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Abstract  

This study examined the 1:1 cocrystal benzamide:dibenzyl sulfoxide, comprising the poorly 

water soluble dibenzyl sulfoxide (DBSO) and the more soluble benzamide (BA), to establish 

if this cocrystal shows advantages in terms of solubility and dissolution in comparison to its 

pure components and to a physical mixture. Solubility studies were performed by measuring 

DBSO solubility as a function of BA concentration, and a ternary phase diagram was 

constructed. Dissolution was examined through intrinsic dissolution studies. Solid state 

characterisation was carried out by powder X-ray diffraction (PXRD), energy-dispersive X-

ray diffraction (EDX), infra-red spectroscopy (ATR-FTIR) and thermal analysis. DBSO 

solubility was increased by means of complexation with BA. For the cocrystal, the solubility 

of both components was decreased in comparison to pure components. The cocrystal was 

identified as metastable and incongruently saturating. Dissolution studies revealed that 

dissolution of DBSO from the cocrystal was not enhanced in comparison to the pure 

compound or a physical mix, while BA release was retarded and followed square root of time 

kinetics. At the disk surface a layer of DBSO was found. The extent of complexation in 

solution can change the stability of the complex substantially. Incongruent solubility and 

dissolution behaviour of a cocrystal can result in no enhancement in the dissolution of the less 

soluble component and retardation of release of the more soluble component. 

 

Keywords: Intrinsic dissolution, cocrystals, solubility, complexation, HPLC  
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1. Introduction  

Most active pharmaceutical ingredients (APIs) are available as solid oral dosage forms such 

as tablets or capsules and in this context the ability to deliver the drug to the patient is largely 

dependent on the dissolution properties of the API. One of the challenging tasks in the 

pharmaceutical industry is to design pharmaceutical solid materials with specific 

physicochemical properties (Besavoju et al., 2008). Solubility is one of the important 

parameters that have an impact on therapeutic effectiveness since it influences dissolution 

from dosage forms. Consequently, in the case of poorly water soluble drugs, low 

bioavailability is often observed after oral administration, since in vivo dissolution of drugs 

can be a rate-limiting step.  

The formation of salts as an approach to alter solubility and dissolution properties of the API 

is well-known (Berge et al., 1977; Bighley et al., 1996; Machatha et al., 2005; Stahl and 

Wermuth, 2002). Formation of pharmaceutical cocrystals has gained attention offering 

another option that has the potential to provide new, stable solid structures which may 

improve the properties of the API and which is also applicable to non-ionizable drugs (Bailey 

Walsh, 2003; Schultheiss and Newman, 2009; Trask, 2007).  

A number of cocrystals of APIs with different co-formers formed by different methods have 

been reported and it was shown that the solid-state interactions between the two compounds 

are mainly based on hydrogen bonds (Alhalaweh and Velaga, 2010; Childs et al., 2004; Lu 

and Rohani, 2009; Padrela et al., 2009; Paluch et al., 2011; Trask et al., 2005; Wenger and 

Bernstein, 2008). We have previously shown that the sulfoxide (S=O) functionality, common 

in a significant number of APIs, is a potent hydrogen bonding acceptor and forms cocrystals 

in association with a wide variety of amino (NH) functional groups (Eccles et al., 2010). The 

benzamide:dibenzyl sulfoxide (BA:DBSO) cocrystal, re-crystallised from toluene, with 

benzamide and dibenzyl sulfoxide in equimolar amounts is a representative example of this 

class. Dibenzyl sulfoxide acts as a hydrogen bond acceptor due to the polar sulfoxide moiety
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(Eccles et al., 2010) while being poorly water soluble, as is the case for a wide range of APIs. 

BA is a hydrogen bond donor with higher aqueous solubility in comparison to DBSO (O’Neil 

et al., 2006). Therefore, BA represents a model coformer of the cocrystal.  

Some cocrystals have previously been reported to result in improved bioavailabilty of poorly 

soluble APIs as a result of improved dissolution rate (Hickey et al., 2007; Jung et al., 2010; 

McNamara et al., 2006). Determination of the solubility of complexes was reported by 

Higuchi as early as in the 1950’s (Higuchi and Connors, 1965). Rodríguez-Hornedo and co-

workers have recently developed new theoretical models in order to predict solubility and 

solution stability of cocrystals (Good and Rodríguez-Hornedo, 2009; Good and Rodríguez-

Hornedo, 2010; Nehm S.J. et al., 2006; Reddy L.S. et al., 2009). It was found that the 

solubility of cocrystals is strongly dependent on the co-former concentration in the 

appropriate solvent (Good and Rodríguez-Hornedo, 2009). Therefore, it is important to 

measure concentrations of both compounds when undertaking the solubility experiment. 

Solubility is a relevant parameter that has to be investigated for each cocrystal system since 

true equilibrium solubility might be difficult to measure due to solid-state transformation in 

solution (Good and Rodríguez-Hornedo, 2009). Such solution-mediated transformations to the 

thermodynamically more stable state should result in a change in the dissolution rate and 

therefore it is important to control/measure these processes. However, solid-state changes are 

not the sole rate-determining factors. Surface area, particle size distribution of the drug, fluid 

dynamics and the experimental apparatus can complicate the interpretation of dissolution 

results (Good and Rodríguez-Hornedo, 2009).
 

Intrinsic dissolution tests have been reported for numerous single component pharmaceutical 

materials
 
(Avdeef and Tsinman, 2008; Higuchi et al., 1965; Mauger et al., 2003; O’Connor 

and Corrigan, 2001; Yu et al., 2004) whereas little literature is found for cocrystals (Childs et 

al., 2004; Jung et al., 2010; Lee et al., 2011; Rahman et al., 2011). The intrinsic dissolution 

rate is based on measurements of powder compacts of known surface area under conditions of 
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controlled hydrodynamics
 
(Healy et al., 2002) and is described as particle-size independent 

(Hendriksen and Williams, 1991; Wood et al., 1965). Since the surface area does not change 

over time, the dissolution rate depends on the solubility of the solute, hydrodynamics and 

diffusion coefficient in the dissolution medium (Hendriksen and Williams, 1991; Wood et al., 

1965).    

This report investigates solid-state characteristics, solubility and dissolution behaviour of the 

benzamide:dibenzyl sulfoxide cocrystal in comparison to its pure compounds and an 

equimolar physical mixture.  

