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INSTABILITY OF INTERNAL EQUATORIAL WATER WAVES

DAVID HENRY AND HUNG-CHU HSU

Abstract. In the following paper we present criteria for the hydrodynamical instability

of internal equatorial water waves. We show, by way of the short-wavelength perturbation

approach, that certain geophysical waves propagating above the equatorial thermocline

are linearly unstable when the wave steepness exceeds a given threshold.

1. Introduction

In this paper we analyse the stability of some recently derived exact, explicit solutions to
the geophysical governing equations in the equatorial β−plane using the short-wavelength
perturbation method. The solutions we analyse prescribe steady, unidirectional, internal
travelling waves which propagate above the thermocline, which is an interface separating
two distinct vertical ocean layers of di�ering densities [9, 11,17].
In [9] an explicit exact solution to the full geophysical governing equations was obtained

which corresponds to the classical two-layer model describing oscillations of the thermo-
cline in the equatorial region [17]. The solution in [9] is remarkable since, even in the setting
where Coriolis e�ects are ignored, there are only a handful of explicit exact solutions to
the full governing equations for water waves. Perhaps the most celebrated of these is Ger-
stner's wave [3,22,24], an exact solution that is explicit in the Lagrangian formulation [2].
Recently, quite a number of Gerstner-type exact and explicit solutions have been derived
which model various physical and geophysical scenarios [3,4,7,9,11,25,28�31,36,38]. The
formulation presented in [9] is quite unique in the sense that the �uid motion diminishes
as one ascends from the thermocline towards the surface, as opposed to the Gerstner for-
mulation for surface waves whereby motion decreases as one descends beneath the surface.
Recently, in [30], it was shown that the model describing internal waves propagating

above the thermocline in [9] could be adapted to allow for a constant underlying current.
This idea extends back to [37] when Mollo-Christensen introduced a current-like term into
Gerstner's solution for gravity waves in order to describe billows between two �uids, and it
was recently employed in the geophysical setting in [25]. The solutions presented in [9,30]
represent explicit examples of exact equatorial waves whereby the �uid motion dies out at
great depth, and we note that the recent papers [10,27] rigorously established the existence
of exact equatorial surface waves which admit an underlying vorticity distribution.
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2 D. HENRY AND H.-C. HSU

In this paper we apply the short-wavelength perturbation method to derive instability
criteria for the internal wave solutions which were obtained in [9, 30]. These criteria are
stated in Propositions 4.1 and 4.2 below. From a mathematical viewpoint, establishing
the hydrodynamical stability or instability of a �ow is di�cult, given that the fully nonlin-
ear governing equations for �uid motion are highly intractable [15,16,20]. Physically, the
question of hydrodynamic stability is important since, for instance, unstable �ows can-
not be observed in practice since they are rapidly destroyed by any minor perturbations
or disturbances. For certain solutions which have an explicit Lagrangian formulation, it
transpires that the short-wavelength perturbation method of instability analysis, which
was independently developed by the authors of [1, 18, 35], has a remarkably elegant for-
mulation and application. This was �rst established for Gerstner's solution to the gravity
water wave problem in [34], and for geophysical �ows in [12]. Recent work [21,26,32] has
applied the instability analysis to a variety of contexts. The current paper is, to the best of
our knowledge, the �rst application of this approach to internal waves propagating above
the equatorial thermocline.

