
Title An investigation of the role of TRIB2 in steady state and stressed
haematopoiesis

Authors Liang, Kai Ling

Publication date 2016

Original Citation Liang, K. L. 2016. An investigation of the role of TRIB2 in steady
state and stressed haematopoiesis. PhD Thesis, University
College Cork.

Type of publication Doctoral thesis

Rights © 2016, Kai Ling Liang. - http://creativecommons.org/licenses/
by-nc-nd/3.0/

Download date 2024-05-13 09:12:04

Item downloaded
from

https://hdl.handle.net/10468/3106

https://hdl.handle.net/10468/3106


1 
 

 An investigation of the role of TRIB2 in  

steady state and stressed haematopoiesis 

 

 

Kai Ling Liang 

BSc, MSc 

 

Submitted in fulfilment of the requirements for the degree of 

Doctor of Philosophy in Cancer Biology 

 

 

 

National University of Ireland, Cork 

School of Biochemistry and Cell Biology 

 

August 2016 

 

Head of School: Professor David Sheehan 

 

Supervisors:  

Dr. Karen Keeshan & Professor Tommie V. McCarthy 

 



2 
 

Table of Contents 

 

Declaration…………………………………………………………………………………..7 

 

Acknowledgements…………………………………………………………………………8 

 

Abstract………………………………………………………………………………………9 

 

List of Abbreviations………………………………………………………………………11 

 

List of Figures……………………………………………………………………………...14 

 

List of Tables………………………………………………………………………………16 

 

Related Publications………………………………………………………………………18 

 

Chapter 1 Introduction 

1.1 Discovery of Tribbles family……………………………………………..19 

1.2 Classification of Tribbles family…………………………………………20 

1.3 Cellular functions of TRIB2………………………………………………21 

1.3.1 Autoantigen……………………………………………………...22 

1.3.2 Inhibition of adipogenesis………………………………………23 

1.3.3 Inhibition of FOXO function…………………………………….23 

1.3.4 Inhibition of YAP degradation………………………………….23 

1.3.5 Modulation of MAPK pathway………………………………....24 

1.3.6 Modulation of NFκB pathways…………………………………24 

1.3.7 Promotion of CEBPα degradation.........................................25 

1.3.8 Promotion of MCL1 degradation...........................................25 

1.4 Regulation of Trib2/TRIB2 and TRIB2................................................26 

1.4.1 Transcription factors..............................................................26 

1.4.2 MicroRNAs............................................................................26 

1.4.3 E3 ubiquitin ligases...............................................................27 

1.5 Steady state haematopoiesis.............................................................28 

1.5.1 Bone marrow haematopoiesis...............................................28 

1.5.2 Intrathymic T-cell development.............................................30 

1.5.3 TRIB2 in normal haematopoiesis..........................................32 

1.6 Stressed haematopoiesis...................................................................33 



3 
 

 1.6.1 Ageing...................................................................................33 

 1.6.2 Infection.................................................................................34 

 1.6.3 Iatrogenic interventions (irradiation and chemotherapy).......35 

1.7 TRIB2 and acute leukaemia...............................................................37 

 1.7.1 Acute myeloid leukaemia......................................................37 

 1.7.2 T-cell acute lymphoblastic leukaemia...................................40 

 1.8     Thesis aims.........................................................................................42 

 

Chapter 2      Materials and methods 

            2.1     Materials.............................................................................................43 

 2.1.1   Antibodies............................................................................43 

 2.1.1.1     Flow cytometry application..................................43 

 2.1.1.2    Western blotting application.................................44 

 2.1.2      Bacterial strains...................................................................44 

 2.1.3      Cell lines..............................................................................44 

 2.1.4      Chemicals, consumables and reagents...............................45 

 2.1.5      Mice.....................................................................................47 

 2.1.6      Plasmids..............................................................................48 

 2.2     Methods..............................................................................................48 

 2.2.1      Agarose gel electrophoresis................................................48 

 2.2.2      Annexin V expression and apoptosis assay........................49 

 2.2.3      Bacterial transformation.......................................................49 

 2.2.4      Blood cell counts.................................................................49 

 2.2.5      Bone marrow transduction and transplantation...................50 

 2.2.5.1     Production of retroviral supernatants...................50 

 2.2.5.2     Determination of retrovirus titer...........................51 

 2.2.5.3     Ex vivo culture and transduction of bone  

  marrow................................................................52 

 2.2.5.4     Transplantation and monitoring for leukaemia  

  development........................................................54 

 2.2.5.5     Analysis for moribund mice.................................55

    

 2.2.6      Cell counting by trypan blue exclusion................................55 

 2.2.7      Co-immunoprecipitation.......................................................56 

 2.2.8     Cytospin preparation and staining.......................................57 

 2.2.9      Detection of endogenous Tcrb rearrangements..................57 

 2.2.9.1     Extraction and clean up of thymic DNA...............57 



4 
 

 2.2.9.2     PCR amplification of Tcrb rearrangements.........58 

 2.2.10    Flow cytometry....................................................................60 

 2.2.10.1   Preparation for primary cells...............................60 

 2.2.10.2   Surface staining...................................................60 

 2.2.10.3   Intracellular staining............................................63 

 2.2.10.3.1     DNA staining for thymocytes..........63 

 2.2.10.3.2     DNA staining for cell cycle   

  synchronization...............................64 

 2.2.10.3.3     Ki-67 and phospho-p38 staining.....64 

 2.2.10.3.4    Staining for cells in resting and  

  cycling state....................................65 

 2.2.10.4   Data collection and analysis................................65 

 2.2.11    GSEA analysis.....................................................................66 

 2.2.12    In vivo 5-FU treatment.........................................................66 

 2.2.13    In vivo BrdU pulsing and detection of incorporated BrdU....67 

 2.2.14    Making and staining a blood smear.....................................68 

 2.2.15    Mycoplasma detection assay..............................................68 

 2.2.16    Plasmid construction...........................................................68 

 2.2.16.1   Sub-cloning to derive  

  pCMV6-CDC25A/B-FLAG...................................68 

 2.2.16.2   Sub-cloning to derive pCMV6-CDC25C-FLAG...69 

 2.2.17    Plasmid purification.............................................................70 

 2.2.18    Protein BLAST.....................................................................71 

 2.2.19   Quantitative  RT-PCR..........................................................71 

 2.2.19.1   Analysis for TRIB2 knockdown in U937 cells......71 

 2.2.19.2   Analysis for cell cycle synchronization................72 

 2.2.20    RNA extraction and complementary DNA (cDNA)  

  synthesis..............................................................................72 

 2.2.21    Single thymidine block.........................................................74 

 2.2.22    Statistics..............................................................................75 

 2.2.23  Subcellular fractionation......................................................75 

 2.2.24    Tissue culture......................................................................76 

 2.2.25    Transient transfection..........................................................77 

 2.2.25.1   Examination of TRIB2 and CDC25A-C  

  interactions......................................................... 77 

  2.2.25.2   Examination of CDC25C degradation.................77 

  2.2.26.3  Examination of CDC25C ubiquitination...............78 



5 
 

 2.2.26    Trib2 genotyping..................................................................78 

 2.2.26.1   DNA extraction....................................................78 

 2.2.26.2   PCR amplification of Trib2 WT and mutant  

  alleles..................................................................79 

 2.2.27    Ubiquitination assay............................................................80 

 2.2.28    Western blotting...................................................................81 

 2.2.28.1   Detection of MAPK signalling..............................82 

 2.2.28.2   Detection of co-immunoprecipitated proteins......84 

 2.2.28.3  Detection of nuclear and cytoplasmic proteins....84 

 2.2.28.4   Detection of ubiquitination...................................85 

 2.2.28.5   Detection of TRIB2 during cell cycle  

  progression..........................................................86   

 2.2.29    Whole bone marrow transplantation....................................86 

 

Chapter 3      Examination of the role of TRIB2 in steady state haematopoiesis 

 3.1      Introduction.........................................................................................88 

 3.2      Results...............................................................................................89 

 3.2.1  TRIB2 is dispensable for murine bone marrow   

  haematopoiesis...................................................................89 

 3.2.2  TRIB2 regulates the proliferation of developing  

  thymocytes..........................................................................94 

 3.3     Discussion........................................................................................101 

 

Chapter 4      Examination of the role of TRIB2 in 5-FU induced stressed 

 haematopoiesis 

 4.1     Introduction.......................................................................................103 

 4.2     Results..............................................................................................105 

 4.2.1  Trib2-/- thymocytes are hypersensitive to 5-FU induced cell 

  death..................................................................................105 

 4.2.2  Acceleration of thymopoietic recovery in the absence of  

  TRIB2 after genotoxic insult..............................................107 

 4.2.3  A single case of partial T-cell developmental blockage in the 

  absence of TRIB2 during thymopoietic recovery...............115 

 4.3     Discussion........................................................................................116 

 

 

 



6 
 

Chapter 5      Examination of the role of TRIB2 in T-cell leukaemogenesis 

 5.1     Introduction.......................................................................................119 

 5.2     Results..............................................................................................129 

 5.2.1  TRIB2 loss accelerates murine T-ALL via defective MAPK 

  signalling............................................................................129 

 5.2.2  TRIB2 expression levels distinguish molecular subtypes of 

   human T-ALL and correlate with MAPK signalling..135  

 5.3     Discussion........................................................................................139 

 

Chapter 6      Examination of the relationship of TRIB2 with CDC25 family 

 6.1     Introduction.......................................................................................143 

 6.2     Results..............................................................................................145 

 6.2.1  TRIB2 physically binds to CDC25B/C but not CDC25A....145  

 6.2.2  TRIB2 promotes ubiquitination and proteasomal dependent 

  degradation of CDC25C....................................................147 

 6.2.3  TRIB2 is tightly regulated during cell cycle phase   

  progression........................................................................151 

 6.3     Discussion........................................................................................153 

 
 

Chapter 7 General discussion...........................................................................155 

 

Bibliography............................................................................................................161 

 

Appendix [related publications] 

 

 

 

 

 

 

 

 

 



7 
 

Declaration 

 

The thesis submitted is my own work, except where explicit reference is made to 

the contribution of others, and has not been submitted for another degree, either at 

University College Cork or elsewhere.  

 

Signed: (Kai Ling Liang)                          

Date:    __15st AUGUST 2016_   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

Acknowledgements  

 

First and foremost, I would like to thank my joint supervisors, Dr. Karen Keeshan 

from University of Glasgow (UoG, UK) and Professor Tommie McCarthy from 

University College Cork (UCC, Ireland) for their support throughout the duration of 

my PhD study. This thesis was not possible without their guidance. I enjoyed the 

time I spent in both laboratories and I am grateful for being given the opportunity to 

work under their supervision. 

 

I would like to acknowledge people who contributed to the research presented in 

this thesis. I thank Caitriona O’Connor and Pedro Veiga for their help in collecting 

the experimental data for bone marrow haematopoiesis at steady state. I thank 

Joana Campos for providing her experimental data regarding Trib2 knockdown in 

U937 cells. I thank all the principal investigators and the technical staffs at Paul O’ 

Gorman Leukaemia Research Centre, UK especially Dr. Alison Michie, Karen Dunn 

and Hothri Ananyamb Moka. I also thank the technical staffs at the School of 

Biochemistry and Cell Biology, UCC. 

 

I would like to thank the UoG for appointing me as a visiting postgraduate 

researcher. This allowed me to do research in Dr. Karen Keeshan’s laboratory at 

Paul O’Gorman Leukaemia Research Centre. All the mice experiments described in 

this thesis were carried out at Biological Service Unit facilities at the Cancer 

Research UK Beatson Institute and the UoG Biological Services.  

 

I am indebted to my parents and my brother (Kai Siang) for their support. 

 

Last but not least, I would like to thank Health Research Board Ireland for 

funding my research through UCC PhD Scholars Program in Cancer Biology. I 

thank Dr. Kellie Dean, the coordinator of my PhD Program for her support and 

advice. I thank Professor Rosemary O’Connor, the director and the steering 

committee of my PhD Program for giving me the opportunity to pursue my PhD at 

the UCC. 



9 
 

Abstract 

 

TRIB2 is a member of the mammalian Tribbles family of serine/threonine 

pseudokinases (TRIB1-3). In malignant haematopoiesis, Trib2 has been identified 

as an oncogene in myeloid leukaemogenesis. However, Trib2 is expressed 

physiologically at high levels in the T cell compartment of normal haematopoiesis 

and the normal haematopoietic role of TRIB2 remains elusive. Here, we studied 

murine haematopoiesis after Trib2 ablation under steady state and proliferative 

stress conditions, including genotoxic and oncogenic stress.  

 

At the steady state, we found that TRIB2 loss did not adversely affect peripheral 

blood cell counts and populations. Trib2-/- mice had similar bone marrow cellularity 

compared to wild type mice and no detectable significant differences found in the 

populations of haematopoietic stem and progenitor cells. However, Trib2-/- mice had 

significantly higher thymic cellularity due to the increased proliferation of Trib2-/- 

developing thymocytes which give rise to increased number of CD4/CD8 double 

and CD4 single positive mature thymic subsets.    

 

During stress haematopoiesis, Trib2-/- developing thymocytes undergo 

accelerated proliferation and demonstrate hypersensitivity to 5-fluorouracil-induced 

cell death. Despite the increased cell death post 5-fluorouracil-induced proliferative 

stress, Trib2-/- mice exhibit accelerated thymopoietic recovery post treatment due to 

expansion of Trib2-/- c-Kit- CD4/CD8 double negative 1 thymic progenitors and 

increased cell division kinetics of developing thymocytes. The increased 

proliferation in Trib2-/- thymocytes was exacerbated under oncogenic stress. In an 

experimental murine T-cell acute lymphoblastic leukaemia model, Trib2-/- mice had 

reduced latency in vivo which associated with aggressive phenotypes of T-cell 

acute lymphoblastic leukaemia and impaired activation of mitogen-activated protein 



10 
 

kinase. Gene set enrichment analysis showed that TRIB2 expression is elevated in 

immature subtype of human T-cell acute lymphoblastic leukaemia enriched with 

mitogen-activated protein kinase signalling. However, TRIB2 expression is 

suppressed in mature subtype of human T-cell acute lymphoblastic leukaemia 

associated with impaired mitogen-activated protein kinase signalling. Thus, TRIB2 

emerges as a novel regulator of thymocyte cellular proliferation, important for the 

thymopoietic response to genotoxic and oncogenic stress, and possessing tumour 

suppressor function. 

 

In Drosophila, Tribbles promotes degradation of String which is an orthologue of 

mammalian CDC25 phosphatases in order to arrest cell cycle during embryonic 

development. Given the anti-proliferative role we established for Trib2 in the context 

of developing thymocytes during intrathymic T-cell development, we also examined 

if the role of Tribbles-induced degradation of String is conserved in TRIB2. We 

found that TRIB2 interacts physically with CDC25B/C but not CDC25A isoform. 

Overexpression of TRIB2 promotes K48-linked polyubiquitination of CDC25C and 

degradation of CDC25C in the nucleus. Hence, this provides an insight into the 

molecular mechanism of TRIB2-mediated regulation of cell cycle. Future works are 

warranted to examine TRIB2-CDC25C interaction in the context of developing 

thymocytes and in T-cell acute lymphoblastic leukaemia, the malignant counterpart.   
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CHAPTER 1: INTRODUCTION 

  

1.1 Discovery of Tribbles family 

The Tribbles gene was first discovered in three independent Drosophila genetic 

screens. Two screens (Seher and Leptin, 2000, Grosshans and Wieschaus, 2000) 

were designed to identify mutations that affect gastrulation, the formation of ventral 

furrow by mesodermal precursor cells during Drosophila embryo development. In 

Tribbles mutants, the precursor cells have premature mitosis and this leads to 

defective gastrulation. These studies identified Tribbles as an inhibitor of mitosis 

and suggested that Tribbles inhibits String function, the Drosophila ortholog of Cell 

division cycle 25 (CDC25) phosphatase family that is required to initiate mitosis. 

The third screen discovered Tribbles as one of the genes that affect oogenesis 

when being overexpressed (Mata et al., 2000). This study investigated Tribbles in 

Drosophila wing and embryonic developments, and demonstrated that Tribbles 

coordinates mitosis and morphogenesis by promoting proteasomal dependent 

degradation of String. Another role of Tribbles in Drosophila was found to promote 

the degradation of Slbo, the Drosophila ortholog of CCAAT enhancer-binding 

protein (CEBP) family of transcription factors during oogenesis (Rorth et al., 2000).  

 

 

Figure 1.1 │ High degrees of similarity between the amino acid sequences of 
Tribbles members within the human family. TRIB1 and TRIB2 (71.3%) are more 
similar compared to TRIB3. The values in parentheses indicate similarity compared 
to the corresponded mouse Tribbles members. 
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There are three members (TRIB1-3) for mammalian Tribbles family. All the 

members are highly conserved between mouse and human (Figure 1.1) and have 

been identified as important signalling modulators and mediators in various 

diseases (Yokoyama and Nakamura, 2011). Studies of Tribbles deficient mice are 

invaluable in this aspect. Satoh and colleagues found that Trib1 knockout mice have 

diminished adipose tissue mass due to a defect in the differentiation of tissue-

resident M2-like macrophages which regulate lipolysis (Satoh et al., 2013). In 

contrast, Okamoto and colleagues did not identify any phenotypic defects in Trib3 

knockout mice (Okamoto et al., 2007). Nevertheless, Ord and colleagues showed 

that mast cells derived from bone marrow cells of Trib3 knockout mice have 

increased sensitivity to cell cycle arrest and cell death in response to interleukin 

(IL)-3 deprivation (Ord et al., 2012). Studies of Trib2 knockout mice are reviewed in 

the introduction of Chapter 3. In this chapter, we review mouse and human 

Trib2/TRIB2 in-depth.  

 

1.2 Classification of Tribbles family 

Drosophila and mammalian Tribbles consist of N-terminal, kinase-like and C-

terminal domains. Sequence analysis revealed that although the kinase-like domain 

of Tribbles is homologous to other serine/theronie kinases, it lacks one (DFG) of the 

three conserved motifs that are required for catalytic activity (Figure 1.2) (Manning 

et al., 2002). Hence, Tribbles are considered incapable to phosphorylate substrates 

and have been termed serine/threonine pseudokinases. This was supported by two 

studies where kinase activity was not detected in Drosophila Tribbles (Grosshans 

and Wieschaus, 2000) and human TRIB3 (Bowers et al., 2003) using embryo 

microinjection and in vitro kinase assays respectively. However, evidence emerges 

that pseudokinases could be catalytically active despite lacking conserved motifs. 

For example, Ca2+/calmodulin-activated serine-threonine kinase (CASK) is 

classified as pseudokinase because it lacks the DFG motif, which is crucial for Mg2+ 
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binding. Mg2+ is required for typical protein kinases to stimulate the transfer of a 

phosphate from adenosine 5’-triphosphate (ATP) to a protein substrate. However, 

further studies showed that CASK works independent of Mg2+, and is capable of 

autophosphorylation and for phosphorylating specific physiological substrate 

(neurexin-1) (Mukherjee et al., 2008, Mukherjee et al., 2010). Phylogenetic analysis 

showed that CASK and Tribbles are from the same group (Calmodulin/Calcium 

regulated kinases) of human kinase superfamily (Manning et al., 2002). Notably, a 

recent study showed that TRIB2 behaves like CASK that it binds to ATP and 

autophosphorylates in a metal-independent manner (Bailey et al., 2015). Hence, 

TRIB2 could be catalytically active and it is important to determine the physiological 

role of TRIB2 in order to identify its potential substrates which could be cell context 

specific.  

 

 

Figure 1.2 │ Tribbles lacks the key enzymatic residues in the DFG motif. 
Sequence alignment of mammalian Tribbles comparing the three conserved motifs 
(VAIK, HRD and DFG), located within the catalytic domain, which are essential for 
ATP, peptide and Mg2+ bindings respectively. The amino acid residues in these 
motifs are conserved in mouse and human orthologs of TRIB1-3. Modified from 
REF. (Zhang et al., 2012b). 
 

1.3 Cellular functions of TRIB2 

TRIB2 acts as a scaffold protein that brings enzymes and their substrates into 

critical positions to allow cellular reactions to proceed (Zhang et al., 2012b). Due to 

its scaffolding function, TRIB2 is able to modulate and mediate diverse signalling. In 

this section, we discuss the functions of TRIB2 identified in different cellular 

contexts. These studies showed that TRIB2 regulates substrates via either 

promotion (yes-associated protein (YAP), c-Jun N-terminal kinase (JNK), p38 and 
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RELB proto-oncogene, NF-kB subunit (RELB)) or inhibition (RAC-beta 

serine/threonine-protein kinase (AKT), CEBPα, CEBP, extracellular signal-

regulated kinase (ERK), forkhead box O (FOXO), JNK, myeloid cell leukaemia 1 

(MCL1) and p100) of their functions. Enzymes that are required for TRIB2 to 

regulate these substrates include beta-transducin repeat containing protein (-

TRCP), constitutive photomorphogenesis 1 (COP1), MAPK kinase 1 (MEK1), MAPK 

kinase 7 (MKK7) and tripartite motif-containing 21 (TRIM21).  

 

 

Figure 1.3 │The structure of TRIB2 protein. Catalytic loop (Keeshan et al., 2010), 
MEK1 binding (Yokoyama et al., 2010) and COP1 (Qi et al., 2006) binding motifs 
are conserved in TRIB1-3 and Drosophila Tribbles (Yokoyama and Nakamura, 
2011). Other regions are important for TRIB2 degradation (Wang et al., 2013b), 
p70S6K binding (Wang et al., 2013b) and p100 binding (Wei et al., 2012), as 
described in this chapter. Amino acid sequence of these regions and the conserved 
motifs are identical in human and mouse TRIB2 orthologs.   
 

1.3.1 Autoantigen 

TRIB2 was identified as an autoantigen in autoimmune uveitis, a group of 

inflammatory disorders in the eye by phage display and anti-TRIB2 antibody 

activities were detected in the patients (Zhang et al., 2005). However, the functional 

role and expression of TRIB2 in the eye remain unknown. Following that, TRIB2 

was implicated in narcolepsy, an excessive daytime sleepiness due to hypocretin 

deficiency with a dramatic loss in hypothalamic hypocretin-producing neurons. 

TRIB2 was found to be expressed by these neurons and hence could serve as 

potential autoimmune targets (Cvetkovic-Lopes et al., 2010). Indeed, high TRIB2-
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specific antibody titers were found in narcolepsy patient and these confirm 

narcolepsy is an autoimmune disease (Cvetkovic-Lopes et al., 2010, Kawashima et 

al., 2010, Toyoda et al., 2010). This was supported by a recent study that showed 

passive transfer of anti-TRIB2 autoantibody positive patient immunoglobuline G 

causes hypothalamic neuron loss and sleep attacks in mice (Katzav et al., 2013). 

However, the functional role of TRIB2 in hypothalamic neuron remains unknown. 

 

1.3.2 Inhibition of adipogenesis 

Activation of AKT and expression of CEBP are critical events for adipogenesis. 

TRIB2 was found to suppress adipocyte differentiation by inhibiting activation of 

AKT and promoting proteasomal degradation of CEBP (Naiki et al., 2007). As 

such, knockdown of Trib2 by small-interfering RNAs in mesenchymal stem cells in 

vitro and in vivo enhanced adipogenic differentiation (Andersen et al., 2010). 

However, expression of TRIB2 influences accumulation of pericardial (Fox et al., 

2012)  and visceral (Nakayama et al., 2013) fat. 

 

1.3.3 Inhibition of FOXO function 

In melanoma cells, TRIB2 abrogates the function of FOXO transcription factors 

which are tumour suppressive by promoting cytoplasmic sequestration of FOXO 

(Zanella et al., 2010). TRIB2 expression was found to increase in malignant 

melanoma and is a biomarker for diagnosis and progression of melanoma (Zanella 

et al., 2010, Hill et al., 2015). 

 

1.3.4 Inhibition of YAP degradation 

In liver cancer, TRIB2 overexpression stabilizes YAP, an oncogenic transcription 

factor coactivator via two mechanisms. One mechanism includes TRIB2 inhibition of 

the proteasomal dependent degradation of YAP (Wang et al., 2013a). This requires 
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binding of -TRCP, an E3 ubiquitin ligase which was found to modulate TRIB2 in a 

feedback regulation as described in section 1.4.3 (Wang et al., 2013a, Qiao et al., 

2013). Intriguingly, unlike other TRIB2 interacting E3 ligases including COP1 

(Keeshan et al., 2010) and TRIM21 (Grandinetti et al., 2011), TRIB2 interaction with 

-TRCP leads to inhibition instead of promotion of substrate degradation. It is 

unclear what influences the outcome of TRIB2 interaction with ubiqutin ligases. 

Another mechanism of TRIB2-mediated stabilization of YAP is through regulation of 

CEBPα as described in section 1.3.7 (Wang et al., 2013a). 

 

1.3.5 Modulation of MAPK pathway 

TRIB2 has been shown to modulate mitogen-activated protein kinase (MAPK) 

pathway in different cellular contexts and under different stimuli. Like other Tribbles 

members, TRIB2 contains a C-terminal conserved motif that is required for MEK1 

binding (Figure 1.3) (Yokoyama et al., 2010). In lipopolysaccharide (LPS)-stimulated 

THP-1 cells, TRIB2 was found to interact with MKK7 and MEK1 to suppress JNK 

and ERK signalling in order to inhibit IL-8 production (Eder et al., 2008b). However, 

another study found that modulation of Trib2 expression doesn’t affect low-density 

lipoprotein uptake by LPS-stimulated THP-1 cells which is regulated by MAPK 

pathway (Eder et al., 2008a). In epithelials cells stimulated with toll-like receptor 

(TLR) 5 ligand (flagellin), Trib2 was found to selectively activate p38 and JNK 

signalling but not ERK (Wei et al., 2012).  

 

1.3.6 Modulation of NFκB pathways 

TRIB2 has been shown to modulate both canonical and non-canonical nuclear 

factor kappa B (NFκB) pathways in different cellular contexts and under different 

stimuli. In TLR-5 (flagellin)-stimulated epithelial cells, TRIB2 mRNA expression is 

induced and TRIB2 protein interacts with p100 (Figure 1.3) to inhibit the canonical 
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NFκB pathway (Wei et al., 2012). In osteosarcoma cells stimulated with tumour 

necrosis factor alpha, TRIB2 mRNA expression is induced and TRIB2 protein 

upregulates non-canonical NFκB pathway by promoting nuclear retention of RELB 

(Schoolmeesters et al., 2012).  

 

1.3.7 Promotion of CEBPα degradation  

CEBPα belongs to a family of basic region leucine zipper transcription factors. It 

promotes cell cycle arrest and cell differentiation. Thus, CEBPα pathway is tumour 

suppressive in many cancers (Koschmieder et al., 2009). In a bone marrow (BM) 

transplant mouse model, enforced expression of Trib2 promotes degradation of 

CEBPα and induces a potent acute myeloid leukaemia (AML) (Keeshan et al., 

2006). This is the first study demonstrated that the functional role of Drosophila 

Tribbles is conserved in mammalian Tribbles family. Further study showed that 

TRIB2-mediated degradation of CEBPα requires COP1 binding which is an E3 

ubiquitin ligase to induce AML (Figure 1.3) (Keeshan et al., 2010). In lung cancer, 

elevated TRIB2 expression contributes to tumourigenesis by also promoting 

degradation of CEBPα and this requires interaction with a different E3 ligase, 

TRIM21 instead of COP1 (Grandinetti et al., 2011). In liver cancer, TRIB2 

overexpression downregulates CEBPα in a similar way and this in turn relieves 

CEBPα-mediated inhibition of YAP activity (Wang et al., 2013a). 

 

1.3.8 Promotion of MCL1 degradation 

TRIB2 was found to modulate apoptosis of TF-1 cells in response to deprivation of 

granulocyte-macrophage colony-stimulating factor by promoting proteasomal-

independent degradation of MCL1, a pro-survival factor (Lin et al., 2007). The 

apoptogenic activity of TRIB2 was also found in Me-1 cells when it was 

overexpressed (Gilby et al., 2010). However, the pro-apoptotic property of TRIB2 
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which was established in cell lines has yet to be shown to be of relevance in primary 

cells or in in vivo settings.    

 

1.4 Regulation of Trib2/TRIB2 and TRIB2 

 

1.4.1 Transcription factors 

Trib2/TRIB2 was identified as a target gene of several oncogenic transcription 

factors deregulated in AML, liver cancer and T-cell acute lymphoblastic leukaemia 

(T-ALL). In homeobox (HOX)-induced murine AML, Trib2 was identified as a target 

gene of myeloid ecotropic viral integration site 1 (MEIS1), a HOX co-factor 

(Argiropoulos et al., 2008) that dimerizes with pre-B-cell leukaemia homeobox 3 

(PBX3) (Garcia-Cuellar et al., 2015). In human AML, TRIB2 expression is 

upregulated by E2F transcription factor 1 (E2F1) and sustained by an E2F1-CEBPα 

positive feedback loop to promote leukaemic cell proliferation (Rishi et al., 2014). In 

liver cancer, TRIB2 was found as a downstream wingless-type MMTV integration 

site family (WNT)--Catenin target gene and its transcription is coordinated by T-cell 

factor (TCF) and FOXOA transcription factors (Wang et al., 2013a). In T-ALL, Trib2 

is a direct target of Neurogenic locus notch homolog protein 1 (NOTCH1) (Wouters 

et al., 2007), pituitary homeobox 1 (PITX1) (Nagel et al., 2011) and T-cell acute 

lymphocytic leukaemia protein 1 (TAL1) (Sanda et al., 2012). In normal 

haematopoiesis, Trib2 is regulated by friend of GATA-1 (FOG-1) which is important 

in the myelo-erythroid lineage bifurcation (Mancini et al., 2012). 

 

1.4.2 MicroRNAs 

Besides transcription factors, Trib2/TRIB2 expression is also regulated by 

microRNAs (Table 1.1). These miRNAs were found to be deregulated in different 

types of cancer and hence contributes to the elevated expression of Trib2.  
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Table 1.1 │ List of microRNAs (miRNAs) that suppress Trib2/TRIB2 expression. 

miRNAs Cellular context Functional role of miRNAs References 

let-7c lung cancer cells - Inhibition of cell proliferation (Wang et al., 
2013c) 

miR-98 Endothelial cells - not studied (Xie et al., 2012) 
miR-99 Cervical cancer cells - Inhibition of cell proliferation 

- Promotion of apoptosis 
(Xin et al., 2013) 

miR-99a AML and chronic 
myeloid leukaemia 
(CML) cells 

- Promotion of cell proliferation 
- Inhibition of apoptosis 

(Zhang et al., 
2013) 

miR-100 AML cells - Promotion of cell proliferation 
- Inhibition of cell differentiation 

(Zheng et al., 
2012) 

miR-155 Flt3 wild type (WT)-
AML cells 

- Promotion of apoptosis and 
cell differentiation 

(Palma et al., 
2014) 

miR-511 lung cancer cells - Promotion of apoptosis 
- Inhibition of cell proliferation 

(Zhang et al., 
2014) 
(Zhang et al., 
2012a) 

miR-1297 lung cancer cells - Inhibition of cell proliferation (Zhang et al., 
2012a) 

 

1.4.3 E3 ubiquitin ligases 

TRIB2 protein level was found to be elevated in a subset of liver cancers and 

reported to be critical for liver cancer cell survival and transformation (Wang et al., 

2013a). Further study found that TRIB2 has increased protein stability in liver 

cancer cells compared with other cells and this was due to down regulation of 

SMAD ubiquitination regulatory factor 1 (SMURF1), an E3 ubiquitin ligase that 

ubquitinates TRIB2 and promotes its proteasomal dependent degradation (Wang et 

al., 2013b). SMURF1-mediated ubiquitination requires an intact TRIB2 N-terminus 

degradation domain and phosphorylation of TRIB2 by p70S6K (Figure 1.3) (Wang 

et al., 2013b). Like SMURF1, another E3 ubiquitin ligase -TRCP was shown to 

regulate stability of TRIB2 in liver cancer cells although TRIB2 phoshorylation was 

not shown to be a prerequisite (Qiao et al., 2013).    
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1.5 Steady state haematopoiesis 

 

1.5.1 Bone marrow haematopoiesis 

In adults, haematopoiesis takes place in the BM, and is sustained by 

haematopoietic stem cells (HSCs) which are located atop the haematopoietic 

hierarchy (Figure 1.4), to produce blood cells of all lineages throughout the life. 

