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Abstract 19 

The ability of Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) to assess the wettabil-20 

ity of powder blends is investigated. BARDS is a novel analytical technology developed based on the 21 

change in acoustic phenomenon observed when material is added into a solvent under resonance. Ad-22 

dition of solid material to the solvent results in the introduction of gas (air) into the solvent, changing 23 

the compressibility of the solvent system and reducing the velocity of sound in the solvent. As a mate-24 

rial is wetted and dissolved, the gas is released from the solvent and resonance frequency is altered. 25 

The main purpose of this work is to demonstrate the ability of BARDS to assess differences in the wet-26 

ting behaviour of tablet excipients (microcrystalline cellulose (MCC) and magnesium stearate (MgSt)) 27 

and a model drug (metoclopramide hydrochloride) as single component powders and multi-28 

component powder blends. BARDS acoustic responses showed a prolonged release of gas for the 29 

powdered blends with lubricant compared to un-lubricated blends. As the elimination of gas from the 30 

solvent was assumed to follow first order elimination kinetics, a compressible gas elimination rate con-31 

stant was calculated from the log plots of the gas volume profiles. The gas elimination rate constant 32 

was used as a parameter to compare the release of gas from the powder introduced to the solvent and 33 

hence the powder wetting behavior. A lower gas elimination rate constant was measured for lubricat-34 

ed blends compared to non-lubricated blends, suggesting the prolonged hydration of lubricated 35 

blends. Standard wetting techniques such as contact angle measurements and wetting time analysis 36 

were also used to analyze the blends and confirmed differences in wetting behavior determined by 37 

BARDS.  The study results demonstrate the capability of BARDS as a rapid, analytical tool to determine 38 

the wetting behavior of the pharmaceutical powder blends and the potential of BARDS as a process 39 

analytical technology (PAT) tool.  40 

 41 

 42 
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 3 

 

Introduction 43 

Wettability of a powder is an important parameter to consider, as it can be used to predict the disper-44 

sion, disintegration and dissolution of powders in fine chemical, pharmaceutical, food and ceramics 45 

industries
1–4

. Wettability of powders is commonly determined by measuring the contact angle of a liq-46 

uid on solid surface at the three-phase interface of solid, liquid and vapour. Powder wettability can al-47 

so be assessed by measuring different processes such as spread wetting, capillary wetting, condensa-48 

tional wetting and immersional wetting
2,5

. Different techniques routinely used to evaluate the wetta-49 

bility of the powders are numerous, these include sessile drop,
2,5,6

 Wilhelmy plate,
1,4,7,8

 Washburn ca-50 

pillary rise,
2,9

 thin-layer wicking,
2,4,10

 capillary pressure,
4,11

 drop penetration,
4,12

 dynamic contact an-51 

gle,
4,13

 atomic force microscopy
4,8,14

 and environmental scanning electron microscopy
2,4

. A review by 52 

Alghunaim et al., provides an excellent overview of a number of these techniques
4
. 53 

Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) is a novel technique that can be 54 

used to analyze the wetting behavior of powders. A recent study by Vos et al., showed the potentiality 55 

of BARDS to detect the transfer of water into milk protein concentrate (MPC) powder particles with 56 

different rehydration characteristics
15

. BARDS works on the principle of frequency change of acoustic 57 

resonances that are mechanically provoked in a solvent using a stirrer bar when a solute is added
16

. 58 

The acoustic resonances correlate with the compressibility of the solvent system with or without so-59 

lute. When a powder is introduced into a solvent it introduces gas (air) into the solvent, which changes 60 

the compressibility of the solvent. As the powder is wetted or dissolved, the associated gas is eliminat-61 

ed and solvent compressibility returns to a steady state. The acoustic resonance generated depends on 62 

different physical and chemical parameters of the powder that is added into the solvent. BARDS moni-63 

tors the acoustic profile of solvent as a powder disperses and dissolves. It correlates the acoustic pro-64 

file of the solvent to changes in the compressibility of the solvent as a result of powder dispersion and 65 

dissolution within the solvent
16,17

.  66 

The work presented demonstrates the ability of the BARDS technique to detect differences in the wet-67 

ting behavior of commonly used tablet excipients microcrystalline cellulose (MCC), magnesium stea-68 

rate (MgSt) and a model drug (metoclopramide hydrochloride) as single component and multi-69 

component powder blends. It was anticipated the presence and distribution of the hydrophobic lubri-70 

cant, MgSt, in the blend would alter the wetting behavior of MCC and drug within the blend. The re-71 
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 4 

 

sults presented demonstrate the ability of BARDS to detect differences in the wetting behavior of 72 

blends due the presence and distribution of the lubricant. These differences in wetting behavior were 73 

also assessed using the more widely reported wetting measurement techniques of contact angle and 74 

wetting time. 75 

 76 

Working principles of BARDS  77 

The velocity (v) of sound in a medium whether air or liquid medium is determined by equation 1 78 

