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Abstract:  

Seizure events in newborns change in frequency, morphology, and propagation. This contextual 

information is explored at the classifier level in the proposed patient-independent neonatal 

seizure detection system. The system is based on the combination of a static and a sequential 

SVM classifier. A Gaussian dynamic time warping based kernel is used in the sequential 

classifier. The system is validated on a large dataset of EEG recordings from 17 neonates. The 

obtained results show an increase in the detection rate at very low false detections per hour, 

particularly achieving a 12% improvement in the detection of short seizure events over the 

static RBF kernel based system.  

Keywords: 

Automated neonatal seizure detection, sequential classifier, fusion, Gaussian dynamic time 
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1. INTRODUCTION 
Neonatal seizures are reported to happen in 3 out of 1000 full term neonates (Lanska et al., 

1995) and this figure grows to 58 - 132 per thousand in pre-term infants (Watkins et al., 1988). 

Failure to detect seizures and the resulting lack of treatment may result in brain damage and in 

severe cases, death (AL-Naddawi et al., 2011; Lynch et al., 2012). Electroencephalography (EEG) 

is considered to be the gold standard for the detection of neonatal seizures (Rennie et al., 

2004). However, interpreting neonatal EEG requires expertise which is not available around the 

clock in a typical busy Neonatal Intensive Care Unit (NICU). Therefore, automatic computer-



based detection of neonatal seizures could be of great help for the medical staff and has been 

the focus of research attention for many years. 

A typical neonatal seizure detection system comprises of the following main stages: i) The signal 

representation stage (feature-level) is the process where relevant features are extracted from 

the EEG signal. ii) The classification stage (classifier level), where the extracted feature or 

feature vectors are assigned to the seizure or non-seizure class using a set of rules and 

thresholds which are either automatically derived from the data (classifier) or manually 

selected following the reasoning of expert neurophysiologists. iii) The post-processing stage 

(decision level) which involves smoothing or other transformations to offer clinicians support in 

decision making.  

In contrast to background EEG and artifacts, seizure events in newborns change in frequency, 

morphology, and propagation. A comparison of seizure, normal background EEG and an 

Electrocardiogram (ECG) artifact is shown in Figure 1. Non-seizure background EEG lacks any 

structure and ECG artifact does not evolve in time (Figure 1d) whereas the attenuating 

amplitudes and the evolving frequency of the spikes can be clearly seen in the seizure example 

(Figure 1a-c). This contextual information (also referred as the temporal evolution, the signal 

dynamics or the sequentiality) of the neonatal seizures, has been explored in various ways in 

most of the automated detection systems reported to date (Aarabi et al., 2009; Ahmed et al., 

2012; Bogaarts et al., 2014; Chaovalitwongse and Pardalos, 2008; Deburchgraeve et al., 2008; 

Nagaraj et al., 2014; Navakatikyan et al., 2006; Ocak, 2009; Shoeb and Guttag, 2010; Temko et 

al., 2011a; Thomas et al., 2011; Wong et al., 2007). 

At the feature-level, the temporal evolution of the EEG signal within the window has been 

captured using template extraction and matching (Aarabi et al., 2009), wavelet transformation 

(Ocak, 2009) or EEG wave sequence analysis (Navakatikyan et al., 2006). Concatenation of the 

consecutive feature vectors in time was proposed in (Shoeb and Guttag, 2010). The Kalman 

filter was exploited to enhance the contrast of the extracted features to the past background 

activity (Bogaarts et al., 2014). 

 

Figure 1: Comparison of a neonatal seizure, artifact and normal background EEG. (a-c) Evolution 

of a single seizure event from start to end. (a) Slow wave activity at start with the presence of 

sharp/spike components and high amplitude of the EEG. (b) As the seizure progresses the EEG 

becomes lower in amplitude. (c) only very low amplitude discharges are seen. (d) An example of 

normal background EEG. ECG artifact is shown in channel T4-C4 (highlighted). Both normal 

background EEG and EEG corrupted with the ECG artifact lacks any structure. 



At the decision-level, the temporal structure of the neonatal seizure can be incorporated 

through the use of smoothing filters, applied over the classifier output, such as the moving 

average (Temko et al., 2011a), median filter (Nagaraj et al., 2014) or Kalman filter (Bogaarts et 

al., 2014). 

The classifier-level techniques typically find the temporal and contextual matching between 

dynamic length sequences of feature vectors. Examples include support vector machines with 

sequential kernels (Ahmed et al., 2012; Chaovalitwongse and Pardalos, 2008) or the Hidden 

Markov Model (HMM) (Wong et al., 2007). 
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Incorporation of contextual information at each level has its advantages and drawbacks. The 

feature-level methods typically consider temporal information in the EEG on a short-time scale. 

