrons and holes. Figure 3.7 shows thegIPR values for the �rst 60 electron and hole states as a function of the energy, measured with

respect to the corresponding ground state energy. We take the absolute value of this energy

di�erence so that with increasing energy the states move deeper into the valence or conduction

band. The state numbers are given on the second x-axis at the top of each �gure. Figure 3.7

reveals a greater energy range covered by the �rst 60 electron states than by the 60 hole states.

This is due to the larger hole e�ective mass in comparison with the electron e�ective mass.
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This results in a smaller spacing between two sequential hole states than for electrons and

consequently 60 hole states cover a smaller energy range than 60 electron states.

Looking at the electron states �rst, we note that in general the gIPR values for the �rst few

excited states increase with increasing indium content [Fig. 3.7(a), (b) and (c)]. We attribute

this e�ect to the increasing piezoelectric built-in �eld with increasing indium content. A similar

trend is also observed for the hole states [Fig. 3.7 (d), (e) and (f)]. For instance, the gIPR values

of the �rst 5 hole states increase with increasing indium content. Thus, one can expect that

for the holes, the energy depth into the valence band to which there are still localised states

found, increases with increasing indium content. This is consitent with the experimentally

observed increase of the PL width, stokes shift, and absorption edge broadening with indium

content [15, 26, 28, 105, 106]. The localised states in this energy range are sometimes referred

to as \tail states" due to the manner in which they modify the form of the density of states;

the localised states appear as an added tail at the begining of the ideally step-like form of

the density of states [82, 107]. In order to gain some �rst insights into the relation between

localisation e�ects and energy, we note that for 10% indium [Fig. 3.7 (d)] up to 40 meV into

Electrons

(a) 10% (b) 15% (c) 25%

0.5

1

1.5

2

0 100 200 300 400 500

5 10 15 20 35 40 45 50 60

ĨP
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Figure 3.7: Normalised electron (top row) and hole (bottom row) inverse participation ratios

(gIPR) plotted against the state energy as measured from the conduction or valence band edge.
The results are given for particular representative con�gurations with indium contents of 10%,
15% and 25% (see text for selection criteria). The IPRs are normalised with respect to the
IPR of the most localised 10% electron ground state, which is con�guration 13.
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Figure 3.8: Normalised inverse participation ratios of increasing electron (a) and hole (b)

states averaged over all microscopic con�gurations, gIPRAVG, plotted against state number. The
results are shown for three di�erent indium contents, 10%, 15%, and 25%, and the normali-
sation is taken with respect to the most localised 10% electron ground state, which is that of
con�guration 13, shown in Fig. 3.3 (b).

the valence band (state number 5) the holes have still an gIPR value which is approximately 10

times larger than that of the highest gIPR value of the electron ground state for the 10% indium

case. Noting that this electron ground state shows considerable localisation [cf. Fig. 3.3, Con�g

13], we can safely say that a state 10 times more localised than this is strongly localised. For

15% indium [Fig. 3.7 (e)], again using gIPR � 10 as an arbitrary threshold, this lasts up to

100 meV (state number 20), and for 25% indium [Fig. 3.7 (f)] there are still states with gIPR �
10 past 165 meV at state 26. This behaviour, combined with the wide variation in calculated

ground state energy observed in Fig. 3.2, implies that a signi�cant density of localised states

is present in c-plane InGaN/GaN QWs, which should measurably a�ect the optical properties

of these systems at elevated temperatures.

So far we have focused our attention only on selected con�gurations. To illustrate the generality

of the observed behaviour in the excited states, Fig. 3.8 displays the gIPR values for the �rst 60

(a) electron and (b) hole states averaged over the 20 di�erent con�gurations. These averaged

normalised IPR values are denoted by gIPRAVG. The results are shown for 10% (dashed green

line), 15% (red solid line), and 25% (dashed-crossed blue line) indium. Overall it is evident

that the hole states show much stronger localisation e�ects [higher gIPR values] when compared

with the electrons. Figure 3.8 also corroborates the earlier observed trend that with increasing

indium content there is an increased persistence of localisation e�ects into the valence and

conduction bands.

In an in�nite system, the energy beyond which there are no more localised states can be

expected at a de�nite energy, Emob, referred to as the mobility edge. However, even when using
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periodic boundary conditions, one is left with a system of �nite size. While each of these systems

represents a portion of the real QW, there remain �nite-size e�ects that would not be present in

the real, laterally in�nite, QW. For example, even though the highest valence state generally has

a very high IPR value in our �nite-sized supercells, the most weakly bound of these states may

be resonant with delocalised QW states in the in�nite system. We refer to such states of our

�nite systems as \quasi-localised" states. These states should be excluded in estimations of the

energy range of localisation. Taking this into consideration, we can nevertheless combine the

results obtained for the ground and excited states in order to gain a �rst estimate of the energy

range of localised states which exist in the valence band before the onset of delocalisation. We

refer �rst to Fig. 3.6 where it is evident that the ground state energies for the holes vary by

at least 100 meV across di�erent random indium confgurations. We further note from Fig. 3.6

that all of these hole states have very high IPR values and can thus be considered strongly

localised in comparison with the electrons. Taking a conservative measure for the localisation

depth and keeping in mind the \quasi-localisation" e�ect described above, we consider only

the four energetically highest valence states for each indium concentration studied to estimate

the depth of localisation in the valence band. This gives us approximately an energy spread of

50-60 meV.

Turning now to the excited state data, we see, from the selected con�gurations studied in Fig.

3.7, that, for instance, in the 10% indium case strong localisation e�ects (gIPRAVG > 10) extend

for at least an energy range of 40 to 50 meV below the hole ground state. With increasing

indium content this range further extends [cf. Figs. 3.7 (e) and (f)]. That these are not

atypical behaviours in our ensemble is supported by reference to Fig. 3.8. Hence, combining

the conservative estimate for the energy range of localised states inferred from our ground state

data and the insights from the excited state studies, we estimate that already in case of 10%

indium a total energy spread of localised states amounts to � 100 meV. Thus, we expect an

energy range of at least 100 meV over which there will be a signi�cant density of localised

valence states in c-plane InGaN/GaN QWs with indium contents at above or equal to 10%.

Even though we cannot determine the density of localised states exactly, we can still analyse how

the wave function overlap between carriers in di�erent states is a�ected by alloy uctuations.

This question is, for example, relevant for transport through c-plane InGaN/GaN QWs, since it

gives a �rst indication of the probability of a carrier transferring from one site/state to another.

To gain some insight into the carrier overlap we study in the following the modulus overlap of

the wave functions of di�erent states. In our TB formalism the modulus overlap �nm between

two states  m and  n can be de�ned by:

�nm =
NX
i

j n;ijj m;ij ; (3.7)
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where i denotes the lattice site. For n = m, this will be the overlap of a state with itself,

�nn = 1, since the wave functions are normalised. A state  j with a large �jm value for many

states  m will then have a widely spread out wave function. Conversely, if a state  j has a small

�jm for many other states,  m, it means that the wave function  j is localised in a particular

spatial region of the QW. Note that we are dealing here with the modulus overlap; our de�nition

for the overlap does not take into account the parity of the respective wave functions. Our

metric simply indicates the extent to which the densities of the involved carriers are spatially

coincident.

Figure 3.9 (a),(b), and (c) show, for the same con�gurations chosen in Fig. 3.7, the modulus

overlaps, �enm, of each electron state with every other electron state. The data for the hole

states are displayed in Fig. 3.9 (d),(e) and (f). We have considered the �rst 40 electron and hole

states. The left column, (a) and (d), contains the results for 10% indium, the middle column,

(b) and (d), the data for the 15% indium case while the right column, (c) and (f), depicts the

situation for the QW with 25% indium.

We begin our analysis by focusing on the modulus hole wave function overlap �hnm [Fig. 3.9

(d), (e) and (f)]. In the 25% case, (f), there are three distinct regimes in �hnm visible. Over the

�rst �ve states a dark region of very poor overlap [small �hnm value] is visible. This indicates a

region of strongly localised states, with the hole localisation length well below the supercell size

(10 nm) considered here. This is consistent with the very high gIPR values shown in Fig. 3.6.

After the �rst �ve states, from state 6 to 10, we �nd a region of \semi-localised" states, with

�hnm values around 0.3 to 0.7. Beyond these states we �nd an area in the �hnm plot that has

values between 0.7 and 1. We classify these states as \delocalised states". Looking at the

15% indium case [Fig. 3.9 (e)] we �nd again these three regions but with the \delocalised"

region being much larger, and both the \semi-localised" and \localised" region being greatly

reduced. For the 10% indium case it is very hard to discern a region which could be described

as \strongly localised" in the same sense as for 25% indium, but there is still clearly visible a

\semi-localised" region. Consistent with our discussion of Figs. 3.7 and 3.8, it can be concluded

that for the holes the location of the \mobility edge" depends on the indium content.

Looking at the electron states, in the upper row of Fig. 3.9, the minimum values of �enm are

much larger [�enm � 0:4] when compared to the holes [�hnm � 0:05]. We attribute this to

the fact that the electron states, as discussed in Sec. 3.4.1 and demonstrated in Fig. 3.7, are

less perturbed by the alloy uctuations. The light and dark overlap \bands" of the �gure

correspond to the overlaps between states localised inside the QW and states which start to

spread into the GaN barrier material. When looking at the positions (state numbers) of the dark

regions with low �enm values, we �nd that these regions in general move to higher state numbers

with increasing indium content. The di�erent positions (state numbers) of these \bands" for

the di�erent indium contents can be imputed to changes in the conduction band con�nement
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Figure 3.9: Modulus wave function overlaps, �e,hnm, of the �rst 40 states for electrons and holes
in particular con�gurations of InxGa1�xN/GaN QWs with indium contents of 10% (x=0.1),
15% (x=0.15), and 25% (x=0.25). The magnitude of the modulus overlap between state n and
m is indicated by the colour of the point (n,m) on the plot.

potential. Please note that with increasing indium content, the electron wave functions also

begin to become localised by the well-width uctuations, which then also a�ects �enm.

To support these arguments and to further clarify the features seen in the �enm values, we now

present the planar integrated probability density, Pi, of each state  i:

Pi(zm) =
X
k;l

j i(xk; yl; zm)j2 ; (3.8)

where xk and yl are the in-plane (c-plane) indices and zm denotes the layer index along the c

axis. The quantity Pi(zm) gives the probability that the electron or hole state i be found in the

layer speci�ed by the index zm. This allows us to shed light on the localisation characteristic

of the di�erent states along the c axis.

Figure 3.10 shows Pi(zm) plotted for the �rst 40 electron [upper row] and hole states [lower

row] for 10%, 15% and 25% indium [left to right in Fig. 3.10]. In each �gure, the horizontal
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Figure 3.10: Planar integrated probability densities of electrons, P e
i (zm), [(a),(b) and (c)]

and holes, P h
i (zm), [(d),(e) and (f)] in c-plane InGaN quantum wells with indium contents of

10%, 15% and 25%, for the �rst 40 states. The index i refers to the state number, and the
index m refers to the layer of the quantum well. The boundaries of the quantum well active
region are indicated by red dashed lines on the �gure. To emphasise the di�erent colour scales,
a di�erent colour scheme has been used for electrons and holes.

axis denotes the state number and Pi(zm) is given on the vertical axis. Thus the point (1,2)

will give the probability that the electron/hole described by the �rst eigenstate be found in

the second layer of the supercell. As a guide to the eye we indicate the QW boundaries as

(red) dashed lines. Figure 3.10 con�rms that much of the structure observed in the �enm values

displayed in Figs. 3.9 (a-c), arises from variations in overlap with increasing height, zm, in the

QW. Conversely, Fig. 3.10 indicates that for the holes it is primarily the in-plane separation

and in-plane variation in overlap, rather than the separation in zm, that leads to the structure

observed in �hnm shown in Figs. 3.9 (d-f).

So far we have focused our discussion on selected con�gurations to illustrate trends in the lo-

calisation characteristics of ground and excited states. In order to demonstrate the generality

of these results we have calculated the modulus wave function overlap averaged over all con�g-

urations for each of the indium contents considered here. This is denoted by ��enm for electrons,
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Figure 3.11: Modulus wave function overlaps of the 40 electron (top row) and hole (bottom
row) states, of InxGa1�xN/GaN quantum well systems averaged over 20 di�erent microscopic
con�gurations. The averaged overlaps are denoted by ��e;hnm. The data are shown for three
di�erent indium contents, 10%, 15% and 25%.

and ��hnm for holes. The ��e;hnm results are displayed in Fig. 3.11, which shows that ��e;hnm reects the

trends observed in the selected con�gurations [cf. Fig. 3.9]. Notably, the overlap structure in

the electrons is preserved. For the holes the di�erent regimes of localisation are again apparent

across the di�erent indium contents, especially the increasing width of the \strong-localisation"

region with increasing indium content.

To gain further insight into the impact of random alloy uctuations and varying indium content

on the electronic and optical properties of c-plane InGaN/GaN QWs, we analyse in a next step

the modulus overlap, �ehnm, of the �rst 40 electron and hole wave functions. The results are

shown in Fig. 3.12. The data give �rst indications of how the emission e�ciency of the QWs

are a�ected by changes in the indium content. Our results reveal that with increasing indium

content the electron and hole modulus wave function overlap decreases. This e�ect can be

attributed primarily to the increasing strain-dependent macroscopic piezoelectric polarization

�eld in the QW. Consequently, one observes a stronger spatial separation of the electron and

hole wave functions along the c-axis. However, the increasing in-plane localisation introduced
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Figure 3.12: Modulus wave function overlaps of the 40 electron and hole states, in
InxGa1�xN/GaN quantum well systems averaged over 20 di�erent microscopic con�gurations.
The averaged overlaps are denoted by ��ehnm. The data are shown for three di�erent indium
contents, 10%, 15% and 25%.

by well width and alloy uctuations, which also increase with increasing indium content (from

10% to 25%), as shown earlier, will also contribute to an increasing reduction in overlap. This

�nding is consistent with previous experimental studies on InGaN/GaN QWs, wherein the

internal quantum e�ciency decreases rapidly with increasing indium content for long emmission

wavelengths [108]. However, our data indicates also that when looking at �ehnm for a �xed indium

content, the modulus overlap is state number dependent and increases in general with increasing

state number. For instance, when looking at the electron ground state, n = 1, in the in 10% In

case, we �nd a low �eh1m value for hole states with m < 5, while the value is clearly larger when

m > 35. This indicates a more e�cient radiative recombination rate for transitions involving

the electron ground states and excited hole states. We attribute this behavior to the e�ect

observed in Fig. 3.11, wherein regions of \delocalised hole states" are found.

3.5 Comparison With Experimental Data

To begin our theory-experiment correlation, we analyse the calculated average ground state

transition energies and compare them with measured PL peak energies from the literature [26].

The data are summarised in Table 3.1. The here considered indium contents x are very close

to the experimental values; however, we have kept the well width L constant, while in the

experiment this quantity varies between the di�erent samples. Nevertheless, the reported

theoretical data is in good agreement with the experimental values, and given that our well

width in general is larger than the experimental value, we slightly underestimate the PL peak

energies.
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Our theoretical �ndings on the nature of the localisation in these systems also support sev-

eral experimental studies and their proposed explanations. For instance, the experimentally

observed shift in the PL peak position with temperature, usually referred to as the \S-shape"

dependence, is normally attributed to the existence of localised carriers in c-plane InGaN/GaN

QWs. Based on our data we can conclude that localisation e�ects play not only a signi�cant

role in ground but also in excited hole states. This is even the case in c-plane InGaN/GaN

QWs with as little as 10% indium. From our data we expect an energy range of order 100 meV

over which there will be a signi�cant density of localised valence states in c-plane InGaN/GaN

QWs. This is consistent with the minimum energy ranges which can be inferred from the blue

shift due to thermal redistribution amongst localised states in temperature dependent PL and

electroluminescence (EL) experiments, which ranges from 55 � 200 meV [16, 17] for di�erent

QW structures.

In addition to the \S-shape" dependence of the PL and EL spectra, time dependent PL spectra

of c-plane InGaN/GaN QWs show non-exponential decay transitions and the measured decay

times vary across the spectrum [19, 34]. An explanation for this behaviour has been put

forward by Morel et al. [80], using a model of independently localised electron and hole wave

functions. Under this assumption, Morel et al. [80] were able to achieve very good agreement

between theoretical predictions and experimentally observed data. Our results support the

assumption of individually localised carriers as demonstrated in Sec. 3.4.1. Furthermore, the

fact that slower decay times are observed with decreasing detection energy [34], is consistent

with the trends observed in Figs. 3.7 and 3.12, where hole localisation is seen to increase with

increasing energy, and overlap with other hole states and conduction band states is seen to

decrease with increasing hole energy. We show here that this behaviour is independent of the

considered indium content, since even at 10% indium both electron and hole charge densities

show indications of localisation e�ects. We have also shown in Ref. 44 that localisation e�ects

and built-in �elds dominate over Coulomb e�ects and thus a single-particle picture should

already provide a reliable description of the localisation features in c-plane InGaN systems. It

is important to note that the spatial separation between electron and hole wave functions is

x L (nm) Eg (eV)

Exp 0.25 3.3 2.162
Calc 0.25 3.5 1.964

Exp 0.15 2.9 2.707
Calc 0.15 3.5 2.533

Exp 0.12 2.7 2.994
Calc 0.10 3.5 2.871

Table 3.1: Comparison between calculated average ground state transition energies (Calc)
and experimental PL peak energies (Exp) obtained at low temperatures (T = 6K) in
InxGa1�xN/GaN c-plane QWs [26]. The QW well width is denoted by L and the transition
energies/PL peak position energies are given by Eg.
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not only a�ected by the presence of the macroscopic built-in �eld but also by the localisation

characteristics of the wave functions in the c-plane. Thus, while in a continuum based c-plane

QW description, dipole matrix elements are determined by the spatial separation along the

growth direction only, in our atomistic calculation the relative position of the electron and

hole wave functions within the c-plane also plays an important role. As the relative in-plane

positions of electrons and holes change as a function of the con�guration [cf. Figs. 3.3 - 3.5] the

dipole matrix elements will change between di�erent con�gurations, as demonstrated in Ref.

44. This behaviour is consistent with the non-exponential PL decay curves and the variation

of decay time across the spectrum.

3.6 Conclusions

In summary, we have presented a detailed analysis of the electronic structure of c-plane

InxGa1�xN/GaN QWs with indium contents of x = 0:1, 0.15 and 0.25, covering the exper-

imentally relevant range. To perform this analysis we have used a fully atomistic description,

including local alloy, strain and built-in �eld variations arising from random alloy uctuations.

In addition to going beyond the usually applied continuum-based description for these systems,

we give insight into not only ground state properties but also excited state properties.

From our analysis we conclude that for as little as 10% indium in the QW, the valence band

structure is strongly a�ected by localisation e�ects. Our results indicate that well width uctu-

ations could lead to electron wave function localisation e�ects in addition to localisation e�ects

introduced by random alloy uctuations. These observations hold not only for ground states

but also for excited states. From an initial estimate of our data, we conclude that even at 10%

indium in the well, we are left with an energy range of order 100 meV into the valence band

that should be dominated by strongly localised states. Our data also indicate that this energy

range increases with increasing indium content. Experimental data, such as the \S-shape"

dependence of the PL peak position with temperature gives clear experimental evidence of the

presence of such (excited) localised states. Our theoretical �ndings are therefore consistent

with experimental observations.

Moreover, by looking at (modulus) wave function overlaps between the �rst 40 hole or electron

states, we gained initial insights into the probability of transferring carriers from one site/state

to another. Our investigations indicated di�erent regimes ranging from strongly \localised

states" up to \delocalised states". While the localised states have very little overlap with all

other states, the delocalised states reveal a high overlap with most of the other considered states.

These features are relevant for experimental studies at ambient temperature and transport

properties. In particular, the strong hole wave function localisation should a�ect the hole

transport in c-plane InGaN-based multi-QW LEDs signi�cantly. The observed localisation
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e�ects will impact both the vertical transport along the c-axis through the di�erent QWs, and

also the lateral transport and thus how the carriers spread within the growth plane of the QW.

Thus, these localisation features are relevant in general for InGaN-based devices operating at

room temperature and above. The obtained data will now form the basis for more detailed

transport and in general device-related calculations.