�(�����) = 
 �
�.�      Equation 1 79 

where ρ is mass density (kg m
-3

) and K is compressibility (which is the inverse of bulk modulus) of the 80 

medium (Pa
-1

). Generation of micro bubbles in a liquid decreases the density in a negligible way in 81 

comparison to a large increase in compressibility. The net effect is a significant reduction of the sound 82 

velocity in the liquid. The following relationship between the fractional bubble volume and the sound 83 

velocity in water was derived by Frank S. Crawford, as given in equation 2
18

. 84 

 85 

��
� = �1 + 1.49 × 10�. ��    Equation 2 86 

 87 

Where �� and � are velocities of sound (m s
-1

) in pure and bubble filled water respectively, and �� is 88 

the fractional volume occupied by air bubbles. The factor 1.49 × 10� in the formula was calculated as 89 

shown in equation 3. 90 

 91 

(��)�	�� �
 ! = 1.49 × 10�   Equation 3 92 

 93 

Where �� is the density of water, " is the ratio of specific heats for dry air and p is the atmospheric 94 

pressure. Equation 2 is based on the approximation presented originally by Wood et al., 
19

. 95 

BARDS analysis of an induced acoustic excitation of the containing vessel is focused on the lowest vari-96 

able frequency time course, i.e. fundamental resonance mode of the liquid. The fundamental reso-97 

Page 4 of 26

ACS Paragon Plus Environment

Molecular Pharmaceutics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 5 

 

nance frequency is determined by the sound velocity in the liquid and the approximate but fixed 98 

height of the liquid level, which corresponds to one quarter of its wavelength
18

. The frequency re-99 

sponse is described by Equation 4. 100 

�#$% = 	 &'()�
��*�.�+×�,-&.             Equation 4 101 

Where �#$% and �#$%� are the resonance frequencies of the bubbled filled water and fundamental 102 

resonance modes in pure water, respectively. Complete outline of working principles and theory of 103 

BARDS was described by Fitzpatrick et al.,
16

. 104 

 105 

Materials and methods  106 

Materials  107 

Microcrystalline Cellulose (Avicel PH200) was kindly donated from FMC International, Cork, Ireland. 108 

Metoclopramide HCl was obtained from Kemprotec Ltd, Cumbria, United Kingdom and Magnesium 109 

Stearate was obtained from Alfa Aesar, Manchester, United Kingdom.  110 

 111 

Methods 112 

Blends for preliminary proof of concept testing  113 

Small blends of 10 g with active pharmaceutical ingredient (API) (10%), MCC (89.5%) and magnesium 114 

stearate (0.5%) were prepared in triplicate in 50 ml falcon tubes. Samples of 250mg were collected af-115 

ter 5 manual rotations and 100 manual rotations and analyzed using BARDS.  116 

 117 

Preparation of blended formulations 118 

Formulation 1 (unlubricated) and Formulation 2 (lubricated) with a total blend size of 2 kg were blend-119 

ed in a stainless steel double cone blender (DKM) with a 11.9 liter volume operated with ERWEKA 120 

AR402 drive unit at angle of 90
0
. The blender rotated for 30 minutes at 30 rpm with microcrystalline 121 
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 6 

 

cellulose (90%w/w) and metoclopramide hydrochloride (10%w/w). Magnesium stearate (0.5%) was 122 

added to the formulation 2 and blended for a further minute at 30 rpm. Six blend samples (three sam-123 

ples from the top and three from the bottom of the blender) were collected for each blend and ana-124 

lyzed using BARDS. Amendments have been inserted into the revised manuscript in red font to facili-125 

tate identification of additions. 126 

 127 

Feeding of Blends 128 

Formulation 1 and formulation 2 were each fed with a K-TRON MT-12 twin screw microfeeder 129 

(COPERION K-TRON, Niederlenz, Switzerland) to achieve different levels of power lubricant (MgSt) dis-130 

tribution within blends in a controlled manner. K-TRON MT12 feeder was supplied with a range of dif-131 

ferent twin screw designs, for example coarse concave (CCS), coarse auger (CAS), fine concave (FCS), 132 

and fine auger (FAS). Coarse concave screws have a self-cleaning function suitable for cohesive materi-133 

als and the auger screws do not have this self-cleaning ability but have the advantage of higher feeding 134 

capacity
20,21

. The feeder was also supplied with different designs of screens, for example coarse square 135 

screen (CSqS), fine square screen (FSqS), coarse slotted screen (CSlS) and fine slotted screen (FSlS). In 136 

feeder set different screw designs can be paired with different screw designs. The function of the 137 

screen is to break up clumps of cohesive powders and can also be used to create back pressure to pre-138 

vent very free flowing powders from flowing uncontrollably from the feeder
20,21

.  The feeder set up 139 

used in this study comprised of a fine concave screw (FCS) and fine square discharge screen (FSqS), 140 

with the objective of minimizing MgSt build-up on screws and feeding rate and promote overlubrica-141 

tion of blends. The feed factor is the theoretical 100% feed rate that can be achieved with a given set 142 

of tooling and material and was determined through equipment calibration. The feed rates set points 143 

were set at 0.2238, 0.5594 and 1.0069 kg/hr for 20%, 50% and 90% of the feed factor for formulation 144 