 

2. Materials and Methods 

2.1 Materials  

Benzamide:dibenzyl sulfoxide (BA:DBSO) 1:1 cocrystal was synthesised as previously 

reported (Eccles et al., 2010), dibenzyl sulfoxide (DBSO) was synthesised as described by 

Kuliev et al. (1984), using dibenzyl sulfide which was purchased from Sigma- Aldrich 

(Ireland). Benzamide (BA) was also obtained from Sigma-Aldrich (Ireland). Acetonitrile, 

HPLC grade, was purchased from Fisher Scientific (Ireland) and water, ultra-pure, was 

prepared from an Elix 3 connected to Synergy UV system (Millipore, UK).  

 

2.2 Methods 

2.2.1 Powder X-ray diffraction (PXRD)  

Powder X-ray analysis was performed using a Miniflex II Rigaku diffractometer with Ni-

filtered Cu Kα radiation ( = 1.54 Å). The tube voltage and tube current used were 30 kV and 

15 mA, respectively. Each sample was scanned over a 2 theta range of 5° to 40° with a step 

size of 0.05° per second (Tajber et al., 2009). The program Mercury 2.3 was used for 

calculation of X-ray powder patterns on the basis of the single crystal structure established by 

Eccles et al. (2010).
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2.2.2 Differential scanning calorimetry (DSC) 

Differential scanning calorimetry was performed using a Mettler Toledo DSC 821
e
 instrument 

under nitrogen purge. Sample powders were placed in aluminium pans, sealed, pierced to 

provide three vent holes and heated at a rate of 10 °C/min in the temperature range of 25 to 

250 °C (Tajber et al., 2005). Calibration of the instrument was carried out using indium as 

standard. The DSC system was controlled by Mettler Toledo STARe software (version 6.10) 

working on a Windows NT operating system. 

 

2.2.3 Thermogravimetric analysis (TGA) 

 Thermogravimetric analysis was performed using a Mettler TG 50 module. Samples were 

placed into open aluminium pans (5-12 mg) and analysed at a constant heating rate of 10 

°C/min under nitrogen purge (Tajber et al., 2005). The instrument was controlled by Mettler 

Toledo STARe software (version 6.10) working on a Windows NT operating system. 

 

2.2.4 Attenuated total reflection Fourier transform infra-red spectroscopy (ATR-FTIR)  

Infrared spectra were recorded on a PerkinElmer Spectrum 1 FT-IR Spectrometer and 

evaluated using Spectrum v5.0.1. software. Each spectrum was scanned in the range of 650-

4000 cm
-1

 with a resolution of 4 cm
-1

 and a minimum of six scans were collected and 

averaged in order to gain good quality spectra.  

 

2.2.5 Equilibrium and dynamic solubility  

The solubilities of pure compounds and cocrystal were determined using a 24-hour shake 

flask method (used previously for many compounds) (Wermuth, 2008). Therefore, an excess 

of solid (approximately 2-3 times the amount expected to achieve saturation solubility) was 

added to 10 mL of water in glass ampoules, which were then heat sealed. To measure 
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complexation between compounds, known amounts of BA of increasing concentration (= 

initial BA concentration) were dissolved in 10 mL of water in glass ampoules. Then excess 

(approximately 2-3 times the estimated solubility of the pure compound) of solid DBSO or 

cocrystal was added to each ampoule and the ampoules were heat sealed. The ampoules were 

placed horizontally in a thermostated waterbath at 37 °C and shaken at 100 cpm for 12 and 24 

hours and also at 48 and 72 hours for dynamic solubility studies. After the appropriate time, 

the ampoules were opened, the supernatant withdrawn and filtered through 0.45 µm 

membrane filters. Concentrations of the components in the supernatant were determined by 

HPLC as described. We use the term “apparent solubility” to denote the solubility of systems 

where complexation occurs and “true” equilibrium solubility is therefore difficult to measure. 

The solid materials, remaining in the ampoule after 12 and 24 hours of solubility studies were 

kept, dried at 40 °C and examined for phase transformation by PXRD, ATR-FTIR, DSC and 

TGA.  

 

2.2.6 Transition concentration (Ctr) measurement  

The transition concentration or invariant point was determined using a previously reported 

method (Good and Rodríguez-Hornedo, 2009). This was achieved by adding excess DBSO to 

a slightly undersaturated aqueous BA solution and by adding excess cocrystal to a 

presaturated aqueous DBSO solution. After 24 hours supernatants were withdrawn, filtered 

through 0.45 µm membrane filters and quantified by HPLC as described. Ctr values are 

expressed as the average established from these two experimental approaches (Good and 

Rodríguez-Hornedo, 2009). The solid phases were characterised by PXRD, ATR-FTIR, DSC 

and TGA.   

 

2.2.7 Intrinsic dissolution study 
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The intrinsic dissolution rate (IDR) of solid materials was determined using constant surface 

area disks. These disks were prepared by compressing powder into compacts using a Perkin 

Elmer hydraulic press. Therefore, 300 mg of each solid was weighed and compressed in a 13 

mm punch and die set at a pressure of 8 tonnes for 1.5 min. The compacts were coated using 

paraffin wax, leaving only the surface under investigation free for dissolution
 
(Healy et al., 

2002; Nicklasson et al., 1981) and affixed horizontally to the base of the dissolution vessel 

using adhesive tape. The stationary disc method was used in preference to the rotating disc 

method (Wood’s apparatus). We have previously observed that, while the Wood apparatus is 

suitable for studying the dissolution of single component systems, it is less suited to 

multicomponent systems, with a greater tendency for disintegration and thus disruption of the 

constant surface area, than with the stationary disc method, which we have previously used 

successfully for two component systems (Healy and Corrigan, 1992; Healy and Corrigan, 

1996).  

The dissolution studies were carried out in ultra-pure, degassed water (volume: 900 mL, 

temperature: 37 °C) in a paddle apparatus (Apparatus 2, Ph. Eur.) at a rotation speed of 100 

rpm. 5 mL aliquots were withdrawn (with replacement) at appropriate time intervals, filtered 

through 0.45 μm filters and analysed for sample content by HPLC at 254 nm under conditions 

as described below. The study, performed in triplicate, was terminated after 90 minutes. The 

intrinsic dissolution rate (IDR) was determined from the slope of the dissolution time profiles. 

Initial and limiting rates were determined within the first five minutes and between sixty and 

ninety minutes, respectively. The disks were recovered, dried at ambient temperatures and 

then analysed by PXRD, ATR-FTIR and SEM/EDX for surface changes.  

