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Abstract 16 

1. Characterizing the spatiotemporal variation of animal behaviour can elucidate the way 17 

individuals interact with their environment and allocate energy. Increasing sophistication 18 

of tracking technologies paired with novel analytical approaches allows the 19 

characterisation of movement dynamics even when an individual is not directly 20 

observable.  21 

2. In this study, high-resolution movement data collected via global positioning system 22 

(GPS) tracking in three dimensions were paired with topographical information and used 23 

in a Bayesian state-space model to describe the flight modes of migrating golden eagles 24 

(Aquila chrysaetos) in eastern North America.  25 

3. Our model identified five functional behavioural states, two of which were previously 26 

undescribed variations on thermal soaring. The other states comprised gliding, perching 27 

and orographic soaring. States were discriminated by movement features in the horizontal 28 

(step length and turning angle) and vertical (change in altitude) planes, and by the 29 

association with ridgelines promoting wind deflection. Tracked eagles spent 2%, 31%, 30 

38%, 9% and 20% of their day time in directed thermal soaring, gliding, convoluted 31 

thermal soaring, perching and orographic soaring, respectively. The analysis of the 32 

relative occurrence of these flight modes highlighted yearly, seasonal, age, individual and 33 

sex differences in flight strategy and performance. Particularly, less energy-efficient 34 

orographic soaring was more frequent in autumn, when thermals were less available. 35 

Adult birds were also better at optimising energy efficiency than sub-adults. 36 

4. Our approach represents the first example of a state-space model for bird flight mode 37 

using altitude data in conjunction with horizontal locations, and is applicable to other 38 
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flying organisms where similar data are available. The ability to describe animal 39 

movements in a three-dimensional habitat is critical to advance our understanding of the 40 

functional processes driving animals’ decisions.  41 

Keywords: 3D states, GPS-GSM telemetry, hidden state model, Markov chain Monte Carlo, 42 

movement ecology, raptor, subsidised flight  43 

 44 

Introduction 45 

The way in which animals move in space and over time has important implications on their vital 46 

rates and, ultimately, their fitness and demography (Nathan et al., 2008). Different movement 47 

modes often require varying levels of energy expenditure and may reflect different 48 

environmental constraints (Shepard et al., 2013). Understanding movement dynamics and 49 

characterising the way in which they combine into functional bouts of activity can therefore help 50 

formulate hypotheses regarding movement drivers, environmental influences, and energetic and 51 

fitness implications of different behavioural strategies (Hays et al., 2016; Nathan et al., 2008).  52 

Movement behaviour is difficult to observe directly for prolonged periods, especially for species 53 

that range over large distances and move through media that are mostly inaccessible to human 54 

observers (air or water). Recent advances in bio-logging technology allow tracking individuals 55 

over wide spatiotemporal ranges and in remote areas, opening windows on their life history at 56 

functionally relevant scales (Hays et al., 2016; Kays, Crofoot, Jetz, & Wikelski, 2015). 57 

Telemetry data collection was originally aimed at tracking an animal’s geographical location. 58 

However, the proliferation of devices capable of collecting and storing information at fine 59 

temporal resolutions, combined with the refinement of statistical tools, means that these data can 60 
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also be used to infer the behavioural patterns of tagged animals (Jonsen et al., 2013; Langrock et 61 

al., 2012; McClintock, Russell, Matthiopoulos, & King, 2013; Patterson, Thomas, Wilcox, 62 

Ovaskainen, & Matthiopoulos, 2008).  63 

While various techniques have been proposed for the classification of behaviour, hidden state 64 

models offer several advantages, particularly because they explicitly account for the intrinsic 65 

autocorrelation of movement data (Jonsen et al., 2013; Langrock et al., 2012; McClintock et al., 66 

2012). These approaches assume that observed movement metrics arise from distributions that 67 

depend on a latent sequence of discrete behavioural states or modes (known as emission 68 

distributions), and are thus consistent with the often unobservable nature of behaviour. State 69 

assignment is directly informed by the data, which can guide behavioural classification, reveal 70 

unexpected patterns and thus lead to a new understanding of behaviour. State-space models, 71 

which constitute a class of hidden state models, also allow accounting for any measurement error 72 

associated with observed metrics (Jonsen et al., 2013; Patterson et al., 2008). This occurs 73 

because they are composed of a process model, capturing the underlying transition between 74 

states, and an observation model, describing the way in which data are generated, with error. 75 

Most classic developments and applications of movement models have focused on the marine 76 

realm (e.g., marine mammals, seabirds, elasmobranchs or large teleosts, see references in Jonsen 77 

et al., 2013) or on terrestrial non-volant mammals (e.g. Morales, Haydon, Frair, Holsinger, & 78 

Fryxell, 2004). The main objective of these studies has been distinguishing between two 79 

behavioural modes: periods where an individual rapidly moves through unprofitable areas or 80 

travel corridors (transit mode), and periods where it explores an area in search of patchy food 81 

resources (resident mode) (Jonsen et al., 2013; Morales et al., 2004; Patterson et al., 2008). 82 
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Recently, important progress has been made in finer discrimination of behaviour by providing 83 

additional data streams to inform the models, characterizing, for example, attraction to specific 84 

locations (McClintock et al., 2012), central place foraging (Michelot et al., 2017; Pirotta, 85 

Edwards, New, & Thompson, 2018), diving (Bestley, Jonsen, Hindell, Harcourt, & Gales, 2015; 86 

Dean et al., 2013; Isojunno & Miller, 2015; Quick et al., 2017), and active foraging (Isojunno & 87 

Miller, 2015).  88 

Few existing applications of hidden state models describe the behaviour of terrestrial birds 89 

(Leos-Barajas et al., 2017; Péron et al., 2017; Williams, Shepard, Duriez, & Lambertucci, 2015). 90 

For these species, characterising flight modes may be more relevant than distinguishing between 91 

transit and resident movement, because of the implications on their energy budget. Such 92 

characterisation requires either the use of additional sensors, like accelerometers, or the 93 

introduction of a third movement dimension (altitude), which is conceptually comparable to the 94 

use of depth when modelling diving behaviour of marine animals (Isojunno & Miller, 2015; 95 

Quick et al., 2017). Birds adopt different strategies to move through air, depending on their size, 96 

body structure, reasons for moving, and environmental and weather conditions (Duerr et al., 97 

2015; Hedenstrom, 1993; Lanzone et al., 2012). Flapping flight is costly, and heavier species 98 

tend to soar (i.e. use air currents to support straight-winged flight) as a more efficient way to 99 

move over large distances (Hedenström & Alerstam, 1995). Broadly speaking, there are two 100 

predominant soaring modes in terrestrial birds. Thermal soaring is defined as the use of thermals 101 

(i.e. layers of warm air that rise from the earth forming updrafts) to gain altitude, followed by 102 

periods of gliding towards other thermals to continue their progression. Conversely, orographic 103 

soaring relies on horizontal winds deflected upwards by ridges, trees, hills and other structures 104 

(Duerr et al., 2015; Kerlinger, 1989).  105 
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In this study, a large telemetry dataset from golden eagles (Aquila chrysaetos) in eastern North 106 

America was used to develop a Bayesian state-space model describing the flight behaviour of 107 

soaring birds. These birds are from a small population of approximately 5,000 individuals 108 

migrating between the breeding grounds in Canada and a wintering range in the northern and 109 

central Appalachian Mountains and surrounding regions (Dennhardt, Duerr, Brandes, & Katzner, 110 

2015; Katzner, Smith, et al., 2012). The population faces increasing pressure from wind power 111 

development in the southern part of its range and along its migratory route, which has sparked 112 

research on the factors influencing individuals’ risk of colliding with turbines (Katzner, Brandes, 113 

et al., 2012; Miller et al., 2014). The choice of different flight modes by these birds changes their 114 

altitude, speed and updraft use and, although it is likely to contribute to collision risk, is rarely 115 

accounted for when predicting fatality rates (Barrios & Rodríguez, 2004; Klaassen, Strandberg, 116 

Hake, & Alerstam, 2008). 117 

Golden eagles use both thermal and orographic soaring to maximise flight efficiency under 118 

different weather and environmental conditions (Duerr et al., 2012; Katzner et al., 2015; Lanzone 119 

et al., 2012). Therefore, they represent an ideal system for the development of a model to 120 

categorise flight modes, which could be easily applicable to other flying organisms. Below, the 121 

modelling framework is presented and utilized to characterise a high-resolution time series of 122 

golden eagle behaviour using location and altitude information collected via GPS, together with 123 

ancillary environmental data. The behavioural results are then analysed to investigate the activity 124 

budget of eagles belonging to different age and sex classes in different seasons, and to explore 125 

the functional mechanisms underpinning individual flight performance during migration.  126 

 127 
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Materials and methods 128 

Data collection 129 

We used existing golden eagle telemetry data collected between 2009 and 2016 (Duerr et al., 130 

2012; Katzner et al., 2015; Miller et al., 2014). Eagles were captured and outfitted with CTT-131 