2. Governing equations and Model

We take the earth to be a perfect sphere of radius R = 6378km with constant rotational
speed of Ω = 73 · 10−6rad/s, and g = 9.8ms−2 is the gravitational acceleration at the
surface of the earth. In a reference frame with the origin located at a point on earth's
surface and rotating with the earth, we take the x−axis to be the longitudinal direction
(horizontally due east), the y−axis to be the latitudinal direction (horizontally due north)
and the z−axis to be vertically upwards. The governing equations for geophysical ocean
waves [14] are given by

ut + uux + vuy + wuz + 2Ωw cosφ− 2Ωv sinφ = −1

ρ
Px, (2.1a)

vt + uvx + vvy + wvz + 2Ωu sinφ = −1

ρ
Py, (2.1b)

wt + uwx + vwy + wwz − 2Ωu cosφ = −1

ρ
Pz − g, (2.1c)

together with the equation of incompressibility

∇ ·U = 0, (2.2)

and the equation of mass conservation

ρt + uρx + vρy + wρz = 0. (2.3)

Here U = (u, v, w) is the velocity �eld of the �uid, the variable φ represents the latitude,
ρ is the density of the �uid, and P is the pressure of the �uid. In the equatorial region,
where the latitude φ is relatively small, the full governing equations for geophysical water
waves (2.1) may be rendered more tractable by approximating the Coriolis terms. When
φ is small, but not constant, the β−plane approximation sinφ ≈ φ, cosφ ≈ 1 may be
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employed [14] which is equivalent to locally approximating the earth's curved surface by
a plane. Accordingly the governing equations reduce to the β−plane equations

ut + uux + vuy + wuz + 2Ωw − βyv = −1

ρ
Px, (2.4a)

vt + uvx + vvy + wvz + βyu = −1

ρ
Py, (2.4b)

wt + uwx + vwy + wwz − 2Ωu = −1

ρ
Pz − g, (2.4c)

where β = 2Ω/R = 2.28 · 10−11m−1s−1. In the recent paper [9], a formulation is presented
for an exact, explicit solution of (2.4) which prescribes steady, unidirectional, internal
travelling waves which propagate above the thermocline, which is an interface separating
two distinct vertical ocean layers of di�ering densities. To �nish this section we present
an outline of the two-layer model that these solutions adhere to. The uppermost �uid
layer, of density ρ0, which lies above the thermocline is subdivided into two parts. The
near-surface layer, to which wind e�ects are con�ned, is labelled L(t). Typical values
for the mean-depth of L(t) are 80m. Beneath L(t) is a layer where the �uid motion is
entirely due to the propagation of equatorial internal waves, this layer is denoted M(t),
and typical values for the mean-depth ofM(t) are 40m, cf. [9]. Finally, the thermocline
lies at the boundary ofM(t) and the deeper, motionless layer of �uid which has density
ρ+ > ρ0. The thermocline is labelled z = η(x− ct, y), while the interface separating L(t)
andM(t) is denoted z = η+(x−ct, y), where c is the constant wave phase-speed. The �uid
is assumed motionless beneath the thermocline, and so u ≡ v ≡ w ≡ 0 for z < η(x−ct, y).

L(t)

M(t)

z = η+(x− ct, y)

density ρ0

density ρ+

z = η(x− ct, y) (thermocline)

near-surface layer

motionless fluid

Figure 1. Schematic of the two-layer model

3. Exact internal wave solutions

Recently in [9] an exact explicit solution of the governing equations (2.4) was derived
which prescribes equatorially-trapped waves propagating in the layerM(t). These waves
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travel eastwards, and so c > 0, with a vanishing meridional velocity, and so v ≡ 0, reducing
the governing equations to

ut + uux + wuz + 2Ωw = − 1

ρ0

Px, (3.1a)

βyu = − 1

ρ0

Py, (3.1b)

wt + uwx + wwz − 2Ωu = − 1

ρ0

Pz − g, (3.1c)

together with ux +wz = 0 in η(x− ct, y) < z < η+(x− ct, y), and the boundary condition

P = P0 − ρ+gz on z = η(x− ct, y). (3.1d)

The solution presented in [9] takes the following form, where the Eulerian coordinates of
�uid particles (x, y, z) are expressed as functions of the time t and Lagrangian labelling
variables (q, r, s):

x = q − 1

k
e−k(r+f(s)) sin [k(q − ct)], (3.2a)

y = s, (3.2b)

z = r − 1

k
e−k(r+f(s)) cos [k(q − ct)]. (3.2c)