 

2.2.8 High Performance Liquid Chromatography (HPLC) 

Concentrations of DBSO and BA in solutions were determined using a Shimadzu HPLC 

Class VP series with a LC-10AT VP pump, SIL-10AD VP autosampler and SCL-10VP 
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system controller. The mobile phase was vacuum filtered through a 0.45 μm membrane filter 

(Gelman Supor-450). Separation was performed on a Luna C18 column (250 mm length, 

diameter 4.6 mm, particle size 5 μm) at a UV detection wavelength of 254 nm with an 

injection volume of 10 μL. The mobile phase consisted of acetonitrile/water 60/40 (v/v). The 

elution was carried out isocratically at ambient temperatures with a flow rate of 1 mL/min. 

For peak evaluation Class-VP 6.10 software was used. 

 

2.2.9 Energy-Dispersive X-ray (EDX) analysis and Scanning Electron Microscopy (SEM) 

In order to determine the elemental composition on compact surfaces, EDX analysis was 

performed using a Tescan Mira Variable Pressure Field Emission Scanning Electron 

Microscope (Czech Republic), operating at a resolution of 3 nm at 30 kV and equipped with 

an Oxford Inca energy-dispersive microprobe and a backscattered electron detector. Powder 

compacts were glued onto aluminium stubs using carbon cement, dried for 24 hours at 

ambient temperatures and coated with carbon under vacuum prior to analysis. X-ray spectra 

were evaluated quantitatively on the basis of the carbon peak. Furthermore, surface images at 

various magnifications were performed by SEM using a Zeiss Supra Variable Pressure Field 

Emission Scanning Electron Microscope (Germany) at a resolution of 1.5 nm at 15 kV 

equipped with a secondary electron detector. Powder compacts were glued onto aluminium 

stubs using carbon cement, dried for 24 hours at ambient temperatures and sputter-coated with 

gold under vacuum prior to analysis.  

 

2.2.10 Two sample t-test  

Microsoft Excel data analysis software was used to determine statistical significance. The two 

sample t-test was used to compare the means and standard deviations of two independent 

samples at a significance level of α=0.05.    
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2.2.11 Linear regression 

Linear regression analysis was performed using the method of least squares by Microsoft 

Excel software. The adequacy of the fit was assessed from the regression coefficient (R
2
).    

 

3. Results and Discussion 

3.1 Solid state properties  

The powder X-ray diffraction pattern of the 1:1 BA:DBSO cocrystal is shown in Figure 1. 

This revealed a characteristic diffraction pattern, which differed from those of the two 

individual components (DBSO and BA) and the equimolar physical mixture. The DSC 

thermogram in Figure 2 confirmed the presence of the cocrystal and indicated a sharp 

endothermic melting event with an onset temperature of around 115 °C (with a heat of fusion, 

ΔHf = 161 J/g). In contrast BA and DBSO, showed melting onsets at around 127 °C (ΔHf = 

186 J/g) and 135 °C (ΔHf = 132 J/g), respectively. 

ATR-FTIR revealed evidence of significant intermolecular interactions based on two 

characteristic shifts towards lower frequencies. As shown in Figure 3, the symmetric NH 

stretching band of BA is shifted from 3173 cm
-1

 to 3140 cm
-1

 and the S=O functional group 

from 1032 cm
-1

 to 1013 cm
-1

. These shifts were not observed for the physical mixture.  

The reason for these shifts of IR bands was explained based on the single crystal X-ray 

diffraction data previously reported for the 1:1 BA:DBSO cocrystal which showed that 

molecular association between BA and DBSO occurs through hydrogen bonding (Eccles et 

al., 2010). Generation of the theoretical PXRD diffractogram from the single crystal data 

(Figure 1a) showed consistency with the experimental PXRD pattern of the cocrystal (Figure 

1c).  

 

3.2 Solubility study  
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The solubilities for BA and DBSO in water at 37 °C were found to be 13.1 ± 0.20 mg/mL 

(0.11 ± 1.67x10
-3 

mmol/mL) and 0.33 ± 0.01 mg/mL (1.43x10
-3

 ± 2.74x10
-5 

mmol/mL), 

respectively (Table 1). The apparent solubility of the cocrystal in water at 37 °C was 

determined by measuring DBSO and BA concentrations and values of 3.07 ± 0.18 mg/mL 

(2.54x10
-2

 ± 1.48x10
-3 

mmol/mL)
 
for BA and 0.27 ± 0.01 mg/mL (1.18x10

-3
 ± 4.51x10

-5 

mmol/mL)
 

for DBSO were obtained (Table 1). These results show that the apparent 

solubilities of the cocrystal components were decreased in comparison to the solubilities of 

the pure compounds.  

The apparent solubilities of DBSO and cocrystal were measured as a function of co-former 

(BA) concentration in order to determine solution complexation. Investigation of solution 

interactions revealed that the apparent solubility of DBSO initially increased with increasing 

concentration of BA, when DBSO was the excess phase, due to soluble complex formation 

between the two compounds (Figure 4). The solubility profile of DBSO with increasing BA 

concentration can be described as a Type B phase-solubility diagram (Higuchi and Connors, 

1965). When the concentration of BA initially was ≥ 3 mg/mL the solubility limit of the 

complex formed was exceeded and uncomplexed DBSO in solution did not change 

significantly, as shown by the plateau in Figure 4.  In this context, the increase in the apparent 

DBSO solubility i.e. the amount of DBSO that enters into soluble complex formation was 

determined (Higuchi and Connors, 1965). A nearly two-fold increase of the apparent DBSO 

solubility in the presence of BA, in comparison to DBSO solubility in water alone, was 

observed.  

Precipitation of the complex was apparent on PXRD analysis of the solid residue which 

indicated the presence of two phases, cocrystal and DBSO. When the initial BA concentration 

was 12 mg/mL, and therefore close to its aqueous solubility, nearly all solid DBSO was 

consumed leading to depletion of DBSO, followed by complex precipitation induced by 
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supersaturation of the solution. The precipitated solid phase was cocrystal contaminated with 

DBSO (Figure 5).  

Furthermore, a significant decrease in the apparent DBSO solubility after 24 hours in 

comparison to 12 hours was observed at 12 mg/mL BA in solution. PXRD analysis of the 

remaining solid material revealed that this decrease in solubility reflected cocrystal formation 

and subsequent precipitation, since the diffraction pattern of the solid residue is 

superimposable on that of the cocrystal re-crystallised from toluene (Figure 5).  