HSCs are multipotent and reversibly switch from dormancy to self renewal while 

generating multipotent progenitors (MPPs) (Wilson et al., 2008). However, they 

cycle infrequently as Wilson and colleagues showed that HSCs are predominantly 

quiescent with 70% of them are in G0 phase of cell cycle (Wilson et al., 2008). 

Based on computational modelling, it is estimated that adult murine HSCs undergo 

5-20 divisions over the course of a 2 year life span (Wilson et al., 2008, Foudi et al., 

2009). Lineage determination and differentiation are initiated in MPPs which are 

also multipotent but with reduced self renewal capacity (Reya et al., 2001). 

Oligopotent common myeloid progenitors (CMPs) gives rise to all myeloid cell types 

(erythroid cells, megakaryocytes, granulocytes and monocytes) via the commitment 

to either megakaryocyte-erythroid (MEPs) or granulocyte-macrophage (GMPs) 

progenitors (Akashi et al., 2000). Likewise, oligopotent common lymphoid 

progenitors (CLPs) were identified to have the potential to generate cells of 

lymphoid lineages (T cells, B cells and natural killer cells) in vivo (Kondo et al., 

1997). Identification of CMP and CLP progenitors marked the branching of MPPs 

into myelo- and lymphopoiesis respectively. However, the model for haematopoietic 

blood lineage commitment was revised with the identification of lymphoid-primed 

multipotent progenitors (LMPPs) which have combined lympho-myeloid 

differentiation potential but have lost the ability to adopt megakaryocyte and 

erythroid lineage fates (Adolfsson et al., 2005). 
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Figure 1.4 │ Model for haematopoietic hierarchy used in this thesis research. 
MPPs lose their multipotent capacity in a stepwise fashion when they differentiate 
into oligopotent progenitors (CMPs, LMPPs, MEPs, GMPs and CLPs) which in turn 
undergo further lineage commitment to produce unipotent progenitors that 
eventually make all mature blood cells. This model is currently under review due to 
recent findings in haematopoietic lineage differentiation as described below in the 
text. HSC, haematopoietic stem cell; MPP, multipotent progenitor; CMP, common 
myeloid progenitors; LMPP, lymphoid-primed multipotent progenitor; MEP, 
megakaryocyte-erythroid progenitor; GMP, granulocyte-macrophage progenitor; 
CLP, common lymphoid progenitor.  

 

While the model described above served as the framework of the research 

reported in this thesis, findings from recent studies in the past two years, reviewed 

by Cabezas-Wallscheid and Trumpp (Cabezas-Wallscheid and Trumpp, 2016), 

suggest a simpler haematopoietic hierarchy. These studies employed single-cell 

assays to provide strong evidence that either CMPs represent a highly transient cell 

state, or that such oligopotent cells do not exist in mouse or human BM (Notta et al., 

2016, Paul et al., 2015). Rather, mature cells such as megakaryotes are generated 

from committed unipotent progenitors derived directly from multipotent cells such as 

HSCs and MPPs (Paul et al., 2015, Notta et al., 2016).  
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1.5.2 Intrathymic T-cell development 

Pre-thymic progenitors are BM-derived progenitors (primarily CLPs (Serwold et al., 

2009) and LMPPs (Luc et al., 2012)) that colonize the thymus continuously and 

sustain thymopoiesis to generate naïve CD4 or CD8 single positive (SP) T-cells. 

Immature thymocytes are CD4/CD8 double negative (DN) and divided into DN1-

DN4 subsets based on their surface expression of CD25 and CD44 markers 

(Godfrey et al., 1993). DN1 thymocytes are the most immature progenitors and 

require NOTCH-DLL4 signalling activated by interaction with thymic stromal cells for 

specification, commitment and development (Pui et al., 1999, Radtke et al., 1999). 

As such, specification of DN1 thymocytes to DN2 stage involves surface expression 

of CD25 which is a T-cell marker (Godfrey et al., 1993). DN2a thymocytes commit 

to T-lineage fate as they develop into DN2b stage with decreasing surface 

expression of c-Kit which is a BM haematopoietic progenitor marker (Yui et al., 

2010). Until the maturation to DN2b stage, the uncommitted cycling DN1 and DN2a 

progenitors retain the potential to generate dendritic cells, granulocytes, 

macrophage, natural killer cells and to a lesser extent, B cells (Figure 1.5) (Yui and 

Rothenberg, 2014). T-cell committed progenitors are then separated into the 

development of α and γδ lineages where the former is predominant in an adult 

thymus as it contains approximately 300-folds more CD4/CD8 double positive (DP) 

α cells than γδ cells (Prinz et al., 2006). γδ lineage development begins in the 

DN2b and DN3 cells where productive Tcrγδ rearrangements give rise to γδ cells 

(Carpenter and Bosselut, 2010). However, α lineage development begins at DN3 

stage. DN3a thymocytes are briefly arrested to undergo Tcr rearrangement, a 

checkpoint known as -selection where productive rearrangements lead to 

expression of pre-T-cell receptor (TCR) complex and initiation of pre-TCR signalling 

to turn off NOTCH signalling (Figure 1.5) (Hoffman et al., 1996, Taghon et al., 

2006). The pre-TCR signalling drives immature DN3b thymocytes to proliferate and 
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further differentiate into non-proliferating mature DP thymocytes where they 

undergo Tcrα rearrangements and positive/negative selections to become CD4 or 

CD8 SP naïve T cells (Figure 1.5) (Carpenter and Bosselut, 2010).  

 

 

Figure 1.5 │ Overview of murine α T-cell development. The main stages of 

thymocyte development along the α T-lineage are depicted. NOTCH signalling is 
essential for the commitment of thymic progenitors to the T-cell lineage fate. 
However, NOTCH signalling is switched off in DN3b thymocytes that have passed 

through the -selection checkpoint and instead become dependent on Pre-TCR 
signalling. DN, CD4/CD8 double negative; DP, CD4/CD8 double positive. 
 

It is noteworthy that α T-cell development described above is delineated based 

on mouse studies. Human T-cells undergo the same developmental checkpoints (-

selection and positive/negative selection) during development despite some of the 

developmental stages being characterized by different phenotypic markers (Taghon 

et al., 2012). For example, human thymic progenitors undergo T-cell lineage 

specification and commitment but they are not characterized by the markers CD44 

and CD25, and hence are not divided into DN1-4 stages as described in mouse. A 

detailed discussion of human T-cell development is reviewed here, by Taghon and 

colleagues (Taghon et al., 2012), and highlights important differences between both 

species.     
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1.5.3 TRIB2 in normal haematopoiesis 

Trib2 was identified as a direct target gene of FOG-1, a transcription factor that is 

required for megakaryocyte and erythorid-lineage commitment (Mancini et al., 

2012). Indeed, Mancini and colleagues showed that Trib2 is selectively expressed 

in murine pre-megakaryocyte/erythroid progenitor cells compared to pre-

granulocyte/macrophage and CLP progenitor cells (Mancini et al., 2012). Hence, 

TRIB2 appears to be an important effector of FOG-1 in suppression of myeloid 

progenitor specification. This could be attributed to the role of TRIB2 in promoting 

degradation of CEBPα and CEBP which are required for generation of GMPs 

(Keeshan et al., 2006, Naiki et al., 2007). In accordance with this, a separate study 

found that CEBPα binds to the promoter region of Trib2 in murine GMPs to inhibit 

E2F1-mediated upregulation of Trib2 expression in order to promote myelopoiesis 

(Rishi et al., 2014).  

 

Besides the potential role of TRIB2 in myelo-erythroid lineage specification, 

recent studies also suggest TRIB2 to be important in intrathymic T-cell 

development. Using whole-transcriptome sequencing, Casero and colleagues 

studied the transcriptional programs that initiate human lymphopoiesis, and regulate 

the subsequent B lymphoid and T lymphoid specification (Casero et al., 2015). 

Human TRIB2 expression was found to be upregulated more than 10 fold in the 

earliest BM-derived uncommitted thymic progenitors compared to BM progenitors 

(HSCs, LMPPs, CLPs and B cell-committed progenitors) (Casero et al., 2015). In 

murine fetal liver-derived DN1 thymic progenitors, Trib2 was bound by both GATA3-

binding protein 3 (GATA3) and PU.1, two transcription factors with complementary 

roles in early T-cell development (Zhang et al., 2012d). Hence, it is likely that TRIB2 

has a previously unrecognized role in thymopoiesis. 
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As mentioned earlier in this chapter, Tribbles inhibits String function in 

Drosophila (Seher and Leptin, 2000, Grosshans and Wieschaus, 2000, Mata et al., 

2000). The ortholog of String in mammalian is CDC25 phosphatases which are also 

known as cell cycle activators (Kristjansdottir and Rudolph, 2004) (Chapter Six). It 

remains unknown if TRIB2 is capable to interact with and regulate CDC25 

phosphatases in a similar way in the context of haematopoiesis. The role of CDC25 

phosphatases in normal haematopoiesis (BM haematopoiesis and intrathymic T-cell 

development) is unclear although one of the members (CDC25A) was shown to 

regulate cell cycle of early erythroid progenitors (Melkun et al., 2002).  

 

1.6 Stressed haematopoiesis 

 

1.6.1 Ageing 

Haematopoietic ageing is an evolutionarily conserved process in human and mice 

that affects the balanced generation of all blood cell lineages. As mice age, HSCs 

expands numerically due to increased self-renewal but they exhibit functional 

decline with diminished lymphoid differentiating potential and hence are myeloid-

biased (Sudo et al., 2000, Sun et al., 2014, Rossi et al., 2005). Pang and colleagues 

found the similar features of ageing murine HSCs in older human HSCs (above 65 

years) as they showed older human HSCs are increased in frequency and do not 

engraft or generate lymphoid progeny as efficiently as young human HSCs (20-35 

years) in a xenotransplant murine model (Pang et al., 2011). Flach and colleagues 

showed that the functional decline in murine old HSCs (24 months or greater) is 

driven by replication stress where the cells have extended S phase and acquisition 

of chromosomal gaps/break (Flach et al., 2014).     

 

Regression or involution of the thymus is also a feature of haematopoietic 

ageing. Thymic involution leads to the diminished production of naïve T-cells due to 
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the age-related changes in thymopoiesis (Palmer, 2013). The thymus is 

continuously seeded by BM-derived progenitors to sustain thymopoiesis (Serwold et 

al., 2009, Luc et al., 2012). Hence, any age-related alterations in HSC function 

would contribute toward thymic involution. As mentioned above, HSCs lose the 

lymphoid potential as they age (Sudo et al., 2000). In accordance with this, Zediak 

and colleagues showed that old donor MPPs (24 months) give rise to 2.4 folds 

fewer DP thymocytes compared to young donor MPPs (2 months) at three weeks 

after injection into the thymus of non-irradiated recipient mice (Zediak et al., 2007). 

Furthermore, old mice have fewer numbers of early thymic progenitors, a subset of 

DN1 progenitors that give rise to subsequent thymocyte subsets (Min et al., 2004, 

Heng et al., 2005). Min and colleagues showed that old early thymic progenitors (17 

months or greater) have reduced thymopoietic potential, reduced proliferation and 

increased apoptosis compared to young early thymic progenitors (1-2 months) (Min 

et al., 2004). These physiological age-related changes contribute to the gradual and 

progressive decline in the number of thymocytes.    

 

1.6.2 Infection 

At steady state, bone marrow haematopoiesis generates a balanced supply of 

granulocytes (granulopoiesis), monocytes/macrophages (myelopoiesis) and B-

lymphocytes (B-lymphopoiesis) which are essential for the maintenance of immune 

homeostasis. The pre-existing pool of granulocytes is usually sufficient to combat 

local bacteria infection. However, in the setting of systemic infection which is more 

severe, granulocytes which are short-lived are consumed in large quantities (Manz 

and Boettcher, 2014). The increase demand for granulocytes during systemically 

disseminated infection causes the haematopoietic system to switch from steady 

state to emergency granulopoiesis where HSPCs expand to increase de novo 

generation of granulocytes (Manz and Boettcher, 2014). However, the shift in BM 

haematopoietic activity towards granulopoiesis results in descreased production of 
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B-lymphocytes, erythroyctes and megakaryocytes (Glatman Zaretsky et al., 2014). 

Zhang and colleagues showed that E. coli-induced bacterimia in mice caused 10 

folds expansion of HSPCs and these cells are committed to 

granulocyte/macrophage lineage development as assessed by the Colony-Forming 

Unit assay (Zhang et al., 2008). Cytokines and growth factors play an important role 

in emergency granulopoiesis. For example, granulocyte-colony stimulating factor 

level is increased during severe infection to promote myeloid cell production in bone 

marrow and was shown recently to be secreted by non-haematopoietic cells that 

sense invading pathogens (Boettcher et al., 2012, Kawakami et al., 1990).        

 

Infection by viruses, bacteria, parasites and fungi is known to cause premature 

thymic involution (Nunes-Alves et al., 2013). In this context, thymopoiesis is 

disrupted due to induction of thymocyte (DP primarily) apoptosis by glucocorticoids 

and pro-inflammatory mediators released by the body in response to systemic 

infection (Borges et al., 2012, Ashwell et al., 2000). Besides that, thymocytes are 

also sensitive to toxin and virulence factors that are released by pathogens 

systemically (Ozeki et al., 1997, Islam et al., 1998). Apoptosis induction of human 

and murine thymocytes by direct viral infections (Human Immunodeficiency virus 

(Berkowitz et al., 1998), Murine Leukaemia virus (Yoshimura et al., 1999) and 

Highly Pathogenic Influenza virus (Vogel et al., 2010)) has also been 

demontstrated.   

 

1.6.3 Iatrogenic interventions (irradiation and chemotherapy) 

Clinically, irradiation and chemotherapy are conventional therapies for patients with 

cancer since both targets rapidly proliferating cells, one of the hallmarks of cancer 

(Hanahan and Weinberg, 2011). However, irradiation and chemotherapy induced 

cytotoxicity are not selective and are known to induce BM suppression which would 

be life threatening because cycling normal haematopoietic cells are also being 
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targeted during the course of treatment (Mauch et al., 1995). The resulting clinical 

symptoms include anaemia, thrombocytopenia, neutropenia and lymphocytopenia 

due to the disrupted production of RBCs, platelets, granulocytes and B-lymphocytes 

in the BM respectively. While this side effect is detrimental in the clinical setting, 

both have been used experimentally to study haematopoiesis during stress and 

recovery. Li and Slayton showed that although both irradiation and 5-fluorouracil (5-

FU, a standard chemotherapy agent which is reviewed further in section 4.1) 

treatments reduce murine BM cellularity and cause similar morphological changes 

in BM niche; B lymphocytes are more sensitive to iradiation whereas neutrophils 

and monocytes are more sensitive to 5-FU treatment (Li and Slayton, 2013). In 

addition to that, they found that murine haematopoietic system recovered faster 

following 5-FU treatment, as evidence by the earlier expansion of HSPC 

populations, compared to irradiation (Li and Slayton, 2013). Shao and colleagues 

found that sublethal dose of total body irradiation causes long term suppression of 

murine BM functions because HSCs are induced to senescence prematurely (Shao 

et al., 2014). 

 

Similar to 5-FU treatment (Aquino Esperanza et al., 2008, Eichhorst et al., 

2001), Randle-Barrett and Boyd (Randle-Barrett and Boyd, 1995) showed that 

sublethal dose of total body irradiation causes reduction of murine thymic cellularity 

and damages to the murine thymic microenvironment (Randle-Barrett and Boyd, 

1995, Aquino Esperanza et al., 2008, Eichhorst et al., 2001). Furthermore, they 

showed that DP thymocytes are the most sensitive thymic subset to irradiation-

induced injury (Randle-Barrett and Boyd, 1995). Thymus recovers at a similar rate 

in both irradiation and 5-FU murine models (Randle-Barrett and Boyd, 1995, Aquino 

Esperanza et al., 2008, Eichhorst et al., 2001). 
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1.7 TRIB2 and acute leukaemia 

 

1.7.1 Acute myeloid leukaemia 

AML is a heterogeneous haematological malignancy characterized by the clonal 

expansion of myeloid blasts due to a differentiation block in haematopoietic stem 

and progenitor cells (HSPCs). In children, AML is rare with an incidence of 8 cases 

per million children aged 1-18 years per year (Chaudhury et al., 2015). However, 

the incidence of AML increases as the population ages. AML occurs at an incidence 

of 20 cases per million younger adults aged 18-60 years per year and increases to 

170 cases per million older adults aged above 60 years per year (Chaudhury et al., 

2015). Hence, AML is mainly an adulthood leukaemia. A combination of cytarabine 

and an anthracycline remains as a standard induction chemotherapy in AML except 

acute promyelocytic leukaemia which is a distinct entity that can be treated 

successfully with differentiating therapy (all-trans retinoic acid and arsenic trioxide) 

(Freireich et al., 2014). The five-year overall survival rate for paediatric AML 

patients is 70-75% but decreases to 45-50% in younger adult AML patients 

(Chaudhury et al., 2015). Nevertheless, increased understanding of the molecular 

genetics and pathogenesis of AML has allowed clinical development of new 

therapeutic drugs (chemotherapies, hypomethylating agents, antibody-drug 

conjugates and molecularly targeted agents) and this was recently reviewed by 

Stein and Tallman (Stein and Tallman, 2016).  

 

AML was first classified morphologically based on the lineage-associated 

phenotype (undifferentiated, myeloid, monoblastic, erythroblastic or 

megakaryoblastic) and defined according to the French-American-British (FAB) 

classification (Bennett et al., 1991). In 2001, the World Health Organization (WHO) 

published a new classification based on not only morphologic but also biologic and 

genetic features that have proved to have clinical relevance (Vardiman et al., 2002). 
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In 2008 and 2016, the WHO classification was updated as cytogenetic and 

molecular genetic studies uncovered more genetic abnormalities in AML (Table 1.2) 

(Vardiman et al., 2009, Arber et al., 2016). For example, discovery of Npm1 

mutation in AML with normal cytogenetics which has prognostic impact led to the 

addition of this provisional entity to the current WHO classification (Table 1.2) (Falini 

et al., 2005). With advances in technologies such as development of whole genome 

sequencing, whole exome sequencing and RNA sequencing, AML subsets are now 

defined by cytogenetic and molecular genetic abnormalities which confer 

independent prognostic information (Table 1.2 and 1.3). 

 

As described above in section 1.3.7, the first cellular function of TRIB2 was 

demonstrated in myeloid leukaemogenesis where it induces potent murine AML 

through promotion of CEBPα degradation (Keeshan et al., 2006). TRIB2 was also 

shown to cooperate with HOXA9 and accelerate the onset of murine AML (Keeshan 

et al., 2008), and Trib2 is activated in MEIS1-HOX induced murine AML 

(Argiropoulos et al., 2008, Garcia-Cuellar et al., 2015) In human AML, TRIB2 

expression is upregulated in a biologically and epigenetically distinct subset of AML 

characterized with silenced Cebpα expression and a mixed myeloid/T-lymphoid 

phenotype (Wouters et al., 2007, Keeshan et al., 2006). TRIB2 expression is also 

higher in promyelocytic leukaemia-retinoic acid receptor alpha positive leukaemia 

that harbour FLT3 tyrosine kinase domain mutations compared with promyelocytic 

leukaemia-retinoic acid receptor alpha negative leukaemias or promyelocytic 

leukaemia-retinoic acid receptor alpha positive leukaemias with FLT3 internal 

tandem duplication mutations (Liang et al., 2013). This could be due to the fact that, 

unlike Fms-like tyrosine kinase 3 (FLT3) internal tandem duplication mutants, FLT3 

tyrosine kinase domain mutants could not repress CEBPα activity and hence 

necessitate the upregulation of TRIB2. 
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Table 1.2 │ Genetic abnormalities in paediatric and younger adult AML1. 

AML categories 
frequency 

Younger adult 
(18-60 years) 

Paediatric  
(below 18 years) 

WHO 2016 classification  

AML with recurrent genetic abnormalities 
t(8;21)(q22;q22)/RUNX1-RUNXTt1 8% 12-14% 
inv(16)(p13.1q22) or 
t(16;16)(p13.1;q22)/CBFB-MYH11 

5% 8% 

t(15;17)(q22;q21)/PML-RARA 5-10% 6-10% 
t(9;11)(p23;q34.1)/MLLT3-KMT2A 2% 7% 
t(10;11)(p12;q23)/Mllt10-Mll 1% 3%  

mainly infants 
t(6;9)(p23;q34)/DEK-NUP214 1% < 2% 
inv(3)(q21.3q26.2) or 
t(3;3)(q21.3;q26.2)/GATA2, 
MECOM 

1% < 1% 

t(1;22)(p13.3;q13.3)/RBM15-MKL1 < 1% AMKL only; 
infants 

mutated NPM1 35% 5-10% 
biallelic mutations of CEBPA 10% in CN 14% in CN 
Provisional entity: BCR-ABL1 - - 
Provisional entity: mutated RUNX1 - - 

Not included in WHO 2016 

Karyotypes/mutations 
t(7;12)(q36;p13)/t(7;12)(q32;p13) Not in adults Infants 
t(5;11)(q35;p15.5)/NUP98-NSD1 Not in adults Mostly in CN 
FLT3-ITD 20-40% 10% 
N-RAS 10% 20% 
MLL-PTD 3-5% 3% 
c-KIT 17% in CBF 

leukaemia2 
25% in t(8;21) 

WT1 10% in CN 13% in CN 
PTPN11 Not in adults 5-21%;  

infants only 
IDH1/2 16% Rare, 2-3% 
TET2 8-17% Very rare 
DNMT3A 20% Rare 

WHO 2016 classification continued 

AML with myelodysplasia-related 
changes 

48% low 

Therapy-related myeloid neoplasms 6% 3.5% 
AML, not otherwise specified 17% 15% 
Myeloid sarcoma 1% 2-4% 
Myeloid proliferations related to Down syndrome 

Transient abnormal myelopoiesis Not in adults In 5% of the 
newborns with 
Down syndrome 

Myeloid-leukaemia associated Not in adults 400-fold 
increased risk for 
AMKL 

Acute leukaemias of ambiguous 
lineage 

- - 
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1 AMKL, acute megakaryoblastic leukaemia; CBF, core binding factor; CN, 
cytogenetic normal.Modified from (Creutzig et al., 2012). 
2 AML with t(8;21) and inv(16) are also known as CBF leukaemia.  
 

Table 1.3 │ Risk stratification for younger adults with AML†. 

Risk group Cytogenetic/molecular  genetic abnormality 

Favourable t(15;17)(q22;q21)/PML-RARA 
t(8;21)(q22;q22)/RUNX1-RUNX1T1 
inv(16)(p13q22)/t(16;16)(p13;q22)/CBFB-MYH11 
NPM1 mutation (in absence of FLT3-ITD or DNMT3A mutation) 
Biallelic CEBPA mutation 

Intermediate Cytogenetic/molecular genetic abnormalities not classified as 
favourable or adverse 

Adverse In the absence of favourable risk cytogenetic/molecular genetic 
abnormalities 

abn(3q) [excluding t(3;5)(q21~25;q31~35)/NPM1-MLF1 
inv(3)(q21q26)/t(3;3)(q21;q26)/GATA2/EVI1 
add(5q)/del(5q), -5 
t(5;11)(q35;p15.5)/NUP98-NSD1 
t(6;9)(p23;q34)/DEK-NUP214 
add(7q)/del(7q), -7 
t(11q23) [excluding t(9;11)(p21~22;q23) and t(11;19)(q23;p13)] 
t(9;22)(q34;q11)/BCR-ABL 
-17/abn(17q)/TP53 mutation 
Complex karyotype (≥4 unrelated abnormalities) 
ASXL1 mutation 
DNMT3A mutation 
FLT3-ITD 
MLL-PTD 
RUNX1 mutation 

† Adapted from (Grimwade et al., 2016). 

 

1.7.2 T-cell acute lymphoblastic leukaemia 

In contrast to AML, T-ALL is a heterogenous haematological malignancy caused by 

the transformation of thymic progenitors. Please refer to the introduction of Chapter 

5 where we overviewed the incidence, therapy, oncogenes and molecular subtypes 

for T-ALL.  

 

In T-ALL, TRIB2 was identified in a knockdown screen as one of the critical 

targets of the core transcriptional regulatory circuit controlled by the TAL1 complex 

comprised of TAL1, GATA3 and Runt-related transcription factor 1 (RUNX1), and 

TRIB2 was shown to be essential for the growth and survival of human TAL1+ T-
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ALL cell lines (Sanda et al., 2012). A follow-up study showed that TRIB2 

upregulates X-linked inhibitor of apoptosis (XIAP), an anti-apoptotic protein to 

promote cell survival and regulates the balance between the oncogenic TAL1 

complex and the transcription factor E2-alpha (E2A) tumour suppressor (Tan et al., 

2015). Although TRIB2 has also been implicated in NOTCH1+ (Hannon et al., 2012) 

and PITX1+ (Nagel et al., 2011) T-ALL as mentioned in section 1.4.1, it remains 

unclear how TRIB2 contributes to the pathogenesis of T-ALL.  

 

Most of the studies discussed in this chapter examined the pathological roles of 

TRIB2 in different diseases to understand the contribution of TRIB2 dysregulation, 

at mRNA and protein levels, to the coordination of signalling networks present in 

diseased or transformed cells. However, the physiogical role of TRIB2 remains 

elusive.   
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1.8 Thesis aims 

(i) Investigate the physiological role of TRIB2 in haematopoiesis 

Current literature suggests TRIB2 to be important in the specification of 

megakaryocyte and erythroid lineage as well as in intrathymic T-cell development. 

To delineate the role of TRIB2 in haematopoiesis, we examined the haematopoietic 

system of a Trib2 knockout mouse model. 

 

(ii) Investigate the role of TRIB2 in modulation of haematopoietic stress response  

Haematopoiesis at steady state is often perturbed by physiological and external 

stress. TRIB2 has been implicated in the pathogenesis of both AML and T-ALL 

indicating a role for TRIB2 in regulating the response of normal haematopoietic cells 

to oncogenic stress. We aimed to determine if this is linked to the physiological role 

of TRIB2 in haematopoiesis and if TRIB2 also modulates haematopoietic response 

to other type of stress. 

 

(iii) Examine the relationship between TRIB2 and CDC25 phosphatases. 

Previous studies suggest the functional roles of Drosophila Tribbles are evolutionary 

conserved in mammalian Tribbles. This is illustrated in the relationship between 

Drosophila Tribbles and Slbo. In Drosophila, Tribbles also regulates String and 

hence cellular proliferation, but it is unclear if mammalian Tribbles also interact with 

CDC25 family. We aimed to examine the relationship between TRIB2 and different 

members of CDC25 family at the molecular level. 
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CHAPTER TWO: MATERIALS AND METHODS 

 

2.1 Materials 

 

2.1.1 Antibodies 

 

2.1.1.1 Flow cytometry application 

 

Table 2.1 │ List of antibodies used to stain cells for flow cytometry analysis. 

Antibody† Clone 

anti-BrdU BU20A 
anti-mouse CD3 17A2 
anti-mouse CD4 RM4-5 

GK1.5 

anti-mouse CD8 53-6.7 

anti-mouse CD11c N418 
anti-mouse CD16/CD32 93 
anti-mouse CD19 eBio1D3 (1D3) 
anti-mouse CD25 PC61.5 
anti-mouse CD34 RAM34 
anti-mouse CD45.1 A20 
anti-mouse CD45.2 104 
anti-mouse CD48 HM48-1 
anti-mouse CD71 R17217 
anti-mouse CD150 TC15-12F12.2 
anti-mouse c-Kit  2B8 
anti-mouse Gr-1  RB6-8C5 

anti-mouse IL-7R A7R34 

anti-mouse NK1.1 PK136 
anti-mouse Sca-1 D7 
anti-mouse Ter-119 TER-119 
anti-mouse/human B220 RA3-6B2 
anti-mouse/human CD11b M1/70 
anti-mouse/human CD44 IM7 
anti-mouse/human phosphor-p38 (T180/Y182) 4NIT4KK 
anti-mouse/rat Ki-67 SolA15 

† Antibodies were purchased from BioLegend (London, UK) and eBioscience 
(Hatfield, UK). Identical clones for all antibodies, as indicated above, were 
purchased from these two companies. Antibodies were conjugated either with 
fluorochrome or with biotin, depending on the design of individual multicolour 
fluorescent antibody panel, and these were specified in section 2.2.10. 
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2.1.1.2 Western blotting application 

 

Table 2.2 │ List of antibodies used to probe signals for Western blotting. 

Antibody Clone Company 

anti-α-tubulin B-5-1-2 Sigma-Aldrich (Dorset, UK) 
anti-β-actin AC-15 Sigma-Aldrich 
anti-CDC25A M-191 Santa Cruz Biotechnology 

(Heidelberg, Germany) 
anti-CDC25B C-20 Santa Cruz Biotechnology 
anti-CDC25C C-20 Santa Cruz Biotechnology 
anti-FLAG M2 Sigma-Aldrich 
anti-HA HA-7 Sigma-Aldrich 
anti-HDAC1 H-51 Santa Cruz Biotechnology 
anti-JNK1 2C6 Cell Signalling Technology 

(Leiden, Netherlands) 
anti-K48-Ub Apu2 Millipore (Cork, Ireland)  
anti-mouse IgG horseradish 
peroxidase (HRP)-linked1 

- GE Healthcare Life Sciences 
(Little Chalfont, UK) 

anti-MYC 9E10 Santa Cruz Biotechnology 
anti-p38 D13E1 Cell Signalling Technology 
anti-p44/42 137F5 Cell Signalling Technology 
anti-phospho-Histone H3 (S10) D2C8 Cell Signalling Technology 
anti-phospho-JNK (T183/Y185)2 - Cell Signalling Technology 
anti-phospho-p38 (T180/Y182) D3F9 Cell Signalling Technology 
anti-phospho-p44/42 (T202/Y204) D13.14.4E Cell Signalling Technology 
anti-rabbit IgG HRP-linked3 - GE Healthcare Life Sciences 
anti-TRIB2 B-06 Santa Cruz Biotechnology 

1 A polyclonal antibody which is identifiable by its catalogue number (NXA931). 
2 A polyclonal antibody which is identifiable by its catalogue number (#9251). 
3 A polyclonal antibody which is identifiable by its catalogue number (NA934). 
 