1. The same feed rates were used for formulation 2 for direct comparison. The hopper was filled to the 145 

same level for all feeding runs. The feeder performance was evaluated using an independent catch 146 

scale using the K-Sampler Test System (COPERION K-TRON, Niederlenz, Switzerland). Blend samples 147 

were collected and analyzed using BARDS. 148 

 149 

 150 
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Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) 151 

Instrumentation  152 

BARDS Spectrometer consists of a dissolution vessel equipped with a magnetic stirrer and a micro-153 

phone set above the dissolution vessel, which receives and records the responses from the vessel. 154 

There is access at the front of the dissolution vessel and a tripper motor with a weighing boat on it to 155 

introduce the sample into the dissolution medium. The glass tumbler containing 25ml of deionised wa-156 

ter is placed on the stirrer plate. The stirrer motor underneath is positioned so as to allow the magnet-157 

ic stirrer bar to gently tap the inner glass wall, which will act as the source of broadband acoustic exci-158 

tation. This will induce various acoustic resonances in the glass, liquid and the air column above the 159 

liquid. The audio is sampled at a rate of 44.1 kHz. The resonances of the liquid vessel are recorded in a 160 

frequency band of 0-20 kHz.  A frequency time course is generated as shown in Figure 1 161 

 162 

Experimental procedure 163 

The BARDS spectrometer records the initial steady state resonances of the vessel containing solvent, 164 

deionised water, as a reference for 30 seconds once the stirrer is set in motion. Following addition of 165 

the sample the pitch of the resonance modes in the deionised water decrease giving rise to a frequen-166 

cy minimum (fmin) by effecting the change in the velocity of the sound, before gradually returning to 167 

steady state over several minutes. The amount of blend sample analysed was 250 mg, which was 168 

equivalent to that of the intended formulation tablet weight. Spectra were recorded for a total of 800-169 

1200 seconds which is dictated by the rate of return of the fundamental frequency to steady state. All 170 

experiments were performed in duplicate and an average reading and spread of two analyses is pre-171 

sented. The time courses of the observed acoustic profiles were measured under standardized condi-172 

tions of constant volume, concentration, temperature and stirring rate. 173 

 174 

Spectral Information 175 

Acoustic spectra are characterized by specific nomenclature. The first 30 seconds of the spectrum cor-176 

responds to steady state resonances of vessel 10 kHz as shown as volume line in Figure 1. Sample was 177 

tipped into the deionized water at the 30 second time point, resulting in a decrease of resonance fre-178 

quencies due to a change in the velocity of sound. This resonance line is called the fundamental 179 

curve
16

. The time taken to reach the frequency minimum (fmin) is designated as ∆t. The time for which 180 
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 8 

 

the response holds on fmin is known as the lag phase. The approximate time taken for the fundamental 181 

curve to progress from fmin to steady state is designated as ∆T. In this study all the time points shown 182 

are specific to each phase of the acoustic response. Lag phase and ∆T are used to identify the degree 183 

of wetting of the individual powders and blends.  184 

 185 

Contact angles by spread wetting 186 

Optical tensiometer (Attension Theta, Biolin Scientific Ltd., Espoo, Finland) was used to measure the 187 

contact angle (θ). A 5µl deionized water droplet was placed on the 250 mg blend compacted to a po-188 

rosity of 12.3% ± 0.7, by sessile drop technique with dynamic live measurements at a temperature of 189 

20
0
C. All measurements were recorded in triplicates and the average value and standard deviation was 190 

determined. 191 

 192 

Wetting time 193 

The wetting time of the blends compacted to a porosity of  23.6% ± 1.3 was measured using the fol-194 

lowing procedure
22,23

. Two Whatman filter papers were placed in a petri dish of 10 cm in diameter. A 195 

small volume (8 ml) of red amaranth solution was added into the petri dish.  A tablet was placed care-196 

fully on the surface of the filter paper. The time required for the red solution to reach the upper sur-197 

face of the tablet was noted as the wetting time. All the measurements were made in triplicate and 198 

the average value and standard deviation was determined. 199 

 200 

RESULTS 201 

Preliminary BARDS studies –proof of concept  202 

The BARDS acoustic spectra of the individual blend components (25mg of metoclopramide HCl and 203 