Finally, our theoretical study showed that built-in �eld, random alloy and well width uctua-

tions lead to the situation of independently localised electron and hole wave functions in c-plane

InGan/GaN QWs. This holds for as little as 10% indium in the QW. This �nding is consistent

with the \pseudo 2-D donor-acceptor pair" model proposed by Morel et al. [80] to explain time

resolved PL measurements of c-plane InGaN/GaN QWs.





Chapter 4

Electronic properties of m-plane

InGaN/GaN Quantum Wells

Having discussed c-plane systems in the previous chapter, we turn now and present here a

detailed atomistic analysis of the electronic properties ofm-plane InGaN/GaN QWs. To achieve

a microscopic description of these systems, we apply the tight-binding model introduced in

Chapter 3 to treat realistically sized systems atomistically (supercells with �82,000 atoms),

accounting for compositional and structural inhomogeneities in the absence of the built-in

�eld. Local variation in strain and built-in potential arising from random alloy uctuations

are explicitly included in the model. Many energy states of the supercells considered are

calculated in order to determine the impact of the alloy uctuations on the electronic structure

of the system under investigation. Similar to the c-plane situation, we �nd that while the

electrons are relatively insensitive to the local indium environment, the hole states are highly

sensitive to it and are subject to very strong localisation e�ects. These e�ects persist over

an energy range of order 100 meV into the valence band. This strong localisation of the

hole states leads to a very broad distribution of ground state energies in di�erent random

con�gurations. Again, we see that the localisation leads to poor overlap between di�erent

hole states resulting in a reduced probability of transfer of carriers between di�erent states;

this feature should play an important role for transport properties in m-plane InGaN/GaN

QWs. To obtain a closer comparison with experiment, excitonic properties are calculated

within the con�guration interaction scheme. In agreement with experiment, and in contrast

to the single particle picture which neglects Coulomb e�ects, these show that the electron

wavefunction localises about the hole wavefunction due to the Coulomb interaction. In addition,

the calculated photoluminescence spectrum elucidates the impact of alloy uctuations on the

optical properties.

63
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4.1 Introduction

As discussed in the previous chapter, QWs based on InGaN alloys have applications in highly

e�cient light emitting devices. To attain three colour LEDs and thus an all-LED white light

source, the emission wavelength in these devices must be shifted from blue to green. However,

the addition of indium to tune the emission to the desirable green/yellow spectral region in-

troduces a number of phenomena whose deleterious e�ects on e�ciency inhibit the successful

realisation of such devices. One consequence of adding indium is that the strain dependent

piezoelectric polarisation �eld is strongly increased in c-plane InGaN QWs. As we have seen in

Chapter 4, this built-in �eld draws the electrons and holes to opposite surfaces of the QW. The

resulting spatial separation of electron and hole wave functions leads to a reduced radiative re-

combination rate and thus to reduced device e�ciency [109]. Since these built-in �elds are due

to the inherent properties of c-plane growth, recent research has been directed towards growth

along di�erent crystallographic directions in order to mitigate these e�ects [110, 111]. When

grown on a plane perpendicular to the c-plane, such as the m-plane, the built-in �eld would

be, ideally, completely removed [112]. Furthermore, these non-polar InGaN QWs possess the

potential to act as e�cient sources of light with a high degree of optical linear polarisation [113]

(DOLP). This has valuable applications such as back-lit liquid crystal displays [36], where the

ability to control polarisation would result in power savings of up to 50% [2].

Despite the recent interest in non-polar m-plane InGaN QWs and the promising applications

they o�er, the impact of random alloy uctuations on their electronic, optical and transport

properties has received little attention. Previous theoretical work has treated mainly c-plane

InGaN QWs, and mostly using modi�ed continuum approaches [48, 81], which account for

compositional uctuations by . While these methods do demonstrate the localisation produced

by random alloy e�ects, they do not fully elucidate their fundamentally atomistic origin. DFT

studies [45, 100, 114] undertaken on small bulk systems have shown the importance of In-N-In-

N chains in localising the hole states. As highlighted in the previous chapter, while these DFT

studies are capable of analysing atomistic e�ects, the method is too computationally expensive

to study full QW systems, where the interplay of atomistic and larger scale inhomogeneities

may be important, nor do they provide information about the distribution of localised states.

We present here the results of the tight binding (TB) model introduced in the previous chapter,

capable of describing realistically sized InGaN/GaN QWs on an atomistic scale, explicitly

including local alloy, strain and built-in potential uctuations [44, 66]. The model is therefore

ideally suited to study the physics of m-plane InGaN/GaN QW systems. To analyse the

impact of the alloy uctuations, not just ground states but several excited states are calculated.

Coulomb e�ects are included via the con�guration interaction [44, 115] (CI) scheme based on

the calculated single particle electron and hole wave functions.
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Overall, the atomistic analysis presented here indicates that random alloy e�ects play a sig-

ni�cant role in the determination of the system attributes of InGaN/GaN m-plane QWs. We

�nd that in particular the hole states are strongly inuenced by the potential uctuations in-

troduced by the randomness of the indium distribution. The results show very strong hole

ground state as well as excited state localisation whilst the single-particle electron states are

only weakly a�ected by the uctuations. This localisation of the hole states is shown also to

lead to poor wave function overlap between di�erent hole states, hindering therefore the hole

carrier mobility. The hole localisation is found to persist for several states into the valence

band of the supercells considered, and a �rst estimation of the energy ranges over which these

states are localised is obtained from the data. The inclusion of the Coulomb interaction be-

tween electrons and holes reveals that electron wave functions localise about the hole wave

functions, resulting in localised excitons. This is consistent with the experimentally observed

single-exponential decay transients in m-plane QWs [34]. Results of the CI calculations show

very good agreement with PL measurements performed by Manchester (Dawson's group) on

m-plane samples from Cambridge (Humphrey's and Oliver's groups), [116] and the theoretical

results elucidate the origin of the di�erent features in the optical spectra. In summary, this

analysis provides a clear picture of the impact of alloy uctuations on m-plane InGaN/GaN

QWs and serves as a base from which to launch further investigations.

The chapter is organised as follows. The details of the theoretical framework used to calculate

the wave functions, energies and system attributes are given in Section 4.2. Our results are

then presented in section 4.3 and broken into two subsections, the ground states in Section 4.3.1

and the excited states in Section 4.3.2. Further calculations are then provided for the purposes

of direct comparison to experiment in Section 4.3.3. Finally we summarise our results and

conclude in Section 4.4.

The work in this chapter comes from two papers, ref. [117] and ref. [116]. My contribution to

these works was the generation and relaxation of the supercells, as well as the calculation of

the single-particle states from the tight binding Hamiltonian, and the subsequent analysis of

these single particle states. Stefan Schulz performed all CI calculations, and all post-analysis

on the CI wavefunctions and energies (excitonic binding energies, charge densities of correlated

wave functions, photoluminescence spectra).

4.2 Theoretical framework and model QW system

As mentioned above, in order to determine the electronic and optical properties of m-plane

InGaN-based QWs, we use the same atomistic TB model presented in Chapter 3. On top of

this, for the purposes of comparison with experiment, Coulomb interactions have been included

via the CI scheme. The details of the CI calculations have been previously presented [44].



Chapter 4: Electronic properties of m-plane InGaN Quantum Wells 66
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Figure 4.1: Ground state energies for (a) electrons and (b) holes as a function of the con�g-
uration number n. The horizontal dashed lines indicate the average energies.

The QW to which we apply this theoretical framework has been characterised experimentally

by the groups of Prof. P. Dawson (Manchester), Sir Prof. C. J. Humphreys and Dr. R. A. Olver

(Cambridge); more details on the experimental results are given in Ref. [116]. Building on

the experimental data, we assume an indium content of 17%, and a well width of 2 nm, with

disk-like well width uctuations. The well width uctuations are of base diameter 5 nm and

two monolayers in height. For each calculation the indium atoms are randomly distributed on

the cation sites in the QW region. The calculations have been repeated 75 times to realise

di�erent microscopic arrangements of the atoms. The supercell contains approximately 82,000

atoms corresponding to a supercell size of 10 nm � 9 nm � 10 nm.

4.3 Results

Having introduced the theoretical framework we present in the following the results of our

calculations. In a �rst step, in Sec. 4.3.1, we discuss ground state properties before turning to

the excited states in Sec. 4.3.2. Section 4.3.3 is dedicated to a theory experiment comparison.

4.3.1 Ground State Properties

As a �rst quantitative demonstration of the e�ect of alloy uctuations on the electronic structure

of the considered m-plane system, Fig. 4.1 shows the ground state energies of electrons and

holes as a function of the (microscopic) con�guration n. In Fig 4.1 (a) the electron ground

state energies are shown while in (b) the results for hole ground state energies are given. The

dashed lines indicate the average ground state energies. For the electrons we �nd an average
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ground state energy of 3159 meV and for the holes it is 236 meV, where the unstrained bulk

GaN valence band edge is the energy reference. A schematic illustration of the band edge

diagram is given in Fig. 4.2. The standard deviation, �, indicates the impact random alloy

uctuations have on the electron or hole ground states. We calculate that the hole states are

considerably more sensitive to the uctuations, having a standard deviation of �h = 34 meV

compared to �e = 10 meV for the electrons. This increased sensitivity of the hole states to

potential uctuations caused by the random alloy has been reported before in alloyed bulk [29]

and QW systems (see previous chapter and refs. [44, 48]). Similar to our c-plane analysis,

these strong variations lead to a broadening of the resulting single-particle transition energies

(shown in Fig. 4.5), which is consistent with the large experimentally observed linewidths of

PL spectra of m-plane QWs [116, 118]. We will return to this feature in Sec. 4.3.3.

E
InGaN
g

E
GaN
VBE = 0

E
h

GS

E
e

GS

Figure 4.2: Schematic band edge diagram along the m-axis of an ideal QW, neglecting
potential variations due to uctuations in the local indium content. The reference energy is
the VBE of the barrier material GaN (EGaN

VBE = 0). The ground state energies of electron and
hole are denoted by Ee

GS and Eh
GS, respectively. The band gap of the InGaN QW is denoted

by EInGaN
g .

This variance of the ground state energies shows that the electronic and optical properties of

m-plane systems are indeed sensitive to the alloy uctuations present. The particular manner

in which the electrons and holes are a�ected by the alloy uctuations can be ascertained

through an examination of the ground state wave functions. Figure 4.3 displays the isosurfaces



Chapter 4: Electronic properties of m-plane InGaN Quantum Wells 68
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Figure 4.3: Isosurface plots of the electron and hole ground state charge densities in the
m-plane quantum well of con�guration n=12. Con�guration 12 is chosen because the electron
and hole ground state energies are close to the con�gurational averages. Isosurfaces of electron
ground state charge densities are given in red and the hole ground state charge densities are
coloured green. The dark (light) isosurfaces correspond to 25% (5%) of the maximum charge
density.

of ground state electron and hole charge densities of con�guration n = 12. We have chosen

this con�guration because it represents an average con�guration in terms of electron and hole

ground state energies (cf. Fig. 4.1). The 'Top View' is a view from a direction parallel to the

m-plane axis, looking down on the quantum well. This view shows the lateral distribution of

charge densities. The 'Side View' is a view from a direction perpendicular to that of the m-axis

and shows the distribution of charge densities along the growth direction in the QW region.

Isosurfaces of electron ground state charge densities are given in red while the hole ground

state charge densities are coloured green. The dark (light) isosurfaces correspond to 25% (5%)

of the maximum charge density. Figure 4.3 serves as a visual indication of the heightened

sensitivity of the hole states, when compared to the electron states, to alloy uctuations. The

hole state is strongly localised both laterally and vertically in a small region of the QW. The

electron charge density, however, is only slightly a�ected by the alloy uctuations, resulting

therefore in a situation where the electron wave function is spread out over the entire QW

region. This asymmetry is consistent with DFT and empirical pseudopotential calculations

on bulk systems [29, 114] and also in general with results on c-plane systems (cf. Chapter 3

and refs. [44, 48]). However, the main di�erence to c-plane systems is the absence here of the

macroscopic built-in �eld, which creates further localisation for the c-plane electrons and holes.
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While these results are consistent with most experimental anlyses of m-plane InGaN QWs, we

note that the picture of localised hole states and delocalised electron states is not compatible

with the experimentally observed single exponential decay times observed in PL spectra of

m-plane QWs [34, 116]. This di�ers from the case of c-plane QWs where time-dependent PL

studies show decay times that vary across the PL spectrum, consistently with the picture of

individually localised electrons and holes, as discussed in Chapter 3. This is due to the increased

importance of Coulomb interactions between electrons and holes in m-plane systems.

To include Coulombic e�ects we use the CI scheme described in detail in Ref. [44]. We consider

here only a single electron hole pair. Thus, electron-electron and hole-hole Coulomb interactions

are not included. We neglect electron-hole exchange contributions since these are small correc-

tions on the energy scale relevant for the discussion of our results. To describe the excitonic

many-body wave function we include 5 electron and 15 hole states in the CI expansion.

To visualise the electron and hole densities under the inuence of the Coulomb interaction,

we use reduced electron and hole density matrices. In general, the excitonic many-body wave

function j Xi can be written as a linear combination of electron-hole basis states:

j Xi =
X
i;j

cXij ê
y
i ĥ

y
j j0i : (4.1)

Here j0i is the vacuum state, cXij the expansion coe�cient and êyi (ĥyi ) denotes the electron

(hole) creation operator. Electron and hole states are denoted by i and j, respectively. We can

then de�ne reduced density matrices for electrons and holes. For instance, for the electrons the

density operator �̂e is given by:

�̂e =
X
i;i0

jii
X
j

cXij c
X�
i0j hi0j =

X
i;i0

jii�eii0hi0j : (4.2)

The corresponding electron and hole densities are given by �e = hRj�̂ejRi and �h = hRj�̂hjRi,
respectively. The right side of Fig. 4.4 depicts the calculated electron �e and hole �h densities

for the con�gurations 5, 20 and 75.

The e�ect of including the Coulomb interaction between electrons and holes is shown by com-

paring in Fig. 4.4, the single particle charge densities on the left (without Coulomb), with the

CI charge densities on the right (with Coulomb). From Fig. 4.4 we see that, compared to the

single particle description, the hole charge density is not changed in any immediately appre-

ciable manner, but that the electron charge density is signi�cantly a�ected by the attractive

Coulomb interaction with the holes. For each con�guration, we see that the electron is drawn

to the hole state and localised about it. This localisation of the electron state about the hole

state also occurs for all other con�gurations. This exciton localisation is consistent with the

single exponential decays observed in PL studies [116].
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Figure 4.4: Ground state electron (red) and hole (green) charge densities with (right) and
without (left) Coulomb e�ects included for con�gurations 5 (Con�g 5), 20 (Con�g 20) and 75
(Con�g 75). Results are shown for di�erent view points. Light (dark) isosurfaces correspond
to 5% (25%) of the maximum charge density value. Dashed lines indicate the QW interfaces.

The impact of the Coulomb interaction on the transition energies is shown in Fig. 4.5. The

�gure shows that the Coulomb e�ects result in a shift in the average transition energy, as well
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Figure 4.5: (a) Single-particle (black circles) and excitonic (red squares) groundstate tran-
sition energies as a function of the con�guration number, n. The average transition energies
are indicated in each case by a dashed line the same colour as the points. (b) Excitonic bind-
ing energy, EX;b, as a function of the con�guration number. The excitonic binding energy
is caluclated as the di�erence between Coulombic and non-Coulombic groundstate transition
energies.

as a broadening of the spectrum. The average single-particle transition energy is 2.93 eV whilst

the average excitonic transition energy is 2.87 eV, giving an average binding energy of 56 meV.

The uctuations in the binding energies seen in Fig. 4.5 can be understood by reference to the

single particle wave functions of Fig. 4.4. Taking con�guration 20 as an example, we see that

the electron wave function has very little overlap with the hole wave function, compared to the

electron-hole overlaps of con�gurations 5 and 75. This leads to a lower exciton binding energy.

Con�guration 75, on the other hand, exhibits a very good electron hole overlap in the single

particle picture, and from this one would expect a large binding energy, and looking at Fig. 4.5

we see that this is the case. A situation of intermediate single-particle overlap is exhibitted

in con�guration 5, and we thus expect an intermediate binding energy, which is a�rmed in

Fig. 4.5. We �nd it to be generally true that the excitonic binding energies are much higher in

m-plane QWs than c-plane QWs [44].

While Figs 4.3 and 4.4 give a �rst visual impression of localisation e�ects, to measure the local-

isation of di�erent states more quantitatively, we utilise the metric of the inverse participation

ratio (IPR) [102]. This is de�ned in Chapter 3 in eq. (3.6). In what follows we focus on the

localisation characteristics of single-particle states, and pay particular attention to the hole

states. This is justi�ed by the fact that, even in the many-body picture, it is the spatial extent

of the single-particle hole states that sets the limit for how localised the many body will be.

Instead of plotting the IPR values with respect to the con�guration number, n, we show the

data now as a function of the ground state energy. The results of our analysis are depicted in

Fig. 4.6. Here, we normalise the IPR values with respect to the average electron ground state

IPR value. We will denote these renormalised IPR values by gIPR. This renormalisation allows
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direct comparison between the localisation of these states and that of the electron wavefunction

in Fig. 4.3, which was chosen on the basis that it had the closest IPR of all electron states to the

average. Thus a state with a gIPR value of one will have the same spatial extent as the electron

wavefunction shown in Fig. 4.3, a state with a gIPR value of 5 will be 5 times more localised

and thus occupy a �fth of the space occupied by the reference wavefunction. The electron gIPR

values are shown in Fig. 4.6 (a). Due to the very high groundstate energy in con�guration 56,

cf. Fig. 4.1 (a), it is di�cult to extract trends from Fig. 4.6 (a). Therefore, the inset focuses

on a reduced energy range, neglecting con�guration 56. The gIPR values for the hole ground

states as a function of the energy are displayed in Fig. 4.6 (b).

On comparing Fig. 4.6 (a) and (b) one sees that the particular asymmetry of localisation

strength between electrons and holes evidenced in Fig. 4.3 is reected generally in di�erences in

the magnitudes of the electron and hole gIPR values for all con�gurations. Therefore, the charge

densities depicted in Fig. 4.3 reect the general properties of the localisation characteristics in

the here considered m-plane QW system. More speci�cally, from Fig. 4.6 one can infer that the

hole ground states can be to 650 times more localised than the average electron ground state.

Discernible also in Fig. 4.6 (b) is a trend of increasing gIPR with increasing energy. This is

due to the fact that the mechanism of localisation is that of potential energy uctuations. An

indium rich region corresponds to an energetically favourable region in which a carrier becomes

localised. A higher indium content leads to a deeper potential uctuation and a more localised

carrier. So for the hole states increasing energy should lead to a stronger localisation e�ect

and therefore a larger gIPR value. On average the data in Fig. 4.6 (b) bears out this trend. For

the electron states one expects that with decreasing ground state energy the gIPR value should
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Figure 4.6: (a) Electron and (b) hole ground state relative inverse participation ratios (IPRs)
plotted as a function of the ground state energy for the 75 di�erent microscopic con�gurations
considered. The IPRs are normalised (denoted bye) to the average electron groundstate IPR
which describes a wavefunction with the same localisation characteristics as the electron wave
function in Fig. 4.3.
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ĨP

R

State Number, l

0

50

100

150

200

250

0 10 20 30 40 50 60

A
v
er
a
g
e
ĨP
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Figure 4.7: Average inverse participation ratio values for the �rst 60 (a) electron and (b)
hole states. The data is normalised to the average inverse participation ratio of the electron
ground states.

increase. However, one needs to keep in mind that electron ground state wave functions and

energies (cf. Figs. 4.1 and 4.3), are far less a�ected by alloy uctuations. From the inset of

Fig. 4.6 (a) we �nd in general that the trend is indeed of increasing gIPR with decreasing energy,

though less marked than in the hole case, as expected from the above discussion.

Having studied the ground state properties we turn now to analyse the localisation characteris-

tics of the excited states. This study will elucidate the extent to which alloy uctuations a�ect

these excited states. This allows the determination of whether these states, too, are localised,

or if they could be described with a continuum picture.