2.1.2 Bacterial strains 

E.coli DH5 strain from the Keeshan and McCarthy labs was used for 

transformation to replicate plasmids.  The bacteria were grown in Luria-Bertani (LB) 

broth and agar. 

 

2.1.3 Cell lines 

Human embryonic kidney (HEK) 293T, 3T3 and U937 cell lines were from the 

Keeshan lab whereas RPMI-8402 cell line was purchased from DSMZ 

(Braunschweig, Germany). HeLa cell line was a kind gift from Professor Mary 
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McCaffrey (UCC, Cork, Ireland). All cell lines were checked for mycoplasma 

contamination periodically. 

 

2.1.4 Chemicals, consumables and reagents 

 

Table 2.3 │ Essential chemicals, consumables and reagents used in the 

experiments described in this thesis. 

Product Brand/Company 

100 bp and 1 kb deoxyribonucleic acid (DNA) 
ladder 

New England Biolabs (Herts, 
UK) 

30% acrylamide mix Sigma-Aldrich 
384-well plate Applied Biosystems (Paisley, 

UK) 
4’, 6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich 
5-FU solution Accord Healthcare  

(North Harrow, UK) 
6-well culture plates Greiner-Bio-One  

(Gloucestershire, UK) 
Agarose powder Sigma-Aldrich 
Ammonium persulfate Sigma-Aldrich 
Aprotinin Sigma-Aldrich 
AsiSI New England Biolabs 
β-mercaptoethanol Sigma-Aldrich 
BD Cytofix/CytopermTM Kit BD Biosciences (Oxford, UK) 
BD PharmingenTM Propidium Iodide 
(PI)/RNase Staining Buffer 

BD Biosciences 

Bio-Rad Protein Assay Dye Reagent 
Concentrate 

Bio-Rad (Dublin, Ireland) 

Boric acid Sigma-Aldrich 
Bovine serum albumin (BSA) Sigma-Aldrich 
BrdU Labeling Reagent Invitrogen (Paisley, UK) 
Calcium chloride (CaCl2) Sigma-Aldrich 
Carbobenzoxy-Leu-Leu-leucinal (MG132) Sigma-Aldrich 
Cell culture dishes/flasks Greiner-Bio-One 
Cell scrappers Greiner-Bio-One 
Cell strainers Fisher Scientific  

(Loughborough, UK) 
CL-XPosureTM radiography films Thermo Scientific (Paisley, UK) 
Cryotubes Greiner-Bio-One 
Cytokines (Interleukin (IL)-3, IL-6 and stem cell 
factor (SCF)) 

PeproTech (London, UK) 

Dimethysulfoxide (DMSO) Sigma-Aldrich 
Disodium phosphate (Na2HPO4) Sigma-Aldrich 
DNase I STEMCELL Technologies 

(Grenoble, France) 
dNTP Thermo Scientific 
DPX mountant Sigma-Aldrich 
Dulbecco’s Modified Eagle Medium (DMEM) Gibco (Paisley, UK) 
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Ethanol Sigma-Aldrich 
Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich 
FastStartTM High Fidelity PCR Kit Roche (Dorset, UK) 

Fast SYBR Green Master Mix Applied Biosystems 

Fetal bovine serum (FBS) Gibco 
Glass slides VWR (Graumanngasse, 

Vienna) 
Glucose Sigma-Aldrich 
Glycerol Sigma-Aldrich 
Glycine Sigma-Aldrich 
Hank’s balanced salt solution Gibco 
High Capacity cDNA Reverse Transcription 
(RT) Kit 

Applied Biosystems 

Hydroxyethyl piperazineethanesulfonic acid 
(HEPES) 

Gibco 

IGEPAL CA-630 Sigma-Aldrich 

Leupeptin Sigma-Aldrich 
LB broth (Lennox) Sigma-Aldrich 
LB broth with agar (Lennox) Sigma-Aldrich 
L-glutamine Gibco 
Magnesium chloride (MgCl2) Sigma-Aldrich 
MangoMixTM PCR kit Bioline (London, UK) 
Marvel dried skimmed milk powder Tesco (Ireland and UK) 
Methanol Sigma-Aldrich 

Microvette CB 300 K2E Sarstedt (Leicester, UK) 

MluI New England Biolabs 
Monopotassium phosphate (KH2PO4) Sigma-Aldrich 
MycoAlertTM mycoplasma detection Kit Lonza (Slough, UK) 
N-Ethylmaleimide (NEM) Sigma-Aldrich 
Nitrocellulose membrane Sigma-Aldrich 
Nuclear Extract Kit Active Motif (La Hulpe, 

Belgium) 
Nuclease free water Sigma-Aldrich 
Parafilm VWR 
Paraformaldehyde Sigma-Aldrich 
Penicillin-streptomycin Gibco 
Phenol:chloroform:isoamyl alcohol (25:24:1) Sigma-Aldrich 
Phenylmethylsulfonyl fluoride (PMSF) Sigma-Aldrich 
Polybrene Sigma-Aldrich 
Ponceau S Thermo Scientific 
Potassium chloride (KCl) Sigma-Aldrich 
Precision Plus ProteinTM Prestained Standards Bio-Rad (Hertfordshire, UK) 
Primers Sigma Aldrich 

IDT (Surrey, UK) 
PI Sigma-Aldrich 
Proteinase K Sigma-Aldrich 
Protein G Agarose beads Millipore (Cork, Ireland) 
PureYieldTM Plasmid Midiprep System Promega (Southampton, UK) 

Q5 Hot Start High-Fidelity DNA Polymerase New England Biolabs 

QIAquick Gel Extraction Kit QIAGEN (Manchester, UK) 
QIAquick PCR Purification Kit QIAGEN 
QIAshredder homogenizor QIAGEN 
RestoreTM stripping buffer Thermo Scientific 

RNeasy Mini Kit QIAGEN 
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Roswell Park Memorial Institute (RPMI) 
medium 

Gibco 

SafeView Nucleic Acid Stain NBS Biologicals  
(Cambridgeshire, UK) 

Saponin Sigma-Aldrich 
ShandonTM Kwik-DiffTM Kit Thermo Scientific 
Sodium acetate (C2H3NaO2) Sigma-Aldrich 
Sodium chloride (NaCl) Sigma-Aldrich 
Sodium deoxycholate Sigma-Aldrich 
Sodium dodecyl sulphate (SDS) Sigma-Aldrich 
Sodium fluoride (NaF) Sigma-Aldrich 
Sodium hydroxide Sigma-Aldrich 
Sodium orthovanadate (Na3VO4) Sigma-Aldrich 
Sticky-end Ligase Master Mix New England Biolabs 

Streptavidin-eFluor 450 eBioscience 

Streptavidin-PerCP-Cy5.5 eBioscience 
Streptavidin-phycoerythrin (PE) eBioscience 
SuperSignalTM West Pico and Femto 
Substrates 

Thermo Scientific 

Tetramethylethylenediamine (TEMED) Sigma-Aldrich 
Thymidine Sigma-Aldrich 

Trizma base Sigma-Aldrich 

Trizma HCl Sigma-Aldrich 

Trypan blue Sigma-Aldrich 
Trypsin-EDTA Sigma-Aldrich 
Tween 20 Sigma-Aldrich 
UltraComp eBeads® eBioscience 

Vybrant DyeCycle Violet Stain Invitrogen 

X-tremeGENETM HP DNA Roche 

 

2.1.5 Mice 

Trib2 knockout (Trib2-/-) mice (B6; 129S5-Trib2tm1Lex) were purchased from Lexicon 

Genetics (The Woodlands, TX, USA) and backcrossed onto C57BL/6 background 

for more than 7 generations. Mice were bred and housed in the biological service 

unit of the University of Glasgow. Homozygous Trib2 knockout female mice are 

infertile. Hence, homozygous Trib2 knockout male and heterozygous Trib2 

knockout female mice were used as a breeding pair to obtain Trib2-/- offspring which 

were identified by genotyping. Mice (B6.SJL-Ptprca Pepcb/ BoyJ) used in BM 

transplantation as recipients were bred and housed in the Beatson Biological 

Service and Research Units. Age-matched (6-14 weeks old) mice of both genders 

were used for comparison between wild type (WT) and Trib2-/- genotypes. All mouse 

experiments were approved by United Kingdom (UK) Animal Ethical Committees 
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and performed according to UK Home Office project license #60-4512 (Animal 

[Scientific Procedures] Act 1986) guidelines. 

 

2.1.6 Plasmids 

 

Table 2.4 │ Plasmids used in the experiments described in this thesis. 

Plasmid Source 

MigR1 Keeshan lab 
MigR1-ICN1 Keeshan lab 
pcDNA3 Keeshan lab 
pcDNA3-FLAG-TRIB2 Keeshan lab 
pcDNA3-HisA-CDC25C (human) Requested from Addgene repository (#10964) 
pcDNA3-Ub-HA Keeshan lab 
pCMV-Gag-Pol Keeshan lab 
pCMV-VSV-G Keeshan lab 
pCMV6-AC-FLAG McCarthy lab 
pCMV6-CDC25A-FLAG Sub-cloned from pCMV6-CDC25A-MYC-FLAG 
pCMV6-CDC25A-MYC-FLAG Purchased from OriGene (RC200496) 
pCMV6-CDC25B-FLAG Sub-cloned from pCMV6-CDC25B-MYC-FLAG 
pCMV6-CDC25B-MYC-FLAG Purchased from OriGene (RC207409) 
pCMV6-CDC25C (human)-FLAG Sub-cloned from pcDNA3-HisA-CDC25C  
pCMV6-CDC25C (mouse)-FLAG Sub-cloned from pCMV6-CDC25C 
pCMV6-CDC25C (mouse) Purchased from OriGene (MC200198) 
PHMA Keeshan lab 
PHMA-MYC-dC-TRIB2 Keeshan lab 
PHMA-MYC-dN-TRIB2 Keeshan lab 
PHMA-MYC-FL-TRIB2  Keeshan lab 
PHMA-MYC-KD-TRIB2 Keeshan lab 

 

2.2 Methods 

 

2.2.1 Agarose gel electrophoresis 

Agarose gel solution was made by dissolving agarose powder in Tris-borate-EDTA 

(TBE) buffer containing 90 mM Tris-borate and 2 mM EDTA, via microwave heating. 

2.5 µL of SafeView Nucleic Acid Stain was added per 50 mL of gel solution and 

mixed well by shaking before casting. 1x TBE buffer also served as the 

electrophoresis buffer.  Samples were mixed with 6x gel loading dye before loading 

on agarose gel. Electrophoresis was run at 100 volts and at room temperature. The 



49 
 

electrophoresis was stopped when tracking dye migrated at three quarters of the 

gel. 

 

2.2.2 Annexin V expression and apoptosis assay 

Single cell suspension from thymus was prepared as described in section 2.2.10.1. 

To enable identification of thymus subsets, cells were stained, as described in 

section 2.2.10.2, with 50 L of antibody panel A from Table 2.20. Following that, cell 

suspension was centrifuged at 350 x g and at 4°C for 5 minutes. 100 L of Annexin 

V-fluorescein isothiocyanate (FITC) and DAPI, diluted 1:100 in Hank’s balanced salt 

solution (HBSS), was then added to the cell pellet, mixed by pulsed vortex, and 

incubated at room temperature in the dark for 15 minutes. The stock concentration 

for DAPI was 1 mg/mL. After the incubation, 400 L of HBSS was added. The cell 

suspension was pulsed vortex before analyzed by flow cytometry. 

 

2.2.3 Bacterial transformation 

Competent E.coli bacterial cells from the lab stocks were thawed on ice for 5 

minutes. 50-100 ng of plasmid DNA was added into 50 µL of competent cells and 

incubated on ice for 20 minutes. The cells were heat shocked at 42°C for 90 

seconds and placed on ice for 90 seconds. 500 µL of SOC medium (LB broth 

containing 2.5 mM KCl, 10 mM MgCl2 and 20 mM glucose) was added and the cells 

were incubated in a shaker at 37°C for 45 minutes. For each transformation, 100 µL 

and 300 µL of cells were plated on two ampicillin-supplemented LB plates. The 

plates were checked the next morning for the presence of colony.  

 

2.2.4 Blood cell counts 

Mice were euthanized by carbon dioxide inhalation and blood was collected by 

cardiac puncture into EDTA-coated Microvette CB 300 K2E to prevent coagulation. 
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Blood was mixed thoroughly by gently flicking and inverting the microvette before 

analyzed by Hemavet HV950 (Drew Scientific, Miami Lakes, FL, USA) to generate 

complete blood counts and WBC differential counts (Table 2.5).  

 

Table 2.5 │ Normal haematology profile of a mouse. 

Parameter Units Normal Range† 

White blood cell (WBC) 103/L 1.8 - 10.7 

Neutrophil  103/L 0.1 - 2.4 

Lymphocyte  103/L 0.9 - 9.3 

Monocyte  103/L 0.0 - 0.4 

Eosinophil 103/L 0.0 - 0.2 

Basophil  103/L 0.0 - 0.2 

Red blood cell (RBC) 106/L 6.36 - 9.42 

Platelet 103/L 592 - 2972 
† Adapted from Hemavet HV950 Product Reference Manual. 

 

2.2.5 Bone marrow transduction and transplantation 

 

2.2.5.1 Production of retroviral supernatants 

15 x 106 of 293T cells were seeded in a cell culture dish (150 x 20 mm) the day 

before transfection. On the transfection day, 1.5 mL of fresh transfection buffer 

(Table 2.6) and 1.5 mL of DNA cocktail were made (Table 2.8). The existing culture 

medium was removed from the culture dish followed by addition of 9 mL of pre-

warmed fresh culture medium. The DNA cocktail was added drop by drop to the 

transfection buffer in a 15 mL centrifuge tube. Bubbles were then introduced into the 

mixture with a pipetting aid equipped with a 1 mL serological pipette for 30 seconds. 

The mixture was added to the culture dish drop by drop and the dish was tilted 

gently to distribute the mixture evenly. The next day, with no longer than 16 hours 

after the addition of transfection mixture, the existing culture medium in the dish was 

replaced with 13 mL of fresh pre-warmed medium. After 24 hours of culture, the 

supernatant of transfected cells was collected and another 13 mL of fresh pre-

warmed medium was added to the cells. The cells were cultured for another 24 
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hours before the supernatant was collected. These supernatants contained the 

retroviral particles. They were syringe-filtered (0.45 m pore size), aliquoted into 1.5 

mL microcentrifuge tubes, and stored at -80°C. 

 

Table 2.6 │ Transfection buffer for retroviral production. 

 

 

 

 

Table 2.7 │ 10x NaCl-Tris-EDTA (NTE) buffer. 

 

 

 

Table 2.8 │ DNA cocktail for retroviral production. 

Components Final concentration 

Sterile-filtered water quantity sufficient to 1.5 mL 
CaCl2 0.25 M 
10x NTE bufffer  1x 
MigR1 or MigR1-ICN1 45 g 
pCMV-Gag-Pol 30 g 
pCMV-VSV-G 18 g 

 

2.2.5.2 Determination of retrovirus titer 

0.2 x 106 of 3T3 cells in 3 mL of culture medium were seeded per cell culture dish 

(60 x 15 mm) the day before transduction. On the transduction day, the existing 

culture medium was replaced with 1 mL of fresh pre-warmed medium containing 4 

g of polybrene. To titre retrovirus supernatant per harvest, 10 L and 100 L of the 

supernatant were added gently to two tilted dishes. The dishes were returned to 

tissue incubator once the supernatant was added. After 24 hours of culture, 2 mL of 

fresh medium was added to each dish. Cells were cultured for another 24 hours 

before harvest. The existing culture medium was removed and cells were washed 

Components Final concentration 

HEPES (pH7.1) 0.05 M 
NaCl 0.18 M 
Na2HPO4 2 mM 
Sterile-filtered water quantity sufficient to 1.5 mL 

Components Final concentration 

NaCl 1.5 M 
Tris-HCl (pH7.4) 0.1 M 
EDTA (pH8.0) 10 mM 
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once in 1 mL of phosphate buffered saline (PBS) containing 137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4 and 2 mM KH2PO4. 500 L of trypsin was then added to each 

dish followed by incubation for 5 minutes at room temperature to detach the cells. 1 

mL of 2% FBS-supplemented PBS was added to each dish. The detached cells 

were pipetted up and down few times to generate single cell suspensions, before 

being transferred to polystyrene tubes (12 x 75 mm) which were kept on ice. The 

cells were centrifuged at 350 x g and at 4°C for 5 minutes. The cell pellet was 

resuspended in 500 L of 2% FBS-supplemented PBS and was ready for flow 

cytometry analysis. The retroviral titre is the percentage of green fluorescent protein 

(GFP) positive 3T3 cells due to transduction by 100 L of the retroviral supernatant. 

 

2.2.5.3 Ex vivo culture and transduction of bone marrow 

BM was collected from 6-8 weeks old WT and Trib2-/- mice (donor) 4 days after 

administration of 5-FU (250 mg/kg, i.p.). One donor mouse was required to obtain 

sufficient cells for transplantation into two recipients. Single cell suspension from 

WT and Trib2-/- BM was generated as described in section 2.2.10.1, resuspended in 

pre-stimulation medium (Table 2.9) at a density of 4 x 106 cells/mL and was 

transferred to a 6-well culture plate (up to 4 mL per well) for overnight incubation. 

The next day, WT and Trib2-/- cells were transferred to 50 mL centrifuge tubes and 

kept on ice. The culture wells were washed thrice with 2 mL of ice-cold PBS and 

each wash was transferred to the corresponding centrifuge tubes to minimize cell 

loss. Cell counting was performed to determine the recovery. WT and Trib2-/- cell 

suspensions were divided into halves for transduction with MigR1 and MigR1-ICN1 

(total of four transduction conditions) and were centrifuged at 350 x g and at 4°C for 

10 minutes. Each cell pellet was resuspended in 3 mL of activation medium (Table 

2.10) and transferred to a 6-well culture plate (one well per transduction condition). 

MigR1 and MigR1-ICN1 retroviral supernatants were thawed on ice and up to 1 mL 
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of supernatant with a titre of 40% was added into each well. Equal titre was used for 

MigR1 and MigR1-ICN1 retroviral supernatants and across three independent 

transplant experiments to ensure similar transduction efficiency of cells. If less than 

1 mL of supernatant was added, DMEM was used for compensation. The cells were 

centrifuged at 1290 x g and at room temperature for 90 minutes (first spin-infection). 

Following that, the cells were returned to tissue incubator for overnight incubation. 

The next day, the cells were transferred to 50 mL centrifuge tubes and kept on ice. 

The culture wells were washed thrice with 2 mL of ice-cold PBS and each wash was 

transferred to the corresponding centrifuge tubes to minimize cell loss. The cell 

suspensions were centrifuged at 350 x g and at 4°C for 10 minutes. MigR1 and 

MigR1-ICN1 retroviral supernatants were thawed on ice and 4 mL of each 

supernatant, each mL with a titre of 40%, was added into each tube containing the 

cell pellet. Cytokines (IL-3, IL-6 and SCF from PeproTech, London, UK) and 

polybrene were added directly to the tube. Their final concentrations were listed in 

Table 2.10. Cells were resuspended gently and the suspension was transferred to a 

6-well culture plate (4 mL per transduction condition per well). The cells were 

centrifuged at 1290xg and at room temperature for 90 minutes (second spin-

infection). Following that, the cells were returned to tissue incubator and incubated 

for 3 hours. The cells were transferred from each well of the culture plate into 

individual centrifuge tubes and kept on ice. The culture wells were washed thrice 

with 2 mL of ice-cold PBS and each wash was transferred to the corresponding 

centrifuge tubes to minimize cell loss. Cell counting was performed to determine the 

recovery. Cells were centrifuged at 350 x g and at 4°C for 10 minutes. The cell 

pellets were washed twice in 20 mL of ice-cold PBS. After that, the cell pellets from 

all the four transduction conditions were resuspended in ice-cold PBS and adjusted 

so that all have the equal concentrations (1.25-2.5 x 106 cells/mL). The cells were 

kept on ice and were ready to be transplanted into recipients. 

 



54 
 

Table 2.9 │ Pre-stimulation medium for retroviral transduction. 

Components Final concentration 

DMEM  quantity sufficient to desired volume 
Penicillin/streptomycin 100 I.U.mL-1/100 gmL-1 

L-glutamine 2 mM 
FBS 15% 
IL-3 10 ng/mL 
IL-6 10 ng/mL 
SCF 100 ng/mL 

 

Table 2.10 │ Activation medium for retroviral transduction. 

Components Final concentration per transduction condition† 

DMEM  3 mL per transduction condition 
Penicillin/streptomycin 100 I.U.mL-1/100 gmL-1 

L-glutamine 2 mM 
FBS 15% 
IL-3 10 ng/mL 
IL-6 10 ng/mL 
Polybrene 4 g/mL 
SCF 100 ng/mL 

† The amount of penicillin/streptomycin, L-glutamine, FBS, polybrene and cytokines 
added to 3 mL of DMEM was based on the calculation for the final volume (4 mL) of 
one transduction condition. 
 

2.2.5.4 Transplantation and monitoring for leukaemia development 

On the day where donor cells had second spin-infection, recipients were lethally 

irradiated with two fractionated doses, each 4.25 grays, given three hours apart. 

200 L of donor cells (0.25-0.5 x 106 cells) were then injected intravenously into 

each recipient. The recipients were kept in individually ventilated cages and treated 

with Baytril antibiotic, administered in the drinking water at a concentration of 80 

mg/L, daily for 10 days post transplantation. The recipients were monitored by 

periodic tail vein bleedings three weeks post transplantation. To count WBC, 97 L 

of 3% acetic acid solution was added to 3 L of blood followed by pipetting up and 

down for a few times before it was loaded onto a haemocytometer (Hawksley, 

Lancing, Sussex, UK). To monitor the level of donor engraftment and leukaemia 

development, the remaining collected blood was used for flow cytometry analysis 

(Section 2.2.10.2 and Table 2.22). Mice were euthanized when they showed any of 
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the following symptoms of disease: severe cachexia, lethargy, WBC count more 

than 20 x 106 cells/mL and hunching. Healthy controls were euthanized at the end 

of experiment when all mice in the test groups succumbed to disease. 

 

2.2.5.5 Analysis for moribund mice 

The body weight for each euthanized mouse was measured. Blood, liver, BM and 

spleen were collected and processed as described in section 2.2.10.1 for flow 

cytometry analysis using antibody panel C from Table 2.19. Blood cell counts were 

determined as described in section 2.2.4. Blood smears were made and stained as 

described in section 2.2.14. BM cells were also lysed in radio immunoprecipitation 

assay (RIPA) buffer to derive cell lysates for Western blotting analysis (section 

2.2.28.1). Spleen was photographed and weighed before being processed for flow 

cytometry analysis. Genomic DNA was also extracted from spleen cells to verify 

transplant experimental group based on Trib2 genotyping (section 2.2.26).   

 

2.2.6 Cell counting by trypan blue exclusion 

20 L of 0.4% trypan blue solution was added to 20 L of cell suspension and was 

mixed by pipetting up and down. The mixture was loaded onto a haemocytometer 

and examined immediately under an inverted microscope at low magnification. Only 

unstained live cells were counted in two of the large nine squares. The 

concentration of cells in the original suspension was calculated as below: 
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2.2.7 Co-immunoprecipitation 

After 24 hours of transfection, the cells were washed once with ice-cold PBS and 

harvested by using a cell scraper. The cells were transferred to a microcentrifuge 

tube and centrifuged at 11,000 x g and at 4°C for 45 seconds. 300 µL of protease 

inhibitors-supplemented Tris lysis buffer (Table 2.11) were added to the cell pellet. 

The crude cell lysate was incubated on ice for 30 minutes with vortexing every 5 

minutes. After the incubation, the lysate was centrifuged at 21,912 x g and at 4°C 

for 10 minutes. The supernatant which was the cleared protein lysate was 

transferred to a new microcentrifuge tube and kept on ice. Protein concentration 

was determined by using Bio-Rad Protein Assay Dye Reagent Concentrate. 50 µg 

of the lysate was aliqouted as input. For immunoprecipitation, equal amount of 

protein lysate for all the conditions were quantified sufficient to 1 mL with protease 

inhibitors-supplemented Tris lysis buffer (Table 2.11). Prior to immunoprecipitation, 

the lysate was pre-cleared with addition of 20 µL of Protein G Agarose beads 

followed by incubation on a rotary tube mixer in a cold room for 30 minutes. The 

lysate was centrifuged at 21,912 x g and at 4°C for 2 minutes. The supernatant 

which was the pre-cleared lysate was transferred to a new microcentrifuge tube. 

1.5-5 µg of anti-FLAG antibody and 20 µL of Protein G Agarose beads were added 

to the pre-cleared lysate followed by incubation on a rotary tube mixer in a cold 

room for overnight. The beads were washed in 1 mL of ice-cold Tris lysis buffer by 

inverting the tube repeatedly, and centrifugation at maximum speed and at 4°C for 

30 seconds. The washing was repeated for three times. In the final wash, residual 

supernatant was removed by 26 G needle. 25 µL of 2x Laemmli buffer containing 

1.5% of fresh β-mercaptoethanol was added to the beads followed by boiling at 

95°C for 5 minutes to elute immunoprecipitated proteins. The mixture was vortexed, 

and centrifuged at maximum speed and at 4°C for 2 minutes. 2x Laemmli buffer 

containing 1.5% of fresh β-mercaptoethanol was also added to the input followed by 
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boiling at 95°C for 5 minutes The supernatant and input were analyzed as described 

in section 2.2.28.2. 

 

Table 2.11 │ Protease inhibitors-supplemented Tris lysis buffer. 

Components  Final concentration 

Tris buffer [pH 7.4] 50 mM 

NaCl 150 mM 

IGEPAL CA-630 0.5 % 

Glycerol 5 % 
EDTA 1 mM 
PMSF† 1 mM 
Aprotinin† 2 g/mL 
Leupeptin† 5 g/mL 
Pepstastin† 1 g/mL 
Na3VO4

†
 1 mM 

NaF† 5 mM 
† Fresh protease inhibitors were added to Tris lysis buffer prior cell lysis. 

 

2.2.8 Cytospin preparation and staining 

100 µL of single cell suspension containing 50-100 x 103 cells was deposited onto a 

glass slide using ShandonTM CytospinTM 4 Cytocentrifuge. The cells were 

centrifuged at 450 rpm and at room temperature for 4 minutes with medium 

acceleration rate. The cells deposited onto slide were fixed and stained as 

described in section 2.2.14 using ShandonTM Kwik-DiffTM Kit. 

 

2.2.9 Detection of endogenous Tcrb rearrangements 

 

2.2.9.1 Extraction and clean up of thymic DNA 

Unfractionated thymocytes were digested overnight in 500 L of lysis buffer (Table 

2.12) (Wang et al., 2008) at 56°C. The following day, sample was heated at 95°C 

for 30 minutes to inactivate proteinase K. 500 L of Phenol:Chloroform:Isoamyl 

Alcohol (25:24:1) reagent was added to the sample. The mixture was inverted 

repeatedly to mix homogenously, and centrifuged at maximum speed and at 4°C for 
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5 minutes. The separated aqueous phase was transferred to a new microcentrifuge 

tube. 45 L of 3M sodium acetate (pH 5.2) and 1125 L of ice-cold absolute ethanol 

were then added. The mixture was inverted repeatedly to mix homogenously and 

kept at -20°C for overnight. The following day, it was centrifuged at maximum speed 

and at 4°C for 10 minutes. The supernatant was removed carefully to leave the 

DNA pellet undisturbed. 500 L of 70% ice-cold ethanol was added carefully to 

leave the DNA pellet undisturbed, and it was centrifuged at maximum speed and at 

4°C for 5 minutes. The supernatant was again removed carefully to leave the DNA 

pellet undisturbed. The DNA pellet was left to air-dry at room temperature for at 

least 30 minutes. Finally, the DNA pellet was resuspended in 50 L of nuclease free 

water and the concentration was determined using NanoDrop ND-1000 

Spectrophotometer. All extracted DNA were stored indefinitely at -20°C. 

 

Table 2.12 │ Lysis buffer to extract thymic DNA. 

 

† Fresh lysis buffer was made on the experiment day. 

 

2.2.9.2 Polymerase chain reaction (PCR) amplification of Tcrb rearrangements  

V(D)J rearrangements of the Tcrb locus were amplified by FastStartTM High Fidelity 

PCR Kit using published primers (Cobaleda et al., 2007). Primer sequences and the 

annealing temperatures for all amplifications were listed in Table 2.13. All the 

reagents and DNA were thawed and kept on ice. After thawing, all DNA samples 

were pre-diluted to 25 ng/L in nuclease free water and kept on ice. All 

components, listed in Table 2.14, were added in an order to make a PCR master 

mix. 22 L of master mix was aliquoted into individual PCR tubes. 1 L of pre-

Components† Final concentration 

KCl 50 mM 
Tris-HCl (pH8.3) 10 mM 
MgCl2 2 mM 
IGE 0.45% (vol/vol) 
Tween 20 0.4 % (vol/vol) 
Proteinase K 60 g/mL 
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diluted sample (25 ng of DNA input) was then added to the tube. Importantly, 2 L 

of primer mix (Table 2.15) was added to the tube in the final step to complete the 

setup of a PCR reaction. All tubes were pulsed vortexed and spunbriefly with a mini 

centrifuge before loaded onto a PCR machine. The thermal cycling conditions were 

listed in Table 2.16. PCR products and 1 kb DNA ladder were separated on a 1.5% 

agarose gel, detected by SafeView Nucleic Acid Stain, and imaged using Bio-Rad 

ChemiDoc XRS system. 

 

Table 2.13 │ PCR primers used to detect Tcrb rearrangements. 

Primer Tcrb 
locus 

5’>3’ sequence Annealing 
temperature (°C) 

Forward 

Dβ2 GTAGGCACCTGTGGGGAAGAAACT  58 
Vβ2 GGGTCACTGATACGGAGCTG  58 
Vβ4 GGACAATCAGACTGCCTCAAGT  58 
Vβ5.1 GTCCAACAGTTTGATGACTATCAC 56 
Vβ8 GATGACATCATCAGGTTTTGTC  56 
Vβ14 CTTCTACCTCTGTGCCTGGAGT  58 

Reverse Jβ2 TGAGAGCTGTCTCCTACTATCGATT  According to 
forward primer 

 

Table 2.14 │ PCR master mix for detection of Tcrb rearrangements. 

† Provided in the FastStart High Fidelity PCR kit. 

 

Table 2.15 │ PCR Primer mix for detection of Tcrb rearrangements. 

 

 

 

 

Components 
volume per reaction (L) Final concentration 

Nuclear free water 18.5   - 
10x buffer† 2.5 1.8 mM MgCl2 

dNTP 0.5 200 M 
Enzyme† 0.5 2.5 U 

Primer 
volume per reaction (L) Final concentration 

Forward 1  0.4 M 
Reverse 1 0.4 M 
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Table 2.16 │ PCR thermal cycling conditions for detection of Tcrb rearrangements. 