The filtering methods introduced at the decision level perform smoothing over a large window 

and  hence the short seizures may be suppressed and are frequently missed as a result (Temko 

et al., 2011a). The exploration of contextual information in the EEG on the classifier-level has 

been relatively scarce in the area of neonatal seizure detection, whereas such classifier level 

techniques have shown promising results in other areas of signal processing such as speech 

recognition (Shimodaira et al., 2002; Smith and Gales, 2002), handwriting character recognition 

(Bahlmann et al., 2002), and acoustic events classification (Temko et al., 2006). 

The state-of-the-art neonatal seizure detection system was previously developed in our 

research group. It was reported that this system more frequently missed seizures of length less 

than one minute (Temko et al., 2011a). In our previous pilot study, (Ahmed et al., 2012),  it was 

shown that a Gaussian Dynamic Time Warping (GDTW) kernel based system could improve 

seizure detection performance. However, these results were based on the EEG recording from 

only one patient. In this paper, we further extend the work carried out in the pilot study and 

report the results on a dataset of 17 neonates. This will better indicate the strengths and 

weaknesses of the two classifiers. Moreover, we also investigate whether incorporating a 

classifier that can implicitly use the contextual information and classify sequences of short-term 

feature vectors, could improve the detection rate of short seizures while keeping down the 

number of false detections. A novel system based on the fusion of the static classifier and the 

dynamic time warping based sequential classifier is presented here and validated on a dataset 

of 17 neonates. 

The paper is organized as follows. The dynamic time warping technique and its usage in the 

Support Vector Machine (SVM) is explained first. Section 3 describes the particulars of the 

developed fusion based neonatal seizure detection system. Performance of the individual SVM 

with the Radial Basis Function (RBF) kernel and SVM with the GDTW kernel is compared with 

the proposed fusion based system in section 4, followed by conclusions and future work. 

2. METHODS 

2.1  DATASET 
EEG data from 17 neonates was used in this study. These neonates were full term with the 

gestational age ranging from 39-42 weeks. The data was collected in the NICU of Cork 

University Maternity Hospital. A written consent from the parents was obtained for the use of 

the data for the research purposes. The multichannel EEG was recorded using a Carefusion 

NicOne video EEG monitor with a sampling rate of 256Hz. The 10-20 system of electrodes 

placement, modified for neonates, was used. Eight bipolar EEG channels were then derived (F4-



C4, C4-O2, F3-C3, C3-O1, T4-C4, C4-Cz, Cz-C3, C3-T3). The seizures were annotated based on the 

consensus of two expert neurophysiologists using EEG and simultaneous video recordings. 

These seizures were a secondary injury due to Hypoxic-Ischemic Encephalopathy (HIE), however 

neonates were not cooled for the HIE treatment. Table 1 shows the details of each recording of 

the dataset. There was a total of 261 hours of EEG data with a mean EEG recording time of 15 

hours per patient. A total of 821 seizure events were present in this dataset. The recordings 

were not edited and no artifacts had been manually removed. This dataset is a true 

representation of the real-time situation in hospitals where EEG is recorded and monitored for 

several hours and as such it includes the unexpected adverse events that may affect the quality 

of EEG.  

There were two types of annotations performed on this dataset; i) global annotations where 

the seizures were marked in time without their channel information. ii) Per-channel 

annotations where seizures were marked with the channel information. In this work, per 

channel annotations were used to train the classifiers. This allows the selection of the best 

representation of seizure events that can then be used as training data. Approximately 20 min 

(depending on the number and duration of seizure events) of per channel annotations of 

seizure events for every neonate were used for training. 

 

2.2 DYNAMIC TIME WARPING 
Dynamic Time Warping (DTW) is a technique used to measure the similarity between two 

variable length sequences (Muller, 2007). Consider two sequences            
   and 

           
  with lengths     and   , where    and    could each be a time series data point 

or feature vector of   dimensions in the sequences. A local distance measure, for example the 

Euclidean distance, between each element of the two sequences can be calculated to provide a 

distance matrix of size      . Consider a warp path                    of length   

through the distance matrix where    (     )         represents the     vertex of 

this path. This path is constructed under the monotonic constraints         and          

to preserve both shape and continuity of the path (Muller, 2007). The cost    of a particular 

path     is 
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Table 1: EEG Dataset 

Patient ID Record length (h) Seizure events 
Seizure length 

Mean Min Max 

1 24.1 17 1’ 40" 28" 4’ 4" 
2 24.7 3 6’ 19" 1’ 4" 11’ 19" 
3 22.7 170 2’ 18" 24" 10’ 55" 
4 26.1 65 1’ 30" 40" 3’ 28" 
5 24 51 6’ 32" 28" 31’ 11" 
6 5.7 44 1’ 15" 31" 2’ 4" 
7 13.2 71 1’ 58" 28" 10’ 31" 
8 24.5 17 6’ 6" 40" 19’ 23" 