4.3.2 Excited State Properties

To study the impact of random alloy uctuations on the localisation characteristics of the

excited states, Fig. 4.7 shows the gIPR values of the �rst 60 electron and hole states averaged

over the 75 microscopic con�gurations. The results for electrons are shown in Fig. 4.7 (a)

while (b) displays the data for holes. Again, a striking di�erence between electron and hole

localisation e�ects is that, consistent with our analysis of the ground states, the holes are in

general far more localised than the electrons. Additionally, one can infer from Fig. 4.7 that

the hole states maintain this higher degree of localisation deep into the valence band, i.e. to

higher state numbers. Consequently, when performing experiments at elevated temperatures,

localisation e�ects in the valence band should still be important.

There is also a marked di�erence between electrons and holes when studying how the gIPR

values change with increasing state number. We see that while the holes become gradually and

monotonically less localised with increasing state number, the gIPRs of the electrons show an
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Figure 4.8: Normalised hole inverse participation ratio values (gIPR) as function of the energy
measured with respect to the valence band edge (hole ground state energy EVBE) for con�g-
uration n = 12. (a) Full spectrum for 60 hole states considered; (b) Same spectrum as in (a)
but this time for states with state numbers larger than three.

almost at behaviour. The dip in the gIPR values for electrons around state 28 is due to the fact

that here the electron energy is larger than the energy of the unstrained GaN conduction band

edge, resulting in a spreading of the wave function into the GaN barrier material. Given that

the behaviour of the electrons can be understood, to a �rst approximation, by a continuum-

based QW description, we focus our analysis of excited state properties solely on the hole

states.

To obtain an estimation of the energy range over which localisation persists in the valence

band, we draw now upon a similar argument to that made in sec. 3.4.2 of Chapter 3. A

mobility edge can be expected at a well-de�ned energy, Emob, in the valence band of an in�nite

system, which separates localised states above Emob from delocalised states below the edge.

It is not however possible to directly identify such an energy in the �nite systems considered

here. Firstly, because of �nite size e�ects, there is no clear transition point in the data in

Fig. 4.7 (or Fig. 4.8, discussed further below) which can be chosen to de�nitively separate

localised and delocalised states. In addition, it can be seen from Fig. 4.6 that the hole ground

state energy varies by over 100 meV between di�erent random con�gurations of indium atoms

in the 82,000-atom supercells considered. Hence states at a given energy may be localised in

one supercell, but delocalised in another supercell. The average gIPR values of the hole states,

shown in Fig. 4.7 (b), reveal strong hole localisation of many excited states. While these average

values give a �rst indication of the general decay of the localisation of the hole states, they do

not indicate the energy ranges over which this decay occurs. Since the energy of a given state

uctuates between di�erent microscopic con�gurations, we cannot directly plot the average gIPR

values against energy. For further studies we have therefore chosen a particular con�guration
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close to the average behaviour observed in Fig. 4.7. Consequently, we are now able to visualise

the dependence of the gIPR values on energy instead of state number. Here we have chosen

con�guration n = 12 and the gIPR values are displayed in Fig. 4.8 as a function of the energy.

The energy is measured relative to the valence band edge (hole ground state energy) of this

con�guration. Similar to Fig. 4.7, we have taken 60 hole states into consideration. Due to

the large di�erences in magnitude between the gIPRs of the �rst four states, and those for all

subsequent states, Fig. 4.8 (b) shows the data for only those states above the fourth. This allows

for a closer examination of the behaviour of these states in terms of gIPR values and energy

separation. Please note that con�guration n = 12 has also been used for the visualisation of

the hole ground state charge densities depicted in Fig. 4.3, allowing one therefore to connect

the calculated high gIPR value of the ground state with an illustration of the spatial extent of

its wave function. From Fig. 4.8, one can infer strong localisation of the states within 60 meV

of the valence band edge in this con�guration, with evidence of some other states being highly

localised at energies which are over 150 meV below the highest valence state. We note in

addition from Fig. 4.6 that there is a spread of about 100 meV between the calculated ground

state energy in the di�erent supercells considered. Thus, based on the results presented in

Figs. 4.6 to 4.8, we conclude that there will be a broad energy range (>� 100 meV) over which

there will be a signi�cant density of localised valence states in m-plane InGaN QWs similar to

those considered here.

Having discussed the localisation characteristics of the ground and excited hole states, we now

introduce a second approach to analyse their localisation. As a metric we use again the modulus

overlap of the wave functions of di�erent states, introduced in Chapter 3, which is given in our

TB formalism as:


lk =
NX
i

j l;ijj k;ij : (4.3)

Following Fig. 4.8, we start with the analysis of 
lk for con�guration n = 12. The results for


lk are displayed in Fig. 4.9 for again 60 hole states. From Fig. 4.9 we see that the strong

localisation of the hole states observed in Fig. 4.8 is also reected in the 
lk data. Evident in

the plot is the very poor overlap of the �rst two hole states with most other hole states; these

having 
lk values between 0.1 and 0.35. This will result in a scenario where it will be very

unlikely for a hole in these states to move from one state to another through the material. We

could therefore consider these states as 'strongly localised', given their high gIPR values and

their low overlaps with other states. Furthermore, we see that as the states become higher in

energy, and therefore less localised (cf. Fig. 4.8), the overlap between di�erent states increases

on average. Transport involving these states becomes as a result more likely. Looking at the

overlaps of states three and four reveal magnitudes between 0.3 and 0.5. For states beyond

state �ve 
lk > 0:5, so the carriers share more regions in common than they do not. Transfer

will be therefore more likely between these states.
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Figure 4.9: Modulus wave function overlap 
lk between the 60 highest hole states. The
result is shown for the microscopic con�guration n = 12.

In order to demonstrate the generality of these results and to show that the trends observed are

not particular to con�guration n = 12, Fig. 4.10 displays the modulus overlaps, �
lk, obtained

via averaging over all con�gurations. We see reected here in all con�gurations the behaviours

observed in Fig. 4.9 for con�guration n = 12. Notably, the di�erent regimes of localisation

are again apparent, but with smoother and softer pro�le. We �nd again a region of strong

localisation, consisting of the �rst two states, with overlaps from below 0.2 to just above 0.3,

followed by a transition region that includes on average the states 3 to 5, where �
lk ranges

from 0.35 to 0.5, and then the delocalised region, consisting of states with state numbers above

5 and overlaps in excess of 0.5.

Overall, further studies are now required to obtain a clearer picture and more stringent criteria

to determine at which values of 
 one has a crossover from localised to delocalised states. It

would be worthwhile target this in future studies and analysis, and examine also how localisation

e�ects a�ect transport properties both in the vertical and in the lateral direction of the QW.

This is beyond the scope of the present study.

Having discussed our theoretical �ndings and shown their consistency with and explanation of,

the experimental results generally, we turn in the next section and make explicit comparison
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Figure 4.10: Average modulus wave function overlap �
lk between the 60 highest hole states.
The result shown here are averaged over the 75 microscopic con�gurations considered.

of these results with experimental data from Manchester and Cambridge [116]. Here, we make

a direct comparison with experimental results by calculating the photoluminescence spectrum

associated with our 75 con�gurations.

4.3.3 Comparison to experiment

To compare our results more closely with the experimental PL data, we have calculated the ex-

citonic ground state emission spectrum. This is obtained via the evaluation of dipole transitions

between the Coulomb-correlated states, using the methodolgy detailed in Ref. [44]. To inves-

tigate the large degree of linear polarisation (> 90%) observed in the experimental PL [116],

spectra are calculated for two di�erent light polarisation vectors ep;i, i.e. ep;? = (1; 0; 0)T and

ep;k = (0; 0; 1)T . This means that the selected electric �eld E is perpendicular to the c-axis

(ep;?) and parallel to the c-axis (ep;k), respectively. In the calculations we have assumed growth

along the y-axis, therefore the chosen light polarisation vectors reect the experimental set up

described in detail in Ref. [116].
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Figure 4.11: Calculated excitonic ground state emission spectrum with light polarisation
vectors parallel (E k c) and perpendicular (E ? c) to the c-axis. The (black) dashed dotted
line shows the experimental (unpolarised) PL spectrum.

The calculated excitonic ground state emission spectrum is shown in Fig. 4.11 for ep;? (red

solid line) and ep;k (blue dashed line) together with the experimental (unpolarised) PL emission

spectrum (black dashed-dotted line). Several di�erent features are visible in Fig. 4.11.

First of all we �nd good agreement between the calculated (solid red) and the experimentally

determined emission energy (black dashed-dotted line), in particular, given the slight uncer-

tainties in the experimental indium content and well width as discussed in Ref. [116].

Secondly, we �nd also theoretically a very broad emission spectrum. For E ? c (ep;?), the

theoretically determined full width at half maximum (FWHM) is 101 meV. The experimentally

reported value for the FWHM is 135 meV [116]. Di�erent factors might contribute to the

observed di�erences between theory and experiment. For example, even though 75 di�erent

microscopic di�erent structures may appear a large number, it could be the case that even more

con�gurations have to be considered to fully resolve the measured FWHM, bearing in mind

the large variations between di�erent microscopic con�gurations (cf. Fig. 4.5). Additionally,

if subtle non-random clustering e�ects exist, they may contribute to the broadening of the

PL line width. However, the theoretically determined value of 101 meV for the FWHM is in

reasonable agreement with the experimental data [116].

Thirdly, Fig. 4.11 shows that there is a large di�erence in the calculated intensities for ep;?
and ep;k. In the theoretical analysis, the intensities are normalised to the intensity of ep;?. We

may calculate the degree of linear polarisation (DOLP) from our theoretical spectrum via the

equation:[119]

DOLP =
I? � Ik
I? + Ik

: (4.4)
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Figure 4.12: Calculated excitonic emission spectrum for the light polarisation perpendicular
(red solid line) and parallel (blue dashed-dotted line) to the c-axis. The spectral dependence
of the corresponding DOLP, calculated according to eq. (4.4), is shown by the (green) dashed-
dotted line.

Based on the maximum intensities for ep;? and ep;k, we �nd a value for the DOLP of approxi-

mately 87%, which is slightly smaller than the experimental values (> 90%).

For further comparison with experiment, we have also calculated the spectral dependence of

the DOLP from our theoretical emission spectra for the two light polarisation con�gurations

depicted in Fig. 4.11. Using eq. (4.4), our theoretical results for the spectral dependence of the

DOLP are depicted in Fig. 4.12. The DOLP (green dashed-dotted line) is shown as a function of

energy together with the excitonic emission spectrum for E ? c (red solid line) and E k c (blue

dashed line). When comparing our theoretical data with experimental DOLP, which exhibits

an almost constant high DOLP > 90%, across the spectrum [116], the theoretical results show

slightly lower values than the experiment plus that the calculated DOLP is not as constant as

the experimental data across the spectrum. Again, even though 75 con�gurations may appear

a large number, we show below that some of the structure in the DOLP spectrum of Fig. 4.12 is

due to a small number of exceptional states; more con�gurations would be required to reliably

treat the importance of such states. This is beyond the scope of the present study, since the

present analysis gives already, in general, a good description of the experimentally observed

spectral dependence of the DOLP.

The origin of the calculated high DOLP can be further understood by looking at the orbital

character of the hole ground state/valence band edge (VBE) state. The outcome of such an

analysis is displayed in Fig. 4.13, where the orbital contributions to the VBE are shown as a

function of the con�guration number n. From a continuum-based calculation, neglecting the

weak spin-orbit coupling, one would expect, due to the di�erences in the valence band e�ective

masses along the growth direction and the positive crystal �eld splitting energy in GaN and InN,

that the VBE is dominated by a single-orbital type (px- or py-like orbitals). Obviously such an
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Figure 4.13: Orbital contributions to the VBE as a function of the n di�erent microscopic
con�gurations considered here.

analysis neglects the e�ects of alloy uctuations. However, we can infer from Fig. 4.13 that the

VBE state in the di�erent microscopic con�gurations is mainly made up of contributions from

a single orbital type, in this case from px-like orbitals. Thus, we may conclude from the general

agreement of our atomistic results with what would be expected from a simple continuum

picture, that, for the orbital character of the hole ground state the microscopic con�guration

is, in general, of secondary importance. However, we note that there is an enhanced pz-like

character and a very low px-like character in about 10%-20% of the structures studied. The

dominance of the px character of the VBE explains the calculated high DOLP, which is in good

agreement with the experimental data. Furthermore, as we know from Fig. 4.5 the hole ground

state energies vary signi�cantly between di�erent con�gurations. This gives rise to the broad

emission spectrum shown in Fig. 4.11. Since Fig. 4.13 reveals that the orbital contribution

to the VBE state is for the most part independent of the con�guration number n, all these

�ndings in combination explain why we observe only a weak spectral dependence of the DOLP

displayed in Fig. 4.12, in line with the experimental results [116].

4.4 Conclusion

We have presented a detailed analysis of carrier localisation e�ects in m-plane InGaN/GaN

QWs. Our study of the electronic structure of these systems is based on an atomistic theo-

retical framework, accounting for strain and built-in �eld variations arising from random alloy

uctuations. We �nd that electron states, to a �rst approximation, can be described by a

continuum-like picture, with deviations arising from the continuum picture due to the speci�c

indium atom distribution in the di�erent structures considered. However, such a continuum-

based description fails completely for the hole states. Our investigation reveals that random
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alloy uctuations lead to strong hole wave function localisation e�ects both in the ground and

in the lowest excited states. We estimate that these localisation e�ects extend over an energy

range of at least 100 meV into the valence band, making them also relevant to experimental

studies at elevated temperatures.

The many-body wavefunctions derived from the single particle states in a CI calculation re-

veal the importance of Coulomb e�ects in m-plane QWs; under the inuence of the Coulomb

attraction, the electron localises around the hole state, leading to large excitonic binding en-

ergies, and single exponential time decay transients in the time resolved PL spectra. When

compared directly with experiment, we �nd that the theoretically calculated PL matches the

experimental quite well, reproducing the large FWHM and DOLP within a good degree or

accuracy. Furthermore, the high experimental DOLP is explained by reference to the orbital

character of the single particle states. In a complementary approach, we have also studied the

modulus wave function overlap between 60 hole states averaged over 75 di�erent microscopic

con�gurations to gain further insight into the characteristics of di�erent hole states. This allows

for information on the probability of transferring carriers from one site/state to another. Our

initial analysis reveals di�erent regimes ranging from strongly localised states with very little

overlap with all other states, up to a delocalised regime where the carriers have strong overlap

with most of the other considered states. Having access to all this data on an atomistic level

forms now a good starting point for further and detailed transport studies.





Chapter 5

Elastic Properties of zincblende

III-V semiconductors

In this chapter, we investigate the elastic properties of selected zincblende III-V semiconduc-

tors. This is motivated in part by the desirable electronic properties of the cubic nitrides.

Inacccuracies in the ubiquitous valence force �eld models of Keating and Martin are quanti�ed

for Ga, In and Al containing III-V compounds, providing the impetus for an improved descrip-

tion of the elasticity of these materials in both the harmonic and anharmonic strain regimes.

Following the extraction of second and third order elastic constants, and �rst and second order

internal strain tensor components, improved microscopic elastic models are introduced, and in

the case of a harmonic strain energy, parameterised and tested.

5.1 Introduction

While the growth and study of nitride devices on non-polar wurzite planes continues to progress,

another means by which the deleterious e�ects of the built-in �eld may be circumvented has

recently returned to prominence: the use of nitride devices grown in the meta-stable cubic

phase [120{122]. The cubic nitrides have resurfaced as a possible means to all-LED white light

emitters due to improvements in growth techniques; where formerly devices based on these

materials were hampered by a high density of stacking faults, cubic GaN systems are now

grown with >90% cubic phase [123].

Like wurtzite nitride crystals grown on the m-plane and a-plane, the crystal symmetry in the

cubic nitrides produces no built-in �eld in the [001] growth direction. This allows for increased

colour stability with current and the possibility of e�cient wider QWs. These wider wells

present a larger area for the carriers to travel through, lowering the carrier density and the

losses due to Auger recombination associated with higher densities.

83
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However, unlike nitrides grown on any of the non-polar hexagonal planes, the cubic phase

of GaN has a band gap narrower by 0:2 eV [39]. This 30 nm headstart towards the longer

wavelengths means less indium need be incorporated in order to shift the wavelength to the

green and yellow spectral region. This in turn allows for the developement of longer wavelength

nitride devices without the myriad problems associated with indium incorporation [38] and the

high defect densities [124] due to the large lattice mismatch between GaN and InN by which

non-polar nitride systems in particular are plagued. In addition to this signi�cant advantage,

the bandstructure of the cubic phase of GaN is such that the carriers have smaller e�ective

masses, higher carrier mobilities, higher doping e�ciency, and smaller Auger losses [37, 40].

Early theoretical studies also indicate that these di�erences between the bandstructure of the

cubic and wurtzite nitrides also manifest in attractive advantages like better momentum matrix

elements between conduction and valence band minima and maxima, and higher optical gain in

general [47]. With these notable advantages over the wurtzite phases, and the latest advances

in growth techniques, the solution of the green gap problem through use of the cubic III-nitrides

seems more feasible than ever. Thus there is a renewed need to study cubic nitride systems

from the ground up.

Previous theoretical studies on cubic nitrides have mainly focussed on small bulk alloys using

density functional theory (DFT) with the local density approximation (LDA) [100], empirical

pseudopotential [29, 125] methods, or, if structures of realistic sizes are treated, it is with

continuum models [47], which normally do not account for the atomistic e�ects shown to be

important by other theoretical studies [29] and experiment [123]. The aim of this chapter is to

lay the base for a theoretical framework suitable to describe cubic nitride heterostructures on

an atomistic level. As before, the tight binding method is an appropriate electronic structure

method to describe the cubic nitrides. The localised basis set is suitable for the local phenomena

present, and the computational e�ciency of the method is such that large structures can be

studied. Likewise for the local strain and atomic relaxation of cubic nitride systems, our earlier

used VFF model is again appropriate. The structural properties of cubic nitride structures

and alloys have already been studied using valence force �eld models [125, 126]. However, an

examination of the valence force �eld model of Keating, as well as other models used, reveals a

lack of suitability for the study of the cubic nitrides, or indeed, heteropolar zincblende crystals

in general. In particular, the Kleinman parameter is often neglected in the �tting of many

VFF models and other interatomic potentials [127{131]. Furthermore, for the case of the

predominantly used Keating model [61, 132, 133], the structural relaxation will su�er from

inaccuracies due to the inherent incapacity of the model to �t even the three cubic elastic

constants at once.

Furthermore, in nitride and other III-V heterostructures (and in particular quantum dots), very

large local strains of up to 10% can develop in the system (The lattice mismatch between InN

and GaN is 11%). This 10% strain well exceeds the harmonic regime in which most existing VFF
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models are parameterised. We therefore cannot take for granted that in all heterostructures

of the highly lattice-mismatched nitride alloys with which we would like to deal, conventional

VFFs are su�cient to fully describe the relaxation properties in the regions of high strain. To

describe such structures, new VFF models, taking into account more than the harmonic elastic

properties of the material, will need to be developed. The anharmonic elastic properties must

be determined as a necessary �rst step to this.

Thus, motivated initially by the desire to establish a theoretical framework with which to anal-

yse the next generation of nitride devices, and secondly by the more general need for improved

VFF models for structural relaxation and calculation of strain in all III-V materials, a new

implementation of the VFF method is introduced in this chapter. This is based on a simpli-

�ed version of the model of Musgrave and Pople [134], which was introduced by Martin [84].

Relations between the elastic constants, Kleinman parameter and force constants of a cubic

crystal are obtained, and these are then used to derive simple analytic expressions for the force

constants needed to describe a given material using the model. Furthermore, criteria for the

suitability of the model for a given material are given. The VFF implementation shares all

of the advantages and simplicity of the early Keating model, but with more force terms, is

able to simultaneously and exactly describe the three elastic constants and Kleinman param-

eter of zincblende materials. When compared with more sophisticated and transferable (e.g.

across material phases) interatomic potentials, the presented implementation o�ers advantages

of greater accuracy within the regime of interest for structural relaxation, greater scalability to

larger systems, and markedly more easily determined force constants. Additionally, second and

third order elastic properties are extracted from previously calculated DFT data [135]. The

elastic constants extracted from these data can be considered more accurate than those calcu-

lated in previous studies because of the highly accurate Heyd-Scuseria-Ernzerhof (HSE) [73]

screened exchange hybrid functional scheme used. These constants are then used to parame-

terise the present harmonic VFF model and can be used to parameterise future anharmonic

models.