1100 GPS-GSM telemetry systems (Cellular Tracking Technologies, LLC) attached as 132 

backpacks with Teflon™ ribbon (Bally Ribbon Mills in Bally, PA). Tags were programmed to 133 

record location and altitude above sea level (calculated as height above the geoid) every 30-60 134 

seconds from sunrise to sunset. No locations were recorded at night. The GPS device measured 135 

instantaneous speed. If speed was less than 1 knot for 5 min, the unit switched to sampling data 136 

at 15-min intervals, thus conserving battery power and device memory when a bird was 137 

perching. Full details of the study area, deployment techniques, duty cycles, sampling regimes 138 

and permits are reported in Katzner et al. (2015) and Miller et al. (2014, 2016). For the current 139 

study, a total of 58 tracks were used, 48 of which were collected during the spring migration, and 140 

10 in autumn (Fig. 1). Tagged eagles included juveniles (1st year of northbound migration, 8 141 

tracks), sub-adults (2nd–4th year of migration, 22 tracks), and adults (>4th year of migration, 28 142 

tracks). Nineteen tracks were from female individuals and 39 from males. Some individuals were 143 

tracked over multiple years (Table S1 in Supporting information). 144 

Data processing 145 

Fixes with a horizontal dilution of precision (an indication of 2D location quality; HDOP) > 10 146 

and 2D fixes were removed to exclude any obvious error in GPS locations or altitudes. Vertical 147 

dilution of precision (VDOP) information was not available for the majority of the data. Due to 148 
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the sampling regime, there were gaps in the recorded tracks. Gaps in flight data could also have 149 

occurred because of low battery voltage or the system’s functionality. Furthermore, a unit could 150 

not collect and send data simultaneously so, if a bird was in flight and connected to the Global 151 

System for Mobile communications (GSM) network, GPS data were not collected. Therefore, to 152 

reduce extrapolation over long unobserved periods, tracks from individual eagles were split into 153 

separate segments whenever the interval between consecutive locations was greater than 5 154 

minutes. Segments shorter than 10 minutes were excluded from further analysis to avoid biasing 155 

the probabilities regulating the temporal sequence of states (see below). Because hidden state 156 

models require a regular sampling unit, location and altitude data were linearly interpolated in R 157 

with custom code to a constant one-minute temporal resolution (R Development Core Team, 158 

2016). In alternative to using the interpolated values of the response variables over remaining 159 

short (≤ 5 min) unobserved periods in the data, the model can be formulated to estimate the value 160 

of missing observations. Results of this reformulation are shown in Appendix S3. 161 

At each minute, t, four variables were derived to characterise eagle behaviour (Table S2). The 162 

use of these variables for describing the behaviour of soaring birds was supported by previous 163 

studies (Katzner et al., 2015). Three of the four were derived from the GPS data: step length xt 164 

(the distance between location at t and location at t + 1, in meters), turning angle θt (the angle 165 

between the step from t - 1 to t and the step from t to t + 1, in radians) and altitude above sea 166 

level at (recorded by the GPS device, in meters). The fourth variable was hierarchical slope 167 

position (HSP, as defined by Murphy, Evans & Storfer 2010), a metric of topographic 168 

morphology used to quantify exposure and identify ridges. HSP was computed using package 169 

spatialEco in R (Evans, 2017) and based on ground elevation data obtained from the Global 170 

Multi-resolution Terrain Elevation Data 2010 at 30-arc-second spatial resolution (data available 171 
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from the U.S. Geological Survey: https://earthexplorer.usgs.gov/). A value of HSP, ht, was 172 

extracted for the surface below each eagle location at time t. These four variables constituted the 173 

vector of behavioural observations yt. Because the calculation of the turning angle θt requires 174 

three consecutive locations, the first and last locations of each segment were discarded.  175 

We assumed that the error around GPS locations was negligible (Morales et al., 2004). This was 176 

supported by the low mean HDOP associated with retained GPS fixes (mean = 1.9; STD = 1.2), 177 

corresponding to location errors in the order of a few meters. Particularly, the standard deviation 178 

of the position can be approximated by multiplying HDOP by the measurement standard 179 

deviation of the GPS device (Poessel, Duerr, Hall, Braham, & Katzner, 2018), which was 3 m for 180 

the devices used in this study (resulting in a standard deviation of 30 m when HDOP = 10). 181 

Considering the distribution of step lengths for tagged animals (mean = 540 m; STD = 398 m), 182 

this error was deemed irrelevant for our application. We used the published accuracy of the 183 

device in the third dimension to inform the error around altitude measurements in a state-space 184 

modelling framework (see details below; Lanzone et al., 2012). 185 

We tested the use of altitude above ground level for the vertical dimension, but found models 186 

with this variable to perform much worse than those with altitude above sea level. This was 187 

possibly due to error propagation (Péron et al., 2017) or to the fact that altitude above ground 188 

becomes difficult to interpret over steeply changing slopes, such as the ones used during 189 

orographic flight (Katzner et al., 2015). 190 

Model structure 191 

We developed a Bayesian state-space model to estimate the time series of latent behavioural 192 

states, st, of tagged individuals, together with the state-specific parameters of the emission 193 
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distributions for the observations yt. The process component of the model described the 194 

transition between the underlying states, regulated by a matrix of transition probabilities Γ. For 195 

M states, Γ had dimensions M × M and each element γi,j indicated the probability of being in state 196 

j at time t, given that the animal was in state i at time t – 1. The Markov property was assumed 197 

for the time series of states, i.e. state at time t only depended on state at time t – 1. The state 198 

process was informed by the four variables, step length, turning angle, altitude and hierarchical 199 

slope position, at time t. Given state st = i (with i in 1,…,M), step lengths were modelled as 200 

emerging from a Weibull distribution (McClintock et al., 2012; Morales et al., 2004), with state-201 

specific scale (αi) and shape (βi) parameters, determining the average step length per state and its 202 

variability, i.e. xt ~ W(βi, αi). Turning angles were assumed to have a wrapped Cauchy 203 

distribution (McClintock et al., 2012; Morales et al., 2004) with mean (µ) equal to 0 and state-204 

specific concentration parameter (ρi), a measure of how angles are distributed around the mean, 205 

i.e. θt ~ wC(0, ρi) (Breed, Costa, Jonsen, Robinson, & Mills-Flemming, 2012). The parameter ρi 206 

varies between 1 (angles concentrated around the mean 0, i.e. directed movement) and 0 207 

(corresponding to directions uniformly distributed on the circle, i.e. a classic random walk 208 

allowing for convoluted movement). True, unobserved altitude at each minute t was modelled as 209 

a random walk Gaussian variable with state-dependent standard deviation σi (Isojunno & Miller, 210 

2015; Langrock, Marques, Baird, & Thomas, 2014), υt ~ N(υt-1 + πi, σi), where υt-1 is the true 211 

altitude in the previous minute and πi denotes the state-specific mean vertical drift, i.e. the 212 

change in altitude between minutes. A Gaussian observation model accounted for errors in 213 

altitude measurement, i.e. at ~ N(υt, ε). Finally, following data exploration, hierarchical slope 214 

position was assumed to emerge from a Gaussian distribution with state-specific mean κi and 215 

standard deviation ωi, i.e. ht ~ N(κi, ωi).  216 
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We tested several alternative structures for the model, including a range of potential latent states 217 

(three to six). A model with five states converged successfully and aligned with biological 218 

expectations, so only this parameterisation is presented here. It is important to note that, in an 219 

unsupervised inference setting such as this (i.e. one where the true states are unknown), the 220 

number of states is driven by the process generating observed data (Leos-Barajas et al., 2017). 221 

However, the use of appropriate movement and ancillary environmental variables, capturing 222 

relevant features of an animal’s behaviour, can lead to the identification of biologically 223 

meaningful latent states (Leos-Barajas et al., 2017; McClintock et al., 2013). The five states used 224 

here were characterised by features of the response variables that broadly corresponded to 225 

directed thermal soaring (state 1), gliding (state 2), convoluted thermal soaring (state 3), perching 226 

(or on the ground; state 4) and orographic soaring (but potentially including periods of flapping 227 

flight; state 5). 228 

Priors 229 

Following initial data exploration, a set of constraints was applied to the priors of state-specific 230 

parameters in order to facilitate model convergence and support the identification and 231 

assignment of functionally relevant latent states (Isojunno & Miller, 2015) (Appendix S1). This 232 

also prevented label switching, i.e. the non-identifiability of state-dependent components due to 233 

the posterior distribution being invariant to permutation of state labels (Stephens, 2000). These 234 

constraints were broad, and were only defining the overall tendency of the vertical movement 235 

(ascending, descending or stable overall) and the relative degree of directedness, speed and 236 

topographic exposure among states (Appendix S1). The standard deviation of the observation 237 
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model for altitude (ε) was set at a fixed value (25 m), but was large enough to conservatively 238 

account for the declared accuracy level (Lanzone et al., 2012). 239 

Model fitting 240 

The model was fitted using JAGS run from R (package runjags; Appendix S2) (Denwood, 2016). 241 