9 24 157 5’ 27" 28" 37’ 16" 
10 10.4 28 6’ 0" 24" 34’ 55" 
11 6.2 14 5’ 40" 55" 7’ 47" 
12 12 37 2’ 31" 31" 10’ 16" 
13 12.1 25 4’ 29" 1’ 19" 12’ 48" 
14 5.5 13 8’ 58" 1’ 55" 39’ 12" 
15 12.2 58 2’ 17" 19" 7’ 19" 
16 7.6 31 10’ 34" 2’ 23" 34’ 47" 
17 6.6 20 5’ 36" 36" 23’ 23" 

Total 261.7 821 
   

 

 

is the Euclidean norm between the feature vectors    
 and    

. In order to find the optimal 

alignment path that gives the shortest distance           (   )  in the gram matrix from 

point         to     
    

 , an accumulated cost matrix    is calculated. Each element of this 

matrix is the shortest distance from the origin to that element. For example to compute the 

shortest accumulated distance for an element at position (   ) in matrix    , the algorithm 

seeks the minimum value using       (  (       )    (   ))  (  (     )    (   ))  (  (     )  

  (   ))  , where   (   )  is the  accumulated distance of the previous neighboring nodes. A 

dynamic programming algorithm as defined in (Sakoe and Chiba, 1978) is then used to find the 

path that gives the shortest DTW distance in the matrix   . Further explanation of this method 

with an intuitive figure can be explored in (Ahmed, 2015). 

Figure 2: An illustration of the dynamic time warping technique. Here sequences of 15 feature vectors (1 
minute) of two different seizures and a non-seizure are compared. The red line indicates the warp path in 
the accumulated cost matrix. (a) seizure to seizure (b) seizure to non-seizure (c) A detailed view of warping 
process between two seizure sequences. The colored parts of each EEG signal show the matched parts of 
the other sequence. 

 



Figure 2 shows an illustration of the DTW method where a seizure sequence is compared to 

both another seizure and then a non-seizure sequence. It can be seen, that when a seizure 

sequence is compared to a non-seizure sequence, the warp path becomes longer and moves 

away from the diagonal. The warp path is near the diagonal and hence shorter when a seizure is 

compared to another seizure sequence. Figure 2c shows a detailed view of the sequence 

matching process using DTW. It can be seen, that the seizure sequence (II) became attenuated 

after the first 8 seconds whereas the seizure sequence (I) kept its repetitiveness and because of 

this mismatch the warp path was horizontal (far from the diagonal) for the first 6 epochs. 

2.3 GAUSSIAN DTW KERNEL IN SVM 
 SVM has shown state of the art performance in many pattern recognition areas (Depeursinge 

et al., 2010; Fauve et al., 2007; Joachims, 1998). SVM is a binary classifier and it uses a kernel 

function to map the data to a higher dimensional space where the separation of the data is 

 

 



easier. Kernels could be thought of as a measure of similarity between input data points. Many 

kernel functions have been defined in the past, such as RBF, polynomial and sigmoid kernel 

functions, each targeting different types of data. Most of these kernel functions are restricted 

to the comparison of only one data-point at a time. However, as many machine learning 

problems need to explore the temporal and sequential information, a different breed of SVM 

kernel was developed to measure the similarity between variable length sequences of data 

points (Bahlmann et al., 2002; Campbell et al., 2006; Lodhi et al., 2002; Shimodaira et al., 2002). 

The DTW based kernel is explored here for the seizure detection problem. 

The classical SVM classifier uses a hyperplane to separate the input data. Consider a two-class 

problem, with a pre-labelled training set (     )   (     ) where            are the 

labels and       are the feature vectors. In SVM classification, a test vector   is assigned a 

class by evaluating, 

  ( )       (∑      (   ̃ )        
) (3) 

         (    ( )),  

 

where    are Lagrange multipliers,   is the bias,     is the set of support vectors retained after 

training the SVM and  ̃  is the     support vector in this set.      is the RBF-SVM distance.  

Further details on SVM training can be found in (Burges, 1998).    is the kernel function of the 

SVM that maps the input data onto a higher dimensional feature space. A commonly used 

kernel function is the Gaussian RBF kernel defined as, 

  (   ̃ )     ( 
‖   ̃ ‖

 

     
)  (4) 

This kernel can be adapted to now represent the similarity of two sequences by replacing the 

Euclidean distance in Eq. 4 by the DTW distance   , (Bahlmann et al., 2002). This yields the 

following Gaussian Dynamic Time Warping kernel based classifier (GDTW-SVM) for a test 

sequence  , 

  ( )       (∑          ( 
  (   ̃ )

     
)        

) (5) 

        (     ( )).  

 

Here  ̃  is the     retained support sequence and       is the GDTW-SVM distance. In this 

manner, the SVM with a GDTW kernel will be able to classify variable length sequences 

according to their DTW distances and the support vector concept is now replaced with support 



sequences. It should be noted that the GDTW kernel is not a positive semi definite (PSD) kernel. 