In the next section, section 5.2, calculated values for the second order elastic properties of

a host of III-V materials are presented. We then discuss in section 5.3 shortcomings in the

reproduction of these properties by widely used VFF models. In section 5.4, a VFF model

capable of �tting all the properties calculated is introduced; equations determining the force

constants directly in terms of these elastic properties are provided; and the range of materials

for which this model is appropriate are provided, along with estimations of the optical phonon

frequencies. Third order elastic constants for the same set of III-V materials are then presented

in section 5.5, again extracted from HSE DFT data, and a discussion is presented as to the

best routes towards at third order VFF model. Finally, in section 5.6, we draw conclusions and

comment on the outlook for future work.
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5.2 Elastic Properties of III-V materials to second order

Before the treatment of the harmonic elasticity of III-V heterostructures and alloys using semi-

empirical methods is possible, it is necessary to obtain accurate ab initio or experimental

measures of the elastic properties of their constituent binary materials. In this work, the

desired properties are theoretically determined. This is justi�ed by the general di�culty of

extraction of certain properties experimentally i.e. shear moduli [62, 136], internal strain

parameters [137, 138], or any parameters at all for those materials for which a su�ciently large

single crystal cannot be obtained; and agreement with experiment where reliable experimental

values are available (values for C11 and C12 for example). These experimental di�culties are

compounded by the metastability of the cubic III-nitrides. We thus extract for ourselves a full

consistent set of all those needed elastic properties of the III-V materials under consideration.

Contemporary theoretical determination of elastic properties normally involves the use of some

variant of DFT to calculate the total energy [139], stress [140, 141] and internal strain [59, 62]

of a given unit cell as a function of applied macroscopic strain. In particular, the equillibrium

lattice constant in a zincblende unit cell is determined by �nding the cell size for which the

total energy is minimised; or, alternatively, �nding the cell size for which all stresses on the

cell vanish. Likewise, the sub lattice displacement, given by the atomic positions, for which the

total energy is a minimum for a given macroscopic strain, determines the Kleinman parameter

and internal strain properties. The elastic constants are extracted via a calculation of the

stress or energy as a function of strain, and �tting these to known energy-strain or stress-strain

relations (i.e. eqs.2.40 and 2.39).

In this work, for the determination of second and third order macroscopic elastic and inter-

nal strain properties, use is made of data from HSE DFT calculations performed by Miguel

Caro [135, 141]. DFT within the HSE scheme o�ers improved accuracy over standard Kohn-

sham approaches to the exchange energy [142]. For instance, it circumvents the well known

band gap problem of LDA and generalised gradient approximation (GGA) implementations.

Moreover, HSE-DFT has been shown to give improved predictions elastic and lattice properties

of solids [143].

The data used consist of the total energy, the six components of the stress tensor, and the

atomic positions in the two atom basis, as a function of di�erent applied strains. The internal

degrees of freedom are optimised to acheive the minimum energy for each strain, and thus the

relative sublattice displacement o�ers a means to extract the Kleinman parameter, and the

stress-strain/energy-strain curves give the physical, relaxed, elastic constants.
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These quantities are calculated for �ve di�erent strain branches, given in [135]:

�(1) � (0; 0; 0; �; �; �) ;

�(2) � (�; 0; 0; �; 0; 0) ;

�(3) � (0; �; 0; �; 0; 0) ;

�(4) � (0; �; �; �; 0; 0) ;

�(5) � (�; �; �; �; �; �) :

(5.1)

For each of these strain branches � (�) is varied from -0.02 (-0.04) to 0.02 (0.04) in steps of

0.01 (0.02). Each value of � and � is associated with six stress components, a total energy

value, and atomic positions, which by �tting to eqs. 2.40, 2.39 and 2.45, will yield values for

the elastic constants and Kleinman parameter.

For the determination of elastic constants, we choose to �t to the stress/strain equations for

reasons of greater accuracy and e�ciency [140]. The stress method is suited to e�cient calcu-

lation of the elastic constant tensor, because the di�erent stress components obtained from a

single calculation each yield an equation from which di�erent elastic constants may be obtained.

Thus the elastic constants can be obtained via the stress method e�ciently from one calculation

whereas from the energy method several separate calculations would be needed. Furthermore,

in terms of accuracy, the equations relating these elastic constants to the strains will be linear,

and therefore easier to �t when dealing with very small strains. Finally, the number of k-points

needed in a given calculation to obtain converged values of the elastic constants is lower for

those elastic constants calulated via the stresses than for those calculated via the total energy

method [141], meaning that a desired accuracy can be achieved more e�ciently using the stress

method.

The high symmetry of zincblende crystals results in their having only three independent second

order elastic constants. Taking the second strain branch, �(2), as an example, these three inde-

pendent elastic constants may be obtained from eq.(2.40) for the di�erent stress components.

Equation (5.2) below, relates the stress components �1, �2, and �3 to the components of the

second strain branch of eq. (5.1).

�1 = C11�;

�2 = C12�;

�3 = C44�:

(5.2)

The �ttings to eq. (5.2) are shown in Fig. 5.1. In order to show the limits of the linear

elastic theory in treating the material properties, we plot the stresses corresponding not just to

� = �0:02 : 0:02 with � = 0, but include those data points corresponding to di�erent values of
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(a) Fitting C11 from eq.(5.2) (b) Fitting C12 from eq.(5.2) (c) Fitting C44 from eq.(5.2)
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Figure 5.1: Illustrative �ttings of eq.(5.2) to HSE DFT stress/strain data for GaAs. For each
value of �, � is varied, showing the the linear approximation where shear strains have no e�ect
on axial stresses leads to a decrease in �t quality even at lower strains.

� for a given value of �. According to eq. (5.2) the values of �2 for example, should only depend

on �, but Fig. 5.1 (b) shows that the stress deviates from this behaviour with increasing �.

The decreasing accuracy of the linear approximation with strain can also be seen in Fig. 5.1 (a)

where the �t detiorates slightly as the strain increases. The quantitative source of these errors

is apparent when one uses the non-linear Lagrangian strain formulation. This will be discussed

further in section 5.5.2, here the linear equations and �ttings are given for illustrative purposes

only.

Fitting to the other strain branches of eq. (5.1) will yield additional, similarly simple equations

for the same three elastic constants; thus in the uncomplicated case of extracting the harmonic

elastic constants, the given strain branches and their corresponding stresses, produce an over-

abundance of data from which we can extract highly accurate elastic constant values, obtained

through, and averaged across, many independent �ttings.

Each � and � is associated also with a sublattice displacement, which by �tting to eq. 2.45,

yields a value for the Kleinman parameter. The second order elastic and structural properties of

Al, Ga, and In containing III-V compounds, extracted from our HSE DFT data are summarised

in Table 5.1. For convenience the lattice constants as well as equillibrium bond lengths are also

given. (Note: to acheive more accurate and less ambiguously de�ned second order elastic

constants, the values in Table 5.1 are actually obtained from third order elastic equations)

In the next section the values in table 5.1 are compared with the predictions of the popular VFF

models of Martin [84] and [61], revealing possibilities for their improvement for the purposes

of structural relaxation in materials within the regime of small strains.
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C11(GPa) C12(GPa) C44(GPa) � a0(�A) r0(�A)

AlN 309.47 166.06 196.90 0.5385 4.3647 1.8900

AlP 138.25 67.73 66.52 0.5759 5.4713 2.3691

AlAs 116.64 55.62 56.96 0.5746 5.6865 2.4623

AlSb 86.39 40.65 40.71 0.5893 6.1877 2.6794

GaN 288.35 152.98 166.68 0.5678 4.4925 1.9453

GaP 142.16 60.47 72.58 0.5333 5.4600 2.3642

GaAs 116.81 49.64 59.76 0.5288 5.6859 2.4620

GaSb 86.37 36.55 43.44 0.5517 6.1524 2.6641

InN 185.20 121.72 91.49 0.7474 4.9908 2.1611

InP 100.42 53.72 47.39 0.6520 5.9035 2.5562

InAs 84.28 44.72 39.66 0.6378 6.1160 2.6483

InSb 64.97 33.00 30.42 0.6337 6.5632 2.8419

Table 5.1: Elastic and structural properties of III-V compounds, where C11, C12, and C44 are
the second order elastic constants, � is the Kleinman parameter, a0 and r0 are the equilibrium
lattice constant and bond length, respectively.

5.3 Shortcomings of current Valence Force Field Implementa-

tions in the harmonic regime

The ultimate test of the suitability of a particular interatomic potential energy functional for the

description of selected properties of a given material is whether or not the potential reproduces

those targeted properties during numerical simulations of the dynamics or relaxation behaviour

of the material in question.

However, a simpler and more insightful test, which obviates the need for any extraneous simu-

lations, is to examine the elastic constant relations predicted by a given functional form. This

method was used as early as the 19th century when Saint-Venant [144] showed that a crystal

comprising atoms interacting only via central pairwise forces in a cubic lattice (which atoms of

a central pairwise potential will tend to crystalise in e.g. the ionic NaCl), exhibits the relation

C12 = C44. [56, 145] That this relation does not at all hold for tetrahedral semiconductor

materials, means that such a functional form will never be able to accurately describe their

properties.

This failing of a purely central force �eld to describe tetrahedrally bonded materials motivated

M. Born to develop a potential with, in addition to a central force term, a term which depends

on the angles between the bonds joining the atoms. Combined with the central force term,

such an angular dependence of the energy allows for the possibility of a tetrahedrally bonded

crystal to have a lower energy than the close-packed crystal structures. From this two-term

potential Born derived the new relation [146, 147]:

4C11 (C11 � C44)

(C11 + C12)
2 = 1: (5.3)
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Thirty one years after the publication of this paper, when the �rst measurements of the elastic

constants of diamond were made, the ratio was found to be 1.1 [146], showing good agreement

and pointing to the greater suitability of Born's two term potential over the simple central

force model.

While the agreement of eq. (5.3) with experiment was encouraging, the potential was never-

theless found to su�er serious shortcomings. Keating [61] showed the model produced a bulk

modulus which depends on angular force constants, an unadmissible result given a hydrostatic

compression involves no changes in the angles between atoms. Furthermore, the compliance

constant s11 was found to be negative or in certain cases in�nite, depending on the values of the

force constants. These issues illustrate that the satisfaction by a given material of the elastic

constant relations for a particular potential is a necessary, but not su�cient, condition for the

suitability of that potential to describe the material in question.

The failings of Born's potential gave the impetus for Keating's introduction of what would

become one of the most widely used VFF potentials for the structural analysis of semiconduc-

tors. In particular, as well as being used to model group IV crystals, it has been the primary

potential used, or forms the basis of potentials used, for the dynamics, structural relaxation

and analysis of a host of III-V materials, including the III-nitrides, in both thier cubic and

wurtzite phases [128, 131{133, 148{150]. The functional form of Keating's potential for a pure

zincblende crystal is given below in eq. (5.4):

V =
1

2

X
l

24 �
4a

4X
i=1

�
r20i(l)� 3a2

�2
+

�

2a2

4X
i;j>i

�
r0i(l) � r0j(l) + a2

�235 ; (5.4)

Where a = a0
4 , the equillibrium lattice constant divided by 4, � and � are the bond stretching

and bond-bending force constants, respectively. The sum over l is a sum over all the primitive

unit cells in the crystal, and r0i is the displacement vector between atom i and atom 0, the

central atom in the tetrahedron.

The explicit imposition of rotational invariance is evident in the dependence of eq. (5.4) on

only scalar products of the interatomic displacements. Given the popularity of this model and

the availability of parameter sets for III-V materials, it is a natural place to start if one wishes

to describe their structural properties. However, the elastic constant relations predicted by the

model indicate that there is much room for improvement.
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The relations between the force constants of this potential and the elastic constants and Klein-

man parameter of the material whose properties are to be described are given below:

C11 =
�+ 3�

4a
; (5.5)

C12 =
�� �

4a
; (5.6)

C44 =
��

a (�+ �)
; (5.7)

� =
�� �

�+ �
: (5.8)

Rearranging the terms in this underdetermined system leads to relations amongst the elastic

constants. Adding three times eq. (5.6) to (5.5) yields eq. (5.9) , whilst subtracting eq. (5.6)

from eq. (5.5) gives an expression for �.

� = a (C11 + 3C12) ; (5.9)

� = a (C11 � C12) : (5.10)

Substituting eqs. (5.9) and (5.10) into eq. (5.7), gives an expression for C44 related through the

�tted values of � and � to C11 and C12. We denote this by:

CVFF

44 =
(C11 � C12) (C11 + 3C12)

2 (C11 + C12)
: (5.11)

The ratio between the actual value of C44 (determined experimentally or from ab-initio theory),

and that predicted via the force constants in terms of C11 and C12, serves as a measure of how

accurately the elastic constants of a given material can be described using the Keating model:

RC44 =
C44
CVFF
44

=
2C44 (C11 + C12)

(C11 � C12) (C11 + 3C12)
: (5.12)

Where the nature of the error described by this equation depends on the parameters �tted to.

Many implementations of Keating's model �t only to C11 and C12 [61, 84, 126, 148, 151] and

thus eq. (5.12) describes the fractional error in C44. In other �tting schemes, the force constants

are �tted simiultaneously to all three elastic constants using a least squares method [126, 128];

in this case the ratio describes the cumulative error distributed over the three constants, with

the errors in each particular constant depending on the weights and method of �tting. Table

5.2 below shows, for a host of III-V materials, the value of the ratio of RC44 and the error

corresponding to this value, respectively.

An examination of table 5.2 shows, that with errors of at least 8% for the III-V materials,

either all in C44 or spread across the three elastic constant values, care should be taken before

using Keating's model for the structural relaxation of their heterostructures, and that there is
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N P As Sb

Al 1.617 (-38%) 1.138 (-12%) 1.134 (-12%) 1.085 (-8%)

Ga 1.454 (-31%) 1.113 (-10%) 1.115 (-10%) 1.093 (-9%)

In 1.607 (-38%) 1.196 (-16%) 1.184 (-16%) 1.137 (-12%)

Table 5.2: Value of ratio RC44
of eq. (5.12) for selected III-V materials. The error corre-

sponding to this value is given in brackets, and indicates the error in C44 when �tting is made
to C11 and C12.

room for an improved model. This is particularly the case for the ZB nitrides which motivate

this section, with these su�ering from errors of up to a 38% underestimation of C44.

In addition to the ratio of eq. (5.12), which Keating gave in his original paper [61], another

ratio can be used to further examine the accuracy with which the potential can describe a given

material. This ratio is obtained by substituting eqs. (5.9) and (5.10) into eq. (5.8) and is a

measure of the ability of the potential to capture the Kleinman parameter:

R� =
�

�VFF
=
� (C11 + C12)

2C12
: (5.13)

The value of the ratio of eq. (5.13), and the corresponding error in � (when � and � are �tted

to C11 and C12), for di�erent materials are shown is shown in Table 5.3 below:

N P As Sb

Al 0.771 (30%) 0.881 (14%) 0.890 (12%) 0.921 (9%)

Ga 0.819 (22%) 0.894 (12%) 0.887 (13%) 0.927 (8%)

In 0.942 (6%) 0.935 (7%) 0.920 (9%) 0.941 (6%)

Table 5.3: Value of ratio R� of eq. (5.13) for selected III-V materials. The error corresponding
to this value is given in brackets, and indicates the error in � when �tting is made to C11 and
C12.

Table 5.3 shows that not only does the model give an incomplete description of the macroscopic

properties via C44, but that the internal relaxation within a supercell is also not fully captured,

with an overestimation of at least 6%, and as much as 30%. The sublattice displacement with

shear strain, controlled by the Kleinman parameter, is an integral quantity in the calculation

of piezoelectric e�ects in a structure [66, 67, 135], therefore, the fact that the error in the

Kleinman parameter tends generally to increase with increasing ionicity, where piezoelectric

e�ects also become increasingly important is a signi�cant failing of the model.

Noticing that these errors tended to increase with ionicity, Keating himself stated [61] that his

original potential was not suitable for the heteropolar III-V materials due to the increasing

importance of the long range Coulomb forces (though it is nevertheless still widely used in its

original form). The trends in error with ionicity were noted by Martin [84], who sought to

improve them by the addition of an electrostatic interaction between partially charged rigid

ions, which he described in his paper (in C.G.S units) as: �Z�2e2=�R. This interaction is
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characterised by the e�ective charge, Z�, for which Martin uses the dynamic de�nition [69, 152],

which sets the charge via the optic mode splitting:

S =
Z�2

�1
=

�



4�e2

�
�
�
!2l � !2t

�
: (5.14)

Here the quantity S is used for later convenience. �1 is the high frequency dielectric constant

of the material in question, 
 is the volume of the primitive cell, e is the electronic charge, !l

and !t are the longitudinal and transverse optical phonon frequencies, respectively, and � is

the reduced mass of the basis of anion and cation.

With the addition of this interaction, Martin derives equations relating the force constants, �

and �, to the elastic constants, Cij [84]:

C11 + 2C12 =

p
3

4r
(3�+ �)� 0:355SC0 ; (5.15)

C11 � C12 =

p
3

r
� + 0:053SC0 ; (5.16)

C44 =

p
3

4r
(�+ �)� 0:136SC0 � C�2 ; (5.17)

C =

p
3

4r
(�+ �)� 0:266SC0 ; (5.18)

� = C�1
"p

3

4r
(�� �)� 0:294SC0

#
; (5.19)

C0 =
e2

r4
: (5.20)

Here the numerical prefactor to SC0 in eqs. (5.15-5.19) are the results of calculated Ewald

summations [153] over the in�nite crystal when subjected to di�erent strains; it represents the

second-order coe�cient of the expansion in strain of the total Coulomb energy of an atom.

To determine if this Coulombic addition of Martin's su�ciently improves the accuracy of the

description of the selected III-Vs, ratios similar to eqs. (5.12) and (5.13) can be derived from

eqs. (5.15-5.19). For C44 the following relation ensues:

RMC44 =
C44
CVFF
44

=
2C44 (C11 + C12 � C 0)

(C11 � C12) (C11 + 3C12 � 2C 0) + 0:831C 0 (C11 + C12 � C 0)
; (5.21)

where Martin uses the simplifying notation C 0 = 0:314SC0. The value of eq. (5.21) for di�erent

materials and the attendant errors are given in Table 5.4.

It is evident from Table 5.4 that while the inclusion of Coulombic forces yields signi�cant im-

provement over the purely covalent model of Keating, there remain non-negligible inaccuracies

in the description of the properties of the listed materials. The cubic nitrides incur the largest

errors, with up to 20% for AlN, whilst the other materials have an average error of about 5%
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N P As Sb

Al 1.255a (-20%) 1.028b (-3%) 1.040c (-4%) 1.031d (-6%)

Ga 1.192a (-16%) 1.043d (-4%) 1.052d (-5%) 1.092d (-8%)

In 1.073a (-7%) 1.069d (-6%) 1.073d (-7%) 1.071d (-7%)

Table 5.4: Value of ratio RM
C44

of eq. (5.21) for selected III-V materials; superscript refers to
the source of phonon frequencies used to calculate S, eq. (5.14): a = Ref [126], b = Ref [154],
c = Ref [155], d = Ref [84]. Values for the elastic constants are extracted from HSE DFT data
and presented in Table 5.1.

In addition to the errors in C44, inaccuracies accrue to the internal relaxation through the

�tting to the Kleinman parameter, �. Within Martin's formalism, the ratio which describes

these errors is:

RM� =
�

�VFF
=
� (C11 + C12 � C 0)

2C12 � C 0 : (5.22)

The value of eq. (5.22) for di�erent materials and the corresponding errors are given in Table 5.5

below:

N P As Sb

Al 0.868 (15%) 0.926 (8%) 0.932 (7%) 0.946 (6%)

Ga 0.894 (12%) 0.938 (7%) 0.925 (8%) 0.928 (8%)

In 1.026 (-3%) 0.974 (3%) 0.954 (5%) 0.963 (4%)

Table 5.5: Value of ratio RM
� of eq. (5.22) for selected III-V materials calculated using elastic

constant and Kleinman parameter values extracted from HSE DFT data presented in Table 5.1,
with the phonon frequencies used to calculate S given in Table 5.4.