The increase in the apparent solubility of DBSO in the presence of BA can be expressed by a 

complex formation (or stability) constant (Higuchi and Connors, 1965). For 1:1 soluble 

complexes, this constant is given by equation 1:  

                                     

                                                                          
 [  ]

[ ][ ]
                                                 (Eq. 1) 

                                                                                                                  

where [A] and [B] are the (molar) concentrations of each component at equilibrium. Thus the 

increase in solubility may be quantified (equation 2): 

 

      

                                                                               [ ]   
   [ ] [ ] 

      [ ] 
  [ ]                           (Eq. 2) 

 

where [A]T is the total concentration of dissolved A, [A]0 is the equilibrium solubility of A in 

the absence of B and [B]T is the total added concentration of B. Assuming that compound A 

and B are DBSO and BA, respectively, a plot of the total concentration of DBSO in solution 

against the total concentration of BA in solution enables the stability constant, K11, to be 

determined from the slope of the line using equation 3
 
(Higuchi and Connors, 1965) (data 

shown in Figure 4, best fit 0-2 mg/mL).   
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[ ]          
                                     (Eq. 3) 

 

Assuming the formation of a single soluble complex, a value of K11 = 55.7 ± 2.92 M
-1

 was 

calculated (Table 1).  

In studies where the cocrystal was the excess phase, a different solubility profile was 

observed. Although the apparent DBSO solubility increased initially with increasing BA 

concentration, a significant continuous decrease in DBSO concentration associated with 

precipitation of the cocrystal, confirmed by PXRD, ATR-FTIR and DSC/TGA, as the sole 

remaining solid phase was observed at initial BA concentrations of ≥ 6 mg/mL BA (Figure 6). 

The data suggests that the soluble complex reached a solubility limit when the initial BA 

concentration was > 3 mg/mL BA (Figure 6). 

A dynamic solubility profile, obtained on a sample containing initially 6 mg/mL BA and 

excess of the cocrystal, is shown in Figure 7. It is evident that, after 24 hours a maximum 

apparent DBSO solubility was reached followed by a significant decrease in DBSO 

concentration. Analysis of the solid residue for the ≥ 24 hours timepoints indicated the 

presence of only the cocrystal phase. Thus the decrease in DBSO concentration was 

associated with cocrystal precipitation.  

Furthermore, the apparent DBSO solubilities, where the cocrystal was the excess phase, were 

found to be significantly lower than those obtained from samples containing DBSO as the 

excess phase (Figure 4 and 6).  

To describe the solubility of binary cocrystals considering the equilibrium between cocrystal 

and cocrystal components in solution, various equations have been developed. Complex 

formation in solution of a 1:1 stoichiometric cocrystal is described by two constants (Nehm et 

al., 2006); firstly the cocrystal solubility product, Ksp (equation 4), which reflects the strength 



14 
 

of cocrystal solid-state interactions of component A and component B relative to interactions 

with the solvent, where [A] and [B] are the molar concentrations of each cocrystal component 

at equilibrium, and the superscripts, α and β, refer to the stoichiometric number of molecules 

of A and B in the complex
 
(Nehm et al., 2006) and secondly the binding constant for a 1:1 

complex formed in solution, K11, as described by equation 5 or 1. 

                                                                                       [ ] [ ]                                                            
(Eq. 4) 

 

                                                                            
[  ]

[ ][ ]
  

[  ]

   
                                   (Eq. 5)

 

                          
 

Combining equations 4 and 5 leads to equation 6 (Nehm et al., 2006), where cocrystal 

solubility can be expressed in terms of the total ligand concentration [B]T:  

 

                                                                                [ ]   
   

[ ] 
                                       (Eq. 6) 

 

Therefore a plot of [A]T versus 1/[B]T enables Ksp and K11 to be determined from the slope 

and the intercept, provided that no higher order complexes are formed in solution (Nehm et 

al., 2006). For the 1:1 BA:DBSO cocrystal, a solubility product of Ksp = 3.90x10
-5 

± 3.64x10
-6 

M
2 

and a solution complexation constant of K11 = 30.53 ± 2.54 M
-1

 were estimated (Table 2). 

The K11 in this case was quite high compared to previously reported values for cocrystals
 

(Nehm et al., 2006) (Table 2) as a result of the compound’s low solubility (K11 is inversely 

related to Ksp). Strong solute-solute interactions in water at 37 °C are expected, which is 

reflected in the high stability of the complex in solution (Good and Rodríguez-Hornedo, 

2009).  

In order to control crystallisation of cocrystals in solution, predict phase transformations and 

therefore determine the thermodynamic stability of individual cocrystal systems, another 
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parameter, the so-called transition concentration or eutectic concentration, Ctr, which defines 

the thermodynamic stability of either the solid cocrystal or DBSO, is relevant (Good and 

Rodríguez-Hornedo, 2009).  

 The transition concentration can also be used to determine cocrystal solubility, in particular 

for incongruently saturating cocrystals, which are termed metastable and for which 

equilibrium solubility is difficult to measure since it is possible that drug going into solution 

can be followed by crystallisation because of supersaturation (Good and Rodríguez-Hornedo, 

2009).  

Based on the solubility obtained for the 1:1 BA:DBSO cocrystal, the molar ratio of DBSO to 

BA in solution was found to be 0.05:1 indicating that the system is incongruently saturating.  

The dashed line in Figure 8 represents stoichiometric concentrations of cocrystal components 

assuming that the 1:1 BA:DBSO cocrystal is congruently saturating, and its intersection with 

the cocrystal equilibrium curve indicates the theoretical maximum drug concentration 

attributed to cocrystal solubility (Good and Rodríguez-Hornedo, 2009).  

For metastable cocrystals this intersection lies above the solubility of the pure drug
 
(Good and 

Rodríguez-Hornedo, 2009) and implies that the cocrystal should be more soluble than the 

drug provided that no component precipitation occurs. This theoretical increase in DBSO 

solubility when formulated as the DBSO:BA cocrystal was calculated to be approximately 7-

fold compared to the solubility of DBSO alone.  

A transition concentration (Ctr) of 4.14x10
-2

 ± 1.20x10
-3

 mmol/mL for BA and 2.54x10
-3

 ± 

1.03x10
-4

 mmol/mL for DBSO at the eutectic composition of cocrystal/DBSO was 

determined and is presented in Figure 8. From these concentrations, a cocrystal solubility 

product with a value of 1.05x10
-4 

± 1.24x10
-7

 M
2
 (Table 2) was calculated and the molar ratio 

of BA:DBSO at Ctr of 1:0.06 (BA:DBSO) was found, which is similar to the molar BA:DBSO 

solubility ratio measured for the pure cocrystal. A comparison of the Ksp values obtained from 

transition concentrations and calculated from equilibrium cocrystal solubility revealed that the 
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former is a two-fold higher (Table 2). The difference in Ksp values may be explained by 

solution complexation as solubility products based on transition concentrations do not account 

for solution complexation of cocrystal components (Good and Rodríguez-Hornedo, 2009).  

