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Abstract

Simulation of pedestrian evacuations of smart buildings in emergency is a powerful

tool for building analysis, dynamic evacuation planning and real-time response to

the evolving state of evacuations. Macroscopic pedestrian models are low-complexity

models that are and well suited to algorithmic analysis and planning, but are quite

abstract. Microscopic simulation models allow for a high level of simulation detail

but can be computationally intensive. By combining micro- and macro- models we

can use each to overcome the shortcomings of the other and enable new capability

and applications for pedestrian evacuation simulation that would not be possible

with either alone. We develop the EvacSim multi-agent pedestrian simulator and

procedurally generate macroscopic flow graph models of building space, integrating

micro- and macroscopic approaches to simulation of the same emergency space.

By “coupling” flow graph parameters to microscopic simulation results, the graph

model captures some of the higher detail and fidelity of the complex microscopic

simulation model. The coupled flow graph is used for analysis and prediction of

the movement of pedestrians in the microscopic simulation, and investigate the per-

formance of dynamic evacuation planning in simulated emergencies using a variety

of strategies for allocation of macroscopic evacuation routes to microscopic pedes-

trian agents. The predictive capability of the coupled flow graph is exploited for the

decomposition of microscopic simulation space into multiple future states in a scal-

able manner. By simulating multiple future states of the emergency in short time

frames, this enables sensing strategy based on simulation scenario pattern matching

which we show to achieve fast scenario matching, enabling rich, real-time feedback

in emergencies in buildings with meagre sensing capabilities.
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1 Introduction

1.1 Planning and Simulation of Emergency Evacuation

With the development in recent years of building monitoring and control through the

use of networked “Smart building” components (networked sensors, actuation and

computing capability embedded within buildings), there arises the scope for real-

time management of buildings during emergencies. Traditional emergency response

strategies use predetermined evacuation routes based on the building structure but

are not in any sense “dynamic”; while a building’s sensor network might report on

the location of fire or smoke, and provide a real-time perspective of the location of

building occupants, static evacuation routes do not account for the dynamic state

of building use or hazard spread.

A new class of evacuation planning making use of real-time building state informa-

tion has developed in the past decade, extending beyond static safety-oriented plans

and making use of macroscopic building models (such as flow graphs) to compute

evacuation routes for occupants based on their locations in the building (rather than

using static routes based on the likely positions based on typical building usage).

These macroscopic planners can account for dynamic hazard location, redirecting

occupants away from danger and towards exits by accounting for distance and popu-

lation size to avoid congestion. As emergency evacuation is a time-sensitive problem,

these planners need to compute routes in very short time frames (less than seconds),

which they achieve by modelling the problem space using macroscopic graph models

of building space, which are highly scalable and amenable to algorithmic analysis.

While macroscopic planners are capable of computing routes quickly and efficiently,

they are quite abstract relative to the realities of pedestrian movement and use of

space. Microscopic pedestrian simulations can model pedestrian motion in greater

detail, giving a more realistic perspective of the nuances of occupant motion and use

of building space. Development of microscopic pedestrian simulation has enabled

new applications in building structural analysis, emergency simulation for planning

support, and for analysis of the performance of evacuation planning where drills or

real-world observation is infeasible or impractical.

1.1.1 Thesis statement

Macroscopic pedestrian models are simple and well suited to algorithmic analysis

and planning, but are quite abstract. Microscopic simulation models allow for a high

level of simulation detail but can be computationally intensive. By combining micro-

and macro- models we can use each to overcome the shortcomings of the other and
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enable new capability and applications for pedestrian evacuation simulation that

would not be possible with either alone.

1.2 Integration of Micro- and Macroscopic models

In this work we investigate the integration of two models from these classes:

� Microscopic Free-space social force agent model

� Macroscopic Network Flow Graph model

Agent-based microscopic pedestrian models allow for individual occupant models,

allowing for a variety of agent mobility characteristics within a single population, or

for various behaviours or building knowledge to be modelled on an individual agent

basis. By modelling agent motion in continuous free space, multi-agent pedestrian

models can capture much of the nuance of occupant use of building space, and the

impact of different agents interacting in space. The flexibility (allowing multiple

agent types to exist within the same model) and realism (allowing for complex

motion models) make this approach to pedestrian modelling particularly suitable for

emergency simulation; however this approach to simulation is complex and scaling

of simulation problems is a challenge.

Network Flow Graph models are particularly suited to evacuation planning problems

as they model building space in terms of not only of how space can be traversed, but

also the limitations of space when it comes to the rate of “flow” possible through the

space. As congestion and over-use of paths by occupants is a significant component

to building evacuation and safety, accounting for the achievable flow is key to safe

evacuation planning and this accounting for flow combined with their inherent scal-

ability and amenability to analysis makes network flow graphs particularly suitable

for planning and prediction of the traversal of groups of occupants.

By integrating these two models, we can use the microscopic agent model to improve

the accuracy of the macroscopic graph model, imparting some of the subtle detail

of occupant use of space to the more abstract graph model, allowing for prediction

and planning using the Network Flow Graph based on microscopic simulation. In-

tegration also allows the microscopic agent model to exploit the analytical powers

of the macroscopic flow model to sub-divide problem space and achieve scalable

microscopic simulation of multiple future states, which would otherwise be compu-

tationally infeasible within the time constraints of real-time emergency response and

simulation.
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1.2.1 Macroscopic Pedestrian Modelling

Macroscopic Models used in pedestrian movement models are typically graph-based,

and in this work we make extensive use of Network Flow Graphs as macroscopic

representations of building emergencies. Network Flow Graphs model building space

in the form of a graph of nodes and edges, and each edge has Capacity and Traversal

Time parameters. These parameters represent the time taken for occupants to

traverse the edge, and the optimum rate of traversal (or “flow”) achievable on that

edge. In these graphs, pedestrians exist as “supply”: the number of occupants

present at a node. As such, individuals are not considered, but rather the transfer

of this supply from node to node via edges models the traversal of occupants in

the building space. When combined with occupancy and hazard data, Flow Graph

models can be used by dynamic evacuation planners as a basis for generation of

evacuation plans. While Flow Graphs are computationally simple, they are also

quite abstracted from the physical domain. The nuance of interaction of occupants

with building geometry, or the impact of multiple flows of occupants coming together

or passing through common space can be complex and using graph models alone can

miss out on this fine detail, which can have a significant bearing on the accuracy of

graph-based simulation, prediction or planning.

1.2.2 Microscopic Pedestrian Modelling

Microscopic Models of pedestrian movement are much more detailed, typically mod-

elling each occupant individually as “agents” in building space, with each agent

responsible for its own decision making, planning and movement as they navigate

the building geometry. A common approach for occupant modelling in microscopic

pedestrian simulation is to adopt a “social forces” model of agent interaction, which

we use in this work, treating agents as particles in two-dimensional free space with

agent positions adjusted based on the forces model each time the simulation is up-

dated. As each agent is modelled individually, this allows the persistence of state;

agents can plan individually, and extensions to agent models can allow for the capa-

bility of learning, information sharing, emotional states and personality types. This

also allows for the integration of different agent types within a single simulation,

occupants with limited mobility or different knowledge of the building structure can

exist together within the same model.

In microscopic social forces models, the motion of agents is governed by a combi-

nation of forces: maintaining personal space, movement towards a goal, adjusting

motion to avoid collisions and steering to navigate space. Each update of the sim-

ulation causes the agents to modify their position in order to satisfy the forces; for

instance by making small adjustments they can move to positions with greater space
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to maintain personal space needs, and by steering and moving towards a series of

goals in sequence, they can navigate the building space. Microscopic models are

detailed, but complex. While graph model complexity scales with the size of the

graph, microscopic social forces models scale with the number and density of agents

modelled. Large crowds of agents result in a great deal of inter-agent force compu-

tation. The high detail and fidelity of microscopic models also present a challenge

when it comes to agent planning; agents need to plan movement over long distance

between distinct goals, often obscured by building geometry.

1.3 Integration

By using macroscopic graphs and microscopic free space agent models to represent

the same physical space (e.g. a building), we can allow one model type to make

use of the capabilities of the other to achieve simulation and modelling capability

which would not be possible with either alone. A common approach to agent path

planning in microscopic agent simulation is to allow the agents to perform high-level

planning with the use of a “navigation graph”, a graph representing the traversable

edges between building spaces. By associating areas in the building with nodes on

the navigation graph, agents can perform path-planning through the building using

algorithms such as Dijktra’s Algorithm [7] or A* [8].

Microscopic modelling can also assist macroscopic models; by using social forces

agent modelling to simulate the movement of pedestrians through space, the rate

and speed of traversal can be discovered through that space and this can be used to

establish Network Flow Graph parameters automatically. By using the microscopic

simulation to iteratively test flows on point-to-point paths represented by graph

edges in the Flow Graph, the Flow Graph can be “coupled” to the microscopic

model, allowing the abstract macroscopic graph model to reflect some of the more

detailed nuance achievable in the microscopic free space simulation, without the

need for manual assignment of flow parameters.

With microscopic and macroscopic models coupled together, we can use the Flow

Graph as a predictive tool for estimating the likely outcome of microscopic simula-

tion prior to actually simulating it. As macroscopic graph models are abstract and

do not model the interaction of groups as effectively or realistically as free space,

social forces agent models, the simulation of interactions in microscopic context is

still required in order to achieve an accurate simulation. By analysing the simula-

tion world using the macroscopic graph, the near-future locations and participants

in these group interactions (which macroscopic simulation handles poorly) can be

identified ahead of time. By identifying these cases, we can determine which micro-

scopic agents will interact with each other in the near future of the simulation, and
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which are not likely to meet each-other, allowing for the high-detail, high-complexity

microscopic simulation to treat occupants that are predicted to meet separately to

occupants that are not predicted to ever collide in space. Through this analysis we

can significantly reduce the complexity of microscopic simulation by subdividing the

simulation world based on this orthogonal relationship in time and space.

1.4 Outline

The structure of this work is as follows:

in Chapter 2 we investigate the related work to micro- and macroscopic pedes-

trian simulation; we describe microscopic and macroscopic pedestrian models and

identify some examples of hierarchical and hybrid approaches that make use of com-

binations of these model types. We describe some real-world pedestrian experiments

and data, and approaches to geometry analysis that enable the translation of micro-

scopic representations to macroscopic models. We also describe evacuation planning

approaches that exploit macroscopic models for dynamic generation of evacuation

plans and some methods of sensing and actuation in buildings with networked sen-

sors and communication.

Chapter 3 details the microscopic agent movement model used by the EvacSim

Pedestrian Evacuation Simulator (Appendix A). We describe the parameters gov-

erning the agent movement moment-to-moment during simulation and evaluate the

accuracy of this model against real-world results from literature documenting the

characteristics of pedestrian movement through spaces.

Chapter 4 details the extraction of multiple levels of macroscopic graph detail from

the basic graph generated by EvacSim. Each graph detail level is appropriate for

different purposes; high density graphs with many nodes and edges allow for a great

deal of choice and control in planning for microscopic agents navigating space, while

sparse graphs with nodes representing large spaces are more suitable for macroscopic

flow-based planning. These graph details are arranged hierarchically, which allows

for paths and features in one graph level to be translated to others, allowing for

high-level macroscopic planning to be communicated to microscopic agents.

Chapter 5 describes the “coupling” approach in which the EvacSim microscopic

simulation is used to establish the parameters of the macroscopic high-level flow

graphs. By automated coupling of the graph to the free space simulation, it can be

used for prediction of microscopic simulation performance: the time taken for occu-

pants to traverse space can be predicted ahead of time. We investigate the predictive

capabilities of the graph when coupled to microscopic simulation, and investigate the

performance of a dynamic evacuation planner during simulated emergencies when

using coupled flow graphs and a variety of occupant densities and path allocation
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strategies.

In Chapter 6 we make use of coupled flow graphs as analytical tools to subdivide

simulation space and allow for scalable simulation of branching future states. By

analysing the graph, the future interactions (or lack thereof) of microscopic agents

is predicted and these predictions used to reduce the size of simulation instances.

We also describe a method of exploiting these future state simulations by generating

simulation “sensor fingerprints”, which, through real-time pattern matching, can be

used by networked sensors in the real building to identify which of many previously

simulated future states matches the best with their sensor perspective.
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2 Related Work

2.1 Introduction

In this Chapter, we describe the state of research in Emergency Management, Emer-

gency Simulation, Real-time simulation and Evacuation Planning. We describe ap-

proaches to feature detection for discovery of building topology, and the use of Topo-

logical and Flow graphs to represent the traversal characteristics of the building, the

foundation of the Macroscopic modelling approaches used in this research. We also

describe related Microscopic pedestrian simulation, and describe their relationship

to the model used the EvacSim simulation. Validation of this microscopic model in

Chapter 3 makes use of results from a number of real-world pedestrian movement

experiments performed by other researchers which are also described here.

We begin with some discussion on Building Evacuation in Smart Buildings. Build-

ings with sensors and computing capability motivate much of the real-time emer-

gency evacuation planning and simulation approaches described in this thesis. Fol-

lowing this, we describe some Building Models and approaches for analysing building

geometries to extract macroscopic features. For microscopic and macroscopic models

to augment each other, they need to model the same space. Using Feature Detection

algorithms, free-space building models can be converted to macroscopic graphs, and

we describe some approaches to feature detection in Section 2.3.1.

Macroscopic graphs can be used for emergency simulation and also for emergency

planning, and we discuss some releated work on this in Section 2.4. Macroscopic

planners produce dynamic evacuation plans for emergency situations that are re-

sponsive to the state of the emergency, and can be communicated to occupants

either directly (such as to smart phones or personal guidance) or through building

actuation (dynamic signposting) as part of the communication network of Smart

Buildings. Graph models are also useful for agent path planning, and we describe

some approaches to graph modification and planning in Section 2.4.2.

Following this we describe some related microscopic pedestrian simulation approaches.

Microscopic simulation allows for high-detail simulation of pedestrian movement and

this makes it well-suited to modelling emergency situations where the interaction

of individuals in space has a substantial bearing on the outcome on safety. A par-

ticular strength of agent-based approaches is that they allow for individual agent

behaviours, and we describe some behaviour and cognition approaches in Section

2.5.2.

From here, we describe approaches to simulation where different model detail levels

are combined: hierarchical models. By using different model details for different

parts of simulation problems, the computation resources can be focussed the most
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significant, interesting or dynamic parts of the simulation world.

Finally we describe real-world pedestrian movement data, which enables the vali-

dation of pedestrian motion models in Chapter 3 and give context to emergency

simulation with some examples of hazard modelling.

2.2 Sensing in Smart Buildings

Integration of networks in buildings allows for real-time monitoring of building state,

of particular interest in emergency situations is the monitoring of occupancy (loca-

tion of occupants) and hazard (identifying areas that are hazardous; fire, smoke

etc). Deployment of Sensors enables the collection of this monitoring data, and by

networking the sensors together the data can be collected at a central location and

exploited for monitoring and planning. Another important aspect of smart building

sensor networks is the facility for actuation; the communication of instructions to

network components such as dynamic signposting, or communication of guidance

directly to occupants using networks smart devices such a cellphones. A common

approach to the deployment of sensor networks in buildings is the use of a “Wireless

Sensor Network” or WSN; these networks are composed of multiple individual wire-

less nodes which are typically battery powered and deployed without the need for

wiring. These WSNs are particularly interesting for emergency situations as the lack

of wiring means they can be more robust to damage and by dynamically adjusting

routing tables and schedules they can adjust to loss of nodes due to damage and

maintain communication even with the loss of several nodes.

In recent years interest in tracking individuals using wireless sensor networks has

increased, much of this interest coming from the security industry, target tracking

with WSNs is potentially a valuable capability for security systems and location-

sensing is a critical component for future augmented-reality/pervasive computing

platforms. Target tracking can take the form of untagged tracking in which the

individual under surveillance does not carry any identifying item (via cameras, infra-

red sensors, pressure and movement sensing) or tracking of individuals who are

identified or tagged in some way (via passive or active RFID tags, mobile wireless

devices in real-time communication with the WSN, etc.).

Amin [9] developed a sensor pattern recognition approach that parallelises pattern

recognition by distributing the task among multiple sensor nodes, by treating the

networked nodes as a Neural Network. This approach allows for fast recognition

of patterns by combining several sensor readings and using a single-cycle learning

algorithm. This approach to sensing is similar to the pattern-matching strategy

employed in Section 6.3.

Goel et al.’s work on Predictive Monitoring (PREMON) [10] demonstrated the en-
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ergy savings possible when future sensor readings are predicted centrally, and they

show benefits of exploiting correlation between readings on different sensors while

minimizing work performed by the sensors. PREMON is motivated by the desire

to reduce the energy consumption of wireless nodes and utilises an MPEG-style en-

coding scheme which uses a global view of sensor reading history to predict the next

global set of sensor data. The predicted values are sent to sensors and the sensors

need only report back to the Base Station if the predicted values mismatch with the

real readings. This approach predicts future readings based on previous sensor read-

ings (as frames in an MPEG-style movie). However, PREMON generates only the

most a single likely future prediction. In scenarios with multiple tracking targets,

such as a building evacuation, there are many possible future events, and there is a

low possibility of being able to predict the true future event. Predicting the wrong

event, and thus actuating the wrong guidance, could have a serious negative effect.

The Dual Prediction-based Reporting (DPR) mechanism developed by Xu et al [11]

operates using duplicate predictive models running on the base station and on indi-

vidual sensor nodes as a basis for single-target tracking. Each node uses the model

to predict future sensor readings based on historical data. As the base station pos-

sesses duplicates of these predictive models, the sensors need only inform the BS

of their readings in the event that the predictive model failed to match with the

observed readings. The predictive model is based on linear-projection of previous

target positions and sensors share their historical readings with neighbours to fa-

cilitate the tracking of the target as they move from one sensor field into another.

DPR demonstrates significant energy savings over constant monitoring and PRE-

MON but suffers from the poor scalability of its predictive model. Tracking of large

numbers of individuals requires a large set of predictive models at each sensor node

to predict future positions of each individual. DPR also requires that the sensors

are capable of maintaining knowledge of the identity of individuals in the building:

the predictive model predicts future movement of an individual based on previous

known positions of that particular individual.

Pattem et al [12] demonstrated the energy benefits of using target position pre-

diction to schedule wakeup of tracking nodes. In this work, they utilised a basic

single-target tracking algorithm which predicts the targets future position as a lin-

ear projection of their observed path and movement speed. They present the results

of a series of simulations which demonstrate significant improvements in energy us-

age when prediction is used to wake up nodes, as compared to näıve activation (all

nodes awake) and random activation (nodes wake up according to a randomized

schedule). The reduction in tracking accuracy due to this predictive-wakeup strat-

egy is compared to näıve activation (which represents the best tracking possible as

all nodes are in tracking mode at all times) and the authors conclude that selective

activation based on prediction provides near-optimal tracking with substantial en-

9



ergy savings. As can be expected, the quality of target tracking is relative to the

quality of information regarding tracking node locations.

Souza et al [13] compared the performance of a single-target tracking algorithm

for WSNs in which the sensor location information was discovered using a beacon-

based localization algorithms. These localization algorithms require a small number

(<5%) of sensors with known location to act as beacons and the remaining sensors

resolve their location based on communication information with these beacons and

each other. The target tracking algorithms used were based on Kalman and Particle

filters. The authors present a series of experiments simulating different combinations

of localization and tracking algorithms, deployments densities and network scales.

They conclude that the tracking algorithms used in this work were unable to filter

out any error that may have been introduced in the localization algorithms and that

the combination of tracking and localization techniques is relatively unexplored and

further research may lead to improvements in both areas.

Balister et al [14] propose a WSN tracking network model called Trap Coverage

which allows for deployments with gaps in sensor coverage (holes) while maintaining

a guarantee that targets moving above a particular threshold distance are detected.

This model improves on prior full coverage models by reducing the total number

of sensors required for deterministic guarantees of detection over an area and the

authors conclude that deployments based on Trap Coverage rather than Full Cov-

erage would scale better than full coverage for large deployments. This approach

identifies critical areas in the tracking area that are sufficient to provide full tracking

coverage, while also identifying areas which do not need coverage as they do not aid

in distinguishing one event from another.

Sanli et al [15] developed a tracking strategy which attempts to maintain tracking of

multiple targets by maintaining an identity for each target and using probabilistic

models based on observed movement trails to preserve this identity when multiple

targets enter a common space (“mixing regions”) where tracking may be ambiguous.

By observing target movements over time, the tracking system learns the preferred

trails of individual targets, so that when multiple targets enter a mixing region

simultaneously, the system predicts that each target follows their usual preferred

trail. The authors present tracking experiment results involving 2–7 targets and 150–

350 tracking nodes comparing this with the Multiple Hypothesis Tracking algorithm

presented by Blackman [16], noting substantial improvements in energy usage and

tracking accuracy, particular as the number of targets under surveillance is increased.

Relation to this work

Building sensing and aggregation approaches allow for sensor learning, coverage

and duty scheduling that increase the capabilities of sensors beyond the sum of

their parts. However, learning and prediction is contingent on there being data
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to learn from and typical building sensing does not often have the opportunity to

observe building emergencies. Furthermore, local sensor aggregation and learning

approaches are at risk in emergencies, where fire or sensor energy death may result

in the loss of critical nodes in the sensor network or disconnection of the WSN from

central computational resource (“Base Stations”).

By implementing highly scalable multiple future state simulation, we can simulate

many different future states of building evacuation and extract simulated sensor fin-

gerprints from each of these. While the approaches to sensing discussed here exploit

the aggregation of sensor readings for learning or coverage, microscopic simulation

of future states could provide for models to match sensor readings with, or as the

basis for sensor wakeup cycles such as for [12] (where the sensor wakeup schedule

is based on the expectation of important events to sense). While individual sensor

capability may be limited, by associating the high detail of simulated scenarios with

the low complexity of basic sensor-level pattern matching, this enables real-time re-

sponse to relevent changes in the building evacuation even with very meagre sensor

capabilities, which we discuss in Section 6.3.

2.3 Building models

When considering emergencies in buildings, a model of the building is required.

While it is possible to produce bespoke modelling types, it is useful to consider the

existence of a variety of general-purpose building modelling options. Traditional

building blueprint-style models have evolved into complex 3-dimensional building

drawings created in 3D drawing tools such as ArchiCAD [17] or Revit [18], and it

is increasingly common that these models are available for public buildings or other

large facilities. An interesting development in recent years is the development of

the Industry Foundation Classes (IFC) [19] building modelling language; a markup

language for hierarchical description of building geometry and materials designed

to enable interoperability of different Building Information Modelling (BIM) tools.

With respect to Smart Buildings, IFC allows for the representation of building net-

work components within the building model itself, allowing for a single file format

to represent both the materials and geometry of a building and can be extended

to represent the building’s network components, actuation and sensing capabili-

ties. IFC can be dynamically updated throughout the life of the building, and can

provide a real-time perspective of the status of building Networks and can reflect

modifications to the network (such as replacement of nodes or modification of sen-

sor components). IFC definitions have been used as the basis for building energy

use simulation [20] [21] [19], and is a supported format for importation of building

geometries to the EvacSim Simulator used in this work (after conversion to XML,

described in Appendix A.2.6).
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2.3.1 Feature Detection

Binary Space Partition (BSP) is the recursive subdivision of space by dividing space

at convex corners to produce a hierarchical tree where leaf nodes are convex poly-

gons, a BSP Tree (Figure 1. BSP trees provide an efficient hierarchical representa-

tion but the space division can result in many irregular shapes that have little in

common with occupant utilisation of space.

Figure 1: Binary Space Partition and BSP Tree

Lerner [22] proposed an alternative to BSP called “Breaking the Walls”, an algorithm

that iteratively divides the space into discrete cells by walking along the surface of

three-dimensional walls in the world, jumping gaps if they exist and only ever turning

in one direction. When the walk arrives at a position it has already visited, the

enclosure generated can be saved as a new cell. Portals (the surface common to both

cells) are used to reduce the computational complexity of line-of-sight calculations,

for graphics rendering pruning problems. The portal serves as the basis for a viewing

frustrum from a camera in one cell to objects in adjacent cells, and objects lying in

those cells but outside of this frustrum can be culled (and not rendered).

Lerner’s approach is an efficient method of space subdivision, and if the layout

of obstacles is aligned to the horizontal and veritcal axes, produces results very

similar to that of the Rectangular subdivision used in EvacSim (Appendix A.2.4).

In the case of more irregular obstacle geometries, this approach achieves an orderly

subdivision but creates irregular polygon cells which makes localisation of objects

in the simulation world more difficult than using simple rectangles as spaces.

The “Watershed” approach proposed by Haumont et al [23] identifies rooms and

the intersections between them by simulating the rising level of water in a three-

dimensional gradient based on the position of physical obstacles (sloping upwards

from the centre of a room to the walls). By iteratively raising the level of water,
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large areas (at the bottom of the gradient) are flooded first, and eventually spill into

each other as the water rises, at which point an intersection has been discovered and

a gateway portal can be placed at the point of intersection. This approach tends

to divide space at doorways, allowing for irregular rooms to be represented by a

single object, but these irregular shapes are problematic for object localization; for

instance an L-shaped room would be composed of five vertices as a concave polygon,

rather than two distinct convex rectangular boxes.

Relation to this work

The microscopic simulator used in this work (EvacSim) supports IFC building defi-

nitions converted to XML, allowing for the support of a number of building model

types through a conversion toolchain (such as from ArchiCAD to Revit IFC file, and

from this to XML and finally to EvacSim building file). To divide space in a logical

manner, and produce topological graphs of building space, EvacSim uses a space

division method based on expansion of rectangles to identify room spaces, door-

ways and areas of adjacency between these spaces and doorways (Appendix A.2.4).

This approach was taken as it matches well the with the goals of EvacSim of low

computational overhead as rectangular spaces simplify the geospatial localisation of

objects in the simulation world.

2.4 Macroscopic Models

Macroscopic modelling of emergencies takes an abstracted perspective; macroscopic

approaches are highly scalable and algorithmic analysis of graph problems is the

foundation of a new class of dynamic evacuation planners which attempt to plan

evacuation routes for occupants in emergencies based on the dynamic state of emer-

gencies. Macroscopic graph-based models have also been used as the basis for macro-

scopic building evacuation simulators.

2.4.1 Macroscopic Emergency Simulation

In this work, we use topological graphs to model the traversability of building spaces,

and augment these graphs using flow parameters to produce Network Flow Graphs

which can be used for prediction and dynamic evacuation planning. Filippoupolitis

et al [24] [25] [26] make use of a directed network graph as a planning tool, and also

as a simulation approach in the design and evaluation of a safest-path evacuation

planner. By locating the hazard in the building, the set of edges in the graph are

directed so that they point away from the hazard and provide a shortest path away

from the hazard and minimise exposure. A limitation of this work is that the use of

a graph-based simulation as a validation for the planner which uses the same kind of

graph model fails to identify flaws in planning that arise from the difference between
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the model used and more realisitc pedestrian behaviour. In Chapter 5 we found that

using a more detailed, realistic simulation model to evaluate the performance of Flow

Graph-based prediction and planning identified a number of flaws with the graph-

based modelling approach which would not have been identified were these graph

models evaluated using graph-based simulation.

While Cellular Automata (CA) Section 2.5.1) is typically considered a microscopic

simulation approach, it has much in common with macroscopic coarse graph models:

graphs composed of dense grids of nodes each connected with up to 8 neighbours.

The weight of these edges is given by the amount of time taken to traverse the

distance, which overcomes the limitation of CA models in accurately representing

the different in traversal time between up/down movement and diagonal movement.

The coarse graph model is one of the approaches used in buildingExodus [27] and

is also a submodel in the hybrid simulation approach used by Chooramun [28].

2.4.2 Graphs and Path-Planning

Graph models (composed of Nodes connected by Edges) are macroscopic models that

can be created to represent the traversability of space. By creating a topological

graph representing this traversability, it is possible to algorithmically discover routes

(in terms of nodes visited, or edges traversed) between different points of the graph

(and thus discover routes between different parts of the simulation world). In 2.3.1

we look at some approaches to the creation of these graphs, and in Chapter 4 we

describe the approach used in EvacSim, which allows for the generation of multiple

graphs of different details to represent the traversability of building space. By

assigning capacity values to edges in typical topological graphs, we can extend the

model into a “Flow Graph” [29], which not only describes the traversability of space

(and the time taken to traverse it), but also represents the maximum number of

people that could traverse the edge simultaneously, capturing the limitations of

space when utilised by a number of occupants.

Richter [30] describes use of a hierarchical tree for representing the hierarchy of

building spaces; for instance an Office is part of a Department, which is part of

a Floor, which is part of a Building. The goal of this is to allow for high-level

route descriptions, for example: Turn right, enter Floor B2, then get over the stairs.