This table indicates that for the Kleinman parameter too, a general improvement is acheived

with the inclusion of the electrostatic forces, but that a �nite error nevertheless remains for all

materials. Apart from the anomalous case of InN, the Kleinman parameter is overestimated

by > 10% for the nitrides and an average of 6% for the other materials.

In summary then, Tables 5.4 and 5.5 reveal that, despite the electrostatic amendments of

Martin, there are still signi�cant shortcomings in the ability of this functional form to describe

the properties of many III-V materials. This implies that while the ionic e�ects are indeed

important, either there remain subtleties of the covalent bonding that are not captured by the

simple two term form of eq. (5.4); or that the parameterisation of the Coulomb interaction

via the splitting in the optic phonon modes is not a good one. Either way, improvements are

needed to describe the cubic nitrides and other III-V materials.

A natural �rst step on the path towards this improvement is to include more nearest neighbour

valence interactions to allow a broader description of the variation of the energetics with changes

in the local bonding environment. To complement this approach use can now be made of

the much larger data-base of ab initio results. For example, even the value of the ratios of

eqs. (5.13) and (5.22) were not calculable in Keating's time. Indeed, the equations (5.8) and
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(5.19) (and similar equations derived from other interatomic potentials) served as some of the

�rst theoretical estimations of the Kleinman parameter [138]; here the force constants would be

determined from the limited macroscopic elastic constant data, and the Kleinman parameter in

turn calculated from the force constants. Now, however, availability of accurate �rst principles

calculations of the still experimentally elusive Kleinman parameter allow not only for additional

validity checks, but serve also as an additional material property with which to parameterise

future potentials. Better still, in addition to the relaxed elastic properties of crystals, modern

DFT calculations give access to the elastic properties of unrelaxed unit cells. This gives access

to a larger parameter set by which VFF potentials may be parameterised.

In the next section we describe a VFF model with additional terms and better able to make

use of the modern abundance of �rst principles data, whilst retaining the attractive simplicity

of Keating's model and its electrostatic successor.

5.4 Improved description of harmonic elasticity

In this section we seek to address the shortcomings pointed out in section 5.3, by use of a VFF

model with additional interaction terms to accommodate those structural properties neglected

by previous implementations. In section 5.4.1, the interatomic potential which will be used is

introduced and its terms discussed. Then in section 5.4.2, the �tting of the potential parameters

to elastic properties is detailed, and �nally in section 5.4.3, the suitability of this model for

di�erent materials is examined, and its ability to model properties not included in the �tting is

tested; for those materials for which the potential is suitable, VFF force constants are provided.

5.4.1 Interatomic Potential

To improve upon the aforementioned shortcomings, we take up, as with the VFF potential used

in chapters 1 and 2 for wurzite, the thread left by Martin in his 1970 paper [84]. In this paper

Martin draws attention to the original VFF model of Musgrave and Pople [134] and points

out that the valence coordinates used and their accompanying force constants maintain the

translational and rotational invariance lacking in those of the models identi�ed by Keating [61].

This functional form was well justi�ed by Musgrave and Pople in their original work [134],

deriving the valence force terms by considering the forces in every direction on a given atom due

to movements of neighbouring atoms in every direction. Discarding a purportedly unimportant

cross angle term, Martin gives the form of the potential which will be the subject of this section.
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For each atom in a ZB crystal Martin's potential is given by:

Vi =
1

2

X
j 6=i

1

2
kr
�
rij � r0ij

�2
+
X
j 6=i

X
k 6=i;k>j

�
1

2
ki�r

0
ijr

0
ik

�
�ijk � �0ijk

�2
+ kir�

�
r0ij
�
rij � r0ij

�
+ r0ik

�
rik � r0ik

�� �
�ijk � �0ijk

�
+ kirr

�
rij � r0ij

� �
rik � r0ik

��
:

(5.23)

Here i refers to the central atom being considered, while j and k run over the 4 nearest

neighbours for each i. This means that for the potential of a zincblende primitive cell 8 bond

lengths and 12 angles will be treated. The half preceeding the �rst term prevents double

counting when summing over i. rij = (rij � rij)
1
2 refers to the bond length between atom i and

j, �ijk = cos�1
�

rij �rik
jrij jjrikj

�
refers to the angle between the bonds rij and rik, and r0ij and �0ijk

refer to the equillibrium bond lengths and bond angles, respectively.

The potential terms of eq. (5.23) are shown graphically in Fig. 5.2. The term kr captures

the resistance of any bond to length changes away from the equillibrium length, likewise k�

describes the harmonic resistance to changes in angle. The term kirr describes the relation

between neighbouring bonds which share an atom (atom i); how one bond will tend to increase

in length if another is decreased. kir� describes the interaction between the angle between two

bonds, and each of the two bonds; this will, for example, make it energetically favourable

for bond lengths to increase when bond angles decrease. This energetic favourability can be

imputed to changes in the s-p mixing on the orbitals sitting on the central atom [156]. The

amount by which the energy changes due to this rehybridisation would of course depend on

the species of the central atom; which in turn would imply di�erent 3-body terms are needed

for the cation and the anion, hence the superscript i on these terms. However, Martin justi�es

the exclusion of this e�ect by emphasising that the potential is being used to study only

phenomena in the long-wavelength regime: elastic properties, as well as zone centre optic and

acoustic modes. In this case the force constants for the two atoms in the unit cell always enter

the energy and frequency equations together, and thus could not be separated (See appendix A,

eq. (A.8): angles about atoms 0 of the primitive cell are equivalent to those about atom 1).

He thus treats anion-centred and cation-centred angular terms as the same, and this equality

is imposed also in the present work.

We part ways with Martin's method when he applies further approximations and dependencies

to the force constants such that eq. (5.23) becomes equivalent to the Keating potential in

eq. (5.4). In this work no dependencies amongst the force constants are imposed, and there

are thus four force constants with which we can �t the elastic properties. Furthermore, we do

not at present include Coulombic e�ects amongst our terms, studying �rst the e�ects of the

inclusion of additional valence interactions.
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Figure 5.2: Valence force �eld interaction terms contributing to eq. (5.23). From left to right:
bond stretch, kr; bond bending, k�; bond-bond, krr; bond-angle, kr�.

In the next section we discuss the �tting of the force constants to reproduce the elastic properties

of Al, In, and Ga containing III-V semicondcutors.

5.4.2 Force constant �tting

In this section the primary focus is on the results of the expansion of eq.( 5.23) in strain, and

the subsequent �tting. For a more detailed description of the expansion, see appendix A.

To parameterise the VFF model of eq. (5.23), the interatomic bond lengths and the angles

between these bonds must be expressed in terms of the strain and the internal strain.

The two atom zincblende primitive cell is shown in Fig. 5.3 below, the two basis atoms and the

lattice vectors transform as:

a = Ta0;

b = Tb0;

c = Tc0;

r1 = Tr01;

r0 = Tr00 + u:

(5.24)

Where T = (1+") is the deformation matrix written in terms of the strain, and t represents the

displacement between two sublattices, the internal strain. Taking into account the symmetry

of the zincblende crystal, eq. (5.24) gives the dependence on strain of all the relevant atomic

coordinates in the cell.

Having the position vectors of the atoms thus in terms of strain, a Taylor expansion of eq. (5.23)

to second order in the nine strain components, ("11; "22; "33; "32; "13; "12; ux; uy; uz), results in

an expression for the energy which is a second order polynomial in the strain variables. Subse-

quently minimising this expression with respect to the internal strain, and comparing with the

well known expression for the macroscopic energy density of cubic crystals [50], yields equations
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Figure 5.3: Zincblende primitive cell.

(5.25-5.28), relating the force constants of eq. (5.23) to the elastic properties of Table 5.1:

C11 =

p
3

12r0
(kr + 6krr + 12k�) ; (5.25)

C12 =

p
3

12r0
(kr + 6krr � 6k�) ; (5.26)

C44 =
3
p

3

2r0

krk� � 2krrk� � 4k2r�
kr � 2krr � 8

p
2kr� + 8k�

; (5.27)

� =
kr � 2krr � 2

p
2kr� � 4k�

kr � 2krr � 8
p

2kr� + 8k�
: (5.28)

Inverting these equations, and taking care to eliminate the extraneous root (see Appendix A),

we obtain direct expressions for the force constants in terms of the second order elastic con-

stants. These are given in eqs. (5.29) to (5.32) below:
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k� =
2 (C11 � C12) r0

3
p

3
; (5.29)

kr =
r0p

3 (1� �)2
�
C11

�
2 + 2� + 5�2

�
+ C12

�
1� 8� � 2�2

�
+ 3C44 (1� 4�)

�
; (5.30)

krr =
r0

6
p

3 (1� �)2
�
C11

�
2� 10� � �2

�
+ C12

�
7� 8� + 10�2

�� 3C44 (1� 4�)
�
; (5.31)

kr� =
r0
3

r
2

3

(C11 � C12) (1 + 2�)� 3C44
� � 1

: (5.32)

Having this one-to-one analytic relation between the force constants and the elastic constants

has several advantages. Like the Keating model we have direct expressions for the force con-

stants with no numerical �tting procedures required. These simple expressions make the expla-

nation of di�erent trends in elastic properties in terms of the force constants a straight forward

procedure; having only equations of the type of eqs.(5.25-5.28), predictions of elastic properties

in terms of trends in the force constants, and vice versa, would be very di�cult. Unlike the

Keating model, however, with the four force terms, the full elastic constant tensor and Klein-

man parameter can be �t to exactly. With respect to other more sophisticated potentials, this

parameterisation of the VFF model o�ers all the advantages of the much used Keating model,

as well as greater accuracy in the regime to which it is parameterised.

In the next section an analysis of the model is made in terms of stability and suitability to

di�erent materials.

5.4.3 Suitability of Model

To ascertain the suitability of these potentials for the materials we seek to model, we may

examine their prediction of properties to which they are not �tted. One such readily available

prediction is the value of the transverse optical phonon at the � point; while the potential does

not purport to accurately describe dynamical properties, such quantities will nevertheless give

an indication of whether or not the energetics of internal strain are reasonable.

The quantity Bxx is related to the transverse optical phonon at � for ZB structures by [137, 140]:

Bxx = 4�!2TO=a
3
0 ; (5.33)

where � is the reduced mass of the anion and cation system, !TO is the transverse optical

phonon frequency at �, and a0 is the lattice constant. From equations (5.29) to (5.32) and

(A.15) the following relation between Bxx and the known elastic properties is derived:

Bxx =
16 (C11 � C12 � C44)

(1� �)2 a20
: (5.34)
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A negative Bxx would lead to two undesirable results: imaginary !TO, and worse, the scenario

that the energy density has a stationary point which is a maximum rather than a minimum in

the internal strain (See eqs.(A.9) and (A.10)). This latter consequence invalidates the basis of

the whole procedure by which the relaxed elastic constants are derived, wherein the assump-

tion that the energy is being minimised with respect to the internal strain must hold for the

parameterisation via the Kleinman parameter to be reasonable.

An inspection of the terms in the numerator of eq. (5.34) reveals that only those crystals for

which:

A =
2C44

C11 � C12
< 2; (5.35)

where A is the anisotropy parameter [153], are stable against sublattice displacements.

The values of Bxx predicted from eq.(5.34), and the transverse optical phonon frequencies

corresponding to these are shown in tables 5.6 and 5.7. Table 5.6 shows that the potential is

N P As Sb

Al -210.92 12.06 11.09 12.45

Ga -132.85 22.45 16.52 13.40

In -282.01 -2.62 -0.321 4.28

Table 5.6: Value of Bxx predicted from eq.(5.34) given in units of GPa �A�2.

not suitable for the cubic III-N or any of the indium containing III-Vs other than InSb. While

simulations of these crystals with negative Bxx using this potential will exhibit the correct

elastic constant tensor, the crystals will be unstable with respect to internal displacements for

a �xed shear strain.

The transverse optical phonon frequencies, !0, predicted from the values of Bxx above are given

in Table 5.7. Tables 5.6,5.7,B.2 and condition (5.35) indicate that the VFF potential (eq.(5.23))

parameterised via eqs. (5.29-5.32), is suitable for neither the structural relaxation nor the

dynamics of materials for which A > 2, whilst for materials with A < 2 the potential describes

the parameters of the structural relaxation very well (Cij and �), but does not accurately

describe the � point phonons. These results have been further corroborated by actual structural

relaxations, where materials with A < 2 relax to the correct equillibrium state and respond

correctly to di�erent strains.

The force constants for the materials whose structural relaxation is suitably described by the

VFF model are given in Table 5.8 below:
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N P As Sb

Al N/A 241 (454a, -46%) 209 (360b, -42%) 238 (318c, -25%)

Ga N/A 269 (366d, -27%) 189 (273d, -30%) 173 (231c, -25%)

In N/A N/A N/A 93 (185c, -49%)

Table 5.7: Value of !TO predicted from eq.(5.33) given in units of cm�1. Experimental
values are given in brackets, followed by the error with respect to this experimental value. a=
Ref [154]; b=Ref [155]; c=Ref [69]; d=Ref [157]

kr( eV �A�2 ) k�( eV rad�2 )) krr( eV �A�2 ) kr� ( eV �A�1rad�1 ) r0(�A)

AlP 5.505 0.401 0.640 0.453 2.3691

AlAs 4.962 0.361 0.521 0.391 2.4623

AlSb 4.557 0.294 0.320 0.249 2.6794

GaP 6.237 0.464 0.455 0.421 2.3642

GaAs 5.292 0.397 0.396 0.364 2.4620

GaSb 4.542 0.319 0.264 0.258 2.6641

InSb 3.194 0.218 0.362 0.248 2.8419

Table 5.8: Force constant values of VFF model for selected III-V semicondcutors.

5.5 Description of third-order elasticity

The necessity of a third order description of elasticity, and the insu�ciency of classical con-

tinuum and atomistic strain models in acheiving such a description, has been well established

by various studies on the technologically important InAs/GaAs quantum dot system. Because

of the nature of the Stransky-Krastanov growth of these heterostructures, they are normally

modelled as pure InAs embedded in a GaAs matrix. With the lattice mistmatch between these

binaries being about 7%, they are �rmly outside of the region of linear strain theory.

Ellaway and Faux [158] demonstrated the considerable overestimation of the hydrostatic strain

made by continuum models based on the linear strain theory. Deriving the strain dependence

of the e�ective harmonic elastic constants (i.e. the third and higher order elastic constants)

from an atomistic Stillinger Weber potential, they showed that a continuum model with and

without taking this strain dependence into account, produced hydrostatic strains which di�ered

by 16%.

Previous to this, Pryor [133] had delineated various advantages of calculating the strain �eld

via the Keating or other atomistic models over continuum models. The most pertinent of these

advantages is that atomistic models retain the atomic level symmetry that is lost in continuum

models. However, Pryor also points out the divergence of the two models at large strains, and

by claiming that \harmonicity is not assumed" in the Keating model in a list of advantages, im-

plies that the Keating model can be relied upon to produce meaningful anharmonic behaviour.

However, while the Keating model indeed involves terms which are higher than second order in

the strain, this does not imply that the model has the ability to accurately capture energetics

at these higher orders. Indeed, the derivatives of the Keating model to third order in the linear
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strains is 0, and the derivatives to fourth order are equal to the second order derivatives (the

harmonic elastic constants), and thus contribute negligibly to the strain. So while the two mod-

els diverge in the region of non-linear strain, there is no reason to suppose that either method

can be trusted in these strain regimes outside of which they were parameterised. Nevertheless,

this work clearly illustrated the need to account for departures from the small strain regime,

and to do so atomistically.

This issue was then addressed by Lazarenkova et. al [159], who recognised not only the impor-

tance of the large strains present in these systems, but also the inability of the quasi-harmonic

Keating model to take them accurately into account. In their work they sought to extend

the Keating model to describe anharmonicity in the strain, via the inclusion of anharmonic

bond length dependent adjustments to the two harmonic parameters. These adjustments were

parameterised using the pressure depedence of phonon frequencies. While this model is widely

used to treat nanostructures in which large strains are present, there are many means by which

a more accurate description could be attained. To begin with, Table 5.2 shows that in terms

of shear strains even in the harmonic regime, this model will su�er from errors of around

16%. In addition to this, �tting to the anharmonic dynamic properties does not guarantee

that the anharmonic elasticity will be fully captured, and vice versa. To infer that the simple

bond-bending and bond-stretching model can model static propeties when �tted to dynamic

properties, is to assume a greater physical justi�cation for the functional form of the Keating

potential than its derivation warrants. This point is illustrated by Cousins [160], where in table

6.1, of this work, it is shown that the classic two parameter Keating model �tted only to elastic

constants su�ers a 17% error in the Raman frequency, and this same model �tted to C11 and

the Raman frequency, will produce a value for C12 which is negative, and a value for C44 which

is considerably inaccurate. These errors were associated with a �tting to diamond, for which

the Keating model is more suited than any other material [61], thus the errors discussed here

will be greater for other materials.

Thus, following Cousins, and a remarkably successful paper by Keating [156], we pursue the

accurate atomistic description of third order elasticity by direct determination of the third order

elastic properties, and direct parameterisation of a third order VFF model by these properties.

This method does not make any assumptions about the physical verisimilitude of our simple

potentials, nor their applicability outside of their �tting range. Of course, the third order

elastic properties are not readily available for many semiconductors of interest (which perhaps

motivated more indirect means of capturing the behaviour they determine), so in this section

we �rst extract these properties using highly accurate HSE DFT methods, before considering

their implementation in a VFF model.
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5.5.1 Finite strain theory for cubic crystals

In order to rigourously describe third order elastic properties, the assumption of in�nitesimal

strains must be dropped and the Lagrangian strain formalism must be adopted. Murnaghan's

�nite strain theory has been applied to cubic crystals by Birch [55].

A useful matrix relation between the Lagrangian strain tensor and the small strain tensor will

allow for easy determination of the Lagrangian strains in cases where the small strain tensor,

or simply the deformation gradient tensor are speci�ed:

� = "+
1

2
"2: (5.36)

The third order elastic constants are conventionally de�ned in terms of the expansion of the

elastic energy density in terms of these Lagrangian strains; for a cubic crystal, this energy

density is given by [54, 55, 161]:
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(5.37)

The derivatives of this energy with respect to the �ij provide equations relating the Lagrangian

strains to the stresses, via the elastic consnats:

ti =
@U

@�i
(5.38)
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Thus, the general expressions for each of the six Voigt components of the Lagrangian stress in

terms of an arbitrary Lagrangian strain on a cubic crystal are:

t1 = C11�1 + C12 (�2 + �3) +
1

2
C111�

2
1 +

1

2
C112

�
2�2�1 + 2�3�1 + �22 + �23

�
+ C123�2�3 +

1

2
C144�

2
4 +

1

2
C155

�
�25 + �26

�
;

t2 = C11�2 + C12 (�1 + �3) +
1

2
C111�

2
2 +

1

2
C112

�
�21 + 2�2�1 + �23 + 2�2�3

�
+ C123�1�3 +

1

2
C144�

2
5 +

1

2
C155

�
�24 + �26

�
;

t3 = C11�3 + C12 (�2 + �1) +
1

2
C111�

2
3 +

1

2
C112

�
�21 + �22 + 2�1�3 + 2�2�3

�
+ C123�1�2 +

1

2
C155

�
�24 + �25

�
+

1

2
C144�

2
6;

t4 = C44�4 + C144�1�4 + C155 (�2�4 + �3�4) + C456�5�6;

t5 = C44�5 + C144�5�2 + C155 (�5�3 + �55�1) + C456�4�6;

t6 = C44�6 + C144�3�6 + C155 (�1�6 + �2�6) + C456�4�5:

(5.39)

However, when the stresses on a strained supercell are measured in a DFT calculation using

the Hellman Feynman theorem, or from an interatomic potential calculation, it is the stresses

on the faces of the deformed con�guration that are obtained. This is the Cauchy stress. Thus

in order the use eqs.(5.39) we invert eq.2.43 to obtain:

t = det (J)J�1�
�
JT
��1

; (5.40)

where � is the Cauchy stress, the superscript T denotes a matrix transpose, and the superscript

-1 denotes the matrix inverse.