 

2.2.10 Flow cytometry 

 

2.2.10.1 Preparation for primary cells 

Pelvises, femurs and tibias collected from euthanized mice were dissected free of 

muscle tissues and tendons. The bones were crushed in 2% (vol/vol) FBS-

supplemented PBS using a mortar and pestle. The resulting BM cell suspension 

was filtered through a cell strainer. Whole spleen and thymus were isolated and 

grinded directly onto a pre-wet cell strainer and washed with 2% FBS-supplemented 

PBS to generate single cell suspensions. Cell suspension from liver was derived in 

a similar way except that a cut piece instead of whole organ was used. All the cell 

suspensions were centrifuged at 350 x g and at 4°C for 5 minutes. The cell pellets 

were resuspended in 1 mL homemade ammonium-chloride-potassium lysing buffer 

containing 10 mM KHCO3, 150 mM NH4Cl and 0.1 mM EDTA, and incubated on ice 

for 5 minutes to lyse RBCs. This was followed by washing and resuspension in 2% 

FBS-supplemented PBS. The RBC lysing procedure was repeated once when the 

cell pellet remained to be visibly red. Live cell count was then determined by trypan 

blue exclusion. 

 

2.2.10.2 Surface staining 

Cell suspensions were centrifuged at 350 x g and at 4°C for 5 minutes. 50-100 L of 

antibody cocktails, diluted in 2% FBS-supplemented FBS, were added to the cell 

Steps Number of 
cycles 

Duration Temperature (°C) 

Initial 
denaturation 

1 2 minutes 95 

Denaturation 
35 

30 seconds 95 
Annealing 30 seconds refer to Table 2.4 
Elongation 3 minutes 72 
Final elongation 1 7 minutes 72 
Cooling unlimited indefinite 4 
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pellets, mixed by pulsed vortex and incubated on ice for 30 minutes. Following that, 

the cells were washed once and resuspended in 2% FBS-supplemented PBS. The 

surface-stained cells were kept on ice and were ready for (i) secondary staining with 

fluorochrome-conjugated streptavidin, (ii) intracellular staining or (iii) flow cytometry 

analysis.  

 

Table 2.17 │ Multicolour fluorescent antibody panel to detect HSCs. 

Antibody Fluorochrome Dilution 

anti-mouse CD3 

Biotin2 1:200 

anti-mouse CD4 

anti-mouse CD8 
anti-mouse CD45.11 

anti-mouse Gr-1  
anti-mouse Ter-119 
anti-mouse/human B220 
anti-mouse/human CD11b 
anti-mouse CD48 PE 1:600 
anti-mouse CD16/CD32 APC 1:100 
anti-mouse c-Kit  APC-Cy7 1:200 
   
anti-mouse Sca-1 PE-Cy7 1:200 

1 Included only for whole BM transplant experiment to exclude CD45.1+ donor cells 
from analysis. 
2 Biotinylated primary antibodies were revealed by streptavidin-eFluor 450. 
 

Table 2.18 │ Multicolour fluorescent antibody panel to detect haematopoietic 

progenitor cells. 

Antibody Fluorochrome Dilution 

anti-mouse CD3 

Biotin2 1:200 

anti-mouse CD4 

anti-mouse CD8 
anti-mouse CD45.11 
anti-mouse Gr-1  
anti-mouse Ter-119 
anti-mouse/human B220 
anti-mouse/human CD11b 
anti-mouse c-Kit  APC-Cy7 1:200 
anti-mouse CD16/CD32 APC 1:100 
anti-mouse CD34 FITC 1:100 

anti-mouse IL-7R PE 1:100 

anti-mouse Sca-1 PE-Cy7 1:200 
1 Included only for whole BM transplant experiment to exclude CD45.1+ donor cells 
from analysis. 
2 Biotinylated primary antibodies were revealed by streptavidin-eFluor 450. 
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Table 2.19 │ Multicolour fluorescent antibody panels to detect cells of myeloid, B- 

and T-lineages. 

Antibody 
Fluorochrome1 

Dilution 
Panel A Panel B Panel C2 

anti-mouse CD4 Brilliant 
Violet 510TM 

Brilliant Violet 
510TM 

Brilliant 
Violet 510TM 

1:250 

anti-mouse CD8 PE PE PE 1:250 

anti-mouse CD19 APC eFluor 780 eFluor 780 1:150 

anti-mouse CD45.2 - PE-Cy7 PE-Cy7 1:250 
anti-mouse Gr-1  PE-Cy7 PerCP-Cy5.5 PerCP-Cy5.5 1:250 
anti-mouse/human B220 PerCP-

Cy5.5 
APC APC 1:250 

anti-mouse/human CD11b FITC FITC eFluor 450 1:250 
1 Panel A was designed for non-transplant experiments. Panel B and C were 
designed for transplant experiments involved whole and transduced BM 
respectively. 
2 GFP expression was also measured as a marker for transduced donor cells. 
 

Table 2.20 │ Multicolour fluorescent antibody panels to detect thymic subsets. 

Antibody Fluorochrome1 
Dilution 

Panel A Panel B Panel C Panel D 

anti-mouse CD11c 

eFluor 
450 

eFluor 
450 

Biotin2 Biotin2 1:250 

anti-mouse Gr-1  
anti-mouse NK1.1 
anti-mouse Ter-119 
anti-mouse/human 
B220 
anti-mouse CD4 Brilliant 

Violet 
510TM 

Brilliant 
Violet 
510TM 

Biotin2 FITC 1:1503 

1:2504 

anti-mouse CD8 PE APC Biotin2 APC 1:250 

anti-mouse CD25 PE-Cy7 PE-Cy7 PE-Cy7 PE-Cy7 1:250 
anti-mouse CD44 PerCP-

Cy5.5 
PerCP-
Cy5.5 

PerCP-
Cy5.5 

PerCP-
Cy5.5 

1:250 

anti-mouse CD71 - PE - - 1:250 
anti-mouse c-Kit APC-

Cy7 
APC-
Cy7 

APC-
Cy7 

APC-
Cy7 

1:1505 

1:2506 

1 Panel A was designed for Annexin V (section 2.2.2), Ki-67 and phospho-p38 
(section 2.2.10.3.3) staining. Panel B was designed to measure expression of CD71 
for different thymic subsets. Panel C was designed for staining of cells in resting 
and cycling state (section 2.2.10.3.4), and for detection of incorporated 
bromodeoxyuridine (BrdU) (section 2.2.13). Panel D was designed for DNA staining 
of different thymic subsets (section 2.2.10.3.1). 
2 Biotinylated primary antibodies were revealed by streptavidin-PE. 
3 Antibody dilution used for panel A and B. 
4 Antibody dilution used for panel C and D. 
5 Antibody dilution used for panel C. 
6 Antibody dilution used for panel A, B and D.  
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Table 2.21 │ Multicolour fluorescent antibody panel to detect non-T-lineage cells 

present in the thymus. 

Antibody Fluorochrome Dilution 

anti-mouse CD11c Biotin† 1:250 
anti-mouse CD19 eFluor 780 1:150 

anti-mouse Gr-1  PE-Cy7 1:250 
anti-mouse NK1.1 eFluor 450 1:250 

anti-mouse/human B220 APC 1:250 
anti-mouse/human CD11b FITC 1:250 

† Biotinylated primary antibody was revealed by streptavidin-PerCP-Cy5.5. 

 

Table 2.22 │ Multicolour fluorescent antibody panel used to monitor leukaemia 

development†. 

Antibody Fluorochrome Dilution 

anti-mouse CD45.2 PE-Cy7 1:250 
anti-mouse CD4 APC 1:250 
anti-mouse Gr8  eFluor 450 1:250 

† GFP expression was also measured as a marker for transduced donor cells. 

 

2.2.10.3 Intracellular staining 

 

2.2.10.3.1 DNA staining for thymocytes 

To enable identification of thymus subsets, cells were stained in 50 L of antibody 

panel D from Table 2.20. Following that, cell suspension was centrifuged at 350 x g 

and at 4°C for 5 minutes. To fix and permeabilize the cells, BD Cytofix/CytopermTM 

Kit was used. 500 L of BD Cytofix/Cytoperm solution was added to the cell pellet 

followed by pulse vortex and incubation on ice in the dark for 20 minutes. The fixed 

and permeabilized cells were washed twice in 500 L of BD 1x Perm/Wash buffer 

followed by centrifugation at 350 x g and at 4°C for 5 minutes. To stain DNA, the 

cells were incubated with DNA selective Vybrant DyeCycle Violet Stain (1:100 

dilution), diluted in 100 L of BD 1x Perm/Wash buffer, for 30 minutes on ice in the 
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dark. Finally, the cells were washed and resuspended in 500 L of 2% FBS-

supplemented PBS for flow cytometry analysis.  

 

2.2.10.3.2 DNA staining for cell cycle synchronization 

Cells were transferred to polystyrene tube (12 x 75 mm) and washed once in ice-

cold PBS. The cells were centrifuged at 350 x g and at 4°C for 5 minutes. The cell 

pellet was resuspended in 300 µL of ice-cold PBS. 700 µL of ice-cold absolute 

ethanol was added to the cell suspension drop by drop while vortexing. The tube 

was sealed with parafilm and the sample was stored at -20°C. To prepare for DNA 

staining, the cells were centrifuged at 200 x g and at 4°C for 10 minutes. The cells 

were washed twice in ice cold PBS. Each wash involved centrifugation at 200 x g 

and at 4°C for 10 minutes. After the last wash, the cells were resuspended in 350 

µL of BD PharmingenTM PI/RNase Staining Buffer and incubated at room 

temperature in the dark for 15 minutes. The cells were ready for flow cytometry 

analysis. 

 

2.2.10.3.3 Ki-67 and phospho-p38 staining 

To enable identification of thymus subsets, cells were stained, as described in 

section 2.2.10.2, with antibody panel A from Table 2.20. Following that, cell 

suspension was centrifuged at 350 x g and at 4°C for 5 minutes. To fix the cells, 

400 L of 4% (wt/vol) paraformaldehyde solution was added to the cell pellet 

followed by pulse vortex and incubation at room temperature in the dark for 20 

minutes. The fixed cells were centrifuged at 350 x g and at 4°C for 5 minutes. To 

permeabilize the cells, 400 L of 0.1% (wt/vol) saponin solution was added to the 

cell pellet followed by pulse vortex and incubation at room temperature in the dark 

for 15 minutes. The fixed and permeabilized cells were centrifuged at 350 x g and at 

4°C for 5 minutes. To stain the cells for Ki-67 and phospho-p38, 100 L of antibody 



65 
 

cocktail (Table 2.23), diluted in 0.1% (wt/vol) saponin solution, was added to the cell 

pellet. This was followed by pulsed vortex and incubation on ice in the dark for 30 

minutes. Finally, the cells were washed and resuspended in 500 L of 2% FBS-

supplemented PBS for flow cytometry analysis. 

 

Table 2.23 │ Fluorescent antibody panel to stain Ki-67 and phospho-p38. 

Antibody Fluorochrome Dilution 

anti-mouse/human 
phosphor-p38 (T180/Y182) 

APC 1:250 

anti-mouse/rat Ki-67 FITC 1:250 

 

2.2.10.3.4 Staining for cells in resting and cycling state 

To enable identification of immature DN thymus subsets, cells were stained in 100 

L of antibody panel C from Table 2.20. Following that, cell suspension was 

centrifuged at 350 x g and at 4°C for 5 minutes. To fix and permeabilize the cells, 

500 L of BD Cytofix/Cytoperm Buffer was added to the cell pellet followed by pulse 

vortex and incubation on ice in the dark for 20 minutes. The fixed and permeabilized 

cells were washed twice in 500 L of BD 1x Perm/Wash Buffer followed by 

centrifugation at 350 x g and at 4°C for 5 minutes. To distinguish resting (G0) from 

cycling (G1-S/G2/M) cell cycle state, the cells were incubated with anti-Ki-67 FITC 

antibody (1:250 dilution) and Vybrant DyeCycle Violet Stain (1:100 dilution), 

diluted in 100 L of BD 1x Perm/Wash Buffer, for 30 minutes on ice in the dark. 

Finally, the cells were washed and resuspended in 500 L of 2% FBS-

supplemented PBS for flow cytometry analysis.  

 

2.2.10.4 Data collection and analysis 

UltraComp eBeads® was used to prepare single-color compensation controls in 

multicolor flow cytometry experiments. Flow cytometry was performed using BD 

FACSCanto II system (BD Biosciences), equipped with blue, red and violet lasers. 
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Aggregates were excluded by forward scatter (FSC) height versus area signals. The 

singlet population was then gated by FSC area versus side scatter area signals to 

exclude dead cells and debris. Whenever possible, dead cells were also excluded 

by DAPI (1:1000 dilution of 1 mg/mL stock solution) or PI (1:2000 dilution of 10 

mg/mL stock solution) staining. In this case, the dye was added into cell suspension 

and mixed by pulsed vortex prior flow cytometry analysis. FlowJo (Tree Star, 

Ashland, OR, USA) was used to analyze flow cytometry data. Fluorescence Minus 

One (FMO) controls were used to facilitate gating as appropriate. 

 

2.2.11 Gene set enrichment analysis (GSEA) 

Gene expression profiles of T-ALL and healthy BM samples from GSE13159 data 

set (Haferlach et al., 2010) were downloaded from the Leukaemia Gene Atlas 

platform (Hebestreit et al., 2012). Based on 202478_at feature, TRIB2 expression of 

low TRIB2 T-ALL group ranged from 3.602 to 5.370 whereas high TRIB2 T-ALL 

group ranged from 8.811 to 11.103. The mean value of TRIB2 for healthy BM 

samples (n = 73) was 6.172. GSEA (Subramanian et al., 2005) was performed 

using the default settings. Gene sets from the Molecular Signatures Database v5.0 

of GSEA (Broad Institute of MIT and Harvard, Cambridge, MA, USA) were used. 

These included the 1330 gene sets in C2: CP collection for canonical pathways and 

the 3 gene sets in C2: CGP collection (M4175, M2059 and M1007) for T-ALL 

molecular subtypes. 

 

2.2.12 In vivo 5-FU treatment 

On the drug administration day, mice were weighed to calculate the weight-adjusted 

dosage (150 or 250 mg/kg), as indicated in the related figure legends. 5-FU 50 

mg/mL solution was diluted in PBS on the same day and was administered by 

intraperitoneal (i.p.) injection. For 150 mg/kg dosage, the diluted concentration of 5-
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FU was 15 mg/mL whereas for 250 mg/kg dosage, it was 25 mg/mL. In this case, a 

mouse of 20 g received 0.2 mL of the diluted 5-FU. 

 

2.2.13 In vivo BrdU pulsing and detection of incorporated BrdU 

On day 14 post 5-FU treatment, mice were pulsed with 1 mg of BrdU Labelling 

Reagent, by i.p. injection, for one or four hours. Thymus was collected from 

euthanized mice and single cell suspension was prepared as described in section 

2.2.10.1. To enable identification of immature DN thymus subsets, cells were 

stained in 100 L of antibody panel C from Table 2.20. Following that, cell 

suspension was centrifuged at 350 x g and at 4°C for 5 minutes. To fix and 

permeabilize the cells, 250 L of BD Cytofix/Cytoperm Buffer was added to the cell 

pellet followed by pulse vortex and incubation on ice in the dark for 30 minutes. The 

fixed and permeabilized cells were washed in 3% FBS-supplemented PBS, and 

were centrifuged at 350 x g and at 4°C for 5 minutes. To permeabilize the nuclear 

membrane further, 1 mL of 10% DMSO-supplemented FBS was added to the cell 

pellet followed by pulse vortex and incubation for overnight at -80°C. The cells were 

then thawed at 37°C, washed in 3% FBS-supplemented PBS, and incubated with 

250 L of BD Cytofix/Cytoperm Buffer for an additional 10 minutes on ice in the 

dark. Following incubation, the cells were washed in 3% FBS-supplemented PBS 

and treated in 100 L of DNase I solution (30 g per 1x106 cells diluted in PBS) for 

one hour at 37°C in the dark. The cells were washed once in BD 1x Perm/Wash 

Buffer before intracellular staining. The cells were incubated with anti-BrdU FITC 

antibody (1:50 dilution) and Vybrant DyeCycle Violet Stain (1:100 dilution), diluted 

in BD Perm/Wash Buffer, for 30 minutes at room temperature in the dark. Finally, 

the cells were washed and resuspended in 500 L of 3% FBS-supplemented PBS 

for flow cytometry analysis.  
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2.2.14 Making and staining a blood smear 

Blood collected in EDTA-coated microvette was pulsed-vortexed. 3 L of blood was 

transferred to one end of a clean glass slide. The blood was spread into a thin 

smear by using another clean slide to touch the blood drop and push carefully along 

the length of the first slide. The smear was allowed to air dry at room temperature 

before it was stained using ShandonTM Kwik-DiffTM Kit. The blood smear slide was 

dipped into Kwik-Diff Reagent 1 (Fixative) for 10 times, Reagent 2 (Eosin) for 10 

times and into Reagent 3 (Methylene Blue) for 10 times. Each dip was about a 

second. After that, the slide was dipped into clean water for a few times to wash off 

the excess staining reagent. The stained blood smear was allowed to air dry at 

room temperature and DPX mountant was applied to preserve the stain.  

 

2.2.15 Mycoplasma detection assay 

Mycoplasma contamination in cultured cell lines was monitored using MycoAlertTM 

Mycoplasma Detection Kit (Lonza, Slough, UK). Aliquots of MycoAlertTM reagent 

and substrate (50 L each), stored at -20°C, were thawed and allowed to equilibrate 

to room temperature. 50 L of fresh supernatant of cultured cells was added to the 

reagent and incubated for 5 minutes before luminescence (reading A) was 

measured by GloMax 20/20 Single Tube Luminometer (Promega, Southampton, 

UK). The substrate was subsequently added to the sample and incubated for 10 

minutes before luminescence (reading B) was measured again. The results (ratio of 

reading B to reading A) were interpreted according to the manufacturer guidelines. 

 

2.2.16 Plasmid construction 

 

2.2.16.1 Sub-cloning to derive pCMV6-CDC25A/B-FLAG 
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pCMV6-CDC25A/CDC25B-MYC-FLAG and pCMV6-AC-FLAG (empty vector) 

plasmids were double-digested using MluI and AsiSI restriction enzymes. CDC25A 

and CDC25B inserts were extracted using QIAquick Gel Extraction Kit whereas the 

digested pCMV6-AC-FLAG was cleaned up using QIAquick PCR Purification Kit. 

CDC25A and CDC25B inserts were ligated individually with digested pCMV6-AC-

FLAG using Sticky-end Ligase Master Mix with 1:3 molar ratio of vector to insert. 

Bacterial transformation was performed as described in section 2.2.3. Colonies 

were picked and screened by double digestion using MluI and AsiSI restriction 

enzymes.  

 

2.2.16.2 Sub-cloning to derive pCMV6-CDC25C-FLAG 

CDC25C (human/mouse) inserts were derived from pcDNA3-HisA-CDC25C 

(human) and pCMV6-CDC25C (mouse) plasmids. AsiSI and MluI cloning sites were 

appended to the 5’ and 3’ ends of the inserts respectively by PCR (Table 2.24) 

using Q5 Hot Start High-Fidelity DNA Polymerase. PCR products were cleaned up 

using QIAquick PCR Purification Kit. CDC25C inserts and pCMV6-AC-FLAG (empty 

vector) plasmids were double-digested using MluI and AsiSI restriction enzymes. 

The digested inserts and vector were cleaned up using QIAquick PCR Purification 

Kit. CDC25C (human/mouse) inserts were ligated individually with digested pCMV6-

AC-FLAG using Sticky-end Ligase Master Mix. Bacterial transformation was 

performed as described in section 2.2.3. Colonies were picked and screened by 

double digestion using MluI and AsiSI restriction enzymes. Positive clones were 

verified further by DNA sequencing to ensure no mutation presents in the PCR-

cloned inserts. 
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Table 2.24 │ PCR primers used to clone CDC25C inserts. 

CDC25C Forward primer (5’>3’)† Reverse primer (5’>3’)† 

mouse 
gaggcgatcgccATGTCTACAGGACC 
TATCCCACC 

gcgacgcgtTTGTGGGCTCGCA 
CCCTTCA 

human 
gaggcgatcgccATGTCTACGGAACT 
CTTCTCATC 

gcgacgcgtTGGGCTCATGTCC 
TTCACC 

† Letters in lower case contain the AsiSI and MluI cloning sites. 

 

2.2.17 Plasmid purification 

A sterile pipette tip was used to stab the frozen glycerol stock of transformed 

bacteria and placed in 5 mL of ampicillin-supplemented LB broth. The LB broth was 

incubated in a shaker at 37°C for approximate 8 hours. After that, the bacteria 

culture was transferred to a bigger flask containing 150 mL of fresh ampicillin-

supplemented LB broth for overnight incubation in a shaker at 37°C. Plasmid DNA 

was purified from the overnight culture using PureYieldTM Plasmid Midiprep System. 

The cells were centrifuged at 5,000 x g for 10 minutes. 6 mL of Cell Resuspension 

Solution was added to resuspend the cell pellet. 6 mL of Cell Lysis Solution was 

added and mixed by gently inverting the tube 3 times. The mixture was incubated 

for 3 minutes at room temperature. 10 mL of Neutralization Solution was added to 

the lysed cells and mixed by gently inverting the tube 3 times. The lysate was 

centrifuged at room temperature and at 15,000 x g for 15 minutes. The cleared 

lysate was transferred into the PureYieldTM Clearing Column. Vacuum was applied 

so that the lysate passed through the Clearing and Binding Columns. 5 mL of 

Endotoxin Removal Wash and 20 mL of Column Wash Solution were added to the 

Binding Column sequentially and removed by the vacuum. The membrane was 

dried by applying a vacuum for 1 minute and the the tip of the column was tapped 

on a paper towel to remove excess ethanol. 400 µL of nuclease free water was 

added to elute the plasmid DNA by vacuum.               
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2.2.18 Protein BLAST 

Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990) was used to 

align the amino acid sequence of human and mouse orthologs for CDC25B and 

CDC25C. The reference sequences for CDC25B were NP_075606.1 (mouse 

ortholog) and NP_068659.1 (human ortholog). The reference sequences for 

CDC25C were NP_033990.2 (mouse ortholog) and NP_001781.2 (human ortholog). 

Blastp (protein-protein BLAST) algorithm was executed with default parameters.  

 

2.2.19 Quantitative RT-PCR 

 

2.2.19.1 Analysis for TRIB2 knockdown in U937 cells 

High throughput quantitative RT-PCR analysis was performed on the Fluidigm 

48.48 Dynamic Array Integrated Fluidic Circuits system (Biomark HD). Primer 

sequences are listed in Table 2.25. Specific target pre-amplification was carried out. 

Each target was measured in triplicate reactions. Expression levels of the target 

genes (TRIB1 and TRIB2) were normalized relative to the mean of the reference 

genes (ABL, B2M, ENOX2 and RNF20). Relative messenger ribonucleic acid 

(mRNA) levels were calculated using the 2-ΔΔCT method. 

 

Table 2.25 │ Primers used for quantitative RT-PCR. 

Gene Forward primer (5’>3’) Reverse primer (5’>3’) 

TRIB1 CTTCAAGCAGATTGTCTCCGC  CTAAGCTGGGTTCTCTCCTCC  
TRIB2 AGCCAGACTGTTCTACCAGA  GGCGTCTTCCAGGCTTTCCA  
ABL TGGAGATAACACTCTAAGCATA 

ACTAAAGGT 
GATGTAGTTGCTTGGGACCCA 

β2M TTGTCTTTCAGCAAGGACTGG ATGCGGCATCTTCTAACCTCC 
ENOX2 GAGCTGGAGGGAACCTGATTT CACTGGCACTACCAAACTGCA  
RNF20 GGTGTCTCTTCAACGGAGGAA TAGTGAGGCATCATCAGTGGC 
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2.2.19.2 Analysis for cell cycle synchronization 

Trib2 and 2m expressions were measured using Fast SYBR Green Master Mix. 

Primer sequences are listed in Table 2.25. Each target was measured in triplicate 

reactions. Master mix (Table 2.26) was prepared on ice and 9 µL of the mix was 

aliquoted per well of a 384-well plate. 1 µL of cDNA was added into each well. The 

volume of a complete reaction was 10 µL. The plate was sealed and centrifuged 

briefly before loaded onto the Applied Biosystems 7900HT Fast Real-Time PCR 

system (Table 2.27). Expression of Trib2 was normalized relative to B2m. Relative 

mRNA levels were calculated using the 2-ΔΔCT method. 

 

Table 2.26 │ Master mix for quantitative RT-PCR. 

Components Volume per reaction (µL) 

Fast SYBR Green Master Mix 5 

Forward primer (10 µM) 0.25 
Reverse primer (10 µM) 0.25 
Nuclease free water 3.5 

 

Table 2.27 │ Thermal cycling conditons for quantitative RT-PCR. 

 

2.2.20 RNA extraction and complementary DNA (cDNA) synthesis 

Total ribonucleic acid (RNA) was extracted from cells using RNeasy Mini Kit. Cells 

were washed once in ice-cold PBS and centrifuged at 350 x g and at 4°C for 5 

minutes. Filtered tips were used during the whole procedure. 350 µL of Buffer RLT 

was added to the cell pellet. Cell lysis was aided by repeated pipetting. The lysate 

was transferred into a QIAshredder spin column placed in a 2 mL collection tube 

and centrifuged for 2 minutes at full speed and at room temperature. 350 µL of 70% 

ethanol was added to the homogenized lysate and mixed well by pipetting. The 

Steps Number of cycles Temperature (°C) Duration (seconds) 

Activation 1 95 20 
Melting 

40 
95 1 

Annealing 60 20 
Extending 50 120 
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sample was transferred to an RNeasy spin column placed in a 2 mL collection tube. 

The lid was closed gently and centrifuged for 15 seconds at 10,000 x g and at room 

temperature. The flow through was discarded. 700 µL of Buffer RW1 was added to 

the RNeasy spin column. The lid was closed gently and centrifuged for 15 seconds 

at 10,000 x g and at room temperature. The flow through was discarded. 500 µL of 

Buffer RPE was added to the RNeasy spin column. The lid was closed gently and 

centrifuged for 15 seconds at 10,000 x g and at room temperature. The flow through 

was discarded. Another 500 µL of Buffer RPE was added to the RNeasy spin 

column. The lid was closed gently and centrifuged for 2 minutes at 10,000 x g and 

at room temperature. The RNeasy spin column was placed in a new 2 mL collection 

tube, and centrifuged at full speed for 1 minute and at room temperature. The 

RNeasy spin column was placed in a new 1.5 mL microcentrifuge tube. 30 µL of 

nuclease free water was added directly to the spin column membrane. The lid was 

closed gently and centrifuged for 1 minute at 10,000 x g and at room temperature to 

elute the RNA. The RNA concentration was determined using NanoDrop ND-1000 

Spectrophotometer. All RNA samples were stored at -80°C. 

 

cDNA was synthesized using High Capacity cDNA Reverse Transcription Kit. 

Master mix (Table 2.28) were prepared on ice and 6.8 µL of the master mix was 

aliquoted into individual PCR tube. 13.2 µL of sample containing up to 0.5 µg of 

RNA was added into each tube. The volume of a complete reaction was 20 µL. 

Tube was pulsed vortex and centrifuged briefly before loaded onto a PCR machine. 

The thermal cycling conditions were listed in Table 2.29. All cDNA samples were 

stored at -20°C. 
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Table 2.28 │ Master mix for cDNA synthesis. 

Components Volume per reaction (µL) 

10x RT buffer 2 
25x dNTP mix (100 mM) 0.8 
10x RT Random Primers 2 
MultiScribe Reverse Transcriptase (50 U/µL) 1 
RNase inhibitor† (20 U/µL) 1 

† RNase inhibitor was not included in the kit. 

 

Table 2.29 │ PCR thermal cycling conditons for cDNA synthesis. 

 

 

 

 

2.2.21 Single thymidine block 

RPMI-8402 cells were synchronized by single thymidine block. Cells were sub-

cultured at 0.5 x 106 cells/mL the day before treatment with thymidine. The following 

day, the cells were plated at 0.5 x 106 cells/mL. Asynchronous samples (AS) were 

collected at this time point. The remaining cells were treated with 0.75 mM 

thymidine and cultured for 21 hours. At 21 hours post treatment, synchronous 

samples (S0) were collected. The remaining synchronous cells were released from 

thymidine block by washing for twice in PBS. Each wash involved centrifugation of 

cells at 350 x g and at room temperature for 5 minutes.  After the final wash, the 

cells were resuspended in fresh complete culture medium and returned to tissue 

incubator. Samples were then collected at different time points (S12, S15, S17, 

S20, S22 and S24). At each time point, cells were collected for flow cytometry 

(Section 2.2.10.3.2), Western blotting (Section 2.2.28.4) and quantitative RT-PCR 

analyses (Section 2.2.19.2). Each analysis required 250 x 103 cells.  

 

 

Steps Temperature (°C) Duration (minutes) 

1 25 10 
2 37 120 
3 85 5 
4 4 indefinite 
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2.2.22 Statistics 

GraphPad Prism (version 5.03; LA Jolla, CA, USA) was used for statistical analysis 

and graphing. An unpaired, two-tailed, Student’s t-test was applied for comparison 

of two groups. For analysis of multiple groups between WT and Trib2-/- genotypes, 

two-way analysis of variance (ANOVA) with Bonferroni post-tests was applied. Log-

rank test was applied for survival curve comparison. Pearson correlation test was 

applied to examine association between TRIB2 and LYL1 expressions of T-ALL 

samples from GSE33315 data set (Zhang et al., 2012c). This data set was 

downloaded from Gene Expression Omnibus and Robust Multichip Average method 

was used for data normalization. D’Agostino-Pearson omnibus test confirmed these 

samples had Normal distributions of TRIB2 and LYL1 values. Statistical significance 

of differences was attained when P value <0.05 and was indicated in the related 

graphs. Statistical analyses where P value ≥ 0.05 were not indicated in the graphs 

and deemed not significant. 

 

2.2.23 Subcellular fractionation 

Transfected cells were treated with DMSO (vehicle) or 10 µM of MG132 for 4 hours 

before being subcellular fractionated. Active Motif Nuclear Extract Kit was used to 

derive nuclear and cytoplasmic lysates. Cells were washed with 4 mL of ice-cold 

phosphatase inhibitors-supplemented PBS. Following that, the cells were harvested 

in 1 mL of ice-cold phosphatase-inhibitors supplemented PBS by using cell 

scrapper and the cell suspension was transferred to a pre-chilled microcentrifuge 

tube. The suspension was centrifuged for 4 minutes at 200 x g and at 4°C. The cell 

pellet was resuspended gently in 300 µL of 1x hypotonic solution and incubated on 

ice for 15 minutes. 25 µL of detergent was then added and the suspension was 

vortexed at the highest speed for exactly 10 seconds. The suspension was 

centrifuged for 30 seconds at 14,000 x g and at 4°C. The supernatant was the 

cytoplasmic lysate and transferred to a new microcentrifuge tube. The nuclear pellet 
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was resuspended in 25 µL of complete lysis buffer and vortexed at the highest 

speed for 1 minute. The nuclear suspension was incubated on a laboratory rocking 

mixer in a cold room for 30 minutes. The suspension was vortexed again at the 

highest speed for 30 seconds before being centrifuged for 10 minutes at 14,000 x g 

and at 4°C. The supernatant was the nuclear lysate and transferred to a new 

microcentrifuge tube. The concentration of nuclear and cytoplasmic lysates was 

determined by using Bio-Rad Protein Assay Dye Reagent Concentrate. All lysates 

were kept at -80°C until being analyzed as described in section 2.2.28.3.  