Here k is the wavenumber and c > 0 is the constant speed of propagation of the waves.
The parameters q, r, s vary as follows: q ∈ R and s ∈ [−s0, s0], where s0 =

√
c0/β ≈

250km is the equatorial radius of deformation [14]. For each �xed latitude s, we have
r ∈ [r0(s), r+(s)], where r0(s) determines the thermocline η and r+(s) determines the
interface η+ separating M(t) and L(t). It is shown in [9] that r+(s) > r0(s) > 0 and
furthermore the wave pro�les η and η+ determined by r0, r+ respectively are trochoids,
which are characteristically nonlinear and display a crest-trough asymmetry in the wave
pro�le. The solutions in (3.2) represent equatorially trapped waves, and the function f(s)
which determines the exponential decay of the motion away from the equator is given by

f(s) =
cβ

2g̃
s2, (3.3)

where g̃ is the reduced gravity, de�ned by

g̃ = g
ρ+ − ρ0

ρ0

,

and the wave phase-speed is de�ned by the dispersion relation

c =

√
Ω2 + kg̃ + Ω

k
> 0, (3.4)

which we note is equivalent to the relation

g̃ = kc2 − 2Ωc.
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A typical value for the reduced gravity is g̃ = 6 · 10−3m s−2 [17]. The waves described by
(3.2) are symmetric about the equator, and the motion they induce diminishes the further
one ascends above the thermocline. An additional feature of the form of the solution
(3.2) is that the particle trajectories for the underlying �ow are closed circles in a �xed
latitudinal plane. The existence of closed particle paths is typical of Gerstner-type waves,
and it is a phenomenon which does not apply to most irrotational water waves. In the case
of Stokes waves of both �nite depth [5,13], and in�nite depth [23], the particle trajectories
are in fact not closed. If we de�ne

χ = k(r + f(s)), θ = k(q − ct),
the determinant of the Jacobian of the transformation (3.2) is given by 1 − e−2χ, which
is time independent [9]. Hence the �ow de�ned by (3.2) is volume preserving, and so
(2.2) holds in the Eulerian framework [2]. In order for the transformation (3.2) to be
well-de�ned it is necessary that

r + f(s) ≥ r∗ > 0.

The velocity gradient tensor can be calculated to give

∇U =

 ∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 =
cke−χ

1− e−2χ

 − sin θ 0 − cos θ − e−χ
βs(e−χ−cos θ)

kc−2Ω
0 βs sin θ

kc−2Ω

e−χ − cos θ 0 sin θ

 , (3.5)

and so the vorticity of the �ow prescribed by (3.2) is ω = (wy − vz, uz − wx, vx − uy)

=

(
s
kc2β

g̃

e−χ sin θ

1− e−2χ
,

2kce−2χ

1− e−2χ
, s
kc2β

g̃

e−χ cos θ − e−2χ

1− e−2χ

)
. (3.6)

Also, the steepness of the wave-pro�le of the thermocline, de�ned to be half the amplitude
of the wave multiplied by the wavenumber, is given by

τ(s) = e−χ, (3.7)

which is maximum τ0 = e−kr0 at the equator.

4. Instability analysis

We now present the main result of this paper, which we prove below using the short-
wavelength instability method to analyse the �ow in theM(t) layer as determined by the
solution (3.2) of the governing equations (2.4).

Proposition 4.1. The internal equatorial waves propagating eastward above the thermocline,

prescribed by (3.2), are unstable to short wavelength perturbations if the steepness of the

wave-pro�le at the thermocline exceeds the threshold

e−kr0 >

√
Ω2 + kg̃ − 3Ω

3
√

Ω2 + kg̃ − Ω

(
/

1

3

)
. (4.1)
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To prove this instability result we examine the evolution of a localised and rapidly-
varying in�nitesimal perturbation of the �ow, as represented at time t by the wave packet

u(X, t) = εb(X, ξ0,b0, t)e
iΦ(X,ξ0,b0,t)/δ. (4.2)

Here X = (x, y, z), Φ is a scalar function, and at t = 0 we have

Φ(X, ξ0,b0, 0) = X · ξ0, b(X, ξ0,b0, 0) = b0(X, ξ0).