As well as improving the description of the macroscopic elastic properties, the precision with

which the internal strain is described may also be improved; this involves a second, rather

than �rst, order description of the internal strain. Taking, then, the zincblende cell shown in

Fig. 5.3, the atom at the origin remains �xed, and the position of the central atom is given by:

r0 = Jr00 + u (5.41)

Although this transformation completely speci�es the deformed positions geometrically, the u

are not suitable parameters in which to expand the scalar energy because they lack rotational

invariance. Thus the Lagrangian strain, �, is used in place of J , and a rotationally invariant

description of the internal strain is obtained through use of what Cousins [63, 137] calls the

inner displacement, rather than simply the vector displacement between the two sublattices,

denoted by u. This is given by:

� = JTu: (5.42)
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Because this inner displacement occurs in response to internal forces arising from the application

of �nite strain, each inner displacement can be expressed as a Taylor series in the components

of the �nite strain:

�i = AiJ�J +
1

2
AiJK�J�K ; (5.43)

Here Voigt notation has been employed for the elements of the �nite strain, and the subscripts

relating to the strain are denoted by capitals, whilst those relating to the cartesian coordinate

of the inner displacement are denoted by the lower-case i. The AiJ and AiJK are the �rst

and second order internal strain tensors, respectively. Cousins [64, 137] gives the form of these

tensors for a ZB crystal. The �rst order internal strain tensor may be expressed conveniently

in matrix notation:

AiJ =

0BB@
0 0 0 A14 0 0

0 0 0 0 A14 0

0 0 0 0 0 A14

1CCA : (5.44)

A matrix representation is not possible for AiJK , but there are only three independent non-zero

components. These are the components:

A114 = A225 = A336 (5.45)

A156 = A246 = A345 (5.46)

A124 = A235 = A316 = A134 = A215 = A326: (5.47)

Substituting eqs. (5.44) and (5.45) into eq. (5.43) yields an expression for the value of r0 which

minimises the strain energy of a ZB crystal for a given applied �nite strain:

� = A14

0BB@
�4

�5

�6

1CCA+
1

2

2664A114

0BB@
�1�4

�2�5

�3�6

1CCA+A124

0BB@
�4 (�2 + �3)

�5 (�3 + �1)

�6 (�1 + �2)

1CCA+A156

0BB@
�5�6

�4�6

�4�5

1CCA
3775 (5.48)

From eqs. (5.48) and (5.39) the values for the elastic and internal strain constants can be

extracted if the stress, strain, and relaxed atomic positions are known. The details of this

extraction form the content of the next section.

5.5.2 Extraction of third order elastic constants

For the extraction of third or higher order elastic constants, where the use of Lagrangian

strains is needed, the deformation Jij is normally chosen such that the Lagrangian strains have

as simple a form as possible [161{163] so that the relations arising from eq. (5.38) are not overly

complicated. While this strategy has not been executed here, the strain branches of eq. (5.1),

with two independently variable parameters, and the abundance of �tting options provided by
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the di�erent stress components, ensure that the Lagrangian strains used, though complicated,

are more than su�cient to determine all independent third order elastic constants and internal

strain tensor components.

In what follows, whenever a strain is written in vector form, Voigt notation is used. Voigt

notation will be used for the simpli�cation of the �tting equations involving energy and strain,

and the standard notation will be used where matrices can be used to simplify calculations, as

in eq. (5.36). GaAs results will be shown as a particular case of the �tting method.

5.5.2.1 Lagrangian strains and elastic constants from "(1)

For strain branch �(1), of eq. (5.1) we have:

�(1) = (0; 0; 0; �; �; �) =

0BB@
0 �

2
�
2

�
2 0 �

2
�
2

�
2 0

1CCA : (5.49)

Utilising eq. (5.36) yields:

�(1) =

0BB@
�2

4
�
2 + �2

8
�
2 + �2

8
�
2 + �2

8
�2

4
�
2 + �2

8
�
2 + �2

8
�
2 + �2

8
�2

4

1CCA =

�
�2

4
;
�2

4
;
�2

4
; � +

�2

4
; � +

�2

4
; � +

�2

4

�
: (5.50)

Looking at eq. (5.39), then, one obtains the equations relating the Lagrangian stress to strain

for this branch. t1, t2, and t3 are produced solely by nonlinear strain e�ects, and are equal by

symmetry. They are given by:

t1 = t2 = t3 =

�
1

32
C111 +

3

16
C112 +

1

16
C123 +

1

32
C144

�
�4+�

1

4
C144 +

1

2
C155

�
�3 +

�
1

4
C11 +

1

2
C12 +

1

2
C144 + C155

�
�2: (5.51)

Without already knowing C11, C12 and either C144 or C155, eq. (5.51) cannot be used to reliably

determine either. The coe�cients to third order and higher in � tend to be too di�cult to

extract due to the relatively small contribution these higher powers and their coe�cients make

to the total stress. However, �xing these higher order terms, and inputting values for C11, C12

and C155 determined through subsequent strain branches, a value for C144 can be obtained:

C144 = �12� 4(34%) GPa: (5.52)

The error given here is that associated with the least squares �tting. The largeness of the error

in this quantity reects the fact that it is being extracted as a relatively small component in



Chapter 5: Elastic Properties of zincblende III-V semiconductors 107

(a) Fitting to eq. (5.51) (b) Fitting to eq. eq. (5.53)
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Figure 5.4: Fitting elastic constants to Lagrangian stress-strain equations for strain branch
"(1) applied to a GaAs primitive unit cell. (a) �tting to stress component t1, t2 and t3 to obtain
C144(b) �tting to stress component t4, t5 and t6 to obtain C456

a prefactor to a small quantity. This di�culty is compounded by the cumulative errors in the

values of the other constants which are substituted in. Nevertheless, this value agrees within

the error with other estimations of C144, and serves as a corroboration of other independent

determinations of this quantity, as well as a validation for those constants used to determine

it.

t4, t5, and t6 are likewise equal by symmetry and given by:

t4 = t5 = t6 =

�
1

16
C144 +

1

8
C155 +

1

16
C456

�
�4+�

1

4
C144 +

1

2
C155 +

1

2
C456

�
�3 +

�
1

4
C44 + C456

�
�2 + C44�: (5.53)

Equation 5.53 can be used to obtain values for C44 (already presented in Table 5.1), and C456

independently of any knowledge of other constants. Again, the prefactors to higher powers

of � are harder to accurately extract, and especially to decompose into the individual elastic

coe�cients given also the large di�erences in the magnitudes of these di�erent factors. Fixing

C155 (to the value determined independently from a later strain branch) and C144 (to anything

with the correct order of magnitude), and �tting to eq. (5.53) the values for C44 and C456 can

be optimised for the best �t. The results of these �ttings are shown graphically in Fig. 5.4.

The results of the parameter optimisation are:

C44 = 59:65� 0:04(0:07%) GPa ; (5.54)

C456 = �33� 1(4%) GPa : (5.55)
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C44 and C456 are optimised to produce a very good �t to the data, and can be trusted as

accurate values.

In addition to the elastic constants, the relaxed atomic positions give access to the non-zero

components of the internal strain tensor. Substituting eq. (5.50) into eq. (5.48) reveals one

non-zero component of the inner displacemnt:

�x =
1

32
(A114 + 2A124 +A156)�

4 +
1

4

�
1

2
A114 +A124 +A156

�
�3+

1

4
(A14 + 2A156)�

2 +A14�: (5.56)

Fixing the coe�cients to terms of order 2, this provides the internal strain tensor components:

A14 = �0:753� 0:001(0:2%) �A ; (5.57)

A156 = 2:38� 0:08(3%) �A : (5.58)

In the same fashion, for the other branches, the Lagrangian strains are derived; however, for

these cases there are two independent strain variables which necessitates a two dimensional

�tting.

5.5.2.2 Lagrangian strains and elastic constants from "(2)

For strain branch �(2), of eq. (5.1) we have, from eq. (5.36):

�(2) = (�; 0; 0; �; 0; 0) =

0BB@
� 0 0

0 0 �
2

0 �
2 0

1CCA

)�(2) =

0BB@
�+ �2

2 0 0

0 �2

8
�
2

0 �
2

�2

8

1CCA =

�
�+

�2

2
;
�2

8
;
�2

8
; �; 0; 0

�
:

(5.59)

Substituting the strain of eq. (5.59) into eq. (5.39) the equations relating the two independent

strain parameters, � and � to the Lagrangian stress, via the elastic constants are obtained. For

t1 we �nd:

t1 =
1

8
C111�

4 +
1

2
C111�

3 +
1

8
C112�

2�2 +
1

4
C112��

2 +
1

64
(C112 + C123)�

4+

1

2
(C11 + C111)�

2 + C11�+

�
1

4
C12 +

1

2
C144

�
�2: (5.60)
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From the form of eq. (5.60), and earlier mentioned considerations regarding the size of the terms

of higher powers, it can be expected that accurate vales for C11 and C111 may be obtained,

with a value for C144 possible if C12 is known, and if the sum of these two prefactors of �2 is not

too small. Fitting to eq. (5.60), with C112, C123 and C12 �xed (to known values or values with

the correct order of magnitude), the values and errors in the remaining constants are given:

C11 = 116:67� 0:04 (0:03%) GPa ; (5.61)

C111 = �611� 5 (0:9%) GPa ; (5.62)

C144 = �15:5� 1:3 (8:6%) GPa : (5.63)

We note that while very low errors are incurred for C11 and C111, the percentage error in C144

is larger; this is to be expected for a constant of such small magnitude occuring at second order

in the strain. However, the value is within the errors of the previous determination, eq. (5.52).

The Lagrangian stresses t2 and t3 are equal by symmetry and given by:

t2 = t3 =
1

8
C112�

4 +
1

2
C112�

3 +
1

128
(C111 + 3C112)�

4+

1

16
(C112 + C123)�

2�2 +
1

8
(C112 + C123)��

2+

1

2
(C12 + C112)�

2 + C12�+
1

8
(C11 + C12 + 4C155)�

2 (5.64)

From this equation, values for C12, C155, and C112 may be obtained, provided C11 is known

accurately, and the other constants are �xed to reasonable values.

C12 = 49:58� 0:04 (0:07%) GPa ; (5.65)

C112 = �353� 4 (1%) GPa ; (5.66)

C155 = �263� 1 (0:4%) GPa : (5.67)

The only remaining non-zero stress, t4, is given by:

t4 =
1

2
C144�

2� + C144�� +
1

4
C155�

3 + C44�: (5.68)

Associated with this stress are three elastic constants. Attempting to optimise all three will

lead to a C155 value which is three times larger than its actual value and with the wrong sign,

and with a huge error. While this value is not to be trusted, it can also not be tolerated as

such a large spurious term would interfere with the �tting of the other terms. Therefore, C155

is �xed to a value known from other strain branches/stresses and values for C44 and C144 are
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obtained:

C44 = 59:79� 0:02 (0:07%) GPa ; (5.69)

C144 = �15� 2 (11%) GPa : (5.70)

Here again agreement is obtained for the inherently di�cult to determine constant C144 with

previous values, whilst C44 is optimised to a very good �t which is extremely close to the value

of eq. (5.54).

For the inner displacement, substituting eq. (5.59) into eq. (5.48) reveals one non-zero compo-

nent:

�x = A14� +
1

2

�
A114

�
�� +

�2�

2

�
+A124

�3

4

�
: (5.71)

This gives:

A14 = �0:75314� 0:00006 (0:009%) �A ; (5.72)

A114 = 3:583� 0:009 (0:3%) �A ; (5.73)

where the error ridden prefactor to the cubic �3

4 is omitted here in favour of later more accurate

determinations.

5.5.2.3 Lagrangian strains and elastic constants from "(3)

For strain branch �(3), of eq. (5.1) we have, from eq. (5.36):

�(3) = (0; �; 0; �; 0; 0) =

0BB@
0 0 0

0 � �
2

0 �
2 0

1CCA

)�(3) =

0BB@
0 0 0

0 �+ �2

2 + �2

8
�
2 + ��

4

0 �
2 + ��

4
�2

8

1CCA =

�
0; �+

�2

2
+
�2

8
;
�2

8
; � +

��

2
; 0; 0

�
:

(5.74)

Substituting the strain of eq. (5.74) into eq. (5.39) the equations relating the two independent

strain parameters, � and � to the Lagrangian stress, via the elastic constants are obtained.
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The equation relating t1 to the two independent strain parameters is shown below:

t1 =
1

8
C112�

4 +
1

64
(C112 + C123)�

4 +
1

16
(C112 + C123 + 2C144)�

2�2

+
1

8
(C112 + C123 + 4C144)��

2 +
1

2
C112�

3

+
1

2
(C12 + C112)�

2 + C12�+

�
1

4
C12 +

1

2
C144

�
�2: (5.75)

The elastic constants obtained from this �tting are:

C12 = 49:51� 0:04 (0:09%) GPa ; (5.76)

C112 = �350� 6 (2%) GPa ; (5.77)

C144 = �15� 1 (9%) GPa ; (5.78)

where agreement with previous �ttings is again achieved.

For t2 the relation is:

t2 =
1

8
C111�

4 +
1

16
(C111 + C112 + 2C155)�

2�2 +
1

128
(C111 + 3C112)�

4

+
1

8
(C111 + C112 + 4C155)��

2 +
1

2
C111�

3

+
1

2
(C11 + C111)�

2 + C11�+
1

8
(C11 + C12 + 4C155)�2: (5.79)

This provides values for C11, C111 and C155 of:

C11 = 117:09� 0:06 (0:05%) GPa ; (5.80)

C111 = �612� 8 (1%) GPa ; (5.81)

C155 = �264� 2 (0:8%) GPa : (5.82)

We note that while C111 and C155 agree within error to previous determinations, this is not

the case for C11. This is not a problem, since the two values are still extremely close; but

it does point out that the errors associated with the �tting should not be taken to give the

whole of the uncertainty in the value. In this case, and in subsequent similar cases, where the

disagreement between the values is larger than the errors in their �ttings, we use instead the

standard deviation between the values as the error in the �nal value, which can be considered

to be less of an underestimation in the uncertainty.
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For t3 the relation is:

t3 =
1

8
C112�

4 +
1

128
(C111 + 3C112)�

4 +
1

8
(C112 + C155)�

2�2

+

�
1

4
C112 +

1

2
C155

�
��2 +

1

2
C112�

3

+
1

2
(C12 + C112)�

2 + C12�+
1

8
(C11 + C12 + 4C155)�

2: (5.83)

This di�ers little from t1, with di�erences arising due to the higher order e�ects of the shear

strain; it thus serves as a good consistentcy check for the constants derived above. This stress

component gives values for C12, C112 and C155 of:

C12 = 49:99� 0:07 (0:14%) GPa ; (5.84)

C112 = �351� 9 (3%) GPa ; (5.85)

C155 = �264� 1 (9%) GPa : (5.86)

Due to the sole shear component �4 of the strain, t4 is again the only non-zero shear stress:

t4 =
1

4
C155�

3� +
1

8
C155��

3 + C155�
2� +

1

4
C155�

3 +

�
1

2
C44 + C155

�
�� + C44�: (5.87)

With only two constants involved, this gives the values:

C44 = 59:94� 0:03 (0:04%) GPa ; (5.88)

C155 = �265� 2 (9%) GPa : (5.89)

The equation describing the inner displacement for this branch is:

�x = A14� +
1

2
(A14 +A124)�� +

1

8
A124�

3 +
1

2
A124�

2� +
1

8
A124�

3� +
1

16
A124��

3 (5.90)

From this is obtained another value for A14 and the �rst value for A124:

A14 = �0:75345� 0:00008 (0:01%) �A ; (5.91)

A124 = 5:55� 0:01 (0:2%) �A : (5.92)
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5.5.2.4 Lagrangian strains and elastic constants from "(4)

For strain branch �(4), of eq. (5.1) we have, from eq. (5.36):

�(4) = (0; �; �; �; 0; 0) =

0BB@
0 0 0

0 � �
2

0 �
2 �

1CCA

)�(4) =

0BB@
0 0 0

0 �+ �2

2 + �2

8
�
2 + ��

2

0 �
2 + ��

2 �+ �2

2 + �2

8

1CCA =

�
0; �+

�2

2
+
�2

8
; �+

�2

2
+
�2

8
; � + ��; 0; 0

�
:

(5.93)

Substituting the strain of eq. (5.93) into eq. (5.39) the equations relating the two independent

strain parameters, � and � to the stress, via the elastic constants are obtained. The equation

relating t1 to the two independent strain parameters is shown below:

t1 =
1

4
(C112 + C123)�

4 +
1

64
(C112 + C123)�

4 +
1

8
(C112 + C123 + 4C144)�

2�2

+
1

4
(C112 + C123 + 4C144)��

2 + (C112 + C123)�
3

+ (C12 + C112 + C123)�
2 + 2C12�+

�
1

4
C12 +

1

2
C144

�
�2: (5.94)

From this �tting we obtain the �rst value for C123. This value can be considered to be reliable

before �tting: the term occurs as a prefactor to a low order polynomial term and the other

constants which make up the prefactor, C12 and C112, are well known from previous �ttings.

The elastic constants obtained from this �tting are:

C12 = 49:62� 0:04 (0:08%) GPa ; (5.95)

C123 = �86� 5 (6%) GPa ; (5.96)

C144 = �15� 2:5 (17%) GPa : (5.97)

For t2 and t3, which are equal by symmetry of the applied strain and crystal, the relation is:

t2 = t3 =
1

8
(C111 + 3C112)�

4 +
1

128
(C111 + 3C112)�

4 +
1

16
(C111 + 3C112 + 8C155)�

2�2

+
1

8
(C111 + 3C112 + 8C155)��

2 +
1

2
(C111 + 3C112)�

3

+
1

2
(C11 + C12 + C111 + 3C112)�

2 + (C11 + C12)�+
1

8
(C11 + C12 + 4C155)�

2: (5.98)
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The elastic constants obtained from this �tting are:

C111 = �662� 40 (6%) GPa ; (5.99)

C155 = �263� 10 (4%) GPa : (5.100)

The value of C111 is within error of previous extractions, but the accuracy with which it can be

determined is inherently limited by its heavy dependence on other constants. Thus this value

for C111 is a useful con�rmation of the accuracy of previous determinations, but will not be

used in the �nal averaged value.

For t4 the stress-strain relation is:

t4 = C155�
3� +

1

4
C155��

3 +
1

4
C155�

3 + 3C155�
2� + (C44 + 2C155)�� + C44�: (5.101)

The elastic constants obtained from this �tting are:

C44 = 60:18� 0:06 (0:1%) GPa ; (5.102)

C155 = �264� 2 (0:8%) GPa : (5.103)

In addition to the elastic constants, the relaxed atomic positions give access to the non-zero

components of the internal strain tensor. Substituting eq. (5.74) into eq. (5.48) reveals one

non-zero component of the inner displacemnt:

�x =
1

2
A124�

3� +
1

8
A124��

3 +
1

8
A124�

3 +
3

2
A124�

2� + (A14 +A124)�� +A14�; (5.104)

from which we obtain:

A14 = �0:7532� 0:0006 (0:08288%) �A ; (5.105)

A124 = 5:55� 0:04 (0:8%) �A : (5.106)
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5.5.2.5 Lagrangian strains and elastic constants from "(5)
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(5.107)

Substituting the strain of eq. (5.107) into eq. (5.39) the equations relating stress to strain, via

the elastic constants are obtained.

Under this strain branch t1, t2, and t3 are equal by symmetry. These are given by:

t1 = t2 = t3 =
1
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2
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32
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�2+

�
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4
C11 +

1

2
C12 +

1

2
C144 + C155

�
�2+(C11 + 2C12)�:

(5.108)

While this strain branch is overly complex to rely on for initial values of any of the elastic

constants, it can be used for consistency checks, or to examine pure hydrostatic or pure shear

strain behaviour. Below is an example of a consistency check, where the constants C123 and

C144 are examined, for the reason that there is only one prior determination of C123 and C144

has larger percentage errors than most other constants.