Markov chain Monte Carlo (MCMC) algorithms were iterated until convergence of the latent 242 

states and model parameters. State convergence was assessed by monitoring the proportion δ1,…,5 243 

of minutes classified under each latent state. We ran three parallel chains, starting at different 244 

initial values. Convergence was assessed by visually inspecting trace and density plots (Lunn, 245 

Jackson, Best, Thomas, & Spiegelhalter, 2013), and confirmed by checking that the Brooks-246 

Gelman-Rubin (BGR) diagnostic fell below 1.1, and that Monte Carlo (MC) error was less than 247 

5% of the sample standard deviation (Lunn et al., 2013). The R package coda was used to assess 248 

convergence, calculate effective sample size and extract posterior estimates (Plummer, Best, 249 

Cowles, & Vines, 2006).  250 

Model validation 251 

To investigate the model’s ability to characterise functional latent states, we compared the 252 

model’s posterior state classifications with existing manual behavioural classifications for a 253 

subset of tagged eagles. Particularly, data from 13 of the 48 spring tracks were previously 254 

evaluated manually as part of a prior study (Katzner et al., 2015). Flight modes were identified 255 

by an expert observer (T. A. Miller) based on the patterns of sequential GPS locations and on 256 

their overlap with topographical features. As a result, flight mode was classified into one of four 257 

states: thermal soaring, gliding, orographic soaring, and unknown (Katzner et al., 2015). Model 258 

state classifications were obtained from the posterior median estimate of the categorical state. 259 
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States 1 and 3 were combined and matched to manually-classified thermal soaring, state 2 was 260 

matched to manually-classified gliding, and state 5 to manually-classified orographic soaring. 261 

Manual and model classifications were compared using confusion matrices. Because the model 262 

could not assign an “unknown” state and accuracy could not be evaluated for “unknown” 263 

segments, accuracy estimates from this matrix will be artificially low. In addition, we tested 264 

whether the occurrence of gaps in the tracking data and measurement error in the horizontal and 265 

vertical dimension could affect the results, using a simulation procedure based on the posterior 266 

estimates of model parameters (Appendix S4) and carried out posterior predictive checks to 267 

assess the goodness-of-fit of the model to the data (Appendix S5). 268 

Behavioural models 269 

The results of the state-space model can be used to explore the ecology of the study species. To 270 

demonstrate this application, we carried out a descriptive investigation of the seasonal, age and 271 

sex differences in flight strategy and performance. Specifically, we fitted binomial mixed-effects 272 

models (package lme4 in R; Bates, Maechler & Bolker 2012) to test whether the proportional 273 

occurrence of each behavioural state (directed thermal soaring, convoluted thermal soaring, 274 

gliding and orographic soaring) in a track varied as a function of the interaction between season 275 

(autumn and spring) and age category (adults and sub-adults). Because this analysis aimed to 276 

compare the occurrence of flight modes, steps classified as on the ground or perching were 277 

excluded. Moreover, due to the small sample size, tracks of juveniles were also excluded. In a 278 

separate model, we tested for the effect of sex on the flight performance of adult eagles in the 279 

two seasons (we excluded sub-adults since most of them were males). Because individuals were 280 

tracked over multiple years, we included a random effect of individual and year in all models. 281 
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The random effects structure, as well as the inclusion of the fixed effects, was assessed using the 282 

Akaike’s information criterion (Gurka, 2006), corrected for small sample sizes (AICc).  283 

 284 

Results 285 

The 58 filtered eagle tracks corresponded to 72,844 GPS fixes, which made up 599 segments 286 

longer than 10 min and separated from one another by more than 5 min. Regularisation of the 287 

599 segments at a one-minute resolution reduced the sample analysed to 45,914 locations.  288 

State-space model 289 

Visual inspection of trace plots suggested that the chains were randomly oscillating around a 290 

central value after 5,000 iterations, so these initial draws were discarded as burn-in. Diagnostics 291 

confirmed that the model converged adequately after 15,000 iterations (Table S3). We also 292 

verified that these iterations corresponded to an effective size of the posterior sample greater than 293 

400 for all parameters (Lunn et al., 2013). Due to computing memory limitations, we only 294 

retained one in 10 iterations.  295 

The results were consistent with our biological expectations of eagle behaviour, embedded in the 296 

priors, while describing the features of each state precisely. Under state 1 (directed thermal 297 

soaring), an individual gained substantial altitude and moved in large, directed steps. State 3 298 

(convoluted thermal soaring) was similar to state 1, but steps were considerably shorter and 299 

turning angles had low concentration. Bouts of both states appeared to be followed by gliding 300 

periods (state 2). State 4 (on the ground or perching) was characterised by extremely small and 301 

convoluted horizontal steps, and visual investigation of the tracks confirmed it corresponded to 302 
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periods when an eagle was not moving (e.g. Fig. S2). Finally, state 5 (orographic soaring) 303 

showed large variation in the vertical drift, suggesting irregular gaining and losing of altitude. 304 

This flight mode was correctly classified to occur over topographies characterised by high 305 

exposure (such as ridgelines). The posterior distributions of the state-dependent parameters are 306 

summarised in Table S3 and the emission distributions of the four response variables (step 307 

length, turning angle, vertical drift and hierarchical slope position) are plotted in Fig. S1.  308 

The posterior median was used to classify the behavioural state at each time step. The 309 

comparison of model state classifications with manually classified flight modes returned a mean 310 

of 68% correct classifications across states (Table S4; 67% for thermal soaring, 70% for gliding 311 

and 65% for orographic soaring). As an example, we plotted four track segments coloured by 312 

state, where posterior true altitude values were used (Fig. 2). Based on posterior state 313 

classifications, we calculated eagles’ activity budget, across both migration seasons and by 314 

migration season (Table 1). These data suggested that orographic soaring was less frequent in 315 

spring than in autumn.  316 

The model also appeared to be robust to observed levels of sampling irregularity and 317 

measurement errors (Appendix S4). However, the posterior predictive checks highlighted 318 

potential issues with the validity of the Markov property given the small time interval between 319 

observations (Appendix S5, Figs. S4 and S5). 320 

Behavioural models 321 

Model selection highlighted differences among individuals and among years in the occurrence of 322 

most flight modes (Table S5; Fig. S3). The use of orographic soaring varied by age category and 323 

season, suggesting that this flight mode occurred proportionally more in autumn and was used 324 
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more by sub-adults (Fig. 3a). In contrast, directed thermal soaring occurred more in spring and 325 

was used more by adults (Fig. 3a). Convoluted thermal soaring appeared to be used more by sub-326 

adults in autumn and by adults in spring, but the estimated effects had wide confidence intervals 327 

(Fig. 3a). Gliding occurred more in spring, and was used more by adults, although the latter 328 

effect showed large confidence intervals (Fig. 3a). Model results also suggested that the 329 

proportional occurrence of orographic soaring and gliding varied between the sexes, but 330 

differently in the two seasons. Females used more orographic soaring and less gliding than 331 

males, but only in autumn (Fig. 3b). No difference between the sexes was found for directed or 332 

convoluted thermal soaring (Table S5).  333 

 334 

Discussion 335 

To our knowledge, this study represents the first example of the use of altitude measurements in 336 

conjunction with horizontal information and ancillary environmental variables in hidden state 337 

models to characterise functional behavioural modes in three dimensions (McClintock, London, 338 

Cameron, & Boveng, 2017; McClintock et al., 2013). This is particularly useful for flying 339 

organisms, where studying the variation in flight mode might be more relevant than simply 340 

distinguishing resident and transit movement identified by models in two dimensions (Jonsen et 341 

al., 2013). In addition to identifying expected behavioural states of golden eagles, our model was 342 

able to tease apart two types of thermal soaring with different directedness. Previous work has 343 

generally classified thermal soaring as a single category of behaviour (e.g. Katzner et al., 2015), 344 

while the combination of horizontal and vertical information in our study discriminated 345 

additional flight features. The degree of directedness while gaining altitude within a thermal is 346 
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likely dependent upon the strength and distribution of thermals, the alignment of thermals with 347 

flight direction, and wind conditions (Kerlinger, 1989). Whenever conditions cause thermals to 348 

drift, birds using this form of soaring will also drift, resulting in straighter movement 349 

(Hedenström & Alerstam, 1995). This can warrant faster forward progress with the same energy 350 

expenditure, but only if the thermals drift in the same direction as the primary axis of movement. 351 

However, most thermal soaring was convoluted, because stronger winds disrupt thermal lift 352 