The normalised wave vector ξ0 is subject to the transversality condition ξ0 · b0 = 0, and
b0 is the normalised amplitude of the short-wavelength perturbation of the �ow which
has the velocity �eld U(X) ≡ (u v w)T (x, y, z). Then the evolution in time of X, of the
perturbation amplitude b, and of the wave vector ξ = ∇Φ, is governed at the leading
order in the small parameters ε and δ by the system of ODEs

Ẋ = U(X, t),

ξ̇ = −(∇U)T ξ,

ḃ = −Lb− b · (∇U) + ([Lb + 2b · (∇U)] · ξ) ξ

|ξ|2 ,
(4.3)

with initial conditions

X(0) = X0, ξ(0) = ξ0, b(0) = b0.

Here (∇U)T is the transpose of the velocity gradient tensor (3.5) and, for the system
de�ned by (2.4), L = L(X) is given by

L =

 0 −βy 2Ω
βy 0 0
−2Ω 0 0

 ,

cf. [12,21,26] for details. We note that systems of ODEs along the lines of (4.3), which de-
scribe the evolution of a rapidly-varying short-wavelength perturbation, were �rst derived
independently by a number of authors [1, 18,35].
To prove the instability of the internal waves prescribed by (3.2), it su�ces to demon-

strate by way of (4.3) an exponential growth-rate in amplitude b for some particular initial
disturbance. While in (4.3) the second and third equations are linear, the �rst equation is
usually nonlinear but decouples from the other two. The �rst equation in (4.3) provides
the particle trajectory of the basic (undisturbed) �ow, while the second and third equation
govern to leading order the evolution along this trajectory of the local wave vector and
of the amplitude of the perturbation, respectively. Choosing the latitudinal wave vector
ξ0 = (0 1 0)T , and it follows immediately from (3.5) and the second equation in (4.3) that
ξ(t) = (0 1 0)T for all t ≥ 0. The third equation in (4.3) then implies that b = (b1, b2, b3)
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is governed by
ḃ1 = βsb2 − 2Ωb3 +

kce−χ sin θ

1− e−2χ
b1 −

kcβse−χ(e−χ − cos θ)

(kc− 2Ω)(1− e−2χ)
b2 −

kce−χ(e−χ − cos θ)

1− e−2χ
b3,

ḃ2 = 0,

ḃ3 = 2Ωb1 +
kce−χ(e−χ + cos θ)

1− e−2χ
b1 −

kcβse−χ sin θ

(kc− 2Ω)(1− e−2χ)
b2 −

kce−χ sin θ

1− e−2χ
b3.

(4.4)
Noting that the choice b2(0) = 0 implies b2(t) = 0 for all t ≥ 0, and accordingly ξ(t)·b(t) =
0, the system (4.4) reduces to the two-dimensional system

Ḃ =

(
kce−χ sin θ

1−e−2χ −2Ω− kce−χ(e−χ−cos θ)
1−e−2χ

2Ω + kce−χ(e−χ+cos θ)
1−e−2χ −kce−χ sin θ

1−e−2χ

)
B, (4.5)

where B =

(
b1

b3

)
. This system is nonautonomous, however the change of variables

P =

(
cos (kct/2) − sin (kct/2)
sin (kct/2) cos (kct/2)

)
transforms the planar system (4.5) to an autonomous system for Q = P−1B,

d

dt
Q(t) = DQ(t),

where

D =

(
kce−χ

1−e−2χ sin(kq) kce−χ

1−e−2χ cos(kq)− 2Ω− kce−2χ

1−e−2χ + kc
2

kce−χ

1−e−2χ cos(kq) + 2Ω + kce−2χ

1−e−2χ − kc
2

− kce−χ

1−e−2χ sin(kq)

)
.