Pass Civil Engineering offices and turn left at the postgraduate lab to find Room

205. As part of the Hierarchical Level of Detail graph generation in Chapter 4, we

show the production of high-level graphs that amalgamate spaces between doorways,

allowing for the description of complex route (from higher-detail graphs) in terms

of the simpler structure of the high-level graph, as in Richter’s work.

Erikson [31] described an approach to simplifying 3D geometry to allow for varying
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levels of details (depending on distance from viewer in scene). While this approach

is used for 3D model simplification, Erikson’s vertex collapse approach to simplifi-

cation has similarities to the Loop- and Triangle-Removal approaches we adopt for

Topology Graph simplification described in Chapter 4. Vertex collapse is used to

merge vertices producing progressively simpler models, merging nodes that are near

together in space and hence have a relatively low impact on the overall quality of

the model. The merged nodes can be associated with parent nodes in a balanced

Edge Heap, producing a hierarchy of detail levels for a single 3D object. When view-

ing large objects, the nearer parts of the models go deeper down the tree, showing

more vertices allowing a dynamic scene complexity depending on the position of the

viewer.

For individual planning problems, the major class of relevant algorithms are weighted

graph Shortest-Path algorithms. These algorithms find paths through weighted

graphs from one node to another and attempt to minimise the total distance (sum

of edge weights) of the path found. When used for path planning in two-dimensional

space, graph nodes are associated with positions in the space, and the edge weights

represent the cost of traversal between two nodes (typically the distance between

the nodes), Some algorithms make use of heuristics to reduce the search space,

typically using straight-line distance between node positions to direct the search

in the approximate direction of the goal, and this is the approach for individual

agent path-planning used in this research. We also highlight here some probabilistic

planning approaches and algorithms that are well-suited to partial replanning in

response to changes in environment (such as addition or removal of graph nodes or

edges).

Dijkstra’s Algorithm [7] is the classic shortest-path discovery algorithm, which op-

erates by iteratively exploring the graph from the starting node and noting the

shortest path to each node as it is discovered. As Dijkstra’s algorithm continues the

exploration from the shortest path so far plus the shortest next edge, it guarantees

that it will find the shortest path provided that there are no negative weight edges.

A* is a common approach to shortest-path discovery that greatly improves com-

putation time compared to Dijkstra’s Algorithm by the use of heuristics to direct

the exploration. By combining the path length value with a heuristic (typically the

straight-line distance from a node to the target), the exploration of nodes can be di-

rected in the approximate direction of the goal and this typically achieves substantial

savings in computation time for problems where an admissible heuristic exists. A*

is the algorithm used for general agent path planning in this work, with straight-line

distance acting as the heuristic and computed based on cartesian distance between

the centrepoint coordinates of nodes.

Sud et al [32] give a survey of their work on path planning in real-time in simulations
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of multi-agent systems. They approach multi-agent crowd simulation as an appli-

cation in computer game crowd simulation and other virtual environments such as

avatar-based social networks. With this approach in mind, they are focused more on

pleasing or realistic appearance for users of such virtual reality environments rather

than a close correspondence to real life crowd scenarios. An important element of

crowd simulation in videogames is that navigation and planning calculations need to

be performed in real time so as not to impact on the performance of the game (i.e.

to avoid unpleasant slowdown by maintaining a high update rate). They present an

approach to reducing path planning computation time by sharing a navigation graph

among all agents (Multi-agent navigation graph) and state that this approach can

support path planning for several hundred agents in real time. They also present a

technique for reducing complexity by supporting varying levels of detail (pedestrian

level of detail) which allow accelerated simulation by clustering agents together and

performing calculations using this cluster.

2.4.3 Dynamic Evacuation Planning and Guidance

Development of building sensor networks has resulted in the rise of planning algo-

rithms that are called at the time of emergency and account for the current state of

the building, which are termed “Dynamic Evacuation Planners” as they plan based

on the currently observed state of the building rather than using a fixed model.

Unlike static building evacuation plans, these planners exploit sensor data giving

the occupancy state of buildings or the location of building hazards like fire and

smoke to produce evacuation strategies specific to the particulars of each particular

emergency. While traditional pre-defined building evacuation plans (as are used in

many large public buildings) are designed to achieve clearance of buildings in a short

time, they lack any facility to respond to the different state of the building during

emergency. Predefined plans may route occupants through areas that are on fire or

smoky, and do not account for the location of the occupants. Without considering

the occupancy of space, these plans could result in an excessive amount of time

taken to clear the building if an unexpected number of occupants are instructed to

use a relatively narrow, low-capacity space, resulting in congestion and potential

delays or injuries.

Dynamic evacuation planners account for the location of the hazard, or occupants

(or both) and produce evacuation plans that attempt to minimize exposure to haz-

ards while also minimizing the time taken for full evacuation of the building. The

intent of these planners is to communicate the dynamically generated plans to the

occupants, though this area of research has been largely theoretical and the task of

communication of plans to occupants is not generally considered.

The Graph-based Real-Time emergency evacuation planner developed by Hadzic [33]

16



is implemented as the EvacPlan planning module used in Chapter 5. This algorithm

plans evacuation routes using a flow graph (a topological graph of the building with

restricted flow capacity parameters on graph edges). With building occupancy state

(as “supply” on nodes) and the known location of hazards, this planner computes

evacuation routes for occupants while considering the limited capacity of building

space (as capacity of edges). By considering both the traversal time of graph edges,

and their limited capacity, this planner is “congestion aware” and uses heuristics

(based on exposure to danger and the length of the path) and to produce evacuation

routes that clear the building quickly by distributing the pedestrian traffic across

multiple routes. The planner computes very quickly, and is compared favourably

with the CCRP [34] heuristic flow-based planner on evacuation time and safety

metrics.

Filippoupolitis’ [24]and Tabirca’s [35] planners were also developed with sensor net-

works in mind. These approaches both consider evacuation based on the criteria

of safety and distance from danger. Unlike Flow-based planners, these approaches

are based on graph directed edges, and while they are dynamically responsive to

hazard location, do not make consideration of crowd congestion. While they trans-

late well to some forms of emergency guidance (directed edges can be expressed

easily through actuated signposts, for example), they do not consider the volume

of pedestrian traffic being directed through areas of the building and the delays of

injuries this may cause.

For occupants to receive and obey evacuation plans, the plans need to be communi-

cated somehow. Chih-Yung Chen [36] described fuzzy planning for the actuation of

dynamic signposting in emergencies. These signposts feature directed arrows which

can be lit up to point in the direction crowds should travel. Ferscha et al. [37] de-

scribed the “Lifebelt”, a haptic-feedback belt to be worn by occupants which vibrates

to direct the wearer in the direction they need to travel, and developed a cognitive

agent model [38] which models behaviour of occupants that use the Lifebelt. The

belt is worn around the waist and features a set of vibrating panels. These agents

are modelled as Cellular Automata (Section 2.5.1) and feature information sharing

capabilities and behaviour based on an “emotional state”, with agents experiencing

panic behaving differently to calm agents.

Chittaro’s [39] approach to communication of routes is to present the user with a 3D

arrow and map, sent to a portable device, in a manner similar to 3D GPS maps for

vehicles. The 3D guidance “snaps” to the direction the occupant is facing, presenting

a graphical representation of the space the occupant inhabits on a screen. Occupants

are tracked using active RFID tagging of building space, and given that the guidance

is provided via a portable smart device with RFID capability, this allows for real-time

localisation of the occupant without centralised tracking or monitoring (provided
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that the device possesses a map of the building space and tags).

Relation to this work

Dynamic Evacuation Planning using macroscopic graphs is in part, contingent on

the quality of the graph models. In Chapter 5 we algorithmically generate flow

graph parameters for use in dynamic evacuation planning, allowing the computa-

tionally simple flow graphs to reflect some of the higher detail of pedestrian motion

in building spaces that would be difficult to capture through manual flow parameter-

isation. We investigate evacuation plan allocation strategies for the communication

of macroscopic graph routes to microscopic pedestrian agents, and identify some lim-

itations of dynamic evacuation planning when guidance instrumentation is limited.

The challenges of communication of personalised evacuation routes to occupants and

the uncertainty of their following them as the planners expect motivates the goal of

scalable microscopic simulation to produce feedback support to planners. By simu-

lating evacuations in faster-than-real-time, the microscopic simulation is capable of

informing planners about flaws in their planning strategies within a time-frame that

would allow for replanning to compensate. Additionally, by simulating many future

states that the evacuation could end up in, ahead of time, we can compute contin-

gency evacuation plans before the contingency occurs, and make these available to

building actuation and sensing infrastructure (Section 6.3).

2.5 Microscopic Pedestrian Simulation

Multi-agent real-time simulations of populations of individuals have been developed

in recent years as a tool for simulating crowds in a variety of scenarios as a tool

to simulate emergency evacuations, recreate historical settings, automate character

behaviour in entertainment (movies, videogames) or evaluate emergency response

procedures or building architecture. Current research investigates a wide variety of

modelling schemes to represent buildings and occupants, with the great majority

of this research involving two-dimensional floor plans rather than potentially more

complex 3-dimensional models. The agents in the simulations may have varying

models of behaviour governing their actions such as planning algorithms or finite

state machines, Tavars and Galea [40] note that there exist over 40 evacuation models

with different building models and occupant characteristics and that evacuation

simulations using multi-agent systems are a valuable complement to mathematical

models of building egress, providing a greater degree of accuracy in scenarios where

large crowds and congestion can occur.
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2.5.1 Microscopic Agent Models

The typical approach to Microscopic pedestrian simulation is to model occupants

as particles in two-dimensional free space, and to treat the relationship between

the occupants and the simulation world as a system of forces acting on the agents.

Helbing [41] introduced the Social Forces approach to agent modelling, a system of

equations periodically updated which adjust the agent position in free space based on

the agents desired movement, proximity to obstacles and with other agents. These

forces include the desire to maintain personal space around agents, intent to travel

to a particular destination, inertia, rate of deceleration and so on. The Social Forces

approach has contributed to the development of a variety of microscopic pedestrian

simulations, and forms the basis of the agent model used in EvacSim.

Wagoum et. al [42] demonstrated a microscopic simulation subdivided into discrete

sub-simulations in order to distribute simulation tasks among parallel computation

resources. By dividing the space in a large soccer stadium based on gateway or portal

areas (bottleneck areas that experience simple, unidirectional flows of traffic), the

overhead of communication between computation nodes is minimized. Limitations of

this approach are that the space between these gateway areas must still be simulated

as a single instance (i.e. large common areas cannot be subdivided), and in this work

the transfer of occupants from one simulated area to another is ignored (instead, an

estimated rate of transfer is used to generate new occupants at the gateways, rather

than transferring existing occupants from one instance to another).

Sharma’s model [43] combined Social Forces with fuzzy emotional reasoning for

agents, an approach that enables evaluation of evacuation based on the impact

on the emotional state of the occupants; allowing for the modelling of stress and

panic in response to evacuation events such as exposure to smoke and overcrowding.

Agent observations of the environment are used as input for the emotional reasoning,

with increased exposure to stressful events resulting in an increase in stress-induced

behaviour.

Tavars and Galea [40] present an approach to building evacuation analysis combining

occupant simulation (with basic behaviour) with numerical optimisation techniques.

The authors conducted an experiment in which the location of a doorway in a simple

building geometry was adjusted between iterations of the evacuation simulation and

the average evacuation time for a population of 200 agents was recorded for each

iteration. The position of the doorway is adjust using a conjugate gradient algorithm

(Fletcher-Reeves method [44]) to optimise for evacuation speed.

The buildingExodus [27] simulation suite is an ongoing research project designed to

simulate pedestrian behaviour in emergencies. buildingExodus implements a Social

Forces model for pedestrian model along with a number of macroscopic models (in-
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cluding coarse and fine graph models) and the parallelisation of the simulation space

is described in Yasmina Mohedeen’s doctoral thesis [45], in which a combination of

geospatial indexing and graph analysis is used to divide the simulation space in a

manner that balances the simulation load of each subdivision.

The “flocking” approach to agent modelling described by Reynolds [46] was an inspi-

ration for some of the techniques used in the EvacSim agent model described in this

thesis, such as “stream formation” (Section 3.7). Flocking delegates responsibility

for agent movement to the individual agents, which then observe the positions of

the other agents around them and use these to modify their positions, with emer-

gent crowd movement arising naturally as a result. The main benefit of flocking

approaches is that they allow for individual agent rulesets to dictate movement as

distributed, heterogeneous behaviour rather than global-level rulesets like Cellular-

Automata (Section 2.5.1) or Graph Models (Section 2.4).

Olfati-Saber [47] presented a framework for designing and evaluating crowd-simulation

using a distributed flocking algorithm. The author identifies shortcomings of prior

flocking algorithms which make assumptions that lead to undesirable features such as

a fragmentation or flock collapse, and lack distributed migration ability for crowds,

and seeks to overcome these shortcomings with a distributed flocking algorithm. An

interesting contribution from Olfati’s research is the description of a peer-to-peer

(local agents as peers) distributed obstacle avoidance scheme by modelling obstacles

as a special case of flocking agent (β agents). This flocking strategy is evaluated

based on the degree of fragmentation of flocks (based on deviation of a triangu-

lar/polyhedral lattice of agents) when manoeuvring around obstacles.

Figure 2: Flocking agents forming an α-lattice

The author also described an extension to flocking which allows for collective plan-

ning, through the creation of γ -agents (where individuals are termed α agents,

and physical obstacles are termed β-agents). γ-agents are generated when groups
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of α-agents are adjacent forming cohesive groups (forming an α-lattice, Figure 2).

The members of this α-lattice can be grouped together and γ-agents generatted to

govern the decision-making process of the crowd as a whole.

Cellular Automata (CA) is a common alternative to social forces/flocking-style ap-

proaches, that simplifies agent movement by modelling the simulation world as a

network of “cells” with agents occupying these cells and a set of rules governing

the movement of occupants between these cells. This approach is relatively simple

in computational terms, as it models movement from cell-to-cell in a discrete grid,

with simple rules such as “no more than one occupant per cell” and “movement only

allowed between adjacent cells” dictating possible movement. While CA is simple to

implement and compute, it is also significantly more abstract than free space social

force models and are of limited utility as models for investigating congestion. Ex-

amples of Cellular Automata Pedestrian Evacuation simulation include Borrmann,

Kneidl et al [48], Schadschneider et al [49], Klüpfel [50] and Ji et al [51].

One shortcoming of CA models are that they poorly model the time taken to tra-

verse space, as the distance covered by agents is limited by the angles allowed. For

example, in a square grid world with diagonal movement, the agents can actually

travel more quickly if they do so at 45 degree angles, as these moves cover
√

2i

where i is the distance between ajacent cells. If diagonal movement is not allowed,

they are forced to perform Manhattan-style movement which overestimates the time

taken). By using hexagonal cells instead of squares, this can be mitigated somewhat,

though it remains an issue of scale. A further issue, when modelling congestion, is

that densely packed crowds of agents cannot move as a unit, but the agents at the

leading edge can move forwards into the free space, with the agents behind waiting

until the next world update until they have a free space to enter (with the free space

propagating backwards through the group. CA also scales poorly with world size;

as it requires a cell tiling that covers all of the simulation world (though hybrid

simulation such as Chooramun [28] can alleviate this somewhat by replacing less

significant areas of the world with graph models).

As CA splits the world into a fine grid of cells, a common approach to path planning

is to layer the grid with a “potential field”; this field labels cells with values that rep-

resent their distance from exits, or between landmarks that should be visited. The

potential field acts as a gradient, with agents moving “downhill” from their current

position to adjacent cells with lower values, until they reach the exits. Examples of

the potential fields approach to CA directed movement include Kneidl [48], Geor-

goudas et al [52], Zhang et al [53]. The major limitation of CA with potential fields

is that planning occurs at the global level as all agents make use of the same field,

and it does not allow for individual agent planning.
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2.5.2 Agent behaviour and cognition

Modelling occupant response beyond basic flocking has been investigated in recent

years, one such effort on providing emotional response capability to agents is de-

tailed in Sharma’s PhD thesis [43] which presents a behaviour model for evacuation

scenarios incorporating fuzzy logic techniques to regulate agent emotional behaviour

(stress, panic). The author proposes that the implemented multi-agent simulation

(with grouping behaviour and collision avoidance) incorporating this emotional be-

haviour control mechanism is a useful tool for evaluating building layouts and struc-

tures for evacuation scenarios. The thesis concludes that room exit RFID scanning is

a suitable mechanism for tracking building egress, and validates the implementation

of these simulation techniques by comparing with a record of a fire drill performed

at Wayne State University.

Pelechano et al’s [54] [55] reviews of crowd simulation models and evacuation simula-

tion tools note the limitations of these simulations and emphasising the importance

of simulating human psychological/physiological characteristics. They note that

individual evacuation behaviour may depend on their knowledge of the building lay-

out, and individuals tend to evacuate via familiar exits rather than via emergency

exits which are not generally used as exits in non-emergency scenarios. They expand

on the established flocking models by introducing “leader” agents [56], using their

simulation to evaluate the impact evacuation leaders and inter-agent communication

might have on evacuation times.

Korhonen et al [57] also incorporated individual psychological and physiological

behaviours into their Fire Dynamics Simulator evacuation module (FDS-Evac, [58]),

introducing modelling of agent panic behaviour and the interaction between agent

simulation and fire simulation. Grouping behaviour is also incorporated, with agents

forming crowds which move together along the same path to escape. They present

the results of a series of experiments to discover the average flow (throughput of

agents) through spaces in the building (doors, corridors) when the social parameters

of agents are changed (such as changing how eager agents are to push the agent in

front of them, how much personal space they attempt to maintain and so on). The

authors conclude that a specific set of parameter values (default values) provided a

close correspondence to standard evacuation calculations in fire safety guidelines, but

also note that their model should be expanded to include more realistic behaviours

such as herding behaviour (the tendency for agents to follow each other). Heliovara

et al [59] explored the different personalities in evacuation, characterising occupants

as patient or impatient, with behaviour governed by a game theory model and

implemented through the FDS-Evac [58] simulator. The crowd contraflow behaviour

of the FDS-Evac model was validated [60] through comparison with real-world data

using a similar approach to what we use in Chapter 3 in this work.
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Niederberger [61] presented a Doctoral thesis on multi-agent simulation for video

games, describing how to improve a game characters behaviour by implementing

decision algorithms in the simulation. The author describes existing models for

such simulations notes that game character behaviour in games is generally heavily

scripted and lack dynamic response to events. The aim of the presented research

was to improve on these models: the appearance of agents in the game should

be coherent and remain appealing and hence computation time should be low and

distributed such that multiple agents behave in a realistic and appealing manner

without impeding the performance of the game. Agents are modelled as a composite

of a number of low-complexity components (governing path planning, movement,

reactive and proactive behaviour routines, sensory processing etc.) The author

presents the agent models as an improvement on prior models as they have support

for more sophisticated behaviour but without significant additional computational

complexity.

Relation to this work

A huge variety of microscopic pedestrian simulation models exist, many of which

make use of flocking and social forces approaches to pedestrian modelling to achieve

realistic movement simulation. The EvacSim simulator used in this work makes use

of these approaches but by using a reduced complexity social forces approach the

complexity of the motion model is kept low with a much reduced set of parameters

compared to alternatives, allowing for high-speed simulation without sacrificing mo-

tion fidelity. The validity of this reduced complexity approach is demonstrated in

Chapter 3, where we compare the EvacSim motion model with real world pedestrian

movement observation experiments.

Many multi-agent microscopic models have been developed that incorporate rich

and substantial individual behaviours into agents, a particular strength of multi-

agent modelling as it enables the simulation of heterogeneous groups of agents in

a common simulation world. Development of psychological and behavioural models

in agents is an interesting and evolving field, though the difficulty of validating

agent cognitive behaviour with real world data limits the current application of

these approaches for the real-time simulation for planning support and response

for which EvacSim was developed. In Chapter 6 we detail the decomposition of

simulation space into multiple future states based on agent groups sharing evacuation

route information, more complex information sharing could be incorporated into this

approach to simulate branching agent decision states in future work.
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2.6 Hierarchical Microscopic and Macroscopic Models

Micro- and Macroscopic models both have their strengths. In particular, macro-

scopic models are highly scalable, while microscopic models achieve finer detail. In

some applications,multiple levels of simulation types have been combined within a

larger “hierarchical” simulation model. In these cases, higher detail models can be

used for simulation of parts of the simulation world where high detail is required,

while the lower-detail abstract macroscopic models can be used for areas which are

either simple in both model types (such as a straight roadway) or are not as relevant

for the simulation (such as space outside of a viewing area or currently unoccupied

parts of a building).

Nagel [62] describes a multi-layer building graph where differing navigation and

localization restrictions lead to different graph features; for example, a Wheelchair

layer of the graph lacks traversable edges on stairways, while the pedestrian layer

allows for edges in those areas. Occupants at a given position in the building are

simultaneously present in a room on the topology graph as well as within coverage

nodes in the various sensor graphs.

Navarro, Corruble et al [63] [64] use dynamic Level of Detail (LOD) for simulating

crowds. The LOD is based on crowd aggregation: agents are aggregated based on

the combination of physical distance and psychological distance, grouping agents

based on common goals, emotional states and location. Combining these produces

an aggregate utility which forms the basis of an aggregation graph. All edges above

a certain length are removed leaving several subgraphs, the members of which are

aggregated into crowds. The dynamic aggregation approach is similar to the Group

Agent approach we consider in preliminary form in Chapter 7 (and is similar to the

γ-agent approach proposed by Olfati-Saber [47] , with expanded grouping criteria

to incorporate more than just distance as a grouping measure). By aggregating

individuals into groups, the complexity of simulation space is much lower and in

this work they found substantial simulation time gains with limited loss of accuracy

relative to using un-aggregated agents.

Paris [65] et al describe a hybrid collision avoidance model for pedestrian movement

combining Fuzzy Steering and Geometric Steering. The application is a 3D Virtual

Dublin simulation and the goal is realistic appearance and scalability to achieve large

crowds. Using a fuzzy logic selection mechanism, a Level of Detail is selected that

balances appearance with complexity. Agents plan routes on a graph derived from

Delaunay’s Triangulation of the space in Dublin streets, which produces jagged back-

and-forth routes which are then converted into more realistic shortest-route paths.

This work uses three detail levels:

LOD choice is based on distance and angle from camera with fuzzy logic used to

24



determine the appropriate LOD; the goal is a realistic appearance rather than re-

alistic simulation. Performance evaluation experiments showed real time-capable

simulation for up to 4000 agents, provided that only several hundred agents make

use of the high detail level

Kneidl et al [48] [66] introduced an approach to modelling in which two different

simulation models are “coupled”, an approach that is also used in this work in

Chapter 5. Using a microscopic Cellular Automata model, the parameters of a

macroscopic flow graph-based model are established to match the results of agent

movement in the microscopic simulation. The graph model is derived from the CA

model by generating nodes at cells near convex corners of obstacles and connecting

these to each other using edges. The capacity of graph edges and the traversal time

for these edges is discovered by determining how many CA agents could traverse the

space represented by those edges, which is achieved through a control loop which

generates occupants at the start of the path in the CA model and instructs them to

travel the route. The rate of successful traversal of the route is noted and the loop

is repeated with a new introduction rate (higher or lower depending on the achieved

results). After several passes through this control loop, the rate of introduction and

traversal stabilize and the traversal time and flow rates are established as graph

parameters for the given route, reflecting in the Macroscopic model the movement

characteristics of agents in the Microscopic model. Our work in Chapter 5 adopts

this approach but using a more detailed multi-agent free space social forces model as

the microscopic model, and using graphs derived from building geometry and graph

simplification methods (described in Chapter 4).

Sung et al [67] approached Hierarchical modelling as a method to improve the perfor-

mance of a city-based vehicular traffic simulation. Simulation complexity is reduced

by modelling the area within a field of view using a high-detailed model of vehicular

trafffic movement within the view and using a macroscopic graph approach for the

simulation area outside of the view. Cell-and-portal division is used to determine

visible scenes and vehicle traffic within this visible scene is modelled using a mi-

croscopic vehicle agent model. The area outside scene uses a graph event model

to determine travel times for vehicles outside of the scene (with units of traffic

traversing the graph until their re-entry) so they re-enter the accurate model at the

appropriate time and place (i.e. when returning to user view area). By adopting this

approach, the authors show computation time savings relative to using microscopic

models for the entirety of the simulation world, and show that use of the event-

driven macroscopic model for areas outside of the visible scene does not impact on

accuracy.

Chooramun [28] described an approach to pedestrian evacuation modelling in which

different parts of the building make use of different simulation methods; by dividing
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space into coarse graphs, sparse graphs (nodes represent rooms and are connected

to adjacted room nodes with edges) and free space microscopic models. By using

simpler models for sparsely populated areas of the building, and more detailed mi-

croscopic models for the more significant areas (such as junctions or near exits), the

complexity of the simulation world can be adjusted to achieve greater detail where

it is most of use, while sacrificing detail in areas where the detail is unnecessary.

Anh et al [68] describe scalable simulation of pedestrian movement on road networks

by combining microscopic- and macroscopic simulation detail. In the macroscopic

portion of the simulation, the road network is modelled as a directed graph. In the

microscopic portion, pedestrians are modelled as agents in free space simulation.

The hybrid model uses the microscopic model at junctions of edges and macroscopic

model for the middle of the edges. This approach allows for a simple model in areas

where the pedestrian movement is orderly and predictable, with more computation

effort dedicated to the key area of road intersection where crowd interactions are

most likely. Transitioning from one model to the other is based on dematerializa-

tion/rematerialization of agents (converting micro agent into flow unit for the graph

and vice versa).

Relation to this work

In these hierarchical modelling approaches, the detail of different elements of the

simulation space are dynamically adjusted to allow for lower-detail simulation of

less significant areas of the simulation world. These approaches achieve reduced

computational complexity for microscopic simulation by dynamically adjusting the

fidelity of simulation, or use macroscopic models as interrim replacements for micro-

scopic simulation in areas where the simulation is more predictable, less interesting

or not currently in view. In Chapter 5 we adopt Kneidl’s [48] [66] micro-macro cou-

pling but using higher fidelity, multi-agent social forces simulation rather than CA

modelling. With the graph coupled to multi-agent simulation, the two model types

are a partnership rather than a hierarchy. The macroscopic model makes use of the

microscopic model to provide realistic flow parameters to improve the models accu-

racy, while the microscopic model exploits the reasoning powers of the macroscopic

model to achieve scalable simulation of future states.

2.7 Pedestrian Movement Data

To achieve realistic pedestrian simulation we need to consider the movement be-

haviour of real pedestrians, and the quality of pedestrian models needs to be vali-

dated against real world pedestrian data to ensure its accuracy. A variety of real-

world experiments have been performed over the years investigating the movement

characteristics of pedestrians in a variety of scenarios, generally characterising move-
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ment in terms of a “fundamental graph” (plotting the relationship between crowd

density and rate of movement, or “flow”), or in terms of the rate of traversal through

bottlenecks of various widths. Due to the logistical and ethical difficulty involved

in collection of data from genuine emergencies, the availability of data describing

the behaviour of pedestrians in various real-world emergencies is low, though some

examples exist through video analysis [69] and post-emergency questionnaire sur-

vey [70].

Validation of pedestrian simulation models in this work (Chapter 3) is performed

through comparison with real-world experiments involving crowds in bottlenecks and

in T-junctions. The bottleneck experiments used for validation are: Seyfried [71],

Kretz [72], Muller [73] and Nagai [74]. The movement of crowds through T-junctions

is compared against the work of Zhang [1] [2]. The general setup of these real-world

experiments is to create a door or corridor with a particular width (e.g. 1.5 metres)

and monitor the traversal of pedestrian participants through the space (after which

they loop around and begin again.

Data is collected (either by observation, or by algorithmic analysis of video data to

extract density and velocity data) to determine the rate of travel possible for the

given width. These experiments then vary the width of the door or corridor and this

achieves a range of traversal rates (”flow”) corresponding to the varying bottleneck

widths. Zhang et al’s experiments [1] [2] investigated crowd behaviour in a fixed-

width T-junction. In these experiments, pedestrians arrive from two branches of

a T-junction and merge to form a single stream moving forwards (Figure 3). The

data collected in this experiment shows the relationships between crowd density

and the velocity at sampling points before and after the merging. This work was

used to further validate the EvacSim agent model (Chapter 3) and motivated some

adjustments to the agent model in order to achieve similar results.