225mg of MCC) and 250 mg of a metoclopramide HCl/MCC blend are shown in Figure 2. Table 1 details 204 

the lag times and steady state time points for the individual components and blends. All samples were 205 

added to 25ml water following the period (30s) of steady state resonance. The acoustic response gen-206 

erated for MgSt upon addition to water was a straight line without any frequency decrease (acoustic 207 

spectra not shown). The MgSt sample did not disperse in water due to its hydrophobic nature. Hence 208 

no air was introduced into the water and no change in resonance frequency was observed. There was 209 
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 9 

 

a slight frequency decrease of 0.3 kHz for metoclopramide HCl samples and gradual return to steady 210 

state after approx. 50 s as shown in Figure 2. The acoustic profile after addition of metoclopramide 211 

was a V-shaped response to fmin, which is a good indication of trapped and adhered gases that are in-212 

troduced into the solvent with a fast gas release.  The frequency change was sustained only for a short 213 

period of approx. 15 s due to the high solubility and rapid dissolution of metoclopramide hydrochlo-214 

ride in water.  215 

In contrast, the frequency of MCC and metoclopramide/MCC blend was decreased to approx. 5 kHz 216 

and sustained a lag time up to approx. 80 s after sample addition was observed. Both the spectra 217 

gradually returned to steady state (∆T) at approx. 310 s (Table 1), with a slight deflection of acoustic 218 

response for metoclopramide/MCC blend in the range of 190 – 270 s (Figure 2). The U-shaped acoustic 219 

response of the MCC and metoclopramide/MCC blend indicates the gas oversaturation in the sol-220 

vent
16

. The greater frequency decrease of MCC, compared to metoclopramide, relates to the larger 221 

sample weight and and hence the volume of entrained gas introduced. MCC does not dissolve in water 222 

but hydrates in water resulting in the prolonged lag time. 223 

Figure 3 shows the BARDS profiles of metoclopramide/MCC lubricated and unlubricated blends after 224 

varied degrees of rotation. The blend frequency decreases to an fmin of approx. 5kHz for all blends. The 225 

frequency is sustained at fmin for approx. 120 s and 145 s for the lubricated blends prepared at 5 rota-226 

tions and 100 rotations respectively, which is designated as lag phase (start of fmin to finish of fmin). This 227 

differentiates the effect of lubricant, blending on the lag time. In contrast the unlubricated blend lag 228 

phase was sustained for approx. 80 s. Similarly the time taken to return to steady state resonance (∆T) 229 

was approx. 600 s for the lubricated blend rotated 5 times and approx. 800 s for 100 times rotated 230 

blend Figure 3. The notable shift in the lag times and the time taken to return to steady state was at-231 

tributed to the increased coating of metoclopramide and MCC with hydrophobic MgSt which delayed 232 

the wetting of the blend and hence displacement of gas from powder to water phase. This phenome-233 

non of powder lubricants retarding the wetting and dissolution of blend components is a commonly 234 

observed effect of MgSt when over blended 
24–26

. The end of lag time signifies the starting point of 235 

wetting of blends, which is similar to the results obtained by Hurson et al., on enteric coated drug 236 

spheres
27

. Lag time can be potentially used to indicate the coating thickness or the degree of lubrica-237 

tion of the blends by hydrophobic MgSt and the start of return to steady state frequency can be related 238 

to the wetting of blend and outgassing of the oversaturated gases. The results of this preliminary proof 239 
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of concept study demonstrated the potential of BARDS to detect differences in the wetting of blends 240 

due to the presence of MgSt and the degree of blending of MgSt. 241 

 242 

Comparison of unlubricated and lubricated formulations by BARDS 243 

Following on from the preliminary proof of concept study, the ability of BARDS to detect differences in 244 

the wetting behavior of lubricated and unlubricated blends prepared using a lab scale double cone 245 

blender and subsequently fed at different feed rates through a screw feeder was assessed.  246 

BARDS analysis of blends prior to feeding  247 

Figure 4 shows the BARDS profiles of unlubricated and lubricated formulations, prior to feeding. Fol-248 

lowing addition of the sample to water there was a decrease to a plateau frequency of approx. 5 kHz 249 

after 30 s.  Formulation 1 (unlubricated) showed a lag time of approx. 80s and formulation 2 (lubricat-250 

ed) showed a lag time of approx. 100 s. The lag phase indicates that the rate of gas evolution in the 251 

water phase is equal to the rate of gas loss from the water phase. The disappearance of gas from the 252 

solvent after fmin proceeded more slowly for formulation 2, which resulted in notable extension in time 253 

of approx. 640 s for acoustic resonance to return to steady state, whereas for formulation 1 it was 254 

found to be approx. 450 s. The differences in the acoustic responses between the formulations as 255 

shown in Figure 3 and Figure 4, is mainly due to the volume of gas introduced into solvent after pow-256 

der sample addition, the amount of gas generated, the rate of gas released from the powders and the 257 

rate of gas eliminated from the solvent during the wetting of unlubricated and lubricated formulations.  258 