(Kerlinger, 1989). Where the data exist, our approach could be used to test this hypothesis by 353 

including an explicit effect of wind speed.  354 

The identification of behavioural states makes it possible to describe time allocation to different 355 

movement modes. This can shed light on an animal’s decision-making process as it moves 356 

through space and adjusts to environmental conditions (Nathan et al., 2008) with flight modes of 357 

different efficiencies (Duerr et al., 2012). For example, eagles used different strategies to migrate 358 

depending on the season, as reflected in the higher occurrence of orographic flight in autumn and 359 

the higher occurrence of gliding and directed thermal soaring in spring. This is intuitive, since 360 

the availability of thermals is higher in spring (Duerr et al., 2015).  361 

The behavioural models also highlighted differences in flight strategy and performance between 362 

age categories. Across both seasons, adults used gliding and directed thermal soaring more than 363 

sub-adults, which in turn used more orographic soaring, although these patterns were not 364 

reflected in the results for convoluted thermal soaring. Previous studies suggested that, in spring, 365 

adults need to move quickly towards the reproductive areas to secure nesting territories, while 366 

sub-adults can delay their migration and wait for energetically optimal weather conditions (Duerr 367 

et al., 2015; Miller et al., 2016). During spring migration, the relative use of different flight 368 
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modes also changes as a result of these processes (Katzner et al., 2015). In contrast, our results 369 

highlight that, at a broader scale, adults’ experience allows them to rely on more efficient flight 370 

modes compared to sub-adults overall, despite the constraints of reproduction. This 371 

inconsistency with previous work may also be a by-product of the disproportionate classification 372 

of behavioural states manually identified as ‘unknown’ into thermal soaring (Table S4).  373 

We also found substantial individual and yearly variability in flight performance, as well as 374 

differences in the use of orographic soaring and directed thermal soaring between males and 375 

females in autumn (Table S5). The larger size of females and corresponding higher weight might 376 

explain some of these patterns, although further investigation is required to explore the 377 

underlying functional processes. Because flight modes are characterised by different energetic 378 

investment and movement efficiency (Duerr et al., 2012; Hedenstrom, 1993; Hedenström & 379 

Alerstam, 1995), their variation among years, seasons, ages, sexes and individuals is relevant for 380 

an individual’s energy budget, which will ultimately affect its ability to survive and reproduce 381 

successfully (Weimerskirch, Louzao, de Grissac, & Delord, 2012). Investigating any spatial or 382 

temporal patterns in flight mode distribution could therefore highlight the moments in time or 383 

areas that are critical in terms of energy requirements during migration (Shepard et al., 2013). 384 

The energetic insight our model can provide also suggests its relevance to the study of other 385 

organisms’ flight modes and their variation in space and time (Alexander, 2015). 386 

Beyond energetics, characterising behavioural states in flying animals is particularly important to 387 

evaluate their susceptibility to human activities, informing effective planning and management 388 

(Katzner, Brandes, et al., 2012; Péron et al., 2017; Ross-Smith et al., 2016). For example, 389 

specific behavioural states, due to their horizontal and vertical characteristics, may put birds at 390 
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higher risk of collision with turbines (Ross-Smith et al., 2016). For golden eagles in eastern 391 

North America, the spatiotemporal distribution of flight modes could be mapped to quantify their 392 

overlap with wind power developments within the population’s range (Miller et al., 2014) and 393 

inform simulation models that estimate collision rates (New, Bjerre, Millsap, Otto, & Runge, 394 

2015). In this sense, the mismatch between manual and model classifications may be irrelevant 395 

as long as movement features are described correctly, because vulnerability in a state may be 396 

more related to average altitude and speed, rather than the type of updraft birds are using.  397 

Given that migration patterns are highly affected by weather conditions (Duerr et al., 2015; 398 

Lanzone et al., 2012; Miller et al., 2016), the viability of this, and other, populations of long-399 

ranging migratory birds is also threatened by global climate changes (Møller, Rubolini, & 400 

Lehikoinen, 2008). The presence of two types of thermal soaring suggests sensitive responses by 401 

birds to variation in weather. Thus, major alterations of wind patterns and the increase in 402 

frequency of extreme weather events may affect flight decisions and energetic efficiency, 403 

potentially compromising birds’ migratory abilities (Marra, Francis, Mulvihill, & Moore, 2005). 404 

Our model could be used to assess changes in activity budgets following altered weather 405 

conditions. In turn, a modified allocation of time to activities with different energetic efficiency 406 

could affect the energy balance of these species over the migration and, ultimately, have 407 

consequences on their survival and reproductive success (Weimerskirch et al., 2012). 408 

From a methodological perspective, the state-space framework presented here advances previous 409 

work that modelled altitude data in isolation (Ross-Smith et al., 2016). In addition to altitude, it 410 

was the use of ancillary topographical information that supported the identification of orographic 411 

soaring, which is associated with ridges and other structures deflecting horizontal winds 412 
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(Kerlinger, 1989; Mallon, Bildstein, & Katzner, 2016). Selecting appropriate ancillary metrics is 413 

critical for the successful discrimination of flight modes that are promoted by specific features of 414 

the environment (Murphy et al., 2010). Our analytical approach was unsupervised, in the sense 415 

that observed behavioural states were not used to tune the model (Leos-Barajas et al., 2017). 416 

However, as part of the preliminary exploration of the tracking dataset, five states were selected 417 

and suitable constraints were set to broadly match these states with potential flight modes. The 418 

fitting procedure returned posterior estimates of state-specific parameters that were consistent 419 

with initial observations and described these putative states in detail.  420 

The approach we used aligns with recent analytical efforts to characterise diving and underwater 421 

foraging behaviour by marine mammals and seabirds, where depth is used as the third dimension 422 

instead of altitude (Bestley et al., 2015; Dean et al., 2013; Isojunno & Miller, 2015; Langrock et 423 

al., 2014; Quick et al., 2017). Together with these studies from the marine realm, it therefore 424 

represents a step towards developing a fully three-dimensional movement model as data from 425 

new sensors (e.g. accelerometry) become available (Leos-Barajas et al., 2017). To this purpose, a 426 

semi-Markov extension of the model might be considered (Isojunno & Miller, 2015; Langrock et 427 

al., 2014). The distribution of the durations of stays in the various flight modes is unlikely to be 428 

geometric, as implied by the Markov property (Langrock et al., 2014), particularly when using a 429 

short time step. The posterior predictive checks on our model confirmed that there was residual 430 

autocorrelation for some of the response variables under some states (Appendix S5). While this 431 

assumption may not affect appropriate behavioural classification, it becomes important when 432 

estimated probabilities are used to simulate new tracks.  433 

 434 
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Conclusions 435 

The proliferation of bio-logging devices offers the unique opportunity of detailing individuals’ 436 

behavioural patterns at nested scales (Nathan et al., 2008). Identifying different behavioural 437 

modes that arise from animals’ response to the underlying habitat and quantifying their 438 

spatiotemporal variation can provide valuable insights into the mechanisms driving behavioural, 439 

energetic and, in the long term, life history decisions (Hays et al., 2016). However, new 440 

statistical tools are required to explore these large datasets and summarise the wide range of 441 

movement features into understandable states (Patterson et al., 2008). Here, we presented a 442 

model that describes a bird’s latent behaviour as it switches among flight modes during 443 

migration. Model results highlighted two different patterns of thermal soaring flight. Moreover, 444 

the analysis of the relative occurrence of different flight modes showed yearly, seasonal, 445 

individual, age and sex differences in flight strategy and performance, shedding light on the 446 

functional processes underlying individual behavioural patterns in the context of a dynamic 447 

environment. 448 
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Tables 651 

 652 

Table 1. Estimated golden eagle activity budget, across both migration seasons and by migration 653 

season. 654 

 

Directed 

thermal 

soaring 

Gliding 

Convoluted 

thermal 

soaring 

On the ground 

or perching 

Orographic 

soaring 

Overall 2% 31% 38% 9% 20% 

Spring 3% 32% 37% 10% 18% 

Autumn 0% 24% 43% 8% 25% 

  655 
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Figures 656 

 657 

 658 

Figure 1. Map of study area and golden eagle tracks in autumn (48 tracks) and in spring (10 659 

tracks). 660 
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 661 

Figure 2. Segments of three-dimensional golden eagle tracks. Tracks are coloured based on 662 

model posterior medians of the behavioural state at each minute t. In grey, the shadow of the 663 

track projected onto the horizontal plane. The posterior median of true altitudes is used for the 664 

vertical dimension. 665 
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 666 

Figure 3. Results of the behavioural models by state (mean and 95% confidence intervals). The 667 

y-axis was standardised across plots, but the top left plot also includes a zoomed inset graph 668 

(dotted box) for clarity. a) Effect of season and age category on the proportional occurrence of 669 

each state. b) Effect of season and sex on the proportional occurrence of gliding and orographic 670 

soaring. Results for the two forms of thermal soaring are not reported because the effect of sex 671 

was not retained by model selection. 672 
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Supporting information 

 

Table S1. Number of tracks available per individual in each year. 

