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Abstract
Plant-based yogurt alternatives are increasing inmarket value,while dairy yogurt
sales are stagnating or even declining. The plant-based yogurt alternatives mar-
ket is currently dominated by products based on coconut or soy. Coconut-
based products especially are often low in protein and high in saturated fat,
while soy products raise consumer concerns regarding genetically modified soy-
beans, and soy allergies are common. Pulses are ideally suited as a base for
plant-based yogurt alternatives due to their high protein content and benefi-
cial amino acid composition. This review provides an overview of pulse nutri-
ents, pro-nutritional and anti-nutritional compounds, how their composition
can be altered by fermentation, and the chemistry behind pulse protein coag-
ulation by acid or salt denaturation. An extensive market review on plant-based
yogurt alternatives provides an overview of the current worldwide market situa-
tion. It shows that pulses are ideal base ingredients for yogurt alternatives due to
their high protein content, amino acid composition, and gelling behavior when
fermented with lactic acid bacteria. Additionally, fermentation can be used to
reduce anti-nutrients such as α-galactosides and vicine or trypsin inhibitors, fur-
ther increasing the nutritional value of pulse-based yogurt alternatives.
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1 INTRODUCTION

The reduction of the emission of greenhouse gases has
been declared an imperative goal to stop global warm-
ing and the threat it poses to public health, food and
water security, and biodiversity (Haines & Ebi, 2019; IPCC,
2018). Livestock production is responsible for 14.5% of
man-made greenhouse gas emission, with dairy produc-
tion being responsible for 20% of greenhouse gas produced
by livestock. Minimizing dairy consumption and exchang-
ing dairy with plant-based dairy alternatives could there-
fore provide a viable way to reduce greenhouse gas emis-
sions (Gerber et al., 2013). These environmental concerns
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are also reflected in consumer behavior, and while only 8%
of surveyedUS-Americans report to follow a diet excluding
all animal-derived foods, 27% think that eatingmore plant-
derived protein contributes to an environmentally sustain-
able and healthy diet. While taste remains the main driver
for food purchasing choices, 27% of Americans choose
their food considering environmental sustainability. Other
important drivers behind consumer choice toward plant-
based dairy alternatives are cowmilk protein allergies, and
health concerns spreadmainly by popular media (Interna-
tional Food Information Council, 2019).
While sales of dairy yogurt stagnate or even decreased,

the market for plant-based yogurt alternatives is growing
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strongly, with sales having surpassed US$110 million in
the United States in 2018. Their popularity is especially
high among young consumer groups (i.e., millennials and
iGen). Plant-based yogurt alternatives are being perceived
as healthy, natural, and low in calories by consumers.
However, the low protein content and the less appealing
texture are aspects that increase interest in future prod-
uct formulation. There is a large gap in the numbers of
consumers minimizing their dairy intake and customers
of plant-based dairy alternatives, therefore, plant-based
yogurt alternatives have great economic potential (Mintel,
2018).
Pulse consumption is being promoted by the Food and

Agriculture Organization (FAO) due to favorable nutri-
tional composition, economic accessibility, and benefits for
soil health maintenance (Calles et al., 2019), and plays a
prominent role as a protein source in theEAT-Lancet Com-
mission on healthy diets from sustainable food systems
(Willett et al., 2019). As pulses are technologically similar
to soybeans, they are ideally suited for the dry extraction
and fermentation methods commonly used in soy-based
yogurt-alternative production. Hence, an increased focus
on pulse-based yogurt alternatives can result in additional
dairy alternatives providing a larger range of products and
increasing pulse consumption worldwide.
This review provides an overview of the nutritional ben-

efits and drawbacks of pulse constituents, the impact of
fermentation on pulse nutrients and anti-nutritive factors,
and the behavior of pulse protein gelation in curd forma-
tion. To give a perspective on the current market situation
of dairy-free yogurt alternatives, a market review and eval-
uation of plant-based yogurt alternatives was included.

2 PULSES: CURRENT GLOBAL
SITUATION AND AGRICULTURAL
ASPECTS

The FAO defines pulses as dry grains harvested from
legumes, and excludes legumes harvested in their green
state, such as green beans or peas. Oil crops, like soybeans
and peanuts, and legumes, like alfalfa and clover, which
are grown for sowing and feed purposes only, are also
excluded from the definition of pulses (FAO, 2019).
The eight most grown pulses worldwide in the year 2018

were dry beans (Phaseolus spp.), dry peas (Pisum spp.),
chickpeas (Cicer arietinum), cowpeas (Vigna unguiculata),
lentils (Lens culinaris), pigeon peas (Cajanus cajan), broad
beans (also known as faba beans, Vicia faba), and lupins
(Lupinus spp.) (FAOSTAT, 2020). Dry beans include com-
mon beans (Phaseolus vulgaris, e.g., Kidney, Pinto, and
White beans), lima beans (Phaseolus lunatus), runner
beans (Phaseolus coccineus), tepary beans (Phaseolus acu-
tifolius), and year beans (Phaseolus dumosus). The vast

majority of dry peas are yellow and green varieties of the
garden or field pea (Pisum sativum), while the other two
pea species, Pisum abyssinicum and Pisum fulvum, are
rarely cultivated for food purposes. Of the Vigna species,
only cowpeas (Vigna unguiculata, with the Black-eyed pea
being the most widely prevalent variety) and Bambara
beans (Vigna subterranea) are counted separately by the
FAO, while other Vigna species, like adzuki beans (Vigna
angularis), mung beans (Vigna radiata), or black gram
beans (Vigna mungo) are listed in the “pulses not else-
where specified” category. The category of lupins includes
the Andean lupin (Lupinus mutabilis), white lupin (Lupi-
nus albus), narrow-leafed lupin (Lupinus angustifolius),
and blue lupin (Lupinus hirsutus) (FAO, 2020; Sparvoli
et al., 2015). An overview of the FAO categories of pulses,
their genera, and common names are given in Table 1.
Pulses can be grown in a wide range of soils and cli-

mates, with the biggest producers being India, Canada,
Myanmar, China, and the European Union (EU). Globally,
pulses play only a minor agricultural role, with close to
eight times more arable land being used for cereal than for
pulse cultivation (FAOSTAT, 2020)

3 NUTRITIONAL ANDHEALTH
ASPECTS OF PULSES

The following section provides an overview over the most
important macro- and micronutrients as well as antinutri-
tive substances in pulses (see Figure 1 for a summary of
pulse constituents). In Section 4, the impact of fermenta-
tion on these pulse constituents is presented.

3.1 Pulse proteins

One of themajor criticisms ofmost plant-based dairy alter-
natives is their low protein content and the unfavorable
amino acid composition (Sethi et al., 2016). While plant-
based dairy alternatives from tree nuts or cereals often con-
tain less than 1% protein, the protein content of soy-based
dairy alternatives is closer to that of bovine milk prod-
ucts (Jeske et al., 2017). This is due to firstly, the natu-
rally lower protein content of cereals and tree nuts com-
pared to legumes, and secondly, the reduced amount of
rawmaterial because of their higher costs (Vanga&Ragha-
van, 2018). Tomimic themouthfeel and structure provided
by native or acid-gelled protein in bovine products, bulk-
ing agents like maltodextrin, fibers such as inulin, and
thickeners, such as gellan or locust bean gum, are fre-
quently used (Chalupa-Krebzdak et al., 2018). The con-
sumption of dairy alternatives as a substitute for bovine
milk can pose the risk of protein deficiencies if consumers
are not aware of the differences in protein content of these
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TABLE 1 Pulses according to the definition of the FAO. As vetches are only commonly grown as animal feed only, they have not been
included in this table

FAO category
Genera cultivated for
food

Common name [names of popular varieties
in brackets]

Beans, dry Phaseolus vulgaris
Phaseolus lunatus
Phaseolus coccineus
Phaseolus acutifolius
Phaseolus dumosus
Vigna angularis
Vigna radiata
Vigna mungo
Vigna aconitifolia

Common bean [Kidney, White, Pinto, Navy, Great
Northern, Cranberry]

Lima bean, Butter bean
Runner bean, Scarlet Runner bean
Tepary bean
Year bean
Adzuki bean
Mung bean, Green gram bean
Black gram bean
Mat bean, Moth bean