All these parameters were examined in depth by determining the changes in gas volumes using equa-259 

tion 4. 260 

Equation 4 was applied to BARDS frequency data to analyze the fractional gas volume (fa) occupied by 261 

compressible gas following the introduction of powder samples and during the wetting of the formula-262 

tions. Both formulations quickly immersed when added into the water and reached a constant gas vol-263 

ume which lasted for a lag phase of approx. 45 s and 65 s for unlubricated and lubricated formulations 264 

respectively, Figure 5A. The curves represent an evolution and gas release from the water surface. No 265 

difference in the gas evolution following the addition of sample to the water was noted between the 266 

formulations. However, the release of gas from the water following sample addition was extended in 267 
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the lubricated blend data. The gas volume data (Figure 5A) is plotted in a logarithmic scale as shown in 268 

Figure 5B. The gas or air elimination rate constant (k) for the compressible gas in solution was assumed 269 

to be a first order process and was determined from the descending slope of the log plots shown in 270 

Figure 5B. 271 

Table 2 shows the gas elimination rate constants (k) and the time range for which this constant is cal-272 

culated. The gas elimination rate constants calculated for all samples of formulation 1 (unlubricated) 273 

were consistent (k ≈ 1 × 10
-5

 s
-1

), whereas the presence of MgSt in formulation 2 resulted in a reduc-274 

tion in gas elimination constant (k ≈ 7 – 8 × 10
-6

 s
-1

), and greater variability between samples. The 275 

slower gas escape for the lubricated blend suggests that hydration of MCC may have continued during 276 

the gas release phase, which is steady state attaining phase. This result is generally in agreement with 277 

the previous study on milk protein powder concentrates
15

. The slow gas generation of lubricated 278 

blends strongly inhibits hydration of the powder. In order to validate this hypothesis, these blends 279 

were fed through K-Tron MT12 loss in weight feeder, to obtain blends of varying degrees of lubrication 280 

to determine the influence of increased distribution of MgSt in blends on the BARDS acoustic re-281 

sponse. These blends were also analyzed for their wetting time and contact angle measurements 282 

which are more recognized methods to determine blend hydration
22,23

.  283 

 284 

BARDS analysis of blends following to feeding 285 

Slower gas elimination rate constants have been attributed to slower wetting of blends as previously 286 

discussed
15

.  Here we demonstrate the differences in the wetting behavior of lubricated blends with 287 

equivalent composition but different degrees of controlled distribution of lubricant using a feeding sys-288 

tem. The aim is to use the BARDS technique to obtain more reliable, mechanistic and kinetic infor-289 

mation that relates to the degree of lubrication. 290 

Formulation 1 (unlubricated) was unaffected by feed rate when analysed by BARDS as shown in Figure 291 

6A. The lag phase lasted for approx. 90 s and the acoustic response reached steady state after approx. 292 

420s as shown in Figure 6A. In contrast, formulation 2 (lubricated) showed a slight extension in the lag 293 

phase as the feed rate increased, Figure 6B. All the lubricated blends returned to steady state after ap-294 

prox.790s (Figure 6B). The extension in lag phase was attributed to increased coating of the MCC and 295 
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drug particles with MgSt due to increased feeding rate and hence prolonged wetting as discussed pre-296 

viously.  297 

Formulation 1 when fed at different feed rates, showed constant gas volumes over the time period of   298 

approx. 60s, with a relatively rapid gas elimination rate constant thereafter (k ≈ 1.17 – 1.21 ×10
-5 

s
-1

), 299 

Figure 7A and Table 3.  Lubricated blends show an increase in constant gas volume with increase in 300 

formulation feed rate, Figure 7B. Slower gas elimination rate constants were observed for the lubricat-301 

ed blend (k ≈ 5.99 – 6.74 ×10
-6 

s
-1

), Table 3.  302 

 303 

Contact angle and wetting time of formulations before and after feeding 304 

Contact angle is a commonly employed technique used to investigate the wetting of powders. When 305 

the surface of compacted powder is exposed to a liquid drop, the rate of change of the contact angle is 306 

monitored and recorded until the it reaches equilibrium
5
. In this study, the major diluent used in pre-307 

paring blends was microcrystalline cellulose, which swells upon contact with water
28