However, it has shown excellent performance in contextual classification problems across a 

wide range of pattern recognition areas (Chaovalitwongse and Pardalos, 2008; Temko et al., 

2006). We will further discuss this property of GDTW kernel in detail in section 4 and will show 

that the use of this kernel for seizure detection produces stable results. 

3 NEONATAL SEIZURE DETECTION SYSTEM 

3.1  PRE-PROCESSING AND FEATURE EXTRACTION 
An overview of the complete neonatal seizure detection system is shown in Figure 3. The raw 

EEG is first down-sampled from 256Hz to 32Hz with an anti-aliasing filter set at 12.8 Hz. Filtered 

EEG in each channel is then segmented into 8s epochs with a 50% overlap using a sliding 

window. Fifty-five different features are then extracted from each epoch. These features, as 

outlined in Table 2, are derived from the frequency, time and information theory domains. The 

usability of these features has been validated in a number of previous studies on neonatal 

seizure detection (Gotman et al., 1997; Greene et al., 2008; Temko et al., 2011a; Thomas et al., 

2010), adult seizure detection (Faul et al., 2009), grading background EEG (Ahmed et al., 2016) 

and neurological outcome prediction (Doyle et al., 2010). This set of simple features provides a 

detailed picture of the signal statistics required for the neonatal seizure detection problem. The 

extracted feature vectors are then fed to the classification stage.  

3.2 CLASSIFICATION 
Figure 3: An overview of the complete proposed neonatal seizure detection system.  
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Table 2:Features extracted from the 8 seconds EEG epoch 

Domains Feature List 

Frequency  Total power (0-12Hz)  

 Peak frequency of spectrum  

 Spectral edge frequency (80%, 90%, 95%)  

 Power in 2Hz width sub-bands (0-2Hz, 1-3Hz, ...10-12Hz)  

 Normalized power in sub-bands  

 Wavelet energy  

Time  Non-linear line length 

 Number of maxima and minima 

 Root mean squared amplitude 

 Hjorth parameters 

 Zero crossings (raw epoch, ∆ and ∆∆*) 

 Autoregressive modeling error (model order 1-9)  

 Skewness 

 Kurtosis 

 Nonlinear energy 

 Variance (∆ and ∆∆)  

Information theory  Shannon entropy 

 Singular value decomposition entropy  

 Fisher information 

 Spectral entropy  

* ∆= 1st derivative and ∆∆ = 2nd derivative of the raw epoch 

 

The classification stage uses two separate classifiers, a static-SVM (RBF-SVM) classifier as used 

in (Temko et al., 2011a) and a GDTW-SVM based sequential classifier. Each channel is classified 

separately. The static classifier (RBF-SVM) classifies a single feature vector at a time. A Gaussian 

RBF kernel is used inside the static-SVM classifier. More description on this classification 

method can be found in (Temko et al., 2011a). 

For the sequential classifier (GDTW-SVM), sequences of 15 feature vectors are created. This 

corresponds to an EEG signal of 64s in duration. A shift of one epoch is used to make the next 

sequence. Therefore, the GDTW classifier will give a probability output with each new epoch. 

Therefore, the output of both classifiers remains synchronized. 

The distances       and      provided from each classifier (Eq. 3 and Eq. 5) are then 

converted into posterior probabilities using Platt’s method (Platt, 1999) of applying a sigmoid 

function defined as, 

  (       | )  
 

      (             )
 (6) 



  (       | )  
 

      (                )
    (7) 

 

where      and       are the SVM distances to the separating hyperplane from each 

classifier. The parameters             and                of each sigmoid function are 

estimated over the training dataset (Platt, 1999).The probabilistic outputs from both classifiers 

are then fused together using a simple averaging function. The same process is repeated for all 

8 channels. 

3.3 POST-PROCESSING 
Figure 4 shows the effects of various post-processing steps on the output from the classifier 

stage. The fused probabilistic outputs from each channel are first combined by applying a MAX 

operator (Figure 4d). This process is similar to the way seizures are clinically annotated; if a 

seizure event is found in one channel then the whole epoch is marked as a seizure. A Moving 

Average Filter (MAF) is applied to this fused probabilistic stream (Figure 4e). The output from 

this stage is then compared to a threshold and a binary decision is made i.e. 0: non-seizure and 

1: seizure (Figure 4f). When a seizure is detected, the decision of the whole seizure event is 

extended on either side using a collar operation (including a set number of epochs on either 

side of the decision) (Figure 4g). This operation provides some compensation for the smoothing 

operation of the MAF and for the possible difficulties in detecting the start and end of a seizure.   

3.4 PERFORMANCE ASSESSMENT 
In order to assess the performance of the proposed system, a Leave One Patient Out (LOPO) 

cross validation was used. The classification model was created using the training data of 16 

patients and the resulting model was tested on the remaining unseen patient’s recording. This 

process was repeated until every patient had been used as the test patient. Mean results across 

all test patients were then reported. It is well known that LOPO provides the most unbiased 

assessment of the system’s performance to match real-life conditions (Vapnik and Kotz, 1982). 