Peas, dry Pisum sativum Field pea
Chickpeas Cicer arietinum Chickpea [Kabuli, Desi, Garbanzo]
Cow peas, dry Vigna unguiculata Cow pea [Black-eyed pea]
Lentils Lens culinaris Lentil
Pigeon peas Cajanus cajan Pigeon pea, Red gram bean
Bambara bean Vigna subterranea Bambara groundnut, Earth pea
Lupins Lupinus mutabilis

Lupinus albus
Lupinus angustifolia
Lupinus luteus

Andean lupinWhite lupin
Blue/Narrow-leafed lupin
Yellow lupin

Pulses not elsewhere
specified (selection)

Lablab purpureus
Canavalia gladiate
Psophocarpus
tetragonolobus

Cyamopsis tetragonoloba
Mucuna pruriens
Pachyrhizus spp.
Macrotyloma uniflorum

Lablab bean, Hyacinth bean
Sword bean
Winged bean
Guar bean
Velvet bean
Yam bean
Horse gram bean

products (Mäkinen et al., 2016). Without adequate com-
pensation, severe malnutritional diseases, like kwash-
iorkor in young children, can occur (Carvalho et al., 2001).
Pulses are high in protein, with contents ranging from

20% to 36% depending on the species and variety, and are
relatively inexpensive. Hence, by using pulses or pulse-
derived protein concentrates, dairy alternatives with pro-
tein contents comparable to those of bovine milk can be
achieved (Boye et al., 2010)
To evaluate the nutritional quality of protein and its abil-

ity to provide nitrogen and indispensable amino acids for
the human metabolism, the protein digestibility-corrected
amino acid score (PDCAAS) has been introduced by the
FAO and World Health Organization (WHO) in 1989.
In the PDCAAS, proteins are graded by the amino acid
score (AAS), which is calculated by the first limiting
essential amino acid divided by the corresponding amino
acid of a reference protein, multiplied by the true fecal
N-digestibility (TFND). The digestibility is established via
rat fecal-balance method, in which nitrogen intake, fecal
nitrogen, and metabolic nitrogen loss in rats fed a protein-

free diet are measured. The reference protein is based on
the amino acid pattern of a hypothetical protein meeting
the safe protein requirements of pre-school age children
(Nosworthy et al., 2018; Schaafsma, 2012).

𝐴𝐴𝑆 =
First limiting amino acid in test protein [mg∕g]

Corresponding amino acid of reference protein [mg∕g]

TFND [%]

= 100 ∗
(𝑁 intake − (faecal 𝑁 loss − metabolic 𝑁 loss))

𝑁 intake

PDCAAS [%] = AAS × true fecal N digestibility [%]

Several points of concerns about the PDCAAS have been
raised since its introduction. PDCAAS values over 100%
are truncated to 100, so the benefits of two synergistic pro-
teins with high contents of two different amino acids can
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F IGURE 1 Overview of macronutrients and three secondary plant metabolites of six typical pulses

be overlooked. Protein reference scoring patterns based on
safe protein intake instead of estimates of average amino
acid, and therefore amino acid requirements might be
underestimated. The fecal-balance method might not be
truly reflecting amino acid digestibility, as amino acids that
have not been absorbed in the ileum are beingmetabolized
by the microflora of the large intestine (Moughan, 2003;
Schaafsma, 2005).
On account of these concerns, the FAO suggested to

replace the PDCAAS with the digestible indispensable
amino acid score (DIAAS), which is based on ileal amino
acid digestibility determined at the terminal ileus in
humans, growing pigs or rats, not truncated and based on
the amino acid requirements of a 0.5−3 years old child
(FAO Expert Consultation, 2013; Rutherfurd et al., 2015).

IAA

=
Digestible dietary indespensable amino acid in test protein [mg∕g]

Corresponding amino acid in reference protein [mg∕g]

DIAAS [%] = 100 ∗ Lowest value of AAS

Protein quality varies within different pulse species, but
generally, pulse protein is relatively high in lysine, and the
limiting amino acids are either tryptophan or the sulfur-
containing amino acids methionine and cysteine. Lysine

uptake through plant protein is very low in countries in
which cereals play a major role in protein supply, as lysine
is the limiting amino acid in almost all cereal proteins.
With a combination of pulse and cereal protein in human
nutrition, adequate supply with both lysine and sulfur-
containing amino acids can be accomplished (Leinonen
et al., 2019). PDCAAS values in raw pulses vary widely,
ranging from 44 (red lentil) to 77 (chickpea). PDCAAS val-
ues of pulses are affected by processing, and pulse extru-
sion or baking results in higher values compared to no pro-
cessing or cooking (see Table S1).
Salt-soluble globulins andwater-soluble albuminsmake

up the majority of pulse proteins. Enzymes and lectins
comprise the albumin group, while the legumin- and
vicilin-like storage proteins are globulins and make up
the majority pulse protein. Phaseolus spp. protein contains
15%–37% albumins and 53%–70% globulins; cow pea, faba
bean, and chickpea protein contain 2%–17% albumins and
58%–80% globulins; lentil, pea, and lupin protein contain
9%–25 % albumins and 44%–70% globulins (Boye et al.,
2010; Hall et al., 2017). Pulse protein composition depends
not only on species and cultivar, but also on the extrac-
tion conditions of the protein fractions (Liu et al., 2008). A
standardized method for the fractionation of pulse protein
would achieve better comparability between values.
Pulse legumins (also called 11S globulins) have a hexam-

eric quaternary structure of disulfide-bonded basic (MM



3862 Properties and health aspects of pulses. . .

∼20 kDa) and acidic (MM ∼40–50 kDa) subunits, called
α- and β-subunits. Legumins are not usually glycosy-
lated, with the exception of lupin legumin, which contains
covalently linked carbohydrates of about 1% v/v (Duranti
et al., 1995). The trimeric vicilin-like protein (7S globulin)
also consists of acidic and basic α- and β-subunits and has
a total molecular weight of approximately 175 kDa, though
sizes of subunits of legumins and vicilins and their sub-
units vary between pulse species and cultivars. Vicilins are
not typically bonded via disulfide bonds as they only con-
tain low amounts of sulfur-containing amino acids and
are usually glycosylated (Boye et al., 2010; Durante et al.,
1989; Sparvoli et al., 2015). Nomenclature of pulse legu-
mins and vicilins varies in some pulses, and legumins are
called glycinin in Glycine spp. and α-conglutin in lupins,
while vicilins are called phaseolin in Phaseolus spp., con-
glycinin in Glycine spp. and β-conglutin in lupins (Mills
et al., 2004). A third group of storage proteins called con-
vicilins was first discovered in pea and later identified in
more fabaceae spp. Convicilins aremostly nonglycosylated
proteins of a size of about 70 kDa. Some argue, however,
that convicilin is simply a polypeptide subunit of vicilin
(Boye et al., 2010; O’Kane et al., 2004). Legumins make up
the majority of storage proteins in most legumes, with the
exception of P. vulgaris and P. lunatus, where legumin is
only a minor component and the storage protein consists
mainly of phaseolin (Durante et al., 1989). Vicilins and con-
vicilins are the major allergens in peas, lentils, and lupins,
while in chickpeas the major allergen is a legumin. These
proteins can cause IgE-mediated allergic reactions, and
their IgE-immunoreactivity is not decreased by boiling.
(Sanchez-Monge et al., 2004; Verma et al., 2013). Allergic
cross-reactivity is common among pulses, as their protein
structure is highly homologous. In vivo studies have shown
cross-reactivity is especially common among lentils, chick-
peas, and peas (Martínez San Ireneo et al., 2008).