, so the initial 308 

point of contact between compacted powder and water droplet is reported, after the droplet is stabi-309 

lized. Compacts with similar porosity were prepared for contact angle measurements. Contact angle 310 

results are shown in Figure 8(A). The compact from formulation 1 (unlubricated) showed a contact an-311 

gle of approx. 10
0
, and the compact from formulation 2 (lubricated) showed a 4 fold increase in the 312 

contact angle, which was attributed to the presence of MgSt. The feed rate did not show any effect on 313 

the contact angle measurements for compact from formulation 1 as anticipated. However compacts of 314 

formulation 2, as the feed rate increased the average contact angle increased, but it was not statisti-315 

cally significant, possibly due to variability in measurements. Similar to the BARDS technique, the con-316 

tact angle method detected differences in wetting behavior between lubricated and unlubricated 317 

blends however but due to inherent test variability the technique was unable to detect differences be-318 

tween lubricated blends fed at different feed rates.  319 

The wetting time method described above is an alternative method that can used to determine the 320 

wetting behavior of powders. Figure 8(B) shows the differences in the wetting time for the formulation 321 

1 and formulation 2 compacts of equivalent porosities. An increase in the feed rate was expected to 322 

result in an increased degree of lubrication for formulation 2. However increased feed rate did not 323 

show significant differences in wetting times (54.6s ± 0.5 and 52s ± 2.6) between the blends fed at 324 
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0.2238 kg/hr and 0.5594 kg/hr respectively. However formulation 2 fed at 1.0069 kg/hr, showed an 325 

increased wetting time of 74.3s ± 10.96. These results support the attribution of differences in BARDS 326 

profiles to differences in blend wetting behavior. Compared to both techniques assessed, the BARDS 327 

method was easier to perform and analysed the blends in their powdered form without the need for 328 

compaction prior to analysis.  329 

 330 

Discussion 331 

It is important to understand the wetting behavior of pharmaceutical blends as wetting is the critical 332 

step in the dissolution and disintegration process of tablets
1,4

. MgSt is one of the most commonly used 333 

lubricants in tablet manufacturing and due to its hydrophobic nature, if not properly monitored during 334 

blending has the potential to overcoat powders in the blend thereby compromising the tablet 335 

quality
29,30

. This study demonstrated the capability of BARDS to identify differences in hydration be-336 

haviour of blends due to different degrees of MgSt distribution, at a fixed MgSt concentration (Figure 337 

3). BARDS analysis generated reproducible, qualitative data that could be related to powder hydration 338 

in a timeframe suitable for its use as a process analytical technology (PAT) tool. Other PAT tools have 339 

successfully measured MgSt homogeneity within blends
31

, in-line and at-line
32,33

, with the objective of 340 

identifying differences in subsequent blend behaviour including hydration. Compared to these tech-341 

niques, the BARDS method proposed studies blend hydration behaviour by immersion of powder in 342 

the liquid system of interest. Previous BARDS hydration studies focused mainly on single component 343 

milk protein powders
15

 here we demonstrated the applicability of BARDS in multi-component pharma-344 

ceutical powder blends for the first time and specifically to the study of blend lubrication.  345 

Individual components and blends yield significantly different acoustic profiles specific to the amount 346 

of sample and composition of blend as shown in Figure 2 and Figure 3.  Compound solubility has an 347 

effect on the acoustic response
16

.  The results demonstrated that a soluble API sustained a V- shaped 348 

frequency change for only very short duration compared to insoluble MCC, which wets but does not 349 

dissolve in water. Preliminary testing of blends prepared manually showed notable shift in the acoustic 350 

response for blends rotated 100 times compared to blends prepared with 5 rotations. This was further 351 

demonstrated by preparing lab scale blends in a controlled manner.  352 

Page 13 of 26

ACS Paragon Plus Environment

Molecular Pharmaceutics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 14 

 

Equation 4 was used to convert the BARDS frequency data, to generate fractional gas volume (fa) oc-353 

cupied by the compressible gas during wetting or dissolution of the powders. From this the log plots of 354 

gas volume were plotted to calculate the gas elimination rate constants to allow the quantitative com-355 

parison of the wetting behavior of powders. Formulation 1 (unlubricated) showed faster gas elimina-356 

tion rate constant compared to formulation 2 (lubricated) Table 2.  357 

In this study, results generated by BARDS were also compared to more standard wetting techniques of 358 

contact angle and wetting time. However, there are some limitations to these techniques. For both 359 

methods the powder was compacted prior to analysis in order to achieve reproducible results.  The 360 

nature of this formulation, in particular the hydrophilic and swelling behavior of MCC, undermines the 361 

reproducibility and accuracy of the contact angle technique. However despite these limitations, the 362 

contact angle results demonstrated a significant change in the measurements between lubricated and 363 

unlubricated formulations. Washburn capillary rise method, which is one of the most widely used wet-364 

ting techniques was not evaluated in this study, however there are also a number of limitations associ-365 

ated with this technique such as layer swelling, difficulty in determining time zero, not suitable for 366 

powders with contact angle more than 90
0
 and attaining consistent pore architecture will be challeng-367 

ing
2–4,10,11

. BARDS offers some key advantages compared to traditional techniques; powder can be di-368 