The DBSO transition concentration was close to the DBSO solubility induced by solution 

complexation (dotted line, Figure 8). We can therefore assume that strong solute-solute 

interactions which are attributed to a high complexation constant (K11), can shift the DBSO 

transition concentration to higher values and can thus increase cocrystal stability, which 

reduces the risk of API crystallisation. However, if the affinity of API and co-former in 

solution is stronger than the affinity to the solvent, the solubility of the API and consequently 

dissolution is likely to be reduced.  

 

3.3 Ternary phase diagram  

A three-component phase diagram of the benzamide:dibenzyl sulfoxide cocrystal in water at 

37 °C was constructed, based on methods previously described
 
(Ainouz et al., 2009; Chiarella 

et al., 2007; Nehm et al., 2006), and is shown in Figure 9. The cocrystal solution equilibrium 

is described by 

 

                                                                                          
    

 
                                       (Eq. 7) 

 

where Kapp is the apparent constant and   
  and   

 
 are the molar fractions of the API and co-

former in stoichiometric ratio, respectively (Ainouz et al., 2009). Plotting XA versus 1/XB 

allows Kapp to be calculated from the slope of the line and Kapp is therefore regarded as 

equivalent to Ksp determined from the component concentrations as previously described.  
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Figure 10 illustrates the XA versus 1/XB relationship for 1:1 BA:DBSO cocrystal leading to a 

Kapp of 1.28x10
-8

. This value was then used to model the cocrystal equilibrium line as seen in 

Figure 9.   

The DBSO-liquid equilibrium line and BA-liquid equilibrium line, respectively, are illustrated 

based on the molar fractions of the respective binary solubilities (Figure 9). The numbers (1-

6) describe the region of the appropriate stable solid phase(s) and the black lines illustrate the 

solid-liquid equilibrium curves. The curved line displays the solid-liquid equilibrium of the 

cocrystal and the points, labelled by a cross (Χ), are experimental data points. The following 

solid phases were found to be stable in the marked zones: pure DBSO in zone 1, DBSO and 

cocrystal in zone 2, cocrystal in zone 3, BA and cocrystal in zone 4 and pure BA in zone 5, 

respectively. Zone 6 is the undersaturated solution phase where all three compounds are 

present and point I and J symbolise the eutectic mixtures of DBSO/cocrystal and 

BA/cocrystal, respectively.  

The asymmetric shape of the different zones is consistent with the incongruent solubility 

behaviour of the 1:1 BA:DBSO cocrystal since the homogenous liquid phase (zone 6) and 

cocrystal phase (zone 3) are very small and shifted to the right of the diagram (Ainouz et al., 

2009). Even though the solubilities of BA and DBSO in water are low and zone 3 very 

asymmetric, it is still possible to isolate the cocrystal from water, consistent with our 

experimental observations.  

From these results, showing incongruent apparent solubility of the 1:1 BA:DBSO cocrystal in 

water at 37 °C, it is expected that BA and DBSO from the cocrystal will dissolve 

incongruently. 

 

3.4 Dissolution rate studies  

Intrinsic dissolution profiles from compacts of the 1:1 BA-DBSO cocrystal and an equimolar 

physical mixture of DBSO and BA as well as the pure compounds in water at 37 °C are 
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shown in Figure 11. BA dissolved much more rapidly than DBSO, consistent with the 

solubility differences. BA dissolution from the equimolar physical mix was initially more 

rapid than from the cocrystal and both profiles were nonlinear, the rates declining over time. 

Based on the initial dissolution rate, pure BA dissolved approximately 7 times faster than 

when physically mixed with DBSO and approximately 12 times faster than BA from the 

cocrystal. Furthermore the dissolution rates of BA from the cocrystal and the physical mixture 

appeared to converge (Table 3, limiting rate). In contrast, DBSO profiles were linear and gave 

similar intrinsic dissolution rates (R
2 

> 0.96) in all cases (Table 3).  

The dissolution from the physical mix compact was qualitatively consistent with that expected 

for dissolving polyphase mixtures
 
(Higuchi et al., 1965) when the more soluble component 

dissolves more rapidly from the surface of a compact, leaving a porous layer of the less 

soluble component behind.  

Energy-dispersive X-ray (EDX) analysis was used to determine the elemental composition of 

the sample surfaces and revealed that the surface of the cocrystal and the equimolar physical 

mixture contained a similar amount of sulfur after the 90 min dissolution experiments. The 

same was observed before dissolution, however, the sulfur content was significantly lower 

compared to that after dissolution (Table 4). Furthermore, both samples after dissolution 

showed sulfur contents which were nearly equal to that detected for pure DBSO disks. The 

percentage of sulfur is calculated relative to the amount of carbon and thus, the sulfur content 

is expected to be lower when both organic components, BA and DBSO, are present at the 

surface, as is the case prior to dissolution. The faster dissolution of the more soluble BA 

leaving the less soluble DBSO at the surface results in higher sulfur content on the surface of 

the disk, as confirmed by the EDX results (Table 4). Additionally, backscattered electronic 

images displayed differences in the surface structure between the cocrystal and physical 

mixture (Figure 12). The physical mixture showed an inhomogeneous compact surface with 

randomly positioned holes in the surface after dissolution, attributed to the dissolution of BA. 
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In contrast, the cocrystal displayed a rather homogenous surface and after dissolution an 

ordered surface structure, presumed to be as a result of BA release (Figure 12 a-d). These 

results were consistent with the SEM images using a secondary electron detector and a 5 to 50 

times higher magnification (Figure 12 e-h).  

Calculated dissolution rates for polyphase mixtures under steady state conditions require that 

the solubilities of A and B do not differ by more than a factor of about 100 for the case of a 

compact thickness of the order of millimetres (Higuchi, 1967). Since the solubility ratio of 

BA/DBSO (in mmol/mL) is large with a value of approximately 75, and the more soluble BA 

is present with a lower weight fraction (34 %), it was expected that the steady state 

assumptions were not applicable
 
(Higuchi et al., 1965) and consequently, solute release for the 

more soluble component is better described as from an inert matrix system (Higuchi, 1967), 

where the more soluble component dissolves through a matrix of the less soluble component. 

The BA release was found to be diffusion controlled and directly proportional to the square 

root of time (R
2 

> 0.99) (Higuchi 1963) (Figure 11).   

From these dissolution results we can conclude, that the extent of solution complexation 

between DBSO and BA is not sufficient to enhance dissolution of the less soluble DBSO, 

either when physically mixed or in the cocrystallised form. The solubility and dissolution of 

BA is found to be controlled by, and suppressed in the presence of, DBSO.   