 

2.2.24 Tissue culture 

293T and 3T3 cell lines were cultured in DMEM complete medium whereas RPMI-

8402 and HeLa cell lines were cultured in RPMI complete medium (Table 2.30). To 

maintain 293T, 3T3 and HeLa cell lines, cells were sub-cultured at 1:5 ratio in fresh 

medium every 2-3 days. Trypsin-EDTA solution was used to detach the cells from 

growth surface. To maintain RPMI-8402 cell line, cells were sub-cultured at 0.5 x106 

cells/mL in fresh medium every 2-3 days. To cryopreserve cells, cells were 

centrifuged at 350 x g and at room temperature for 5 minutes. Ice-cold 

cyopreservation medium (10% DMSO-supplemented FBS) was added to the cell 

pellet and cells were resuspended by gentle pipetting. 1 mL of cell suspension was 

aliquoted into each cryotube, and stored at -80°C for short term and in liquid 

nitrogen tank for long term. To resuscitate frozen cells, cryopreserved cells were 

thawed at 37°C and transferred to a 50 mL centrifuge tube. 10 mL of pre-warmed 

complete culture medium was added drop by drop to the cells and mixed by gentle 

shaking. The cells were centrifuged at 350 x g and at room temperature for 5 

minutes. The cell pellet was resuspended in complete culture medium. The cell 

suspension was transferred to a culture flask and cultured at 37°C.  
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Table 2.30 │ Culture medium used to maintain cell lines. 

Components Final concentration 

DMEM/RPMI - 
Penicillin/streptomycin 100 I.U.mL-1/100 gmL-1 

L-glutamine 2 mM 
FBS 10% 

 

2.2.25 Transient transfection 

 

2.2.25.1 Examination of TRIB2 and CDC25A-C interactions 

HeLa cells were transiently transfected with plasmid vectors using X-tremeGENETM 

HP DNA transfection reagent to express exogenous TRIB2, all human isoforms of 

CDC25 family and orthologs (human and mouse) for CDC25C. Cells were plated 

the day before transfection so that cells were at 90% confluency. Transfection 

reagent, plasmid DNA and serum free RPMI medium were allowed to equilibrate to 

room temperature and vortexed gently. 1:1 ratio of DNA (µg) to transfection reagent 

(µL) was used and was diluted in serum free medium followed by incubation at 

room temperature for 25 minutes. To transfect cells seeded in a culture dish of 150 

x 20 mm, a total of 20 µg DNA was diluted in 2 mL of medium whereas for a culture 

dish of 100 x 20 mm, a total of 8 µg DNA was diluted in 1 mL of medium. For co-

transfection, equal amount of plasmids were used. The transfection complex was 

added to the cells in a dropwise manner and the dish was swirled gently before 

being returned to tissue incubator. The cells were processed as described in section 

2.2.7 after 24 hours of transfection. 

 

2.2.25.2 Examination of CDC25C degradation 

HeLa cells were plated in a culture dish of 100 x 20 mm the day before transfection 

so that cells were at 90% confluency for transfection. X-tremeGENETM HP DNA 

Transfection reagent, plasmid DNA and serum free RPMI medium were allowed to 

equilibrate to room temperature and vortexed gently. 1:1 ratio of DNA (µg) to 
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transfection reagent (µL) was used and was diluted in 1 mL of serum free medium 

followed by incubation at room temperature for 20 minutes. 6-8 µg of empty vector 

or pcDNA-FLAG-TRIB2 was used per transfection condition. The transfection 

complex was added to the cells in a dropwise manner and the dish was swirled 

gently before being returned to tissue incubator. The cells were processed as 

described in section 2.2.23 after 24 hours of transfection. 

 

2.2.25.3 Examination of CDC25C ubiquitination. 

HeLa cells were plated in a culture dish of 100 x 20 mm the day before transfection 

so that cells were at 90% confluency for transfection. X-tremeGENETM HP DNA 

Transfection reagent, plasmid DNA and serum free RPMI medium were allowed to 

equilibrate to room temperature and vortexed gently. 1:1 ratio of DNA (µg) to 

transfection reagent (µL) was used and was diluted in 1 mL of serum free medium 

followed by incubation at room temperature for 25 minutes. Regardless of the 

transfection conditions, 3 µg of pcDNA3-Ub-HA, 3 µg of PHMA-MYC-(FL, dN, KD 

and dC)-TRIB2, 2 µg of pCMV6-human CDC25C-FLAG and 2 µg of pCMV6-mouse 

CDC25C-FLAG were used. The transfection complex was added to the cells in a 

dropwise manner and the dish was swirled gently before being returned to tissue 

incubator. The cells were processed as described in section 2.2.27 after 24 hours of 

transfection. 

 

2.2.26 Trib2 genotyping 

 

2.2.26.1 DNA extraction 

DNA was extracted from ear clips of weaned mice. 250 µL of Digestion Buffer 1 

(Table 2.31) was added to a sample and boiled at 95°C for 15 minutes. During 

boiling, the sample was vortexed at an interval of 3 minutes. After boiling, 25 µL of 
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Digestion Buffer 2 (Table 2.31) was added and the sample was vortexed. All 

samples were stored at -20°C. 

 

Table 2.31 │ DNA digestion buffers. 

Buffer Components  Final concentration 

1 NaOH  50 mM 

2 
Tris buffer 1 M 
EDTA 10 mM 

 

2.2.26.2 PCR amplification of Trib2 WT and mutant alleles 

Trib2 WT and mutant alleles were amplified by MangoMixTM PCR system using the 

primers listed in Table 2.32. All the reagents and DNA were thawed and kept on ice. 

23 L of master mix (Table 2.33) was aliquoted into individual PCR tubes. 2 L of 

DNA was then added to the tubes. All tubes were pulsed vortexed and centrifuged 

briefly before loaded onto a PCR machine. The thermal cycling conditions were 

listed in Table 2.34. PCR products and 100 bp DNA ladder were separated on a 2% 

agarose gel, detected by SafeView Nucleic Acid Stain, and imaged using Bio-Rad 

ChemiDocTM XRS system. 

 

Table 2.32 │ PCR primers used for Trib2 genotyping. 

Primer 5’>3’ sequence 

1† CACAATAGCGAGATATGGGAG  
2 GCAATGCGACAAGTTCGGAG  
Neo3A GCAGCGCATCGCCTTCTATC  

† Primer 1 anneals to genome sequence deleted in the disrupted region of Trib2 
exon1. 
 

Table 2.33 │ PCR master mix for Trib2 genotyping. 

Components 
volume per reaction (L) Final concentration 

MangoMixTM 12.5  - 
Primer 1 0.5 2 µM 

Primer 2 1.0 4 µM 
Primer Neo3A 0.5 2 µM 
Nuclease free water 8.5 - 
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Table 2.34 │ PCR thermal cycling conditions for Trib2 genotyping. 

 

2.2.27 Ubiquitination assay 

Transfected cells were treated with 10 µM of MG132 or DMSO (vehicle control) and 

cultured at 37°C for 7 hours. After that, the cells were treated with 10 mM of NEM at 

room temperature for 30 seconds. The culture medium was removed and the cells 

were washed in 4 mL of ice-cold PBS containing 10 mM of NEM. The cells were 

harvested in 1 mL of ice-cold PBS containing 10 mM of NEM using cell scrapper 

and transferred to a microcentrifuge tube. The cell suspension was centrifuged at 

11,000 x g at 4°C for 45 seconds. 100 µL of 1% (wt/vol) SDS was added to the cell 

pellet followed immediately by vortexing for 10 seconds and boiling at 95°C for 5 

minutes. The crude cell lysate was sonicated using Soniprep 150 equipped with an 

exponential probe (MSE, London, UK), with 6 micron amplitude for 10 seconds to 

break down remaining DNA. The lysate was sonicated further if it was very viscous. 

The lysate was centrifuge at full speed and at 4°C for 10 minutes. The supernatant 

(cleared protein lysate) was transferred to a new microcentrifuge tube. 5 µL of the 

lysate was aliquoted as input and stored at -20°C. 900 µL of ice-cold protease 

inhibitors-supplemented Tris lysis buffer (Table 2.11) was added to the remaining 

lysate. Prior immunoprecipitation, the lysate was pre-cleared with addition of 20 µL 

of Protein G Agarose beads followed by incubation on a rotary tube mixer in a cold 

room for 30 minutes. The lysate was centrifuged at maximum speed and at 4°C for 

2 minutes. The supernatant which was the pre-cleared lysate was transferred to a 

new microcentrifuge tube. 1 µg of antibody and 20 µL of Protein G Agarose beads 

Steps Number of 
cycles 

Duration Temperature (°C) 

Initial 
denaturation 

1 5 minutes 94 

Denaturation 
30 

30 seconds 94 
Annealing 30 seconds 60 
Elongation 1 minute 72 
Final elongation 1 5 minutes 72 
Cooling unlimited indefinite 4 
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were added to the pre-cleared lysate followed by incubation on a rotary tube mixer 

in a cold room for overnight. The beads were washed in 1 mL of ice-cold Tris lysis 

buffer by inverting the tube repeatedly, and centrifugation at maximum speed and at 

4°C for 30 seconds. The washing was repeated for three times. In the final wash, 

residual of supernatant was removed by 26 G needle. 25 µL of 2x Laemmli buffer 

containing 1.5% of fresh β-mercaptoethanol was added to the beads followed by 

boiling at 95°C for 5 minutes to elute immunoprecipitated proteins. The mixture was 

vortexed, and centrifuged at maximum speed and at 4°C for 2 minutes. 5 µL of 2x 

Laemmli buffer containing 1.5% of fresh β-mercaptoethanol was added to the inputs 

followed by boiling at 95°C for 5 minutes. The supernatant and input were analyzed 

as described in section 2.2.28.4. 

 

2.2.28 Western blotting 

 

Table 2.35 │ Solutions for preparing 5% stacking gel for SDS-PAGE. 

Components Volume required to cast a gel (5 mL) 

Water 3.4 
30% acrylamide mix 0.83 
1.0 M Tris (pH 6.8) 0.63 
10% SDS 0.05 
10% ammonium persulfate 0.05 
TEMED 0.005 

 

Table 2.36 │ Solutions for preparing resolving gel for SDS-PAGE. 

Components 
Volume required to cast a gel (10 mL) 

8% 12% 

Water 4.6 3.3 
30% acrylamide mix 2.7 4.0 
1.5 M Tris (pH 8.8) 2.5 2.5 
10% SDS 0.1 0.1 
10% ammonium persulfate 0.1 0.1 
TEMED 0.006 0.004 
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Table 2.37 │ Tris-glycine buffer for SDS-PAGE. 

Components Final concentration  

Tris-Cl 25 mM 
Glycine 192 mM 
SDS 0.1% (wt/vol) 

 

Table 2.38 │ Transfer buffer. 

Components Final concentration  

Tris-Cl 25 mM 
Glycine 192 mM 
Methanol 20% (vol/vol) 

 

2.2.28.1 Detection of MAPK signalling 

Total BM cells collected from mice succumbed to leukaemia were lysed in protease 

inhibitors-supplemented RIPA buffer (Table 2.39). Crude cell lysates were 

centrifuged at maximum spend and at 4°C for 10 minutes after incubation for 30 

minutes on ice with periodic pulse vortex. The supernatants which were cleared 

protein lysates were stored at -80°C. To prepare for gel electrophoresis, protein 

lysates were mixed with 4x Laemmli buffer (Table 2.40) containing 3% (vol/vol) 

fresh β-mercaptoethanol and boiled at 95°C for 5 minutes. Protein lysates and 

Precision Plus ProteinTM Prestained Standards were resolved by SDS-

polyacrylamide gel electrophoresis (PAGE) using 5% stacking (Table 2.35) and 

12% resolving gels (Table 2.36). Electrophoresis was run at 100 volts using Tris-

glycine buffer (Table 2.37) until the tracking dye diffused into the buffer. After 

electrophoresis, the separated proteins were wet-transferred (Table 2.38) from the 

gel to nitrocellulose membranes, with pore size of 0.45 m, at 100 volts for 1 hour. 

The transfer efficiency was checked by Ponceau S staining. The membranes were 

blocked with PBS supplemented with 5% (wt/vol) milk and 0.01% (vol/vol) Tween 

20, at room temperature for 1 hour. Triplicate membranes were incubated with 

primary antibodies (Table 2.41), to detect activation of p38, p44/42 and JNK 

separately, on a roller mixer in a cold room for overnight. The following day, the 
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membranes were washed thrice in PBS supplemented with 5% (wt/vol) milk and 

0.01% (vol/vol) Tween 20. Each time the incubation was 5 minutes. The 

membranes were incubated with horseradish peroxidise-conjugated secondary 

antibodies (Table 2.41) on a roller mixer at room temperature for 1 hour. The 

membranes were washed thrice and each time the incubation was 10 minutes. The 

signals were detected by chemiluminescence method using SuperSignalTM West 

Pico and Femto Substrates, and were developed onto CL-XPosureTM radiography 

films. For each membrane, RestoreTM stripping buffer was used for secondary 

probing to detect total level of MAPK and for tertiary probing to detect -actin. 

 

Table 2.39 │ Protease inhibitors-supplemented RIPA buffer. 

Components  Final concentration 

Tris buffer [pH 7.4] 50 mM 

NaCl 150 mM 

IGEPAL CA-630 0.5% 

Sodium 
deoxycholate 

0.25% 

EDTA 1 mM 
PMSF† 1 mM 
Aprotinin† 2 g/mL 
Leupeptin† 5 g/mL 
Pepstastin† 1 g/mL 
Na3VO4

†
 1 mM 

NaF† 5 mM 
† Fresh protease inhibitors were added to RIPA buffer prior cell lysis. 

 

Table 2.40 │ 4x Laemmli buffer. 

Components Final concentration  

Tris buffer [pH6.8] 250 mM 
SDS 8% (wt/vol) 
Glycerol 40% (vol/vol) 
Bromophenol blue 0.005% (wt/vol) 
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Table 2.41 │ Antibodies used to detect MAPK signalling. 

Primary antibody† Dilution Dilution for 
secondary antibody†  

anti-β-actin 1:5000 1:5000 
anti-JNK1 1:1000 1:1000 
anti-p38 1:2000 1:4000 
anti-p44/42 1:2000 1:2000 
anti-phospho-JNK (T183/Y185) 1:1000 1:1000 
anti-phospho-p38 (T180/Y182) 1:3000 1:3000 
anti-phospho-p44/42 (T202/Y204) 1:2000 1:2000 

† Anti--actin and secondary antibodies were diluted in PBS supplemented with 5% 
(wt/vol) milk and 0.01% (vol/vol) Tween 20. The rest were diluted in Tris-buffered 
saline (TBS) containing 20 mM Tris and 150 mM NaCl, and supplemented with 5% 
(wt/vol) BSA and 0.01% (vol/vol) Tween 20. 
 

2.2.28.2 Detection of co-immunoprecipitated proteins 

Inputs, eluates and Precision Plus ProteinTM Prestained Standards were resolved by 

SDS-PAGE using 5% stacking (Table 2.35) and 12% resolving (Table 2.36) gels. 

Electrophoresis, wet transfer, membrane blocking, antibody incubation (Table 2.42), 

membrane washing and signal detection were performed as described in section 

2.2.28.1. RestoreTM stripping buffer was used for repeated probing as appropriate. 

 

Table 2.42 │ Antibodies used to analyze co-immunoprecipitation assay. 

Primary antibody† Dilution Dilution for 
secondary antibody†  

anti-β-actin 1:5000 1:5000 
anti-CDC25C 1:500 1:1000 
anti-FLAG 1:1000 1:1000 
anti-MYC 1:1000 1:1000 

† All antibodies were diluted in PBS supplemented with 5% (wt/vol) milk and 0.01% 
(vol/vol) Tween 20.  
 

2.2.28.3 Detection of nuclear and cytoplasmic proteins 

2x Laemmli buffer containing 1.5 % of fresh β-mercaptoethanol was added to the 

nuclear and cytoplasmic lysates and were boiled at 95°C for 5 minutes. The lysates 

were resolved by SDS-PAGE using 5% stacking (Table 2.35) and 12% resolving 

(Table 2.36) gels. Unless stated otherwise, electrophoresis, wet transfer, membrane 

blocking, antibody incubation (Table 2.43), membrane washing and signal detection 
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were performed as described in section 2.2.28.1. RestoreTM stripping buffer was 

used for repeated probing as appropriate. 

 

Table 2.43 │ Antibodies used to analyze subcellular fractions. 

Primary antibody† Dilution Dilution for 
secondary antibody†  

anti-α-tubulin 1:2000 1:1000 
anti-CDC25C 1:500 1:1000 
anti-FLAG 1:1000 1:1000 
anti-HDAC1 1:1000 1:1000 

† All antibodies were diluted in PBS supplemented with 5% (wt/vol) milk and 0.01% 
(vol/vol) Tween 20.  
 

2.2.28.4 Detection of ubiquitination 

Inputs and eluates were resolved by SDS-PAGE using 12% and 8% resolving gels 

respectively (Table 2.36). Unless stated otherwise, electrophoresis, wet transfer, 

membrane blocking, antibody incubation (Table 2.44), membrane washing and 

signal detection were performed as described in section 2.2.28.1. For eluates, the 

electrophoresis was run till the 50 kDa marker of Precision Plus ProteinTM 

Prestained Standards reached the bottom of the gel. RestoreTM stripping buffer was 

used for repeated probing as appropriate. 

 

Table 2.44 │ Antibodies used to analyze ubiquitination assay. 

Primary antibody† Dilution Dilution for 
secondary antibody†  

anti-β-actin 1:5000 1:5000 
anti-CDC25C 1:500 1:1000 
anti-FLAG 1:1000 1:1000 
anti-MYC 1:1000 1:1000 
anti-HA 1:1000 1:1000 
anti-K48-Ub 1:1000 1:1000 

† All antibodies were diluted in PBS supplemented with 5% (wt/vol) milk and 0.01% 
(vol/vol) Tween 20.  
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2.2.28.5 Detection of TRIB2 during cell cycle progression 

Cells were washed once in ice-cold PBS and centrifuged at 350 x g and at 4°C for 5 

minutes. 25 µL of 2x Laemmli buffer containing 1.5 % of fresh β-mercaptoethanol 

was added directly to the cell pellet followed by vortexing and boiling at 95°C for 5 

minutes. The lysate was stored at -80°C. Sample was thawed at room temperature 

and boiled again at 95°C for 5 minutes prior SDS-PAGE. Lysate and Precision Plus 

ProteinTM Prestained Standards were resolved by SDS-PAGE using 5% stacking 

(Table 2.35) and 12% resolving (Table 2.36) gels. Electrophoresis, wet transfer, 

membrane blocking, antibody incubation (Table 2.45), membrane washing and 

signal detection were performed as described in section 2.2.28.1. RestoreTM 

stripping buffer was used for repeated probing as appropriate. 

 

Table 2.45 │ Antibodies used to analyze cell cycle synchronization. 

Primary antibody† Dilution Dilution for 
secondary antibody†  

anti-β-actin 1:5000 1:5000 
anti-CDC25C 1:500 1:1000 
anti-phospho-Histone H3 (Ser10) 1:1000 1:1000 
anti-TRIB2 1:200 1:1000 

† All antibodies were diluted in PBS supplemented with 5% (wt/vol) milk and 0.01% 
(vol/vol) Tween 20 except anti-phospho-Histone H3 which was diluted in TBS 
supplemented with 5% (wt/vol) BSA and 0.01 (vol/vol) Tween 20. 
 

2.2.29 Whole bone marrow transplantation 

BM cells were harvested from WT and Trib2-/- mice. After lysis of red blood cells, 

cell counting (Section 2.2.6) was performed. 8 x 106 unfractionated cells were 

injected intravenously into lethally irradiated (2 x 4.25 grays fractionated doses were 

given with three hours apart) recipients. The recipients were kept in individually 

ventilated cages and treated with Baytril antibiotic, administered in the drinking 

water at a concentration of 80 mg/L, daily for 10 days post transplantation. The 

recipients were monitored by periodic tail vein bleedings 4 weeks post 

transplantation. The collected blood was used for flow cytometry analysis with 
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antibody panel B from Table 2.19. All the recipients were euthanized at 17 weeks 

post transplantation where blood and BM were collected. Blood cell counts were 

determined as described in section 2.2.4. The blood was also analyzed by flow 

cytometry using antibody panel B from Table 2.19. Cell counting (Section 2.2.6) was 

performed to determine the cellularity of the BM. To immunophenotype HSPCs, the 

BM was also analyzed by flow cytometry using antibody panels listed in Table 2.17 

and 2.18. 
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CHAPTER 3: EXAMINATION OF THE ROLE OF TRIB2 IN  

STEADY STATE HAMATOPOIESIS 

 

3.1 Introduction 

Studies focused on the pathological role of TRIB2 in various disease states 

including haematological malignancy, solid tumours, autoimmune and inflammatory 

diseases have identified TRIB2 as a critical signalling modulator and mediator 

(Yokoyama and Nakamura, 2011). However, it is unclear if this is true in a 

physiological context where regulation of diverse signalling pathways is cell type 

and developmental stage dependent. Studies of Tribbles orthologues in Xenopus 

(Saka and Smith, 2004) and Drosophila (Grosshans and Wieschaus, 2000, Mata et 

al., 2000, Seher and Leptin, 2000) highlight an evolutionary conserved role for 

Tribbles in the regulation of normal cellular proliferation. In these organisms, 

Tribbles coordinates cell division and morphogenesis to ensure proper organ 

development. In Drosophila, Tribbles ensures mitosis occurs in a timely manner by 

regulating String turnover at the protein level (Grosshans and Wieschaus, 2000, 

Mata et al., 2000, Seher and Leptin, 2000). Takasato and colleagues generated a 

Trib2 knockout mouse model (Trib2tm1Ryn) where the exon 1 of Trib2 is disrupted 

with the insertion of a LacZ-Neo cassette, to investigate the role of TRIB2 in kidney 

development (Takasato et al., 2008). However, microscopic examinations of WT 

and Trib2tm1Ryn mutant embryos at 14.5 days post coitum showed no phenotypic 

defects in organs (heart, eye, testis, thymus and kidney) where Trib2 is abundantly 

expressed (Takasato et al., 2008). These data suggest TRIB2 function is required 

for proper cellular behaviour rather than tissue organization. 

 

In Chapter One, literature review of previous TRIB2 studies allowed us to 

speculate the possible roles of TRIB2 in normal haematopoiesis. TRIB2 could be 

important in the development and differentiation of erythroid/megakaryocyte 
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lineages, and intrathymic T-cell development. Elucidation of the role of TRIB2 in 

normal haematopoiesis is crucial because TRIB2 has been implicated in both AML 

and T-ALL which are malignant haematopoiesis (Section 1.7). This could improve 

our understanding of how dysregulation of Trib2 in normal haematopoiesis 

contributes to leukaemogensis. Hence, we aimed to investigate the impact of Trib2 

ablation in adult BM haematopoiesis and intrathymic T-cell development using a 

commercially available Trib2 knockout mouse model (129S5-Trib2tm1Lex, referred as 

Trib2-/- hereafter). Similar to Trib2tm1Ryn (Takasato et al., 2008), exon 1 of Trib2 in 

Trib2tm1Lex is disrupted (Lexicon Phenotypic Analysis Database: LEXKO-1136). A 

third Trib2 knockout mouse model (Trib2tm1Myam) was generated by Satoh and 

colleagues, where exon 2 of Trib2 is replaced with neomycin-resistance gene, to 

study tissue-resident macrophages in the spleen (Satoh et al., 2013). In all the three 

Trib2 knockout mouse models, characterization of BM haematopoiesis and 

intrathymic T-cell development has not been reported. 

 

3.2 Results 

   

3.2.1 TRIB2 is dispensable for murine bone marrow haematopoiesis.  

The coding and non-coding regions of exon 1 of Trib2 in Trib2-/- mice were 

disrupted and thus enabled Trib2 genotyping by PCR analysis (Figure 3.1). 

Compared to WT mice, Trib2-/- mice had similar RBC and WBC differential 

(neutrophil, lymphocyte, monocyte, eosinophil and basophil) counts, except for the 

platelet count which was significantly higher but within the normal physiological 

range (Figure 3.2A and 3.2B). In addition, no difference was found between WT and 

Trib2-/- mice in the distribution of mature myeloid, B and T cells in the blood (Figure 

3.2C). These data indicate loss of TRIB2 does not affect terminal differentiation and 

production of mature blood cells of different lineages. We next studied the BM, the 

primary site of adult haematopoiesis, to determine if TRIB2 influences 
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hematopoietic cell fate choice at an earlier stage of differentiation. Trib2-/- mice had 

similar BM cellularity compared to WT mice (Figure 3.2D) as determined by cell 

counting. No difference was found in the peripheral blood for the frequency of 

circulating CD4+ and CD8+ T cells, lineage committed Gr-1+/CD11b+ myeloid cells 

and CD19+/B220+ B-lymphoid cells (Figure 3.2E). Moving up the hematopoietic 

hierarchy, Trib2-/- mice had similar frequencies of HSPCs, including HSCs, MPPs, 

CMPs, GMPs, MEPs and CLPs compared to WT mice (Figure 3.2F and 3.2G). 

Hence, TRIB2 is not essential for hematopoietic cell fate choice since loss of TRIB2 

did not lead to skewing of hematopoietic cell differentiation. Thus, at steady state, 

Trib2 ablation does not affect the hierarchical organization of the murine 

haematopoietic system.  

 

 

Figure 3.1 │ Genotyping of Trib2 by genomic DNA PCR. (A) Exon 1 of Trib2 in 
Trib2tm1Lex is disrupted by insertion of LacZ/Neo selection cassette. Modified from 
Lexicon Phenotypic Analysis Database: LEXKO-1136. (B) A representative gel 
electrophoresis image showing resolution of PCR products amplified from WT, 
Trib2+/- and Trib2-/- mice using primers listed in Appendix D:  Table 1. M, marker; 
Neg ctrl, no template negative control; mut, mutant.  
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Figure 3.2 │ TRIB2 loss does not affect murine haematopoiesis in BM. 
Complete blood counts (A) and WBC differential counts (B) of WT (n = 13) and 
Trib2-/- (n = 22) mice were determined by haematology analyzer. NE, neutrophils; 
LY, lymphocytes; MO, monocytes; EO, eosinophils; BA, basophils. (C) The 
distribution of mature myeloid, B and T cells in the blood of WT (n = 3) and Trib2-/- 
(n = 10) mice were measured by flow cytometry using the indicated lineage specific 
cell surface markers. (D) BM cellularity (n=5-7 per genotype) was counted by trypan 
blue exclusion after RBC lysis of the cell suspension harvested from two pelvises, 
femurs and tibias. (E) The distribution of myeloid, B and circulating T cells in the BM 
of WT (n = 3) and Trib2-/- (n = 9) mice. (F) Immunophenotyping of HSPCs 
populations (HSC, MPP, CMP, GMP, MEP and CLP) in BM. Each sub-population is 
indicated in the outlined areas (top row). The corresponding values in the 
representative staining profile of WT (middle row) and Trib2-/- (bottom row) mice (n = 
3 per genotype) are frequency of BM and graphed in (G). Lin, lineage; LK, Lin-c-Kit+ 
cells; LSK, Lin-Sca-1+c-Kit+ cells; HSC: LSK CD150+CD48-; MPP: LSK CD150-

CD48-; CMP: LK CD34+CD16/32lo; GMP: LK CD34+CD16/32hi; MEP: LK CD34-

CD16/32-; CLP: Lin-IL-7Rα+; SSC-H, side scatter-height. For A, unpaired Student’s 
t-test was used for statistical analysis. *P<0.05, all quantified data are presented as 
mean and SEM. 
 

 

 

 

 



92 
 

We next assessed the repopulating capability and multi lineage differentiation 

potential of Trib2-/- HSPCs by transplantation of CD45.2+ whole BM nucleated cells 

(WT or Trib2-/- donor) into lethally irradiated CD45.1+ mice (recipients). At 17 weeks 

post transplantation, recipients transplanted with cells from both genotypes had 

similar expression of donor marker, CD45.2 (Figure 3.3A). This indicates TRIB2 

loss did not affect long-term engraftment of donor cells. In the absence of TRIB2, 

HSPCs retain  their capability to fully reconstitute the blood system of recipients as 

the recipients had no measurable difference of  RBC, platetet and WBC (total and 

differential) counts compared to the control group (Figure 3.3B and 3.3C). Analysis 

of blood collected periodically at 6, 10, 14 and 17 weeks post transplantation from 

recipients showed no skewing of differentiation into myeloid and lymphoid lineages 

in the absence of TRIB2 during hematopoietic reconstitution (Figure 3.3D). No 

significant difference was found in the HSPCs in recipients transplanted with either 

genotype (Figure 3.3E and 3.3F). We conclude that TRIB2 is dispensable for the 

maintenance of the hematopoietic system through differentiating HSPCs that reside 

in the BM.  
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Figure 3.3 │ TRIB2 loss does not affect the repopulation capability of BM 
HSPCs. Lethally irradiated CD45.1+ mice were transplanted with CD45.2+ WT (n = 
5) or Trib2-/- (n = 5) whole BM cells, and sacrificed after 17 weeks of transplantation. 
(A) Engraftment of donor cells was determined by measurement of CD45.2 
expression in the blood of transplanted mice. Complete blood counts (B) and WBC 
differential counts (C) of these two groups of mice were determined by hematology 
analyzer. NE, neutrophils; LY, lymphocytes; MO, monocytes; EO, eosinophils; BA, 
basophils. (D) The distribution of donor derived mature myeloid, B and T cells in the 
blood of these mice was measured by flow cytometry. (E) BM cellularity was 
counted by trypan blue exclusion. (F) Immunophenotyping and quantification of 
donor derived HSPCs in BM. All quantified data are presented as mean and SEM. 
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3.2.2 TRIB2 regulates the proliferation of developing thymocytes. 