C144 = �4:39511� 17:96 (408:7%) GPa ; (5.109)

C123 = �109:682� 35:9 (32:73%) GPa : (5.110)

Given that the errors in this �tting are due not only to the �t itself, but are also compunded

by the errors in each of the determined constants which must be used in the �tting, these

two values show encouraging agreement with earlier determinations. Due to their large errors

however, the values determined from this strain branch will serve only as checks, and not

determinations, of the values of any of the elastic constants.
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The Lagrangian stress components, t4, t5 and t6 are also equal by symmetry and are given by:

t4 = t5 = t6 =
1
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From this branch we can determine C44 independently of any other values, and we may use it

to check the values for the error ridden C144 and the seldom seen C456:

C44 = 59:87� 0:06 (0:1%) GPa ; (5.112)

C456 = �34:51� 1:54 (4%) GPa ; (5.113)

C144 = �3:59� 4 (112%) GPa : (5.114)

In addition to the elastic constants, the relaxed atomic positions give access to the non-zero

components of the internal strain tensor. Substituting eq. (5.107) into eq. (5.48) reveals only

one non-zero component of the inner displacement:
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2
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�
�2 +A14�:

(5.115)

This yields values against which earlier obtained values can be checked:

A14 = �0:751� 0:002 (0:3%) �A ; (5.116)

A114 = 3:8� 0:3 (9%) �A ; (5.117)

A156 = 2:3� 0:1 (6%) �A : (5.118)

These show good agreement with all previous �ttings.

In the next section we present the third order elastic and second order internal strain constants

for all materials considered. Each value is an average over selected individual �ttings.
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5.5.2.6 Third order elastic constants for selected III-V materials

The third order elastic constants, averaged over the di�erent values obtained in the previous

section, are gathered in Table 5.9. The errors assigned to the averaged values is given by the

sum of the individual errors, for example:

�C111 =

q
�C2

111 a + �C2
111 b

2
: (5.119)

Here �C111 refers to the error in the �nal averaged value of C111 and �C111 a and �C111 b

are the individual �tting errors in the extractions of C111 from di�erent branches. For C111,

as indicated above, there are two independent values used to obtain the average value in

Table 5.9. These are the values from strain branches "(2) and "(3) in eqs. (5.62) and (5.81).

For all materials these values agreed with each other and with the third determination shown

in the previous section. For C112, all three independent determinations are used. For C155, of

which there are many determinations, the value presented is the average of all 6 determined

values, with the errors in these values given by eq. (5.119), except for the cases of InSb and

InAs, where the standard deviations are used for aforementioned reasons.

For C144, only those three values extracted from strain branches "(2) and "(3) are used, with the

other values, highly dependent on other terms with errors of their own, used only as checks. We

note, however, that for the very soft materials, GaSb and InSb, the values of C144 uctuated in

values always very close to 0, with InSb values even changing sign. We may infer from this that

the small magnitudes of C144 for these materials may require a higher resolution of calculation.

For C123, the value given is the value obtained from "(4), corroborated by the value from "(5),

with which an average was not made because of the large �tting errors. Likewise for C456, only

one value was used, with the other generally being in agreement, though not su�ciently well

determined to include in the �nal presented value. In Table 5.10 experimental and theoretical

values for GaAs, and just theoretical values for the cubic nitrides are presented for comparison.

We �nd good agreement between these experimental values and our calculated values, taking

into account the fact that these measurements are taken at room temperature where materials

tend to be softer[161] (with some measured constants even changing sign with changes in

temperature) than at the 0 K limit of temperature at which DFT calculations are made. Our

theoretical determinations are to be trusted over the others presented based on their closer

agreement with experiment (particularly for the second order elastic constants which can be

much more accurately determined experimentally), and the use of the accurate HSE hybrid

functional approach [62, 73] for the treatment of the exchange-correlation energy, over the less

accurate LDA (Ref [167]) or GGA (Ref [161]).
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C111(GPa) C112(GPa) C155(GPa) C144(GPa) C123(GPa) C456(GPa)

AlN -1119 (14) -1036 (8) -789 (3) 51 (3) -44(12) -11.6 (0.7)

AlP -595 (4) -428 (4) -243 (1) 14.9 (0.9) -103 (6) -33 (1)

AlAs -526 (4) -364 (3) -220 (1) 7.1 (0.7) -86 (4) -27 (1)

AlSb -416 (3) -268 (2) -156.9 (0.6) 6.4 (0.5) -77 (3) -21.4 (0.7)

GaN -1277 (8) -976 (4) -647 (2) -46 (1) -252 (9) -49 (1)

GaP -753 (8) -441 (7) -295 (1) -10 (1) -73 (7) -47 (1)

GaAs -612 (5) -351 (4) -264 (1) -15.2 (0.9) -86 (5) -33(1)

GaSb -471 (6) -260 (5) -192 (1) -2.81 (0.96) -63 (4) -19.34 (0.27)

InN -786 (8) -701 (8) -290.41 (0.86) 28 (2) -327 (12) 22 (1)

InP -491 (2.5) -336 (2) -168.57 (0.56) -5.17 (0.59) -131 (3.5) -13.6 (0.6)

InAs -419 (5) -276 (4) -154.3 (0.6) -5.9 (0.8) -125 (4.5) -7.89 (0.70)

InSb -319 (13) -186 (10) -120 (1) -3 (2) -114 (6) -6.79 (0.8)

Table 5.9: Third order elastic constants of zincblende III-V compounds, calculated using
HSE DFT. Fitting errors are indicated in brackets.

Experimental: (GaAs) Previous theoretical: (GaAs) (AlN) (GaN) (InN)

C111(GPa) -675a, -622b, -620c -600d, -561e -1073e -1213e -756e

C112(GPa) -402a, -387b, -392c -401d, -318e -965e -867e -636e

C155(GPa) -320a, -269b, -274c 10d, -16e -757e -606e -271e

C144(GPa) -70a, 2b, 8c -305d, -242e 57e -46e 13e

C123(GPa) -4a,-57b,-62c -94d, -70e -61e -253e -310e

C456(GPa) -69a, -39b, -43c -43d, -22e -9e -49e 15e

Table 5.10: Previous experimental and theoretical determinations of third order elastic con-
stants of GaAs and the cubic III-nitride materials. a= Ref [164]; b=Ref [165]; c=Ref [166];
d=Ref [167]; e=Ref [161]

The non-zero components of the internal strain tensor are given in Table 5.11. ForA14 the values

from "(1), "(2) and "(3) are averaged. Since there is not the same abundance of equations with

which to describe the higher order internal strain tensor components as there is for the elastic

constants, the values for the di�erent AiJK are set simply to those of the single independent

determination of lowest error. For A114 the only independent determination is that from "(2),

for A156, it is "(1). For A124 there are two independent determinations, but we include in the

table only the value from the uncomplicated "(3) strain branch, rather than the complex and

error prone "(4) extraction.

A further sanity check for the obtained elastic constants is their convergence with the number

of k-points used in the DFT calculations. The behaviour of the three second order and six

third order elastic constants with k-point mesh resolution is shown for our exemplar material

GaAs in Fig. 5.5. We note that in all cases the di�erence between subsequent values converges

to a magnitude which is of the order of the errors in those quantities.

In the next section how best to use these newly extracted elastic constants in the context of a

VFF model is discussed.
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A14 (�A) A114 (�A) A124 (�A) A156 (�A)

AlN -0.5888 (0.0002) 4.339 (0.008) 4.478 (0.009) 2.33 (0.03)

AlP -0.7936 (0.0003) 4.01 (0.01) 5.32 (0.01) 1.81 (0.06)

AlAs -0.8187 (0.0003) 3.959 (0.009) 5.385 (0.007) 1.95 (0.06)

AlSb -0.9129 (0.0003) 3.95 (0.01) 5.53 (0.01) 1.72 (0.06)

GaN -0.6394 (0.0002) 4.04 (0.02) 6.11 (0.02) 1.97 (0.02)

GaP -0.7295 (0.0002) 3.417 (0.008) 5.65 (0.01) 1.98 (0.04)

GaAs -0.7533 (0.0005) 3.584 (0.009) 5.55 (0.01) 2.38 (0.08)

InN -0.9357 (0.0002) 5.12 (0.05) 6.61 (0.04) 1.23 (0.03)

InP -0.9645 (0.0004) 3.86 (0.03) 6.72 (0.03) 1.44 (0.07)

InAs -0.9777 (0.0004) 3.91 (0.05) 6.58 (0.07) 1.70 (0.06)

InSb -1.0427 (0.0009) 3.19 (0.25) 6.61 (0.07) 1.8 (0.1)

GaSb -0.8499 (0.0002) 3.48 (0.02) 5.38 (0.01) 2.20 (0.03)

Table 5.11: Internal strain tensor components extracted from HSE DFT data for Ga, In, and
Al containing III-V compounds. Fitting errors are given in brackets.

5.5.3 Extended valence force �eld potential

Knowing the elastic properties of di�erent materials to third order, the next step in their mod-

elling is to incorporate these properties into an atomistic VFF model. Anharmonic properties

are incorporated into VFF models in a variety of ways, some of which are: anharmonic correc-

tions to the harmonic force constants [131, 159, 168, 169], expansion of VFF energy directly

in terms of Lagrangian strains [137], or expanding the VFF energy in terms of the deforma-

tion tensor/in�nitesimal strains, and then relating this to the third order expression for the

macroscopic energy density expressed in terms of the Lagrangian strains [156, 170]. In im-

plementations of the �rst method, the anharmonic adjustments to the harmonic models are

normally parameterised via the strain dependence of the Raman frequencies; however, parame-

terisation via anharmonic dynamic properties does not necessarily mean that those parameters

which govern the crystal relaxation will also be reproduced. Furthermore, treating the e�ects

of larger strains without recourse to �nite strain theory may lead to inaccuracies and incon-

sistencies. The rigourous method of Cousins [160] is eschewed here for the more algebraically

tractable method of Gerlich [170], given the purpose of this section is to outline and discuss,

rather than implement, a possible third order VFF model.

The use of Gerlich's method in this context involves the same sort of expansion detailed in

Appendix A, but with the taylor expansion extended to third order. For the model described

by eq. (5.23), terms involving any unsquared bond lengths will appear at every order of the

Taylor expansion (because they have components of the form "
1
2 ), as will terms involving the

bond angles (as these involve components of the form arccos(")); however, the force constants

associated with these terms will occur with ever diminishing magnitude as the order of the

derivative increases, and their purpose is anyway to describe the harmonic properties. Thus,

in order to model third order macroscopic properties, microscopic interaction terms which are
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Figure 5.5: Convergence of di�erent elastic constants of GaAs with increasing n x n x n

k-point mesh.

third order in the bond lengths will need to be included, which will appear appreciably in an

expansion to third order in the strain.

Given the success of Keating in matching the six third order elastic constants of germanium

and silicon using only three force constants additional to his original model [156], a suitable

starting point for the extension of our existing VFF model to third order, would be to include

similar terms to eq. (5.23), but involving the more arithemtically abstruse but conceptually clear

valence coordinates, rather than the easily expanded, but less simply interpretted, squared dot
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products of Keating. Such a VFF model would be of the form:
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(5.120)

We note that this potential does not have all third order cross terms. A bond-squared-angle

term could also be included. However, whether or not this is necessary will not be known until

�ttings are made and the resulting force constants and elastic constant predictions are tested.

It is likely that the III-V semiconductors in which we are interested are not as well modelled

by so few force constants as the group IV elements are. Nevertheless, eq. (5.120) makes a good

starting point.

The expansion of eq. (5.120) in terms of the in�nitesimal strain is straightforward. However,

the third order elastic constants are the coe�cients of the Lagrangian strains, as in eq. (5.37),

and expressing eq. (5.120) in terms of these is less straight forward. To circumvent the di�-

culty of expanding the VFF model in terms of the Lagrangian strains, the general Lagrangian

strain tensor can be expressed in terms of the in�nitesimal strain tensor and substituted into

eq. (5.37) [170]. Using eq. (5.36) as earlier, we obtain, for the general strain:

�1 = "1 +
1

2

�
"211 + "212 + "213

�
�2 = "2 +

1

2

�
"222 + "223 + "212

�
�3 = "3 +

1

2

�
"233 + "223 + "213

�
�4 = "4 + ("23 ("22 + "33) + "12"13)

�5 = "5 + ("13 ("11 + "33) + "12"23)

�6 = "6 + ("12 ("11 + "22) + "13"23) :

(5.121)
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Substituting this into eq. (5.37) yields an expression for the energy to which the VFF model of

eq. (5.120), expanded to third order in the in�nitesimal strains, may be compared and �tted:

U =
1

2
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2
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+ 2 (3C44 + 4C456) "12"32"13 (5.122)

From the above expression, we see that, once the bond lengths and angles of any VFF model are

expressed in terms of the in�nitesimal strain, and minimised with respect to the internal strain,

then the third order elastic constants may be related to the microscopic force constants via the

third derivatives of the microscopic energy with respect to the strain. The conditions that the

internal strain minimises the energy will determine equations relating the force constants to

the components of the internal strain tensor.

Once these equations are obtained there are several ways to parameterise the VFF model. One

would be a least squares �tting to all or some of the constants, which can be done however

many interaction terms are included in the potential. Another is to increase the number of

force constants until all the elastic and internal strain tensor components can be exactly �tted.

Another still is to �t only to those elastic constants which are deemed signi�cant for a particular

material under particular circumstances.

As an example of a scenario where some elastic constants are more or less important than

others, consider the stress t1 in eq. 5.39, and consider a general applied strain of the form:

" = (�; �; �; �; �; �). In this notation, t1, will have the form:

t1 = C11�+ 2C12�� C111
2

�2 � 3C112�
2 � C123�

2 � C144�
2

2
� C155�

2; (5.123)

Setting � = 0:1 gives a 10% Lagrangian hydrostatic strain, and setting � = 0:02 gives a 2%

shear strain. Substituting these values in and considering the t1 which would be produced in

GaAs, we may examine the contribution of the separate terms to the stress:

t1 = 117(0:1) + 50(0:2)� 612

2
(0:01)� 351(0:03)� 86(0:01)� 15

2
(0:0004)� 264

2
(0:0008) = 7;

(5.124)

with contributions (in GPa) from the terms of: C11: 12 ; C12:10 ; C111: -3 ; C112: - 11 ; C123:

-0.9 ; C144: - 0.003; C155: - 0.05. While for the shear stress, t4, we obtain:

t4 = 60(0:02)� 15(0:002)� 264(0:004)� 33(0:0004) = 0:1; (5.125)
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with contributions from the terms of: C11: 12 ; C12:10 ; C111: -3 ; C112 - 11 ; C123 -0.9 ; C144:

- 0.003; C155: - 0.05. From this we see that a possible simpli�cation of the �tting procedure

for GaAs could be to neglect completely C144 and C456, whilst possibly also neglecting C123.

We note that, by the similarity of the relative magnitudes of the second order to third order

constants of GaAs and InAs, the large impact of C155 on the shear stress, casts doubt on the

conclusion of Ellaway and Faux [158], where the e�ective C44 is said to be nearly constant with

strain. Given their use of the Stillinger Weber potential[171] to calculate these properties, and

given that the particular implementation used modelled the shear elastic constant inaccurately

even in the harmonic regime, the description of third order properties given by our HSE DFT

extracted elastic constants, is more reliable.

The details of the �tting procedure, and how this may lead to modi�cations of the potential

form, will be the topic of a later work.

5.6 Conclusion and outlook

In this chapter, shortcomings in the commonly used descriptions of harmonic and third order

elasticity were pointed out, and the ground work for their improvement was laid.

In the harmonic regime, a circumvention of these shortcomings was sought �rstly via accurate

determination of the elastic constants and the commonly neglected Kleinman parameter; and

secondly by the implementation of a VFF model, originally due to Musgrave [134] and modi�ed

by Martin [84], which explicitly �ts to the oft ill-described Kleinman parameter, as well as the

three cubic elastic constants, of which C44 was often poorly represented in the popular Keat-

ing [61] model. By analysis of the anisotropy parameters of di�erent III-V materials, a direct

analytic relation amongst the force constants of this potential, and the elastic and Kleinman

constants of the materials in question was obtained. It was determined that the model is suit-

able only for the description of those materials for which the anisotropy factor is < 2. Given

that all the cubic nitrides and InAs have A > 2, this is a serious shortcoming for the model.

However, an immediate next step in its developement is the inclusion of Coulombic e�ects.

If Martin's [84] method for the parameterisation of the Coulomb interaction is implemented

(via the transverse and longitudinal optical phonon splitting), then the direct analytic relation

between microscopic force constants and experimental quantities can be maintained. Further-

more, di�erent �tting schemes may be pursued even before the inclusion of Coulombic e�ects.

Since it is the constant Bxx which determines whether or not the model posseses a minimum

with respect to the internal strain, this quantity can be directly �tted to, with the value for

Bxx derived either from the longitudinal optical phonon frequencies, or directly from DFT cal-

culations. Finally, given the increased �tting parameter set provided by use of the bare, rather

than relaxed, elastic constants, and the formerly unavailable means of their determination by
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DFT calculation, the �fth parameter of Musgrave and Pople [134], excluded by Martin [84],

may be tentatively reinstated, and all possible nearest-neighbour harmonic interactions then

accounted for.

In the regime of large strains, previously unknown third order elastic and internal strain con-

stants were extracted from accurate HSE DFT data. The elastic constants were extracted via

stress-strain relations expressed within the formalism of �nite strain, and found to agree well

with experiment and previous theory (over which our extracted values are to be trusted, due to

the higher quality of the exchange-correlation functional with which the data were calculated).

The components of the second order internal strain tensor extracted here have not before been

measured or calculated. With the anharmonic properties of many III-V materials thus suitably

determined, a suggestion for their incorporation into an atomistic model is made with reference

to previous studies. With the newly extracted accurate values for the elastic properties, it is

expected that a VFF model, parameterised using these constants in the manner of Keating

and Gerlich [156, 170], will o�er signi�cant advantages in modelling the relaxation of highly

strained heterostructures.

The amelioration of the harmonic potential by the inclusion of the important Coulombic in-

teraction, and the developement of a VFF made speci�cally to capture the elastic (and not

phonon) properties of highly strained heterostructures, and thus their relaxation properties,

will form the content of a later work.



Chapter 6

Conclusions and Outlook

6.1 Conclusions

This thesis has presented the results of a theoretical investigation into the electronic and optical

properties of InGaN/GaN quantum wells (QWs). Detailed atomistic analyses were performed

on both c-plane and m-plane QWs using an atomistic sp3 tight-binding model, which includes

e�ects such as strain and polarisation �eld variations due to random alloy e�ects. In partic-

ular, localisation e�ects related to random alloy uctuations were analysed. For the case of

metastable cubic nitride based systems, the beginnings of a theoretical framework in which to

perform a similar analysis were laid out. This involved the determination of the fundamental

elastic properties of cubic III-V compounds, including the III-N materials, and their use to

establish atomistic valence force �eld models.

In Chapter 3 the impact of random alloy uctuations on the localisation features of both ground

and excited states in c-plane InGaN/GaN QW systems is addressed. To cover the experimen-

tally relevant indium composition ranges, we analyse InGaN QWs with indium contents varying

between 10% and 25%. The results show that for as little as 10% indium in the QWs, an energy

range of localised hole states of order 100 meV is expected. In addition, our data shows that

the extent and range of the hole localisation depends on the indium content of the system in

question. We �nd that at higher indium contents states are more localised, and localised over

a wider energy range in the valence band. For each indium content these localised states will

therefore play an important role in determining device properties at ambient temperature. The

calculations also reveal that in c-plane structures, the localisation of both electrons and holes is

enhanced by the built-in �eld. In particular, we �nd that the built-in �eld in combination with

structural inhomogeneities such as alloy uctuations as well as well width uctuations can lead

to signi�cant electron localisation. Furthermore, the built-in �eld acts against the Coulomb

interaction to separate the electrons and holes along the growth axis, leading to the situation
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of individually localised electrons and holes. This is consistent with the non-exponential decay

transients measured in time-dependent photoluminescence (PL) experiments on c-plane struc-

tures and early models used to interpret them. A study of the overlaps between di�erent hole

states, di�erent electron states, and electron and holes states, reveals that the localisation in

these systems will be such that it limits transport amongst the well localised hole states, and

hampers radiative recombination between the individually localised and separated electron and

hole states, at least at low temperatures and low carrier densities.