For the purpose of reporting and comparing the performance of different configurations of the 

system, two types of metric were used: epoch based sensitivity, specificity & precision and 

event based Good Detection Rate (GDR) & False Detections per hour (FD/h). 

Figure 4: Effects of different post processing steps. (a) The raw output of the SVM classifier. (b) The raw 
outputs of Static-SVM and GDTW-SVM converted to probability using the sigmoid function. (c) Fusion of 
the probabilities of both classifiers in channel 8 and channel 3. It can be seen that the encircled seizure 
event is not completely present in channel 8. (d) Therefore, a MAX operation is performed on all the 
channels. (e) The smoothed probabilities after a 9-tap moving average filter is applied. (f) The binary 
output resulting from applying a threshold of 0.8 to the filtered probabilities of seizure. (g) The collar 
operation is performed on the detected seizure events which increases the duration of all seizu res on 
either side by 7 epochs (h) The neurophysiologist annotations, where 1 indicates seizure.  

 



Sensitivity is the percentage of correctly identified seizure epochs whereas specificity is the 

percentage of correctly detected non-seizure epochs. The precision is defined as the 

percentage of identified seizure epochs that are correct. The area under the Receiver Operating 

Characteristic (ROC) curve is reported by computing the sensitivity and specificity at different 

thresholds applied on the final probability. The threshold is gradually moved from 0 to 1. 

Moreover, for an automated system to be of any clinical significance, the specificity needs to be 

very high. Therefore, we also report the ROC90 as adopted by our earlier study (Temko et al., 

2013). ROC90 is the area under the ROC curve where the specificity is greater than 90%. 

Furthermore, to test if the improvement achieved by the proposed fusion based method was 

 

 



significant, the ROC90 areas of the RBF-SVM and the fusion based system from each patient 

were compared according to the method outlined in (Robin et al., 2011). This method uses the 

bootstrapping technique to estimate the standard error of the paired partial ROC curves. In this 

study, the p-values are reported after 1000 stratified bootstrap cycles. 

A disadvantage of the ROC curve is its insensitivity to the amount of data in each class (Davis 

and Goadrich, 2006). Such is usually the case in seizure detection problems, where non-seizure 

epochs are significantly greater in number as compared to seizure epochs. Therefore, the 

Precision-Recall/sensitivity (PR) curve is also reported which better represents the capability of 

a classifier to detect seizure events, taking into account the amount of non-seizure data present 

in a particular recording. 

The events based metrics allow for the assessment of the system’s performance from the 

perspective of individual seizure events. In this work, we report the GDR (which is the 

percentage of detected seizure events) obtained at the cost of a given number of false 

detections per hour. 

3.5 MODEL SELECTION AND TRAINING 
There are two SVM parameters; kernel parameter σ and generalization parameter   that need 

to be tuned during the training.  

For each iteration of LOPO, the data of 16 patients were used to perform internal cross 

validation and train the classifier. In order to find the best parameters for the GDTW-SVM a 3-

fold cross validation was applied on the training data. In a 3-fold cross validation, the training 

data is divided into three partitions. These partitions are patient independent, meaning that 

each fold had the data from one of three separate patient groups. An SVM model is trained 

using the data from two folds and then tested on the remaining one unseen fold. This process is 

repeated 3 times, first for a range of C parameters and then for σ kernel parameters. The 

accuracy and variance of the results obtained on the 3 test folds then determines the most 

suitable SVM parameters. A similar 5-fold cross validation was used for the RBF-SVM. It was 

empirically observed that the kernel parameter for the GDTW-SVM did not significantly change, 

therefore a lower number of folds were used for it.  

Figure 5 shows the histogram of the number of seizures and their respective lengths in our 

dataset. It can be seen that the modal seizure length is around 1 minute. For GDTW-SVM, the 

sequence length was therefore fixed at 15 epochs for both the seizure and non-seizure classes 

motivated by the fact that the modal seizure length is 60 seconds. In cases where a seizure was 

less than 15 epochs, then to complete the sequence, some non-seizure epochs were added on 

both sides of the seizure epochs.  

Figure 5:Histogram showing the length of seizures. 



 

4 RESULTS AND DISCUSSION 
In this section the performance of the classifiers obtained on the continuous recordings of 17 

patients (as described in Table 1) is presented. The use of post processing methods on the 

probabilistic output of the classifiers does not allow for the observation of the real behavior of 

a classifier. Therefore, the raw performance of each classifier will be described first and then 

the performance of the proposed fusion based system with the post processing stage added 

(MA filter and collar) will be presented. Moreover, it must be noted that the performance 

reported below is the mean performance of the systems over all patients. 