At steady state, we found that Trib2-/- mice had statistically significant higher thymic 

cellularity compared to WT mice (Figure 3.4A). This suggests dysregulation of 

thymopoiesis in the absence of TRIB2. We further examined thymic subsets along 

the T lineage developmental pathway by immunophenotyping. Non-T lineage 

markers (CD11c, Gr-1, B220, Ter119 and NK1.1) were included in all the 

experimental analysis to exclude cells of other lineages present in thymus. Gating 

for lineage markers, including CD4 and CD8, were adjusted so as not to exclude c-

Kit+ thymic progenitors that express low cell surface levels of lineage markers when 

defining immature DN thymocytes (Bhandoola and Sambandam, 2006) (Figure 

3.4B). For gating of thymic subsets, DN3 thymocytes (LinloCD44-CD25+) were 

divided further into DN3E (expected: FSClo) and DN3L (larger: FSChi) subsets, based 

on cell size (Hoffman et al., 1996). This is equivalent to characterization of DN3 into 

DN3a and DN3b subsets, based on CD27 marker, that are corresponded to pre- 

and post  selection (Taghon et al., 2006). Similarly, DP thymocytes were divided 

further into DPsm (small resting: FSClo) and DPbl (blasts: FSChi) subsets 

(Mingueneau et al., 2013). To validate the thymic subsets identified by our gating 

strategy, we assessed their cell cycle profile and proliferation status by DNA 

staining and measurement of CD71 expression respectively. In accordance with 

previous studies (Hoffman et al., 1996, Seitan et al., 2011, Brekelmans et al., 1994), 

we found that WT DN3E and DPsm subsets were not proliferative as >99% were in 

G0/G1 phase and only 10-20% were CD71+ (Figure 3.5A-C). In contrast, WT DN3L 

and DPbl subsets were actively cycling as 60-70% were in S-G2/M phases and 90% 

were CD71+ (Figure 3.5A-C). In comparison of WT and Trib2-/- thymic subsets, no 

measurable difference was found in their cell cycle profile and expression of CD71 

(Figure 3.5A-C).  
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Figure 3.4 │ TRIB2 loss causes increased thymic cellularity. (A) Thymic 
cellularity of WT (n = 31) and Trib2-/- (n = 21) mice was counted by trypan blue 
exclusion after RBC lysis. (B) Gating strategy to identify thymic subsets. FSC-A, 
forward scatter-area; SSC-A, side scatter-area; DN1: LinloCD44+CD25-; DN2: 
LinloCD44+CD25+; DN3E: LinloCD44-CD25+FSClo; DN3L: LinloCD44-CD25+FSChi; 
DN4: LinloCD44-CD25-; DPbl: CD4+CD8+FSChi; DPsm: CD4+CD8+FSClo; CD4 SP: 
CD4+CD8-; CD8 SP: CD4-CD8+. For statistical analyses, unpaired Student’s t-test 
was used for A. **P<0.01, all quantified data are presented as mean and SEM. 
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Figure 3.5 │ TRIB2 loss does not affect cell cycle phase progression and 
CD71 expression of thymocytes. Overlay of a representative cell cycle profile (A) 
of WT and Trib2-/- thymic subsets and the fractions of cell cycle phases were 
graphed in (B). Norm, normalized. (C) Quantification of CD71 expression of each 
thymic subset. For A-C, n = 3 per genotype. All quantified data are presented as 
mean and SEM. 

 

We next analysed the impact of TRIB2 loss on the frequency and cellularity of 

each thymic subset despite no change in cell cycle progression with TRIB2 loss. At 

steady state, our analysis of the thymic subsets showed that, in general, Trib2-/- 

mice had a lower frequency of immature DN1-4 subsets, but the mature DP and SP 

subsets were unaffected compared to WT mice (Figure 3.6A and 3.6B). The higher 

cellularity of Trib2-/- thymus was due to the significant increase of mature 

subsets (DPsm and CD4 SP) but not the immature DN1-4 subsets (Figure 3.6C). The 

DN1 (LinloCD44+CD25-) subset is heterogeneous and divided into DN1a-e subsets 

based on CD24 and c-Kit surface expression (Porritt et al., 2004). Here, the DN1 

subset was divided broadly into c-Kithi (DN1a/b), c-Kitlo (DN1c) and c-Kit- (DN1d/e) 

subsets (Figure 3.6D). At steady state, Trib2-/- c-Kit- DN1 progenitors were present 

at a significantly lower frequency but had similar cell numbers compared to WT 

mice (Figure 3.6E and 3.6F). To rule out the possibility that lower frequency of 

Trib2-/- of DN1-4 subsets were due to increased apoptosis, we measured Annexin V 
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expression and showed no difference between the two genotypes (Figure 3.6G). 

Since Trib2-/- mice had higher numbers of mature subsets which must be derived 

from immature subsets, we hypothesized that immature thymocytes were cycling 

faster and gave rise to more mature differentiated thymocytes in the absence of 

TRIB2. Ki-67 is a proliferation marker, expressed by cells in active cell cycle (G1-S-

G2/M) but not by resting cells in G0 (Byeon et al., 2005). Indeed, intracellular staining 

of Ki-67 showed Trib2-/- DN1, DN2 and DN3E subsets had significantly higher levels 

of Ki-67 compared to WT thymic subsets (Figure 3.6H), indicating more Trib2-/- 

developing thymocytes are in cycling state. This does not result in T cell 

accumulation outside the thymus however because there was no difference in the 

distribution of WT and Trib2-/- T-cells in the spleen (Figure 3.7). This is possible as 

TRIB2 loss could affect the later stages of T-cell development which we explain in 

the discussion. Satoh and colleagues also found that TRIB2 loss does not alter the 

populations of CD4+ and CD8+ splenic T-cells in a different Trib2 knockout mouse 

model (Trib2tm1Myam) although they did not studied the thymus (Satoh et al., 2013).  
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Figure 3.6 │ TRIB2 regulates the homeostasis of intrathymic T-cell 
development. (A) Flow cytometry of thymic subsets. The complete gating strategy 
is provided in Fig. 4. Each subset is indicated in the outlined areas (top row). The 
corresponded values in the representative staining profile of WT (middle row) and 
Trib2-/- (bottom row) mice are frequency of thymus and graphed in (B). FSC-A, 
forward scatter-area; SSC-A, side scatter-area; DN1: LinloCD44+CD25-; DN2: 
LinloCD44+CD25+; DN3E: LinloCD44-CD25+FSClo; DN3L: LinloCD44-CD25+FSChi; 
DN4: LinloCD44-CD25-; DPbl: CD4+CD8+FSChi; DPsm: CD4+CD8+FSClo; CD4 SP: 
CD4+CD8-; CD8 SP: CD4-CD8+. (C) Number of cells for each subset. (D) Further 
characterization of DN1 cells based on c-Kit surface expression. Neg, negative; lo, 
low; hi, high. DN1 subsets were graphed in frequency of thymus (E) and cell 
number (F). For B, C, E and F, n = 7-8 per genotype. (G) Basal level of apoptosis of 
each thymic subset (n = 3 per genotype) was determined by the surface expression 
of Annexin V after exclusion of DAPI-stained dead cells. (H) Intracellular level of Ki-
67 across thymic subsets (n = 4-5 per genotype) was measured by flow cytometry 
(left). An overlap of histogram (right) showed Trib2-/- DN1 cells had higher level of 
Ki-67 compared to that of WT. Norm, normalized; FMO, Fluorescence Minus One. 
For statistical analyses, unpaired Student’s t-test was used for H, and two-way 
ANOVA was used for B, C and E. **P<0.01; ***P<0.001, all quantified data are 
presented as mean and SEM. 
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Figure 3.7 │ TRIB2 loss does not affect the distribution of splenic T cells. 
Distribution of CD4+ and CD8+ T cells in the spleen of WT (n = 4) and Trib2-/- (n = 5) 
mice at steady state. All quantified data are presented as mean and SEM. 
 

Cell cycle regulation is crucial for proper T cell development. DN3 thymocytes 

must be briefly arrested (DN3E) at the G0/G1 cell cycle phases to allow V(D)J 

recombination to take place at the Tcrb locus, initiated by the RAG proteins (Li et 

al., 1996, Lin and Desiderio, 1994). Functional Tcrb rearrangements lead to 

formation of pre-TCR where the signals drive the subsequent development of 

thymocytes to early DP stage. Given that Trib2-/- developing thymocytes proliferate 

faster, we determined if loss of TRIB2 affects the cell cycle status of these subsets 

and Tcrb rearrangements. DNA staining showed Trib2-/- thymocytes at each stage 

of the T-cell development had a similar cell cycle profile compared to WT mice 

(Figure 3.5A and 3.5B). This suggests TRIB2 does not regulate the cell cycle 

phase progression and that the increased cycling of Trib2-/- developing thymocytes 

is likely due to changes in cell division kinetics at the steady state. Importantly, 

Trib2-/- DN3E thymocytes were arrested at G0/G1 phases like WT DN3E thymocytes. 

As such, analysis of Tcrb rearrangement involving the J2.1 to J2.7 gene 

segments demonstrated that Trib2-/- thymocytes contain polyclonal Tcrb 

rearrangements similar to WT thymocytes (Figure 3.8). This indicates that proper 

Tcrb rearrangements take place and TRIB2 loss doesn’t affect -selection, a key 

checkpoint of early T-cell development.  
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Figure 3.8 │ Polyclonal Tcrb rearrangements in Trib2-/- thymocytes. 
Endogenous Tcrb rearrangements of WT and Trib2-/- total thymocytes were 
analyzed by genomic DNA PCR. GL denotes the position of the germline PCR 
product and number indicates the different rearrangements involving the Jβ2.1 to 
Jβ2.7 gene segments. 1 kb M, 1 kb DNA marker; neg ctrl, no template negative 
control. 
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3.3 Discussion 

 

Here, we show TRIB2 as the first member of the mammalian Tribbles family to play 

an anti-proliferative role in the context of developing thymocytes during T cell 

development. TRIB1 was reported previously to negatively regulate proliferation of 

human aortic smooth muscle cells in vitro via interaction with MAPK kinase 4 

(MKK4) (Sung et al., 2007). TRIB2 regulates cell division kinetics of developing 

thymocytes. We found that the dysregulated proliferation of Trib2-/- developing 

thymocytes does not affect Tcrb rearrangement, a key event in early T cell 

differentiation. Furthermore, loss of TRIB2 did not affect terminal maturation of 

developing thymocytes. Intriguingly, the increased proliferation of developing 

thymocytes, in the absence of TRIB2, does not affect the percentage of peripheral T 

cells. Previous literature has showed that mice overexpressing CD69 have 

increased thymic SP subsets but a reduction in the number of T cells in the 

peripheral lymphoid organs (Nakayama et al., 2002). Our data suggests that TRIB2 

may impact on thymic selection (DPsm to CD69+ DP transition) or thymic T cell 

export. It is also likely that TRIB2 has a distinct role in mature T cell biology and 

function because Trib2 expression distinguishes CD4+ from CD8+ peripheral T cells 

(Mingueneau et al., 2013). This could be further explored using appropriate infection 

and immunization models. 

 

Previous literature suggests a role of TRIB2 in the development of 

megakaryocyte/erythroid lineage (Mancini et al., 2012). We did not detect any 

difference in the frequency of MEP populations in the BM but we found a significant 

increase of platelets (but not RBC counts) in the blood in the absence of TRIB2. 

Hence, the increase of platelets could have arisen from another source. Recent 

studies showed that platelets could be derived directly from stem cell-like 

megakaryocyte progenitors within the HSC compartment (Yamamoto et al., 2013, 
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Haas et al., 2015). Hence, our study did not rule of the role of TRIB2 in the 

development of platelets and characterization should be focused on the upper 

primitive populations that commit to megakaryocyte lineage. 

 

Analysis of haematopoietic system at steady state allowed us to establish a role 

for TRIB2 in negatively regulating the proliferation of developing thymocytes. In the 

absence of TRIB2, more immature thymocytes are in the active cycling state. 

However, the thymic phenotype we found in Trib2-/- mouse at steady state appears 

to be modest and have little impact on the development of peripheral T-cells in the 

blood as well as in the spleen. We speculate that TRIB2 function is more critical in 

perturbed T-cell development where the cellular proliferation is a key determinant of 

developing thymocyte response to stress inflicted on the thymopoietic system.  
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CHAPTER FOUR: EXAMINATION OF THE ROLE OF TRIB2 IN 

5-FU INDUCED STRESSED HAEMATOPOIESIS 

 

4.1 Introduction 

 

5-FU is a standard chemotherapeutic drug widely used to treat cancers since it 

targets rapidly cycling cells. Misincorporation of 5-FU metabolite into DNA during 

DNA replication initiates futile cycles of DNA excision, repair, and further 

misincorporation that eventually lead to DNA strand breaks and cell death (Longley 

et al., 2003). Due to its mechanism of action, 5-FU has been widely used 

experimentally as a BM haematopoietic stress inducer. In this context, 5-FU targets 

cycling haematopoietic cells and this depletes the supply of mature blood cells. 

Hence, 5-FU treatment creates a proliferative stress to HSCs which are relatively 

quiescent at steady state to enter cell cycle, undergo extensive self renewal and 

differentiation to meet increased haematopoietic demands (Randall and Weissman, 

1997, Wilson et al., 2008, Harrison and Lerner, 1991). Hence, application of 5-FU in 

research not only allows study of the acute response of haematopoietic system to a 

genotoxic agent but also the dynamic cellular changes that occur from steady state 

to stressed BM haematopoiesis during recovery. Importantly, proliferative stress 

inflicted on HSCs by 5-FU is a universal feature in stressed haematopoiesis which 

can be caused by other conditions such ageing and irradiation (Section 1.6). 

Beerman and colleagues showed that induced proliferation of HSCs by repeated 

exposure to 5-FU leads to functional decline and DNA methylation changes that 

closely mimic physiological HSC aging observed in old (25 months old) mice 

(Beerman et al., 2013). Hence, 5-FU appears to be a useful experimental tool to 

model stressed BM haematopoiesis and to study haematopoietic regeneration.     
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Clinically, 5-FU chemotherapy affects BM haematopoiesis and also disrupts T 

cell development in the thymus, depletes T cell repertoire, and impairs T cell 

immunity of patients. At steady state, human T cell repertoire is established during 

early childhood (Spits, 2002). Hence, thymopoietic recovery is critical to replenish 

the T cell repertoire in order to reconstitute cellular immunity of patients. However, 

unlike stressed BM haematopoiesis which has been studied and characterized in 

depth (Brenet et al., 2013), thymopoietic restoration following experimental 5-FU 

mediated thymic injury is poorly understood. Previous studies focused on the acute 

response of thymus to 5-FU treatment and were limited to morphological and 

biochemical descriptions (Eichhorst et al., 2001, Aquino Esperanza et al., 2008). 

Treatments are available to counteract the clinical 5-FU induced myelosuppresion 

such as blood and platelet transfusions, and injection of granulocyte colony-

stimulating growth factors to promote granulocytic regeneration. However, no 

clinical therapy is available yet to improve thymopoietic recovery in order to restore 

cellular immunity of patients (Awong et al., 2010).   

 

In the previous chapter, we showed that ablation of Trib2 does not affect steady 

state haematopoiesis in the BM. However, TRIB2 appears to regulate the 

proliferation of developing thymocytes and hence thymopoietic homeostasis. On 

account of the mechanism of 5-FU action, it was of primary interest in this chapter 

to use 5-FU as an experimental tool to test our hypothesis that Trib2-/- developing 

thymocytes which are highly proliferative would be more sensitive to 5-FU 

compared to WT thymocytes.  As 5-FU is a haematopoietic stress inducer in the BM 

and thymopoiesis in the thymus, we also aimed to examine if TRIB2 plays a role in 

the regeneration of these two biologic systems following genotoxic insult mediated 

by 5-FU.  
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4.2 Results 

 

4.2.1 Trib2-/- thymocytes are hypersensitive to 5-FU induced cell death. 

To address our hypothesis, we performed a time course study of in vivo 5-FU 

treatment. Trib2-/- mice had significantly higher total thymic cellularity at steady state 

(Figure 3.6), however this significant difference was lost at 16 and 24 hours post 

treatment (Figure 4.1A). Significant increase of cell death (late apoptotic) was found 

in Trib2-/- thymic cells at 24 hours post treatment (Figure 4.1B and 4.1C). Notably, 

we demonstrated that DN3L and DPbl subsets, which are known to be proliferative 

(Figure 3.5), were significantly reduced in Trib2-/- mice 16 hours post treatment. 

DN3E and DPsm subsets which are in resting state were unaffected in treated WT 

and Trib2-/- mice. Unexpectedly, Trib2-/- c-Kithi DN1 thymic progenitors were also 

significantly reduced after 16 hours of exposure to 5-FU whereas Trib2-/- c-Kit- and 

c-Kitlo DN1 progenitors were unaffected like WT mice (Figure 4.1D and 4.1E). c-

Kithi DN1 progenitors were shown previously to exclusively exhibit a proliferative 

burst capacity by OP9-DL1 co-culture system compared to c-Kit- and c-Kitlo DN1 

progenitors (Porritt et al., 2004). Interestingly, 5-FU was shown recently to 

preferentially induce apoptosis in c-Kithi HSCs that have rapid cell division kinetics 

compared to c-Kitlo HSCs in vitro (Shin et al., 2014). Overall, these data showed 

that the thymic subsets that are most sensitive to apoptosis following 5-FU 

treatment are the subsets with increased cycling kinetics due to loss of TRIB2. This 

confirmed a role for TRIB2 in controlling the cell division kinetics of thymocytes and 

hence their enhanced sensitivity to 5-FU genotoxic drug.  
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Figure 4.1 │ Trib2-/- thymocytes are more susceptible to 5-FU induced cell 
death. (A) Mice were treated with 5-FU (250 mg/kg, i.p.) and sacrificed after 16 and 
24 hours to determine the thymic cellularity. (B) Apoptosis assays were performed 
to determine the fraction of living, early and late apoptotic cells in thymus at 16 and 
24 hours post treatment. (C) A representative staining profile (B) of 5-FU treated 
WT and Trib2-/- thymus. Living: DAPI-AV-; early apoptotic: DAPI-AV+; late apoptotic: 
DAPI+AV+. The values indicated in the outlined areas are frequency of thymus. (D) 
The cellularity of thymic subsets at 16 hours post treatment. (E) Overlay of the 
histograms of DN1 and DN3 cells for c-Kit expression and FSC-A signals 
respectively showed loss of Trib2-/- DN1 c-Kit+ and DN3L cells at 16 hours post 
treatment. For A,B and D, n = 5 per genotype per studied time point. For statistical 
analyses, unpaired Student’s t-test was used for A, and two-way ANOVA was used 
for B and D. *P<0.05; **P<0.01, all quantified data are presented as mean and SEM. 
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4.2.2 Acceleration of thymopoietic recovery in the absence of TRIB2 after 

genotoxic insult. 

Previous studies on the response of thymus organ and thymocytes to 5-FU 

mediated genotoxic insult have showed that 5-FU induces apoptosis of thymocytes, 

thymic weight loss and damages to thymic architecture which are crucial for T-cell 

development (Aquino Esperanza et al., 2008, Anderson and Takahama, 2012). 

Thymic inner architecture exhibited morphological recovery on day 7 and was back 

to normal on day 10 post 5-FU injury in previously published data (Aquino 

Esperanza et al., 2008). We compared thymopoietic recovery of WT and Trib2-/- 

mice 4 and 14 days after a single dose of 5-FU administration. Trib2-/- mice had 

higher thymic cellularity compared to WT mice at 4 and 14 days post treatment and 

the thymus was relatively bigger 14 days post treatment (Figure 4.2A and 4.2B), 

despite the observed earlier increase in apoptosis (Figure 4.1B and 4.1C). 

Importantly, the higher cell count was due to increase of T cells, natural killer cells 

and dendritic cells but not myeloid and B cells which do not normally develop in 

thymus (Figure 4.2C and 4.2D). Although WT and Trib2-/- mice both had the 

hierarchy of thymic subsets restored to normal at day 14 compared to day 4 post 5-

FU treatment (Figure 4.3), Trib2-/- mice had significantly higher numbers of DN1 

progenitors and the subsequent mature subsets at day 14 post 5-FU treatment 

(Figure 4.2D). This indicates that Trib2-/- mice had accelerated thymopoietic 

recovery. At steady state, thymopoiesis is sustained mainly by c-Kithi DN1 

progenitors (Benz et al., 2008). However, these progenitors were absent in WT and 

Trib2-/- thymus from day 1 to day 14 post 5-FU treatment (Figure 4.2F). Instead, 

we found a significant increase of c-Kit- DN1 progenitors in Trib2-/- thymus 

suggesting expansion of these progenitors drives the accelerated recovery (Figure 

4.2E).   
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Figure 4.2 │ Expansion of c-Kit- DN1 progenitors, in the absence of TRIB2, 
drives the accelerated thymopoietic recovery after genotoxic stress. (A) 
Thymic cellularity of mice after 4 and 14 days of 5-FU treatment. (B) The white 
arrow indicates representative thymus of the dissected WT and Trib2-/-mice. (C) The 
cellularity of non-T lineage cells (DC: CD11c+; NK cells: Nk1.1+; B: CD19+B220+; 
Myeloid: Gr-1+CD11b+) in thymus (n = 3 per genotype) were determined by flow 
cytometry. Cellularity for thymic subsets (D) and DN1 subsets (E). (F) c-Kit 
expression of WT and Trib2-/- DN1 thymocytes at steady state (n = 7-8 per 
genotype) and after 5-FU treatment (n = 4-6 per genotype per studied time point) 
were shown in overlaid histograms. For A,D and E, n = 9 per genotype per studied 
time point. 5-FU dosage for A-F was 250 mg/kg. For statistical analyses, unpaired 
Student’s t-test was used for A, and two-way ANOVA was used for C, D and E. 
*P<0.05; **P<0.01; ***P<0.001, all quantified data are presented as mean and SEM. 
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Figure 4.3 │ Hierarchical organization of thymopoietic system restored to 
normal at 14 days after genotoxic insult. (A) A representative staining profile of 
WT and Trib2-/- thymus (n = 9 per genotype per studied time point) after 4 and 14 
days of 5-FU treatment (250 mg/kg, i.p.) were shown here. The values indicated in 
the outlined areas are frequency of each thymic subset, and graphed in (B) and (C). 
All quantified data are presented as mean and SEM. 
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We postulated that the acceleration of thymopoietic recovery in the absence of 

TRIB2 is due to the intrinsic highly proliferative nature of Trib2-/- thymocytes. In 

developing thymocytes, proliferation and differentiation are tightly linked. Analysis of  

Tcrb rearrangements for the joining of D2 to J2 gene segments showed less 

immature thymocytes that haven’t undergo Tcrb rearrangements (Germline (GL)  

band) present in Trib2-/- thymus compared to WT thymus 14 days post 5-FU 

treatment (Figure 4.4A). Importantly, we showed in the previous chapter that, at 

steady state, there is no difference in the GL band for the Tcrb rearrangement 

analysis between WT and Trib2-/- total thymoctes (Figure 3.8). Hence, the 5-FU 

induced stress exacerbated the impact of loss of TRIB2 function in regulation of  

thymocyte proliferation. This supports our finding that thymopoiesis was more active 

in treated Trib2-/- mice. We further assessed the quiescent state of DN thymocytes 

through dual staining of DNA and Ki-67. Compared to WT DN thymocytes, 

significantly less Trib2-/- thymocytes in DN1 and DN4 subsets were resting (G0) and 

correspondingly more Trib2-/- thymocytes in these subsets were in cycling state (G1-

S/G2-M) following 5-FU treatment at day 14 (Figure 4.4B and 4.4C). This indicates 

TRIB2 regulates the cell cycle entry of thymocytes. To expand beyond a static 

assessment of proliferation, we did time course experiments of in vivo BrdU pulsing 

in WT and Trib2-/- mice. DN3 thymocytes of both genotypes had similar uptake of 

BrdU after 1 hour of pulsing, however BrdU+ Trib2-/- DN3 thymocytes were 

significantly increased after 4 hours of pulsing (Figure 4.4D and 4.4E). This 

demonstrated that Trib2-/- developing thymocytes had higher cell division kinetics 

and more DN3 thymocytes were available to uptake BrdU while replicating their 

DNA. 
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Figure 4.4 │ Higher cell division kinetics of Trib2-/- developing thymocytes 
accelerates the thymopoietic recovery after genotoxic stress. (A) PCR analysis 
(n = 3 per genotype) of Tcrb rearrangement involving the Dβ2 to Jβ2 gene segments. 
GL denotes the position of the germline PCR product and number indicates the 
different rearrangements. 1 kb M, 1 kb DNA marker; neg ctrl, no template negative 
control. (B) Flow cytometry to determine the fraction of developing thymocytes in 
resting (G0) and active (G1-S/G2/M) cell cycle. Each phase is indicated in the 
outlined areas (top row). The corresponding values in the representative staining 
profile of WT (middle row) and Trib2-/- (bottom row) mice (n = 2-3 per genotype) are 
frequency of each phase and graphed in (C). (D) The frequency of BrdU uptake by 
DN3 thymocytes after 1 and 4 hours of pulsing. A representative staining profile of 
WT and Trib2-/- mice (n = 3 per genotype per studied time point) is shown here. The 
values indicated in the outlined areas are the frequencies of BrdU+ DN3 thymocytes 
and graphed in (E).  5-FU dosage for A-E was 200 mg/kg. For statistical analyses, 
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two-way ANOVA was used for C and E. *P<0.05; **P<0.01; ***P<0.001, all quantified 
data are presented as mean and SEM. 

 

It is noteworthy that TRIB2 loss only affected thymopoietic recovery but not 

hematopoietic regeneration in BM following 5-FU induced genotoxic stress. On day 

14 post 5-FU treatment, blood cell counts of WT and Trib2-/- mice were restored to 

normal with no measurable differences detected (Figure 4.5A and 4.5B). However, 

more CD4+ and CD8+ T cells were present in the blood of Trib2-/- mice though these 

were not statistically significant (Figure 4.5C). Both genotypes had similar BM 

cellularity and HSPC populations including CLPs that are lymphoid restricted 

progenitors (Kondo et al., 1997) (Figure 4D-F). Hence, our immunophenotyping 

analyses showed that haematopoietic regeneration in BM is not impeded in the 

absence of TRIB2. Nevertheless, we did not investigate if TRIB2 loss affects the 

functionality of the reconstituted HSPC populations. Our finding was confirmed in 

another experiment where we examined the long-term (9 weeks) restoration of 

haematopoietic homeostasis following 5-FU treatment (Figure 4.6). Similar to what 

we found at 14 days post treatment, no measurable differences detected in blood 

cell counts (Figure 4.6A), BM cellularity (Figure 4.6C) and HSPC populations 

(Figure 4.6D) of the treated WT and Trib2-/- mice. However, the Trib2-/- mice had 

significantly higher number of CD4 SP subset (Figure 4.6F). This was in accordance 

with Trib2-/- mice have increased number of mature thymocyte subsets at steady 

state (Figure 3.6). 
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Figure 4.5 │ TRIB2 loss does not affect the recovery of haematopoietic 
system after 5-FU genotoxic insult. Mice were sacrificed for analysis after 14 
days of 5-FU treatment (250 mg/kg, i.p.). Complete blood counts (A) and WBC 
differential counts (B) of treated WT and Trib2-/- mice (n = 8-9 per genotype) were 
determined by haematology analyzer. (C) The distribution of mature myeloid, B and 
T cells in the blood of treated WT and Trib2-/- mice (n = 4-5 per genotype) were 
measured by flow cytometry. (D) BM cellularity was counted by trypan blue 
exclusion after RBC lysis of the cell suspension harvested from two pelvises, 
femurs and tibias. (E) Distribution of HSPC populations in BM of treated WT and 
Trib2-/- mice. (F) A representative staining profile of the HSPC populations 
measured in WT and Trib2-/- mice is shown here.  For D-F, n = 3 per genotype. All 
quantified data are presented as mean and SEM. 
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Figure 4.6 │ TRIB2 loss does not affect the restoration of haematopoietic 
homeostasis after 5-FU genotoxic insult. WT and Trib2-/- mice (n = 4-5 per 
genotype) were sacrificed at 9 weeks post 5-FU treatment (150 mg/kg, i.p.). 
Complete blood counts (A) and lineage distribution of blood cells (B) were 
measured by haematology analyzer and flow cytometry respectively. Cellularity of 
BM (C) and thymus (E) was determined by trypan blue exclusion after RBC lysis of 
the cell suspension. Immunophenotyping and quantification of HSPCs residing in 
the BM (D) and thymus subsets (F). For statistical analyses, two-way ANOVA was 
used for A. *P<0.05, all quantified data are presented as mean and SEM. 
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4.2.3 A single case of partial block in T-cell developmental in the absence of 

TRIB2 during thymopoietic recovery. 

While studying the impact of TRIB2 loss on thymopoietic recovery following 5-FU 

treatment at day 14, a Trib2-/- mouse (#381) treated with 5-FU showed abnormal 

thymic cellular phenotypes. Hence, analysis of this mouse was interpreted and 

presented separately. #381 had more than 2 fold increase of thymic cellularity 

compared to the other 5-FU treated Trib2-/- mice (Figure 4.7A) indicating an 

exaggerated rate of thympoietic recovery in the absence of TRIB2. However, 

unlike the treated WT and the other Trib2-/- mice, #381 had a partial block in T-cell 

developmental at the DP stage because subsequent mature CD4 and CD8 SP 

subsets were detected but their frequency in the thymus was  much lower (Figure 

4.7B bottom row). The DP population of #381 had varying expression levels of CD4 

and CD8 compared to the other treated WT and Trib2-/- mice (Figure 4.7B bottom 

row). Hence, direct comparison of the frequency of DP subset with the same gating 

was not possible.  The absolute number of CD4 and CD8 SP subsets did not 

increased proportionally although #381 had a much higher thymic cellularity 

compared to the other treated Trib2-/- mice (Figure 4.7C). Cytospin of #381 thymic 

cells followed by Romanosky staining also revealed that some of these cells were 

relatively bigger compared to the treated WT and the other Trib2-/- which had similar 

even cellular size (Figure 4.7B top row). We did not investigate further the 

reason underlying the partial block in T-cell developmental in this context as it 

was a single case observed. However, it suggests that TRIB2 is required to limit 

excessive proliferation of developing thymocytes during stress to ensure proper 

recovery of thymopoiesis.  
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Figure 4.7 │ A 5-FU treated Trib2-/- mouse (#381) had partial block of T-cell 
development during recovery. (A) Thymic cellularity after 14 days of 5-FU 
treatment (250 mg/kg, i.p.). (B) Romanowsky stained cytospin (top row) and flow 
cytometry (bottom row) profiles of #381 thymocytes. Representative profiles from 
treated WT (n = 9) and Trib2-/- mice (n = 9) were included for comparison. The 
values in the indicated areas (bottom row) are frequency of CD4 and CD8 SP 
subsets in the thymus and their absolute numbers were graphed in (C). For A and 
C, the data for WT and Trib2-/- mice was derived from Figure 4.2A and 4.2D 
respectively, and presented as mean and SEM.  
 

4.3 Discussion 

 

We examined the thymic response to 5-FU through a series of in vivo experiments 

with different study end points, and showed that TRIB2 loss has an impact on the 

susceptibility of thymocytes to genotoxic insult and on the thymopoietic restoration. 

In the absence of TRIB2, DN1, DN2 and DN3 thymocytes have increased cell 

division kinetics, and c-kithi DN1, DN3L and DPbl had  heightened sensitivity to 5-FU 

induced cell death. Following 5-FU mediated thymic injury, c-Kit- DN1 progenitors 

expanded in the absence of TRIB2 and the intrinsic highly proliferative nature of 

Trib2-/- developing thymocytes (DN1, DN3 and DN4 subsets) accelerate the 

recovery of thymopoiesis. Hence, our study showed TRIB2 limits the thymopoietic 

recovery after 5-FU injury.  