3.2 Pulse carbohydrates

Carbohydrates make up between 60% and 70% of pulse dry
weight, except for lupins, which have the lowest carbohy-
drate content of pulses with just 47%. Phaseolus spp. typ-
ically have the highest total carbohydrate contents (Hall
et al., 2017). Starch content varies widely in pulses, with
lupins containing only 2%–3%, Phaseolus spp. and Adzuki
beans containing 20%–40%, and mung beans, cow peas,
lentils, peas, chickpeas containing between 30% and 60%
starch. Amylosemakes up between 12% and 50% and is low
in adzuki bean, faba bean, and yam bean (Ambigaipalan
et al., 2011; Hoover et al., 2010; C. Martínez-Villaluenga
et al., 2006). Pulses contain a high amount of slowly
digestible and resistant starch. A study on in vitro starch

digestibility of pea, lentil, and chickpea flours showed con-
tents of slowly digestible starch between 22% and 30% of
flour weight, and contents of resistant starch between 3%
and 6% in chickpea flour and 23% and 27% in pea and
lentil flour. Only 8%–12% of lentil, pea, and chickpea flours
are rapidly digestible starch (Chung, Liu, Hoover, et al.,
2008). An analysis of flours of 3 Phaseolus vulgaris cultivars
showed that the flours only consisted of 0.2% to 1% readily
digestible starch, 3%–4% slowly digestible starch, and 32%–
36% resistant starch (Chung, Liu, Peter Pauls, et al., 2008).
Total dietary fiber contents in pulses can vary between

4% and 5% in chickpeas andmung beans and 39% in lupins.
The cultivar can have large effect on dietary fiber content,
for example, in chickpeas, the kabuli type has a much
lower fiber content (5%–15%) than desi chickpeas (10%–
25%). Insoluble dietary fiber makes up 85%–93% of total
pulse dietary fiber and consists mostly of cellulose, hemi-
cellulose, and lignin. Soluble dietary fiber is mainly found
in the cotyledon and entails pectins, oligosaccharides, and
low molecular weight polysaccharides. Galacturonic acid
levels are higher in pea and lentil than in chickpea (15.6%–
18.4% vs. 19% to 12%), which comprises the backbone
structure of pectic polysaccharides. In navy and pinto
beans, arabinose and xylose contents are higher than those
of galacturonic acids, indicating a higher content of hemi-
cellulose than pectic polysaccharides (Brummer et al.,
2015; Hall et al., 2017; Njoumi et al., 2019). Dehulling sig-
nificantly decreases the total content of fiber in pulses, and
especially removes insoluble dietary fiber, of which there is
a high amount in seed coats. In dehulled lentils, reductions
of 21%–41% and 40%–50% of insoluble and soluble dietary
fiber, respectively, were reported (N. Wang et al., 2009),
while pea dehulling reduced soluble and insoluble fiber
by 13%−27% and 38%−46%, respectively (N. Wang et al.,
2008).
Monosaccharides usually make up less than 1% of pulse

dry weight, whereas oligosaccharides contents lie between
6% and 10%. Sucrose makes up 3%–4% of pulse dry weight,
with only Vigna spp. and lupins showing lower contents
of 1%–2%. The α-galactosides stachyose, raffinose, and ver-
bascose are important pulse oligosaccharides. Stachyose
contents range between 1% in faba beans and 6% and 7%
in cow peas and lupins, respectively. Raffinose contents
are highest in peas where it makes up 1% of the dry
weight. Verbascose is common in peas, faba beans, mung
beans, and lentils, which contain around 2% verbascose
but low (<0.5%) in other pulses. Melibiose makes up no
more than 0.15% of pulse dry weight (Fan et al., 2015;
Ispiryan et al., 2020; C. Martínez-Villaluenga et al., 2006).
While α-galactosides confer protection against frost and
desiccation damage and improve storability of seeds, they
cannot be metabolized by humans and are microbially
fermented in the hindgut. In this fermentation, carbon
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dioxide, hydrogen, and, in small amounts, methane and
short-chain fatty acids are produced, which can cause flat-
ulence and abdominal discomfort and should especially be
avoided by subjects affected by irritable bowel syndrome.
On the other hand, α-galactosides also pose as a prebiotic
and can promote the growth of beneficial bifidobacteria
and lactobacilli (Martínez-Villaluenga et al., 2008).

3.3 Antinutritional factors in pulses

While pulses are a highly beneficial food source due to
their high protein content and beneficial fatty acid compo-
sition (Boschin et al., 2008; Caprioli et al., 2016), they also
contain various factors which can lower their nutritional
value, such as lectins, enzyme inhibitors, tannins, oxalates,
or phytates. Plant lectins, also called phytohemagglutinins,
are a class of carbohydrate-binding proteins and glycopro-
teins present in a wide variety of plant food, with cereals,
legumes, and tubers showing the highest lectin contents.
Upon ingestion, lectins can bind to intestinal villi, thus
inhibiting nutrient uptake, and weaken the tight junctions
of intestinal mucosal cells, thereby causing enhanced per-
meability. Upon absorption into the bloodstream, lectins
bind to carbohydrate-moieties on the surface of proteins,
causing agglutination of cells, for example, red blood cells
(Thompson, 2019). Lectins also show anti-microbial, anti-
fungal, anti-viral, and anti-tumor activities (Lagarda-Diaz
et al., 2017). The content of lectins varies widely between
species and cultivars. In legumes, soybeans show excep-
tionally high levels of lectins, and beans contain moder-
ate amounts, while peas, chickpeas, lentils, and faba bean
are relatively low in hemagglutinating activity (Muramoto,
2017; L. Shi et al., 2018). Lectins are susceptible to thermal
inactivation, and cooking of pulses was shown to reduce
the hemagglutinating activity by 93% to 99% (L. Shi et al.,
2018).
Pulses contain proteins which inhibit the activity of

digestive enzymes α-amylase, trypsin, and chymotrypsin,
thus affecting the digestibility and absorption of starch and
protein by the formation of indigestible complexes (Avilés-
Gaxiola et al., 2018). α-amylase inhibition is only present
in Phaseolus and Vigna spp. but not detectable in peas,
lentils, kidney beans, and faba beans (El-Hady & Habiba,
2003; Melo et al., 1999; L. Shi et al., 2017). When gut trypsin
is inactivated by legume inhibitors, the pancreas is stimu-
lated to producemore trypsin, chymotrypsin, and amylase.
This causes a loss of sulfur-containing amino acids and
can lead to pancreatic hypertrophy and have carcinogenic
effects (Savelkoul et al., 1992). Pulse trypsin inhibitors are
divided into two classes, the approximately 20 kDa Kunitz
inhibitors, which show mainly trypsin inhibitory activity,
and the 6–10 kDa Bowman-Birk inhibitors, which can

inhibit both trypsin and chymotrypsin at separate binding
sites. Pulses contain either both Kunitz and Bowman-Birk
inhibitors, or only one of the two types (Gilani et al., 2005).
An unusual Bowman–Birk inhibitor has been found
in lupin, which only shows activity against trypsin but
not chymotrypsin (Scarafoni et al., 2008). As proteinase
inhibitors are synthesized as protectants against herbi-
vores, they are common in a wide range of plant tissues
(Ryan, 1989). Soy is the food with the highest trypsin
inhibitor content (Gilani et al., 2012), and pulses generally
contain much lower amounts. Soybean seeds contain
16.7–48.2 mg/g, while field beans and peas show trypsin
inhibitor levels between 1.4–12.5 mg/g (Gilani et al., 2005).
In a review by Avilés-Gaxiola et al. (2018), soy trypsin
inhibitor activity is given as 94.1 U/mg, while pulses such
as kidney beans, lentils, peas, cowpeas, and lupins have
activities below 10 U/mg, and the highest pulse trypsin
inhibitor activities are those of chickpea (8.1–15.7 U/mg)
and tepary bean (11.5–18.0 U/mg). Like lectins, pulse
protease inhibitors are usually not heat stable, and activity
has been shown to be reduced by 78% to 100% by boiling
for 1 hr (L. Shi et al., 2017). Heat stable trypsin inhibitors
have been reported however (Rayas-Duarte et al., 1992),
and research on whether the standard heating processes
in pulse milk-alternative manufacture are sufficient
to significantly lower trypsin inhibitors activity is still
lacking.
Phytic acid, the dihydrogen phosphate ester of inos-

itol, and its salts are the major storage molecules for
phosphorus and cations in pulse seeds. The main sources
of phytic acids in the human diets are pulses, oilseeds,
nuts, and cereals. Pulse phytic acid content ranges
from 0.27%−2.90% in pulses, 0.18%−3.35% in cereals,
1.0%−5.36% in oilseeds, and 0.15%–9.42% in nuts (Schlem-
mer et al., 2009). The antinutritional effect of phytic acid
is based on its ability to form strong chelates with cations
such as Fe2+, Zn2+, Ca2+, and Mg2+ through its six highly
reactive phosphate groups. It binds not only to cations in
the seed, but also to chelatesminerals in the gut from other
food sources. Monogastric species lack phytases in their
digestive tract and can therefore not sufficiently hydrolyze
these chelates, so neither the phosphorus nor the minerals
can be absorbed (Urbano et al., 2000). Phytates can also
lower protein digestibility by binding to proteins, either
directly or via a cation bridge. The direct binding occurs
at a pH below the isoelectric point of proteins, such as in
the stomach, where the basic amino acid residues of the
protein form electrostatic bonds with phytic acid. These
phytate-protein complexes are insoluble and resistant to
pepsin proteolysis. At pH values higher than the isoelectric
point, dominant in the small intestine, proteins are nega-
tively charged and can bind to the cations of the phytates
(Gilani et al., 2012). In vitro inhibition of phytic acid by