Individual 

ID 

Year 

2009 2010 2011 2012 2013 2014 2015 2016 

95 0 0 2 1 0 0 0 0 

301 0 1 0 0 0 0 0 0 

376 0 1 0 0 0 0 0 0 

434 0 0 1 0 0 0 0 0 

483 0 0 1 0 0 0 0 0 

558 0 0 1 0 0 0 0 0 

749 0 0 1 0 0 0 0 0 

2851 0 1 0 0 0 0 0 0 

3206 0 0 1 0 0 0 0 0 

3546 0 0 1 0 0 0 0 0 

3553 0 1 0 0 0 0 0 0 

3785 0 0 0 2 2 2 0 0 

4189 0 0 0 1 0 0 0 0 

4195 0 0 0 1 1 0 0 0 

4379 0 0 0 2 1 2 1 1 

4533 1 0 0 0 0 0 0 0 

4733 0 1 1 1 1 1 1 0 

4782 0 1 1 0 0 0 0 0 

5061 0 0 0 0 1 0 0 0 

5244 0 0 0 1 1 0 0 0 

5269 0 0 0 2 2 1 0 0 

6960 1 0 0 0 0 0 0 0 

7231 0 0 0 2 1 1 0 0 

7454 0 0 0 1 0 0 0 0 

7878 0 0 2 1 0 0 0 0 

8107 1 0 0 0 0 0 0 0 

9013 0 0 0 1 0 0 0 0 

9287 0 0 0 0 0 1 0 0 
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Table S2. Description of variables and model parameters. The subscript t indicates a time-

dependent variable, while the subscript i indicates a state-dependent parameter. HSP stands for 

hierarchical slope position. 

Class Symbol Name Definition 

Data 

xt Step length Distance between consecutive locations 

θt Turning angle Angle between consecutive steps 

at Altitude (observed) Altitude above sea level as measured by the GPS 

ht 
Hierarchical slope 

position 

Measure of topographic exposure (Murphy, Evans, 

& Storfer, 2010) 

yt Data vector 
Vector of observations of the three movement 

metrics (x, θ, a and h) 

Underlying 

variables 

st State Latent behavioural state 

υt Altitude (true) True altitude above sea level 

Model 

parameters 

πi Vertical drift Mean change in altitude under state i 

σi 
Altitude standard 

deviation 
State-specific variation around altitude change 

ε 
Altitude observation 

error 
Altitude uncertainty due to GPS measurement error 

ρi Concentration State-dependent variability in turning angles 

αi Scale 
Scale parameter for the state-dependent 

distribution of step lengths 

βi Shape 
Shape parameter for the state-dependent 

distribution of step lengths 

κi Mean HSP 
State-dependent mean of hierarchical slope 

position 

ωi 
Standard deviation 

HSP 

State-dependent standard deviation of hierarchical 

slope position 

γi,j 
Transition 

probability 
Probability of switching between state i and state j 

φi 
Initial state 

probability 
Probability of being in state i at the start of a track 
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Appendix S1. Details of prior distributions. 

Priors for state 1 (directed thermal soaring): The vertical drift had a truncated positive prior, so 

that under this state the bird was assumed to be gaining altitude. The variability in vertical drift 

was constrained between 0 and 150 m. Turning angles were assumed to be relatively more 

directed (i.e. concentration > 0.5) than in other states. Priors for parameters α and β were defined 

on a logarithmic scale to avoid meaningless negative values. The mean and standard deviation of 

hierarchical slope position was unconstrained. 

Priors for state 2 (gliding): The vertical drift had the same absolute value and variability as in 

state 1, but opposite sign, i.e. the bird was decreasing its altitude. The distribution of turning 

angles was assumed to be the same as in state 1. This state had the same step length distribution 

as state 1. The mean and standard deviation of hierarchical slope position was the same as in 

state 1. We also investigated a model where the descending state (state 2) had the same 

horizontal features of state 3, but this model did not converge, suggesting that, while ascending 

behaviour can be either horizontally straight or convoluted, descending behaviour tends to be 

predominantly straight, as expected from gliding flight (Katzner et al., 2015). 

Priors for state 3 (convoluted thermal soaring): The prior for vertical drift was truncated to 

represent altitude gain. The variability in vertical drift was constrained between 0 and 150 m. 

This state was constrained to be at most as directed as states 1, 2 and 5. Steps were constrained to 

be smaller than under state 1 and 2. The mean and standard deviation of hierarchical slope 

position was the same as in state 1 and 2. 

Priors for state 4 (on the ground or perching): The bird was assumed to remain at a stable 

altitude, on average (i.e. mean vertical drift was set to 0, with a standard deviation fixed at 10 m 
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to represent small changes in altitude due to terrain features). Horizontal movement was assumed 

to be relatively more convoluted (i.e. concentration < 0.5). Steps were constrained to be smaller 

than under state 3. 

Priors for state 5 (orographic soaring): The bird was assumed to remain at a stable altitude, on 

average (i.e. mean vertical drift was set to 0). The variability in vertical drift was constrained 

between 0 and 150 m. The distribution of turning angles was assumed to be the same as in state 

1. Steps were constrained to be smaller than under state 1 and 2. Hierarchical slope position has 

higher values along ridges and was thus assumed to have mean higher in this state than in state 1, 

2 and 3, while its variability was unconstrained. 

States at time t were not previously labelled, and the model assigned a state to each time step 

based on the posterior estimates of the parameters. We used an unbiased and relatively 

uninformative Dirichlet(1,1,1,1,1) prior for the transition probabilities γi,1…5 from each state i to 

all states, as well as for the probabilities of being in each state at the beginning of a track or track 

segment φ1,…,5. The standard deviation of the observation model for altitude (ε) was set to 25 m. 

While it would be preferable to estimate this parameter directly from the data, such standard 

deviation was found to be confounded with the standard deviation of true altitude. However, the 

fixed value we used was larger than the reported accuracy of the GPS devices (± 15 m; Lanzone 

et al., 2012), as a conservative way to account for error variation due to fix quality and other 

factors (Péron et al., 2017).  
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Description Parameter Prior 

Vertical drift (altitude) 

π1 Truncated Normal (100, 45) [30, ] 

π2 - π1 

π3 Truncated Normal (40, 45) [30, ] 

π4 0 

π5 0 

Standard deviation 

(altitude) 

σ1 Uniform (0, 150) 

σ2 σ1 

σ3 Uniform (0, 150) 

σ4 10 

σ5 Uniform (0, 150) 

Concentration (turning 

angle) 

ρ1 Uniform (0.5, 1) 

ρ2 ρ1 

ρ3 Uniform (0, ρ1) 

ρ4 Uniform (0, 0.5) 

ρ5 ρ1 

Scale              

(step length) 

log(α1) Uniform (-1, 7) 

log(α2) log(α1) 

log(α3) Uniform (-1, log(α1)) 

log(α4) Uniform (-1, log(α3)) 

log(α5) Uniform (-1, log(α1)) 

Shape            

 (step length) 

log(β1) Uniform (-1, 2) 

log(β2) log(β1) 

log(β3) Uniform (-1, 2) 

log(β4) Uniform (-1, 2) 

log(β5) Uniform (-1, 2) 

Mean  

(hierarchical slope 

position) 

κ1 Normal (0.3, 0.3) 

κ2 κ1 

κ3 κ1 

κ4 Normal (0.3, 0.3) 

κ5 Truncated Normal (0.4, 0.3) [κ1, ] 

Standard deviation 

(hierarchical slope 

position) 

ω1 Uniform (0, 0.2) 

ω2 ω1 

ω3 ω1 

ω4 Uniform (0, 0.2) 

ω5 Uniform (0, 0.2) 

Transition probabilities 

from each state i 
γi,1…5 Dirichlet (1,1,1,1,1) 

Initial state probabilities φ1…5 Dirichlet (1,1,1,1,1) 
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Appendix S2. JAGS code for the model. 

model 

{ 

 

##Priors and constraints by state## 

 

#Mean vertical drift 

pi[1] ~ dnorm(100,0.0005)T(30,) 

pi[2] <- -pi[1] 

pi[3] ~ dnorm(40,0.0005)T(30,) 

pi[4] <- 0 

pi[5] <- 0 

 

#STD vertical drift 

sigma[1] ~ dunif(0,150) 

sigma[2] <- sigma[1] 

sigma[3] ~ dunif(0,150) 

sigma[4] <- 10 

sigma[5] ~ dunif(0,150) 

for (i in 1:nstates){ 

 upsi.tau[i] <- 1/sigma[i]/sigma[i] #transform STD to precision 

 } 

 

#Concentration parameter for turning angle 

rho[1] ~ dunif(0.5,1) 

rho[2] <- rho[1] 

rho[3] ~ dunif(0,rho[1]) 

rho[4]  ~ dunif(0,0.5) 
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rho[5] <- rho[1] 

 

#Mean turning angle (fixed) 

mu <- 0 

 

#Parameters for step length distribution (on log scale) 

logalpha[1] ~ dunif(-1,log.maxalpha) 

logalpha[2] <- logalpha[1] 

logalpha[3] ~ dunif(-1,logalpha[1]) 

logalpha[4] ~ dunif(-1,logalpha[3]) 

logalpha[5] ~ dunif(-1,logalpha[1]) 