 

In the past, BM haematopoietic and thymopoietic recoveries following 5-FU 

injury have been generally studied separately. It has not been clearly established 

when the import of BM progenitors into thymus and thymopoietic homeostasis is re-
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established after 5-FU injury. Our study suggest this occurs after the restoration of 

haematopoiesis in BM since CLPs were detected in the WT and Trib2-/- BM 14 days 

post 5-FU treatment but c-Kit+ DN1 progenitors, which are derived from BM 

progenitors including CLP (Benz and Bleul, 2005, Gounari et al., 2002, Schlenner et 

al., 2010), were barely detected throughout the studied end points. Importantly, c-

Kit- DN1 progenitors were detected and remained resident in the thymus throughout 

this period. The origin of c-Kit- DN1 progenitors is currently unknown. Using the 

OP9-DL1 co-culture system, Poritt and colleagues showed that this subset of DN1 

has lower proliferative capacity but faster kinetics of T cell differentiation compared 

to c-Kit+ DN1 subset (Porritt et al., 2004). However, using a lineage tracing 

approach, Benz and colleagues showed that thymopoiesis at steady state is 

sustained by c-Kit+ instead of c-Kit- progenitors (Benz et al., 2008). Hence, the 

contribution of c-Kit- DN1 progenitors to in vivo T cell development is unclear. Our 

study demonstrated, in the absence of c-Kit+ DN1 progenitors, c-Kit- DN1 

progenitors remaining resident in Trib2-/- thymus expand and drive the thymopoietic 

recovery. Although a recent study showed c-Kit- DN1 progenitors are 

transcriptionally primed for dendritic cell development (Moore et al., 2012), we found 

expansion of c-Kit- DN1 progenitors led to an increase of T cells, dendritic cells as 

well as natural killer cells in the thymus of the treated Trib2-/- mice. Our findings 

suggest that TRIB2 regulates c-Kit- DN1 progenitor proliferative capacity as we have 

shown these cells have an important role in the initiation of the first wave of 

thymopoiesis during recovery which is modulated by the loss of TRIB2.  

 

 T cell development in the thymus is maintained by continual input from BM 

progenitors. It is generally accepted that all thymocyte subpopulations have short 

life spans and cannot self renew. The notion is based on evidence from thymus 

transplants where the grafted thymic pool of donor cells is replaced completely 

within 4 weeks by cells originated from the host BM (Berzins et al., 1998). Other 
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studies also showed that when WT thymus are transplanted into severe combined 

immunodeficiency or Rag2-/- hosts, the competent WT thymocyte populations from 

the graft are rapidly replaced by the incompetent BM-derived precursors (arrested 

at DN3 stage) from the host and additional T cell production stops (Frey et al., 1992, 

Takeda et al., 1996). However, the long standing dogma that the thymus lacks self 

renewing progenitors is overturned by recent studies that showed autonomous T 

cell development in WT thymus engrafted in hosts that are devoid of (Rag2-/-γc
-/-

KitW/Wv (Martins et al., 2012)) or have incompetent BM-derived precursors (Rag2-/-

Il7r-/- (Peaudecerf et al., 2012): arrested at DN2 stage). The capability of resident 

progenitors to self renew was not recognised previously because, under normal 

conditions, they are continuously replaced by the import of fresh BM progenitors. A 

later study showed that natural cell competition between ‘young’ BM-derived and 

‘old’ thymus-resident progenitors is crucial to suppress T cell leukaemic 

transformation and development of T-ALL (Martins et al., 2014). 

 

 In our study, 5-FU mediated genotoxic insult stressed the haematopoietic 

system and led to deprivation of the thymus from BM progenitors as c-Kit+ DN1 

progenitors were barely detected during recovery. We observed that c-Kit- DN1 

progenitors remain residing in the thymus after 5-FU injury and expand in the 

absence of TRIB2. Hence, the accelerated thymopoiesis found in Trib2-/- mice could 

be autonomous. Further studies are warranted to examine thymic autonomous T 

cell development under stress conditions.  
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CHAPTER FIVE: EXAMINATION OF THE ROLE OF TRIB2 IN 

T-CELL LEUKAEMOGENESIS 

 

5.1 Introduction  

 

T-ALL is an aggressive haematological malignancy arising from the transformation 

of thymic progenitors. In paediatric leukaemia 80-85% of cases are ALL, of which 

10-15% are T-ALL (Sallan, 2006). In adults, ALL incidence is only 15% of leukaemia 

cases, of which 20-25% are T-ALL (Sallan, 2006). Hence, T-ALL is mainly a 

childhood leukaemia. Currently, high dose multi-agent chemotherapeutic regimen is 

the standard frontline therapy for paediatric T-ALL patients. Despite its high efficacy 

with patients achieving a five-year event-free survival (EFS) rate of 75-80%, the 

regimen is aggressive and often associated with severe acute toxicities and long 

term adverse effects. Compared to the superior outcomes of paediatric T-ALL 

patients, only 45-55% of adults achieve long term EFS after being diagnosed 

(Sallan, 2006). Although salvage chemotherapy such as Nelarabine and allogeneic 

stem cell transplantation treatments are available for relapsed or refractory patients, 

their clinical outcomes remain very poor (Litzow and Ferrando, 2015, Durinck et al., 

2015). Unlike other types of leukaemia, there is no clinically approved targeted 

therapy for T-ALL yet (Durinck et al., 2015, Freireich et al., 2014). Thus, further 

understanding of the biology of T-ALL disease is crucial to improve patient risk 

stratification to current therapy, and to enable development of effective targeted 

therapies. 

 

The understanding of the biology of T-ALL disease begun in the early 1990s 

where cytogenetic studies of T-ALL cases revealed genomic alterations (Table 5.1) 

that include rearrangements involving TCR genes, translocations resulting in 

formation of fusion genes, and cryptic deletions. These genomic alterations lead to 
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the constitutive activation of developmentally important transcription factor genes 

(Table 5.1), including TLX1, TLX3, HOXA cluster, TAL1, TAL2, LYL1, MYC, LMO1 

and LMO2 and their aberrant expression in thymic progenitors has been associated 

with leukaemic transformation. However, genomic abnormalities in T-ALL are rare 

as 80% of paediatric T-ALLs do not have TCR translocations which are the most 

common alterations (Grabher et al., 2006). Nevertheless, the discovery of these 

genomic abnormalities has far more impact in human T-ALL pathogenesis than their 

incidence suggests. Later studies showed that overexpression of the oncogenic 

transcription factors, identified by previous cytogenetic studies, can be detected in 

up to 80% of T-ALLs. This can occur in the absence of chromosomal locus specific 

abnormalities due to loss of upstream transcriptional regulations (Ferrando et al., 

2004, Bash et al., 1995). Another classic example is NOTCH1, a T-cell oncogene, 

which was discovered in 1991 in three cases of T-ALL (less than 1%) where a 

truncated, activated form of NOTCH1 is translocated to the TCRB locus (Table 5.1) 

(Ellisen et al., 1991). A role of NOTCH1 in human T-ALL was not recognized widely 

until 1996 when enforced expression of the truncated NOTCH1 was shown to 

induce T-ALL in a BM transplant murine model (Pear et al., 1996). The significance 

of activated NOTCH1 in T-ALL was solidified in 2004 when Weng and colleagues 

showed somatic activating mutations of NOTCH1 occur in more than 50% of all T-

ALL cases (Weng et al., 2004). 

 

With the advance of microarray technology in gene expression profiling, 

oncogenic pathways involved in T-ALL pathogenesis begun to be unravelled in the 

2000s. In 2002, a landmark study defined three distinct gene expression signatures 

of T-ALL that represent leukaemic arrest at different stages of T-cell development: 

LYL1+ signature (pro-T), TLX1+ signature (early cortical thymocyte) and TAL1+ 

signature (late cortical thymocte) (Ferrando et al., 2002). This formed the basis for 

classification of T-ALL into different molecular subtypes (Figure 5.1). Both TLX1+ 
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and TAL1+ mature T-ALLs are associated with favourable outcome whereas 

the prognosis of LYL1+ immature T-ALLs is currently unknown (Van Vlierberghe 

and Ferrando, 2012). 

 

 

Figure 5.1 │ Correlation between different molecular subtypes of T-ALL and 

stage of thymocyte differentiation along the α T-cell lineage. LYL1+ T-ALL 
shows an expression profile indicating maturation arrest at the immature stage. 
Leukaemic cells from TLX1+ T-ALL are arrested at the early cortical DP stage, 
whereas TAL1+ T-ALL cases are arrested at the late cortical DP stage. Each 
molecular subtype has distinct gene expression profile except the upregulation of 
NOTCH1, which is the unifying feature. MLL+ T-ALL which is of γδ lineage is not 
included.  Modified from (Grabher et al., 2006). 
 

Regardless of the molecular subtypes of human T-ALL, abbrerant activation of 

NOTCH1 signalling is the unifying feature (Grabher et al., 2006). Indeed, as 

mentioned above, overexpression of a constitutively activated intracellular NOTCH1 

(ICN1) in BM cells is capable to induce T-ALL in mice where they are transplanted 

into (Pear et al., 1996). However, this orginal model only results T-ALL in 30-50% of 

BM-reconstituted mice (Pear et al., 1996). The BM transplant model was refined by 

Aster and colleagues to enable induction of NOTCH1-dependent T-ALL in 100% of 

mice (Aster et al., 2000). Since then, the refined BM transplant model has been 

widely used to study the molecular pathogenesis of T-ALL (Aster et al., 2011, 

Chiang et al., 2006, Li et al., 2008). BM cells that overexpress ICN1 undergo DN 

stages but are blocked at DP stage of extrathymic T-cell development. Li and 
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colleagues showed that ICN1-transduced BM cells generate polyclonal non-

tumourigenic DP cells at 2 weeks post transplantation and leukaemic transformation 

occur later in immature intermediate CD8+ single positive cells (Li et al., 2008).  

 

In normal human (Casero et al., 2015) and murine (Mingueneau et al., 2013) T-

cell development, TRIB2 expression is higher in the early uncommitted thymic 

progenitors compared to other DN thymic subsets but increases as cells develop 

into DP and SP stages. In T-ALL, TRIB2 was identified as a target gene of 

oncogenic NOTCH1 (Wouters et al., 2007), PITX1 (Nagel et al., 2011) and TAL1 

(Sanda et al., 2012). However, TRIB2 mRNA and TRIB2 protein levels have not 

been examined in cell lines or primary samples representing different molecular 

subtypes of T-ALL. Although TRIB2 was shown to be essential for the maintenance 

of TAL1+ T-ALL (Sanda et al., 2012), it remains unclear the role of TRIB2 in the 

initiation of T-ALL. Yokoyama and colleagues showed that activation of ERK 

signalling is essential for TRIB1–induced leukaemogenesis as well as cooperation 

with HOXA9 and MEIS1 to initiate murine AML (Yokoyama et al., 2010). A separate 

study showed that TRIB1 mutant accelerates the initiation of murine AML through 

enhanced ERK signalling (Yokoyama et al., 2012). In contrast to AML, activation of 

p38 and ERK signalling were found in dormant instead of aggressive T-ALL 

xenografts (Masiero et al., 2011). Although TRIB2 is known to modulate MAPK 

signalling, as explained in Section 1.3.5, its implications in T-ALL has not been 

studied. 

 

In the previous chapter, we showed that TRIB2 negatively regulates the 

proliferation of developing thymocytes and limits thymopoietic recovery following 

genotoxic insult. Tight regulation of thymopoietic restoration has been proposed to 

prevent adverse consequences such as leukaemic transformation of T cells and 

autoimmunity (Boehm and Swann, 2013). The observation of a Trib2-/- mouse that 
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developed a block in T cell development at DP stage following 5-FU treatment 

suggests TRIB2 could be important in T cell leukemogenesis. Hence, in this 

chapter, we aimed to investigate the role of TRIB2 in the initiation of T-ALL. 
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Table 5.1 │ Genomic alterations in T-ALL†. 

T-ALL 
oncogene 

Type of protein Chromosomal 
alterations 

Normal developmental 
role 

Frequency of T-ALL 
(%) 

References 

Children Adults 

Rearrangements involving TCR genes (TCRA/D on  14q11 and TCRB on 7q34) 

TLX1 Homeodomain t(7;10)(q34;q24) 
t(10;14)(q24;q11) 

Spleen development 4-7 14 (Dube et al., 
1991, 
Hatano et 
al., 1991, 
Kennedy et 
al., 1991, Lu 
et al., 1991, 
Bergeron et 
al., 2007) 

TLX3 Homeodomain t(5;14)(q35;q32) 
t(5;14)(q35;q11) 

Central nervous system 
(CNS) development 

22 13 (Hansen-
Hagge et 
al., 2002, 
Berger et 
al., 2003) 

HOXA 
cluster 

Homeodomain  Inv(7)(p15q34) 
t(7;7)(p15;q34) 

Axial patterning 3.3 (Speleman 
et al., 2005, 
Soulier et 
al., 2005, 
Cauwelier 
et al., 2007) 
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TAL1 bHLH t(1;14)(p32;q11) 
t(1;7)(p32;q34) 

Embryonic HSC 
development 

3 (Begley et 
al., 1989, 
Chen et al., 
1990, 
Carroll et 
al., 1990) 

TAL2 bHLH t(7;9)(q34;q32) CNS development Two cases (Xia et al., 
1991, Smith 
et al., 1988) 

LYL1 bHLH t(7;19)(q34;p13) Haematopoiesis Two cases (Mellentin et 
al., 1989, 
Cleary et 
al., 1988, 
Homminga 
et al., 2012) 

BHLHB1 bHLH t(14;21)(q11.2;q22) CNS development Single case (Wang et 
al., 2000) 

MYC bHLH/Lzip t(8;14)(q24;q11) Cell growth and apoptosis 2 (Finger et 
al., 1986, 
McKeithan 
et al., 1986, 
Shima et 
al., 1986, 
Erikson et 
al., 1986) 

LMO1 LIM domain t(11;14)(p15;q11) Hindbrain patterning 2 (Greenberg 
et al., 1990, 
McGuire et 
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al., 1989) 

LMO2 LIM domain t(11;14)(p13;q11) 
t(7;11)(q35;p13) 

Embryonic HSC 
development 

7 (Van 
Vlierberghe 
et al., 2006) 

LCK Tyrosine kinase t(1;7)(p34;q34) TCR signalling Two cases (Tycko et 
al., 1991) 

NOTCH1 Notch receptor t(7;9)(q34;q34.3) T-cell fate specificationhree cases (Ellisen et 
al., 1991) 

CCND2 D-type cyclin t(7;12)(q34;p13) 
t(12;14)(p13;q11) 

Cell cycle 3 (Clappier et 
al., 2006) 

Formation of fusion genes 

NUP214- 
ABL1 

Nucleoporin/ 
Tyrosine kinase 

t(9;9)(q34;q34) 
(episomal) 

Nuclear transport- 
nuclear signalling 

6 (Graux et 
al., 2004, 
Cimino et 
al., 2001) 

NUP98- 
RAP1GDS1 

Nucleoporin/ 
GEF 

t(4;11)(q21;p15) Nuclear transport- 
Ras activation 

5 (Hussey et 
al., 1999) 

EML1- 
ABL1 

CC domain/ 
Tyrosine kinase 

t(9;14)(q34;q32) 
(cryptic) 

Cytoskeleton- 
nuclear signalling 

Single case (De 
Keersmaec
ker et al., 
2005, 
Hagemeijer 
and Graux, 
2010) 

ETV6- 
JAK2 

ETS domain/ 
Tyrosine kinase 

t(9;12)(p24;p13) Haematopoiesis- 
immune response 

3 
 

(Zhou et al., 
2012, 
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Lacronique 
et al., 1997) 

ETV6- 
ABL1 

ETS domain/ 
Tyrosine kinase 

t(9;12)(q34;p13) Haematopoiesis- 
nuclear signalling 

Single case (Zuna et al., 
2010, Van 
Limbergen 
et al., 2001) 

CALM- 
AF10 

ENTH domain 
AT-hook 

t(10;11)(p13;q21) Clathrin assembly- 
transcriptional factor 

10 (Carlson et 
al., 2000, 
Asnafi et al., 
2003) 

MLL- 
ENL 

Methyltransferase 
Nuclear targeting 
sequence 
containing 

t(11;19)(q23;p13)  Transcriptional regulator- 
super elongation complex 

8  
(all MLL) 

(Graux et 
al., 2006) 

MLL- 
AF6 

Methyltransferase 
GLGF motif 
containing 

t(6;11)(q27;q23) Transcriptional regulator- 
organization of cell 
junctions 

8  
(all MLL) 

(Graux et 
al., 2006) 

MLL- 
AF10 

Methyltransferase 
AT-hook 

t(10;11)(p13;q23) Transcriptional regulator- 
transcriptional factor 

8  
(all MLL) 

(Graux et 
al., 2006) 

MLL- 
AFX1 

Methyltransferase 
Forkhead family 

t(X;11)(q13;q23) Transcriptional regulator- 
cell cycle regulation 

8  
(all MLL) 

(Graux et 
al., 2006) 

MLL- 
AF4 

Methyltransferase 
Nuclear targeting 
sequence 
containing 

t(4;11)(q21;q23) Transcriptional regulator- 
transcriptional activator 

8  
(all MLL) 

(Graux et 
al., 2006) 

Others 
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  † Modified from REF. (Grabher et al., 2006, Graux et al., 2006).CALM-AF10 and MLL fusion genes are restricted to γδ lineage T-ALL subtype. 

 

LMO2 LIM domain del(11)(p12p13) Embryonic HSC 
development 

4 unknown (Van 
Vlierberghe 
et al., 2006) 

SIL- 
TAL1 

Proline rich 
extension/ 
bHLH 

del(1p) (cryptic) Mitotic spindle checkpoint 
Embryonic HSC 
development 

16 11 (Brown et 
al., 1990, 
Asnafi et al., 
2005, 
D'Angio et 
al., 2015) 
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5.2 Results 

 

5.2.1 TRIB2 loss accelerates murine T-ALL via defective MAPK signalling. 

We examined the role of TRIB2 in T-cell leukaemogenesis using a NOTCH1 

induced T-ALL BMT mouse model (Aster et al., 2000). WT and Trib2-/- total BM cells 

were transduced with an empty vector control (MigR1) or a retroviral vector 

encoding an intracellular Notch1 transgene (ICN1). This transgene is known to 

induce T-ALL with a CD4+/CD8+ phenotype with a latency of 7-12 weeks in the BM 

transplantation model (Aster et al., 2000, Pui et al., 1999, Aster et al., 2011, Chiang 

et al., 2006, Allman et al., 2001). The cells, which were CD45.2+, were then 

transplanted into lethally irradiated CD45.1+ recipient mice to monitor the 

development of T-ALL. All experimental groups were verified by Trib2 genotyping 

analysis of the transplanted moribund mice (Figure 5.2).  

 

 

Figure 5.2 │ Transplant experimental groups were verified by Trib2 
genotyping analysis. Splenic total genomic DNA was extracted from the moribund 
mice. PCR analysis of representative samples from different groups is shown here. 
M, marker; neg ctrl, no template negative control; ctrl, control; mut, mutant; ns, non 
specific.  
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Mice transplanted with ICN1-transduced Trib2-/- donor cells succumbed to T-ALL 

disease with a shorter latency (median survival of 43.5 days) whereas mice  

transplanted with ICN1-transduced WT donor cells had a median survival of 63.5 

days. Kaplan Meier survival analysis for these two groups was significantly different 

(Figure 5.3A) indicating T-ALL onset driven by NOTCH1 overexpression was 

accelerated in the absence of TRIB2. GFP expression was used as a marker for 

transduced donor cells and analysis showed similar engraftment levels of 

transduced WT and Trib2-/- donor cells in the recipients from all groups across 

different organs post mortem (Figure 5.3B). Importantly, the difference in disease 

latencies in mice from WT and Trib2-/- expressing ICN1 was not due to differences 

in engraftment levels of transduced donor cells post-transplant. Similar engraftment 

levels of transduced cells were present upon sequential analysis post transplant 

until the mice succumbed to disease (Figure 5.3C). Analysis of BM showed 

engrafted MigR1-transduced donor cells developed normally into lineage committed 

Gr-1+/CD11b+ myeloid cells and CD19+/B220+ B-lymphoid cells whereas ICN1-

transduced donor cells displayed CD4+/CD8+ T-ALL leukaemic cell profile (Figure 

5.3D). TRIB2 loss did not alter the immunophenotype (Figure 5.3D) and histological 

morphology (Figure 5.3E) of NOTCH1-induced T-ALL. Compared to mice from 

control groups (WT+MigR1 and Trib2-/-+MigR1), mice that succumbed to T-ALL 

disease had leukocytosis, anaemia and thrombocytopenia (Figure 5.4A). Despite a 

difference of 20 days for disease onset, mice that succumbed earlier to Trib2-/- T-

ALL had a similar degree of leukaemic burden (Figure 5.4B and 5.4C) but exhibited 

a trend of higher organ infiltration of leukaemic cells (Figure 5.4D) compared to 

mice that succumbed to WT T-ALL. We have ruled out that the accelerated T-ALL 

phenotype is not due to an increase in TRIB1 expression, as TRIB1 expression 

levels do not change upon knockdown of TRIB2 in T-ALL or AML cell lines (Figure 

5.5).  To understand how TRIB2 loss accelerated the initiation of T-ALL, we 

compared MAPK signalling between WT and Trib2-/- T-ALL as Tribbles family 
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(TRIB1-3) is known to be associated with MAPK signalling and required for the 

activation of ERK, JNK and p38 (Yokoyama et al., 2010, Wang et al., 2013c, Wei et 

al., 2012, Izrailit et al., 2013). Western blotting for MAPK signals in leukaemic 

infiltrated BM samples showed impaired activation of ERK, JNK and p38 in Trib2-/- 

T-ALL compared to WT T-ALL (Figure 5.4E). We also confirmed reduced activation 

of p38 signalling in normal developing DN2 and DN3L thymic subsets (Diehl et al., 

2000) in the absence of TRIB2 (Figure 5.6). These imply that modulation of MAPK 

signalling by TRIB2 may influence the phenotype of T-ALL. 
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Figure 5.3 │ Loss of TRIB2 accelerates the onset of NOTCH1-induced T-ALL. 
(A) Kaplan-Meier survival analysis of the lethally irradiated recipient (CD45.1+) mice 
transplanted with 5-FU enriched WT or Trib2-/- BM cells (donor: CD45.2+) 
transduced with either MigR1 control or ICN1 transgene. The number (n) of mice 
analysed was from three independent experiments. T-ALL, T-cell acute 
lymphoblastic leukaemia. (B) Engraftment of donor cells in all experimental groups 
across different organs were determined based on GFP expression post mortem. 
(C) Evolvement of transduced donor cells in test groups (WT and Trib2-/-+ICN1) 
after transplantation and till morbidity. Five mice from each group were shown here. 
(D) Development of T-ALL leukaemia was verified by immunophenotyping analysis 
of transduced donor cells for surface expression of different lineage markers. The 
values in the outlined areas are frequency of leukaemic cells (top row: CD4+/CD8+), 
lineage committed myeloid cells (middle row: Gr-1+/CD11b+) or B-lymphoid cells 
(bottom row: CD19+/B220+) in the BM of moribund mice. (E) Romanowsky staining 
of representative blood smears of moribund mice from test groups. Filled arrow 
head indicates a lymphoblast (WT and Trib2-/- T-ALL) and unfilled arrow head 
indicates a normal neutrophil. For A, Log-rank test was used to compare the 
survival curves. **P = 0.0053, all quantified data are presented as mean and SEM. 
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Figure 5.4 │ Trib2-/- T-ALL is more aggressive and has defective MAPK 
signalling compared to WT T-ALL. (A)  Health of the moribund mice was 
assessed by WBC, RBC and platelet counts. (B) Leukaemic burden was 
determined by spleen to body weight ratio. (C) Representatives of a spleen from 
each experimental group. (D) Leukaemic infiltration was assessed by measurement 
of the frequency of leukaemic cells in various organs of moribund mice. (E) 
Activation of MAPK signalling in T-ALL was determined by western blotting for p-
Erk, total Erk, p-p38, total p38, p-JNK, JNK1 and β-actin signals in the leukaemic 
BM (n = 4 per group). Signals shown were developed from triplicate immunoblots. 
For A, B and D, the number (n) of mice analysed was stated in Figure 5.3A. All 
quantified data are presented as mean and SEM. 
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Figure 5.5 │ TRIB1 expression remained unchanged following TRIB2 
knockdown. (A) Expression of TRIB1 and TRIB2 in GFP-sorted U937 cells was 
measured by quantitative RT-PCR after 48 hours of transduction with pLKO empty 
vector or pLKO-shTRIB2. (B) Normalized expression values of TRIB1 (average of 
202241_at, 235641_at and 239818_x_at) in Jurkat cells following TRIB2 
knockdown were derived from GSE66013 dataset (Tan et al., 2015). For statistical 
analyses, unpaired Student’s t-test was used for A and B. **P<0.01, all quantified 
data are presented as mean and SEM. 
 

 

Figure 5.6 │ Reduced activation of p38 in Trib2-/- DN2 and DN3L thymic 
subsets. Intracellular level of p-p38 across thymic subsets (n = 4 for Trib2-/- and n = 
5 for WT), indicated by the mean fluorescence intensity (MFI), was measured by 
flow cytometry (left). MFI of each subset was presented after deduction of the MFI 
of the corresponded FMO control. An overlap of histogram (right) showed Trib2-/- 
DN2 cells had lower level of p-p38 compared to that of WT. Norm, normalized; 
FMO, Fluorescence Minus One. For statistical analyses, unpaired Student’s t-test 
was used. *P<0.05; **P<0.01, all quantified data are presented as mean and SEM. 
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5.2.2 TRIB2 expression levels distinguish molecular subtypes of human T-ALL 

and correlate with MAPK signalling.  

Since TRIB2 loss accelerated T-ALL onset in our experimental model, we 

performed GSEA analysis to compare gene expression profiles of low and high 

TRIB2 expression (Table 5.2) from a database (GSE13159) derived from 174 T-ALL 

patient samples (Haferlach et al., 2010) (Figure 5.7A). GSEA analysis showed 

these two groups, defined by TRIB2 expression, were of distinct molecular subtypes 

of T-ALL (Figure 5.7B). Low TRIB2 expressing T-ALL group was enriched with gene 

set associated with TLX1+ T-ALL (early cortical mature T-ALL) whereas high TRIB2 

expressing T-ALL group had upregulation of LYL1+ T-ALL (immature T-ALL) gene 

set (Table 5.3) (Ferrando et al., 2002). TAL1+ T-ALL (late cortical mature T-ALL) 

gene set was not enriched in either group. A significant positive correlation 

between TRIB2 and LYL1 expression was confirmed in an independent T-ALL 

dataset (GSE33315) (Zhang et al., 2012c) (Figure 5.7C). As shown in Fgure 5.4E in 

our experimental model, Trib2-/- T-ALL leukaemic cells exhibited deficiencies in 

MAPK signalling. In accordance with this, using GSEA analysis of low and high 

Trib2 expressed human T-ALL groups, MAPK signalling was found to be 

upregulated in the high Trib2 expressing T-ALL group (Figure 5.7D). Hence, 

impaired activation of MAPK signalling in the absence of TRIB2 contributed to the 

increased aggressiveness of NOTCH1 induced murine T-ALL disease which 

recapitulated the immunophenotypes of human cortical mature T-ALL. Our analysis 

suggests TRIB2 possesses tumour suppressive functions important for T-ALL. 
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Table 5.2 │ Low and high TRIB2 expressed human T-ALLs (GSE13159 dataset). 
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Figure 5.7 │ TRIB2 levels distinguish molecular subtypes of human T-ALL and 
associate with MAPK signalling. (A) GSEA was performed to compare human T-
ALL samples from GSE13159 dataset (Haferlach et al., 2010) that expressed low 
and high TRIB2 (n = 26 per group) for enrichment of human T-ALL molecular 
subtypes (B) and canonical pathways (D). NES, normalized enrichment score; 
Nom, nominal; FDR, false discovery rate. (C) Correlation between TRIB2 (average 
of 202478_at and 202479_s_at) and LYL1 (210044_s_at) expressions were 
examined in 84 human T-ALL samples from GSE33315 dataset (Zhang et al., 
2012c). For C, Pearson correlation test was used to examination association 
between TRIB2 and LYL1 expressions. 
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Table 5.3 │ Core enrichment genes upregulated in low and high TRIB2 T-ALLs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



139 
 

5.3 Discussion 

 

We showed TRIB2 is required to suppress T cell leukaemogenesis induced by 

NOTCH1 overexpression. A role for TRIB2 in T-ALL maintenance was 

demonstrated by Sanda and colleagues (Sanda et al., 2012) as knockdown of Trib2 

in a panel of TAL1 positive human T-ALL cell lines induced apoptosis and inhibited 

cell growth. This appears to be consistent with the role of TRIB2 in other solid 

(Zanella et al., 2010, Grandinetti et al., 2011, Wang et al., 2013a) and 

haematological (Rishi et al., 2014) malignancies that overexpression of TRIB2 

confers growth and survival advantages to tumour cells.  However, we provide 

strong evidence that TRIB2 has opposing roles in the initiation and potency of T-

ALL. In the absence of TRIB2, the latency of NOTCH1-induced T-ALL was 

shortened significantly. The tumour suppressive role of TRIB2 in the initiation of 

NOTCH1-induced T-ALL was verified by another independent study where similar 

experiments were performed using a different Trib2 knockout mouse model 

generated by the authors (Stein et al., 2016). As a cell signalling modulator and 

mediator, it is likely that TRIB2 function, whether tumour promoting or suppressing, 

is dependent on the cellular state in which it is activated, similar to what has been 

described for p53 (Kruiswijk et al., 2015). In leukaemic initiation, signalling networks 

in normal cells are perturbed by driver mutations to enable leukaemic 

transformation. However, in leukaemic maintenance, signalling networks in 

transformed cells are governed by both driver and passenger mutations to cope 

with increasing metabolic and genomic stresses. Hence, the differing roles of 

TRIB2 in T-ALL initiation and maintenance could be due to alterations in signalling 

networks during and after leukaemic transformation. 

