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The data presented in this article is in relation to the research
article “Vibration energy harvesting based monitoring of an
operational bridge undergoing forced vibration and train passage”
Cahill et al. (2018) [1]. The article provides data on the full-scale
bridge testing using piezoelectric vibration energy harvesters on
Pershagen Bridge, Sweden. The bridge is actively excited via a
swept sinusoidal input. During the testing, the bridge remains
operational and train passages continue. The test recordings
include the voltage responses obtained from the vibration energy
harvesters during these tests and train passages. The original
dataset is made available to encourage the use of energy har-
vesting for Structural Health Monitoring.
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Specifications Table [please fill in right-hand column of the table below]
S
M

T
H

D
E

E

D

D

Fig. 1. An
ubject area
 Structural Dynamics

ore specific
subject area
Energy Harvesting, Structural Health Monitoring, Bridge Engineering
ype of data
 Figures, Excel Datasheet

ow data was
acquired
By deploying piezoelectric energy harvesters to a rail-bridge, while exciting the
bridge on site using a shaker while allowing train passages.
ata format
 Raw

xperimental
factors
The swept sinusoidal excitation was from 3 to 50 Hz with 0.05 Hz/s rate with one
exception of 5–10 Hz with 0.01 Hz/s rate with load amplitudes 5 kN and 10 kN
respectively. The applied preloads were 15 kN and 10 kN. The natural frequencies
of the cantilever piezoelectric energy harvesters using polyvinylidene fluoride
(PVDF) material were 6.09 Hz, 7.11 Hz, 8.37 Hz, 15.75 Hz, 17.95 Hz and 20.45 Hz
respectively.
xperimental
features
Energy harvesting signatures recorded for different harvesters due to the response
of the bridge related to the swept sinusoidal excitation and train passages.
ata source
location
Södertälje, Sweden
ata accessibility
 With this article
Value of the data

� We expect this to be the first public domain dataset around energy harvesting based monitoring
for bridges.

� The data will provide a benchmark for structural health monitoring researchers to overcome real
challenges in site conditions, when coming up with methods for analysis or markers for
monitoring.

� The data is expected to be an important resource for assessing and developing output-only system
identification and monitoring algorithms.

� The data will serve as a key reference for future research in energy harvesting based structural
health monitoring.
1. Data

The data provided here is related to deployment and monitoring of Pershagen Bridge, Sweden
using piezoelectric energy harvesters [1] and is related to earlier studies on the concept of vibration
energy harvesting based monitoring of built infrastructure [2–4]. A total of six energy harvesting
devices with different natural frequencies designed around the natural frequency of the bridge are
deployed and the bridge is tested using a shaker with swept sinusoidal loading with different fre-
quency ranges and for different magnitudes of loads.
example of a piezoelectric cantilever type energy harvester deployed in the bridge.
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2. Experimental design, materials and methods

2.1. Cantilever piezoelectric energy harvester design

As the natural frequency of the bridge structure onto which the piezoelectric device is to be
deployed is not precisely known, it is important to maximise the effective operational bandwidth of
the energy harvester. As a result, six different cantilever type piezoelectric energy harvesters were
chosen. The energy harvesting material was polyvinylidene fluoride (PVDF) sheets, which were
bonded to the cantilever. The cantilever was attached to a rigid base. Fig. 1 presents an example.

The cantilevers could be tested in the laboratory full-scale using a permanent magnet shaker
before being deployed on the bridge. The design allows for harvesters to be tuned to different natural
frequencies. For the current test, these were 6.09 Hz, 7.11 Hz, 8.37 Hz, 15.75 Hz, 17.95 Hz and 20.45 Hz
respectively. The key geometric properties of the cantilevers, along with their masses are presented in
Table 1.
2.2. Device fabrication and assembly

The PVDF material was bonded to the aluminium cantilever. A 52-micron PVDF with silver elec-
trodes was used. The material was cut to a size of 40mm in length and 20mm in width. Using copper
conductive adhesive tape, two output solid core wires were attached to upper and lower electrodes to
remove the output voltage and connected to a variable resistor to complete the circuit. The resistance
was set to a constant value of 1MΩ. A hole was created at one end of the cantilever through which a
tip mass was placed and the PVDF harvester was bonded to the upper surface of the aluminium beam.