rectly analysed without packing or compacting and the acoustic profile is generated by dispersion of 369 

the blend in water, akin to disintegration and dissolution experiments. BARDS experiments require on-370 

ly 25ml of solvent with 10-300mg of sample, which greatly minimizes the quantities of powder re-371 

quired in comparison to comparable wetting tests
4
. BARDS is a highly reproducible method, when used 372 

under similar conditions and using similar amount of sample. Under these controlled condition BARDS 373 

provides a real time acoustic spectra reflecting the compressibility of the solution during the phase 374 

change of the solute.  375 

This study highlights the ability of BARDS as a novel technique to identify over or under lubricated 376 

blends and potentially assists in predicting dissolution behavior of specific batches. BARDS can also be 377 

used to identify batch to batch variability
17

. BARDS can also be used to rapidly monitor the degree of 378 

lubrication and hydration behavior of pharmaceutical blends demonstrating its potential as an at-line 379 

process analytical technology (PAT) screening tool during development and routine pharmaceutical 380 

production for enhanced quality control and finished product quality.  381 
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Conclusion 382 

The work presented demonstrates the ability of the BARDS to detect differences in the wetting behav-383 

ior of commonly used tablet excipients microcrystalline cellulose (MCC), magnesium stearate (MgSt) 384 

and a model drug (metoclopramide hydrochloride) as single component and multi-component powder 385 

blends. BARDS detected differences in the wetting behavior of lubricated and unlubricated blends and 386 

was compared with the wetting measurement techniques of contact angle and wetting time. In com-387 

parison with these techniques, BARDS determined the wettability of powder by immersion and with-388 

out the requirement for powder compaction. In addition BARDS was shown to be a more reproducible 389 

and rapid technique than the standard methods. The BARDS technique was also shown to be capable 390 

of detecting differences in the wetting behavior of lubricated blends, of equivalent composition, fol-391 

lowing different blending processes and feeding rates. The results of this study highlight the ability of 392 

the BARDS technique as a rapid, at-line technique for in-process analysis of pharmaceutical blend lu-393 

brication and potentially the wetting behaviour of pharmaceutical powders and blends.  394 
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List of Tables 488 

Table 1 BARDS profile lag times and time to return to steady state for metoclopramide, MCC, blend of 489 

metoclopramide-MCC and blend of metoclopramide-MCC-MgSt prepared by manual rotation. 490 

Components Approx. Lag time (s) 
Approx. Time to return 

to steady state (s) 

Metoclopramide - 50 

MCC 80 310 

Metoclopramide/MCC 5 (rotations) 80 310 

Metoclopramide/MCC/MgSt (5 rotations) 120 600 

Metoclopramide/MCC/MgSt (100 rotations) 145 800 

 491 

Table 2 Calculated gas volume elimination rate constant (k) and time ranges used for the calculation of 492 

the rate constant for samples of formulation 1 and formulation 2. Samples were taken from various 493 

locations in the lab scale blender. Formulation 1 (metoclopramide 10% w/w and MCC 90% w/w) and 494 

formulation 2 (metoclopramide 10% w/w, MCC 89.5% w/w and 0.5% w/w MgSt). 495 

Blend 

Location 

Formulation 1 Formulation 2 

Time range (s) k (s
-1

) Time range (s) k (s
-1

) 

Top – 1 95-390 1.00E-05 109-556 8.00E-06 

Top – 2 95-390 1.00E-05 167-556 7.00E-06 

Top – 3 95-390 1.00E-05 109-556 8.00E-06 

Bottom – 1 95-390 1.00E-05 109-556 8.00E-06 

Bottom – 2 95-390 1.00E-05 156-556 7.00E-06 

Bottom – 3 95-390 1.00E-05 126-556 8.00E-06 

 496 

 497 

 498 

 499 

 500 
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 501 

Table 3 Lag time, time to return to steady state, calculated gas volume elimination rate constant (k) and time ranges used for calculation of the 502 

constant for samples of formulation 1 and formulation 2. Blends were prepared using lab scale blender and fed at different rates through a screw 503 

feeder. Formulation 1 (metoclopramide 10% w/w and MCC 90% w/w) and formulation 2 (metoclopramide 10% w/w, MCC 89.5% w/w and 0.5% 504 

w/w MgSt). 505 

Feed rate 

(kg/hr) 

Formulation 1 Formulation 2 

Approx. Lag 

time (s) 

Approx. time to 

return to steady (s) 
k (s

-1
) 

Time 

range (s) 

Approx. Lag 

time (s) 

Approx. time to 

return to steady (s) 

 

k (s
-1

) 

Time 

range (s) 