 

4. Conclusion 

Solubility studies on the 1:1 BA:DBSO cocrystal revealed that the apparent solubility of 

DBSO was increased due to solution complexation while the apparent solubility of BA was 

significantly decreased. Furthermore, it was found that the 1:1 BA/DBSO cocrystal is 

metastable and incongruently saturating as evidenced by the asymmetric phase behaviour of 

the ternary phase diagram.  
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Investigation of the intrinsic dissolution rate confirmed, as expected from the solubility tests, 

that BA and DBSO dissolved incongruently and that the dissolution of the cocrystal was not 

enhanced in comparison to an equimolar physical mixture and the pure components.  

The co-former compound, BA, dissolved initially faster when mixed than when cocrystallised 

with DBSO, which is assumed due to stronger solid-state attractive forces between the amino 

and sulfoxide group in the form of hydrogen bonds on the surface of the compact for the 

cocrystal. However, for both forms, cocrystal and physical mixture, we found that the surface 

of the compacts contained only DBSO after dissolution.  

Based on dissolution models for compressed physical mixtures, it was apparent that steady-

state conditions were not reached in the dissolution experiment as a result of the large 

solubility difference between BA and DBSO in water. Furthermore, we could demonstrate 

that DBSO controls and retards dissolution of BA and becomes the phase remaining at the 

surface independent of the initial solid-state form.  

Consequently, the more soluble BA is not a suitable cocrystal component to improve the 

solubility and dissolution of the poorly soluble DBSO. In this context, complexation in 

solution is a factor that can influence the solubility and dissolution substantially and therefore 

important to measure. In order to enhance solubility and dissolution of the API from a 

cocrystal complex, a compromise between solid-state, solute-solute and solute-solution 

stability needs to be found. 

 

Acknowledgement 

The authors gratefully acknowledge J.-R. Authelin and P. Billot from Sanofi Aventis for their 

advice and help concerning ternary phase diagram and N. Maguire from the Chemistry 

Department in University College Cork for developing the HPLC method. This publication 

has emanated from research conducted with the financial support of Science Foundation 



21 
 

Ireland, under grant numbers 07/SRC/B1158 (Solid State Pharmaceutical Cluster) and 

08/RFP/MTR1664.  

 

References 

Ainouz, A., Authelin, J.-R., Billot, P., Lieberman, H., 2009. Modeling and prediction of 

cocrystal phase diagrams. Int. J. Pharm. 374, 82-89.  

 

Alhalaweh, A., Velaga, S.P., 2010. Formation of cocrystals from stoichiometric solutions of 

incongruently saturating systems by spray drying. Cryst. Growth Des. 10, 3302-3305.  

 

Avdeef, A., Tsinman, O., 2008. Miniaturized rotating disk intrinsic dissolution rate 

measurement: Effects of buffer capacity in comparisons to traditional wood's apparatus. 

Pharm. Res. 25, 2613-2627.  

 

Bailey Walsh, R.D., Bradner, M.W., Fleischman, S., Morales, L.A., Moulton, B., Rodríguez-

Hornedo, N., Zaworotko, M.J., 2003. Crystal engineering of the composition of 

pharmaceutical phases. Chem. Commun.  9, 186-187. 

 

Berge, S.M., Bighley, L.D., Monkhouse, D.C., 1977. Pharmaceutical salts. J.Pharm. Sci. 66, 

1-19.   

 

Besavoju, S., Bostroem, D., Velaga, S.P., 2008. Indomethacin-saccharin cocrystal: Design, 

synthesis and preliminary pharmaceutical characterization. Pharm. Res. 25, 530-541.  

 



22 
 

Bighley, L.D., Berge, S.M., Monkhouse, D.C., 1996. Presevation of pharmacuetical products 

to salt forms of drugs and absorption. In: Swarbrick, J., Boylan, J.C. (Eds.), Encycolpedia of 

Pharmaceutical Technology 13. Marcel Dekker, New York, pp. 453-499. 

 

Chiarella, R.A., Davey, R.J., Peterson, M.L., 2007. Making co-crystals - The utility of ternary 

phase diagrams. Cryst. Growth Des. 7, 1223-1226.  

 

Childs, S.L., Chyall, L.J., Dunlap, J.T., Smolenskaya, V.N., Stahly, B.C., Stahly, G.P., 2004. 

Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic 

acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic and fumaric 

acids. J. Am.Chem.Soc. 126, 13335-13342.  

 

Eccles, K.S., Elcoate, C.J., Stokes, S.P., Maguire, A.R., Lawrence, S.E., 2010. Sulfoxides: 

Potent co-crystal formers. Cryst.Growth Des. 10, 4243-4245.  

 

Good, D.J., Rodríguez-Hornedo, N., 2009. Solubility advantage of pharmaceutical cocrystals. 

Cryst. Growth Des. 9, 2252-2264.  

 

Good, D.J., Rodríguez-Hornedo, N., 2010. Cocrystal eutectic constants and prediction of 

solubility behavior. Cryst. Growth Des. 10, 1028-1032.  

 

Healy, A.M., Corrigan, O.I., 1992. Predicting the dissolution rate of ibuprofen-acidic 

excipient compressed mixtures in reactive media. Int. J. Pharm. 84, 167-173. 

 



23 
 

Healy, A.M., Corrigan, O.I., 1996. The influence of excipient particle size, solubility and acid 

strength on the dissolution of an acidic drug from two-component compacts. Int. J. Pharm. 

143, 211-221. 

 

Healy, A.M., McCarthy, L.G., Gallagher, K.M., Corrigan, O.I., 2002. Sensitivity of 

dissolution rate to location in the paddle dissolution apparatus. J. Pharm. Pharmacol. 54, 441-

444.  

 

Hendriksen, B.A., Williams, J.D., 1991. Characterization of calcium fenoprofen 2. 

Dissolution from formulated tablets and compressed rotating discs. Int. J. Pharm. 69, 175–

180.  

 

Hickey, M.B., Peterson, M.L., Scoppettuolo, L.A., Morrisette, S.L., Vetter, A., Guzman, H., 

Remenar, J.F., Zhang, Z., Tawa, M.D., Haley, S., Zaworotko, M.J., Almarsson, O., 2007. 

Performance comparison of a co-crystal of carbamazepine with marketed product. Eur. J. 

Pharm. Biopharm. 67, 112-119.  

 

Higuchi, T., 1963. Mechanism of sustained-action medication. Theorectical analysis of rate. J. 

Pharm. Sci. 52, 1145–1149.   

 

Higuchi, T., Connors, K.A., 1965. Phase solubility techniques. Adv. Anal. Chem. Instrum. 4, 

117–212. 