3864 Properties and health aspects of pulses. . .

formation of ternary complexes has also been discussed
and needs to be further investigated (Selle et al., 2000; M.
Singh & Krikorian, 1982). Phytate content in a variety of
Spanish legumes ranged from0.4% in a commonbean vari-
ety to 1.2% in a lentil variety, and it was shown that phytate
content varies between species and cultivars (Muzquiz
et al., 2012). Phytates are heat stable, and small losses of
phytate in cooking processes can mainly be attributed to
leaching into the cooking water (El-Adawy, 2002). Plant
seeds also contain phytases, however, and soaking of seeds
can reduce phytate contents through enzymatic degrada-
tion.While Lestienne et al. (2005) could show a 23% reduc-
tion in phytate levels in whole soybeans by soaking in
water for 24 hr at 30◦C, the same treatment did not have
an effect on cow peas and mung beans. pH conditions and
temperature are influential in phytate degradation. The
optimum for bean phytase activity has been reported to be
at pH 7 and 55◦C, which differs from cereal phytases which
have higher activity in acidic environments. When ground
beans were soaked at these conditions for 17 hr in buffer
to prevent a pH drop, a phytate reduction of 98% could be
observed (Gustafsson & Sandberg, 1995).
Antinutritive compounds specific to faba beans are

vicine and convicine, which cause favism upon ingestion
in susceptible individuals. They are glycosidic aminopy-
rimidine derivatives that are hydrolyzed by β-glycosidase
of the microflora in the intestinal tract at the β-glycosidic
bond between glucose and the hydroxyl group at the C-5
on the pyrimidine ring, generating the aglycones divicine
(2,6-diamino-4,5-dihydroxypyrimidine) and isouramil
(6- amino-2,4,5-trihydroxypyrimidine) (Crépon et al.,
2010). Upon intestinal uptake of divicine and isouramil
into the bloodstream, they generate reactive oxygen species
(ROS) that rapidly oxidize glutathione and nicotinamide
adenine dinucleotide phosphate (NADPH). While normal
red blood cells can counteract these ROS with NADPH-
dependent production of catalase and glutathione
peroxidase, NADPH levels in glucose-6-phosphate
dehydrogenase (G6PD)-deficient red blood cells are too
low to facilitate this process and suffer oxidative damage.
The red blood cells are then subjected to phagocytosis,
causing acute hemolytic anemia (Luzzatto & Arese, 2018).
G6PD deficiency is the most common enzyme defect in
humans, affecting 4.9% of the global population, with
prevalence as high as 8%–20% in tropical regions, as
G6PD deficiency also confers resistance against malaria
(Khazaei et al., 2019). Vicine and convicine are relatively
thermostable but can be removed entirely from seeds by
continuous flow soaking in water for 72 hr (Jamalian &
Ghorbani, 2005). Boiling and roasting also decrease vicine
and convicine contents, with boiling being the more effec-
tive method. Cardador-Martínez et al. (2012) found vicine
and convicine levels in boiled, de-hulled faba bean seeds

lowered by 18.9% and 22.5%, respectively, while roasting
resulted in reductions of 6.06% and 22.53%, respectively.
Vicine and convicine levels cannot be lowered by air
classification, as it has been found that this method vastly
increases the concentration in the protein-rich fraction
(Khazaei et al., 2019). Khalil and Mansour (1995) found
that boiling, autoclaving, and germination of soaked faba
beans equally reduced vicine and convicine content by
about 34%. Luzzatto and Arese (2018) report that a meal
of low vicine faba beans did not induce favism in G6PD-
deficient human subjects; however, further research is
needed to determine which levels of vicine are safe for
consumption by at-risk individuals.

3.4 Pulse phenolic compounds and
saponins

Pulses contain phenolic compounds such as phenolic
acids, polyphenols, lignans, and flavonoids and are of
great interest due to their many health benefits, such as
antimicrobial, antioxidant, and phytoestrogenic prop-
erties. In plants, phenolic compounds play a role in
protection against environmental stresses, ultraviolet
(UV) light and pathogens, and their synthesis is upreg-
ulated with stress (Treutter, 2005). The most abundant
classes of flavonoids in pulses are flavanols, flavanones,
flavones, isoflavones, and anthocyanidins. In the plant,
flavonoids play a crucial role in host-symbiont signaling
to nitrogen-fixing rhizobia, as well as during germination
processes. Isoflavones also function as phytoalexins (Aoki
et al., 2000). Isoflavones are the most common flavonoids
in pulses and exhibit the strongest estrogenic activities,
while other pulse flavonoids, such as kaempferol and
quercetin, show no or low estrogenic or even antiestro-
genic activity (Boué et al., 2011; Collins-Burow et al., 2000).
Common phytoestrogens in pulses are genistein, daidzein,
and coumestrol, the latter being present at lower concen-
trations, but having an estrogenic activity 30–100 times
higher than other isoflavones (Sukanya & Gayathri, 2014;
Verdeal & Ryan, 1979). Studies have shown that a higher
dietary intake of phytoestrogens correlates with lower
rates of breast and uterine cancer as well as cardiovascular
diseases in women (Keinan-Boker et al., 2004; Park et al.,
2005).
Another important group of physiologically active com-

pounds found in pulses are saponins. Saponins con-
sist of a hydrophobic aglycone glycosidically linked to
chains of two to five hydrophilic saccharides, resulting
in amphiphilic compounds with good emulsifying and
foaming properties. D-glucose, D-galactose, L-arabinose,
D-xylose, L- rhamnose, and D-glucuronic acid are the
most common constituents of the oligosaccharide chain.
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The aglycone in legume saponins commonly is a 30-
carbon triterpenoid and is linked to either one or two
oligosaccharide chains. Depending on the structure of
the triterpenoid moiety, these saponins are categorized
into A, B, and E saponins and are then sub-categorized
depending on their oligosaccharide moieties, which can
also be acetylated. Group A saponins have sapogenol A as
the aglycone moiety and are linked to two oligosaccharide
chains at C-3 andC-22. GroupB saponins differ from group
A in that sapogenol B is only linked to one glycosyl chain
at C-3 and has a hydrogen moiety instead of a hydroxyl
group at C-21. Soyasaponins I, II, III, and IV belong to the
B group of saponins. Group DDMP saponins are group
B saponins with a 2,3-dihydro-2,5- dihydroxy-6-methyl-
4H-pyran-4-one (DDMP) group at C-22 of sapogenol B
and entail soyasaponin αa, αg, βa, βg, γa, and γg. Group
E saponins differ from group B in that their aglycone,
sapogenol E, has a carbonyl instead of a hydroxyl group
at C-22. Soyasaponins Bd, Be, Bf, and Bg belong to group E
(B. Singh et al., 2017). Legumes are one of themajor dietary
sources for saponins in the human diet, but saponins are
also common in other plant foods such as leaf vegetables,
pseudocereals, and solanaceous vegetables such as pota-
toes, tomatoes, and eggplant (Price et al., 1987). Saponin
content varies among pulse species and cultivars but is
usually lower than that of soybean. Reported saponin con-
tents in legumes varywidely. In soy flour, contents between
0.35% and 4.3% have been reported (Curl et al., 1985; Fen-
wick & Oakenfull, 1983; Gurfinkel & Rao, 2002; Ridout
et al., 1988), while in chickpeas, saponin levels in literature
range between 0.21% and 5.6% (Fenwick &Oakenfull, 1983;
Jood et al., 1986; Ridout et al., 1988). In dry peas, relatively
low levels between 0.07% and 0.19% have been found (Dav-
eby et al., 1997; Heng et al., 2006). Legume protein isolates,
obtained by isoelectric precipitation, contain saponin lev-
els that can be higher than those of whole flour, while the
carbohydrate fractions have no low levels of saponins (Fen-
wick & Oakenfull, 1983; Ireland et al., 1986). Saponins are
relatively heat stable, but dehulling, soaking and, cooking
can reduce pulse saponins levels, possibly due to leaching
effects of the saponins. Pressure cooking of soaked seeds
has been found to be the most efficient method, reducing
pulse saponins by 20%–39% (Duhan et al., 2001; Jood et al.,
1986; Sharma & Sehgal, 1992). Germination also reduces
pulse saponins levels between 10% and 66%, depending on
species and germination time (Duhan et al., 2001; Kataria
et al., 1989; Khokhar & Chauhan, 1986). Saponins were
considered antinutritive factors in the 1950s and 1960s,
as they were found to cause growth impairment and
ruminant bloat in monogastric animals, show hemolytic
activity when injected, and can form complexes with min-
erals such as iron in the digestive tract, lowering thesemin-