0.2238 90 420 1.17E-05 95-419 210 790 5.99E-06 207-792 

0.5594 90 420 1.19E-05 95-419 220 790 6.02E-06 222-792 

1.0069 90 420 1.21E-05 95-419 240 790 6.74E-06 255-792 

 506 
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List of Figures 507 

 508 

Figure 1 Representative BARDS raw spectrum of 250 mg microcrystalline cellulose (MCC) in 25 ml water.  509 

 510 

 511 

Figure 2 BARDS acoustic response in 25ml deionised water (DI). Metoclopramide (25mg) black line, microcrys-512 

talline cellulose (225mg) grey line and blend of metoclopramide (10% w/w) and MCC (90% w/w) (250mg) 513 

dashed line. Average values shown, n =3, y error bars indicate standard deviation. 514 
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 515 

Figure 3 BARDS acoustic response for blends manually blended in 25ml deionised water.  Metoclopramide 10% 516 

w/w and MCC 90% w/w (250mg) after 5 rotations (grey line), metoclopramide 10% w/w, MCC 89.5% w/w and 517 

0.5% w/w MgSt (250mg) after 5 rotations (black line) and metoclopramide 10% w/w, MCC 89.5% w/w and 0.5% 518 

w/w MgSt (250mg) after 100 rotations (dashed grey line). Average values shown, n =3, y error bars indicate 519 

standard deviation. 520 

 521 

Figure 4 BARDS acoustic response for blends prepared using lab scale blender in 25ml deionised water. Formu-522 

lation 1 (metoclopramide 10% w/w and MCC 90% w/w) (250mg) grey line and formulation 2 (metoclopramide 523 

10% w/w, MCC 89.5% w/w and 0.5% w/w MgSt) (250mg) black line. Samples analysed were collected from 6 524 
different locations in the blender and analysed in duplicate. Average values shown, n =12, y error bars indicate 525 

standard deviation. 526 
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 527 

 528 

Figure 5 Gas volume plots for blends prepared using lab scale blender in 25ml deionised water. A. Plot of calcu-529 

lated gas volume versus time and B. Plot of log of calculated gas volume versus time. Formulation 1 (metoclo-530 
pramide 10% w/w and MCC 90% w/w) (250mg) grey line and formulation 2 (metoclopramide 10% w/w, MCC 531 

89.5% w/w and 0.5% w/w MgSt) (250mg) black line. Samples analysed were collected from 6 different locations 532 

in the blender and analysed in duplicate. Average values shown, n =12, y error bars indicate standard deviation. 533 

 534 

0.E+00

1.E-03

2.E-03

3.E-03

4.E-03

5.E-03

6.E-03

0 200 400 600 800

G
a

s 
V

o
lu

m
e

 (
m

L)

Time (s)

A

Formulation 1

Formulation 2

1.E-05

1.E-04

1.E-03

1.E-02

0 200 400 600 800

G
a

s 
V

o
lu

m
e

 (
m

L)

Time (s)

B

Formulation 1

Formulation 2

Page 23 of 26

ACS Paragon Plus Environment

Molecular Pharmaceutics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 24 

 

 535 

 536 

Figure 6 BARDS acoustic response for blend samples in 25ml deionised water. Blends were prepared using lab 537 

scale blender and fed at different rates through a screw feeder. Feed rate 0.2238 kg/hr (grey line), 0.5594 kg/hr 538 

(black line) and 1.0069 kg/hr (dashed black line). A. Formulation 1 (metoclopramide 10% w/w and MCC 90% 539 

w/w) (250mg) and B. Formulation 2 (metoclopramide 10% w/w, MCC 89.5% w/w and 0.5% w/w MgSt) (250mg). 540 

Average values shown, n =2, y error bars indicate max and min values. 541 
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Figure 7 Gas volume plots for blends in 25ml deionised water. Blends were prepared using lab scale blender- and fed at different rates through a screw feeder. 

Feed rate 0.2238 kg/hr (grey line), 0.5594 kg/hr (black line) and 1.0069 kg/hr (dashed black line). A. Formulation 1 plot of calculated gas volume versus time, B. 

Formulation 2 plot of calculated gas volume versus time, C. Formulation 1 plot of log of calculated gas volume versus time and D. Formulation 2 plot of log of 

calculated gas volume versus time. Formulation 1 (metoclopramide 10% w/w and MCC 90% w/w) (250mg) and Formulation 2 (metoclopramide 10% w/w, MCC 

89.5% w/w and 0.5% w/w MgSt) (250mg). Average values shown, n =2, y error bars indicate max and min values. 
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Figure 8 A. Contact angle (
0
) of deionized water on blend compacts B. Wetting time of blend compacts with aqueous amaranth solution. Formulation 1 (meto-

clopramide 10% w/w and MCC 90% w/w) and Formulation 2 (metoclopramide 10% w/w, MCC 89.5% w/w and 0.5% w/w MgSt). Average values shown, n =3, y 

error bars indicate standard deviation. 
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