 

Higuchi, W.I., Mir, N.A., Desai, S.J., 1965. Dissolution rates of polyphase mixtures. J. 

Pharm. Sci. 54, 1405-1410.  

 



24 
 

Higuchi, W.I., 1967. Diffusional models useful in biopharmaceutics. Drug Release Rate 

Processes. Pharm. Sci. 56, 315-324.  

 

Jung, M.S., Kim, J.S., Kim, M.S., Alhalaweh, A., Cho, W., Hwang, S.J., Velaga, S.P., 2010. 

Bioavailability of indomethacin-saccharin cocrystals. J Pharm. Pharmacol. 62, 1560-1568.  

 

Kuliev, F. A., Aslanov, A. D., Denisov, E. T., 1984. Synthesis and spectra of dibenzyl 

sulfoxides and sulfones. Azerbaidzhanskii Khimicheskii Zhurnal 1, 72-75.  

 

Lee, H.-G., Zhang, G.G.Z., Flanagan, D.R., 2011. Cocrystal intrinsic dissolution behavior 

using a rotating disk. J. Pharm. Sci. 100, 1736-1744.  

 

Lu, J., Rohani, S., 2009. Preparation and characterization of theophylline-nicotinamide 

cocrystal. Org. Process Res. Dev. 13, 1269-1275.  

 

Machatha, S.G., Sanghvi, T., Yalkowsky, S.H., 2005. Structure determination and 

characterization of carbendazim hydrochloride dihydrate. AAPS Pharm. Sci. Tech. 6, E115-

E119. 

 

Mauger, J., Ballard, J., Brockson, R., De, S., Gray, V., Robinson, D., 2003. Intrinsic 

Dissolution Performance Testing of the USP Dissolution Apparatus 2 (Rotating Paddle) 

Using Modified Salicylic Acid Calibrator Tablets: Proof of Principal. Dissolution Technol. 

10, 6-15.  

 



25 
 

McNamara, D.P., Childs, S.L., Giordano, J., Iarriccio, A., Cassidy, J., Shet, M.S., Mannion, 

R., O’Donnell, E., Park, A., 2006. Use of a glutaric acid cocrystal to improve oral 

bioavailability of a low solubility API. Pharm. Res. 2, 1888-1897.  

 

Nehm, S.J., Rodríguez-Spong, B., Rodríguez-Hornedo, N., 2006. Phase solubility diagrams of 

cocrystals are explained by solubility product and solution complexation. Cryst. Growth Des. 

6, 592-600.  

 

Nicklasson, M., Brodin, A., Nyqvist, H., 1981. Studies on the relationship between solubility 

and intrinsic rate of dissolution as a function of pH. Acta Pharm. Suec. 18, 119-128.  

 

O’Connor, K.M., Corrigan, O.I., 2001. Preparation and characterisation of a range of 

diclofenac salts. Int. J. Pharm. 226, 163-179.  

 

O'Neil, M.J., Heckelman, P.E., Koch, C.B., Roman, K.J. (Eds.), 2006. The Merck Index: An 

Encyclopedia of Chemicals, Drugs, and Biologicals. 14
th

 ed. Merck & Co. Inc., Whitehouse 

Station, N.J., USA. 

  

Padrela, L., Rodrigues, M.A., Velaga, S.P., Matos, H.A., Gomes de Azevedo, E., 2009. 

Formation of indomethacin-saccharin cocrystals using supercritical fluid technology. Eur. J. 

Pharm. Sci. 38, 9-17.  

 

Paluch, K.J., Tajber, L., Elcoate, C.J., Corrigan, O.I., Lawrence, S.E., Healy, A.M., 2011. 

Solid-state characterization of novel active pharmaceutical ingredients: Cocrystal of a 

salbutamol hemiadipate salt with adipic acid (2:1:1) and salbutamol hemisuccinate salt. J. 

Pharm.Sci. 10.1002/jps.22569.  



26 
 

 

Rahman, Z., Samy, R., Sayeed, V.A., Khan, M.A., 2011. Physicochemical and mechanical 

properties of carbamazepine cocrystals with saccharin. Pharm. Dev. Technol. 1-9.  

 

Reddy, L.S., Bethune, S.J., Kampf, J.W., Rodríguez-Hornedo, N., 2009. Cocrystals and salts of 

gabapentin: pH dependent cocrystal stability and solubility. Cryst. Growth Des. 9, 378-385.  

 

Schultheiss, N., Newman, A., 2009. Pharmaceutical cocrystals and their physicochemical 

properties. Cryst. Growth Des. 9, 2950-2967. 

 

Stahl, P.H., Wermuth, C.G. (Eds.), 2002. Handbook of pharmaceutical salts: Properties, 

selection and use., Wiley-VCH/VHCA, Weinheim/Zürich.  

 

Tajber, L, Corrigan, O.I., Healy, A.M., 2005. Physicochemical evaluation of PVP-thiazide 

diuretic interactions in co-spray-dried composites – analysis of glass transition composition 

relationships. Eur. J. Pharm. Sci. 24, 553–563. 

 

Tajber, L., Corrigan, D.O., Corrigan, O.I., Healy, A.M., 2009. Spray drying of budesonide, 

formoterol fumarate and their composites-I. Physicochemical characterisation. Int. J. Pharm. 

367, 79–85. 

 

Trask, A.V., Samuel Motherwell, W.D., Jones, W., 2005. Pharmaceutical cocrystallization: 

Engineering a remedy for caffeine hydration. Cryst. Growth Des. 5, 1013-1021. 

 

Trask, A.V., 2007. An overview of pharmaceutical cocrystals as intellectual property. J. Am. 

Chem. Soc. 4, 301-309. 



27 
 

 

Wenger, M., Bernstein, J., 2008. An alternate crystal form of gabapentin: A cocrystal with 

oxalic acid. Cryst. Growth Des. 8, 1595-1598.  

 

Wermuth, C.G., 2008. The Practice of Medicinal Chemistry, 3
rd

 ed. Elsevier, Ltd., pp. 750.  

 

Wood, J.H., Syarto, J.E., Letterman, H., 1965. Improved holder for intrinsic dissolution rate 

studies. J. Pharm. Sci. 54, 1068.  

 

Yu, L.X., Carlin, A.S., Amidon, G.L., Hussain, A.S., 2004. Feasibility studies of utilizing disk 

intrinsic dissolution rate to classify drugs. Int. J. Pharm. 270, 221-227.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

Tables  

 

Table 1: Solubility/apparent solubility of pure compounds, co-mixed and cocrystallised BA 

and DBSO.   