 

logbeta[1] ~ dunif(-1,log.maxbeta) 

logbeta[2] <- logbeta[1] 

logbeta[3] ~ dunif(-1,log.maxbeta) 

logbeta[4] ~ dunif(-1,log.maxbeta) 

logbeta[5] ~ dunif(-1,log.maxbeta) 

 

for (i in 1:nstates){ 

 alpha[i] <- exp(logalpha[i]) 

 beta[i] <- exp(logbeta[i]) 

 #JAGS uses different Weibull parameterization than R 

 lambda[i] <- 1/pow(alpha[i],beta[i]) 

 } 

 

#Mean HSP 

kappa[1] ~ dnorm(0.3,10) 

kappa[2] <- kappa[1] 

kappa[3] <- kappa[1] 

kappa[4] ~ dnorm(0.3,10) 
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kappa[5] ~ dnorm(0.4,10)T(kappa[1],) 

 

#STD HSP 

omega[1] ~ dunif(0,0.2) 

omega[2] <- omega[1] 

omega[3] <- omega[1] 

omega[4] ~ dunif(0,0.2) 

omega[5] ~ dunif(0,0.2) 

for (i in 1:nstates){ 

 hsp.tau[i] <- 1/omega[i]/omega[i] #transform STD to precision 

 } 

 

#Initial state probabilities 

phi[1:nstates] ~ ddirch(phiprior[1:nstates]) 

 

#Transition probabilities 

for (i in 1:nstates){ 

 gamma[i,1:nstates] ~ ddirch(phiprior[1:nstates]) 

 } 

 

#Observation error on altitude 

epsilon <- 25 

a.tau <- 1/epsilon/epsilon 

 

##Model## 

for (k in 1:ntracks){                              #loop over track segments 

 s[Xidx[k]] ~ dcat(phi[1:nstates])                 #initial behavioural state 

 upsilon[Xidx[k]+1] ~ dnorm(a[Xidx[k]+1], a.tau)       #initial true altitude 

 

 #State proportions 
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 state.cnt[1,Xidx[k]] <- equals(s[Xidx[k]],1) 

 state.cnt[2,Xidx[k]] <- equals(s[Xidx[k]],2) 

 state.cnt[3,Xidx[k]] <- equals(s[Xidx[k]],3) 

 state.cnt[4,Xidx[k]] <- equals(s[Xidx[k]],4) 

 state.cnt[5,Xidx[k]] <- equals(s[Xidx[k]],5) 

 

 for (t in (Xidx[k]+1):(Xidx[k+1]-2)){                 #loop over time steps 

   s[t] ~ dcat(gamma[s[t-1],1:nstates])                #behavioural state 

 

   upsi.mean[t+1] <- upsilon[t] + pi[s[t]]             #mean altitude 

   upsilon[t+1] ~ dnorm(upsi.mean[t+1], upsi.tau[s[t]])#process error (true altitude) 

   a[t+1] ~ dnorm(upsilon[t+1], a.tau)                 #observed altitude (with 

observation error) 

 

   h[t] ~ dnorm(kappa[b[t]], hsp.tau[b[t]])            #Hierarchical Slope Position 

 

   x[t] ~ dweib(beta[s[t]],lambda[s[t]])               #step length 

 

   #“ones” trick to sample from the Wrapped Cauchy distribution 

   ones[t] ~ dbern(wC[t]) 

   wC[t] <- ( 1/(2*Pi)*(1-rho[s[t]]*rho[s[t]])/(1+rho[s[t]]*rho[s[t]]-

2*rho[s[t]]*cos(theta[t]-mu)) )/500 

 

   #State proportions 

   state.cnt[1,t] <- equals(s[t],1) 

   state.cnt[2,t] <- equals(s[t],2) 

   state.cnt[3,t] <- equals(s[t],3) 

   state.cnt[4,t] <- equals(s[t],4) 

   state.cnt[5,t] <- equals(s[t],5) 
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   }#close temporal loop 

 

  state.cnt[1,Xidx[k+1]-1]<-0 

  state.cnt[2,Xidx[k+1]-1]<-0 

  state.cnt[3,Xidx[k+1]-1]<-0 

  state.cnt[4,Xidx[k+1]-1]<-0 

  state.cnt[5,Xidx[k+1]-1]<-0 

 

  }#close track loop 

 

 #Monitor state convergence 

 delta[1] <- sum(state.cnt[1,1:(Xidx[ntracks+1]-1)])/(Xidx[ntracks+1]-1-ntracks) 

 delta[2] <- sum(state.cnt[2,1:(Xidx[ntracks+1]-1)])/(Xidx[ntracks+1]-1-ntracks) 

 delta[3] <- sum(state.cnt[3,1:(Xidx[ntracks+1]-1)])/(Xidx[ntracks+1]-1-ntracks) 

 delta[4] <- sum(state.cnt[4,1:(Xidx[ntracks+1]-1)])/(Xidx[ntracks+1]-1-ntracks) 

 delta[5] <- sum(state.cnt[5,1:(Xidx[ntracks+1]-1)])/(Xidx[ntracks+1]-1-ntracks) 

 

} 
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Table S3. Posterior estimates of model parameters (median and 95% highest posterior density interval). For each parameter, the table 

also reports the effective sample size and convergence diagnostics: upper confidence interval (CI) of the Brooks-Gelman-Rubin 

(BGR) diagnostic and percentage of Monte Carlo error (MCE) to sample standard deviation (SSD). 

 

Description Parameter 
Lower 

(2.5%) 
Median 

Upper 

(97.5%) 

Effective 

sample size 

BGR diagnostic 

(upper CI) 

% 

MCE/SSD 

Vertical drift 

(altitude) 

π1 = -π2 74 76 77 3315 1.01 1.74 

π3 52 53 55 3509 1 1.69 

Standard deviation 

(altitude) 

σ1 = σ2 64 65 66 2527 1 2.10 

σ3 71 72 74 2652 1 1.95 

σ5 95 97 99 2621 1.01 1.96 

Concentration 

(turning angle) 

ρ1 = ρ2 = ρ5 0.83 0.84 0.84 3874 1.01 1.63 

ρ3 0.62 0.63 0.64 3552 1.01 1.69 

ρ4 0.00 0.00 0.00 4286 1 1.53 

Scale         

 (step length) 

α1 = α2 1058 1065 1071 1515 1 2.59 

α3 385 390 395 1437 1 2.69 

α4 22 23 24 1454 1.02 2.62 

α5 654 663 672 2346 1 2.09 

Shape  

(step length) 

β1 = β2 3.56 3.61 3.67 2360 1 2.07 

β3 1.87 1.90 1.92 3568 1.01 1.75 

β4 0.90 0.93 0.96 1155 1.02 3.22 

β5 1.80 1.83 1.87 2860 1 1.88 

Mean  
κ1 = κ2 = κ3 0.326 0.327 0.328 942 1.03 3.29 

κ4 0.375 0.378 0.380 3931 1.01 1.68 
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(hierarchical slope 

position) 
κ5 0.448 0.450 0.452 901 1.01 3.39 

Standard deviation 

(hierarchical slope 

position) 

ω1 = ω2 = ω3 0.049 0.050 0.050 1663 1.02 2.49 

ω4 0.070 0.071 0.073 4045 1 1.58 

ω5 0.052 0.053 0.054 3158 1.01 1.80 

State proportions 

δ1 0.02 0.03 0.03 504 1.01 4.45 

δ2 0.30 0.31 0.31 1421 1 2.74 

δ3 0.37 0.37 0.38 691 1.03 3.82 

δ4 0.09 0.09 0.10 523 1.05 4.47 

δ5 0.20 0.20 0.21 430 1.05 4.86 

Transition 

probabilities 

γ1,1 0.754 0.785 0.815 2785 1 1.90 

γ2,1 0.012 0.015 0.018 1481 1.01 2.68 

γ3,1 0.001 0.002 0.003 1650 1 2.64 

γ4,1 0.000 0.000 0.001 4657 1 1.47 

γ5,1 0.000 0.000 0.001 2867 1 1.89 

γ1,2 0.169 0.199 0.229 2414 1 2.08 

γ2,2 0.714 0.723 0.732 4500 1 1.49 

γ3,2 0.172 0.179 0.186 4091 1 1.56 

γ4,2 0.000 0.000 0.001 4500 1.01 1.49 

γ5,2 0.058 0.064 0.070 3831 1 1.62 

γ1,3 0.000 0.001 0.006 3571 1 1.67 

γ2,3 0.214 0.223 0.231 4223 1 1.54 

γ3,3 0.781 0.789 0.796 4153 1 1.55 

γ4,3 0.029 0.035 0.042 3100 1.01 1.79 

γ5,3 0.020 0.025 0.029 2982 1 1.84 

γ1,4 0.000 0.001 0.003 4644 1.01 1.47 

γ2,4 0.000 0.001 0.002 3772 1 1.64 

γ3,4 0.010 0.012 0.014 3936 1.01 1.61 

γ4,4 0.938 0.946 0.953 3647 1.02 1.65 
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γ5,4 0.016 0.019 0.022 3559 1 1.68 

γ1,5 0.005 0.013 0.026 1897 1 2.37 

γ2,5 0.034 0.038 0.042 2987 1.01 1.86 

γ3,5 0.016 0.019 0.022 2668 1 1.98 

γ4,5 0.014 0.018 0.024 2828 1.01 1.88 

γ5,5 0.884 0.892 0.899 3598 1 1.67 

Initial state 

probabilities 

φ1 0.005 0.019 0.041 1686 1 2.46 

φ2 0.092 0.155 0.221 2946 1 1.85 

φ3 0.378 0.447 0.514 3456 1.01 1.70 

φ4 0.109 0.137 0.169 4029 1.01 1.58 

φ5 0.198 0.238 0.286 3053 1.01 1.83 
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Figure S1. State-dependent emission distributions of the four response variables: a) turning 

angle, b) step length, c) vertical drift and d) hierarchical slope position, plotted over regularised 

data (grey histogram). To help visualisation, plots were truncated at 2000 m for step length and 

±500 meters for vertical drift.  
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Figure S2. Example of time series of true altitudes from a track segment, coloured by the median posterior behavioural state at those 

locations. The filled polygon represents elevation at the corresponding GPS positions. 
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Table S4. Confusion matrix comparing manual state classifications (from Katzner et al., 2015) 

and model state estimates based on the posterior medians. Grey boxes highlight matching 

classifications. 