2.3. Details of host bridge structure

The host bridge was the Pershagen Bridge, Sweden (Fig. 2). The bridge is a 46.6m long slab double
track rail bridge, consisting of three spans and four supports. The central span is 18.8m in length and
the two side spans have a length of 11.1m. An overhang exists between the side-spans and the
abutments, which

rest on backfill embankments. The bridge is 11.9m in width out to out and carries ballast of depth
0.6m atop of the reinforced concrete slab deck, above which rests the train tracks.

2.4. Description of shaker unit

The hydraulic shaker unit (Fig. 3) used to excite the Pershagen Bridge is designed by the Division of
Structural Engineering and Bridges at KTH Royal Institute of Technology, Sweden [5]. It consists of a
hydraulic cylinder with an attached strut, atop of which is a load cell providing a feedback loop. This
allows for the force, frequency and displacement of the load being applied to the bridge structure to
be constantly maintained. The shaker has the ability to apply a swept sinusoidal loading of varying
magnitudes to the connected bridge. As the shaker unit is designed to be positioned, and
Table 1
Key geometric properties of the cantilever type piezoelectric energy harvesters and their masses.

Parameter Cant 1 Cant 2 Cant 3 Cant 4 Cant 5 Cant 6

Length (m) 0.2195 0.2125 0.2545 0.1645 0.1775 0.151
Width (m) 0.0265 0.0265 00.031 0.0257 0.0256 0.0258
Thickness (m) 0.0015 0.0015 0.0015 0.0012 0.0012 0.0012
Mass (kg) 0.0692 0.0683 0.0663 0.0185 0.0191 0.0189



Fig. 2. Photograph of Pershagen Bridge, Sweden used for testing a deployment of energy harvesters.

Fig. 3. Photograph of shaker for providing excitation to Pershagen Bridge.

Table 2
Details of applied loadings during dynamical testing of host bridge.

Test Applied pre-load Load amplitude Frequency range Loading rate

Test 1 15 kN 5 kN 3–50 Hz 0.05 Hz/s
Test 2 15 kN 10 kN 3–50 Hz 0.05 Hz/s
Test 3 15 kN 10 kN 5–10 Hz 0.01 Hz/s
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subsequently apply loadings from, below the structure, traffic over the bridge is unaffected for the
duration of the dynamic testing. Issues related to disruption to services is thus not a factor for
consideration.

2.5. Outline of test plan

The shaker unit was placed 2.4m from the longitudinal midspan of the main central span and
3.45m from the edge of the bridge. A preload was applied by the shaker between the ground and the
bridge, to ensure constant contact between the two during dynamic testing. To determine the
response of the bridge to such tests, an array of nine uni-axial accelerometers were mounted along its
top edge beams, with data collected using a HBM MGCPlus data acquisition system at a sampling
frequency of 600 Hz. A total of four sets of dynamical tests were completed on the bridge. The first of
these tests was carried out as an initial assessment to ensure all systems were operating correctly and
that appropriate loadings were being applied. The second and third set of tests were carried out at



Fig. 4. Acceleration and voltage responses from harvesters from Pershagen Bridge during swept sine testing and passage of
trains.

Fig. 5. Recursive singular values for train passage detection.
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two different loading magnitudes with a similar frequency range and rate of loading applied for both.
The fourth set of tests was conducted at a reduced loading rate over a narrow frequency range,
centered about the estimated natural frequency. The loading details of the testing conditions are
provided in Table 2.
2.6. Deployment of harvesters

The energy harvesting devices were installed close to the shaker unit and to an accelerometer.
Proximity to the shaker unit increased the responses of harvesters due to higher dynamic responses
of the bridge. The accelerometer provided a reference for base excitation inputs to the harvesters.
These harvesters were affixed to the top edge beam of the bridge, with the accelerometer at the
center. The devices were placed so that the cantilevers were overhanging the bridge, to prevent them
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meeting the deck or other items. The response of the devices was monitored and recorded typically at
a sampling rate of 100 Hz.
3. Measurements of response and monitoring

Harvesting responses were recorded as voltages and compared against accelerometer responses.
An example is presented in Fig. 4. Statistical indicators and algorithms [6–8] can subsequently be used
to detect features of interest (Fig. 5).
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Supplementary data associated with this article can be found in the online version at http://dx.doi.
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