The ROC curves for the individual classifiers and for the fusion based classifier is shown in 

Figure 6. It can be seen that the GDTW-SVM outperforms the RBF-SVM in terms of the epoch 

based metric. The GDTW-SVM based system achieves an ROC90 area of 71.9% as compared to 

69.8% attained by the static RBF-SVM classifier. Moreover, the fusion of the raw probabilities 

yields the highest mean ROC90 area of 75.2%. The ROC90 area achieved by the individual 

patients are presented in Table 3 along with their respective p values from significance test (as 

calculated using he bootstrapping method proposed in (Robin et al., 2011)). It can be seen, that 

the fusion based system improves the ROC 90 in 16/17 patients and this improvement is 

significant (p-value<0.05). 

Figure 7 shows the PR curves of the classifiers. The GDTW-based system achieved a higher PR 

area of 79.6% as compared to 77.9% for the RBF-SVM based system. Moreover, the fusion of 

the both classifier’s probabilities further increased the PR area by 3%. 

 

 



The performance of the classifiers using event based metrics is presented in Figure 8. Although, 

individually the GDTW-SVM based classifier performed better in epoch based metrics it did not 

however achieve a higher event detection rate. For example, given a threshold of 0.5 FD/h, the 

GDTW based classifier detected 69% of the total seizure events as compared to 73% detected 

by the RBF-SVM. However, the fusion of both classifiers significantly increased the detection 

rate to 82% at 0.5 FD/h. This improvement using the fusion of two classifiers indicates that 

although the detection rate of the GDTW-SVM classifier is low, it however detected events 

which were complementary to the RBF-SVM. 

 

Figure 6:ROC curves with highlighted ROC90 area without post-processing. AUC: RBF-SVM=69.8%, GDTW-
SVM=71.9%, Fusion=75.2%.  The 95% confidence interval of ROC curves of RBF -SVM and Fusion based 

system are presented using the shaded area along the line.  

 

 

Figure 7: Precision-Recall curves without post-processing. AUC: RBF-SVM=77.9%, GDTW-SVM=79.6%, 
Fusion=82.7%. The 95% Confidence interval of PR curves of RBF-SVM and Fusion based system are 

presented using the shaded area along the line. 



 

Figure 8: Good detection rate at the expense of false detections per hour of systems without post -
processing. 

 

Table 3:  Per patient results of the baseline RBF-SVM and Fusion based classifier without post-processing. 
The area under the curve of ROC90 along with their respective p values is presented. 

Pat ID 
AUC ROC90 x10 

*P values 
RBF-SVM Fusion 

1 40.9 55.1 0.000 

2 75.3 82.1 0.000 

3 72.9 73.0 0.007 

4 66.2 70.8 0.000 

5 51.8 56.9 0.000 

6 59.3 66.0 0.000 

7 69.7 74.4 0.000 

8 68.1 76.5 0.000 

9 78.6 81.7 0.000 

10 58.3 56.1 0.000 

11 83.8 87.1 0.000 

12 69.8 73.5 0.000 

13 76.8 83.1 0.000 

14 78.9 86.1 0.000 

15 77.4 79.5 0.002 

16 86.3 90.1 0.000 

17 72.5 85.9 0.000 

Mean 69.8 75.2  

* Significance test was performed to compare the ROC90 from the baseline RBF-SVM and the fusion based 

system 



 

In order to get further insight into this complementary behavior, the detected events provided 

by each system were examined. However, to do so, a common threshold for all patients needs 

first to be fixed on their respective probability outputs. The probability traces resulting from the 

two different classifiers could not be directly compared because each classifier assigns the 

probability to a single epoch in a different way. For example, one classifier may assign the 

probability to the seizure epochs in the range of 0.4-0.6 and non-seizure in the range of 0.1-0.3 

whereas another classifier may assign the probability 0.7-0.8 and 0.4-0.6 to the respective 

classes. Now if a common threshold of 0.5 is used on the probability traces of these classifiers 

to compare the number of seizures detected by each classifier, then the first classifier will lose 

out as some of the seizure epochs would have a probability of less than 0.5. Another method to 

assign a common threshold is by limiting the number of false detections and then comparing 

the number of correctly detected seizure events at this threshold. In this work, a threshold of 

0.5 FD/h is used and then the GDR of each patient in analyzed. The second column of Table 4 

shows the mean percentage of total seizure events detected by each classifier. The remaining 

columns show the unique seizure events that were detected by a classifier and were missed by 

the other. For example, the GDTW-SVM detected 69.4% of total seizure events, of which 15.5% 

were unique events that were not detected by the RBF-SVM system at the same threshold. 

Whereas the RBF-SVM detected 73.7% of total seizure events, of which 25% were unique event 

detections that were missed by the GDTW-SVM. With the fusion of both systems output, the 

total detection rate substantially increases to 82.2%.  Moreover, out of all of these detected 

events, 24.9% of the events were new detections as compared to the GDTW-SVM and 17.4% 

were new as compared to the RBF-SVM. The agreement between GDTW-SVM and RBF-SVM on 

false detected events was only 12%. This indicates that GDTW-SVM does provide some 

complementary behavior and the fusion of the two, results in the detection of events that were 

missed by the individual classifiers. 