Figure 3: Zhang [1] T-junction real-world pedestrian experiment

While data on real emergencies in the sort of detail possible in experiments is ex-

tremely rare, post-disaster case studies do exist. Fischer’s case study [75] on the

Ephrata evacuation provides useful insight on the attitudes of individuals in emer-
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gencies, investigating why different people behave quite differently in these kinds

of events. A similar study was performed by Sekizawa [76], investigating the be-

haviour of occupants of High-rise apartments in Hiroshima during the apartment

fires of 1996. Helbing et al [69] analysed video of the Hajj stampede disaster in

2006, leading to a series of recommendations which have been implemented to mod-

ify the infrastructure at Mecca.

Relation to this work

In Chapter 3 we describe in detail the pedestrian movement model used in Evac-

Sim, and validate this model by comparison with a variety of real-world pedestrian

movement experiments. The availability of real-world pedestrian movement data

is of great benefit in validation of pedestrian simulation models. While most of

this real-world data deals with movement through bottlenecks, Zhang et al [1] [2]

dealt with the case of crowd merging at junctions, an important consideration for

modelling of crowds during evacuation.

2.8 Hazard modelling

The goals in hazard modelling vary by application; some fire simulations can be

extremely computationally intensive, requiring distributed supercomputers and long

computation timeframes, with detailed material models, and are well-suited to post-

event forensic analysis or detailed risk assessment. Other fire and smoke simulation

approaches are approximate, computing in close to real-time but require constant

adjustment to match up with real observations. We present here some releated work

in hazard modelling for contextual purposes, in future work we will consider the

integration of more detailed hazard models with the EvacSim simulation platform.

Chu et al [77] presented a dynamic risk analysis approach that maps the risk to

occupant in the building based on sensor reading during emergency. By combining

oxygen levels, presence of toxic gases and temperature, a map of occupant risk can

be produced for the building.

Himoto [78] and Bukowski [79] model fire spread as the transference of heat from

areas on fire to adjacent areas (such as rooms or nearby buildings), modelling in

detail the physical transference of heat, fire flumes and radiated heat in highly

complex simulations incorporating physical material properties.

The Fire Dynamics Simulator (FDS) + Smokeview [80] is a Computational Fluid

Dynamics-based fire simulation model which simulates fire and smoke spread as fluid

dynamic problems. FDS can take converted CAD drawings of buildings as input

and simulate the slow of fire and smoke in building spaces.

Koo et al [81] developed a fire modelling approach which dynamically adjust model
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parameters in response to sensor reading updates during emergency. While this

model is less detailed than complex fire simulations such as Computational Fluid

Dynamic approaches, it can be computed in real time during emergency and used

as a predictive support tool. By reacting to real sensor readings, the model can be

adjusted to match more closely with the actual fire spread and over time the sim-

ulation accuracy is improved through these adjustments. This approach to hazard

simulation is good fit for the realtime simulation decision support approach as it

allow for hazard spread to be modelled in step with the actual emergency and pro-

vide some measure of near-future high-level prediction, which while less accurate,

responds to the evolution of the emergency state.

2.9 Conclusions

Simulation and planning in emergencies is an evolving field, the explosion of sim-

ulation models in recent years reflects the variety of competing requirements for

different applications in evacuation modelling and the different strengths of micro-

and macroscopic models. Simulations making use of complex social force, multi-

agent models have realistic pedestrian motion. While computationally intensive,

existing work has achieved performance gains by organising simulations hierarchi-

cally and reducing the fidelity of less critical parts of simulation environments or

aggregating agent behaviour at the group level.

Coupling of microscopic simulation with macroscopic flow graph models allows for

automated configuration of flow parameters, improving the realism of flow models

without increasing their complexity. Coupled flow graphs can be used by dynamic

evacuation planners to compute evacuation plans based on the dynamic state of

a building in emergency, and by using microscopic simulation we can evaluate the

performance of planners in simulated emergencies with a variety of plan allocation

strategies and identify issues that would not be apparent through macroscopic sim-

ulation.

A further opportunity is the use of macroscopic flow graphs for simulation decom-

position. Existing approaches to simulation scalability decompose the problem ge-

ometrically, separating occupants based on their physical location and simulating

them separately. By analysing the flow graph of buildings, we can separate the

occupants based on both their physical location, and their future positions, based

on their estimated traversal times through spaces in the building.
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3 Details and Validation of the Microscopic Agent

Movement Model

3.1 Introduction

Central to the utility of microscopic pedestrian simulation is the quality of the agent

movement model. While planning behaviour, sensing and communication have an

important bearing on the activity of occupant agents, this is of little use if the

fundamental motion of agents is unrealistic. In this chapter we expand on the

features of the EvacSim pedestrian agent (described in Appendix A.3.2) describing

the parameters governing agent motion allowing for agents to move towards arbitrary

goals while avoiding collisions with other agents or obstacles. The agent motion

model is kept simple to keep the computational complexity low but features the

basic requirements for agent motion. This simple model is then validated against

real-world pedestrian movement data to demonstrate that this simple motion model

provides a high level of realism.

To validate the agent model, we perform experiments to evaluate the model in terms

of the pedestrian throughput in various bottleneck widths and compare these results

with real-world pedestrian experiments from the literature, demonstrating a close

correspondence between EvacSim pedestrian movement and real behaviour. We

also investigate the behaviour of crowds merging in building evacuation, comparing

EvacSim’s model with real-world T-junction results and we show how modification

to the braking behaviour of the agents improves the model realism.

3.2 Requirements

Simulation of evacuation requires an occupant model that accurately reflects the

behaviour and movement of building occupants in order to properly reproduce key

evacuation metrics such as congestion data and evacuation time. Agent motion is

governed by a combination of personal space preservation, obstacle and collision

avoidance (as described by Helbing [41]), and should reproduce the queuing and

congestion phenomena which limit pedestrian traversal of spaces. Realistic agent

motion and use of space is a requirement for building and planner evaluation, and

is central to the utility of micro-macro flow coupling described in Chapter 5.

In application scenarios involving real-time response systems such as dynamic evac-

uation planning, there is a strong requirement for efficient, faster-than-realtime sim-

ulation to produce predictive results to assist decision making. This requirement

necessitates a balance of realism and computational simplicity in order to provide

useful simulation results under the time constraints. In multi-agent simulation, the
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overall complexity of the simulation is a product of the individual complexity of

constituent agents. To achieve a balance of speed and realism, complexity is kept

low by performing relatively simple atomic actions repeatedly over time. For ex-

ample, rather than re-computing agent positions to maximize agent personal space

in each tick of simulation time, our agents make a series of small positional adjust-

ments over the course of multiple ticks, with stable positioning arising naturally as

a consequence.

3.3 Model Details

In Appendix A we describe how EvacSim models the world in two-dimensional free

space, representing distance in simulation “units”. Time is represented as simu-

lation “ticks”; in each tick of the simulation, each simulation element (occupant

agents, sensors etc) is updated according to its function or behaviour. Agents are

represented in the world by 10-unit diameter discs and possess a motion vector com-

bined with a two-dimensional (x,y) floating point coordinate pair which represents

its position in space and is manipulated by the agent to govern moment-to-moment

movement.

The maximum amount of forward movement a given agent can make is taken from

a standard distribution of maximum speeds, randomly selected on creation of the

agent. In this way, a population of agents features a variety of possible maximum

speeds, though in practice their rate of forward movement performed tick-to-tick

is governed by this value combined with the braking procedures of the movement

model. Agent decision making processes modify this vector periodically, directing it

towards a goal or adjusting it to avoid collisions depending on the agent high-level

behaviour model and agent observations. Agents select goals in their line-of-sight to

move towards as part of their decision-making behaviour by reasoning about a graph

model of the building space. In Chapter 4 we describe the generation of building

navigation graphs which the agents can use to navigate large spaces by treating

paths on the graph as sequences of sub-goal Coordinates.

The agents attempt to preserve personal space around them, and avoid collisions

with other agents by braking and steering to avoid them, similar to the social forces

model described by [41]. Each agent possesses a number of attributes (Table 1)

governing the parameters of the movement behaviour, and a set of global constants

dictate the parameters of general simulation, such as the amount of personal space

agents will seek, or the distance in front of agents where collision avoidance is con-

sidered. In the validation work in this thesis, 20 simulation ticks corresponds to

1 second of simulated time, and 15 units corresponds to 1 metres of space. With

this conversion rate, agent maximum speeds fall into the range of 1.5-2.5m/s. These
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Table 1: EvacSim agent variables

Variable Name Description
PS Amount of personal space preserved

around each agent if possible (in sim-
ulation units)

σi Factor determining the rate of personal
space adjustment agent i makes from
tick-to-tick (in simulation units)

υi The maximum distance agent i can tra-
verse in a single tick (in simulation
units)

υ
′
i The distance the agent i will traverse in

the next tick, determined by υi ∗ βi (in
simulation units)

θi Facing direction angle for agent i in de-
grees

posi two-dimensional floating point coordi-
nate pair representing agent i’s position
in space

goali two-dimensional floating point coordi-
nate pair representing the agent i’s cur-
rent goal

GOALadj Amount of adjustment permitted to
SteeringVector angle each tick when
pointing towards goals, in degrees

OD Distance in front of the agent to check
for obstacles, in simulation units

OBSadj Amount of evasive action taken per-tick
when avoiding obstacles, in degrees

βi Floating point value in [0,1], Used with
υi to determine υ

′
i value

ωi The radius of the agent i (in simulation
units).

CD Distance in front of the agent to check
for collision with other agents (in simu-
lation units)

PS Distance around agent to check of main-
taining personal space (in simulation
units)

ε Angle cone in front of agents in which
upcoming collisions are considered (in
degrees)
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conversion rates were chosen to produce smooth animation of real-time simulation

and (using a 1-unit to 1-pixel translation) display of a large area of simulation space

within a single display screen in native resolution without image rescaling.

3.3.1 Agent Tick procedure

Each agent is called upon, once per simulation tick, to update its position based on

personal space, collision avoidance and progress towards its goal. This procedure

operates as follows:

1. Observe area for obstacles and other agents (line of sight checks, cf. Section

A.2.3)

2. Adjust Personal Space (Section 3.3.2)

3. Direct θi towards goali

4. Adjust θi to steer around obstacles

5. Adjust posi to sidestep obstacles

6. Apply braking to avoid collisions with other agents (Section 3.4.1)

7. Move forward υ
′
i units, in θi direction

3.3.2 Maintaining Personal Space

Accuracy of the agent model requires a mechanism for the agents to ensure that

they are not overlapping each other. Typical behaviour for humans is to avoid close

contact with other occupants if there is space to do so, maintaining a gap between

other occupants, or personal space.

We achieve this by performing checks (once per tick per agent) to determine if there

are any agents nearby that are within a threshold Personal Space distance (PS) and

for the agent to adjust its position to move away from the closest infringing occupant

(movement amount based on σi). Through this mechanism of repeated observation

and position adjustment, a compressed group of agents should spread out to cover an

area. An agent is considered to be violating another’s personal space if the distance

between the centres of the two agents is less than the sum of the radii) plus PS.

Having identified the closest other agent that is within the PS threshold, the agent

moves in the opposite direction by an amount based on the agent Space Adjustment

value σi and the distance between the two agents i, j according to Formula 1).
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(
PS

distance(posi, posj)

)2

∗ σi (1)

This value indicates how far the agent pushes away from the nearest occupant in a

single time unit, and scales the amount of movement based on inverse square of the

distance. This personal space behaviour is implemented as part of the agent “tick”

method, called once per time unit. After all agents have moved to accommodate

their personal space requirements, the simulation ticks forwards and the procedure

repeats. In these scenarios, the agents will move apart again in the next few ticks if

possible but for very dense populations of agents there may be no stable positioning

without personal space violations occurring.

3.3.3 Steering towards Goals

A crucial capability agents need is the ability to move from their current position

towards a goal. This fundamental capability can be combined with path planning

to produce a variety of microscopic movement behaviour. The basic steering mech-

anism is based on the agent pointing themselves towards their current goal, and

adjusting their position from time unit to time unit, to move themselves closer to

the goal. This steering of an agent i is performed using a Steering Vector angle θi

and the movement amount is governed by υ
′
i. The rate of steering adjustment is

given by goaladj; this value governs the maximum adjustment (in degrees) that an

agent can perform within a single tick.

3.4 Avoiding Obstacles

With the Steering Vector angle, the agent can direct itself towards a goal and move

towards it. Without obstacle avoidance, the agent would bump into obstacles or

other agents close to its chosen path. By adjusting the Steering Vector to steer

around obstacles in its path, the agent can safely travel to its goal. To adjust the

Steering Vector, the agent first needs to look ahead to determine if it is approaching

an obstacle. To do this, the agent creates two “Eye” vectors. These vectors are

projected out directly from the sides of the agent by an amount equal to the Obstacle

Lookahead distance, OD, and aim in the same direction as the Steering Vector θi.

The lines described by these Eye Vectors are checked against the building geometry

to determine if there is a collision coming up (Figure 4). If there is a Collision on the

“Left Eye” but not on the “Right Eye”, then the upcoming obstacle can be avoided

by steering more to the right; similarly if there is a collision on the Right Eye and
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not the Left the agent steers left to avoid it. The agent then also adjusts its current

position by “sidestepping”. This movement causes the agent to step 1 unit to the

left or right (i.e. perpendicular to the steering vector) if there is a collision on the

Right or Left Eye. If both Eyes are in collisions, then the agent slows down to avoid

impacting the obstacle while the steering vector is adjusted to steer away over the

next few ticks. The amount of collision avoidance steering adjustment is governed

by the parameter OBSadj.

Figure 4: Agent Lookahead for Avoiding Obstacles

3.4.1 Braking and Avoiding collisions between Agents

If an agent is approaching another agent, it needs to slow down to avoid a collision.

To produce behaviour such as queuing at bottlenecks, the agents need to be able to

slow themselves down to avoid collisions and to stay at this low speed while waiting

for the area ahead to clear up. This braking behaviour is achieved by periodically

scanning the area ahead of the agent for other agents in line of sight within a vision

cone delineated by ε (Figure 5). The agent then adjusts the impact the υi has on

movement by multiplying it by a brake factor value βi, between 0 and 1.0. βi is based

on the proximity of the nearest other agent j and the angle difference between θi and

θj. This is implemented by iterating through all other agents in the agent’s purview

(within its Zone and Halo Region: Appendix A.4.4), and placing any agents within

a set number of degrees (Brake Angle parameter ε) to the left or right of the Steering

Vector in a “Brake Candidate” set. The distance to the nearest other agent in this

set determines the amount of braking to be applied to υi (through multiplication)

to produce the final movement amount, υ
′
i.
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Figure 5: Agent braking to avoid collision

3.4.2 Resolving Overlap (”Enforce core”)

In some cases, agents may be in a collision with each other (i.e. their radii overlap).

This can occur with large populations of agents within confined areas where no

amount of adjustment can produce a configuration without collisions, or when fast

moving agents come into contact with agents that are moving much more slowly and

have not sufficiently slowed down yet (as braking takes several ticks to slow the agent

down completely). In such a situation, the agents should prioritize the resolution

of the overlap over their goal-directed movement. To achieve this, we implement

an “Enforce Core” behaviour invoked during collisions which disables goal-oriented

movement until the overlap is repaired (via Personal Space adjustments described

in 3.3.2). This behaviour is so termed as it enforces that the central core of the

agent is free from overlapping agents before other movement is performed (though

the wider personal space might still be impeded).

Implementation of the Enforce Core behaviour is tested by generating 400 agents

in a room on the left-hand side of the simulation world and sending them through

a narrow doorway to the right. The number of individual instances of agents in an

overlapping state is recorded each tick and averaged over the course of 600 ticks.

The over-supply of agents causes high congestion at the bottleneck area, and without

the Enforce Core mechanism (Figure 6) we find a high degree of agent overlapping

as the pressure of agents trying to get to the goal exceeds the force of the agents

attempting to maintain personal space. This high degree of overlapping results in a

very large compression of agents within an unrealistic space; the number of occupants

that can be packed into a space is excessive as they are physically occupying almost

the same positions as each other.
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Figure 6: Dense crowds without core enforcement.

Figure 7: Enforcing Agent core in dense crowds

With Enforce Core enabled (Figure 7) we find that the goal-movement pressure is

reduced as agents stop to correct for personal space whenever overlaps occur, and

there is a much more stable configuration near the doorway. Using this approach

leads to an average number of overlapping events per tick of ∼0.18 over the course

of the experiment compared to an average of ∼5.4 agents overlapping per tick when

Enforce Core is not enabled. Agents are compressible but only rarely when using

Enforce Core, and this corresponds with the assertation of Hoogendorn [82] that

compression should be allowed but should also be avoided when possible.
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3.5 Validation Experiments (Bottleneck)

The EvacSim pedestrian model was tested in a series of experiments to compare with

real-world pedestrian movement experiments. Bottleneck throughput is a significant

metric for evaluating egress simulation models, as the number of occupants that can

be safely moved through a given area of the building is a key element of evacuation

planning. For adequate decision support, evacuation simulation needs to produce

throughput results in line with real-world pedestrian behaviour.

The first set of experiments was performed to determine the flow rate of pedestrians

through a bottleneck. This experiment involved generating agents and instructing

them to walk through a narrow corridor and out the other side, where they are re-

moved from the simulation. The experiment is repeated with a variety of bottleneck

widths and the maximum flow throughput is recorded in each case.

First we set the experiment up with the widest corridor to be tested (2m). Agents are

introduced in the left-side room and instructed to move to the right. The first intro-

duction rate tested is initially set low (1.25/second), with the procedure repeated for

progressively higher introduction rates (up to 6.66/second); and the actual through-

put achieved is noted for each inflow rate attempted. The purpose of this procedure

is to discover an optimal throughput value for the corridor. At low supply rates

the throughput achieved increases linearly but at higher supply, we observe lower

throughput (Figure 8) caused by crowding at the entrance and inter-agent jostling,

corresponding with the traffic model results of Nagel and Scheckenberg [83].

Figure 8: Throughput Achieved for 2m corridor

The experiment is then repeated varying the corridor width, and gradually increas-

ing the agent supply until the throughput peaks, giving the optimal throughput for

each corridor. These results are compared against the real-world data described in
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Section 2.7 in the graph of Bottleneck Throughput (Figure 9). In this comparison

we observe that EvacSim throughput results fall well within the range of these real-

world results. These results shows that EvacSim’s pedestrian model accurately re-

produces bottleneck congestion and throughput found in real pedestrian behaviour.

We observe an underestimation of throughput for very narrow bottlenecks (70cm

and below); however bottlenecks of this size are not likely to be a feature of building

evacuation as they would be more narrow than the minimum door width typically

stipulated by building regulations [84] [85] (80cm or more).

Figure 9: Bottleneck throughput comparison of EvacSim with real-world experiment results

3.6 Validation Experiments (T-junction)

Crowd merging is a key feature of building evacuation, as small groups in the building

head towards exits and come together into larger groups. Particularly significant

for evacuation planning are the movement characteristics of occupant flows merging

together. Zhang et al [1] [2] performed real-world experiments on crowd merging in

T-junction spaces and identified a phenomenon wherein the average velocity for a

given density of occupants is lower at the point of merging than it is in the space

after the merge occurs. They suggest that the cause of this is likely to be slowdown

from negotiation of the merging of two streams and tentativeness.

3.6.1 T-junction experiments with default agent

Experiments were performed in a scenario based on the T-junction pedestrian move-

ment experiment performed by Zhang et. al [1] [2] (Figure 10). In these experiments,
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pedestrian agents are introduced at two sides of a T-junction (the black and red par-

ticipants in the Zhang experiment in Figure 10), and instructed to move to the point

of junction and then continue down the central route. All corridors have the same

width, and a grid of square simulated “sensor” regions is used to periodically sample

the velocity and density values in different areas of the T-junction space. Js repre-

sents the average density versus velocity; this is computed through video analysis by

generating Voronoi cells as < ρ >v . < v >v [1/m.s]) versus < ρ >v/ m
−2 (occupants

per m−2) in Zhang. EvacSim Js values are computed by sampling the number and

average velocity of agents present within a grid of 10-unit×10-unit square tracking

regions.

The colours of agents in the right-side part (EvacSim) of Figure 10 display their

averaged velocity over the last 15 ticks, a range from blue to red representing at rest

(blue) to the highest possible speed given from the standard distribution of speeds

(red). We label appropriate sensors as “Before”, “Centre” and “After”; Before and

After correspond to the “in front merging, left” and “behind merging” areas of [1].

“Centre” is the merging area of the T-junction, an area unlabelled in [1] .

Figure 10: Zhang (left) and EvacSim (right) T-junction experiments

As with Section 3.5, we start with a low inflow of agents and gradually increase this

inflow over time. The results of each sensor sampling are given as data points in

the Specific Flow graph (Figure 12 ) in as Js (average velocity for a given density

of occupants. With the standard agent model, we find that the Before, Centre

and After results are similar, in contrast with the data from [1], in which “behind

merging” shows a clear seperation from the areas before the merge (Figure 11). The

standard agent model does not differentiate between agents coming towards one

another (i.e. two streams merging) and agents heading in the same direction in a

single stream; agents will apply braking even if the agents in front of them are also

heading in the same direction.
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Figure 11: Flow vs Density in real-world T-junction experiments (taken from Zhang [2] )

3.7 T-junction experiments with stream formation behaviour

To reproduce the phenomenon identified by [1], the agents need to distinguish be-

tween two different cases when another agent enters the braking area delineated by

ε and CD (Table 1). These cases are whether the agents considered for braking are

travelling approximately in the same direction as the agent or not. To achieve this,

we extend the braking behaviour to consider the average vector of recent movement

for agents in the braking area. If a brake check would normally occur, but the agent

in front is heading in the same direction as the braking agent, then the braking

agent can maintain its current speed, which we call “stream formation”. Agents in

a crowd moving in a common direction should travel at a faster average speed due

to the lower degree of braking occuring.

Each agent possesses a record of recent positions which is used to produce an av-

erage past motion vector by finding the mean direction and distance of movement

between each prior position in the record (mean is used for simplification of compu-

tation). Agents observe one another over time to produce past-motion vectors for

other agents and use these to determine the difference in motion angle between one

another, the “motion difference angle”. We modify the braking procedure described

in Section 3.4.1 to ignore braking for agents that are within the obstacle lookahead
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Figure 12: EvacSim T-junction Flow vs Density (default agent model)

(CD) distance, but have a similar angle of motion (a low “Motion Difference An-

gle”, a difference lower than the parameter “MotionDifferenceAngle tolerance”, or

“MDA”. While braking should still occur when other agents are very near (we use

25% of the CD value as the threshold), this allows for streams of agents travelling in

approximately the same direction to travel at a normal speed, and by still enforcing

braking at very close distances, we can ensure than a sudden stop by one agent will

cause the agents behind it to slow down once they get closer.

The experiment described in Section 3.6.1 was repeated using two MDA values:

20° and 60°, with the relationship between specific flow and density (Js) shown in

Figure 13. These two values were chosen to investigate the impact of the amount

of leeway the agents have before considering agents ahead of them to be travelling

in a different direction. 20°gives a tight restriction on this tolerance, allowing just

enough leeway to allow for the small left/right adjustment agents naturally make.

The higher tolerance of 60° gives the other extreme; low-braking streams form in

more of the experiment space (appearing in more of the turning area) and the

separation between areas where streams form and where the turning and merge

negotiation occurs is less distinct as a result.

We find a clear separation between the area after merging and the areas before

the merge when using the stream formation behaviour. We also observe greater
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(a) Stream Formation, MDA = 20

(b) Stream Formation, MDA = 60

Figure 13: T-junction Flow vs Density (Stream-forming agent model)

average specific flow due to less braking occurring in the whole system generally.

For comparison we show these results with the Zhang [1] results in Figure 14.
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(a) Zhang t-junction (b) Default agent

(c) Stream Formation, MDA = 20 (d) Stream Formation, MDA = 60

Figure 14: Zhang [1] and EvacSim agent t-junction Flow vs Density comparison
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3.7.1 T-junction Heatmaps

Data from the square grid “sensors” is averaged out over the duration of the experi-

ment and used to produce heatmaps for comparison with heatmaps from [1] (Figure

17) illustrating the average densities (Figure 16) and velocities (Figure 15 for agents

in the T-junction experiment space (Figure 10).

Figure 15: Average Velocity Heatmaps for EvacSim Stream-forming agents, MDA=20, 60

Figure 16: Average Density Heatmaps for EvacSim Stream-forming agents, MDA=20, 60

In these heatmaps we can observe the impact of a wider tolerance in Motion Differ-

ence Angle. With MDA of 20° we observe the velocity of agents in the “centre” area

to be lower than the mid-corridor flow after merging, as in [1]. With MDA of 60°,

the velocities through the merging centre area remain high as the agents are more

likely to ignore the braking procedure despite negotiating a merging.
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Figure 17: Density and Velocity heatmaps for Zhang [1] T-junction experiments

3.8 Conclusions

In this Chapter we described the requirements and details of the EvacSim pedestrian

evacuation model. This model achieves complex occupant behaviour through peri-

odic, low-complexity computation to produce realistic pedestrian movement. The

accuracy and realism of this model is of key importance in evaluating emergency

evacuation planners and providing useful predictive information for safety person-

nel. To show the model realism, it was validated against real-world pedestrian move-

ment experimental data in bottleneck throughput scenarios, demonstrating that this

evacuation simulation model produces throughput metrics that match closely with

real-world experiments investigating pedestrian movement.

We identified the special case of crowd merging in building spaces as being of partic-

ular importance in evacuation. We made adjustments to the agent model to produce

a seperation phenomenon similar to that identified in real-world experimental re-

sults for crowd merging in T-junction spaces. These adjustments reproduces the

phenomenon of reduced flow in crowd merging areas relative to unidirectional cor-

ridor flow.

With a validated microscopic agent movement model, we can exploit the EvacSim
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simulator to establish flow parameters for macroscopic flow graphs, a procedure

termed micro- macro- coupling, which we investigate in Chapter 5.
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4 Hierarchical Level-of-Detail graphs for Evacua-

tion Simulation and Planning

4.1 Introduction

Simulation and planning of pedestrian evacuation of buildings benefits from the

availability of Macroscopic building topology graphs. A variety of graph detail levels

is useful for different applications within planning and simulation of evacuation, such

as microscopic agent navigation and macroscopic dynamic evacuation planning. In

this chapter we investigate Topological Graph generation from building geometry,

presenting techniques to generate multiple levels of graph detail in a manner that

allows for easy translation between different detail levels for different purposes.

By first generating a “fundamental” graph (derived based on space partitioning as

described in Appendix A.2.4, we can then apply graph simplification operations to

produce high-level, low-detail graphs suitable for use with a macroscopic evacuation

planning algorithm. Similarly, we can increase the detail of the fundamental graph

by introducing extra nodes and edges to produce very dense navigation mesh graphs

which can be used by agents in microscopic simulation to plan movement routes in

a detailed and intelligent manner.

4.2 Graph Detail Levels and Requirements

Microscopic agent-based simulations make use of graphs for agent navigation plan-

ning, allowing agents to reason about traversability of space and plan routes between

goals. Macroscopic dynamic evacuation planners use occupancy information com-

bined with network flow graphs to compute evacuation routes that minimize evacua-

tion time and hazard exposure. While both of these models make use of graphs, the

requirements of each are different. Simulated occupant agents require high-detail

graphs to provide the greatest fidelity in movement and planning in the local area.

On the other hand, dynamic evacuation planners work best with low-complexity

graphs with small numbers of nodes and edges, not only to minimize computation

time in time-sensitive evacuation scenarios, but also to model congestion in the

graph as occupancy at nodes or on edges.

4.2.1 Microscopic Model Graph Requirements

In Chapter 3, we showed how Occupant Agents in EvacSim travel in two-dimensional

space, directing their travel through manipulation of a two-dimensional vector which

they use to steer towards their goal while avoiding obstacles. Routes produced
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through path planning using graphs are converted into sequences of coordinate goals.

A requirement of the navigation graph is that any edge between two nodes must

not intersect with building geometry. This requirement guarantees that the agent

can progress from goal to goal in its route plan without being impeded by building

geometry.

While agents calculate route plans as a sequence of goals, they have the capability

to observe the local area and determine if it is possible to jump forwards in their

route plan if later goals in their route are within a clear line of sight. For instance,

an agent at a position A might compute a route that takes it to B, C, D, E and

F, but when it arrives at C it can see that F is within a clear line of sight from its

current position, it can proceed directly to F from C (even if the graph node for F

is not a direct neighbour of C), as shown in EvacSim in Figure 18.

Figure 18: Agent skipping ahead on a route (EvacSim screenshot)

As the agents shorten paths by taking shortcuts when possible (discovered by looking

ahead for clear line-of-sight to later goals in their route), the graph used by agents

for planning should incorporate edges which are represent the likely shortcuts that

would be taken. If such consideration is not made, then the agents will often over-

estimate path lengths, and may make poor planning decisions as a result.