 

      Model → 

↓ Manual 

State 1 and 3 

(thermal 

soaring) 

State 2 

(gliding) 

State 5 

(orographic 

soaring) 

State 4              

(on the ground 

or perching) 

Accuracy 

Thermal soaring 1660 438 374 4 0.67 

Gliding 446 1766 308 1 0.70 

Orographic 

soaring 
134 114 464 2 0.65 

Unknown 1497 289 294 27 - 

Reliability 0.44 0.68 0.32 -  
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Table S5. Results of model selection for the behavioural models, based on Akaike’s information 

criterion corrected by small samples sizes (AICc). Best models (i.e. minimising the AICc) are 

highlighted in bold. The symbol ‘*’ indicates the interaction between two variables. 

 

Behavioural 

state 
Data subset Fixed effects Random effects AICc 

Directed thermal 

soaring (State 1) 

Adults and sub-

adults; autumn 

and spring 

~ Season * Age 

Individual 772 

Year 902 

Individual, Year 548 

~ Season + Age Individual, Year 546 

~ Season Individual, Year 567 

~ Age Individual, Year 672 

Adults; autumn 

and spring 

~ Season * Sex 

Individual 324 

Year 473 

Individual, Year 288 

~ Season + Sex Individual, Year 288 

~ Season Individual, Year 285 

~ Sex Individual, Year 352 

Gliding (State 2) 

Adults and sub-

adults; autumn 

and spring 

~ Season * Age 

Individual 961 

Year 1066 

Individual, Year 858 

~ Season + Age Individual, Year 856 

~ Season Individual, Year 858 

~ Age Individual, Year 1041 

Adults; autumn 

and spring 

~ Season * Sex 

Individual 448 

Year 577 

Individual, Year 411 

~ Season + Sex Individual, Year 462 

Convoluted 

thermal soaring 

(State 3) 

Adults and sub-

adults; autumn 

and spring 

~ Season * Age 

Individual 854 

Year 1196 

Individual, Year 805 

~ Season + Age Individual, Year 817 

Adults; autumn 

and spring 
~ Season * Sex 

Individual 457 

Year 606 

Individual, Year 460 
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~ Season + Sex Individual 455 

~ Season Individual 453 

~ Sex Individual 460 

Orographic 

soaring (State 5) 

Adults and sub-

adults; autumn 

and spring 

~ Season * Age 

Individual 1548 

Year 1913 

Individual, Year 1364 

~ Season + Age Individual, Year 1362 

~ Season Individual, Year 1423 

~ Age Individual, Year 1524 

Adults; autumn 

and spring 

~ Season * Sex 

Individual 773 

Year 859 

Individual, Year 711 

~ Season + Sex Individual, Year 821 
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Figure S3. Dot plots of the random effects of individual and year in the final behavioural models. a-d) Results of the models assessing 

age and seasonal differences in the proportional occurrence of directed thermal soaring, convoluted thermal soaring, gliding and 

orographic soaring, respectively. f-e) Results of the models assessing sex and seasonal differences in the proportional occurrence of 

gliding and orographic soaring, respectively. All random effects are reported on the link scale (logit). 

a) 
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b) 
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c) 
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d)  

 

  



58 

 

e) 
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f) 
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Appendix S3. Reformulation of the model allowing for missing data. 

The interpolation procedure used to fill any remaining, short (≤5 min) gaps in the observed track 

segments may introduce errors in the time series of response variables, particularly in the 

horizontal dimension. To test whether model results were affected by interpolated observations 

over these short gaps, the model was reformulated to allow for missing data points in the 

response variables. Specifically, whenever the time interval between a regularised location and 

the closest observed location was greater than 1 minute, rather than using the interpolated values 

of the response variables, the model was asked to estimate the missing values of the response 

variables, together with the rest of the parameters. When altitude information was missing at the 

second location of a segment (affecting the estimation of the vertical drift at the first location), a 

truncated Gaussian prior was provided, centred on the mean altitude for the corresponding 

segment, with a standard deviation of 2,000 m and truncation at the extremes of the observed 

altitude range. 

The estimates of the parameters and associated uncertainty from this alternative version of the 

model are reported below. The 95% highest posterior density intervals for all parameters were 

largely overlapping between the two model formulations. As a result, the proportion of minutes 

classified under each latent state (δ1,…,5) also remained largely unchanged in the new 

formulation.  
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Description Parameter 
Lower 

(2.5%) 
Median 

Upper 

(97.5%) 

Vertical drift 

(altitude) 

π1 = -π2 75 76 78 

π3 52 53 55 

Standard deviation 

(altitude) 

σ1 = σ2 64 65 66 

σ3 72 73 74 

σ5 93 95 97 

Concentration 

(turning angle) 

ρ1 = ρ2 = ρ5 0.83 0.83 0.83 

ρ3 0.62 0.63 0.64 

ρ4 0.00 0.00 0.00 

Scale         

 (step length) 

α1 = α2 1061 1068 1075 

α3 386 391 396 

α4 22 23 24 

α5 655 664 673 

Shape  

(step length) 

β1 = β2 3.57 3.62 3.68 

β3 1.86 1.89 1.92 

β4 0.90 0.92 0.95 

β5 1.79 1.83 1.86 

Mean  

(hierarchical slope 

position) 

κ1 = κ2 = κ3 0.326 0.327 0.328 

κ4 0.376 0.378 0.380 

κ5 0.448 0.450 0.451 

Standard deviation 

(hierarchical slope 

position) 

ω1 = ω2 = ω3 0.049 0.050 0.050 

ω4 0.070 0.071 0.073 

ω5 0.052 0.053 0.054 

State proportions 

δ1 0.02 0.03 0.03 

δ2 0.30 0.30 0.31 

δ3 0.37 0.37 0.38 

δ4 0.09 0.09 0.10 

δ5 0.20 0.20 0.21 

Transition 

probabilities 

γ1,1 0.752 0.784 0.814 

γ2,1 0.012 0.015 0.018 

γ3,1 0.001 0.002 0.003 

γ4,1 0.000 0.000 0.001 

γ5,1 0.000 0.000 0.001 

γ1,2 0.170 0.200 0.232 

γ2,2 0.711 0.720 0.729 

γ3,2 0.174 0.181 0.188 

γ4,2 0.000 0.000 0.001 
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γ5,2 0.058 0.064 0.071 

γ1,3 0.000 0.001 0.006 

γ2,3 0.217 0.225 0.234 

γ3,3 0.779 0.787 0.795 

γ4,3 0.029 0.035 0.043 

γ5,3 0.020 0.024 0.029 

γ1,4 0.000 0.001 0.004 

γ2,4 0.000 0.001 0.002 

γ3,4 0.010 0.012 0.014 

γ4,4 0.937 0.945 0.952 

γ5,4 0.016 0.019 0.022 

γ1,5 0.004 0.013 0.026 

γ2,5 0.034 0.039 0.043 

γ3,5 0.015 0.018 0.021 

γ4,5 0.014 0.019 0.024 

γ5,5 0.885 0.892 0.899 

Initial state 

probabilities 

φ1 0.005 0.020 0.042 

φ2 0.089 0.153 0.222 

φ3 0.381 0.452 0.519 

φ4 0.102 0.132 0.164 

φ5 0.197 0.241 0.287 
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Appendix S4. Analysis of simulated data. 

In order to investigate whether irregular sampling (resulting in gaps in the tracking data) and 

measurement errors in the vertical and horizontal dimensions affected the ability of the model to 

estimate the parameters correctly, we explored the performance of the model by means of 

simulated data.  