 

We previously reported elevated TRIB2 levels in a cohort of paediatric T-ALLs 

that contain Notch1/Fbxw7 mutations compared to wild type T-ALLs and this was 
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important in the profile and phenotype of mutant NOTCH1 T-ALL (Hannon et al., 

2012). However, mutant NOTCH1 does not cluster into the aforementioned LYL1+, 

TLX1+ and TAL1+ T-ALL. Instead, aberrant NOTCH1 signalling is the unifying 

feature in all the subtypes. Hence, we performed GSEA analysis in this study to 

show TRIB2 is highly expressed in immature (LYL1+) T-ALLs that are arrested at 

the DN stage of early thymocyte development and transcriptionally related to HSCs 

and myeloid progenitors (Zhang et al., 2012c, Van Vlierberghe et al., 2013). Further 

studies of this subset of T-ALL, reviewed by Yui and Rothenberg (Yui and 

Rothenberg, 2014), indicate that leukaemic transformation is due to failure of 

uncommitted thymic progenitors to repress a ‘legacy’ stem and progenitor cell gene 

network that is inherited from multipotent precursors. These genes include but are 

not limited to MEIS1, HOXA9, LYL1, LMO2, HHEX and MYCN that are normally 

expressed only in DN1 and/or DN2a cells, and are functionally implicated as proto-

oncogenes. Furthermore, a high prevalence of AML mutations (FLT3, NRAS, 

DNMT3A, IDH1 and IDH2) (Van Vlierberghe et al., 2013) in immature (LYL1+) T-

ALLs suggests contribution of myeloid oncogenes to leukaemogenesis of this 

subset of T-ALL. In turn, TRIB2 expression is suppressed in TLX1+ human T-ALLs 

which have a mature cortical DP phenotype where the transformed cells have 

committed to the T cell lineage (Ferrando et al., 2002). We propose the role of 

TRIB2 in different subtypes of human T-ALL depends on the stage at which thymic 

progenitors undergo malignant transformation and if they have committed to T cell 

lineage. In immature T-ALL, we speculate that the oncogenic property of TRIB2 in 

myeloid leukaemia is ‘inherited’ in transformed uncommitted thymic progenitors. We 

further speculate that TRIB2 is tumour suppressing in mature T-ALL as TRIB2 

exerts its physiological role in normal T-cell development. As such, targeting of 

TRIB2 could be beneficial in the treatment of LYL1+ instead of TLX1+ T-ALLs. 
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There is a strong correlation with TRIB2 and MAPK signalling in human T-ALL 

as shown by GSEA analysis. Previously, the activation of ERK and p38 were shown 

to inversely correlate with aggressiveness of T-ALL in a model of T-ALL cell 

dormancy (Masiero et al., 2011). Furthermore, drug treatment of established human 

T-ALL cell lines was shown to induce cell death via activation of p38 and JNK (Liu 

et al., 2014, Ge et al., 2013, Jiang et al., 2013). Thus, activation of MAPK signalling 

appears to be a limiting factor, at least, in the context of T-ALL. TRIB family 

members acts as scaffold proteins for the binding of MAPK signalling complexes 

and hence modulates their activity. All TRIB family members have the conserved 

MEK1 binding motif and have been shown to interact with MEK1 (Yokoyama et al., 

2010). In human T-ALLs, upregulation of ERK1/2 signalling was found in 38% of T-

ALL patients (Gregorj et al., 2007) and MEK/ERK can be activated due to RAS 

mutations, found in about 10% of T-ALL patients (Kindler et al., 2008). Targeting of 

MEK/ERK signalling by MEK inhibition was shown to be effective in treating KRAS-

mutated T-ALL in a murine model (Dail et al., 2010). The upregulation of MAPK 

signalling in specific subtypes of T-ALL has not been studied and remains unclear. 

Here we show TRIB2 expression is high in LYL1+ immature T-ALLs enriched with 

MAPK signalling and our experimental data show defective MAPK signalling in the 

absence of TRIB2. Thus, it appears that TRIB2 functions to control T-ALL via MAPK 

modulation. 

 

 We and others (Dedhia et al., 2010, Keeshan et al., 2006) have shown that 

Trib2 is a myeloid oncogene when overexpressed in a murine BM transplant model. 

Here, loss of TRIB2 potentiated murine T-ALL induced by a T cell oncogene. Given 

that TRIB2 is expressed highest in normal T cells (Liang et al., 2013), it is not 

surprising that overexpression of Trib2 does not drive T-ALL in the BMT model, and 

our data would suggest that TRIB2 functions to suppress T-ALL. Our data provide 

insight into the understanding of the opposing leukaemogenic roles of TRIB2 in 
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myeloid and lymphoid leukaemia. However, the mechanisms that underlie whether 

TRIB2 acts as an oncogene or tumour suppressor are not well understood. It may 

be linked to its function in cell proliferation and MAPK pathway modulation, which 

could be cell context specific. Anti- and pro-proliferative effects connected with 

MAPK signalling and TRIB1 have been previously demonstrated in different cell 

contexts. In vascular smooth muscle cells, TRIB1 was shown to interact with MKK4 

which led to inhibition of JNK pathway and decreased proliferation (Sung et al., 

2007). In murine BM cells, TRIB1 was shown to interact with MEK1 which led to 

increased activation of ERK pathway and increased proliferation (Yokoyama et al., 

2010). 

 

This work is a paradigm shift in the definition of TRIB2 function in malignant 

haematopoiesis. TRIB2 is capable of driving myeloid leukaemogenesis and this 

tumour promoting function is likely to be retained in leukaemogenesis of immature 

T-ALL where the transforming thymic progenitors have not terminated properly the 

previously established legacy stem and progenitor cell transcriptional networks. 

However, in leukaemogenesis of mature T-ALL, TRIB2 is tumour suppressing owing 

to its physiological role in normal T-cell development. 
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CHAPTER SIX: EXAMINATION OF THE RELATIONSHIP OF TRIB2 WITH  

CDC25  PHOSPHATASES 

 

6.1 Introduction 

 

 

Figure 6.1 │ CDC25 family regulates cell cycle transitions. Each phase of cell 
cycle is controlled by different CDK-Cyclin complexes which are held inactive by the 
phosphorylation of two residues (for example Threonine 14 and Tyrosine 15 of 
CDK1) within the ATP binding loop. CDC25 proteins promote cell cycle progression 
by dephosphorylating these two residues. Adapted from (Brenner et al., 2014). 
 

The CDC25 family of proteins are cell cycle regulators that act as phosphatases. 

They activate cyclin-dependent kinase (CDK) complexes by dephosphorylation, 

which in turn promote cell cycle phase progression (Figure 6.1) (Brenner et al., 

2014). The functions of the CDC25 family are highly conserved across species. In 

Drosophila, String is the ortholog of CDC25 family (Edgar and O'Farrell, 1990). In 

mammalians, CDC25 family exists in three isoforms: CDC25A, CDC25B and 

CDC25C (Boutros et al., 2007). CDC25A mainly promotes G1 to S phase transition 
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by activating the CDK2-Cyclin E and CDK2-Cyclin A complexes (Blomberg and 

Hoffmann, 1999, Hoffmann et al., 1994) whereas CDC25B/C promote G2 to M 

phase transition primarily (Millar et al., 1991, Gabrielli et al., 1996). Nevertheless, 

CDC25A has also been shown to regulate G2/M phase progression (Mailand et al., 

2002) and this is supported by studies that found no apparent cell cycle phenotype 

in Cdc25b single (Lincoln et al., 2002), Cdc25C single (Chen et al., 2001) and 

Cdc25b/c double (Ferguson et al., 2005) knockout mouse models. CDC25 family 

might have a role in regulation of cell cycle entry/exit (G0 to G1 transition) as a 

recently discovered CDC25 inhibitor (NSC 119915) was found to arrest cells in the 

G0/G1 and G2/M phase transitions of the cell cycle (Lavecchia et al., 2012). 

Furthermore, regulation of Cdc25 expression has been implicated in quiescence 

(G0) maintenance and exit in naïve and activated T-cells respectively (Yusuf and 

Fruman, 2003). However, it is currently unknown if CDC25 family regulates CDK3-

Cyclin C complex which was found to be required for quiescence exit (Ren and 

Rollins, 2004).  

 

In the previous chapters, we provide evidence that TRIB2 negatively regulates 

the proliferation of immature developing thymocytes during thymopoiesis at steady 

state and under stress conditions. However, the mechanism underlying the anti-

proliferative role of TRIB2 is unknown. In Drosophila, Tribbles was shown to 

promote the proteasomal dependent degradation of String in order to coordinate cell 

division and morphogenesis during embryonic development (Grosshans and 

Wieschaus, 2000, Seher and Leptin, 2000, Mata et al., 2000). Furthermore, TRIB3 

was found to interact with CDC25A and regulate its expression (Sakai et al., 2010). 

Hence, we aimed to determine if the function of Drosophila Tribbles-mediated 

degradation of String is conserved in TRIB2. 
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6.2 Results 

 

6.2.1 TRIB2 binds to CDC25B/C but not CDC25A.  

To examine the interaction of TRIB2 with all three isoforms of CDC25 family, we 

overexpressed tagged versions of the proteins in HeLa cells and performed co-

immunoprecitation binding assays. Upon immunoprecipitation with anti-FLAG 

antibody and western blotting with anti-MYC antibody, we found that TRIB2 co-

immunoprecipitated with human CDC25B and CDC25C but not CDC25A (Figure 

6.2A). Hence, TRIB2 interaction with CDC25 family is selective and, in contrast to 

TRIB3, does not interact with CDC25A. Alignment of amino acid sequences of 

CDC25B/C between human and mouse orthologs showed that amino acid residues 

from 206 to 254 from the human CDC25C ortholog were absent in mouse (Figure 

6.2B). Nevertheless, we found that TRIB2 bound to both human and mouse 

CDC25C orthologs (Figure 6.2C). This suggests TRIB2 and CDC25C interaction is 

conserved in mouse, and rules out the region containing the 206-254 amino acid 

residues of human CDC25C as the binding site for TRIB2. Lastly, overexpressed 

TRIB2 was found to bind to the endogenously expressed CDC25C in HeLa cells 

(Figure 6.2D), showing that endogenously and exogenously expressed CDC25C 

interact with TRIB2.    
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Figure 6.2 │ TRIB2 interacts with isoform B and C of CDC25 family. (A) 
Interaction of MYC-tagged TRIB2 with different isoforms of FLAG-tagged CDC25 
family was examined by co-immunoprecipitation (co-IP). IP, immunoprecipitation. 
(B) Similarity of amino acid sequences of different orthologs (human and mouse) for 
CDC25B and CDC25C was examined by BlastP program and presented as dot 
matrix views. (C) Interaction of MYC-tagged TRIB2 with human and mouse 
orthologs of FLAG-tagged CDC25C was examined by co-IP. (D) Interaction of 
FLAG-tagged TRIB2 with endogenous CDC25C was examined by co-IP. For A, C 
and D, HeLa cells were used for the experiments. Panel C and D are 
representatives of two independent experiments.   
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6.2.2 TRIB2 promotes ubiquitination and proteasomal dependent degradation 

of CDC25C. 

To determine if TRIB2 regulates CDC25C in a similar way demonstrated in 

Drosophila (Mata et al., 2000, Seher and Leptin, 2000, Grosshans and Wieschaus, 

2000), we examined the impact of TRIB2 overexpression on CDC25C protein 

expression levels. In HeLa cells, overexpression of TRIB2 led to a decrease in 

endogenous CDC25C protein expression (Figure 6.3A) indicating TRIB2 regulates 

CDC25C turnover. In contrast to CDC25A which is primarily a nuclear protein, 

CDC25B/C are held inactive in the cytoplasm and only translocate to the nucleus 

when they are activated in order to promote cell cycle progression (Brenner et al., 

2014).On account of that, we used MG132, a proteasome inhibitor to assess 

degradation of endogenous CDC25C in both cellular compartments in the presence 

of ectopic TRIB2. Subcellular fractionation showed that endogenous CDC25C was 

located primarily in the cytoplasm consistent with the literature (Figure 6.3B). In 

vehicle-treated cells, overexpression of TRIB2 did not affect nuclear translocation of 

CDC25C as the expression of CDC25C protein in the nucleus remained similar 

compared to empty vector-transfected cells (Figure 6.3B). However, in MG132-

treated cells where proteasome was inhibited, overexpression of TRIB2 led to 

increase level of nuclear CDC25C protein (Figure 6.3B). Shabbeer and colleagues 

showed that, in response to DNA damage, breast cancer type 1 susceptibility 

protein (BRCA1) which is an E3 ubiquitin ligase polyubiquitinates CDC25C protein 

to promote its degradation (Shabbeer et al., 2013). BRCA1-mediated CDC25C 

degradation was suggested via nuclear proteasome because, upon inhibition of 

protein degradation by MG132, overexpression of BRCA1 caused stabilized 

CDC25C to retain in the nucleus (Shabbeer et al., 2013). As such, our data 

suggests that TRIB2 may regulate the turnover of CDC25C in the nucleus. 

Intriguingly, our data also suggests that TRIB2 itself is regulated in a similar fashion 

(Figure 6.3B). 
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Figure 6.3 │ TRIB2 promotes proteasomal dependent degradation of CDC25C 
in the nucleus. (A) Whole cell lysates from FLAG-TRIB2-transfected cells and 
controls (untransfected and empty vector-transfected) were analyzed by Western 
blotting. (B) Cells were treated with DMSO (vehicle) or 10 µM of MG132 for 4 hours 
before subcellular fractionation for Western blotting analysis. α-tubulin and HDAC1 
are cytoplasmic and nuclear markers respectively. For A and B, HeLa cells were 
used for the experiments. Panel A was a result from one experiment whereas panel 
B is a representative of two independent experiments.    
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TRIB2 is known to mediate the degradation of target proteins via ubiquitin 

proteasome system (Salome et al., 2015). Thus, we sought to determine if TRIB2 

promotes ubiquitination of CDC25C. Indeed, we found that TRIB2 overexpression 

caused increased ubiquitination of both human and mouse CDC25C that were 

ectopically expressed in HeLa cells (Figure 6.4A). This is in accordance with the 

results of our co-immunoprecipitation assay that TRIB2 binds to both orthologs 

(Figure 6.2C). Furthermore, we demonstrated that TRIB2 promoted lysine (K)-48-

linked polyubiquitination of endogenous CDC25C (Figure 6.4B and 6.4C). Protein 

ubiquitination via K48-linked ubiquitin chains is a specific cellular signal for 

proteasomal degradation (Komander, 2009). Hence, our results altogether suggest 

TRIB2 promotes polyubiquitination of CDC25C and this in turn increases 

proteasomal dependent degradation of CDC25C. TRIB2-mediated degradation of 

CEBPα requires the kinase-like domain and the C-terminal where COP1 binds to 

(Figure 1.3) (Keeshan et al., 2010). We performed a structure-function analysis of 

TRIB2 in HeLa cells to determine which domain of TRIB2 is essential for promotion 

of endogenous CDC25C ubiquitination. Like TRIB2 full length (FL) protein, 

overexpression of TRIB2 kinase-like domain (KD) alone was sufficient to drive 

CDC25C ubiquitination and deletion of either terminal (dN or dC) didn’t affect TRIB2 

function in this aspect (Figure 6.4D). Our preliminary result suggests only the 

kinase-like domain is crucial for TRIB2-mediated ubiquitination and possibly 

degradation of CDC25C. 
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Figure 6.4 │ TRIB2 promotes K48-linked polyubiquitination of CDC25C. Impact 
of overexpression of MYC-tagged TRIB2 on HA-tagged ubiquitination of (A) human 
and mouse orthologs of FLAG-tagged CDC25C, and (B) endogenous CDC25C. 
Impact of overexpression of (C) MYC-tagged TRIB2 wild type and (D) different 
mutants on K48-linked ubiquitination of endogenous CDC25C. FL, full length; dN, 
N-terminal deleted; KD, only kinase domain expressed; dC, C-terminal deleted. For 
A-D, HeLa cells were used for the experiments. For A and D, all samples were 
treated with 10µM of MG132 for 7 hours prior cell lysis. Panel A, B and C are 
representatives of two independent experiments. 
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6.2.3 TRIB2 is tightly regulated during cell cycle phase progression. 

Given the role of TRIB2 in regulation of CDC25B/C, we were interested to assess 

the expression of TRIB2 during cell cycle. We synchronized RPMI-8402, a T-ALL 

cell line by single thymidine block and monitored the level of TRIB2 mRNA and 

/TRIB2 protein levels as the synchronized cells resumed cell cycle following 

thymidine removal. DNA staining for samples collected at different time points 

confirmed the successful synchronization of cells. Cells were synchronized at G1 to 

S phase transition (S0) by single thymidine block (Figure 6.5A). After removal of 

thymidine, cells entered and progressed through S phase (S12 and S15) 

synchronously (Figure 6.5A). At 20 hours onwards post thymidine removal, 

increasing fraction of cells were found in G2/M and G1 phases (Figure 6.5A). This 

was confirmed with detection of increased level of phosphorylated histone H3, a 

mitosis marker, in cells collected at 22 hours (S22) post thymidine removal (Figure 

6.5B). We observed cyclic expression of TRIB2 protein despite no significant 

change at the mRNA level (Figure 6.5B and 6.5C). Increased level of TRIB2 protein 

was detected in S12, S17 and S22 where most of the synchronized cells were in S 

phase entry, S phase progression and mitotic phase respectively (Figure 6.5B). 

CDC25C protein level increased in S22 presumably due to its role in promoting 

mitotic entry (Figure 6.5B). Hence, increased expression of TRIB2 during mitotic 

phase could be important in regulating the activity of CDC25C. 
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Figure 6.5 │ TRIB2 is regulated at protein level during cell cycle phase 
progression. Asynchronous (AS) RPMI-8402 cells were arrested by single 
thymidine block (S0) followed by release (S12-S24) to allow them to progress into 
different cell cycle phase synchronously. (A) Cell cycle analysis by flow cytometry. 
Histograms of cell cycle profile for all samples were staggered offset. (B) Western 
blotting analysis with p-histone H3 signal serves as a mitosis marker. (C) 
Expression of TRIB2 measured by quantitative RT-PCR. All panels shown are 
representatives of two independent experiments.  
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6.3 Discussion 

 

The relationship between TRIB2 and CDC25 family has not been studied before. 

Here, we showed that TRIB2 interacts physically with CDC25B/C. Similar to 

Drosophila Tribbles (Mata et al., 2000, Seher and Leptin, 2000, Grosshans and 

Wieschaus, 2000), we showed that TRIB2 promotes proteasomal dependent 

degradation of CDC25C. TRIB2 appears to degrade only active CDC25C in the 

nucleus and perhaps the pool of CDC25C available for TRIB2-mediated 

degradation may be smaller. In addition to that, we found the increase of CDC25C 

turnover is due to TRIB2 mediated K48-linked polyubiquitination of CDC25C. 

Hence, the function of Drosophila Tribbles is evolutionarily conserved in TRIB2. 

 

Owing to the critical roles of CDC25 family in cell cycle regulation, the 

expression of CDC25 proteins is tightly regulated. CDC25C activity is controlled 

primarily by two mechanisms at the post-translational level. The first mechanism 

involves phosphorylation of CDC25C at Serine 216 which results in binding of 

CDC25C with 14-3-3 protein and subsequently CDC25C sequestration in the 

cytoplasm (Boutros et al., 2007). The other mechanism regulates CDC25C activity 

by proteasomal dependent degradation. Two E3 ubiquitin ligases have been 

identified so far that work independently of each other to regulate CDC25C at 

different cell cycle phase transitions. CDC25C is targeted by anaphase-promoting 

complex/cyclosome (APC/C) (Chen et al., 2002, Pfleger and Kirschner, 2000) for 

degradation upon mitotic exit whereas BRCA1 (Shabbeer et al., 2013) ubiquitinates 

CDC25C to prevent mitotic entry. We showed that TRIB2 promotes 

polyubiquitination and degradation of CDC25C. It is likely that TRIB2 functions as 

an adaptor for an as yet unidentified E3 ubiquitin ligase that ubiquitinates CDC25C. 

TRIB2 has previously been shown to function as an adaptor mediating the 
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degradation of CEBPα via COP1 E3 ligase in AML (Keeshan et al., 2010) or 

TRIM21 E3 ligase in lung cancer (Grandinetti et al., 2011). 

 

CDC25C is tightly regulated in the steady state cell cycle as well as in response 

to stress such as DNA damage that induces G2/M checkpoint (Boutros et al., 2007). 

The checkpoint following stress is important to allow cells to repair damaged DNA 

before resuming cell cycle. MAPK signalling appears to regulate CDC25C in both 

steady state cell cycle and checkpoint pathways. During cell cycle at steady state, 

phosphorylation of CDC25C at Threonine 48 by ERK leads to CDC25C activation 

and promotion of mitotic entry (Wang et al., 2007). We have shown that in cells 

lacking TRIB2 (Figure 5.4E), that there is loss of ERK activation. However, in 

response to stress and DNA damage, activated ERK has been shown to 

phosphorylate CDC25C at Serine 216 which in turn promotes CDC25C 

ubiquitination and proteasomal degradation (Eymin et al., 2006). In this study, the 

authors did not show whether the pool of ubiquitinated CDC25C was nuclear or 

cytoplasmic. JNK was shown to inactivate CDC25C by direct phosphorylation at 

Serine 168 to regulate mitotic entry and G2/M DNA damage checkpoint (Gutierrez et 

al., 2010). Lastly, p38 induces cytoplasmic sequestration and thus inactivation of 

CDC25C indirectly via MAPK-activated protein kinase 2 (MK2) in response to DNA 

damage (Manke et al., 2005). In the previous chapter, we showed that TRIB2 

controls T-ALL via MAPK modulation. Hence, further studies are warranted to 

examine TRIB2/MAPK/CDC25 axis in normal and malignant haemopoiesis.  

 

The experimental works reported in this chapter help to provide a framework for 

strategic planning in further investigation of the cellular impacts of TRIB2 and 

CDC25C interaction. It remains to be clarified if TRIB2-CDC25C interaction affects 

a specific cell cycle phase transition and if the interaction underlies the anti-

proliferative role of TRIB2 in immature developing thymocytes.  



155 
 

CHAPTER SEVEN: GENERAL DISCUSSION 

 

A recent study that showed TRIB2 is capable of auto-phosphorylation challenges 

the current classification of Tribbles family as pseudokinases (Bailey et al., 2015). 

Like CASK (Mukherjee et al., 2008), TRIB2 could be an atypical kinase with specific 

substrates. Indeed, a screen for the physiological substrates of TRIB2 has not been 

documented although TRIB3 kinase activity had been assessed by in vitro kinase 

assay with selected substrates (Bowers et al., 2003). For TRIB2, substrate 

screening has been hindered by its unknown physiological role. Now, our works 

have uncovered a role for TRIB2 in the thymus where it regulates the proliferation of 

immature developing thymocytes. Hence, substrate screening for TRIB2 could be 

examined in the thymus and in these thymocytes where the physiological TRIB2-

putative interacting proteins are expressed. This could be achieved with the recent 

development of kinase-interacting substrate screening (Amano et al., 2015) and is 

important for the elucidation of physiological TRIB2 signalling network in the 

thymus. 

 

During Drosophila embryonic development, the anti-proliferative role of Tribbles 

is necessary to coordinate cellular proliferation and morphogenesis (Mata et al., 

2000, Seher and Leptin, 2000, Grosshans and Wieschaus, 2000). In the thymus, we 

speculate that TRIB2 is important for the establishment of T-cell identity and the 

anti-proliferative role of TRIB2 is required to restrain self-renewal activity of 

uncommitted thymic progenitors (DN1 and DN2a) for T-cell specification and 

commitment. Trib2 was shown to be regulated by transcription factors (PU.1, 

NOTCH and GATA3) that control a lympho-myeloid switch during early T-cell 

development (Del Real and Rothenberg, 2013). PU.1 is a progenitor cell 

transcription factor highly expressed initially in DN1 and DN2a progenitors where 

they retain multi-lineage plasticity but are repressed in DN2b stage where the 
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progenitors become committed to T-cell lineage (Yui et al., 2010). It is required for 

the expansion of DN1 and DN2 progenitors while restraining their differentiation by 

temporally restricting activation of the T-lineage developmental programme 

(Champhekar et al., 2015). Nevertheless, forced overexpression of PU.1 can divert 

these early uncommitted progenitors to a myeloid lineage which in normal 

conditions is inhibited by thymic NOTCH signalling (Franco et al., 2006). In contrast 

to PU.1, GATA3 is a T-lineage transcription factor. Gata3 expression is turned on by 

NOTCH signalling in DN1 progenitors and remains stable at later stages (DP) of T-

cell development. GATA3 is essential for development of the T-lineage as loss of 

GATA3 affects multiple T-cell developmental stages (Rothenberg and Scripture-

Adams, 2008). To understand the myeloid versus T-cell fate choice, Del Real and 

colleagues studied the interactions between PU.1, GATA3 and NOTCH1 signalling 

in Scid.adh.2C2 cells, a DN3-like clonal early T-cell line that do not express 

endogenous PU.1 (Del Real and Rothenberg, 2013). Trib2 was downregulated in 

diverted PU.1-overexpressing Scid.adh.2C2 cells which had increased expression 

of CD11b (Del Real and Rothenberg, 2013). This indicates Trib2 is a T-lineage 

gene and is repressed by PU.1. Indeed, ChIP-seq analysis showed that Trib2 is 

bound by PU.1 in DN1 and DN2a but not in DN2b T-lineage committed progenitors 

(Zhang et al., 2012d). In contrast, Trib2 was upregulated by elevated NOTCH1 

signalling in myeloid diversion-protected Scid.adh.2C2 cells that co-overexpressed 

PU.1 and ICN1 (Del Real and Rothenberg, 2013). This is not surprising as Trib2 

has been shown previously as a direct target of NOTCH1 (Wouters et al., 2007). 

Lastly, Trib2 downregulation was dampened in PU.1-overexpressing Scid.adh.2C2 

cells which had GATA3 knockdown and were more sensitive to myeloid diversion 

(Del Real and Rothenberg, 2013). This suggests regulation of Trib2 by GATA3 and 

ChIP-seq analysis showed that Trib2 is bound by GATA3 in uncommitted DN1, 

committed DN2b progenitors and DP mature cells (Zhang et al., 2012d). 

Intriguingly, a separate study aimed to characterize T cell lineage commitment 
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found that uncommitted DN1 and DN2a progenitors undergo similar extensive 

proliferation but committed DN2b cells proliferate at a slower rate, as assessed by 

carboxyfluorescein succinimidyl ester dilution, on OP9-DL1 co-culture system (Yui 

et al., 2010). This was not pursued further in the study but it highlights a potential 

coordination between cellular proliferation and commitment as the thymic 

progenitors develop. Given the anti-proliferative role of TRIB2 in these developing 

thymocytes and the connection of Trib2 with PU.1, GATA3 and NOTCH1, future 

study is warranted to examine the role of Trib2 in T-lineage commitment.  

 

As mentioned in the third chapter, our data suggests that TRIB2 could have 

another distinct role in thymocytes beyond the DN stage. In the absence of TRIB2, 

increased number of DP thymocytes due to increased proliferation of DN 

thymocytes resulted in increased CD4 but not CD8 T cell maturation. However, this 

did not affect the size of peripheral T-cell pool. Hence, TRIB2 may impact on thymic 

selection, maturation of DP to SP thymocytes or thymic T-cell export. We speculate 

that the role of TRIB2 in the later stages of T-cell development (thymic selection and 

DP-SP maturation) is connected to its relationship with MAPK signalling. Thymic 

selection is a critical checkpoint at the DP stage for the generation of mature T-cells 

that can respond to foreign antigens without mounting an auto-immune response to 

self antigens. With low-avidity interactions between TCR and self-peptide-major 

histocompatibility complex (MHC) complexes, DP thymocytes that are normally 

destined to ‘death-by-neglect’ are signalled to survive and differentiate further 

(positive selection). However, high-avidity interactions between TCRs and self-

peptide-MHC complexes lead to apoptosis induction instead (negative selection). 

MAPK signalling, initiated by TCR-ligand interactions, appears to be important in 

both selections. Positively-selecting ligands that promote survival generate a 

weaker but sustained activation of ERK signalling whereas negatively-selecting 

ligands that induce death generate a robust but transient activation of ERK 
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signalling (Daniels et al., 2006, McNeil et al., 2005). ERK expression is 

indispensable in positive selection (Fischer et al., 2005, Pages et al., 1999) 

compared to negative selection (McGargill et al., 2009) where p38 and JNK 

activation are more critical (Sugawara et al., 1998, Rincon et al., 1998). ERK and 

p38 are also important in the maturation of thymocytes from DP to SP stage. p38 

activation (Fernandez, 2000) is required in the generation of both CD4 and CD8 SP 

T-cells whereas ERK activation (Sharp et al., 1997, Fischer et al., 2005) is important 

for the development of CD4 rather than CD8 SP T-cells. We demonstrated that 

TRIB2 is required for the regulation of MAPK signalling in leukaemic T-cells, and we 

showed reduced p38 signalling in Trib2-/- DN2 and DN3L thymocytes. Hence, future 

study should assess the impact of TRIB2 loss on thymic selection with further 

characterization of DP thymocytes (Mingueneau et al., 2013) and the MAPK status 

in these cells.  

  

TRIB2 is highly conserved in mouse and human with 99.2% of similarity in 

amino acid sequences. Hence, study of TRIB2 in the mouse organism is important 

and relevant for the elucidation of its role in the human setting. So far, Trib2 knock 

out mouse models (Trib2tm1Ryn (Takasato et al., 2008), Trib2tm1Lex (Rishi et al., 2014) 

and Trib2tm1Myam (Satoh et al., 2013)) have been generated by germline deletion of 

Trib2. Stage or cell-type specific disruption of Trib2 could be useful in dissecting the 

role of TRIB2 in the development and differentiation of a specific haematopoietic 

lineage. This could be accomplished by CRE-recombinase mediated conditional 

deletion of Lox-P site flanked Trib2 gene. Many different Cre-transgenic mouse 

lines have been developed where expression of Cre recombinase is under the 

control of cell-type specific promoter and hence enabling cell-type specific gene 

deletion. For example, Vav1 promoter driven Cre expression (Ogilvy et al., 1999) 

would allow deletion of Trib2 in HSCs and hence all their descendents whereas 

human CD2 promoter driven Cre expression (de Boer et al., 2003) would allow 
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deletion of Trib2 in T- and B-lymphoid cells. Other mouse lines that are of relevance 

to study of TRIB2 in T-cell development include Lck proximal promoter and Cd4 

promoter/enhancer/silencer driven Cre expression which enable disruption of gene 

at DN and DP stage respectively (Lee et al., 2001). 

 

In summary, the works presented in this thesis uncovered a previously 

unrecognized role for TRIB2 in negatively regulating the cell division kinetics of 

developing thymocytes. This is the first physiological role that we established for 

TRIB2 in steady state and stress haematopoiesis. We demonstrated that TRIB2 

regulates the homeostasis of intrathymic T-cell development at steady state. The 

anti-proliferative role of TRIB2 is crucial to control the response of thymocytes to 

genotoxic stress. We showed that, in the absence of TRIB2, proliferative 

thymocytes are sensitized to 5-FU-induced apoptosis. The anti-proliferative role of 

TRIB2 is also essential for proper recovery of thymopoiesis after genotoxic stress. 

We found that loss of TRIB2 causes expansion of c-Kit- DN1 thymic progenitors 

which in turn lead to accelerated thymopoietic recovery following 5-FU mediated 

genotoxic stress.  Next, using a NOTCH1-induced T-ALL BM transplantation model, 

we provided evidence that TRIB2 possesses tumour suppression function in T-cell 

leukaemogenesis. In the absence of TRIB2, NOTCH1 is more potent in driving T-

ALL initiation and the increased aggressiveness of Trib2-/- T-ALL was enhanced by 

impaired activation of MAPK signalling. We performed GSEA analysis to extrapolate 

the experimental findings of TRIB2 role in murine T-ALL to different molecular 

subtypes of human T-ALL. TRIB2 expression was elevated in LYL1+ immature 

human T-ALL enriched with MAPK signalling whereas its expression was 

suppressed in TLX1+ mature human T-ALL with defective MAPK signalling. Hence, 

TRIB2 could be tumour promoting or suppressing depending on the subtypes of T-

ALL and this is related to its capability to modulate MAPK signalling. The tumour 

suppressing function of TRIB2 is novel and is a paradigm shift in the definition of 
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TRIB2 function in malignant haematopoiesis. Last but not least, we showed that the 

function of Drosophila Tribbles in promoting degradation of String is evolutionarily 

conserved in TRIB2. We identified CDC25B/C as new interacting partners of TRIB2. 

We demonstrated that TRIB2 targets CDC25C for K48-linked polyubiquitination and 

degradation via nuclear proteasome. This adds another layer to how TRIB2 could 

regulate cellular proliferation.   
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