4.2.2 Macroscopic Planner Graph Requirements

EvacPlan is an implementation of the dynamic evacuation planner described by

Hadciz [33], integrated with the EvacSim evacuation simulator. EvacPlan makes

use of a network flow graph of the building, which is an extension to a traditional

navigation topology graph that incorporates flow parameters on graph edges, de-

scribing the maximum number of occupants that can pass through the edge within

a given time-frame and the amount of time taken for traversal of that edge. Dy-

namic, Flow-based Planning functions best when the graph features a low number

of edges, ideally representing traversal between large spaces.
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Large numbers of edges passing near to each other, or criss-crossing, mask the ca-

pacity constraints on occupants passing through the spaces and should be avoided.

A further requirement is for discovery of node occupancy; each node should prefer-

ably cover a large amount of space so that occupancy information is represented

in a manner suitable for evacuation planning algorithms (for example, single rooms

should not be subdivided into multiple nodes as this hides the interaction of oc-

cupants from planners). Finally, the lower the graph complexity, the quicker the

EvacPlan planner can compute optimised evacuation routes, a key consideration for

timely emergency response.

As dynamic evacuation planners need to communicate evacuation routes (generated

in terms of a path through the topological graph) to human users, a low detail

graph is also useful for communication of routes to occupants. A simplified Room

and Gateway graph would allow for natural descriptions of routes in terms of rooms

and doorways to visit, and give an easy to understand high-level overview of the

emergency status to safety personnel.

4.2.3 Hierarchical Detail levels

With these requirements in mind, we identify four levels of graph detail to be gen-

erated:

1. High Detail, dense “Movement graph” for agent movement

2. Initial “Fundamental Graph” which is used to generate other graph types

3. Simplified “Planner graph” for evacuation planning and long-distance agent

planning

4. High-level “Structural graph” for communication of building state and evacu-

ation routes to humans

4.3 Graph Generation Overview

In this section, we describe the use of the Fundamental Graph (algorithmically

generated from two-dimensional building geometry) as a basis for building higher

and lower detail graphs. With the Fundamental Graph as a common foundation,

this facilitate translation between graphs of different detail levels. We convert this

graph into a lower detail graph (”Planner Graph”) through simplification techniques

that reduce the detail of the graph. Additionally, from the Fundamental Graph we

increase the graph detail to incorporate many extra nodes and edges, representing
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the wide freedom of movement options available to agents moving in two-dimensional

space (the “Movement Graph”).

Finally we generate a Structural Graph from the Fundamental Graph by clustering

nodes based on conceptual spaces bordered by doorways and entranceways. This

Structural Graph amalgamates nodes in open spaces and allows for concise descrip-

tions of routes in the building in terms of the traversal between gateway areas (e.g.

doors) and the spaces they border. The simplification methodologies used main-

tain association between nodes at low-detail and high-detail, allowing for occupant

agents to receive route instructions in terms of the Structural Graph, and convert

this to Movement Graph routes easily. Similarly, agent locations establish node

occupancy in the Fundamental Graph (which has a 1:1 relationship between graph

nodes and building spaces, Appendix A.2.5), which can then be translated into oc-

cupancy data in the Planner Graph for the dynamic evacuation planner to use in

evacuation planning. In this manner, we can use the most appropriate graph detail

level for each separate task.

4.4 Fundamental graph generation

To generate other graph detail levels, we first generate the Fundamental Graph by di-

viding two-dimensional building geometry into discrete rectangular spaces (”Room”

objects described in Appendix A). Each rectangle is represented by a graph node

in the Fundamental graph, and the border region with adjacent rectangles is also

represented by a graph node. Each Room is connected to its border nodes by an

edge. We chose rectangular spaces as they are reasonably simple to generate and

are concave, ensuring that all positions within a space have a clear line of sight to

all other positions within that space. The purpose of the Fundamental Graph is

to represent the rectangular subdivision and traversability of the building geome-

try in graph form, allowing the translation of two-dimensional building coordinate

positions to nodes on the graph. With the Fundamental Graph acting as the basis

for the other graph types, this allows the translation between various graph detail

levels and the discrete space geometry of the building.

Generation of Rectangular spaces is performed by iteratively generating 1×1 Room

objects and inflating them gradually until they come into contact with building ge-

ometry or existing spaces (Appendix A.2.4, Algorithm 13). Having covered the space

of the building with Room objects, Intersections are generated in the border area

between Rooms by inflating each Room 1 unit to the right and down, and identifying

the 1-unit wide rectangular overlap (Algorithm 14). This overlap becomes an Inter-

section space. A Graph Node is labelled with an (x,y) coordinate position placed

created at the centre-point of the Intersection node, and is connected by edges to

51



Graph Nodes at the centre of the two Rooms that produced the Intersection. In this

manner, we cover the building space with a planar graph that guarantees that the

lines connecting the coordinates associated with neighbour nodes do not intersect

with geometry, and that the traversability of spaces is represented in the graph.

This approach to space division guarantees that each node is associated with a

rectangular Room or Interesction (and hence, all the space represented by a node

is visible and reachable from all other points in that space). The graphs produced

are planar and the centrepoint of each space is visible from its neighbours (as the

neighbours are intersection spaces).

This approach guarantees full coverage of the space without overlapping spaces.

Graphs were generated using three building floorplans. The first is a small building

(B1, Figure 19) featuring irregular rooms, with a large central hub and six outer

doorways. This building produces graphs that feature a mix of node degrees and

multiple path options. The second building (B2, Figure 20) features a grid-like

layout, which produces many nodes with degree of four or greater, with the potential

for a great deal of corner-cutting shortcuts. Finally we demonstrate the graph

generation on a real-world building (Nimbus, Figure 21), based on the ground floor

of the Cork Institute of Technology’s Nimbus building. This building features a

mix of long corridors and large spaces featuring central pillars, as well as a limited

number of outer exits.

4.4.1 Fundamental Graph

The Fundamental graph generation method was performed on the three buildings to

characterise the graph complexity and detail produced for these different cases; the

graph complexity is shown in terms of node count (Figure 22) and edge count (Figure

23). In these results we see that the graph node count rises with the irregularity of

the building structure, as well as with the number of walls. We also see that the

node degree rises with this increased irregularity; the subdivision of irregular spaces

produces Room objects with many neighbours.

To evaluate the usefulness of the graph for simulated pedestrian path planning,

occupants agents were generated one at a time, in randomised positions in the

building. Each agent is given the goal of travelling to a randomised destination

(routes planned using A* algorithm). The average path-planning time is recorded

in each case, as well as the ratio between estimated path length on the graph and the

real distance travelled by the agents following the routes. Dividing the estimated

path length by the actual distance travelled, and averaging, gives the Path Length

Accuracy (Figure 24), with values close to 1 indicating accurate estimates and high

values indicating that the graph overestimates the distance that would be travelled

52



(a) B1 Floorplan

(b) B1 Room Generation

(c) B1 Fundamental Graph

Figure 19: Fundamental Graph and Rooms (B1)

by the agents.

In these results, we observe that the path length of the routes produced using A*

on the Fundamental Graph tend to overestimate the distance the agents travel by a

significant factor. In B2, there were many opportunities for cutting across corners,

and as such, the distances travelled by agents was, on average, almost half the

distance estimated by the graph. While the computation time for this graph detail

is reasonably low, this underestimation of path length can cause agents to make
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(a) B2 Floorplan

(b) B2 Room Generation

(c) B2 Fundamental Graph

Figure 20: Fundamental Graph and Rooms (B2)

poor path-planning decisions such as taking long routes that merely appear shorter

than alternatives on the graph. This suggests that high-detail graphs with more

nodes and edges might be more appropriate for agent movement planning than the

fundamental graph alone.
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(a) Nimbus Floorplan

(b) Nimbus Room Generation

(c) Nimbus Fundamental Graph

Figure 21: Fundamental Graph and Rooms (Nimbus)

4.5 Graph Simplification (Planner Graph)

For some building geometries, the Fundamental Graph can feature a great many

nodes and edges, which can lead to excessive computation times for dynamic evac-

uation planning and the large number of short edges does not translate well into a

network flow graph. To reduce the complexity of the graph (producing a Level 3

Graph suitable for evacuation planners) we employ two simplification techniques to

group nodes together: Loop Removal and Triangle Removal.

4.5.1 Loop Removal

Loop Removal is a method by which adjacent nodes are recursively merged together

if they each have a degree of two and are each a neighbour of the other, except in the

case that the merged node would not have line of sight with the neighbours of the

original nodes (Algorithm 1). These nodes arise as a result of small adjustments in

the dimensions of spaces that are approximately rectanglar (such as a corridor that
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Figure 22: Graph Complexity (node count), fundamental graph

Figure 23: Graph Complexity (edge count), fundamental graph

widens slightly in one part), or at doorway spaces where clusters of three nodes arise

representing the doorway itself and the Intersection Nodes connecting the adjacent

Rooms.

The effect of this simplifcation is that a series of two-degree nodes in sequence

become merged together, a useful result for simplification of long corridors or large

spaces. An additional result is that closed loops on the graph become absorbed into

the graph or become reduced to individual nodes (Figure 25).
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Figure 24: Path Length Accuracy for Fundamental Graph

Figure 25: Loop Removal Graph Simplification

Algorithm 1: Loop Removal

Data: (Graph) g
(boolean) reduced = true;
while reduced do

reduced = false;
foreach Node n ∈ g do

if n.degree == 2 then
(Node) a = n.neighbours[0];
(Node) b = n.neighbours[1];
if hasLineOfSight(a,b) then

g.remove(n);
g.connect(a,b);
reduced = true;

end

end

end

end
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4.5.2 Triangle Removal

Figure 26: Triangle Removal Graph Simplification

The second method for graph simplification at this level is to recursively merge

triangle groups together. These node groups feature triplets of nodes that are each

connected to the other, which allows for more nuanced agent path-planning but

would be better represented by a simple junction structure (Figure 26) in order to

capture the potential interaction of flow units in flow-based evacuation planning.

To identify these triangular groups, we search the graph for nodes with degree of

three. When such a node is identified, we check its neighbours to see if they any

are also neighbours of each other. If this is the case, then the nodes can be merged

together (Algorithm 2), provided that the edges connecting to the merged node do

not violate the line of sight with other nodes in the graph (i.e. edges cannot pass

through walls).
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Algorithm 2: Triangle Removal

Data: (Graph) g
(boolean) reduced = true;
while reduced do

reduced = false;
foreach Node n ∈ g do

if n.degree ==3 then
((Node) a = n.neighbours[0];
(Node) b = n.neighbours[1];
(Node) c = n.neighbours[2];
(Node)common = null;
if g.connected(a,b) then

if g.connected(a,c) then
common = a;

end

else if g.connected(a,c) then
if g.connected(c,b) then

common = c;
end

else
g.connected(b,c)

end
if top.connected(a,b) then

common = b;
end
if common != null then

g.remove(n);
reduced = true;

end

end

end

end

Applying Loop and Triangle Removal to the Fundamental Graphs generated in

Section 4.4 produces the simplified Planner Graphs shown in Figure 27. These

graphs feature substantially fewer nodes and edges than the original Fundamental

Graph (Figures 28, 29).

4.5.3 Planner Graph Simplification Results

Applying loop removal and triangle removal to the Fundamental Graphs produced

in Section 4.4 leads to a substantial reduction of graph complexity, giving longer

edges and fewer nodes. This simplified graph preserves large-scale navigation detail

and helps ensure that network flow graphs produced from this graph do not mask

congestion effects through excessive graph detail. These graphs feature a reduced

node (Figure 28) and edge count (Figure 29) relative to the original fundamental
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(a) B1 Planner Graph

(b) B2 Planner Graph

(c) Nimbus Planner Graph

Figure 27: Planner Graphs (Loop and Triangle Removal)

graph.

The Planner graphs were converted into network flow graphs for use with the Evac-

Plan dynamic evacuation planner by allocating flow parameter values and traversal

time values to edges in the graph (this process of discovering appropriate flow val-

ues to assign to edges is described in detail in Chapter 5) . Occupant and hazard
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Figure 28: Planner Graph Complexity (node count)

Figure 29: Planner Graph Complexity (edge count)

locations are randomized and EvacPlan computes optimized evacuation routes for

the occupants, with the average computation time recorded in each case, shown in

Figure 30. In these results, we find that the Planner computation times are very

low and well within the time constraints of emergency response situations. Fur-

ther investigation into dynamic evacuation planner performance using coupled Flow

Graphs based on the Planner Graphs generated here can be found in Section 5.7.

The simplified Planner Graph was used for Agent route planning, again using the

A* algorithm [8]. This simplified graph results in somewhat lower path-length over-

estimation than the fundamental graph (Figure 31), as it has a general “smoothing”

effect on graph features that produced “zigzag” paths, by eliminating superfluous

nodes along an otherwise straight path. While the accuracy is improved, there are

still short-cuts to be taken, particularly in the mesh-like structure of B2 (Figure

33(b)) as agents opt not to travel all the way to the centre of Room Nodes while

traversing from one doorway to another at an angle.
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Figure 30: EvacPlan running time using Planner Graphs

Figure 31: Path Length Accuracy, with Planner Graphs

4.6 Increasing Detail (Movement Graph )

As the agents take short-cuts in movement, accurate agent path planning requires

nodes and edges that represent these shortcutting paths. While the Planner Graph

showed an improvement in Path Length Accuracy for A* planning relative to the

fundamental graph, we found that there were still several short-cuts being taken by

agents due to the relatively sparse and rigid graph structure. More accurate path

length estimates could be achieved by representing likely short-cuts on the graph.

To achieve this, we introduce additional nodes and edges on the graph: Nodes are

added near each convex corner in the building geometry, and connected to the Room

space in which they are contained (Algorithm 3).

Having added these Corner Nodes, we then connect each Corner Node to any other

Corner Node for which there is a clear line of sight (Figure 32). This increases the
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Figure 32: Adding Corner Nodes on convex corners

complexity of the graphs, but allows for paths that cut close to corners and skip

across spaces in a single edge that would require multi-hop paths on other graph

detail levels (which would be skipped over by the shortcut-taking agents).
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Algorithm 3: Corner Node Generation

Data: (Graph) g, (Set) Walls, (Set) Rooms
(Set) CornerNodes;
foreach Wall w ∈ Walls do

(Coordinates) TL = w.getTopLeft;
TL.x = TL.getX -4;
TL.y = TL.getY -4;
if !clipped(TL,Walls) then

CornerNodes.add(Node at TL);
end
(Coordinates) TR = w.getTopRight;
TR.x = TR.getX +4;
TL.y = TL.getY -4;
if !clipped(TR,Walls) then

CornerNodes.add(Node at TR);
end
(Coordinates) BL = w.getBottomLeft;
BL.x = TL.getX -4;
BL.y = TL.getY +4;
if !clipped(BL,Walls) then

CornerNodes.add(Node at BL);
end
(Coordinates) BR = w.getBottomRight;
BR.x = BR.getX +4;
BR.y = BR.getY +4;
if !clipped(BR,Walls) then

CornerNodes.add(Node at BR);
end
foreach Node n ∈ CornerNodes do

Node location = g.getNode(whereIsThis(n.coordinates);
graph.add(Edge(location,n));
foreach Node m 6= n ∈ CornerNodes do

if !∃(Wall) between n,m then
g.add(Edge(n,m));

end

end

end

end

As we can see in Figure 33, the additional nodes and line-of-sight edges causes a great

deal of edge generation in open areas that feature multiple entranceways. This is

especially apparent in the mesh-like structure of the B2 building, where most rooms

have three to four entrances. The space containing columns to the right-hand side

of the Nimbus building also produces a dense network, as a result of incorporating

corner nodes and associated edges around each of the columns. The impact of this

increased complexity is shown in terms of Node Count (Figure 34) and Edge Count

(Figure 35).
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(a) B1 Movement Graph

(b) B2 Movement Graph

(c) Nimbus Movement Graph

Figure 33: Movement Graphs (Convex Corner Nodes)

As these high-detail graphs are intended to be used for agent movement planning,

the A* path planning results are of particular importance. In Figure 36 we show

the Path Length Accuracy result using the Movement Graphs, which demonstrates

that paths chosen on the Movement Graphs correspond closely to the actual paths

taken by the occupant agents. These results indicate that the Movement graph is
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Figure 34: Movement Graph Node Complexity

Figure 35: Movement Graph Edge Complexity

an excellent choice for high-detail, local area movement planning, though at greater

computational cost than using lower detail graphs (cf. Section 4.8).

4.7 Structural graph simplification

A high-level Structural Graph provides a low-detail model of the building appropri-

ate for communication of routes to occupants, and for relaying of evacuation status

to safety personnel. This graph is generated according to the principles described

by Richter et al [30] by dividing the building at doorways and other exits, known as

“gateway nodes”. Gateway nodes can be identified in the building geometry defini-

tion (such as door objects in Industry Foundation Classes building models, Section

2.3) or discovered algorithmically, as detailed in Appendix A.2.4.

66



Figure 36: Path Length Accuracy (Movement Graph)

Algorithm 4: Structural Graph Generation

Data: (Graph) g, (Set) Gateways)
Result: (Graph) S
(Graph) S = new Graph;
(boolean) reduced = true;
while reduced do

reduced = false;
foreach Node n ∈ g do

if n 3 Gateways then
merge(n,(n.neighbours 3 Gateways));

end

end

end

To generate the Structural Graph, we consider two types of graph node: Gateway

(doorways) and Space (everything else). We merge nodes so that all the neighbours

of a Space node are Gateway nodes, and vice versa. We achieve this by recursively

merging non-Gateway nodes and their non-Gateway neighbours until no new merges

are performed. The result of this clustering is that the graph becomes divided up

into large, irregular discrete spaces represented by a single Space Node. Traversal

between Spaces always takes the form of a transition from Space to Gateway, to

Space etc. The result of applying this simplification routine to the building graphs

from Section 4.4 is shown in Figure 37.

These graphs are substantially less complex than those at higher levels of detail, and

routes in the graph can be explained in simple terms of transitions between large

spaces and the gateways between them. As all paths in the Structural Graph follow

the Pattern of ”Space-Gateway-Space-Gateway-Space-Gateway-Space”, they can be

expressed as a series of Gateways. With labelled nodes, these paths could easily be

described in sequence (e.g. exit through the East Door, to enter Corridor 2, then
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(a) B1 Structural Graph

(b) B2 Structural Graph

(c) Nimbus Structural Graph

Figure 37: Structural Graphs (merging nodes behind Gateways)

to the Front-Lobby-Entrance). The node and edge count for Structural Graphs is

given in Figure 38, illustrating the simplification possible with this approach.

An additional utility of these Structural Graphs is that it allows for the easy discov-

ery of the “outside” space of the simulation world, which allows for the identification
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Figure 38: Structural Graph Complexity

Table 2: Graph Simplification results for irregularly shaped building

Nodes Edges
Fundamental Graph 111 260
Planner Graph 28 64
Structural Graph 3 2

of arbitrary positions as being “inside” or “outside”, and also allows for algorithmic

identification of building Exits, as all neighbour nodes to the “Outside Node” are

by necessity, the last Gateway nodes before reaching “outside” space.

As all the empty space surround the building is amalgamated into a single Non-

Gateway node, performing “WhereIsThis” (Appendix A.2.5) on Coordinates (1,1)

will return the Room object for the top left empty space. As this Room is a subnode

of the non-Gateway node that surrounds the building, the WhereIsThis call will

return the node that represents the outside space (”Outside Node”). From this, we

can then determine which nodes represent the final exits of the building by simply

noting all the neighbours of this Outside Node. We can also determine whether

arbitrary coordinates are “inside” or “outside” if calling the WhereIsThis method

on them returns a subnode of the Outside Node.

To illustrate the impact simplification can have, we show in Figure 39 the result of

applying loop and triangle removal, and Gateway Clustering to an irregularly shaped

building (which begins with many narrow room objects, and hence, superfluous

graph nodes on the fundamental graph), with the node and edge counts for these

graphs shown in Table 2.
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(a) Floorplan (b) Rooms (c) Fundamental Graph

(d) Planner Graph (e) Structural Graph

Figure 39: Graph simplification on an irregularly shaped building

4.8 Graph Complexity (A* Running Time)

In generating varying levels of graph detail in an interconnected manner, we pro-

duced varying results for relative complexity and accuracy for different tasks such

as agent movement or dynamic evacuation planning. The different building types

showed the impacts of various building structure features on the resulting graphs,

such as the mesh structure found in the Grid-like B2 when the Movement graph is

generated. Such features can have a significant bearing on the computational com-

plexity and accuracy for planning on these graphs. The running time (in nanosec-

onds) for A* on the Fundamental, Planner and Movement Graphs during the Path

Length Accuracy experiments is given in Figure 40, averaged for 800 randomised

agents/paths.

While the Movement Graphs performed well on the Path Length Accuracy metric

(Section 4.6), the increased running time for Movement Graph path planning relative

to the Planner Graph suggests that there may be gains to be made by combining

both approaches; using a Planner Graph for long-distance planning to produce a

set of intermediate waypoints and using the Movement Graph for the short distance

planning between these waypoints (Section 4.9).

4.9 Hybrid Path Planning for Agents

In Sections 4.4 and 4.6 we showed simulated occupant agents making use of the

fundamental and movement graphs for path planning (using the A* algorithm).

These graphs allowed agents to navigate the space and in the case of the Movement

graph in Section 4.6, paths on the graph corresponded closely to the actual paths
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Figure 40: Summary of A* Planning Computation Time results

followed by agents moving from node to node.

In Section 4.5 we described a method for simplifying the graph to accommodate the

requirements of dynamic evacuation planners. As there is a hierarchical association

between the Fundamental and Movement Graphs (as each node in the Fundamental

graph is also present on the Movement graph, and any additional corner nodes are

connected to the graph based on their location in the building), we can perform

high-level planning on Planner Graphs while following Movement Graphs for local

movement (Algorithm 5) and support the provision of guidance generated by the

dynamic evacuation planner in terms of paths on the Fundamental Graph to agents

which then navigate the paths by using the movement graph, using steps in the

Planner route as intermediate waypoints on the more detailed Movement Graph,

Algorithm 6.

Algorithm 5: Hybrid Path Planning

Data: MovementGraph mg, PlannerGraph pg, Node start, Node end, agent
A

(Node) currentLocation = whereIsThis(A.coordinates);
(Queue) proute = pg.getShortestPath(start,end);
while currentLocation 6= end do

(Queue) mroute = shortestPath(currentLocation, proute.nextNode);
A.travelRoute(mroute);
currentLocation = next;

end
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Algorithm 6: Provisioning dynamic evacuation planner routes to agents

Data: MovementGraph mg, PlannerGraph pg, Route proute, agent A
while currentLocation 6= end do

(Node) next = proute.pop();
(Queue) mroute = mg.getShortestPath(currentLocation, next);
A.travelRoute(mroute);
currentLocation = next;

end

As routes are given to agents in terms of the Planner Graph, but are actually followed

using the Movement Graph (with route look-ahead behaviour), we can expect that

the routes taken by the agents will differ in length from the routes presented by the

dynamic evacuation planner. While the dynamic evacuation planner route optimizes

routes for groups on the Planner graph, the microscopic agent behaviour combined

with the greater detail of the Movement Graph results in the distance travelled

results shown in Figure 41. Here we find that the agents perform a small amount of

short-cutting between waypoints but the distances suggested by the path length are

very similar to that travelled by agents (averaged for 800 randomised agents/paths).

Figure 41: Path Length Accuracy (Hybrid Planning using plans provisioned by dynamic
evacuation planner)

4.10 Conclusions

In this Chapter, we described the generation of low-complexity Planner Graphs for

dynamic evacuation planners, and dense high-detail Movement Graphs for Agent

Movement. These two graph detail levels are relatable to each other by way of the

initial Fundamental Graph which is generated algorithmically based on the building

geometry. We also demonstrated the use of both Movement and Planner Graphs

through “Hybrid Agent Planning”, allowing for paths described on the Planner
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Graph to be given to occupant agents which can then follow them using the Move-

ment Graph, showing the capability of agents to receive EvacPlan routes in terms of

the Planner Graph and enact them using higher detailed local movement decisions

using the Movement Graph.

In this Chapter, we also introduced a method for generation of very sparse “Struc-

tural Graphs”, which again are derived from the original Fundamental Graph but

feature greatly simplified structure representing the high-level description of build-

ing topology by dividing space into large compound spaces. This approach allows

for routes generated on the Planner Graph to be described in terms of the compound

spaces they pass through on the Structural Graph, providing the capability of nat-

ural language description of routes in terms of Rooms and Exits. This Structural

Graph also provides the capability of identification of building perimeter exits, and

whether a position is “inside” or “outside” of the building.

In Chapter 5, we investigate discovery of Network Flow Parameters for graph edges

on the Planner Graphs generated in this Chapter. These coupled graphs are then

used in the detailed evaluation of a Dynamic Evacuation Planner in Section 5.7.
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5 Micro/Macro Coupling of Flow Characteristics

in Network Flow Graphs for Prediction and

Planning

5.1 Introduction

Dynamic evacuation planners (cf. Section 2.4.3) compute optimal evacuation routes

for building occupants in emergencies by reasoning about the flow characteristics

of the building in terms of a Network Flow Graph. Network Flow Graphs are

graph models of building space representing the traversability between areas, and

represent the maximum throughput of occupants and traversal time as parameters

on the graph edges. For these dynamic evacuation planners to provide reasonable

and safe plans, the flow parameters need to accurately reflect the reality of the

building space, a task traditionally performed by hand with the use of building fire

safety guidelines such as the Irish Technical Guidance for Fire Safety [84].

While using guideline rules to establish flow parameters can be useful, it is also time-

consuming and may miss subtleties of the building structure impacting on flow. In

Chapter 4 we investigated algorithmically generating building topology graphs for

building geometries, but these graphs do not feature flow parameter information.

By iteratively simulating crowd movement on each of the edges in the Planner

Graph using EvacSim, we can determine realistic values for maximum achievable

throughput, as well as lower and upper bounds on traversal times on the edges

for high-traffic and low-traffic scenarios. These figures can then be assigned to the

edges, modelling the flow parameters of the graph, a “Network Flow Graph” [29].

In this chapter we show use of the microscopic to macroscopic coupling approach,

and perform experiments in the buildings used in Chapter 4 to determine if a per-

edge coupling accurately represents the flow characteristics for multi-edge paths.

The experiments in this chapter demonstrate the utility of macroscopic Coupled

Flow Graphs as predictive tools to determine the throughput and travel time taken

for groups of occupants in the building to travel arbitrary distances in microscopic

simulation. Furthermore, these Coupled Flow Graphs provide the foundation for

Dynamic Planners to generate congestion-sensitive evacuation strategies, which we

utilise in Section 5.7.

5.2 Network Flow Graph parameters

In Chapter 4 we discussed the generation of several levels of graph detail modelling

traversability of building space. One of these graph detail levels, the “Planner

74



Graph” featured a low number of nodes and edges. To allow for flow-based path

planning, the edges of this Planner Graph are augmented with the flow parameters

of Capacity, minTraversal and maxTraversal.

� Capacity: Optimum rate of agents per time unit traversing the edge

� minTraversal: Shortest time taken for a single agent to traverse the edge

� maxTraversal: Time take for Optimum rate of agents to traverse the edge

As the impact of building geometry and obstacles can cause flow in one direction

to differ to that in another, the graph edges are bi-directional (implemented using

directed edges pointing in both directions, which are coupled separately). Using

traversal times, the graph can be used for:

� Shortest path planning using algorithms such as Dijkstra’s algorithm or A*

� Maximum safety path planning, avoiding proximity to a hazard

When the number of occupants travelling across multiple edges is known, the min-

imum (“min”) and maximum (“max”) traversal times can be combined with the

Capacity values for the edges to predict the total traversal time taken for groups

along paths, which we investigate in Section 5.5.

5.3 Flow Coupling

In Chapter 3 we showed that the EvacSim pedestrian model provides a realistic

model of pedestrian movement in building spaces, demonstrated in bottleneck sce-

narios and crowd merging. As the model provides a realistic throughput model,

it can be used to determine the maximum throughput of groups on edges in the

building network flow graph. As part of the model investigation in Chapter 3, we

showed the phenomenon of a “peak throughput” in simple corridor bottlenecks, the

point after which increasing the supply of agents causes a reduction in throughput.

By discovering the appropriate peak throughput value for each edge in the graph,

we can then establish these values as the “Capacity” parameters for the edges. This

approach allows the (macroscopic) graph to accurately reflect the flow performance

of the (microscopic) simulation, termed Micro-Macro Coupling.

To accomplish this, we iterate through each edge in the graph to determine the

maximum throughput. This is determined by attempting a low initial supply rate

of agents at the start of the edge and instructing them to travel to the end of the edge,

where they are removed from the simulation and their travel time noted (Figure 42).