eral’s bioavailability (Milgate & Roberts, 1995). However,
since numerous positive health effects of dietary saponins
have been discovered, they are now considered important
pro-nutritive factors in pulses. As saponins are a chemi-
cally diverse group of compounds, not all deleterious or
nondeleterious effects can be attributed to all saponins (B.
Singh et al., 2017). Pulse saponins have shown hypocholes-
terolemic activity by forming insoluble complexes with
cholesterol, thus inhibiting cholesterol uptake in the small
intestine. Saponins can also lower blood cholesterol levels
indirectly, as they bind to bile acids and increase fecal bile
acid excretion, increasing de novo synthesis of bile acids
from cholesterol in the liver (Sidhu & Oakenfull, 1986).
Cholesterol lowering activity of pulse saponins has been
shown in rats, rabbits, and humans (J. Shi et al., 2004). The
binding of saponins to cholesterol also prevents cholesterol
oxidation into atherogenic and cancerogenic oxystyrols (J.
Shi et al., 2004; Valenzuela et al., 2003). Saponin use in
higher concentration is limited, however, as they impart
a bitter taste and astringency (Heng et al., 2006).

4 IMPACT OF FERMENTATION ON
PULSE NUTRIENTS AND
ANTINUTRIENTS

While pulse-based yogurt alternatives are novel products,
fermented pulse products have long been included inmany
cuisines around the world. Traditional fermented pulse
dishes include dhokla, an Indian fermented pancake from
rice and chickpea or bean, siljo, an Indian gruel made
from fermented faba beans and safflower, ugba, a Nige-
rian condiment made from fermented locus beans or other
pulses, and idli, a steamed Indian breakfast food made
from fermented black grambeans and rice. All these dishes
are fermented with the natural pulse microbiota. South-
east Asian tempeh, a protein-rich staple source of protein,
is commonly made from fermenting cooked whole soy-
beans with Rhizopus ssp., but chickpeas and local bean
varieties are also being used. Natto, a Japanese breakfast
foodmade fromcookedwhole beans inoculatedwithBacil-
lus subitilis var natto, is most commonly made from soy-
beans, however, varieties using chickpeas or black beans
exist (Frias et al., 2017).
Fermentation of pulses can cause a wide range of

changes in the composition of legumes: degradation of
antinutritional macro- and micro-constituents by micro-
bialmetabolismor activity of endogenous enzymes, forma-
tion of substances inhibiting the growth of spoilage-related
microbiota, biological fortification withmicrobial metabo-
lites, changes in flavor, and a probiotic effect (Marco et al.,
2017).
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4.1 Impact of fermentation on protein
digestibility and protein quality

As mentioned in Section 3.3, pulse protein utilization
depends not only on the amino acid composition, but
also influenced by enzymes inhibiting digestive enzymes.
Fermentation can affect levels of trypsin and chymotrypsin
inhibitors via hydrolytic processes, and alter amino acid
composition by amino acid synthesis (Filannino et al.,
2018). Lactobacillus plantarum fermentation of pea protein
lowered trypsin inhibitor activity from 2.3 to 1.1 TIU/ mg
after 9 hr fermentation time, but activity increased on fur-
ther fermentation, and trypsin inhibitor activity was not
significantly different from to after 11 hr of fermentation.
Chymotrypsin inhibitor activity decreased steadily over
the fermentation and was reduced from 3.7 to 1.1 CIU/mg
after 11 hr. Fermentation unfavorably altered amino acid
composition by lowering the amount of the limiting amino
acids, cysteine+methionine. IVPDCAAS (in vitro protein
digestibility-corrected amino acid score) was lowered from
67.0% to approximately 54.6% after 11 hr of fermentation
(Çabuk et al., 2018). In a study on chickpea and faba bean
flours fermented with Lactobacillus delbrueckii subsp. bul-
garicus and Streptococcus thermophilus, trypsin-inhibitor
activity did not significantly change by fermentation. In
vitro protein digestibility was not significantly altered by
fermentation in kabuli and faba bean samples. However,
fermentation of desi chickpea flour increased the in
vitro digestibility by 9.5% (Chandra-Hioe et al., 2016).
In grass pea flours fermented in liquid state with L.
plantarum, the activity of trypsin inhibitor decreased by
40% after 24 hr fermentation (Starzyńska-Janiszewska
& Stodolak, 2011). Furthermore, solid-state fermentation
of cooked cow peas using either Rhizopus oligosporus or
L. plantarum for 36 hr reduced trypsin inhibitor activity
by 100% and 96.9%, respectively (Ibrahim et al., 2002).
Neither liquid nor solid-state fermentation of whole
cooked black beans with L. plantarum or R. oligosporus
significantly altered amino acid composition. However,
in vitro protein bioavailability was increased strongly in
beans fermented with either strain. The strongest increase
was found in solid state mixed fermentation with both L.
plantarum and R. oligosporus, with bioavailability rising
from 26% to 41%. This is especially surprising as only the
solid-state fermentation with L. plantarum resulted in a
slight reduction in trypsin inhibitor activity, and trypsin
inhibitor activity even more than doubled in the mixed
solid-state fermentation samples (Starzyńska-Janiszewska
et al., 2014). Coda et al. (2015) fermented doughs made
from faba bean flours and the protein-rich fraction of faba
bean flour with L. plantarum and found trypsin inhibitor
activity increasing by 56% and 86.5%, while IVPD (in
vitro enzyme protein digestion) increased by 2% and 1.6%,

respectively. A 7-day solid-state fermentation of lupin
flour with Aspergillus sojae, Aspergillus ficuum, and a
combination of both strains resulted in a lowered IVPD by
23%, 16%, and 32%, respectively, compared to unfermented
lupin flour. The authors hypothesized that this is due
to proteins being enclosed in the fiber matrix, which
reduces the activity of proteolytic enzymes (Olukomaiya
et al., 2020).

4.2 Impact of fermentation on
α-galactosides

The lowering of α-galactoside levels via fermentation to
reduce the induction of abdominal discomfort upon pulse
ingestion has also been of wide interest to research.
Shimelis and Rakshit (2008) found that a natural fer-
mentation of common bean flour slurry for 96 hr elim-
inated stachyose and raffinose almost entirely. A con-
trolled fermentation with Lactobacillus acidophilus LA-
5, Bifidobacterium BB-12, and Streptococcus thermophilus,
however, did not result in a significant reduction of α-
galactoside levels. Note that 24 hr fermentation of vari-
ous pulse flour sourdoughs with L. plantarum C48 and
Lactobacillus brevisAM7 reduced α-galactoside concentra-
tions by 7%–64%, depending on pulse species (Curiel et al.,
2015). Tempeh made from common beans by fermenta-
tion with R. oligosporus var. chinensis decreased raffinose,
stachyose, and verbascose to 7%, 16%, and 27% of their ini-
tial concentrations, respectively. Co-fermentation with L.
plantarum DSM 20174 caused an even larger decrease in
α-galactoside levels. Interestingly, a pre-fermentation of
the soaked beans with L. plantarum prior to fermenta-
tion with R. oligosporus did not cause a stronger decrease
in α-galactoside levels compared to tempeh fermented
with Rhizopus only (Starzyńska-Janiszewska et al., 2014).
Another study, however, found fermentation with L. plan-
tarum DSM 20205 completely eliminated raffinose and
stachyose from cooked cowpeas after 24 h, and the same
effect was observed by fermentation with R. oligosporus
(Ibrahim et al., 2002).