In Chapter 4, where we treat the m-plane system and the built-in �eld is absent, we �nd that

the Coulombic interaction becomes signi�cant, and electrons and holes are localised together as

excitons in indium rich regions of the QW. This is consistent with the experimentally measured

single exponential decay transients found in time-resolved PL measurements performed on m-

plane structures, and we show, by explicit calculation of optical properties that the experimental

features are correctly attributed to random alloy e�ects. Similarly to the case of c-plane

systems, we �nd that localisation e�ects in m-plane QWs persist into the valence band over

an energy range of at least 100 meV, and that these localisation e�ects are such that they

will signi�cantly a�ect the overlap between hole states, and thus the transport properties of

m-plane InGaN devices.

Considered together, our calculations on c- and m-plane InGaN QWs in chapters 3 and 4 reveal

that random alloy uctuations alone are su�cient to bring about carrier localization e�ects in

both systems. This result is important in the context of earlier studies on nitride materials and

devices, where it was believed that gross indium clustering, rather than simple random alloy

uctuations, were the source of carrier localisation. We also �nd generally that the localisation

e�ects are much stronger for the hole states than for the electron states. In both cases, a

signi�cant density of localised hole states is observed. These results are consistent with the

experimentally observed large full width at half maxium (FWHM) of PL spectra in both c-

and m-plane systems. While the mechanism by which the random alloy uctuations lead to

localisation of the hole states is the same in each system, the di�erent macroscopic properties

associated with the two growth planes, lead to signi�cant di�erences in the overall nature of

carrier localisation in each system.

It is important to note that widely used standard continuum-based models do not capture

these e�ects (in-plane separation, wave function localisation due to alloy uctuations); and

�rst principles studies are unable to treat the large number of atoms necessary to capture the

interplay between microscopic random alloy e�ects, and the macroscopic structural properties,

including the built-in �eld and well width uctuations. Therefore, the semi-empirical fully

atomistic approach presented o�ers a completeness of description lacking in previous studies.

In Chapter 5, motivated by a desire to study the cubic nitrides, the �rst components of the nec-

essary theoretical framework were developed. In an initial step, the harmonic elastic properties
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were extracted from HSE DFT data. Relations amongst the determined elastic constants and

Kleinman parameter are used to illustrate shortcomings in the currently available valence force

�eld (VFF) models used to calculate local strain and relaxed atomic positions in cubic III-V

semiconductor alloys. This analysis revealed that widely used VFF models su�ered cumulative

errors of up to 38% in the description of some elastic constants, and 30% in the description

of internal strain. Noting the importance of internal strain when treating piezoelectric proper-

ties, a new VFF implementation is introduced, based on that due to Martin, with additional

parameters, allowing for an accurate description of the formerly neglected C44 elastic constant,

and the Kleinman internal strain parameter, �. The implementation retains the bene�t of a

simple analytic relation between the VFF force constants and the elastic constants enjoyed by

the popular Keating model, but does not share its inaccuracies. Unfortunately, the model was

found to be suitable only for the description of those materials with an elastic anisotropy factor

< 2, and this does not include the III-N materials. In a second step, recognising the large

strains that may occur in the semiconductor devices made using higly lattice-mismatched ma-

terials such as InN and GaN, third order elastic properties are extracted from highly accurate

HSE DFT data. This extration is performed by �tting to third order elastic formulae, using

�nite-strain theory. Some of these third order elastic constants are the �rst to be published for

the materials in question, and most of the constants are determined to a higher degree of ac-

curacy than those previously given in the literature. Finally, the utilisation of these properties

in a VFF model is discussed, and an appropriate functional form is suggested.

6.2 Outlook

In chapters 3 and 4, we have investigated in detail of the localised states which dominate the

properties of InGaN/GaN QWs. While we have made reliable conservative estimations of the

energy range covered by these states, we were limited by �nite size e�ects and time constraints

from providing a more precise determination of this quantity.

An alternative possible means to determine when the states in the valence band become de-

localised and governed by the overall geometry of the QW, would be to consider, using our

calculated tight-binding wave functions, the expectation value of the in-plane components of

the position vector, r. That is, assuming growth in the z direction, to calculate h jxj i and

h jyj i from the tight binding wavefunctions,  . When a state is delocalised it will be subject

to the wider con�ning potential of the QW, and so will be approximately either symmetric

or antisymetric about the centre of the QW. Its x and y expectation values will therefore be

in the centre of the well. For consecutive localised states however, these quantities will vary

greatly from one state to the next. The standard deviation of h jxj i and h jyj i will thus be

large for the localised states, whilst for the delocalised states, the standard deviation will be

approximately 0. We may thus de�ne the point in energy beyond which the states, in a given
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QW are no longer localised, Emob, as the energy beyond which the standard deviation in the

values of h jxj i and h jyj i has become su�ciently close to 0. Unlike localised states, the

overlap behaviour of these states will depend on the nodal structure of subsequent states in the

QW, and will not share the monotonic increase in overlap with energy which was identi�ed in

Chapter 3, as a property of localised states.

To determine whether or not Emob, thus determined, is subject to �nite-size e�ects, its variations

across di�erent con�gurations of the same supercell, can be examined. If this variation is large

for di�erent con�gurations, then �nite size e�ects are playing a role. These �nite size e�ects

may be reduced by increasing the supercell size. If there is a small deviation between the

Emob values in di�erent con�gurations, then we may infer that �nite size e�ects have a smaller

impact. Furthermore, when convergence is obtained with increasing supercell size of Eavgmob, the

average of Emob over all random con�gurations for a given supercell size, then we may say that

our supercell size is large enough that our study of the densitiy of localised states is suitably

independent of cell-size. However, such a study would be extremely time consuming, as not

only does increasing the cell size increase the size of the Hamiltonian which must be set up and

diagonalised to calculate the states, an ever increasing amount of localised states would need to

be calculated. This is because the number of localised states in a given QW will depend on its

size. Having obtained this Emob, we may use the number of localised states in a QW divided

its area, to estimate the carrier densities at which saturation of localised states may occur.

Given that the e�ciency droop in nitride systems has been variously linked to saturation of

localised states at higher current densities [18, 20, 21] and to Auger recombination [41, 42],

further theoretical studies would provide valuable insights. A precise estimate of the energy

range and density of localised states could help to disentangle these two e�ects. On the one

hand, improved knowledge of the localised state distribution could help to identify the carrier,

and hence current density at which delocalisation occurs. On the other hand, the localised tight-

binding wave functions could be used as input to calculate Auger matrix elements and hence

the expected dependence of Auger recombination on carrier and current density in typical

QW structures. Although these calculations would require large e�ort and computational

resources, they could also give a signi�cantly improved understanding of the relative importance

of di�erent loss mechanisms in III-N optical devices.

Building on the m-plane results, the properties of InGaN/GaN QWs grown on the a-plane or on

semi-polar planes could be readily investigated with the same theoretical framework used here.

In particular, the relation in semi-polar QWs, between the reduced built-in �elds and the QW

microstructure could be examined. The nature of the recombination in these systems, whether

excitonic or non-excitonic, could be then assertained. These studies would be worthwhile given



Chapter 6: Conclusion and Outlook 129

the superior indium incorporation properties of certain semi-polar growth plains over the m-

plane [38]. In the case of a-plane InGaN QWs, the origin of the lower DOLP with respect to

the m-plane case [172] would make an interesting study.

With respect to the work of Chapter 5, and the study of cubic nitride systems, the immediate

outlook is the improvement of the VFF model. The �rst step will be the inclusion of Coulombic

e�ects. If Martin's [84] method for the parameterisation of the Coulomb interaction is imple-

mented (via the transverse and longitudinal optical phonon splitting), then the direct analytic

relation between microscopic force constants and experimental quantities can be retained.

Furthermore, di�erent �tting schemes to the elastic properties may be pursued. Since it is the

constant Bxx which determines whether or not the model posseses a minimum with respect to

the internal strain, this quantity can be directly �tted to, with the value for Bxx derived either

from the longitudinal optical phonon frequencies, or directly from DFT calculations. Finally,

given the increased �tting parameter set provided by use of the bare, rather than relaxed,

elastic constants, the �fth parameter of Musgrave and Pople [134], excluded by Martin [84],

may be re-incorporated in the model, and all possible nearest-neighbour harmonic interactions

then accounted for.

In the regime of large strains, with the newly extracted accurate values for the third order

elastic properties, it is expected that a VFF model, parameterised using these constants in the

manner of Keating and Gerlich [156, 170], will o�er signi�cant advantages in modelling the

relaxation and local strain of highly lattice-mismatched heterostructures.

With the VFF model in place, attention may be turned to the parameterisation of a tight

binding model for the study of the electronic properties of cubic InGaN/GaN QWs.

Overall, we conclude that the investigations presented in this thesis not only provide very useful

insight into the properties of III-N heterostructures, but can also be used as the starting point

for further studies to investigate a wide range of growth directions and cubic nitride growth,

as well as to provide a better understanding of the dominant loss mechanisms in existing III-N

devices.





Appendix A

Expansion of valence force �eld

energy in terms of strain

The total energy associated with displacing an atom from equillibrium in a zincblende crystal

is given in our model by:
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where r0ij (�0ijk) and rij (�ijk) are the equillibrium and displaced bond lengths (bond angles),

respectively.

In order to relate this microscopic expression for the energy to the macroscopic properties of

the crystal, we treat the total energy of a single primitive cell. The atoms, bonds and angles

involved are shown in �g. A.1.

The lattice vectors of the primitive cell are de�ned by:

a0 = f0; a0
2
;
a0
2
g;

b0 = fa0
2
; 0;

a0
2
g;

c0 = fa0
2
;
a0
2
; 0g:

(A.2)

with the two basis atoms within the cell at positions:

r01 = f0; 0; 0g;
r00 = fa0

4
;
a0
4
;
a0
4
g:

(A.3)
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Figure A.1: Zincblende unit cell.

In a strained crystal with a monatomic basis, the displacement of all atoms in the lattice from

the equillibrium positions can be described using, T = (1 + "), where " is the strain tensor:

T =

0BB@
1 + "11 "12 "13

"12 1 + "22 "23

"13 "23 1 + "33:

1CCA (A.4)

However, when dealing with a basis of two atoms, to fully describe the energetics of the sys-

tem, and the positions of the atoms within it, we must include the e�ects of the sublattice

displacement. We represent this internal strain by the vector u. Thus, after a uniform strain,

our vectors are given by:

a = Ta0;

b = Tb0;

c = Tc0;

r1 = Tr01;

r0 = Tr00 + u:

(A.5)

The angles and bonds associated with this primitive cell are identi�ed in �g. A.1; we associate

with the cell all of the bonds about atom 0, (bonds to atom 1 and its 3 periodic images) and

the angles about both atoms 1 and 0.
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The bond vectors about atom 0, which feature in the energy of the primitive cell, are given by:
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Here we have utilised u0 = 4
a0
u for cleanliness. Through their dot products with with themselves

and each other, these bond vectors determine all the bond lengths and bond angles of eq. (A.1).

To relate the interatomic energy to the macroscopic strain energy, these dot products are

computed and the functions of them which occur in the energy (square roots, arc cosines and

functions of these) are then taylor expanded to second order in the strain and internal strain

variables. These dot products, and the taylor expansions of their functionals are very long

expressions in the strain, and to minimise human error, their computation is best executed

using software capable of analytic manipulation such as Matlab [173] or Mathematica [174],

and here only the end results of the full expansion of the energy is shown.

The 6 angles about atom B to be taken into account are:
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The six angles about atom A are angles between the bonds joining atom A to the periodic

images of atom B. These bonds are given below:

r01 = r0 = �r01;
r02 = r0 � Tb = �r02;
r03 = r0 � Tc = �r03;
r04 = r0 � Ta = �r04:

(A.8)
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Because ri = �ri, it is also the case that �Aij = �Bij , so the angles about atom A are equal

to those about atom B. This equivalence of angles about A and B presents a limitation to this

method of expanding the VFF energy in strain; it leads to the situation where it is not possible

to assign and independently parameterise anion-centred and cation-centred angular force terms.

This could possibly be circumvented by expanding the energy of a full conventional ZB unit

cell in strain, but the approximation of kA� = kB� has been justi�ed in the context of structural

relaxation [84], so its improvement is not sought here.

Having the VFF energy cast now as a complicated function of the strain, we perform a Taylor

series expansion to second order in the strain and internal strain about the unstrained zero

of energy. This will allow us to compare to di�erent macroscopic expressions for the elastic

energy density of the crystal. Additionally, to convert the energy of one unit cell to an energy

density, we divide by the primitive cell volume, V0 =
�
r0p
3

�3
. For convience and to comply with

convention, Voight notation is adopted at this point. Thus, our microscopically derived energy

density, to second order in strain, is given by:
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While this equation does not relate to the standard elastic energy density in which the phys-

ical (measured) elastic constants are found, it does relate to the 'bare'[175] elastic constants.

These can be extracted in density functional theory calculations, or derived indirectly from

experimental measurements of long wavelength optical phonon frequencies and the Kleinman

parameter, and thus used to determine the force constants [137, 140, 175]. Assigning the force

constants in this way has four notable advantages:

1. the bare elastic constants depend linearly on the force constants;

2. The bare elastic constants are less computationally demanding to determine because the

cell need not be relaxed;

3. For a cubic crystal there are �ve bare elastic constants to �t to, whilst for the relaxed

crystal there are only three elastic constants and the Kleinman parameter. Having more

constants and an underdetermined system allows the possibility of a priori tests of the

applicability of the potential to a given matieral.

4. The extra bare elastic constants o�er the option to include more force constants in the

potential without losing accuracy in �tting.
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For these reasons, and for subsequent analysis, the relations between the VFF force constants

and the bare elastic constants are worth explicit statement.

Vanderbilt et. al. [175] gave the elastic energy density of a macroscopic crystal in terms of the

bare elastic constants as:
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Comparing eqs. (A.9) and (A.10) leads to �ve relations between our force constants and the

bare elastic constants of:
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To obtain the relations amongst the force constants and the physical, relaxed, elastic constants,

the energy must be minimised with respect to the internal strain, u. Given the symmetry of

the equations, this need be done only for the x component:
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This internal strain which minimises the energy may be compared with experiment via the

Kleinman parameter, which speci�es, to �rst order, the sub lattice displacement as a function

of shear strain:[59, 61]
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A comparison of eq. (A.16) and (A.17) yields an expression for the the Kleinman parameter in

terms of the VFF force constants:
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Substituting fu0x; u0y; u0zg into eq. (A.9), the �nal form of the VFF energy in terms of only the

uniform macroscopic strain is obtained:
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For cubic crystals, elastic energy density is given, to second order in strain, by:[50]
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where C11, C12, and C44 are the macroscopic elastic constants of the material.

Finally, by comparison between equation (A.19) and (A.20), the equations relating the force

constants to the experimentally measured physical elastic constants, and to the Kleinman

parameter are given by:
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Analytic relation of force constants

to elastic constants

The equations (A.21)-(A.24) which relate the elastic constants of ZB materials to sums over the

force constants contained in the potential of eq. (5.23), were derived in the previous appendix

and are repeated below:

C11 =

p
3

12r0
(kr + 6krr + 12k�) ;

C12 =

p
3

12r0
(kr + 6krr � 6k�) ;

C44 =
3
p

3

2r0

krk� � 2krrk� � 4k2r�
kr � 2krr � 8

p
2kr� + 8k�

;

� =
kr � 2krr � 2

p
2kr� � 4k�

kr � 2krr � 8
p

2kr� + 8k�
:

Subtracting eq. (A.22) from eq. (A.21) reveals immediately the unique determination of k� in

terms of C11 and C12:

k� =
2r0

3
p

3
(C11 � C12) : (B.1)

137



Analytic relation of force constants to elastic constants 138

To simplify later algebra the following notation is employed:

� = 8�
p

2� 2
p

2 ; (B.2)

 =
4

3
(1� �) ; (B.3)

� =
2r0

3
p

3
(C11 + 2C12) ; (B.4)

� = (8� + 4) k� + 2 (1� �)� ; (B.5)

C440 =
2r0C44

3
p

3
; (B.6)

� =
4

3
(C440 � k�) : (B.7)

Adding twice eq. (A.22) to eq. (A.21) reveals a linear expression for krr in terms of C11, C12,

and kr:

krr =
2r0

3
p

3
(C11 + 2C12)� kr

6
= �� kr

6
: (B.8)

Multiplying out eq. (5.28) and utilising eq. (B.8), a linear expression relating kr� to kr is

obtained:

kr = � �

kr� +

�


: (B.9)

Having now expressions for krr in terms of kr, and kr� in terms of kr, the remaining quadratic

equation eq. (A.23) can be cast in terms of only kr� and known elastic constants.

With this notation eq. (A.23) multiplies out to the quadratic equation:

az}|{
4 k2r� �

bz }| {�
C4408

p
2 +

��



�
kr� +

cz }| {
��


+ C440 (8k� � 2�) + 2�k� = 0 ; (B.10)

amenable to solution by the quadratic formula, kr� = �b�pb2�4ac
2a . Each of these solutions

correspond to di�erent values of krr, and kr, with the same k�. However, numerical implemen-

tation of this formula reveals one of the solutions to be extraneous, and whether the extraneous

solution is the plus or minus solution of the quadratic formula depends on the properties of the

material being �tted to. We �nd that the critical material parameter determining the correct

solution is the anisotropy parameter, given by: [153]

A =
2C44

C11 � C12
: (B.11)

Table B.1 summarises which of the two solutions, + or -, in the quadratic formula, correctly

reproduces the elastic constants used to parametrise the force constants for each III-V material

considered.
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Table B.1: Solution of eq. (B.10)
consistent with elastic constants and
Kleinman parameter.

N P As Sb

Al + - - -

Ga + - - -

In + + + -

Table B.2: Value of the anisotropy
paramter for III-V materials based on
DFT-extracted elastic constants

N P As Sb

Al 2.747 1.887 1.866 1.779

Ga 2.463 1.776 1.779 1.742

In 2.882 2.028 2.004 1.905

Tables B.1 and B.2 imply that the solutions to eq. (B.10) depend critically, on whether the

anisotropy is greater or less than 2, or, more speci�cally, on whether C44 > (C11 � C12). For

easy assignment of force parameters, irrespective of material properties, and an understanding

of the extraneous root, we pursue a single analytic solution.

Expanding out the terms we obtain:

�b =
4

3

r
2

3
r0

(C11 � C12) (4� � 1)� 3C44
� � 1

; (B.12)

b2 � 4ac =
32r20

3

(C44 � (C11 � C12))
2

(� � 1)2
: (B.13)

Putting these values into the quadratic formula and simplifying, we obtain:

kr� =
4

3

r
2

3

r0
1� �

�
(C11 � C12) (1� 4�) + 3C44 � 3

h
(C44 � (C11 � C12))

2
i1=2�

(B.14)

These two solutions simplify to:

kr� =
2

3

r
2

3
r0(C11 � C12) =

p
2k� and kr� =

r0
3

r
2

3

(C11 � C12) (1 + 2�)� 3C44
� � 1

(B.15)

By inspection of eq. (A.23) we can see that the extraneous solution is the the left in eq. (B.15),

which would lead to the unde�ned scenario of 0=0. Furthermore, we see that whether this

solution is the + or - solution depends on whether C44 > (C11�C12), or whether A
2 > 1. Thus,

the single correct analytic expression for the force constant kr� in terms of the elastic constants

and the Kleinman parameter is the right hand solution in eq. (B.15). Via, eqs. (B.1), (B.8)

and (B.9), we then obtain the full single set of force constants:

k� =
2 (C11 � C12) r0

3
p

3
; (B.16)

kr =
r0p

3 (1� �)2
�
C11

�
2 + 2� + 5�2

�
+ C12

�
1� 8� � 2�2

�
+ 3C44 (1� 4�)

�
; (B.17)

krr =
r0

6
p

3 (1� �)2
�
C11

�
2� 10� � �2

�
+ C12

�
7� 8� + 10�2

�� 3C44 (1� 4�)
�
;(B.18)

kr� =
r0
3

r
2

3

(C11 � C12) (1 + 2�)� 3C44
� � 1

: (B.19)
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