The supply of agents is gradually increased over time until the rate of supply exceeds

the rate of removal by a threshold of 5% (to avoid variance in agent travel to cause

premature cessation of coupling). At this point, the throughput capacity has been
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identified (Capacity) and is recorded for the edge, along with the average traversal

time for the low initial supply (giving the traversal time for low-congestion on the

edge: mintrav) and the average traversal time at the maximum supply (giving the

traversal time for a fully-utilized edge: maxtrav), Algorithm 7.

Algorithm 7: Flow Coupling

Data: PlannerGraph pg
foreach Edge e ∈ pg do

Node a = e.firstNode;
Node b = e.secondNode;
attempted = 0.01;
achieved = 0.01;
maxtrav = 0;
mintrav = 999999;
while attempted/achieved ≥ 0.95 do

escaped = 0;
for 1000 simulation ticks do

add +=attempted;
if add ≥ 1 then

add a new Agent at a, moving to b;
add–;

end
foreach Agent P at b do

escaped++;
if P.traversalTime > maxtrav then

maxtrav = P.traversalTime;
end
if P.traversalTime < mintrav then

mintrav = P.traversalTime;
end
destroy(a);

end

end
achieved = escaped/1000;
attempted+= 0.01;

end
e.capacity = achieved;
e.maxtrav = maxtrav;
e.mintrav = mintrav;

end

Edge coupling is an automated process which takes some time; EvacSim needs to

simulate each attempted supply for a long enough period of time to achieve a stable

average throughput achieved (we use 1000 ticks for each attempted supply) and

as each edge takes many different attempted supplies in order to converge on the

optimum achieved throughput this can take several hours (140 minutes for the “B2”

building from Chapter 4).
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In this work we simply increment the attempted supply by 0.01 occupants-per-

tick, each 1000 ticks; some time improvement could be achieved by using a half-

interval approach to converge on the optimum throughput more quickly (increasing

the throughput attempted by larger amounts early in the coupling of an edge to

converge more quickly on the maximum throughput).

Figure 42: Path Length Accuracy (Coupling Edges)

The coupling proceeds for each edge in the graph until all edges have been tested,

at which point the graph has been fully coupled and can be used for dynamic

evacuation planning, or evacuation outcome prediction. As the flow characteristics

in one direction may differ from those in the reverse, each edge in the graph is

considered individually as a unidirectional edge (with the equivalent reverse direction

coupled separately.
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5.4 Path Testing in buildings

To determine the effectiveness of the micro/macro coupling approach in network flow

graphs using EvacSim, we performed experiments moving groups of agents along

multi-edge paths in the building. If the coupling is accurate, then the throughput

of the path should be approximately the same as that of the edge with the lowest

throughput value. Similarly, the average traversal time for agents in the experiments

should fall between the low-congestion time and the maximum throughput traversal

time values.

Figure 43: EvacSim screenshots of two examples of path testing in progress

These experiments were performed on the B2 building (and associated coupled

graph, Figure 43) used in Chapter 4. The numbers associated with either end

of the edges on this graph indicate the capacity (rounded to nearest integer) and

average of minTraversal and maxTraversal (again, rounded). The tuple near a node

indicates the flow parameters when departing that node.
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By introducing a supply of agents at a randomly selected node of the graph and

instructing them to travel to another randomly selected node using a path chosen

by using the A* shortest path algorithm [8], we can then observe how closely the

achieved throughput corresponds to the expected throughput of the path. To deter-

mine this, the initial supply is set to half the capacity of whichever edge in the path

has lowest capacity. This supply is then periodically incremented by small amounts,

as in the initial per-edge coupling procedure in Section 5, until the achieved through-

put peaks. The accuracy of the graph is measured in terms of the ratio between

throughput achieved and throughput expected (Figure 44) and the real difference

between the achieved capacity and expected capacity (Figure 45).

Figure 44: Path testing: Capacity estimate accuracy

Figure 45: Path testing: Capacity Real Difference

In these experiments, we found that the error has a similar tendency in either di-
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rection, small over- and under-estimations over the course of a path tend to balance

out. Error is often a result of a change in angle during the path, where the occu-

pants slightly cut the corner. Identifying these angle changes on the graph led to

no conclusive association between the angle change and over- or under-estimation

(Figure 47), where we see the rate of over- and underestimation is unrelated to the

number of high-degree turns.

The error is a result of the combination of angle change (allowing for a corner to be

cut, but also compressing the crowd) and building geometry occluding a potential

shortcut, impeding the flow (Figure 46). This result reinforces the assertion that

while Macroscopic Flow Graphs perform well for modelling pedestrian movement,

detailed microscopic simulation captures more detail of occupants freely navigating

physical spaces.

(a) Unimpeded turns (b) Turn impeded by geometry

Figure 46: Path angle changes and error (geometry occlusion)

Figure 47: Error and Turning (changle in angle)

In these results, we observe no particular pattern relating the length of paths to the

accuracy of their capacity estimates other than that longer paths tend to slightly
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overestimate the capacity as can be seen in paths of 7+ edges. Overall the estimates

are quite close to the achieved values, with the average ratio between Achieved and

Estimate being ∼1.01:1 in these experiments, with a standard deviation of ∼0.24

(or ± ∼24%).

Traversal times were similarly accurate (Figure 48), with an average ratio (over 34

trials) of Achieved to Estimate of ∼1.05 and a standard deviation of ∼0.2. The

real difference between Expected Capacity and Achieved Capacity (Figure 49) fell

within a fairly narrow range, averaging ± ∼0.03 with a standard deviation of ∼0.4.

Again, the traversal time estimates are have a small real amount difference to the

traversal times achieved, giving an average real difference of 8.8 time units to traverse

compared to that achieved during path tests, with standard deviation of ∼28 for

these results.

Figure 48: Path Testing: Traversal Time Accuracy

These results demonstrate that while Macroscopic Flow Graphs feature a much lower

level of detail and complexity relative to microscopic multi-agent simulation, through

coupling they can be configured to accurately reflect the movement characteristics of

groups in the micro simulation. While the graphs have a much lower level of fidelity

compared to micro simulation, through micro-Macro Coupling we can provide them

with realistic capacity and traversal time values which correspond closely to the

results achieved using microscopic agents in multi-edge paths. In Section 5.5 we will

demonstrate the utility of these coupled graphs for prediction of arrival times for

groups of occupant agents travelling between arbitrary nodes in the building.
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Figure 49: Path testing: Traversal Time Real Difference

5.5 Traversal Time Prediction

While the estimated overall capacity and traversal times for persistent, maintained

flows of occupants matched closely with the achieved results, it is important to be

able to make accurate prediction for limited flows of occupants. That is to say,

predicting the first-and-last arrival times for a limited group of occupants travelling

from one part of the building to another would be a key benefit of graph-based

analysis. By predicting the arrival times in this manner, we could attach a proba-

bility to where occupants are likely to be in the near future without simulating it

first. Such predictions could be used for tasks such as problem-space-decomposition

(dividing the simulation world into discrete sub-simulation) if it can be determined

that different groups are not likely to meet at the same place at the same time (and

hence interfere with one another, which would require micro simulation to model

accurately).

Unlike the constant flow scenarios in the path testing of Section 5.4, loss in traversal

time caused at congested edges can be made up by the group on other, less con-

stricted edges. With micro-Macro coupled graphs, we can estimate the time taken

for a group of occupants to traverse a given path by taking the summed average

minTraversal and maxTraversal values of each edge in the path, and adding on the

delay caused by queuing due to limited capacity. Experiments using limited crowd

sizes rather than the steady flow of occupants used in path testing suggest that

the average traversal time for individual agents falls between the total minTraversal

and maxTraversal values for the path. In these experiments, a group of occupants

of random size (between 5 and 25) is generated in EvacSim at a random node loca-
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Table 3: Group Traversal time estimate accuracy, first arrivals

Achieved:estimate 0.93:1
Standard Deviation 0.13:1

tion and instructed to travel to another random node in the graph, with the path

computed using A* (Figure 50).

Figure 50: Group Traversal Time Experiment screenshot

The time taken for the first agent to arrive at the destination is then compared with

the average of minimum and maximum traversal time estimates from the graph:

having identified the edges on the route the group is taking, we can compute the

estimated first arrival time using (2). with the ratio between this estimate and what

was measured shown in Table 3.

∑n
i=0(MaxTraversali) +

∑n
i=0(MinTraversali)

2
(2)

As this approach shows good accuracy for first arrival prediction, we next need to

predict the time taken for the last occupant in the group to arrive at the destination.

With these two values, we have the bounding times where the crowd is present at

a given node. To estimate the last arrival time, we account for the delay caused by

queuing at the most congested edge (the edge with the smallest capacity value) and

add this to the time taken for first arrival, 3.
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Table 4: Group Traversal time estimate accuracy, last arrivals

Achieved:estimate 0.98:1
Standard Deviation 0.17:1

((∑n
i=0(MaxTraversali) +

∑n
i=0(MinTraversali)

2

)

+

(
crowdsize

minimumCapacity([0− n])

))
∗ TimeUnitAlpha

(3)

In Table 4 we show the averaged ratio of achieved to estimated last arrival times

(estimates computed using 3). In these result we see that the ratio is quite close to

1:1.

These results demonstrate that by using micro-macro coupled graphs, we can make

accurate predictions about the time taken for crowds to traverse between arbitrary

points in a building, by not only accounting for the traversal times of the edges

(based on the average of minimum and maximum traversal time values) but also

by accounting for the size of the crowd and the capacity of edges. By coupling the

macroscopic graph to the microscopic simulation to produce accurate capacity and

traversal values, we can use the macroscopic graph as a powerful predictive tool in

its own right.

5.6 Flow Graph Limitations

In this chapter we showed that coupled Flow Graphs can be useful for predicting

traversal times and congestion for simulated occupants in microscopic simulation.

While this is certainly true in the case of single flows of agents (Section 5.4) and

single crowds of occupants (Section 5.5 ) there are limitations to the Flow Graph

approach which become apparent when simulating multiple simultaneous flows with

the EvacSim microscopic model. In particular we note that Flow Graphs do not

model contra-flow scenarios well. With bidirectional edges, examining Flow Graphs

alone suggest that a maximum flow is achievable simultaneously in both directions,

which is extremely unlikely. Similar difficulties arise when considering simultaneous

arrival of two separate streams of occupants at a single common node, or attempts

to split flow in two directions departing an origin node. A related problem is that

of two streams crossing each other at a common node (a “crossroad problem”);

while no edge appears on both paths, the collision of both streams results in much

lower flow than suggested by the graph. In this section, we investigate the impact
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of these graph limitations on traversal time prediction, by testing simple examples

on a subsection of the B2 building graph which features a roughly cross-shaped

section. The four scenarios tested are Crowd Merging, Junction Contraflow, Direct

Contraflow and Crossroad (Figure 51).

(a) Crowd Merging (b) Junction Contraflow

(c) Direct Contraflow (d) Crossroad

Figure 51: Simultaneous Flow through junction experiment scenarios

We point out that in each of the heatmaps for this section, the area around the

starting positions for crowds tends to have cool blue heatmap points as the agents

begin the experiment in stationary positions and hence appear to have low velocities

in these early heatmap points.

5.6.1 Crowd Merging

Figure 52: EvacSim Screenshots: Crowd Merge Experiment (start, middle, end)
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Table 5: Crowd Merging traversal time prediction results

First Arrival:Estimate 1.01:1
Standard Deviation 0.14:1
Last Arrival:Estimate 1.06:1
Standard Deviation 0.06:1

By repeating the experiments in 5.5, but using two separate crowds in the simulation,

we can demonstrate the limitation of using flow-graphs alone. To show the impact of

merging two crowds that have different starting positions but common destinations

(Figure 51(a)); this experiment is repeated in EvacSim 10 times with random crowd

sizes (Figure 52) . While the first-arrival time for this scenario using Formula 2

holds, the last arrival time (Formula 3) underestimates the amount of time taken

by a small amount.

These results (Table 5) show that the merging of the groups causes a reduction in the

orderly movement of the crowd that causes slower overall traversal compared to a

homogenous crowd all traveling in the same direction, a result reflecting the impact

of crowd merges identified in Chapter 3. The difference between the merging area

and the post-merge can be seen in the velocity heatmap image (Figure 53) where

the area of the merge is cooler, with warmer areas after merging as agents reform a

stream and have passed through the narrow doorway.

Figure 53: Crowd Merge Experiment (Velocity Heatmap, EvacSim screenshot)

5.6.2 Junction Contraflow

The next scenario investigated is that of “Junction Contraflow” (Figure 51(b)),

where one group travels a straight path, and the other arrives perpendicularly onto

the first group and attempts to travel to the first group’s starting position.
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Figure 54: EvacSim Screenshots: Junction Contraflow Experiment (start, middle, end)

Table 6: Junction Contraflow traversal time prediction results

First Arrival:Estimate 1:1
Standard Deviation 0.21:1
Last Arrival:Estimate 1.57:1
Standard Deviation 0.09:1

As with the Crowd Merging experiment, crowds are generated in EvacSim and

instructed to traverse from their start to finish nodes (Figure 54). Having performed

these experiments, we can see the impact of the crowds interaction in the velocity

heatmap (Figure 55). The area around the common node features slower movement

as agents jostle to pass through the junction and while the first arrival estimates

remain accurate, the last arrival times are approximately 50% greater than the

estimates (Table 6) as occupants get delayed in dealing with the two counteracting

flows.

Figure 55: Junction Contraflow Experiment (Velocity Heatmap)

5.6.3 Direct Contraflow

In the next experiment we show the impact of direct contraflow in heavily subscribed

edges. In this experiment, the crowds start at opposite ends of the same path and
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traverse to the other side (Figure 51(c)). The collision of the crowds causes a great

deal of congestion and difficulty, with the attempted contraflow at the doorway node

greatly increasing the time taken for the two crowds to complete their paths.

Figure 56: EvacSim Screenshots: Direct Contraflow Experiment (start, middle, end)

In these expriments (Figure 56), we find that the ratio of First Arrival:Estimate are

still close to 1:1, as one or two agents from each group manages to squeeze past the

other group at an early stage; however the last arrivals take substantially longer than

suggested by Formula 3, as jams form at the area of most limited capacity and the

two flows are in direct opposition (Table 7). In these experiments, the last arrival

tends to take two-and-a-half times as long as the estimate, though the Standard

Deviation for last arrival is quite high, which relates to the size of the crowds. Two

small groups can quickly clear the bottleneck before the congestion effects become

more serious, relative to two large groups which result in protracted jams. The

narrow space where the jam forms is clearly visible on the velocity heatmap (Figure

57) as the cool area located around the narrow doorway.

Figure 57: Direct Contraflow Experiment (Velocity Heatmap)

5.6.4 Crossroad Junction

In this final experiment, we show the impact of two streams crossing in an X-shape:

a crossroad configuration (Figure 51(d)). In this experiment, collisions form at the

common central node as the two streams attempt to navigate the area. As there is
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Table 7: Direct Contraflow traversal time prediction results

First Arrival:Estimate 0.84:1
Standard Deviation 0.07:1
Last Arrival:Estimate 2.48:1
Standard Deviation 1.09:1

Figure 58: EvacSim Screenshots: Crossroad Experiment (start, early, late, end)

not a significant congestion bottleneck here, the crowds can make use of the space

in the area to spread out and negotiate the collision (Figure 58). The results of this

experiment (Table 8) show that the first arrival times are slightly slower than the

estimate, as the collision in the central node causes the agents to have to slow down

and negotiate the area.

As with Direct Contraflow (Section 5.6.3), the crossroad experiment showed an

underestimation of last arrival by a factor of 2.5, however in this case the variance

was slightly lower as the overall congestion of the common space is lower compared

to that going through the narrow door in direct contraflow, and some degree of

allowance is afforded to the agents in the common space as seen in the yellow central

area in the velocity heatmap (Figure 59). It can also be observed in the heatmap

that once the collision area is passed, the flow is orderly and picks up speed as
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Table 8: Crossroad Junction traversal time prediction results

First Arrival:Estimate 1.22:1
Standard Deviation 0.27:1
Last Arrival:Estimate 2.58:1
Standard Deviation 0.68:1

observed by the red bands after each doorway.

Figure 59: Crossroad Experiment (Velocity Heatmap)

5.6.5 Possible Approaches for Overcoming Flow Graph Limitations

While Flow Graphs performed well for traversal time predictions for single-group

problems, the limitations of this approach in handling multiple groups traversing a

common space became apparent when testing junction and contraflow situations.

When modelled as seperate, unidirectional edges, the path between two points over-

estimates the achievable throughput. Without modification, the graph model consid-

ers two contradicting flows to be independent when in reality they are both present

in the same place and directly interacting in the microscopic model. Modifications

to standard flow graph models could alleviate this issue; by associating each di-

rected edge with its reversed equivalent, simultaneous capacity constraints could be

modelled on the graph. Traffic on a single edge could use the full capacity of the

edges, but two groups traversing in opposite directions could only use a portion of

the simultaneous capacity of the two edges.

In addition to considering the simultaneous capacity of opposing edges, graphs mod-

els could model the simultaneous arrival and departure at nodes as a seperate ca-

pacity in addition to the edge capacities. In the Junction ContraFlow and Junction

Crossroad experiments, agents were impeding each other when arriving and depart-

ing a common node, despite being on seperate edges. When multiple flows are
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passing near each other at common nodes, they interact and the total achieved

flow is lower than the sum of the individual edge flow capacities. Considering the

simultaneous arrival and departure of flows as an additional constraint on traffic ca-

pacity could improve the graph model; discovery of the arrival/departure capacity

for multiple edges at a common node could be achieved through a special case of

micro-macro flow coupling, using multiple attempted flows.

In each of these junction experiments, the flows pass through a central junction

node. A simple approach to capturing the phenomena of multiple flows traversing

common space would be to augment nodes to model capacity, in addition to the

edge capacities currently used. This could be achieved by assigning capacity values

to the nodes themselves, or to generate small “loop” edges on each node, which must

be traversed first before flows move onto the departing edge. The limited capacity

of the loop edge would provide a simple means of modelling the simultaneous use of

space when different flows pass through a common node (Figure 60).

(a) Loop Edge added to junction node (b) Simultaneous Flow can be detected on the
Loop Edge

Figure 60: Loop Edge for detecting interaction of flows at junction

5.7 Simulated Evacuation using a Flow-Based Planner and

coupled graphs

5.7.1 Introduction

Having shown that coupling of these graphs to the microscopic EvacSim simulation

led to accurate correspondence between the macroscopic graph perspective and the

simulation, we can now make use of the flow graph as input for a Flow-based Dy-

namic Evacuation Planner. The planner used in this work is “EvacPlan”, a Java

implementation of Hadzic’s dynamic flow-based evacuation planning algorithm [33],

which takes as input the current occupancy state of the building, along with haz-

ard locations and a network flow graph model of the building space. Using these,
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it computes evacuation routes for building occupants in emergencies by reasoning

about the size of groups, the traversal time required to navigate edges, and the lim-

ited capacity of edges. For dynamic evacuation planners to provide reasonable and

safe plans, the flow parameters need to accurately reflect the reality of the building

space.

In these sections we investigate the performance of EvacPlan in evacuation scenarios

using the coupled flow graphs generated in Section 5.3. Evacuations are performed

on a building with its coupled graph, varying the population of occupants and us-

ing EvacPlan plans with a variety of allocation strategies used for distributing these

plans among agents (allocations based on occupant position, sharing of paths and us-

ing initial wait times before beginning evacuation). These results are then compared

with näıve evacuation strategies based on shortest-path evacuation, and safety-based

plans that maximize distance from danger. By investigating EvacPlan’s performance

in EvacSim, we exploit the micro-macro coupled graphs from Section 5.3 for dynamic

evacuation planning, and also explore the problem of allocating multiple seperate

macroscopic-graph-based evacuation routes to populations of macroscopic agents,

and how different allocation approaches impact on evacuation times and safety.

5.8 EvacPlan Dynamic Evacuation Planner

EvacPlan is a Java implementation of Hadzic’s planner [33], programmed by Dr.

Tarik Hadzic and used as a module in EvacSim. It takes as input:

� Flow Graph Nodes

� Flow Graph Edges (with Capacity and Traversal Time)

� Hazard starting locations (Graph Nodes)

� Building Exits (Graph Nodes)

� Building Occupancy (Number of occupants at each node).

EvacPlan computes evacuation routes by considering these elements and using a

multiple heuristic-based approach that combines safety heuristics (avoiding hazard)

while minimizing evacuation time (shortest distance), while considering the limited

capacity of graph edges.

5.8.1 Node Occupancy

As occupancy state is given in terms of an occupancy count on each node in the build-

ing, before invoking EvacPlan, EvacSim performs the “whereIsThis” (Algorithm 17
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call on each agent in the simulation, which returns the appropriate Space and asso-

ciated Graph Node for that agents. From this information, the number of agents at

each node location is registered and established as the current “occupancy” of that

node. Alternatively, simulated sensors could be associated with building nodes and

the sensed data used to determine occupancy (or indeed, real sensors in a real-world

evacuation) but this approach was not used for these experiments.

5.8.2 Edge Occupancy

EvacPlan does not model capacity at nodes, but rather limits the capacity on edges.

When EvacPlan is invoked, it produces a set of plans for each node, with a count

for each plan indicating how many occupants should use each particular plan. Also

attached to these plans is a “delay” value, which indicates how long occupants should

wait before beginning their route. As such, EvacPlan assumes that once an occupant

begins their route, they can continue at the average occupant walking speed all the

way to the exit without being impeded by congestion effects. A consequence of

this assumption for EvacPlan models is that while agents start at a node position,

once they begin their path they will never stop at another node (and thus, EvacPlan

considers occupants to be present on edges rather than nodes once their route starts).

5.8.3 Hazard Locations

Hazard starting location is given as a Node in the graph, and EvacPlan produces

a simple internal hazard spreading model based on the spreading of hazard along

graph edges. The hazard spreads between neighbour nodes at a rate given by 4:

HazardSpreadRate ∗ TimeUnitAlpha
maxTraversalT ime

(4)

This spreading model is used by EvacPlan to avoid plans that cause exposure to the

hazard. EvacSim tracks hazard location by polling EvacPlan to request the set of

nodes that are currently “In Hazard”, with the associated building spaces filled in

with a Fire icon in the EvacSim display. In the evaluation experiments, any agents

present at “In Hazard” locations in EvacSim are considered injured and no longer

participate in evacuation. While the EvacPlan hazard spread model is somewhat

crude and unrealistic, in this work we are exploring the interfacing of macroscopic

graph planning models with microscopic agent movement models to evaluate how

well the EvacPlan plans perform in the more detailed microscopic environment, and

the impact of different path allocation strategies on evacuation outcomes. In real-

world deployment of simulation for evacuation more detailed hazard models would
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provide for a richer simulation overall; however as we are evaluating pedestrian

movement models rather than fire spread simulation, we use the EvacPlan hazard

spread model as the model for hazard spread in EvacSim.

5.8.4 Exit Locations

EvacPlan models the Exits of the building in the form of a single “Exit” node, with

edges of infinite capacity and 0 traversal time connecting this node to the build-

ing’s emergency exit locations. In these experiments, we select perimeter doorway

nodes as emergency exits and Planner Evaluation Experiments. To investigate the

performance of the EvacPlan evacuation planner using microscopic simulation, we

set up emergency evacuation scenarios using the grid-like B2 building from Chapter

4, with 4 exit nodes, placed at the top, sides and bottom of the building (Figure

61). This building model was chosen for these experiments as it features a variety

of topology features which will provide numerous challenges for the planner; some

perimeter doorways are close to each other, and there are many junctions where

different flows might interact.

Figure 61: EvacPlan evaluation building (”B2”)

5.8.5 Experiment setup

In these experiments, we begin with an initial deployment of occupant agents, scat-

tered throughout the building at randomly generated positions. The agent node

locations (given by “whereIsThis”, Algorithm 17) form the basis of the Node Oc-

cupancy data given to EvacPlan for computing routes. At the beginning of each

experiment, a hazard location is chosen (placed at the centre of the building in

these experiments), which are converted to a graph node via “whereIsThis”) and

EvacPlan computes evacuation routes for the agents in the building, which are then

allocated to the agents and enacted by the agents using the Hybrid Path Planning

(Section 4.9).

Experiments are conducted varying the overall population from 100 agents to 900.

Agents have parameters established based on Chapter 3, with walking speeds taken
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from a standard distribution of typical pedestrian speeds as validated in that Chap-

ter. Agent starting positions and speed distribution are chosen using the same

random seed for each experiment instance, to allow for experiment reproducibility

and fair comparison between strategies. Evacuation performance is measured based

on two values:

� the amount of time (in simulation ticks) taken for 95% of the uninjured build-

ing population to successfully clear the building

� the number of injured agents ( the number agents exposed to hazard for more

than 10 ticks before 95% evacuation completion)

5.8.6 Plan Allocation Strategies and Building Setup

These experiments are performed using several path allocation strategies. As Evac-

Plan produces routes that are allocated to occupants of the building, we approach

dynamic plan allocation using three different strategies:

� Arbitrary Plan allocation (arb)

� Proximity Allocation Plan Allocation (prox)

� Proximity Allocation Plan Allocation with Delays (prox-d)

The first of these provides individual routes to each occupant, with the plans al-

located arbitrarily to agents at each node without consideration for their specific

position beyond being present at the first node of a path. The second strategy

(prox, assumes a finer degree of localization and communication in which it is pos-

sible to determine which occupants are nearest to the first step of each plan, and

thereby allocate the plans on this basis (resulting in an orderly distribution of routes

and avoiding agents on different routes coming towards each-other at the early stage

of the evacuation. This strategy assumes a fine degree of localization and commu-

nication control that may not be realistic in real-world scenarios, but will result in

flow that more closely matches what EvacPlan would expect, at least early on in

the evacuation.

The third approach allocates the paths using delay values (path delays are used by

EvacPlan to request that the occupants do not start on their allocated path until

after a given delay period). In this manner, we can achieve a more orderly start to

evacuation with a controlled rate of departure, and combined with the Proximity

Allocation strategy, conforms the most closely with EvacPlan’s expectations, though

assumes that the occupants receiving the paths are willing to obey the delay request.

For comparison purposes, we also compare the performance of these path allocation

strategies with two alternative evacuation plan generation options provided by the
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EvacPlan module; these options simply focus on one heuristic (safety or time) at

the expense of the others:

� Shortest Path (shortest path in traversal time to any exit)

� Safest Path (a path that avoids edges that the hazard might spread to soon)

For further comparison, investigating scenarios where communication or control is

limited, the EvacPlan planner is used with a path allocation approach where it

cannot allocate individual plans to different agents. This approach requires that

each occupant at a node receives the same plan (whichever of the several plans

produced for that node would have gone to the majority of occupants):

� Group Plan Allocation (all agents at node receive identical plan)

Hazard location is fixed in the centre of the B2 building from Chapter 4 (with fully

coupled graph), with 4 exits at the perimeters of the building. In the experiments,

the hazard spreads from the centre to the other rooms (Figure 62) at a slow rate

(0.5m/s).

Figure 62: Evacuation progress at 179 ticks and 629 ticks (using Proximity Allocation
without delay, “prox”)

For the comparison experiments using Shortest Path plans, each agent receives in-

dividual plans for exiting the building; but as the shortest path from any node is

identical for all occupants of that node, this is analogous to Group Plan Allocation

without Delay but without accounting for capacity and congestion.

5.9 EvacPlan Experiment Results

For each population size (100–900 in increments of 100) an emergency evacuation

of the B2 building is performed. The agent starting locations are duplicated for

each Plan Allocation strategy, as well as for the Shortest Path evacuation scenario

to ensure fair comparison. In each case, the time taken for the 95% of the uninjured

population to evacuate (”Time to 95”, as per [86]), and the number of injured

occupants is noted.
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Figure 63: Experiment results (evacuation time)

The performance (Figure 63) of Safest Path is the worst among the evacuation

planning options when it comes to evacuation time, a result of the high degree of

caution employed by this method, which takes long paths that maintain distance

from locations near the hazard. Proximity Allocation without Delays (prox) and

Arbitrary (arb) both feature a spike in traversal time at 400 occupants, a result of

the evacuation solution provided by EvacPlan resulting in a significant contraflow

problem at one of the doorways in the eastern part of the building (Figure 64).

Proximity Allocation with delays (prox-d) avoids this contraflow event by placing

delays on the additional agents that would have resulted in the temporary deadlock,

allowing the first flow to pass through before the second flow has arrived.