4.3 Impact of fermentation on phenolic
compounds and antioxidant capacity

As pointed out in Section 3.4, high levels of pheno-
lic compounds are desirable due to their various health
effects. Fermentation can positively influence polyphenol
levels in pulses. Total polyphenols in cowpea flour fer-
mented in submerged state more than doubled after fer-
mentation with both the microorganisms native to cow
pea seeds and L. plantarum. A following heating step to
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121◦C further increased polyphenol content. Rats fed these
fermented flours showed significantly increased plasma
ABTS antioxidant activity, demonstrating the bioactiv-
ity of the polyphenols (Kapravelou et al., 2015). Gan
et al. (2016) performed submerged-state fermentation of
various pulse flours with either the naturally occurring
microbiota, L. paracaseiASCC 279 or L. plantarumWCSF1,
and studied changes in antioxidant capacity and total phe-
nolic compounds in the bound and soluble fractions. The
effect of fermentation by the lactic acid bacteria (LAB) on
the antioxidant capacity varied strongly between pulses,
with strong increases in mottled cowpea and speckled kid-
ney bean and lowered antioxidant capacity in black and
yellow soybean. Natural fermentation increased antioxi-
dant capacity in mottled cowpea, speckled kidney bean
and small rice bean samples, decreased in small runner
bean and yellow soybean, and remained relatively unaf-
fected in black cow gram, lentil, and black soybean. These
differences are due to the varying species of microorgan-
isms that make up the individual microflora of the pulses
and also depend on the polyphenol composition of the
individual pulses. Both the LAB mediated and the natu-
ral fermentations increased total phenolic content in all
pulse varieties (Gan et al., 2016). In a studywithmung bean
and soybean milk-alternatives fermented with L. plan-
tarum WCFS1, it was found that total phenolic content
increased with fermentation in both the lipophilic and
the hydrophilic fraction of the samples. The effect on the
antioxidant capacity varied between methods. The reduc-
ing capacity was increased by fermentation in both milk
alternatives, while the results of scavenging activity var-
ied between methods of testing. It is important to men-
tion that both the total phenolic content and the antiox-
idant capacity were significantly higher in the lipophilic
than the hydrophilic fraction, and it is therefore imperative
to assess both fractions to avoid underestimation of these
factors (Gan, Shah, et al., 2017).

4.4 Impact of fermentation on vicine
and convicine

Fermentation of lupin bean flour doughs for 48 hr with L.
plantarum VTT E-133328 (also known as DPPMAB24W)
lowered vicine and convicine concentration by 90% and
95%, respectively, while natural fermentation decreased
vicine and convicine levels to amuch lower extent. In vitro
blood hemolysis tests showed that extracts from controlled
fermented doughs had less than half the hemolytic activity
than extracts from spontaneously fermented doughs (Coda
et al., 2015; Rizzello et al., 2016). To be able to degrade vicine
and convicine in fermentation, the microorganism must
possess β-glucosidase activity to hydrolyze the aglycones

vicine and convicine into divicine and isouramil. While
these are the toxic forms, they are also very unstable due to
oxidative degradation. Divicine and isouramil in faba bean
extracts treatedwith β-glucosidasewere almost completely
degraded after 60 min at pH 5 and 37◦C (Pulkkinen et al.,
2016). Di Cagno et al. (2010) screened over 100 strains of
LAB derived from food matrices for β-glucosidase activity.
Note that 25% of the strains were found to have elevated β-
glucosidase activity, and the strains with the highest activ-
ity were L. plantarum DPPMA24W and DPPMASL33, L.
fermentum DPPMA114, and L. rhamnosus DPPMAAZ1.

4.5 Impact of fermentation on
isoflavones

Fermentation with strains possessing β-glucosidase activ-
ity also has an impact on isoflavone activity, as they
hydrolyze conjugated isoflavones, such as daidzin and
genistin, to their bioactive, unconjugated aglycone forms,
daidzein and genistein (Di Cagno et al., 2010; Rekha &
Vijayalakshmi, 2011). Contrary to vicine and convicine, the
aglycone forms of isoflavones seem to be more stable than
their conjugated forms (Otieno et al., 2007). While this
topic has been well studied for soybean, research on pulse
fermentation and isoflavones remains rare. Bartkiene et al.
(2018) studied the effect of solid-state and submerged fer-
mentation of wholemeal flours and protein isolates from
different blue lupin hybrid lines using various Pediococ-
cus pentosaceus strains on isoflavone content. From all
tested isoflavones (daidzein, genistein, formononetin, and
biochanin‑A), only genistein was detectable, and levels in
the protein isolate samples were generally lower than in
the wholemeal flour samples. There was no clear trend
in the effect of fermentation on genistein levels, however.
Pediococcus strains lowered genistein levels in some hybrid
lines but increased it in others. In a yogurt alternative
based on a mixture of cow’s milk and chickpea extract,
fermentation with L. bulgaricus and S. thermophilus for
4 hr resulted in daidzein and genistein levels more than
five times higher than prior to fermentation (Fu & Zhang,
2013).

4.6 Formation of bioactive peptides by
fermentation

Protein hydrolysis of food proteins by microbial enzymes
has been shown to cause a formation of peptides
with various bioactive properties, such as antioxidant,
immunomodulating or antithrombotic activity (Chai et al.,
2020). The most widely studied bioactive peptides (BAP)
in fermented foods, however, are angiotensin-converting
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enzyme (ACE) inhibitory peptides (Martinez-Villaluenga
et al., 2015). The peptidase ACE is a central factor of
the blood-pressure regulating renin-angiotensin system. It
shows hypertensive activity by converting the hormone
angiotensin I to the vasoconstrictory angiotensin II, as well
as by its ability to deactivate the vasodilatory bradykinin
(Schmieder et al., 2007). Dairy products fermented with
LAB are a well-known source of BAP (Möller et al., 2008).
Several studies have been performed that show that LAB
fermentation of pulse extract can also lead to significant
BAP formation, making them promising sources of food-
derived BAP (Gan, Li, et al., 2017). The liquid-state fermen-
tation of navy beans with L. plantarum and L. bulgaricus
led to the degradation of mainly α and β type phaseolins
and an ACE inhibition of around 70%, while the unfer-
mented navy bean extract showed noACE inhibitory activ-
ity (Rui et al., 2015). While both lentil and kidney bean
extracts already show considerable ACE inhibitory activ-
ity before fermentation due to high levels of soluble phe-
nolic compounds, the inhibitory activity was significantly
increased from 68% to around 90% by fermentation with
either the natural microbial flora or L. plantarum as a
starter culture (Limón et al., 2015; Torino et al., 2013).

5 PULSE-BASED YOGURT
ALTERNATIVES

Plant-based yogurt alternatives, for example, based on soy
and coconut, have been commercially available for years,
while pulse-based yogurt alternatives only recently arrived
on the market and remain relatively rare. Like pulse-based
milk alternatives, yogurt alternatives can bemanufactured
from water extracts of whole pulses (S. Wang et al., 2018)
or from a blend of pre-extracted pulse proteins, fat, water,
and a sugar source for fermentation (Hickisch et al., 2016).
Traditional dairy yogurt derives its structure from acid-

formed casein gels. Cow’s milk protein consists of approx-
imately 80% micellar casein and 20% whey proteins. κ-
casein, a subunit of the casein proteins with a highly
hydrophilic C-terminal, protrudes from the surface of
the casein micelles like “brushes,” and prohibit aggre-
gation by steric stabilization. Upon acidification, the net
charge of the protein decreases, the κ-casein “brushes” col-
lapse, and electrostatic repulsion between casein micelles
is lowered, while hydrophilic and electrostatic attraction
betweenmicelles increases. Thus, a three-dimensional net-
work of casein chains and clusters is formed (de Kruif &
Zhulina, 1996; Lee & Lucey, 2010).
While the acid gelation of casein has been extensively

studied, research on the gelation of pulse protein received
scientific attention relatively recent. It has been shown
that pre-heating of protein in an aqueous solution at a