First, the posterior estimates of the parameters of the state-dependent emission distributions and 

of the transition probabilities were used to simulate thirty 10,000-minute-long time series of step 

length, turning angle, altitude and hierarchical slope position values. Specifically, the initial 

behavioural state for each track was set to 4 (i.e. on the ground or perching). A random value 

was then drawn from the posterior distribution of each parameter of the state-dependent emission 

distributions and of the corresponding transition probabilities. The set of transition probabilities 

was used to draw the behavioural state in the following time step, while the emission 

distributions were used to simulate a new value for each response variable. This was repeated 

10,000 times for each simulated track. Errors in the vertical dimension were simulated using the 

same observation model used in the original analysis. We then extracted all gaps ≥2 min 

observed in the original data and distributed them randomly over the simulated data. Very large 

gaps (≥1 d) were excluded because they could not be placed randomly over the simulated tracks 

without generating extremely large tracks; however, this is unlikely to affect the outcome of the 

simulation procedure, because larger gaps would simply lead to the creation of additional 

segments. As described in the data processing section, we then divided tracks into separate 

segments whenever the gap was greater than 5 min, and interpolated the values of the response 

variables for shorter gaps. The first 7,000 observations of each track were discarded to: 1) avoid 

any influence of initial conditions; and 2) obtain a simulated tracking dataset of comparable size 
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to the original data. The final simulated dataset included 42,783 data points. We simulated errors 

in the horizontal dimension using a randomly sampled HDOP value from the original dataset: we 

drew a random value from a Gaussian distribution centred on the simulated step length, with 

standard deviation equal to the random HDOP value multiplied by the GPS error of the devices 

(3 m). Finally, we ran the state-space analysis on the resulting, simulated data, using the same 

priors and initial values as in the original analysis.  

The estimates of the parameters and associated uncertainty from the analysis of the simulated 

data are reported below. With the exception of the initial state probabilities (which are 

necessarily different in the simulated data) and, to a certain extent, of the state proportions 

(reflecting the simulation ability of the model; see discussion in Appendix S5), the 95% highest 

posterior density intervals for all other parameters were largely overlapping between the analysis 

of observed and simulated data. These results suggest that the model is able to retrieve the 

correct parameter estimates despite observed gaps in the tracks and measurement errors. 
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Description Parameter 
Lower 

(2.5%) 
Median 

Upper 

(97.5%) 

Vertical drift 

(altitude) 

π1 = -π2 73 75 76 

π3 51 53 54 

Standard deviation 

(altitude) 

σ1 = σ2 62 63 64 

σ3 70 71 72 

σ5 96 98 100 

Concentration 

(turning angle) 

ρ1 = ρ2 = ρ5 0.83 0.84 0.84 

ρ3 0.64 0.65 0.65 

ρ4 0.00 0.01 0.02 

Scale         

 (step length) 

α1 = α2 1055 1061 1067 

α3 387 391 395 

α4 24 25 25 

α5 652 661 670 

Shape  

(step length) 

β1 = β2 3.57 3.63 3.68 

β3 1.86 1.89 1.92 

β4 0.96 0.98 1.00 

β5 1.81 1.84 1.87 

Mean  

(hierarchical slope 

position) 

κ1 = κ2 = κ3 0.326 0.327 0.327 

κ4 0.375 0.377 0.379 

κ5 0.449 0.450 0.451 

Standard deviation 

(hierarchical slope 

position) 

ω1 = ω2 = ω3 0.050 0.050 0.051 

ω4 0.069 0.071 0.072 

ω5 0.052 0.052 0.053 

State proportions 

δ1 0.02 0.02 0.02 

δ2 0.29 0.29 0.30 

δ3 0.35 0.36 0.36 

δ4 0.15 0.15 0.15 

δ5 0.18 0.18 0.18 

Transition 

probabilities 

γ1,1 0.702 0.741 0.778 

γ2,1 0.014 0.018 0.021 

γ3,1 0.001 0.003 0.004 

γ4,1 0.000 0.000 0.001 

γ5,1 0.000 0.001 0.003 

γ1,2 0.190 0.226 0.265 

γ2,2 0.711 0.721 0.730 

γ3,2 0.171 0.178 0.186 

γ4,2 0.000 0.001 0.003 

γ5,2 0.059 0.065 0.072 

γ1,3 0.000 0.005 0.020 
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γ2,3 0.216 0.224 0.233 

γ3,3 0.782 0.789 0.797 

γ4,3 0.032 0.037 0.042 

γ5,3 0.020 0.025 0.030 

γ1,4 0.000 0.001 0.007 

γ2,4 0.001 0.001 0.002 

γ3,4 0.011 0.013 0.015 

γ4,4 0.937 0.943 0.949 

γ5,4 0.016 0.019 0.023 

γ1,5 0.013 0.025 0.041 

γ2,5 0.032 0.036 0.040 

γ3,5 0.014 0.017 0.019 

γ4,5 0.015 0.019 0.023 

γ5,5 0.881 0.889 0.897 

Initial state 

probabilities 

φ1 0.006 0.010 0.032 

φ2 0.254 0.323 0.398 

φ3 0.276 0.346 0.417 

φ4 0.100 0.128 0.159 

φ5 0.154 0.191 0.233 

  



67 

 

Appendix S5. Posterior predictive checks. 

Assessing the goodness-of-fit of hidden state models fitted in a Bayesian framework is less 

straightforward than in comparable frequentist models (Jonsen et al., 2013). Alternatively, 

posterior predictive checks can be used to assess the ability of the model to replicate various 

features of the observed data. De Haan-Rietdijk et al. (2017), Morales, Haydon, Frair, Holsinger, 

& Fryxell (2004), and Shirley, Small, Lynch, Maisto, & Oslin (2010) proposed several 

procedures to this purpose, which all aim to evaluate whether the simulation of new data using 

the posterior estimates of model parameters can generate summary statistics that are comparable 

with the same summary statistics in the empirical dataset.  

We followed the procedure described in Appendix S4 to simulate 1,000 new datasets of 

comparable size based on random draws from the posterior distribution of the state-dependent 

parameters of the emission distributions and transition probabilities. By doing so, we implicitly 

accounted for uncertainty in these parameters. Results of the simulations were then compared to 

the dataset of filtered and regularised locations that was used to fit the model.  

First, we compared the activity budget, i.e., the proportion of time spent in each latent state 

across all segments and tracks. The proportion of time spent in each state in the original data was 

plotted over the distribution of proportions obtained in the simulated datasets. Similarly, we 

calculated the mean and standard deviation of the duration of stays (i.e., the number of 

consecutive one-minute steps) in each state for each simulated dataset, and compared their 

distribution with the same statistics in the original data. We then considered the number of 

behavioural transitions per segment, corrected by the length of each segment. As for the previous 

metric, we plotted the mean and standard deviation in the original dataset over the distribution of 

the same statistics in the simulated dataset. Because the distributions of relative number of 
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behavioural transitions were not Gaussian and, therefore, the mean and standard deviation did 

not necessarily provide appropriate summaries as for the other metrics, we also plotted them 

together to verify their degree of overlap. Finally, we plotted the autocorrelation function plot 

(ACF) for all response variables in the original and simulated data. 

The activity budget estimated from the simulated data was, overall, satisfactorily comparable 

with the activity budget in the original data (Fig. S4a). In the simulated tracks, eagles allocated 

more time than expected to state 4 (on the ground or perching), which also partially affected the 

proportional occurrence of other states. However, this could result from the fact that, at night or 

when not flying (that is, when an eagle is most likely to spend time in this state), the GPS device 

was programmed to record location data less frequently, resulting in a higher chance of gap 

occurrence; on the other hand, gaps were distributed randomly in the simulated data. This is also 

reflected in the higher mean duration of stays in this state in the simulated data (Fig. S4b). For all 

other states, the mean duration of stays in the original data was higher than in the simulated data, 

highlighting the potential problems with the validity of the Markov property for the short time 

interval that are discussed in the main text (Fig. S4b and c). Similarly, the relative number of 

behavioural transitions per segment was slightly higher in the simulated data (Fig. S4d). As 

demonstrated in the overlap between the two distributions, this reflects a lower occurrence of 

intermediate numbers of transitions, which could characterise longer stretches of tracks spent in 

given states. Finally, the ACF plots confirmed these patterns and highlighted the occurrence of 

residual autocorrelation in some response variables (particularly step length and hierarchical 

slope position) under specific states (Fig. S5).
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Figure S4. Results of the posterior predictive checks. In all plots, the dashed red line indicates the value of the corresponding metric in the 

original data, while the black line reports the kernel density of the same metric across 1,000 simulated datasets. a) Activity budget, 

expressed as the proportion of time spent in each behavioural state (1-5); b) mean duration of stays (i.e., the number of consecutive one-

minute steps) per state; c) standard deviation of the duration of stays per state; d) mean, standard deviation and overall kernel density 

(black: simulated data; red: original data) of the number of behavioural transitions per segment, corrected by the length of each segment. 

a) 
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Figure S5. Autocorrelation function (ACF) plots for the response variables by state in the original and simulated data. a) Step length, 

b) turning angle, c) hierarchical slope position and d) vertical drift. 
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