Figure 64: Temporary deadlock at doorway for 400 agents using prox

In the averaged results (average for 100–900 occupant evacuations, Table 9) we can
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Table 9: Average Evacuation Time for evacuation experiments

Strategy Time (ticks)
arb 936
prox 945
prox-d 860
shortest 897
safest 1405
group 928

see the trend of the Proximity Allocation with Delay (prox-d) performing the best of

the dynamic flow-based evacuation strategies. Proximity Allocation without Delay

(prox) performs more poorly on average than Arbitrary (arb) due to the spike at

400 occupants; but otherwise achieves better results.

As expected, the highly conservative safest path strategy gives the poorest evacua-

tion times, and while the shortest path strategy performs well for low populations,

congestions begins to impede its performance as it does not choose routes with con-

sideration of limited capacity, leading to queuing which causes significant delays.

The group path allocation approach gives quite low average evacuation times de-

spite the reduced control over occupant path allocation, but as we will see in Section

5.9.1, this is at the expense of occupant safety.

5.9.1 Injury count

Figure 65: Experiment results (injury counts)

In each of these experiments, no injuries were encountered at population counts
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Table 10: Average number of injured agents at time of 95% evacuation

Strategy Average number of Injuries
arb 47
prox 41
prox-d 46
shortest 55
safest 42
group 54

below 400 (Figure 65); with Shortest, Safest and Group having no injuries below

500 agents as these plans tend to avoid edges that are about to become hazardous

soon: Safest avoids these edges generally, and Group puts all occupants on a start

node onto the same route which is often also the one that avoids edges that will

become hazardous. Shortest performs well on injuries for these lower population

counts simply because it will clear the building the most quickly when congestion is

less of a factor, but soon results in greater casualties as the population size increases

and queuing in areas that become hazardous leads to injuries.

Unsurprisingly, the congestion and hazard-unaware planning strategy of Shortest

path performs the poorest on injury counts at higher populations. The intelli-

gent flow-based plans had slightly increasing injury counts as the population size

increases, though these occasionally outperformed the Safest strategy due to the

quicker clearance of areas possible when distributing the building population more

evenly based on path capacities. Proximity Allocation without delay (prox) outper-

forms Arbitrary allocation (arb) on injury counts, a result of the more orderly initial

clearance of starting positions provided by this strategy. The additional delays used

by Proximity Allocation with delay (prox-d) performed less effectively than without

(prox), or arbitrary (arb), suggesting that requesting occupants to wait before start-

ing their path is not an effective approach achieving smooth evacuation. Due to the

method that evacuation times are calculated (time taken for 95% of the uninjured

population to clear the building), the lower evacuation times for prox-d can in part

be attributed to the lower uninjured population remaining in these cases, relative

to prox and arb.

Group path allocation (where every occupant at a node receives the same path)

performs similarly to shortest path; while these approaches give smooth flows of

occupants (as every occupant in a group will be heading in roughly the same direc-

tion), the group allocation approach discards much of the capacity-sensitive power

of EvacPlan and causes an excessively large population of the agents to travel in the

areas near to hazard.

Averaging results between the runs (100–900) for each strategy (Table 10), we can

99



conclude that Proximity Allocation without Delay (prox) achieves the best results

on average for injuries. While safest performed well at low populations, at 700

and above it performed poorly as the congestion effects limited the rate at which

this approach could successfully clear the population. arb slightly underperforms

relatieve to prox, and despite the spike in evacuation time encountered by proxat

400 occupants, it still outperformed arb on injury count at this population size.

prox-dbegins to result in slightly elevated injury rates to the strategies that ignored

delays, due to the additional time taken to clear the initial positions of the occupants,

causing some early injuries that are not as prevalent with arb and prox.

5.9.2 Evacuation performance over time

Figure 66: Evacuation rates for 800-occupant problem

An alternative perspective on the evacuation rate for the different planning and al-

location strategies is shown in Figure 66. This figure shows the number of occupants

successfully evacuated for 100 ticks of the simulation for the 800-agent evacuation

task. The safest approach performs well early on but after 700 ticks or so it begins

to slow down considerably relative to other strategies. The shortest approach, which

does not account for congestion or hazard location, is consistently slower than the

congestion-aware plans throughout the evacuations. Rate of evacuation for prox-d

(nearest first with delay) is generally lower than the other dynamic plan allocation

strategies, due to the delay in departure of occupants early on having a knock-on

effect on the rate of travel through the building and out.
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Figure 67: Rate of injury for evacuation of 800 agents

In Figure 67 we show the number of injuries at each timepoint, showing that for

all strategies, there is a large spike in injury count at 500-600 ticks, a result of

the hazard spreading into the area near to exit at the bottom of the building, and

after this point there are few additional injuries. Group path allocation achieves

the highest values, with shortest performing only slightly worse. While the paths

allocated to groups are generated with congestion and hazard location in mind,

EvacPlan’s algorithms expects the group to split in different directions; when the

occupants disobey this and stick together performance is very poor.

Here we see proximity allocation without delay (prox) providing the best overall

result in the 800-person problem; while the rate of evacuation is similar to arbitrary

allocation (arb) at 600 ticks (Figure 66), prox and prox-d have fewer injuries prior to

this point due to the smoother early departure of agents these can provide. prox and

prox-d also manage to clear a greater number of agents through the time-sensitive

area that the hazard spreads into, resulting in fewer occupants getting caught in

the hazard. prox-d features slightly higher injuries than prox after this point due

to the time lost through the delay resulting in a greater number of agents being still

present at the area into which the hazard spreads later into the emergency.

5.10 Conclusions

By simulating the movement of pedestrians in a two-dimensional free space pedes-

trian simulator, we can determine the throughput and walking speeds of crowds
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through particular spaces. By simulating the movement of crowds along spaces

associated with edges on a network flow graph, we can discover appropriate flow

parameters for this graph. Through experiments, we showed that determining flow

for edges on an individual basis produces accurate throughput and traversal time es-

timates on multi-edge paths through the graph by comparing these estimates with

simulated crowds moving along several edges in sequence. These coupled graphs

correspond well with the microscopic simulation results (which in turn is based on

the agent model validated using real-world pedestrian data in Chapter 3). We dis-

covered that small error in capacity estimates over paths tend to balance out, but

that the macroscopic flow graph alone did not provide sufficient detail to predict

the small errors.

By coupling the macroscopic graph flow parameters to the simulated motion of

microscopic agents along those flows, the macroscopic model can reflect some of the

nuance of pedestrian space use that would not be possible using basic building safety

guidelines for space capacities and traversal times. The flow graph attains some of

the realism of the microscopic multi-agent simulation while maintaining its strengths

in computational and analytical simplicity and scalability. We demonstrated the

predictive power of coupled graphs, showing that the graph parameters can be used

to predict the first-and-last arrival times for groups of agents traversing the building

space in EvacSim. As the graph parameters reflect the results of EvacSim simulation,

the graph can easily be analysed to make predictions about group movement in

the microscopic simulation, allowing for analytical reasoning and prediction about

microscopic agent simulation that would otherwise not be feasible, or inaccurate (e.g.

traversal time based on straight line distances rather than flow graph parameters).

In Chapter 6 we will look at exploiting the predictive power of Coupled Flow Graphs

to increase the scalability and performance of EvacSim, by using this kind of Graph-

Based prediction to subdivide the simulation world based on the likelihood of oc-

cupants being in proximity to each other in the near future. Exploiting the cou-

pled graphs in this way allows for scalable simulation of multiple future states in

short time-frames, enabling the development of new evacuation sensor reporting

approaches based on predictive scenario simulation.

In this chapter we also investigated some path configurations that demonstrate some

limitations of Network Flow Graphs in general; in these cases the traversal time esti-

mates overestimated the achievable times as the graph cannot model the interaction

of separate flows without significant modification. In general, the EvacPlan imple-

mentation of Hadzic’s planner [33] performed quite well in evacuation problems.

While evacuation plans that maximize safety above all else tended to produce low

injury counts, they also led to high evacuation times which increases the risk of ex-

posure for the occupants. Similarly, the Shortest path planning approach provided
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low evacuation times (to a point) but at the expense of occupant safety, and due to

the inability of Shortest Path to account for the limited capacity of building space,

this approach becomes progressively worse as the building occupancy increased.

The three dynamic path allocation strategies (Arbitrary, Proximity Allocation and

Proximity Allocation with Delay) each produced encouraging results for evacuation

time and injury counts. As might be expected, by allocating routes to agents based

on their proximity to the next step first, a group of agents that needs to be split in

half can easily cleave down the middle and head in opposite directions without caus-

ing a contraflow situation at the beginning of the evacuation. Conversely, allocating

paths arbitrarily to the occupants at a node gives a poorer result as this initial first

step is chaotic as occupants shuffle through each-other to reach their respective next

step.

A common issue in various instances when using the dynamic evacuation planner is

its difficulty dealing with contraflow situations. In Section 5.6.1 we found that use of

the building that causes contraflow (two flows in opposition) and junction crossroad

(flows crossing a common central node simultaneously) are not modelled well in

Network Flow Graphs and on many occasions this resulted in a long delay in parts

of the building where these would occur, increasing the final evacuation time and

occasionally resulting in casualties if the hazard has spread into the congested area.

Despite the inaccuracies of macroscopic graph planning relative to the occupant

movement, the congestion-aware planning consistently outperform alternatives when

congestion is a factor in the evacuation.

The Proximity Allocation with Delays (prox-d) allocation approach performs the

poorest of the three dynamic path allocation strategies on average injury rates over

the range of population sizes, but in the high-population problems it was the best of

the three “smart” plan allocation approaches with respect to this metric. Enforcing

the delay on agents leads to a smoother use of the building space and is less likely to

result in excessive queuing at bottlenecks as the overall flow in the building is kept

smooth. When considering the additional “good behaviour” required of occupants

to not only divide into groups as instructed, but also to wait when told to, these

results that paths with delays may not be an appropriate solution. Furthermore, in

the case of a sparsely populated building, it is preferable to discard the delays.

Path allocation using Proximity Allocation without delays (prox) produced good re-

sults overall, but, as with prox-d, requires a very fine accuracy of localization in order

to achieve these results; it requires the localization of occupants and the direct com-

munication to these occupants in order to operate. While this is easy to implement

in simulation, real-world constraints limit the possibility of this kind of approach to

path allocation. When considering very limited communication capabilities or the

natural group-formation behaviour of occupants (using the “group” path allocation
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strategy) the EvacPlan planner achieved poor results; though it should be noted that

the plans EvacPlan generates for this purpose assume that it is possible to split the

group up and the poor performance is a result of the significant deviation between

this expectation and the simulation reality. When considering evacuation problems

in this context (where there is a lack of fine control over occupant movement or

localization, or when considering human nature), a different approach to dynamic

evacuation planning is needed to consider these limitations. While EvacPlan and

similar dynamic evacuation planners (Section 2.4.3) are designed to rapidly re-plan

to respond to the evolving state of the building evacuation, replanning is of little

use if the newly generated plans are subject to the same limitations as the original

evacuation plans.

Considering the limitations of tracking and communication, planning strategies with

these limitations in mind should be developed, for instance:

� Plans that can be implemented through building signposting rather than direct

communication

� Plans that guarantee that everyone in a particular starting position is given

the same plan

� Solutions that do not rely on initial delays as a flow control mechanism, as

occupants are unlikely to obey delays

104



6 Exploiting Macroscopic Models for Microscopic

Simulation and Sensing of Multiple Future States

6.1 Introduction

In Chapter 5 we investigated how macroscopic graph models could be improved by

coupling with detailed microscopic simulation to allow for macroscopic-level reason-

ing to match closely with microscopic results. These results showed how macroscopic

models are improved through integration with more detailed microscopic models, as

demonstrated in traversal time predictions and the performance of flow-based dy-

namic evacuation planners. In this chapter, we reverse the relationship, exploiting

these coupled Macroscopic Graphs to improve the microscopic multi-agent simula-

tion.

In Section 5.5 we showed how, for individual groups, the coupled flow graphs were

capable of accurate traversal time estimations for travel along paths, providing first-

and last-arrival times that closely matched those achieved in microscopic simulation.

In Section 6.2 we exploit these first- and last-arrival time estimates to make predic-

tions, on the macroscopic model, about when and where different groups of agents

might meet each other in the building within the near future. As isolated groups

are predictable, they need not be simulated within the same simulation instance as

other groups, and by dividing simulation space based on predicted interaction, we

can reduce the complexity of simulation by reducing the number of agents present

in any given sub-simulation.

As we showed in Section 5.5, isolated groups are predictable but when different

groups meet each other in the building space, the impact on traversal times is

volatile. Furthermore when accounting for the possibility of information exchange

and changing paths, the interaction of two groups (forming a new group) could lead

to a variety of different outcomes depending on which path the merged group follows.

By sub-dividing simulation based on predicted interaction of groups, we can reduce

simulation complexity while allowing for a reasonable number of branching future

states, a powerful capability for emergency simulation in short time-frames.

Finally in Section 6.3 we describe simulation-derived Sensor Pattern Matching, an

approach that takes the simulated multiple potential future states of 6.2 and gener-

ates sensor “fingerprints” associated with each simulated future branch. As the dif-

ferent future states might differ significantly from that expected by dynamic evacua-

tion planners (and require re-plans), by producing the re-planned evacuation routes

ahead of time for each future state the new plans can be ready immediately enacted

when observations match precomputed states. Using this approach, we can exploit

the predictive capability of simulation of multiple future states to respond to the
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evolving state of the emergency with pre-prepared contingency plans. This approach

allows for quick response and ahead-of-time simulation within tight time-frames, and

also allows for pattern matching and dynamic guidance on-scene in case of loss of

connectivity with central computation facilities.

6.2 Problem Decomposition

Combining the evacuation plan allocation of 5.7 (allocating plans to individuals in

the building) with the traversal time estimates of 5.5, we have the parameters for

prediction of future locationss for agents as they follow their routes, provided that

they do not interact with groups on different paths later in the building (which

can lead to inaccurate prediction results, as we found in 5.6.1). By combining the

information about the locations visited on routes with the number of occupants

allocated the same route, we can group occupants according to their allocated paths

and use these groups, with the macroscopic flow graph, to determine the First- and

Last-arrival times at each node on the route.

In Section 5.6.1 we found that for single groups these predictions were accurate,

but when multiple groups meet each other in the building (such as at T-junctions

or in contra-flow situations) the traversal estimates are unreliable. Furthermore,

when different groups meet in the building they are likely to form a larger combined

group rather than maintaining their original routes. When two groups combine, the

traversal prediction procedure needs to account for the multiple possible routes that

the combined group can continue on (if the remaining routes are different) as well

as the larger size of the new, combined group. For large numbers of groups and

routes, this results in explosive growth of possible future states where groups meet

and combine and follow different routes than those that they started on (Figure 68).

In Appendix A.4 we show how the performance of EvacSim scales based on the

quantity of agents simulation, and also their density. When groups of agents in

one area of a building do not interact with agents in another (such as when their

paths don’t meet, Figure 69, or one group passes through a space some time before

another), they can be safely simulated seperately. In A.4.4 we showed performance

improvement achieved by geospatial locality indexing, which maintains an index

of agent locations and uses this to avoid inter-agent calculations where the agents

are not adjacent in space (spatially orthogonal). By using the macroscopic graph

to predict when groups are present and at which nodes, we can determine which

occupant groups are orthogonal to each other in time and space and simulate them

seperately (and hence reduce the amount of inter-agent computation and limit the

number of future states considered).

Decomposing the problem in this manner and computing it in parallel would enable
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Figure 68: Expansion of potential future states for 3 groups meeting in the building

Figure 69: Orthogonal Paths

many more possible futures to be simulated in a time-frame that allows for predictive

feedback to fire-safety personnel during the emergency. Further, by handling the

uncertainty of evacuation scenarios using an agile simulation strategy, we responding

to new evacuation data and quickly decomposing the problem space to drive a new

cycle of simulation.

6.2.1 Overview and Assumptions

Our approach is to perform a series of filtration operations to produce the parameters

for a set of several simulations. As there are limitations on time and computational

resources, we make some simplifying assumptions as to occupant behaviour and anal-

yse the building structure to identify where occupants are likely to meet each other

in the building. While occupants during emergencies are inherently unpredictable,

we believe it is pragmatic to disregard the possibility of particularly unusual be-
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haviour (such as occupants heading away from exits or splitting up groups) until we

receive information that this unusual behaviour is actually occurring in the building

via sensor data or eyewitness reports.

By analysing the building structure (in the form of a network flow graph), we can

determine which occupants in the building are orthogonal in time and space before

we go to the trouble of simulating them together at once. Spatially and temporally

orthogonal groups of occupants can be simulated in separate simulation instances as

their members are not predicted to interact with each other. For instance, occupants

on opposite ends of a building are not likely to meet each other when evacuating,

and can be safely simulated separately without concern for modelling interactions

between the groups.

To determine which occupants interact with each other, we first assume that oc-

cupants that begin the evacuation together on the same route form a group. We

assume this group will stick together and may follow one of several routes out of the

building, either those allocated by an evacuation planner, or chosen by the group’s

own decision making procedures. We also assume that when separate groups meet

each other during the evacuation, they merge together and continue using one of

the constituent groups’ routes. By grouping occupants in this manner we reduce

the problem complexity significantly, as we focus on permutations of group decisions

rather than of individual occupant decisions.

6.2.2 Route Allocation

Occupant groups have a number of options as to how they may proceed out of the

building; in fact if we allow looping there are an infinite number of routes to exits.

To reduce the problem space, we make some assumptions about likely occupant

behaviour. We assume there are a limited number of routes the occupants are

likely to take; in this work we make use a hazard- and congestion-aware evacuation

planner (EvacPlan, as used in 5.7) to produce routes which are communicated to the

occupants using the “Proximity Allocation without Delay” (prox) path allocation

of Section 5.8.6 . This evacuation planner accounts for the location of hazards

and produces evacuation routes that minimize evacuation time and exposure to the

hazard. Alternative route generation schemes could be used, such as group-level

agent planning or exploiting day-to-day sensor data to discover common exit routes,

approaches which we consider for future work.

108



6.2.3 Complexity and orthogonality

The number of potential futures simulated is contingent on the number of possi-

ble routes the occupant groups could take, and the amount of interaction between

groups. As we assume groups that meet in the building could proceed according to

either constituent group’s route, there is the potential for many branching future

states (Figure 68). In this figure just three initial groups (A on route “a”, B on

route “b” and C on route “c”) could potentially meet at many different times and

decide to take many different routes from those meeting points after merging to-

gether (AB(a) meants C(c) and produces AB(a)C(c) using the “a” route or the “c”

route”).

In this research we perform initial analysis of the Network Flow Graph and Routes

in order to filter out combinations which are unlikely to occur, and only simulate

the remaining combinations. By exploiting the Network Flow Graph to determine

the times at which crowds arrive at nodes, as well as the duration they spend at the

node, we can identify when and where crowds might meet each other. Crowds that

do not meet at any time in the graph are considered to be spatially and temporally

orthogonal to each other and do not need to be simulated together (Figure 70). This

characteristic is crucial to reducing the problem space, as we do not need to simulate

the product of the permutations of multiple orthogonal crowds.

Figure 70: Two crowds occupying the same space but at different times are orthogonal to
one another

In the case that multiple groups meet each other in the building, we need to account

for the branching possibilities that proceed from the interaction. Where crowds

meet, they interact, share route information and lead to greater queues and delays

on the groups. In our approach we merge the groups together and investigate the

branching futures where they proceed along any one of the original groups routes.

For instance 3 groups of 10 meeting leads to investigation of 1 group of 30, and the

3 possible routes it could take (as drawn from the original 3 groups).
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6.2.4 Discovering Orthogonal Future States

Crowd-Route generation

Each node in the Network Flow Graph has an initial occupancy value, reflecting the

presence of occupants as reported by sensors. This occupancy information initializes

a “Crowd” object for each occupied node in the graph. EvacPlan provides sets of

likely routes which could be followed by occupants at nodes, each combination of a

route with a crowd generates a CrowdRoute object. For example, twelve occupants

at a node have three routes assigned to their members. As we assume that the

Crowd does not split up, this results in the generation of three CrowdRoute objects

of size twelve, accounting for the three routes that the group of occupants could

take in exiting the building.

Time expansion of Network Flow Graph (TimeGraph)

In this scheme, we filter out impossible future states of the evacuation within a given

time period. To achieve this we divide the time period into individual timepoints (at

15-tick intervals) and each Node has a list of occupancy records, which will be used

to represent occupancy of the Node at each timepoint. This allows us to recognise

that two groups passing through the same node at different times are orthogonal in

time and hence do not collide. From now on, we refer to this time-expanded network

flow graph as a “TimeGraph”.

First- and Last-Arrival calculation

We determine that two CrowdRoutes interact if they ever occupy the same space at

the same time. To determine if this is the case, we work the CrowdRoute through

its route on the graph, determining the earliest and latest arrival time at each node

during its journey and noting the presence of the CrowdRoute at each Node for

any timepoints between these two values. The earliest arrival of a member of the

group at each node is given by the traversal time over the connecting edge. The

latest arrival time is dictated by the size of the Crowd and the capacity of the

edge, (as discussed in Section 5.5). As such, a narrow corridor may take longer for

a large crowd to traverse than a wide open space, due to queuing. This queuing

leads to members of the CrowdRoute arriving at the next node over the course of

an extended period and they are more likely to collide with other CrowdRoutes as

a result. Note that this computation is carried out on the TimeGraph before we

execute any expensive multi-agent simulation.
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Algorithm 8: First and Last Arrival calculation

Data: (TimeGraph) TG, (Set) CrowdRoutes
(int) maxdur = 30;
(int) T = 0;
foreach CrowdRoute CR ∈ CrowdRoutes do

(Node) n = route0;
(Node) m = route1;
(int) i = 1;
while i 6= route.size() do

(Edge) e = TG.getConnectingEdge(n,m);
(int) firstArrival += (E.minTraversal + E.maxTraversal)/2;
(int) lastArrival += firstArrival + CR.size/E.capacity;
for (int) p = T+firstArrival; p < T+lastArrival; p++ do

n.addAtTime(p,CR);
if p < maxdur then

m.addAtTime(firstArrival+p,CR);
end
T = T+firstArrival;

end
m = n;
i++;

end

end

CrowdRoute collision discovery and merging

Having traced each CrowdRoute through the graph (along with any new Crow-

dRoute objects generated as a result of merges), we can then examine each time-

point on each Node to determine if and where CrowdRoutes simultaneously occupy

a node. In cases where CrowdRoutes interact, we merge the CrowdRoutes together,

and repeat the “First-and-last-Arrval” calculations using the new merged Crow-

dRoute (unless the CrowdRoutes involved contain the same Crowds as each other,

as a Crowd cannot collide with itself).

In the case of a merge, all the colliding CrowdRoute Crowds are combined together

into a combined Crowd object. This Crowd has a size equal to the sum of the

constituent crowd objects. Each original CrowdRoute’s Route is used in the creation

of a new set of CrowdRoute objects which are inserted into the TimeGraph nodes at

the timepoint of the earliest first-arrival among the colliding CrowdRoutes at that

node. The merged CrowdRoute contains a record of the constituent Crowd objects

and the routes they were following before the merge occured.

Example:

� CrowdRoute A-a, B-b and C-c collide at a node.

This produces three new CrowdRoute objects (one for each route they proceed on):

� CrowdRoute A-a, B-b, C-c(a)
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� CrowdRoute A-a, B-b, C-c(b)

� CrowdRoute A-a, B-b, C-c(c)

The new CrowdRoutes are inserted into the graph at the node the collision occurred,

at the earliest timepoint any of the constituent CrowdRoutes was present at that

node and the first-last arrival operations (Algorithm 8) are performed for these new

merged CrowdRoutes. This may in turn lead to the discovery of more collisions and

generate further merged groups; this continues until no new collisions are discovered

(Algorithm 9). The maxdur value provides a natural termination point for this

cycle, indicating how far into the future we intend to simulate.

Algorithm 9: Collision Detection and Merge Operation

Data: (TimeGraph) TG
foreach Node n ∈ TG do

foreach Timepoint T in N do
if |T.contents| > 1 then

if !(exists(CrowdRoute(T.contents))) then
(int) arrival = earliestArrival(N,T.contents);
(Set) Routes = getAllRoutes(T.contents);
Routes.removeDuplicates();
Routes.startFrom(N);
foreach Route R ∈ Routes do

(CrowdRoute) merged = new CrowdRoute(T.contents);
merged.setRoute(R); N.addAtTime(arrival,merged);

end

end

end

end

end

6.2.5 Instance generation

The Collection of all CrowdRoute objects generated during the collision detection

and merging phases represents the possible ways occupants in the building could

meet and proceed together. Each CrowdRoute generated as a result of a merge

features the constituent Crowds as well as the routes that they took in arriving at

the node at which the merge occurred. CrowdRoutes generated from the merging of

other merged CrowdRoutes also hold the information describing which route they

followed after each previous merge. For each CrowdRoute, we can create a seperate

EvacSim instance.

Each instance contains occupant agents representing the members of the Crowd

objects present in the CrowdRoute. Each occupant agent is given a sequence of

routes to follow; initially following their original route (e.g. occupants from CrowdB
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Table 11: CrowdRoute merging example

CrowdRouteA-a the original three CrowdRoutes
CrowdRouteB-b
CrowdRouteC-c
CrowdRouteA-a B-b(a) A meets B
CrowdRouteA-a,B-b(b)
CrowdRoute[A-a,B-b(b)],C-c(b) A+B on B’s route meets C, uses b
CrowdRoute[A-a,B-b(b)],C-c(b) A+B on B’s route meets C, uses b
CrowdRoute[A-a,B-b(b)],C-c(c) A+B on B’s route meets C, uses c

follow route b) until they meet occupants from other Crowds in the simulation

space. When they meet, they proceed according to the record in the compound

CrowdRoute object.

As an example, following the collision and merge operations, we may be left with 7

CrowdRoutes (Table 11, and illustrated in Figure 71):

Figure 71: Example of CrowdRoute merging. Coloured squares indicate the route the
CrowdRoutes are using

This leads to the generation of 7 seperate EvacSim instances, one for each original

CrowdRoute object and one for each merge operation that occurs. This accounts

for groups merging, and allows for the possibility that two groups might fail to meet

each other.

6.2.6 Decomposition Experiments

These experiments were performed using a model based on the 3rd floor of the Kane

Science Building at University College Cork with initial populations of 85 and 340

occupants (giving a sparse dispersal of occupants in the space, as well as a denser

dispersal with 4 times the density) spread among various office and lecture spaces,

constituting 19 initial occupant groups (Figure 72). This population features a
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mix of large and small groups, and the floor layout produces a variety of routes to

exits and varying flow capacities due to the variety of corridor widths and room

sizes (Figure 73). This floor features six exits and in this experiment we produce

orthogonal simulation sets based on a 40-second prediction period. We repeated

this experiments adjusting the population density and varying the location of the

hazard to produce a variety of different initial states and outcomes.

Figure 72: Experiment building with occupants (small circles) and hazard start locations
(large, outlined circles)

Figure 73: Experiment building with graph

The initial fire was placed in one of 12 starting spots drawn from a 4x3 grid (Figure

73). In each case, we noted the running time for the decomposition procedure, the

number of orthogonal simulation instances produced, and the largest and average

size of each simulation instance in terms of constituent groups. These experiments

were repeated for an 80-second look-ahead period, to determine what impact in-

creasing the duration of time investigated had on the number of simulation sets and

on runtime of the problem decomposition routines.

6.2.7 Decomposition Results

We recorded the decomposition running time and the number of simulation instances

suggested in each case (Table 12). For comparison, we reproduce the EvacSim run-
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Table 12: Problem decomposition experiment results

Runtime(seconds) Number of in-
stances

Occupants per in-
stance

85 occupants, Average: 0.1420 Average: 25.8 Average: 5.7
40 second look-
ahead

Std. Dev. :
0.0984

Std. Dev.: 1.5 Std. Dev. : 0.4

85 occupants Average: 0.1724 Average: 29.8 Average: 6.8
80 second look-
ahead

Std.Dev. 0.117 Std. Dev. 7.2 Std. Dev.2.3

350 occupants Average: 0.3531 Average: 40.2 Average: 32.4
40 second look-
ahead

Std.Dev: 0.1875 Std. Dev.: 2.3 Std. Dev.: 1.5

350 occupants Average: 0.9741 Average: 64.9 Average: 51.2
80 second look-
ahead

Std.Dev: 1.0832 Std.Dev: 8.2 Std.Dev: 8.3

ning time results from A.4.5, to gauge the impact of running times of the simulation

instances (Figure 74)

Figure 74: EvacSim running time for 2-1476 agents

For a population of 85, with both durations, we found that EvacSim simulated the

entire population in a fraction of wall-clock time, 1.5 seconds for a 40-second simu-

lation look-ahead period and less than 3 seconds for an 80-second period. Similarly

we found that EvacSim was capable of producing simulation results at a fast rate

for the population of 350, with runtimes of 7 seconds for simulating 40 seconds of

evacuation, and 13 seconds for an 80-second simulation period.