pH far from the isoelectric point leads to unfolding and
pre-aggregation of proteins into linear and percolated net-
works in pea and soybean. This pre-aggregation prior to
acidification results in shorter gelation time and gels with
a higher storagemodulus (G′) (Chen et al., 2016; F. Li et al.,
2012). The degree of aggregation is dependent on heating
time, temperature, and protein concentration. In pea pro-
tein isolate studies, heating steps of 30 min at 80◦C and
1 hr at 60◦C at a protein concentration of 10 g/L were
sufficient to produce gels in a subsequent acidification
via LAB fermentation (Klost et al., 2020; Klost & Drusch,
2019). In a study with lupin protein-based yogurt alterna-
tives, ultra-high temperature treatment for 60 s at 140◦C of
the 2% lupin protein-isolate solution prior to fermentation
resulted in much firmer yogurts with higher viscosity and
lower syneresis than mere pasteurization at 80◦C for 60 s
(Hickisch et al., 2016).
To obtain yogurt from whole pulses with good sensory

attributes, as in pulse milk production, lipoxygenase activ-
ity must be inhibited via heating steps early in the pro-
cess. In addition, Rao et al. (1988) reported that roasting
and subsequent dehulling of cow peas and mung beans
prior to soaking resulted in a yogurt with far lower levels of
beany flavors. For a yogurt alternative made from Lupinus
campestris, the wild form of lupin that is usually too bitter
for human consumption, soaking the seeds in boiling 0.5%
NaHCO3 solution prior to dehulling and grinding resulted
in a product with acceptable sensorial properties, higher
protein content, low beany flavors, and a total elimination
of quinolizidinic alkaloids (Jiménez-Martínez et al., 2003).
For fermentation of pulse-based yogurt alternatives, the

traditional combination of the LAB Streptococcus ther-
mophilus and Lactobacillus delbrueckii ssp. bulgaricus has
successfully been used (Aminigo et al., 2009; Jiménez-
Martínez et al., 2003; Rao et al., 1988). As legume pro-
teins generally produce softer gels than milk protein, the
application of exopolysaccharide (EPS) producing LAB
in yogurt alternatives has been tested. LAB EPS can
be divided into homopolysaccharides (HoPS) and het-
eropolysaccharides (HePS). HoPS are polymers consisting
of either glucose or fructose and are typically larger than
103 kDa. HePS typically contain between two and eight dif-
ferent monosaccharides, the most common of which are
glucose, galactose, and rhamnose and can contain noncar-
bohydrate moieties. HePs are between 40 and 9 × 103 kDa
in size and are usually synthesized in much lower quanti-
ties than HoPS (Lynch et al., 2018). In dairy yogurt model
systems, fermentation with HePS producing LAB resulted
in higher G’ values and viscosity. It has been found that
the flexibility of the HePS backbone as well as the type of
protein (casein and whey protein) greatly influences the
effect EPS have on dairy yogurt texture. HePS formation is
very low in yogurt fermentation, but by using a culturemix
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of HePS producing S. thermophilus and L. delbrueckii ssp.
bulgaricus, HePS concentration can be increased (DeVuyst
et al., 2003; Gentès et al., 2011, 2013). In soy yogurt alterna-
tives, fermentationwithHePS producing strains of L. plan-
tarum and L. rhamnosus resulted in improved gel structure
and a decrease in undesirable volatile compounds (C. Li
et al., 2014). In a study byHickisch et al. (2016), yogurt alter-
natives made from lupin protein isolate, coconut oil and
glucose using HePS producing strains of L. plantarum, P.
pentosacaeus, and L. brevis, it was shown that EPS produc-
tion only played aminor role in determining yogurt viscos-
ity, which was mainly determined by the heating temper-
ature of the protein solution prior to fermentation. To the
authors’ knowledge, no studies have been performed on
the effect of HoPS on pulse-based yogurt alternatives. In a
study by Zannini et al. (2018), a quinoa-based yogurt alter-
native fermented with HoPS producing Weissella cibaria
MG1 showed great potential for the application of HoPS
producing LAB in plant-based yogurt alternatives.

6 PULSE-BASED CURDS

An alternative to forming pulse protein gels by fermenta-
tion is the formation of protein curds via salt coagulation.
Coagulating heat-denatured soy proteins with magnesium
or calcium salts and subsequent pressing into firm blocks
to produce tofu is a well-established technique. Due to
their similar proteins, pulses can be used for curd produc-
tion if the parameters are adjusted; however, pulse curds
are not widely commercially available. A typical pulse curd
production process is given in Cai et al. (2001), where six
legume flours were water-extracted, the soluble fraction
with various protein concentrationswere boiled for 10min,
and either CaSO4 or MgSO4 solution was added at 85◦C
as the coagulant. After 20 min coagulation time at 80◦C,
the curds were pressed and analyzed. The pea, mung bean,
and lentil curds showed much higher moisture content
than faba, chickpea, and the soy control curds. All pulse
curds had a lower springiness ratio than soy curds, and
only the chickpea sample achieved hardness values com-
parable to soy curd, while pea and lentil resulted in the
softest curds. The concentration of soluble protein and the
dose of coagulants in chickpea curds was also studied. It
was shown that curd hardness was highest in a 1% protein
solution and decreased with increasing protein concentra-
tion. A coagulant dose of 0.5% resulted in very soft curds
for both CaSO4 and MgSO4, but concentrations above 1%
for MgSO4 and 1.5 % for CaSO4 did not further increase
hardness or decrease moisture content in chickpea curd.
Mohamed et al. (1989) report that high concentrations of
CaSO4 cause a bitter taste of the curds; however, they were
able to produce chickpea, mung bean, and cowpea curds

with satisfactory textural and sensory attributes at a CaSO4
concentration of 0.3%.
In a study by DePalma et al. (2019) on yellow pea

curd coagulated with MgCl2, the influence of pasteuriza-
tion and disruption processes on curds with and with-
out the addition of corn oil were investigated and com-
pared to commercial soy curds. Nonfat pea curds were
significantly harder than curds with oil addition. Disrup-
tion of the curd into 1 mm pieces after the first curd
pressing and re-pressing, as well as pasteurization of the
curds in a 98◦C water bath for 5 min, did not affect hard-
ness of both no-fat and fat-added pea curds; however, the
combination of disruption and subsequent pasteurization
resulted in significantly harder pea curds with less water
absorption.

7 MARKET REVIEWON
PLANT-BASED YOGURT ALTERNATIVES

An online review of 78 plant-based, fermented yogurt
alternatives currently on the market in 16 different coun-
tries was conducted by searching web presences of pro-
ducers and retailers of plant-based dairy-alternatives (see
Figure S2 for countries of origin of the reviewed yogurt
alternatives). Only plain plant-based yogurt alternatives
were included in the review. Just three of those are exclu-
sively pulse-based, but six additional products include
pulse proteins to enhance protein content. Of the reviewed
yogurt alternatives, the main base ingredient of 32 prod-
ucts is coconut, 16 are soy based, 12 almond based, eight oat
based, five cashew based, two lupin based, and one each is
pea, flaxseed, and hemp based. Yogurt alternatives using
two types of plant-milk alternatives were grouped accord-
ing to their main base ingredient (Figure 2). Five whole
milk dairy-based yogurts were included in the review for
comparison.

7.1 Macronutrients

The average nutritional composition of all types of yogurt
alternatives was evaluated and compared to dairy yogurt.
A total overview of nutrients per 100 g of product can be
seen in Figure 3. The reviewed dairy yogurts contain total
fat amounts between 3.5% and 5.3%, of which between 2.2%
and 2.9% are saturated fats. Coconut yogurt alternatives
have far higher total and saturated fat contents, averaging
at 9.8% of total fat and 8.5% saturated fat. The surprisingly
high saturated fat content in the lupin-based yogurt alter-
natives of 5.6% is due to the use of coconut fat as fat compo-
nent. Almond- and cashew-based yogurt alternatives also
have higher average fat contents than dairy-based whole
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F IGURE 2 Base ingredients of the reviewed plant-based yogurt alternatives. Yogurt alternatives using two types of base ingredients are
grouped according to their main base ingredient into the groups coconut, soy, almond, oat, cashew, lupin, pea, flaxseed, and hemp