Since B = PQ, and P is periodic with time, we deduce that the short-wavelength rapidly-
varying perturbation u, de�ned in (4.2), grows exponentially with time if D has a positive
eigenvalue. The eigenvalues λ for D are given by the quadratic equation

λ2 =
−a2 (e−2χ)

2
+ be−2χ − c2

4(1− e−2χ)2
,

where a = (4Ω − 3kc), b = 10k2c2 + 32Ω(Ω − kc), c = (4Ω − kc). Using the relation
b = a2 + c2, we �nd that the quadratic equation involving a, b, c which appears in the
numerator above has roots precisely for

e−2χ =
c2

a2
, 1,

and consequently we deduce that exponential growth occurs for Q(t) if and only if

e−χ >
kc− 4Ω

3kc− 4Ω
. (4.6)

Together with the dispersion relation (3.4), and (3.7), this proves Proposition 4.1.
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4.1. Constant underlying current. Recently, one of the authors showed in [30] that the
solution (3.2) could be modi�ed to account for a constant underlying zonal current of
strength U . The resulting solution is given by

x = q − Ut− 1

k
e−k(r+f(s)) sin [k(q − ct)], (4.7a)

y = s, (4.7b)

z = r − 1

k
e−k(r+f(s)) cos [k(q − ct)]. (4.7c)

Considerations similar to those carried out above apply to the instability analysis of the
solution with an underlying current, with the proviso that g̃ is replaced with g = g̃− 2ΩU
throughout. This leads us to the following result.

Proposition 4.2. The internal equatorial waves propagating eastward above the thermocline

in the presence of a constant underlying current, as prescribed by (4.7), are unstable to

short wavelength perturbations if the steepness of the wave-pro�le at the thermocline exceeds

the threshold

e−kr0 >

√
Ω2 + k(g̃ − 2ΩU)− 3Ω

3
√

Ω2 + k(g̃ − 2ΩU)− Ω

(
/

1

3

)
. (4.8)

It follows immediately from relation (4.8) that the presence of an underlying current can
either (slightly) increase, or diminish, the threshold for instability, depending on whether
the current is adverse or following.

5. Final Remarks

We note that the instability thresholds obtained in Propositions 4.1 and 4.2 are both
(slightly) less than 1/3. This is of note since it contrasts with the situation that holds
for eastward-propagating equatorial surface water waves in the β−plane [12, 21], where
the threshold is slightly greater than 1/3. This is presumably an artefact of the waves
considered in this paper being internal waves. Interestingly, the threshold in relation (4.1)
has strong similarities to that which pertains for westward propagating surface waves in the
f−plane, cf. [26], with the obvious di�erence of reduced gravity g̃ appearing in relations
for internal waves. Of course, when we ignore geophysical e�ects and omit Coriolis terms,
the thresholds on the right-hand side of (4.1) and (4.8) (and those derived in [12, 21, 26])
become precisely 1/3, which matches the instability threshold �rst derived for Gerstner's
gravity water wave in [34].
Quantitatively, the thresholds we derive in Propositions 4.1 and 4.2 di�er considerably

from those of surface water waves, since the Coriolis terms involving Ω are quite a bit
closer, in terms of order of magnitude, to the reduced gravity g̃ than to the gravitational
constant g. One consequence of this is that Coriolis e�ects play a greater role in the
instability thresholds for internal waves, that we have derived here in Propositions 4.1 and
4.2, than they do for surface water waves in [12, 21, 26]. From the physical viewpoint of
applying the instability thresholds we have derived, the reader should consult qualitative
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data pertaining to equatorial water waves which can be found in the papers [7, 9, 11] and
the references cited therein.
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