Post-processing was then applied using the MAF and collar on the output of the proposed 

fusion based system. The results were compared to the baseline static RBF-SVM based system 

with post-processing, as proposed in (Temko et al., 2011a). The baseline system was compared 

to several existing alternatives and superior performance was reported. This comparison was 

possible because the baseline system used the same dataset. Unfortunately, comparison with 

other systems is usually not possible or may not provide significant insight because of the 

different types of datasets used and metrics reported. Another study of our group has 

thoroughly discussed the challenges of comparing different seizure detection system (Temko et 

al., 2011b). The length of the MAF and collar for both fusion and RBF-SVM systems was chosen 

to maximize the ROC90 area (which turns out to provide also the maximum for the PR area). A 



MAF of 9 epochs and a collar of 7 epochs was selected for the fusion based system. For the RBF-

SVM, a MAF of 15 epochs and a collar of 7 epochs was selected. 

Table 4: Percentage of detected events unique to the other classifier with the threshold set to   0.5FD/h . 

 Total detected 
events (%) 

Unique decisions to (%) 

 
GDTW-SVM RBF-SVM 

GDTW-SVM 69.4 0 15.5 

RBF-SVM 73.7 25 0 

Fusion 82.2 24.9 17.4 

 

With the addition of a post-processing stage, both systems achieved ROC90 area of 82.6% 

(Figure 9a). The PR area for the fusion based system and the RBF-SVM with post-processing was 

88.8% and 88.7% respectively. Although the presented fusion approach with post-processing 

achieved a similar performance to the static RBF-SVM on epoch based metrics it did however 

improve the event based metric and managed to achieve a higher detection rate at the cost of 

significantly lower false detections per hour. It can be seen in Figure 9b that the fusion based 

system detects 65% of the seizures at no false detections which is a 6% improvement over the 

previous system. The proposed system achieves 82.6% GDR at 0.25 FD/h (1 false alarm in 4 

hours) which means it correctly detects 39 more seizure events as compared to the RBF-SVM 

based system. The proposed system detected 90% of the seizure events at 1 FD/h.  

Figure 9 (a): ROC curves with confidence intervals and highlighted ROC90 area with post-processing stage 
added. ROC90 AUC RBF-SVM =82.6%, Fusion=82.6% (b) Good detection rate of the systems at the expense 
of false detections per hour with the post-processing stage. 

 



As the main motivation of the proposed technique was to improve the detection of short 

seizure events, it is therefore important to see how the system performed on different lengths 

of seizures. Figure 10 shows a comparison of the percentage of detected seizures for both the 

RBF-SVM baseline system and the proposed fusion system (both with the post processing stage 

included) at a stringent threshold of 0.25 FD/h. It can be seen, that the proposed fusion based 

system improved the detection rate in all categories except for the very short duration seizures 

of less than 30 seconds. Most importantly, a 12% improvement in the detection of short 

seizures of length 30sec - 1 min was obtained which were previously being missed by using only 

the static RBF-SVM based system. The proposed system also detected 7% more seizures of 

 

(a) 

 

(b) 

 



durations between 1-2 minutes. It must be noted that, this score is reported at a very stringent 

and low false detection per hour of 0.25 FD/h (1 false detection in 4 hours). The detection rate 

increases if we allow more false detections per hour for example as shown in Figure 9b that the 

overall GDR increases to 86% at 0.5 FD/h. At this threshold GDR for seizures 30sec-1min also 

increases to 50%. 

Figure 10: Percentage of seizures detected according to their lengths by the proposed fusion based system 
and the RBF-SVM both with post-processing. These results represent the GDR at 0.25 FD/h. Total number 
of seizures in each group are 28, 128, 223, 253, 189 respectively.  

 

Some representative examples of correctly detected short seizures are shown in Figure 11.  

Figure 11(a, b) shows two events where temporal evolution in both amplitude and frequency 

can be clearly seen. This contextual information helped the system to detect the events at a 

lower false detection rate. On the other hand, Figure 11c shows an event where the seizure did 

not evolve temporally and was still detected by the fusion-based system. Lastly, Figure 11d 

presents a correctly detected short event where the amplitude of the EEG remained very low. 

This event had a low probability of seizure from the RBF-SVM and was further suppressed by 

the MAF stage; however, the GDTW based system yielded a high probability because of the 

number of epochs being classified simultaneously. Thus, the fusion of the two systems helped 

to raise the probability to a level where it was easily detected.  

 



The main performance difference using the GDTW based classifier was due to its ability to not 

only take into account the contextual information in the EEG but also the temporal evolution 

which is the main characteristic of a neonatal seizure. The work presented in this article is just 

related to one type of dynamic kernel. We had in fact also tried a Gaussian Mixture Model 

(GMM) supervector based kernel in the SVM. The GMM-Supervector also explores the 

contextual information given in the sequence. It however, does not explore the 

sequentiality/temporal characteristics of the feature vectors present in the input sequence but 

only considers their statistics. The GDTW-classifier outperformed the GMM-supervector based 

classifier (AUC ROC90 75.2% vs 69.5%). The GMM-supervector based system has been 

employed in a previous study on grading background EEG and is explained in detail in (Ahmed 

et al., 2016).  