F IGURE 3 Average nutritional composition of different plant-based yogurt alternatives, and a whole milk yogurt for comparison. Error
bars have been omitted for clarity. See supplementary Table S3 for values and standard deviations

milk yogurts (5.4 and 4.9%, respectively), while the other
types of yogurt alternatives have fat contents between 1.2%
and 3.2%.
Energy content, as well as the content of calories

from protein per 100 kcal of the product, are given in
Figure 4. Coconut yogurt and lupin yogurt have the high-

est energy content with 114 kcal and 101 kcal per 100 g,
respectively. With only 6.2 and 7.3 kcal per 100 kcal pro-
vided by protein respectively, they are a relatively poor
source of protein. To be permitted to use the EU nutri-
tion claim “source of protein,” at least 12% of the calo-
ries of a product have to be provided by protein (European
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F IGURE 4 Energy content in kcal per 100 g, and kcal from protein per 100 kcal of reviewed plant-based yogurt alternatives. The gray
horizontal lines signify the minimum requirements of kcal from protein per 100 kcal for the EU nutrition claim of “source of protein” and
“high protein”

Parliament, Council of the European Union, 2006). Only
three of the 32 reviewed coconut-based, one of 12 almond-
based, and two of the eight oat-based products contain
enough protein to be able to be labeled as a source of
protein.
On the other hand, all soy-based as well as the pea-

and the flaxseed-based products can be labeled as sources
of protein. If a product derives at least 20% of calories
from protein, it can be labeled “high protein” (European
Parliament, Council of the European Union, 2006). One
almond-based, one coconut-based, one oat-based, the pea-
and the flaxseed-based, and 12 soy-based products meet
the nutrition requirements for this claim. The reviewed
dairy yogurts have protein contents ranging between 20
and 23.6 kcal from protein per 100 kcal, therefore all could
be labeled “high protein.”

7.2 Ingredients

According to Codex Alimentarius, dairy yogurt typically
only consists ofmilk andmilk-derived products, incubated
with the LAB Streptococcus thermophilus and Lactobacil-
lus bulgaricus, but alternative cultures (such as Strepto-

coccus thermophilus or any Lactobacillus species) may also
be used for fermentation. The Codex does not permit the
addition of sweeteners or additives such as stabilizers or
starch to plain yogurts, however, national legislation often
digresses from this standard (FAO/WHO, 2018). For plant-
based yogurt alternatives, no specific Codex Alimentar-
ius standards exist, and the use of additives to alter tex-
ture, taste or nutrient content is common. Only six of the
78 reviewed yogurt alternatives contain no additives and
consist only of the extract of their main ingredient and
LAB.
Of all reviewed yogurt alternatives, eight products con-

tain protein isolates to increase protein content. One prod-
uct each contains almond or potato protein, the residual six
contain either faba bean protein, pea protein, or a mixture
of the two.
Approximately 80% of the reviewed products contain

hydrocolloids as stabilizers. The most commonly used
hydrocolloid is pectin, contained in 29 of the 78 products,
either on its own or in combination with other stabilizers
such as locust bean gum or agar-agar. Locust bean gum is
added in 22 products. Other common stabilizers in plant-
based yogurt alternatives are carrageenan, xanthan, gel-
lan gum, and acacia gum (Figure 5). Note that 73% of the
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F IGURE 5 Stabilizers used in the reviewed plant-based yogurt alternatives

F IGURE 6 Starches contained in the reviewed plant-based yogurt alternatives

reviewed products also contain starches, tapioca and corn
starch being the most frequently used (Figure 6). Only
nine of the reviewed 78 products, all of which are either
coconut- or soy-based, contain neither starches nor hydro-
colloids. Emulsifiers and antioxidants are rarely used in
yogurt alternatives. Only the flaxseed-based product and
one coconut-based product contain an emulsifier (lecithin
and citric acid esters of mono- and diglycerides of fatty

acids, respectively), and two soy-based products contain
antioxidants (tocopherol-rich extracts and fatty acid esters
of ascorbic acid).
The majority of products rely solely on fermentation to

obtain sufficient product acidity. Note that 26% of products
use additional acidulants, most frequently citric acid, used
in 14 of the products, but lactic acid, malic acid, glucono-δ-
lactone, and lemon juice concentrate have also been used



Properties and health aspects of pulses. . . 3873

F IGURE 7 Acidulants used in the reviewed plant-based
yogurt alternatives

(Figure 7). Some products also contain acidity regulators
like sodium or calcium citrate, or calcium or potassium
phosphate.
Thirty of the 78 reviewed yogurt alternatives are

enriched with calcium, predominantly in the form of
calcium phosphate and calcium citrate. Twelve of the
calcium-enriched yogurt alternatives are additionally sup-
plemented with vitamins to increase the nutritional value.
Eleven of these products contain vitamin D, mostly in the
form of vitamin D2 (ergocalciferol), though the form of
vitamin D is not specified in all products. As ergocalcif-
erol is plant-derived, its use in dairy-free yogurt alterna-
tives is plausible.However, the bioavailability of ergocalcif-
erol is lower than that of the animal-derived cholecalciferol
(vitamin D3) (Houghton & Vieth, 2006). Ten products con-
tain vitamin B12, and two products each are additionally
enriched with vitamin A and B2.

F IGURE 8 Species of bacteria used for the fermentation of the reviewed yogurt alternatives. Most products use a combination of two or
more species for fermentation

Eight of the reviewed yogurt alternatives used added
oil from other plant sources than their main base. Six
of these products are oat- or lupin-based yogurt alterna-
tives containing coconut oil to enhance fat content. The
pea protein-based yogurt alternative contains sunflower
oil.
Only plain yogurt alternatives were being reviewed, nev-

ertheless, 21 of the products contain flavoring, 17 of which
natural flavoring. The pea-based yogurt alternative also
contains yeast extract in addition to the natural flavoring
which potentially was added as a natural flavor enhancer.
Fifty-three of the reviewed yogurt alternatives contain

no added sweeteners. Only one, Icelandic product con-
tains artificial sweeteners (acesulfam K and sucralose),
the residual 24 products contain either sucrose, dextrose,
fructose, glucose-fructose syrup, or concentrated fruit
juices.
Eleven of the reviewed products contain added fiber

ingredients, inulin being the most frequently used. Cellu-
lose, citrus fiber, and oat fiber are used in one product each.
The most frequently used strains for fermentation are

S. thermophilus, L. bulgaricus, and L. acidophilus, con-
tained in 28, 27, and 27 of reviewed products, respectively.
Bifidobacteria spp. are contained in 26 of the reviewed
products, 12 of which contain B. lactis, two B. bifidum,
and the residual 14 Bifidobacteria of nonspecified species.
Other strains used are L. paracasei, L. rhamnosus, L.
casei L. plantarum, and B. bifidum. Note that 46% of the
reviewed products do not state which species of bacteria
are used for fermentation (Figure 8). Most yogurt alterna-
tives use a combination of two or more bacteria species,
the combination of S. thermophilus and L. bulgaricus being
the most common.
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8 CONCLUSION

While not yet widely used in plant-based yogurt alter-
natives, pulses possess many traits that make them an
excellent alternative to the currently predominant soy-
, coconut-, and almond-based yogurt alternatives on the
market. Pulses are high in protein, and while low in
sulfur-containing amino acids, due to their high lysine
content, they are complementary to a diet rich in cere-
als and therefore lacking in this amino acid. Pulses are
also rich in phenolic acids, polyphenols, saponins, and
flavonoids, which can be beneficial due to their antiox-
idant, anti-inflammatory, and anti-cancerogenic proper-
ties.On the other hand, pulses also contain anti-nutritional
factors such as lectins, trypsin inhibitors, and phytates,
which can result in decreased intestinal nutrient uptake.
Vicine and convicine, glycosides present in faba bean, can
cause hemolytic anemia in susceptible individuals. Some
antinutritional factors, such as trypsin inhibitors, vicine,
convicine, and α-galactosides, can be reduced or even
almost eliminated by fermentation, while the level of ben-
eficial compounds like isoflavones and antioxidants can be
increased. The effect of fermentation is strongly dependent
on strains, substrate, and fermentation conditions, how-
ever. More research is needed to be able to influence pulse
constituents in a controlled way by fermentation. In exper-
imental set-ups as well as in commercially available plant-
based yogurt alternatives, pulses have proven to be well-
suited substrates for lactic acid fermentation with tradi-
tional yogurt cultures. Current plant-based yogurts alter-
natives use a plethora of thickeners and stabilizers to attain
satisfactory textures. More research into acid- and salt-
induced gelling behavior of pulse proteins could result in
“clean label” yogurt alternatives with promising market
prospects.
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