 

Substance Description Solubility (mg/mL) Solubility (mmol/mL) 

Benzamide pure material 13.1 ± 0.202 0.108 ± 1.67x10
-3

 

 
physical mixture 9.40 ± 0.165x10

-2
 7.76x10

-2
 ± 1.36x10

-3
 

 
cocrystal 3.07 ± 0.179 2.54x10

-2
 ± 1.48x10

-3
 

DBSO pure material 0.330 ± 6.30x10
-3

 1.43x10
-3

 ± 2.74x10
-5

 

 physical mixture 0.324 ± 2.43x10
-3

 1.41x10
-3

 ± 1.06x10
-5

 

 cocrystal 0.273 ± 1.04x10
-2

 1.18x10
-3

 ± 4.51x10
-5

 

 

 

Table 2: Estimated constants calculated from solubility data.  

 

Calculation of parameter based on 
Determined 

parameter 
Result 

Regression 

coefficient 

API solubility as a function of ligand K11
 

55.7 ± 2.92 M
-1

 0.83 

Cocrystal solubility as a function of 

ligand 

Ksp 

K11 

3.90x10
-5

 ± 3.64x10
-6

 M
2
 

30.5 ± 2.54 M
-1

 
0.95 

Transition concentration Ksp 1.05x10
-4

 ± 1.24x10
-7

 M
2 

― 
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Table 3: Dissolution rates (mmol/min/cm
2
) of pure BA and pure, co-mixed and cocrystallised 

DBSO. 

 

Substance Description IDR (mmol/min/cm
2
) 

BA pure material 
3.95x10

-2
 ± 6.83x10

-3 a)
* 

8.75x10
-3

 ± 1.46x10
-4 b)

*
 

 
physical mixture 

5.74x10
-3

 ± 6.36x10
-4 a)

* 

5.65x10
-4

 ± 8.17x10
-6 b)

*
 

 
cocrystal 

3.19x10
-3

 ± 9.92x10
-5 a)

* 

4.91x10
-4

 ± 2.74x10
-5 b)

*
 

DBSO pure material 2.14x10
-4

 ± 3.50x10
-5 

** 

 
physical mixture 2.20x10

-4
 ± 1.32x10

-5 
** 

 
cocrystal 2.29x10

-4
 ± 3.07x10

-7
 ** 

a) initial dissolution rate b) limiting dissolution rate  

* significantly different (p < 0.05)  

** not significantly different (p > 0.05)  

 

 

 

 

Table 4: Sulfur content found on the compact surface, before and after dissolution, by 

energy-dispersive X-ray (EDX) analysis.  

 

Sample Sulfur content (%, wt.) 

DBSO 

a) before dissolution 

b) after dissolution 

 

14.4  ±  0.503 

13.7  ±  0.372 

 Physical mixture 

a) before dissolution 

b) after dissolution 

 

10.3  ±  0.0141 

13.3  ±  0.259 

 Cocrystal 

a) before dissolution 

b) after dissolution 

 

10.2  ±  0.0870 

13.2  ±  0.247 
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Figure captions 

Figure 1: PXRD patterns of (a) 1:1 BA:DBSO cocrystal calculated based on single crystal 

data, (b) BA:DBSO (1:1) physical mixture, (c) 1:1 BA:DBSO cocrystal, (d) pure DBSO and 

(e) pure BA. 

 

Figure 2: DSC thermograms of (a) BA:DBSO (1:1) physical mixture, (b) 1:1 BA:DBSO 

cocrystal, (c) pure DBSO and (d) pure BA.  

 

Figure 3: FTIR spectra of (a) BA:DBSO (1:1) physical mixture, (b) 1:1 BA:DBSO cocrystal, 

(c) pure DBSO and (d) pure BA.  

 

Figure 4: Profile of the apparent solubility of DBSO (mg/mL) as a function of BA 

concentration measured after 24 hours. So is the DBSO concentration in absence of BA. 

The dashed lines confirm the behaviour of a Typ Bs phase solubility diagram illustrating 

region (solution complexation),  (conversion to complex and precipitation) and  

(decreased solubility of precipitated complex with increasing BA in solution).  

 

Figure 5: PXRD patterns of (a) remaining solid (12mg/mL BA added) after 24 hours 

solubility study, (b) remaining solid (12mg/mL BA added) after 12 hours solubility study, (c) 

1:1 BA:DBSO cocrystal.   

 

Figure 6: Solubility profile of DBSO after 24 hours where cocrystal is the excess phase in 

dependency of BA. So represents the DBSO concentration in the absence of BA.   

 

Figure 7: Dynamic solubility profile of DBSO from cocrystal in presence of 6 mg/mL BA 

over 72 hours.  
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Figure 8: Phase solubility diagram of 1:1 BA:DBSO cocrystal. The horizontal line marks the 

solubility of pure DBSO, the curved line represents the cocrystal solubility curve determined 

by equation 3, the dotted line represents the solubility limit of complex as determined from 

the plot presented in Figure 4, the filled diamonds mark the experimental cocrystal solubility 

values (BA dependent), the dashed line represents stoichiometric concentrations of cocrystal 

components that dissolution could follow in ideal case, the filled circle symbolizes the 

transition concentration (DBSO/CC) and the cross illustrates the experimental obtained 

transition concentration (DBSO/CC).  

 

Figure 9: Zoom and downscaled view of ternary phase diagram of 1:1 BA:DBSO cocrystal in 

water at 37 °C (in mole fractions).  

 

Figure 10: DBSO in equilibrium with cocrystal (closed diamonds) as a function of the 

inverse total BA concentration at 37 °C (in molar fractions). Open diamonds represent 

solubility data beyond the equilibrium state. Trendline refers to closed diamonds.  

 

Figure 11: Dissolution profiles of (a) BA, (b) BA from a physical mixture, (c) BA from the 

cocrystal, (d) DBSO from a physical mixture, (e) DBSO from the cocrystal and (f) DBSO. 

The dashed line refers to the square-root of time fit.  

 

Figure 12: Backscattered electron images of solid compacts of (a) BA:DBSO (1:1) physical 

mixture before dissolution, (b) BA:DBSO (1:1) physical mixture after dissolution, (c) 1:1 

BA:DBSO cocrystal before dissolution and (d) 1:1 BA:DBSO cocrystal after dissolution and 

secondary electron images of (e) BA:DBSO (1:1) physical mixture before dissolution, (f) 

 
 

 

 

a) 
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BA:DBSO (1:1) physical mixture after dissolution, (g) 1:1 BA:DBSO cocrystal before 

dissolution and (h) 1:1 BA:DBSO cocrystal after dissolution. 

 

Figure 1:  
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