Despite a promising improvement in the detection rate using the proposed fusion, the system 

did not significantly increase the performance when the post-processing stage was included. 

This behavior does not come by surprise. Indeed, the post-processing proposed in (Temko et 

al., 2011) is developed for static-SVM. MAF is a very coarse method to explore the contextual 

information at decision level and it does not accentuate the benefits of the proposed fusion. 

Therefore, a different post-processing technique is needed for further improvement. Moreover, 

the strength of GDTW-SVM lies in classifying variable length sequences which has not yet been 

fully explored in this work. Therefore, it is suggested here that future work should focus on the 

pre-processing of the EEG signal using methods such as diariazation (Temko et al., 2014; Tranter 

and Reynolds, 2006). In our work, we intend to use this technique to adaptively segment the 

EEG recording into a number of smaller homogenous states which will then be classified by a 

dynamic classifier. The computation time required for the GDTW-SVM to classify one sequence 

of 15 epochs (64 seconds) was 1.64 seconds (Machine specs: Processor=Intel core i3 @3.10 

GHz, RAM=8GB, Operating system=Windows 7).  

The GDTW kernel is widely criticized for not being a valid SVM kernel (Cuturi et al., 2007; 

Gudmundsson et al., 2008; Lei and Sun, 2007). This may hinder the SVM algorithm from 

converging to an optimal and unique solution. This means that the SVM may produce a 

different model even if the C and σ parameters remain the same; hence, the reported 

performance may not be repeatable. An experiment was conducted to see if the GDTW-SVM 

produces a unique solution and therefore if the reported results are repeatable. Five different 

training sets were used and 10 SVM models were generated from each training set. This 

resulted in 50 SVM models. The SVM-light implementation (Joachims, 2008) used in this study, 

works by dividing the training data into smaller working sets and then finding the alpha values 

(Joachims, 1999). The training data was therefore, shuffled in each iteration before training a 

new SVM model so that the SVM algorithm always starts with a different working set. The C 

and σ parameters were kept unchanged. These SVM models were then tested on a dataset of 



850 sequences (190 seizure and 660 non-seizure) from a patient not used in the training 

datasets. The results with their mean and 95% confidence intervals are presented in Table 5. 

For all the training sets the number of support vectors varied only by ± 2. Similarly, the 

difference in the bias for 10 iterations of each training set was either very small ±0.001 or there 

was no change at all.  In terms of ROC area of the test data, there was no change over all the 

iterations of any training set. Moreover, the overall change in ROC area across all the training 

sets was also very low (standard deviation = 0.27). This indicates that the presented results of 

our experiments are stable and repeatable. 

Table 5: Results of GDTW-classifier on 10 shuffled iterations of each of the 5 training sets. 

Training 
set 

Number of support 
vectors 

Bias 
ROC area on test 

data 

Mean (95% CI) 

1 1364 (1363 - 1365) 0.966 (0.966 - 0.967) 97.6 (97.6 - 97.6) 

2 1048 (1047 - 1048) 1.027 (1.027 - 1.027) 97.7 (97.7 - 97.7) 

3 1041 (1040 - 1042) 1.092 (1.092 - 1.093) 97.1 (97.1 - 97.1) 

4 1104 (1104 - 1104) 1.091 (1.091 - 1.091) 97.4 (97.4 - 97.4) 

5 1324 (1323 - 1324) 1.038 (1.038 - 1.038) 97.9 (97.9 - 97.9) 

 

 

4 CONCLUSION 
This study presented an approach to exploit the temporal and contextual information in the 

neonatal seizure and background EEG. A DTW based kernel function is used which enabled the 

SVM to process the sequences of short term feature vectors extracted from 8 seconds EEG 

epochs. A patient-independent neonatal seizure detection system based on the combination of 

a static (RBF-SVM) and a sequential (GDTW-SVM) classifier was thus proposed. Results indicate 

that the fusion of the output of both classifiers leads to significant improvement in both epoch 

and event based metrics. The proposed fusion based system was also tested with a post-

processing stage. The results show a promising improvement in the detection rate of the 

seizures at a significantly low setting for false detections per hour. Particularly, the system 

increased the detection rate of short seizure events of less than 1 minute by 12%. However, it is 

expected that this improvement can be accentuated with better post-processing methods 

tailored to the proposed fusion based method. 
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Figure 11: Examples of new short seizures correctly classified by the fusion based system at 0.25 FD/h. An 
example of short seizure with (a) temporal evolution (duration =41 sec) (b) oscillatory and temporal 
evolution (duration 37 sec) (c) high frequency (duration 40 sec) (d) very low amplitude (du ration=37 sec) 
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