We found that the decomposition method suggests average simulation instance

counts well below 100, and for the lower crowd density and lookahead period the
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number of instances was very low. For the most part these simulation instances

feature a population count which is a fraction of the total building occupancy, sug-

gesting running times between 0.4 and 1 seconds for each simulation instance. For

long look-ahead periods, the tendency is for crowds to merge together more often

as queues begin to form at exits. We found that for an 80-second look-ahead pe-

riod, the average number of simulation instances is higher relative to 40-seconds,

reflecting the tendency for large merged groups to form as CrowdRoutes converge

on exits.

For some hazard positions, only a limited subset of the building exits appear in

evacuation routes as the hazard blocks some escape routes. In these cases, there

is a tendency to produce a large merged group as the majority of occupants head

towards fewer remaining exits. In these cases, there is a greater runtime for the

problem decomposition software relative to other hazard positions (3 seconds vs

0.2-0.4) as there is a greater amount of crowd merging operations to compute. A

hazard spawning in the leftmost position in the second row cuts off a number of

exits. In the experiment using 80-second look-ahead and 350 occupants, this led to

80 EvacSim instances and with an average of 62 occupants in each one (Table 12).

This result suggests that a balanced decomposition of the problem might not always

possible using this technique alone, as in some scenarios (e.g. limited exits or highly

restricted flow) there is a low degree of orthogonality.

Hazard position has a significant impact on the balance of the simulation sets; a

single high-population simulation instance is more computationally expensive to

compute than a small set, and may constitute a simulation bottleneck as we wait

for the large set to finish simulating before we can make use of its prediction results.

6.3 Simulation for Event Prediction and Sensing

The safety and speed of emergency evacuation of buildings can be improved with the

exploitation of networked smart building surveillance (Appendix A.3.8) and evacu-

ation control components and centralized evacuation planning algorithms (Section

2.4.3). Monitoring of smart buildings is often performed using wireless sensor nodes

which are battery-powered and have limited computation capability. In the emer-

gency evacuation scenario, wireless sensor networks (WSNs) monitor the occupancy

of the building and location of hazards (fire, smoke, chemical spill) and this infor-

mation is combined with knowledge of the building layout to generate evacuation

plans.

The plans can be computed at a centralised Base Station (BS) using an optimal

evacuation plan algorithm based on initial occupancy, knowledge of the building

structure and knowledge of the behaviour of the hazard. The evacuation plan can
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be enacted in the building in the form of a set of instrument actuation instructions,

such as direction signs configured to direct occupants along the optimal route.

Timely response to events in a building during emergency is of key importance to

ensure sensible evacuation planning; if egress of the building proceeds in an un-

expected manner, the system needs to respond quickly and generate an updated

evacuation plan to ensure the safe evacuation of the occupants. Network commu-

nication combined with computation of updated plans may lead to plans which are

already out of date by the time they are received by nodes in the network. Our

goal in this research is to reduce the communication burden on sensor nodes and

improve response time to changes in evacuation progress by using a resource-rich

Base Station (BS) node to predict future movement of building occupants.

By performing Multi-Agent Crowd Evacuation simulation at the BS or connected

server we simulate several possible future progressions of the evacuation. The BS

simulates how each of these candidate scenarios would be perceived by the sensors

and computes the optimal evacuation strategy in each scenario, and then sends this

information to the wireless sensor nodes. As the evacuation proceeds, the sensor

nodes use this information to identify the simulated scenario that best matches

their actual readings. If the sensors determine that one of the candidate scenarios

matches closely to their readings, they can then inform the nearby direction signs as

to the proper evacuation plan to enact without requiring a time-consuming multi-

hop report to the Base Station.

6.4 Candidate Event Simulation

6.4.1 Assumptions

We assume that a structural model of the building is available and that the sensing

coverage region and wakeup schedule of sensor nodes is known by the Base Station.

We assume, before the emergency is reported, that the Base Station has built up

a perspective of the building occupation density in each room, based on reports

from the sensor nodes. We assume that an emergency alert is generated by the

network (for instance, a smoke alarm triggers as a result of fire), and that this alert

informs the Base Station as to the location and likely spread of the hazard. We

assume that WSN nodes periodically report to the Base Station on the estimated

occupancy of their sensing regions. We assume that the WSN includes actuation

instrumentation (such as signposting or direct communication, cf. Sections 2.4.3 and

A.3.8) which can be instructed with via wireless communication to direct occupants

along particular routes. We assume that the nodes have timekeeping capabilities

and that the Base Station and wireless nodes are loosely synchronised. We do not
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assume that there is full sensor coverage of the building.

Progress of the evacuation may evolve in a number of ways, for instance occupants

might all choose to head towards a particular exit, or a group of individuals might

ignore the signpost guidance and take an unexpected route to safety. Occupant

movement is limited by physical constraints such as inability to pass through ob-

stacles, and is motivated by typical human behaviours such as forming groups that

travel together, and avoiding danger.

In our approach (Predictive Simulation Reporting) the BS generates multiple pos-

sible futures (”scenarios”), covering short periods of time (e.g. 40-80 seconds) and

produces a simulated set of sensor readings for each scenario. Each of these scenar-

ios represents different combinations of routes occupants could take to safety, and

variations in occupant response to the signpost actuation. The simulated readings

are sent to the sensor nodes in the WSN ahead of time and the surveillance sensors

are required only to compare their readings with the simulated readings to deter-

mine the best matching candidate scenario. The optimal evacuation plan for each

scenario in the form of actuation instructions to actuation nodes in the network (e.g.

via multi-hop wireless communication)

Our aim is for the sensor nodes to detect if the evacuation is progressing according

to one of these candidate scenarios and inform the actuation nodes as to which

evacuation plan they should implement. We also wish to reduce the communication

burden for reporting evacuation progress to the Base Station by requiring the sensor

nodes to simply report the degree to which each candidate scenario matches what

they actually observe, rather than detailed periodic sensor readings. We believe that

this approach will improve the response time in the network to changes in evacuation

progress without significantly increasing computation or communication performed

by the wireless sensor nodes.

The candidate scenarios are simulated using a multi-agent evacuation simulation

(EvacSim) which simulates sensors and building occupants, generates the scenarios

and produces these simulated sensor readings. These scenarios are generated based

on initial occupancy data and different evacuation routes that groups of occupants

in the building might take. Each simulation cycle produces a set of simulated sensor

readings (based on observations of the simulated sensors) which is associated with

that candidate scenario.

6.4.2 Candidate Event Confidence Calculation

Each sensor in the real network receives their set of predicted sensor traces and iden-

tifier of the associated candidate scenario for each trace. During the real evacuation,

each sensor periodically compares their observations with the expected values for
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each candidate event and determines their confidence in any particular event being

a match for the real event (Algorithms 10 and 11). In the event of a good match,

the sensor can report the ID of the best match to the Base Station. In the case

of no good match, the sensor reports their historical readings to the Base Station

which updates its view of the building based on the unexpected progression of the

evacuation.

We assume that the occupant monitoring sensors are a simple binary motion detector

with limited range. Such sensors detect the presence or absence of occupants within

their range as a simple Boolean True/False value. A Sensor trace for these sensors is

in the form of a time series of boolean values. These sensors are unable to determine

the total number of occupants they can sense and cannot identify specific individuals;

they merely detect presence of occupants within their field of view. This model was

chosen as more sophisticated sensor types can be interpreted with this binary model

(e.g. a complex video camera can categorise motion as a boolean variable).

The sensors compare their real readings with the predicted traces by determining

the number of matching positive readings. Each candidate scenario is given a value

based on the number of matches and the event with the greatest number of matches

is chosen as the best matching scenario.

Algorithm 10: Trace Comparison Confidence (Single Reading)

Data: (boolean) a, (boolean) b
Result: boolean match
match = a ∧ b;
return match;

Algorithm 11: Trace Comparison Confidence (Total Confidence)

Data: (boolean)[] scenario, (boolean)[] readings
Result: (int) confidence
(int) confidence = 0;
for boolean r ∈ scenario do

if Trace Comparison Confidence(r,readings[i]) then
totalConf ++;

end

end
return totalConf;

Confidence assessments are performed periodically on each sensor, taking all of

the sensor readings since the last assessment and determining the total number of

positive matches for each candidate scenario. Each such assessment can be reported

to the Base Station as a sensor report, and if an individual sensor is particularly

confident in a scenario (where that scenario has the highest confidence value and

this value is greater than the next highest by a given threshold), they can instruct
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nearby signpost nodes to implement the associated evacuation plan.

As confidence is based on the proportion of matching non-zero values, this approach

is relatively robust to small changes in the start and finish of positive readings (e.g.

occupants arriving late at a sensor). While the observations in a reading sequence

might not perfectly synchronise with the scenario trace, there is still some overlap

that generates positive reading matches and increases confidence in the scenario.

6.4.3 Pattern Matching Experiments

Two sets of experiments were performed to investigate the feasibility of the Pre-

dictive Simulation Reporting scheme. The first experiment investigates the time

taken for individual sensors to determine a strong positive match to a scenario,

and the number of correct and incorrect matches given by the sensors; the goal of

this experiment is to determine the degree to which individual sensors can be relied

upon to identify the matching scenario based on their own observations. In this

experiment, the sensors identify a scenario match if it has at least 1.5 times more

confidence in it than the next best scenario. The second experiment investigates the

quality of matching when the Base Station receives the reports from sensor nodes

and combines them together.

The experiments were performed in a simulated building (illustrated in Figure 75)

with 7 rooms and an open common hallway space. A group of 20 individuals begins

the experiment in the top-left room. 12 simulated motion-detecting sensors were

placed in the building in a uniform grid. This deployment consisted of a mix of

indoor and outdoor sensors in order to monitor the movement within the building

and also observe occupants successfully exiting the building.

Figure 75: Experiment Building Layout showing initial occupancy (filled circles) and sensor
locations (hollow circles)

In these experiments, nine candidate scenarios were generated by directing the crowd

to travel to one of nine destination coordinates (e.g. bottom-right room, top-right
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exit, top-left exit, top-right room etc.). A tenth scenario was also generated, acting

as a stand-in for a real-world evacuation. The simulated sensor readings for this

scenario acting as the real readings for the purposes of these experiments. Occupants

in the tenth scenario were directed to travel to the bottom-right exterior of the

building, which is approximately the same destination as for Candidate Scenario 1.

The sensing rate of the sensors was set to six scans per second, with a trace compari-

son performed once per second. The experiments covered a 10 second period. These

experiments were repeated varying the Range and Accuracy of the motion-detector

sensors. Range dictates how close an agent needs to be to the sensor in order of

the sensor to detect an occupant (where 100 units is approximate to 3 metres) .

Accuracy dictates the chance for the sensor to fail to detect an occupant within its

field of vision and range (0.0-1.0 where 1.0 results in all occupants being detected

by that sensor).

6.4.4 Pattern Matching Results

The experiments were performed using sensor Range parameters of 80 and 150 units,

and sensor Accuracy values of 0.7 and 1.0. For the first experiment, each time a

trace comparison is performed the individual sensors record if they have made a

scenario match or not, and they note the identifier of the matching scenario. If the

identifier is not that of Candidate Scenario 1, we consider the sensor to be mistaken

(they have matched to an incorrect scenario).

Figure 76 illustrates the ratio of correct to incorrect scenario matches (averaged over

10 iterations of the experiment) made by individual sensors for each combination

of Range and Accuracy values in the experiments; for instance with Range of 80

and accuracy of 0.7, after four seconds we observe an average of approximately six

correct matches for every one incorrect match.

Figure 77 illustrates the number of correct and incorrect matches over time, averaged

over 10 iterations of the experiment: it was found that the average number of correct

matches ranged from 0-4 with the number of incorrect matches ranging from 0-1. We

observe that the more sensor comparisons that have been performed, the greater the

number of correct scenario matches. We also observe that a relatively small number

of sensors (5-6 out of the 12 sensors) tend to identify no particular scenario, this

is a result of these sensors having a limited view of the “real” scenario and hence

lacking enough observations to consider any particular scenario to be a good match

as there is little to distinguish any of them from the observations (as they would not

have observed any motion).

The second experiment was performed to determine how well the Base Station could

identify a matching scenario when it receives all of the Trace Comparison confidence
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Figure 76: Ratio of correct to incorrect scenario matches at individual sensors (average
over 10 iterations)

results as periodic report messages from each sensor node (nodes report the values

for all the scenarios, not just their best match). By summing all of these scenario

confidence values and dividing by the number of Candidate Scenarios, the Base

Station can determine if any particular scenario is a good match.

Figure 78 illustrates the averaged results from each combination of Range and Accu-

racy values for this experiment. This graph plots the proportion of non-zero matches

associated with each scenario as the evacuation progresses. Initially the reports from

the sensors paint an ambiguous picture as there is little to distinguish one scenario

from another. However, as the crowd begins to move through the building, the av-

erage confidence in Scenarios 1 and 8 begins to rise. At approximately the 6-second

mark, confidence in Scenario8 begins to fall as the occupants have opted to head

to the bottom-left rather than the bottom-right of the building in this candidate

scenario. From this point on, the Base Station observes that Scenario1 has at least

twice as many non-zero matches with the real data than the next best scenario. By

combining the basic match reports from the sensors, the Base Station can deter-

mine which scenario is most similar to that which is occurring at an early stage. At

this point, the Base Station could reproduce the graphical display of the matching

scenario to fire safety personnel, or determine whether the current evacuation plans
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Figure 77: Average number of correct and incorrect scenario matches by individual sensors
(average over 10 iterations)

employed in the building should be replaced with others more appropriate for the

current scenario.

6.5 Conclusions

By exploiting macroscopic building model analysis to decompose simulation problem

space, we were able to achieve highly scalable microscopic simulation and simulate

multiple future states of building evacuation which would not otherwise be feasible

within the timeframes of emergency response due to the explosion in problem com-

plexity without such decomposition. Simulation of multiple future states allows for

contingency simulation and planning; having computed many future states in this

manner, the associated simulated sensor readings can be used as the basis for predic-

tive pattern matching during real emergencies. By matching readings to simulation

states (scenarios), basic sensing capability can match to rich simulation informa-

tion. Using basic binary sensing models, we were able to match particular scenarios

with confidence; allowing for basic low-complexity sensing to report their readings

in terms of complex microscopic detail through simple scenario ID matching.

The network flow graph-based problem decomposition (Section 6.2) computes quickly
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Figure 78: Average % confidence in each scenario from Base Station perspective

and produces sub-problems for simulation that can individually simulate fewer oc-

cupants than the overall evacuation scenario, and allow for branching future states

without an explosion in the problem size. We developed and implemented a method-

ology that produces manageable numbers of evacuation simulation instances to com-

pute to simulate multiple potential future states. We demonstrated that this ap-

proach can filter out a vast number of future states based on spatial and temporal

proximity of occupants evacuating. In our experiments we found that this problem

decomposition approach produces a manageable set of future states to simulate, for

a typical building and population size. While the individual instances can be com-

puted on a single device, distributed computation resources (e.g. parallel processing

or cloud computing) could be an effective resource for exploiting the subdivided

problem. Exploring these computing solutions for parallel computation of evacua-

tion simulation problems are a logical next step for exploiting decomposition using

flow graphs.

In 6.3 we designed and implemented an emergency monitoring strategy based on

prediction using a multi-agent simulation. Experimental results showed that this

strategy could be used to achieve a quick response to changes in the progress of

an evacuation without requiring terminal nodes to wait for a response from a cen-

tralized Base Station. These preliminary results use simplified sensor models and a

simple scenario confidence calculation mechanism to identify good scenario matches.

We believe that a quick characterisation of the evacuation progress allows nodes to

locally make a decision as to the most applicable (pre-computed) evacuation strat-

egy.
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7 Conclusions and Future Work

7.1 Conclusions

Integration of micro- and macroscopic models requires that both model types repre-

sent the same simulation world. To achieve this we extracted graphs algorithmically

from the microscopic building geometry, and with graph simplification and augmen-

tation we created multiple graph hierarchy levels, suitable for different purposes.

High-density, high-detail graphs were used for microscopic agent planning, while

sparser graphs were used as a basis for Network Flow Graph generation. As these

graphs have a common root (derived from the original geometry), routes in one can

be converted to the other, allowing for the relaying of plans (such as those generated

by flow-based planners) to agents but not requiring the agents to follow those routes

precisely, instead allowing them to make use of a more detailed dense graph to follow

the list of goals.

Flow-graph coupling to microscopic multi-agent simulation requires that the agent

model of pedestrian movement is realistic, otherwise the Flow Graph will not cor-

respond much with real pedestrians. To validate the EvacSim agent model, we

compared its results with real-world pedestrian experiments in bottlenecks of var-

ious widths and found the model to correspond well with these experiments. In

the case of crowds merging, we found that the agent model had to be expanded in

order to reflect the behaviour of pedestrians when negotiating merges and after do-

ing so, the model reproduced the relationships between Flow and Density of crowd

movement before and during the merging of groups.

By using detailed microscopic social force modelling of pedestrians to establish the

parameters of more abstract macroscopic network flow graphs, Flow Graphs wer

able reflect some of the greater detail and fidelity of microscopic modelling. While

Flow Graphs do still have some shortcomings, particularly in how they model the

interaction of occupants at junctions, through coupling with microscopic simulation

we achieved high levels of accuracy for traversal time estimates for groups travelling

through the building. Using coupled graphs with a dynamic evacuation planner, we

showed that congestion-aware evacuation planning with coupled graphs performed

well compared to shortest-path or safety-maximising plans.

By taking this approach of coupling macroscopic graphs to macroscopic simulation,

we were also able to make use of the reasoning power of graph models to sub-divide

the simulation space of microscopic simulation. Subdivision of simulation problems

based on the interaction of agents based on time and space allows for lower com-

plexity microscopic simulation, and increases the scope of microscopic simulation to

allow for fast, multiple future state simulation. Without macroscopic-level analysis
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to reduce the simulation space, the permutations of inter-agent interaction would

be infeasible to compute within the timeframes of emergencies. By simulating mul-

tiple possible future states of evacuation, we made use of the simulation data to

provide future state sensor fingerprints to building sensor networks, allowing them

to match readings with simulations during emergency, allowing for rapid response

or implementation of contingency plans.

7.2 Future Work

In investigating the impact of crowd merging in flow graphs, we found that the

interaction of different flows on different edges was still a factor within the micro-

scopic simulation. Occupants in different parts of graph models may still be near

each other within physical space and without modification, the graph perspective

of the simulation world cannot detect this. In Chapter 5 we suggested some modifi-

cations to graph models which could help capture some of these interactions which

would expand on the predictive power and accuracy of graph models. Similiarly,

Dynamic Evacuation Planners that make use of Network Flow Graphs for planning

also encounter these difficulties; modifying planners to account for these interac-

tions through methods such as limiting the simultaneous departure or arrival of

multiple flows at common nodes, or modelling the limited capacity of nodes and

edges (instead of just edges as is the case with some planners) could go some way

to improving the planners.

In Chapter 6 we described an emergency monitoring strategy based on prediction

using the microscopic multi-agent simulation to simulate the future states. Experi-

mental results showed that this strategy could be used to achieve a quick response

to changes in the progress of an evacuation without requiring terminal nodes to wait

for a response from a centralized resource. These preliminary results used simplistic

sensor model and a simple scenario confidence calculation mechanism to identify

good scenario matches. Quick characterisation of the evacuation progress allowed

nodes to identify matches to pre-simulated scenarios, which in turn could be used

to select appropriate evacuation strategies. By implementing more realistic sen-

sor types and investigating more sophisticated scenario matching methodologies at

the sensor and base-station, this approach to real time dynamic response could be

expanded, for instance using Dynamic Time Warp pattern matching [87] or using

heterogeneous sensor types.

In future work we will expand on these experiments, implementing more realistic

sensor types and investigating more sophisticated scenario matching methodologies

at the sensor and Base Station. When individual sensors were required to match

their readings with a candidate scenario, we discovered that a relatively small set of
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sensor nodes were able to determine that one of these scenarios was a strong match,

as most sensors did not have a clear field of view of the evacuating group. While the

accuracy of these matches was generally quite good with a typical correct:incorrect

ratio of 4:1, the Predictive Simulation Reporting scheme could be expanded to allow

for local sensor nodes to collaborate together in isolating positive scenario matches.

Local sharing of match confidence may reduce the number of incorrect matches

without introducing substantial additional network traffic.

In Section 2.5 we described some agent grouping approaches that enable individual

microscopic agents to amalgamate into groups, approaches which could be used to

allow for agent information sharing or group-level planning behaviour. Group for-

mation combined with flow graphs could allow for more powerful agent planning

capability, enabling groups to reason about their utilisation of space based on group

size to plan accounting for the probable congestion they would experience taking

different routes. Navigation graphs (as generated in Chapter 4) can be used by

agents to plan routes based on shortest distance using algorithms like A* or Di-

jkstra’s Algorithm, but only account for individual traveral times between nodes.

By using macroscopic network flow graphs coupled with the microscopic simulator

(Chapter 5) we can augment the agent planning behaviour to account for the limited

capacity of edges. While congestion does not have an impact on isolated agents, by

expanding the capability of the agent model to allow dynamic group formation, we

can introduce the ability for agents and groups of agents to reason about sizes of

crowds and the impact crowd size has on traversal times.

In future work we will explore dynamic group formation to allows individual agents

in the microscopic simulation to form groups with neighbours, and the sharing of

knowledge (such as evacuation routes) and group-level reasoning, similar to the

gamma-agent approach described by Olfati-Saber [47]. Group formation would allow

not only for groups to chose routes based on the combination of capacity, size and

traversal time, but also allow for individual agents to plot alternative routes when

they observe queue formation on congested edges on the route they wish to take. By

adopting a group formation strategy and integrating Network Flow Graphs with the

agent model, the ability for groups of agents to perform path planning accounting

for group size and path capacity would great augment the planning capabilities of

agents.

In 6.2 we used EvacPlan path allocation as the grouping approach and basis for

group routes when generating CrowdRoute objects for problem decomposition. Al-

ternatives to this could make use of agent group formation behaviour as the basis

for the initial CrowdRoute generation, or make use of machine learning to determine

the likely paths occupants take when traversing space, collected from building sensor

networks over day-to-day building use or during emergency evacuation drills.
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In investigating the performance of evacuation planning we used a number of path

allocation strategies, some of which are more realistic than others for real-world

deployment. By allocating paths to occupant agents nearest to the first destina-

tion on the path we achieved good evacuation results, but this approach requires a

high resolution of localization which may not be available in real world emergency

situations. In EvacSim, we localized agents by determining which graph node they

were present in; in future we should localize occupants by use of simulated sensor

networks, which may provide a very different perspective on the building structure;

some approaches may only localise occupants to within a large space, and this may

require that many graph nodes be amalgamated into a single node for planning

purposes as the fidelity of localization is limited. Integrating a “sensor localization

graph” with the navigation and planning graphs described in Chapter 4 would be

an interesting expansion to the range of macroscopic models utilized in evacuation

simulation and would allow the integration of the sensor fingerprinting approach

from Chapter 6 with the agent perspective and the coupled flow graph.
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A EvacSim Pedestrian Evacuation Simulator

A.1 Introduction

EvacSim (Figure 79) is a microscopic pedestrian evacuation simulation tool de-

veloped in Java, designed for experimental simulation techniques, development of

pedestrian simulation models, and ultimately for real-time decision support for evac-

uation planning and prediction. The goals of EvacSim are to allow for faster-than-

realtime simulation of evacuations while using a detailed, high-fidelity simulation

model; these two opposing goals result in a simulation design inspired by flocking

techniques that keeps update-to-update computation low and maintains simulation

accuracy in aggregate by updating often relative to wall-clock time.

Figure 79: EvacSim Evacaution Simulator with agents and simulated sensor network

In this Appendix, we outline the EvacSim components and describe how the simu-

lation world is represented and generated. This Appendix is ordered in three parts:

� A.2 - EvacSim World Model (Walls, Rooms, graph generation, building mod-

els)

� A.3 - Dynamic Elements (simulation ticks, occupant agents, building sensors)

� A.4 - Scalability and Metrics (geospatial indexing, simulation layers, density

and velocity collection, heatmaps)

A.2 Simulation World Model

Fundamental to the EvacSim simulation world is the representation of the objects

in space. The world is made up of physical obstacles, occupant agents, sensor net-
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work components and “room” objects that represent traversable free space. All of

these exist in two-dimensional Cartesian Coordinate Space and their locations and

dimensions are all given in context of this Coordinate Space. Taking a set of physical

obstacles (rectangular walls), we divide the simulation world into discrete traversable

spaces (Appendix A.2.4) and from this we produce a building traversability graph,

which forms the foundation of the macroscopic models used for navigation (Chapter

4), planning (Chapter 5) and problem space subdivision (Section 6.2). The build-

ing’s geometry is represented as sets of physical Wall objects, which can be manually

drawn (Appendix A.2.7) or imported as XML files generated from Industry Foun-

dation Classes 2.3 definitions (Appendix A.2.6) .

A.2.1 Coordinate System

The EvacSim simulation uses an integer coordinate system to define the position

of objects in the simulation, with horizontal axis “x” and vertical access labelled

“y”. The origin (0,0) is located in the top left corner of the simulation, with the

two axes increasing in value to the right and down respectively (negative values are

not allowed). This coordinate system is chosen as it corresponds to the graphical

representation of screen space and simplifies the graphical display of simulation

objects. The position and size of objects is expressed in units of this coordinate

system (Figure 80, object height and width is given in terms of points on the grid (i.e.

height of “5” occupies a span of 5 points on the coordinate system, and corresponds

to 5 pixels in display height at normal magnification). Generally, static objects use

whole integer values for Coordinates and dimensions, but some dynamic objects

(notably, occupant agents) make use of floating point values which are subsequently

rounded to the nearest integer for graphical display.

Figure 80: Wall Object in Coordinate Space

As the simulation world is represented in terms of this coordinate space, the cor-

respondence to real world measurements is 15 simulation units to 1 metre. This

conversion ratio was chosen in order to display a large amount of simulation space

in the simulation display window without image scaling, as simulation units cor-

respond to display pixels in the native resolution. Without scaling, a 1280*800

pixel display corresponds to 4264m2 Using image scaling, the user can zoom in
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and out to show more or less of the simulation world which is rendered inter-

nally at the standard resolution (1 uint = 1 pixel) and scaled appropriately using

java.awt.Image.getScaledInstance().

A.2.2 Walls

A Wall object is a rectangular object in two-dimensional space. It is defined by its

“origin” (coordinate location of the top-left corner of the wall), its “height” and its

“width”. A building is composed of a collection of Wall objects (Figure 81 which

are physically impassable and obscure line-of-sight. Extensions to the Wall object

allow for transparent, physical objects (such as windows or guardrails) or for logical

subdivision of space without dividing it physically, though these options do not

feature in this research.

Figure 81: Wall Objects enclosing a space

A.2.3 Line-of-Sight and Collisions

Testing for the line-of-sight between two points is performed by creating a straight

line between the two points; The simulator iterates through each Wall in the Building

and creates a set of four Lines representing the surfaces of that wall (top, bottom,

left side, right side) and performs an intersection calculation between these wall

sides and the line-of-sight Line. Any intersections detected represent a blocked line-

of-sight (Figure 82).

Collisions between objects are detected by creating a ectangle (java.awt.Rectangle)

for each of the objects and checking for an overlap between the objects (via Rect-

angle.intersection(Rectangle r)). Overlaps with positive area indicate a collision

between the objects (Figure 83). In the case of circular objects, the inter-object

collision can be detected by simply comparing the distance between the two objects

with the sum of their radii. By using circular forms for occupant agents, we can ap-

proximate the human shape while availing of this low complexity collision detection
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Figure 82: Line of Sight detection

approach. For the case of a Rectangle colliding with a circular object (e.g. agent

with a wall), EvacSim uses a Rectangle representation of the bounding box of the

circle; this maintains computational simplicity without significant loss of detail.

Figure 83: Collision detection (Rectangles)

A.2.4 Room Detection

A Room is a rectangular object similar to a Wall, and has an origin, height and

width. EvacSim decomposes a space into a set of Room objects that fully tile

the traversable space and are used to produce navigation trees that represent the

traversability of the building space (more details on the manipulation and use of

navigation graphs are found in Chapters 4 and 5). By using Rectangular Rooms as

the space division for EvacSim, identifying Occupant locations is greatly simplified

as it is trivial to determine if an object at a particular position lies within a Rectangle

(as opposed to within an irregular polygon or other alternative schemes). While this

approach can lead to a large number of small rooms when buildings have features

like curves, by approximating the curves using many small Wall objects and using

graph simplification techniques (loop and triangle removal, described in Chapter 4)

we can still achieve good results for building traversability graphs.
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Before the the Rooms are generated, EvacSim can first algorithmically detect the

building’s Doorway spaces and create narrow Room objects for these spaces (in the

case that doorways are not included in the building definition with the walls). To

discover the Doorway Rooms, EvacSim iterates through each Wall object and finds

the two narrow ends (i.e. the two sides of the wall that are narrowest, or all sides

in a tie). From each narrow end of a wall, a 1*n Room object is created, where

n = the dimension of the wall on that side. This Room object is inflated in the

corresponding direction (i.e. to the right from the right side of a Wall, up from

the top side and so on) until it collides with another Wall object or Room. In the

case of collision with a Room, the Door is discarded. If the collision with a Wall

results in an overlap rectangle (Appendix A.2.3) with dimensions equal to 1xn, then

the Room is a “Doorway” room and is added to the set of Rooms. The example

for generating Doorways from the right side of Walls is given by Algorithm 12 and

illustrated in Figure 84. This procedure is repeated for the top, left and bottom of

Walls. By using a maximum Doorway size of 40 units, we can ensure that Doorways

are only generated for spaces up to 2.66m wide, avoiding the generation of Doorway

objects that bridge large gaps between structures such as support columns.

Algorithm 12: Righthand side Doorway generation

Data: (Set) Walls
Result: (Set) Doorways
(Set)Doorways = new Set;
(int) sizeLim = 45;
foreach Wall w ∈ Walls do

if w.width > w.height then
(Room)right = new Room((w.topRight.x-1,w.topRight.y), w.height,
1);
while intersected == null ∧ (right.width < sizeLim) do

right.inflateRight(1);
Wall intersected = intersectCheck(right,Walls)

end
if intersected 6= null then

if (clipped.topLeft == right.topRight)
∧ (clipped.bottomLeft == right.bottomRight) then

Doorways += right
end

end

end

end

Having iterated through each Wall object (and identified the available “Doorway”

Rooms that can be generated), EvacSim moves on to general Room Detection. A

Room can be “inflated”, which increases the dimension of the Room in a particular

direction, e.g. the Room can be expanded one unit to the right, or up. Similarly

the Room can be deflated to reduce a dimension appropriately. Tiling the building
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Figure 84: Doorway Detection

space is achieved by creating 1x1 Room objects and inflating these repeatedly to

the right, and down, until they collide with a Wall or an existing Room. EvacSim

generates a 1*1 Room at the first empty position (i.e. not covered by a Room or

Wall) in the simulation world, starting at 0,0 and iterating down, then right. The

world bounding space is used to limit the amount of space checked and tiled by the

rooms, in this work a 3000 * 3000 bounding space is used. (Algorithm 13) to prevent

infinitely expanding Rooms outside of the building.

When collisions are detected, the Room is deflated 1 unit (to pre-collision values)

and the inflation in the direction that cause the collision is “locked” (Figure 85).

Inflation continues on the unlocked direction until the next collision occurs. Again

the direction is deflated 1 unit and the Room is complete. The next empty coor-

dinate is searched and the process continues until the building bounding space is

completely covered by Rooms and Walls.
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Algorithm 13: Room Generation

Data: (Set) Walls, (Set) Doorways
Result: (Set) Rooms
(Set) Obstacles = Walls ∪ Doorways;
(Set) Rooms = new Set;
(int) limx = 3000;
(int) limy = 3000;
(Coordinates) spawnpoint = (0,0);
while spawnpoint.x ≤ limx do

while spawnpoint.y ≤ limy do
if !clipped(spawnpoint, Obstacles) then

(Room) newRoom = newRoom(spawnpoint, 1,1);
(boolean) LockR = false;
(boolean)LockD = false;
while !(LockR ∧ LockD) do

if !LockR then
newRoom.inflateRight(1);
if intersects(newRoom,Obstacles) then

LockR = true;
newRoom.deflateRight(1);

end

end
if !LockD then

newRoom.inflateDown(1);
if intersects(newRoom,Obstacles) then

LockD = true;
newRoom.deflateDown(1);

end

end

end
Rooms += newRoom;
Obstacles += newRoom;
spawnpoint.y++;

end
spawnpoint.y = 0;
spawnpoint.x++;

end

end

A.2.5 Traversability Graph

The Traversability Graph is generated to represent the traversability between dif-

ferent Rooms in the building. This Graph is composed of Rooms and Intersection

objects as graph nodes with a link between any nodes that are adjacent to each other

in the building. An Intersection is a special case of Room, representing the space

where two Rooms touch each other; a narrow rectangle 1-unit wide or tall which is

connected to the two adjacent Rooms (Algorithm 14). Each Room or Intersection
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Figure 85: Room generation

is represented in the Graph as a Node with its position at the centre of the Room

or Intersection. In generating the Intersection objects, links between Intersections

and Rooms are also created (Figure 86).

Figure 86: Generation of Traversability graph from Rooms and Intersections
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Algorithm 14: Intersection Generation

Data: (Set) Rooms, (Set) Doorways, (Graph) g
Result: (Set) Intersection
(Set)Intersections;
(Set) Rooms = Rooms ∪ Doorways;
foreach Room r ∈ Rooms do

r.inflateRight(1);
r.inflateDown(1);

end
foreach Room r ∈ Rooms do

foreach (Room s 6= r) ∈ Rooms do
Room intersection = overlap(r,s);
if intersection.area > 0 ∧ !Intersections.contains(intersection) then

Intersections.add(intersection);
Edge e = (r,s);
g += e;

end

end

end
foreach Room r ∈ Rooms do

r.deflateRight(1);
r.deflateDown(1);

end

Having created the basic navigation graph (Adjacency Links between Rooms and

Intersections), additional links can be introduced to create more complex graphs

(Figure 87). Examples of additional links are:

� Common Room link (connecting each of a node’s neighbours with new links,

Algorithm 15)

� Line-of-Sight link (connecting nodes with clear line of sight to each other,

Algorithm 16)

Links can be added to the graph to increase the number of navigation options

available to agents. More detail on Traversability Graphs and Node/Edge generation

options can be found in Chapter 4.

Algorithm 15: Common Room link

Data: (Graph) g
foreach Node n ∈ g do

foreach neighbour Node m of n do
if !g.connected(m,n) then

Edge e = (m,n);
g += e;

end

end

end
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Algorithm 16: Line-of-Sight link

Data: (Graph) g
foreach Node n ∈ g do

foreach Node m 6= n in g do
if !g.connected(m,n) ∧ lineOfSight(m,n) then

Edge e = (m,n);
g += e;

end

end

end

Figure 87: Traversability Graph

Routes between two Rooms (source Room and destination Room) in the navigation

graph can be discovered by performing Dijkstra’s shortest-path algorithm or the

A* algorithm (using straight-line distance between the room centres as heuristic) to

determine the shortest route between two points (cf. Section 2.4.2). The Route is

returned as a list of Rooms and Intersections which give the sequence of locations

that must be traversed in order to travel from the source to the target. To find

the path between two arbitrary Coordinate positions in the building, first the Room

location of the point must be found (Algorithm 17).
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Algorithm 17: whereIsThis method

Data: (Set) Rooms, Coordinates c
foreach Room r ∈ Rooms do

if intersects(r,c) then
return r;

end

end

Having identified the Room locations of the source and destination (and thus, the

graph nodes for each), the path can be discovered using A* or a similar algorithm.

This approach simplifies the problem and sometimes leads to suboptimal routes

(e.g. while the node-to-node distance may be the shortest, the source and des-

tination Coordinates may be far from the centre of the source and target Room

centres). Alternatively, temporary graph Nodes can be generated at the Source and

Destination Coordinates and added to the graph at the time that the shortest path

algorithm is called.

A.2.6 Building Definition Files

Raw Text Building Definition

The basic Building definition file used by EvacSim is composed of tuples representing

Wall origins, heights and widths, delimted by an “ED” symbol. An example Wall

with a top-left Corner at (45,50) and a height of 90 and width of 6 would be listed as

“45 50 90 6 ED”. When predefined Doorways are used, these appear at the endl of

the building definition file after a “DOORS” delimiter (Figure 88) and are formatted

using the same tuple style as Walls.

Figure 88: Example building definition

Building definitions can be generated either manually (via a building drawing tool,

(Appendix A.2.7) or from an XML input (Appendix A.2.6).
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<?xml version="1.0" encoding="UTF-8" ?>

<WIDesign floorplan="NIMBUS-GROUND-FLOOR" originx="0" originy="0">

<FloorPlanWalls>

<wall id="wall_0" Material="heavy">

<startpt>

<x>32.73</x>

<y>15.67</y>

<z>0</z>

</startpt>

<endpt>

<x>32.73</x>

<y>19.82</y>

<z>0</z>

</endpt>

</wall>

</FloorPlanWalls>

</WIDesign>

Figure 89: Example WiDesign XML building definition

Two-dimensional XML Definition

The XML import facility accepts building definitions where Walls are represented

by 1-dimensional lines in two-dimensional space (with the building separated into

multiple floor objects, as is typical in IFC building definitions (Section 2.3)). An

example of an XML building definition with a single wall is shown in Figure 89.

XML building definitions for buildings originally represented by IFC file definitions

are generated via the WIDesign tool [88] developed by Gibney et al as part of the

Nembes project, according to the WIDesign XML format.

Separate XML files represent each individual floor of the building; in this Research

we focus on simulation for a single floor at a time (Figure 90), though EvacSim can

be expanded to model multiple floors in a two-and-a-half-dimension configuration by

allowing agents to transfer between two-dimensional floors which are stacked verti-

cally. The XML formatting for buildings uses one-dimensional lines connecting two

points in two-dimensional space, which are converted to two-dimensional rectangles

for EvacSim by adding height or width to thicken the lines.

Conversion from the 1-dimensional wall objects in the XML definition to the two-

dimensional rectangular objects in EvacSim is achieved by laying the one-dimensional

walls over a two-dimensional grid of squares: a “Cover Grid” (Figure 91). This Cov-

ergrid is a grid of squares of specific dimension (adjustable by parameter, in this

work we use a grid of 5x5 squares). Any squares in the grid that are intersected by

IFCWalls are labelled as “filled” and used as the basis for Wall generation. By ex-

panding the one-dimensional IFCWalls into two-dimensional Walls, we ensure that
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Figure 90: Conversion from IFC to two-dimensional XML representation

agents do not pass through Walls in the case that they travel more than one unit

within a single simulation update.

A set of EvacSim Wall objects is created that occupy the “filled” covergrid squares

(i.e, each “filled” square becomes a 5x5 square Wall object). This approach leads

to a set of many small square walls. While this is sufficient for use in EvacSim, the

large number of square Walls interferes with Doorway Detection and will result in

a large number of narrow Room objects. To alleviate this, adjacent Wall objects

are merged together in straight lines, producing long or tall Wall objects. This

procedure has the effect of simplifying the building geometry and adding height and

width to the 1-dimensional IFC walls (Figure 92).

A.2.7 Building Drawing Tool

The Building Drawing Tool allows for the manual modification or generation of

Building files (using the Raw Text filetype of Appendix A.2.6). As with the XML

conversion approach, the Drawing Tool uses a CoverGrid of squares which are filled

in by clicking and dragging with the mouse cursor. (Figure 93). A toggle switches

between drawing Walls and drawing Doors (in the case that the user requires that

specific Doorway Rooms be present before the algorithmic detection of Doorway

Rooms described in Appendix A.2.4). The Drawing Tool can load, modify and

save raw building definition files, and features basic Clear and Undo functions. The

Drawing Tool can also launch directly into EvacSim using the Building it generates.
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Figure 91: 1-dimensional XMLWalls overlaid on the CoverGrid

A.3 Dynamic Simulation Elements

In this section we describe the dynamic elements of EvacSim. These components are

periodically updated according to the simulation clock and are capable of dynamic

behaviour and response to changes in the building state. These dynamic components

fall into two main categories: Agents and Network components. Agents are used to

model occupants in the building, and are capable of motion, planning and observa-

tion of their environment. Network components are used to model building Sensor

Networks which monitor the progress of the simulated evacuation, or receive actu-

ation instructions to modify building signposting. The sensor network components

model sensor networks on a basic level, and are not intended as network simulation

testbeds, but rather to model basic limitations of sensor networks and how these

can impact on evacuation planning and guidance (limitations such as sensor noise,

communication delays and the risks of network disconnection or partition).

A.3.1 Simulation Time and Ticks

EvacSim uses a Main Clock tick loop to control simulation; each tick of the Main

Clock calls a tick on the sub-components of the simulation (Agents, Sensors and

Network Nodes, Figure 94). The tick() method of an Agent, Sensor or Network

Node drives the behaviour of the object, for instance the tick() method of a basic
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Figure 92: Generation of Walls by filling CoverGrid squares

agent might move its position forward a small amount in the direction the agent is

currently facing, or cause the agent to adjust its orientation incrementally over the

course of the next few “ticks”.

In this research, the relationship between “ticks” and seconds is given by the “Time-

UnitAlpha” conversion ratio of 20 ticks per 1 second of wall-clock time; allowing for

20-frames-per-second real-time animation and updating the simulation world at a

fast rate. When not tied to the animation refresh rate (20 fps), EvacSim will com-

pute simulation ticks as often as possible; with sufficient computational resources

EvacSim will simulate several minutes of simulated time within the space of a few

seconds. An optional toggle in EvacSim allows for the computation of many ticks in

batches between graphical updates, allowing for accelerated simulation (i.e. graph-

ical updates every 100 ticks instead of each tick), decoupling the simulation speed

from the rate of graphical refreshing.

On generation, each agent is allocated a unique integer code-number (generated by

incrementing a global agentCodeCounter variable each time a new agent is created).

This integer is also used to set agent starting clock values, and is also used as its

unique identifier. As each agent has a different starting clock number, periodic agent

computations (such as path-planning) are distributed over the agent population

rather than all occurring simultaneously (which would cause periodic temporary
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Figure 93: Building Draw Tool

freezes as each agent performs a replan procedure in the same tick). As each agent

performs periodic actions such as look-ahead every 50th tick (according to their

internal clock), this means that in any given EvacSim tick, no more than 1/50th of

the population is doing so simultaneously.

A.3.2 Occupant Agents

Fundamental to EvacSim as a pedestrian evacuation simulator is the Occupant

Agent. These agents are represented in space as circular objects with a size and

a position in two-dimensional Space with floating point precision, which is rounded

to the nearest integer when used for graphical display. Using fractional accuracy for

agent positions allows for full freedom of movement, without forcing agents to move

between positions in whole units.

By manipulating this position, the agent is capable of movement in the Simulation

world. The basic agent model uses a “Vector” object which combines the position

with a facing direction angle. This angle represents (in degrees) the direction the

agent is facing (clockwise relative to the x axis) and is adjusted by the agent to

steer and navigate space. Agent movement is conducted by moving the agent a

small distance each tick, according to this angle and the agent’s movement speed.

This Agent can be given a Coordinates “target” and will attempt to steer and move

itself towards this target. In this section we give a brief outline of the occupant

agents; substantially more detail on the mobility model of the agents is given in

Chapter 3.

To move in space, the agent updates its Vector angle is adjusted based each tick and

takes a step forwards based on its current speed. Agent Vector adjustment operates
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Figure 94: Simulation ticks

as follows:

1. The agent directs the angle towards their goal (a coordinate object)

2. If there are other nearby Agents or Walls in the way, the angle is adjusted to

avoid the obstacle

Figure 95: Agent Vector Steering

By adjusting the Vector angle, along with the agent’s current speed (the distance

moved each time unit), the Agent can manipulate its movement. The agent’s current

speed is a product of their maximum speed combined with their acceleration and

braking factors. Further details on the parameters governing the agent movement

are given in Chapter 3.
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A.3.3 Collision Correction

Scans for Agent and Wall proximity are performed periodically by checking for

collision the agent and any other objects (cf. Appendix A.2.3). Detection of collision

between one agent another causes each agent to adjust its position away from the

point of collision; this ensures that agents maintain a distance from each other.

Collision with Wall objects is discovered by overlaying the bounding box Rectangle

of the agent with that of the Wall; to correct this, the agent moves away in the

opposite direction of the collision (i.e. to the right if the collision is to the left).

The direction of collision is identified by determining which corners of the agent

bounding box are within the wall object; if both Left corners of the agent are inside

the wall, then a move to the right is used to correct. If only the top left corner is

in the Wall, then a move down and to the right is used to correct the collision. If

no corners are inside the Wall, then the check is reversed; the location of the wall

corners within the Agent is used to determine the direction to move. In the case that

no corners of either object lie within the other, then the agent just choose to move

arbitrarily to the right; though this event should not occur generally (effectively the

agent is inside the wall) unless specified by the user; and is avoided generally by the

collision avoidance of agents in simulation.

Figure 96: Collision correction examples
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A.3.4 Agent Path Planning

Extending the occupant agent to make use of the Traversabilty Graph allows agents

to plot routes around the Building. When given a destination coordinates, the

Agent can makes a call to the A* method in the Navigation Graph (giving its

current Room location as source, and the Room location of the destination as the

target destination, by using the WhereIsThis (Algorithm 17) method from A.2.5 )

and saves the returned sequence of Rooms as a “route” queue. Each tick, the agent

moves towards the centre point of the Room which is a the head of the queue (as

in the Vector Agent movement). When the agent is within a small distance of this

centre point it removes the current Room from the queue and moves onto the next

Room in the sequence.

A.3.5 Look-ahead and Re-planning

The Path-planning Agent is extended to allow the agent to look ahead in its route

to see if it can take any shortcuts. Periodically (every 50 ticks) the agent iterates

over the route in reverse (working backwards from target to source) and performs a

Line-of-Sight check on the Nodes. If the agent finds that it has a clear line of sight

to a Node during this look-ahead procedure, it skips ahead on the route and makes

this Node its next destination.

Occasionally an Agent can be moved off of its route by some external factor, such as

crowd movement or an unexpected obstacle. To accommodate this, agents periodi-

cally check to see if they are occupying a Room which is not a part of their route.

In such an eventuality, the agent calls the Navigation Graph to create a new route

to their original destination with the current location as the source.

A.3.6 Sensors and Network Nodes

EvacSim includes a basic simulated Wireless Sensor Network. The purpose of

this simulated WSN is to emulate features of WSN such as message delay, sensor

gaps/holes, fire damage and out-of-order message delivery. This simulated network

capability is intended only as a means to model the limitations of sensing and guid-

ance in emergencies and not as a replacement for dedicated networking simulators

such as ns2 [89] or [90].

A.3.7 Network Node and Network

The basic element of the simulated Sensor Network is the Network Node object.

Each Network Node has a table of neighbours and a queue of messages. Each tick
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of the Network Node causes it to progress through its message queue. Popping a

message from the queue sends it on to a neighbour in its table of neighbours (with

some percentage chance of dropped packet, which queues a resend). This mechanism

ensures that there is a delay between message creation (e.g. a set of sensor readings

at a leaf node) and receipt of the message at the sink and that this delay is relative

to the number of nodes that the message must traverse.

Depending on the network layout, reliability of links and chance of node failure (e.g.

node loss due to fire damage), sensor readings may arrive late, out of order or not

at all. Network layout and routing tables are preconfigured by the user, as are node

duty cycles.

A.3.8 Extensions to Network Node

The Sensor Node is a special case of Network Node which models the features of a

Sensor of some type. There are a variety of Sensor types implemented in EvacSim,

the main types are:

� Binary Person Detector - A simple sensor that reports the presence or absence

of agents in its vicinity, e.g. a simple motion detector. Sensor reports true

or false based on line-of-sight with at least one agent, within a viewing range

distance

� Integral Person Detector - A variant of the Person Detector that returns the

number of agents in its line of sight

� Boundary Person Detector - A sensor with narrow field of view, the purpose

of which is to detect the transition of agents across a boundary, e.g. through

doorways. This emulates functionality of a beam or RFID-based sensor and

is represented in the simulation world as a rectangle

� Identifying Boundary Detector - Variant of the Boundary Person Detector that

can determine the identity of agents it detects. This emulates an RFID-based

sensor where an identification can be made based on the RFID reading, e.g.

RFID-enhanced ID card

In addition to Sensor Nodes, Actuation Nodes are extensions to the Network Node

object that are able to receive instructions to modify their state, which can be

reflected in the simulation world. The actuation node implemented in EvacSim is:

� Signpost Node - A Node that is associated with a “Directed Signpost” ( [36]) in

the simulation world. This Node can receive instructions as to which direction

the sign should point, and the sign is visible to agents which can make planning

decisions accounting for this signposting if required (such as heading in the

direction of the guidance)
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A.4 Scalability and Metrics

Real-time or faster-than-real-time simulation requires that EvacSim compute its

simulation ticks at a faster rate than the time modelled through those ticks (that

is to say, a minute of simulated time should complete in substantially less than one

minute). Furthermore, the means to record metrics from simulated evacuations is

required in order to evaluate the performance of planners or agent usage of building

space. In this section we describe the Layer and Geospatial Indexing features of

EvacSim that allow for simultaneous parallel simulations and simulation scalability.

We also describe the agent motion recording and playback features of EvacSim, and

the recording of density and velocity metrics which can be visually displayed as

heatmaps.

A.4.1 Layers

EvacSim can divide elements of the simulation into “layers” with static objects such

as Building walls occupying a basic “common layer”. Objects within a particular

layer can only interact with other objects that also occupy that layer, and with

objects in the common layer. The purpose of this layer system is to allow for

simultaneous simulation of different evacuation scenarios without creating multiple

instances of the Simulation. For example, it is possible to simulate two scenarios

simultaneously by having objects relating to Scenario 1 occupy “Layer 1” and objects

for Scenario 2 occupy “Layer 2” and proceed with the scenario simulations in parallel.

This allows for simulation of different Evacuation plans, or different building floors

to occur simultaneously.

A.4.2 Agent Recording

Agent Recording is performed by an AgentRecorder object which periodically (e.g.
once per 5 ticks) polls all Agents in the simulation for their current position. The
Recorder makes a record of the agent and its position and saves this in its cache.
Every 400 ticks the Recorder writes its cache to an XML file on the file system.
Example of an EvacSim XML agent recording (over 2 ticks):

<recording period="5">

<agent name="Human2">

<coords>

<x>657</x>

<y>527</y>

</coords>

<coords>

<x>654</x>

<y>529</y>
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</coords>

</agent>

<agent name="Human3">

<coords>

<x>233</x>

<y>227</y>

</coords>

<coords>

<x>235</x>

<y>228</y>

</coords>

</agent>

</recording>

A.4.3 Agent Playback

Playing back a recording in the simulation is accomplished by using a Playback

object and a set of Playback Agents. Playback Agents are simple agents (one for

every agent in the recording) which take instructions from the Playback object.

Periodically (according to the sampling period of the recording file) the Playback

agent reads the next location from the recording for each agent and instructs each

Playback Agent to move to their next location. The Playback Agents move to the

next location at a speed of 1
n
× dist per tick where:

n =sampling rate,

dist = straightline distance between current sample and the next

Playback agents do not check for collision as they are governed entirely by the XML

recording. They are extensions of the basic agent and as such, other agent types

treat them as they would any other agent (i.e. Vector Agents will try to steer around

them and will move away from them if there is a collision with perimeter points.

A.4.4 Geospatial Indexing

Geospatial Indexing is a mechanism by which the simulation world is divided into

discrete two-dimensional Zones for the purpose of simplifying geospatially-coupled

calculations such as collision detection . The Simulation world is divided up into a

grid of square Zones, which are instantiated with records of which simulation objects

(agents, walls) occupy them. Periodically (every 15 ticks) EvacSim updates the Zone

squares as to their contents (as Agent objects are mobile and may change position

and hence occupy a different Zone square). As long as the Zones are updated at

shorter intervals than the time it would take for an agent to traverse across the

150



width of a zone, there is no loss of accuracy. The size of the Zones is an adjustable

parameter; 150 units is the value used in this work as it produces small Zones while

ensuring that agents can not travel through more than two Zones between Zone

updates.

Figure 97: Geospatial Indexing

With these Zone objects, the complexity of collision detection between Agents, and

between Agents and Walls is much reduced. It is sufficient for an Agent to limit

collision detection scans to those objects which occupy its current zone and the 8

surrounding Zones, in case the agent has moved into a new zone in the time since the

last Zone update. In Figure 97 the orange agent would have to check for collisions

with 36 other agents, but by using Geospatial Indexing this is reduced to just 14

checks.

As long as the time between Zone updates is shorter than the time it would take for

an Agent to traverse between three Zones, this allows for substantial gains on com-

putation time without compromising accuracy (at the expense of a small amount of

overhead for maintaining the Zone contents). Smaller Zones improve collision de-

tection but must be updated more often; if an agent is allowed to traverse between

zones in between zone updates then correct collision detection cannot be guaran-

teed. The substantial computation savings Geospatial Indexing allows is shown by

recording the average computation time taken per tick when simulating 4000 agents

in a 2000 unit square area. Geospatial Indexing shows a large saving in computation

time (0.025s per tick on average) , versus the time taken when no indexing is used

(0.38s per tick on average). This is compared with the baseline computation time

for 10 ticks where no agents are present (<0.1s).

A.4.5 Runtime performance

To evaluate the running time performance of EvacSim, we conducted experiments

using timed individual EvacSim instances using a variety of crowd densities, to

determine how the number of occupants in a simulation set impacts the running
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time of the simulation instance. This experiment recorded the amount of time it

took to simulate 40 or 80 seconds of simulated time through a range of population

densities, performed on a single core of a Intel Core 2 Duo 3.0Ghz processor using

1Gb of RAM.

Figure 98: EvacSim running time for 2-1476 agents

At low populations, EvacSim simulates very quickly, each second of simulated time

completes in a fraction of wall-clock time. However we find that increasing the popu-

lation (and thereby, occupant density) the simulation running times quickly become

too high to simulate faster than realtime. In Section 6.2 we explore an approach

using Flow Graph analysis to decompose the simulation into multiple smaller in-

stances, to reduce the number of occupants in each instance and thereby reduce the

number of inter-agent calculations. Decomposition in this manner eliminates inter-

agent calculations based on whether agents are likely to meet one another along the

paths they follow, which combines with the geospatial indexing (Appendix A.4.4)

to reduce complexity.

A.4.6 Simulation Metrics

An important aspect of simulation studies is the collection of metrics, in order

to evaluate the performance of the simulator and its models, or to evaluate the

operation of evacuation planning algorithms. Evaluation of building space usage

and metrics such as crowd density and velocity is possible by covering space with a

grid of small square Integral Person Detectors (Section A.3.8). These periodically
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count the number of occupants within their square sensing region and also note their

velocity. These are used to determine average velocity of occupant agents passing

through the sensing region, and the average density of occupants present. Combining

these two values we can discover the relationship between Density and Velocity and

use this to generate Density/Velocity graphs (e.g. Figure 99, cf. Section 3.6.1 for

more details on this graph).

Figure 99: Example Density/Velocity graph plot

A.4.7 Real-time Heatmaps

As the Density and Velocity values are collected by the grid of square Integral

Person Detectors, these values can be displayed in EvacSim as a heatmap, a coloured

representation of the values in space. By setting the colour of the detector squares

based on their density or velocity value (relative to the highest and lowest values

among all detector squares) it is possible at a glance to identify how agents are

utilising building space, which is extremely useful for identifying potential building

problems at the design stage or discovering issues with evacuation plans. Figure 100

shows the Density heatmap generated in real-time using this approach, from Section

3.6.1.
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Figure 100: Example real-time density heatmap

A.4.8 High-detail Heatmaps using Voronoi Cells

By collecting a large number of samples over a period of time, a more detailed

heatmap can be generated offline through the use of Voronoi Cells [91]. Voronoi

cells divide space into individual cells where each point inside of the cell is nearer

to the centrepoint of that cell than to the centrepoint of any other cell. To generate

these, at each sampling time, the location of each agent is collected and the nearest

Integral Person Detector within a grid (Appendix A.4.7) is filled in with that agent’s

velocity value and that square is labelled as a Voronoi Cell Centrepoint. For each

unfilled square, the nearest velocity value of the Centrepoint is identified and used

to fill that square (Figure 101).

Figure 101: Voronoi Cell velocity Snapshot

For each snapshot, this creates a Voronoi Cell representation of the the simulator

world at the time of the snapshot; large cells show a sparse deployment of agents,

while the velocity values of the cells represent the speed of the agents. By comparing

the area of the cells with their velocity values, the relationship between density and

velocity can be retrieved at any given moment. By averaging the velocity values in

each grid square over the course of many samples, a rich heatmap can be generated

(Figure 102).
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Figure 102: Averaged Velocity, derived from Voronoi Cells
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