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Fig. S1 XRD pattern of pure NF and hydrothermally grown β-NiMoO4-NF.
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Fig. S2 EDS spectrum of β-NiMoO4-NF.
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Fig. S3 (a) Linear plot of square root of scan rate and specific current at peak potential (b) Linear relationship graph of log Ipa and log v (c) Power law fitting plot between square root of scan rate and Peak current/square root of v and (d) Ratio of faradaic contribution and capacitive contribution in β-NiMoO4-NF electrode.
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Fig. S4 Charge/discharge profile at high specific current 15 – 50 mAcm-2 and (b) Variation of specific capacity with respect to different specific current.

Table S1: Comparison of specific capacitance values for different electrodes.

	Electrode
	Specific Capacitance
(Fg-1)
	Current Density
	Capacity Retention
	References

	NiMoO4/MWCNTs
	805
	1 Ag-1
	66.7%  after 2000 cycles
	[1]

	NiMoO4/CoMoO4
	740
	1 Ag-1
	89.1%  after 2000 cycles
	[2]

	NiMoO4
	3412
	1 Ag-1
	31% after 2000 cycles
	[3]

	NiMoO4@CC
	970
	2.5 Ag-1
	91.3%  after 5000 cycles
	[4]

	Ni@NiO/N-C
	1045 
	1 Ag-1
	60%  after 10000 cycles
	[5]

	NiMoO4
	594
	1 Ag-1
	56%  after 1000 cycles
	[6]

	C@NiMoO4
	268.8
	1 Ag-1
	88.4%  after 2000 cycles
	[7]

	NiMoO4
	999
	1 Ag-1
	-
	[8]

	NiMoO4
	1102
	1 Ag-1
	90%  after 1000 cycles
	[9]

	β- NiMoO4@NF
	916 
	5 mAcm-2
	89.7% after 5000 cycles
	This work





EIS studies of Symmetric Cell
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Fig. S5 (a) Nyquist plot of β-NiMoO4-NF||β-NiMoO4-NF supercapattery and (b) the corresponding extended view of high frequency region.
Fig. S5(a) shows the EIS spectra of the symmetric cell, which has a small semicircle (see magnified view in Fig. S5(b)), followed by inclined line at the high and low frequency regions, respectively. The inset shows the corresponding equivalent circuit used to relate the observed Nyquist plot. From the EIS data, it can be seen that the solution resistance (Rs) accompanying with charge transfer resistance (Rct) and the Warburg impedance (W).  The magnified view of high frequency region is shown in Fig. S5(b) clearly evidences the small semicircle like region, which denotes a very low charge transfer resistance (1.22 Ω) even after 5,000 cycles, confirming good electrical conductivity of the electrodes [10]. In the low frequency region, the sloped line infers the proton diffusion into the bulk electrode. Additionally, the low frequency tail makes an angle of nearly 45º at real axis further evidences the fast diffusion of electrolyte ion and battery like behaviour of the device [11].







EIS analysis of MOR studies
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Fig. S6 (a) Electrochemical impedance spectra MOR for β-NiMoO4-NF catalyst and corresponding equivalent circuit (inset) (b) The extended view of high frequency region.

The excellent methanol oxidation behavior of this β-NiMoO4-NF nanostructure was evaluated with the electrochemical impedance spectra (EIS). Figure S6 (a & b) (SI) shows the EIS spectra of the β-NiMoO4-NF electrode with and without the supporting methanol electrolyte additive. The observed Nyquist plot consists of small semi-circular like portion at high frequency region (Fig. S6 (b)) and extended tail at low frequency region related to the charge transfer resistance and capacitance over the metal oxide surface, respectively. The corresponding equivalent circuit to fit the impedance spectra gives the appropriate solution resistance (Rs), capacitance (Cdl), charge transfer resistance (Rct) and Warburg impedance (W) [12]. From the EIS spectra, it can be observed that the Rct value has been increased slightly during methanol oxidation process due to methanol adsorption. After adding 1 M CH3OH, the estimated solution resistance after the first and 1000 cycles are found to be same ~2.49 Ω and the corresponding Rct value do not change, which is ~3.52 Ω. This indicates that our β-NiMoO4-NF can tolerant methanol adsorption or oxidation of intermediates and maintain an excellent conductivity. The resulting low Rct value stems from the ambipolar conductivity of the β-NiMoO4-NF honeycomb architecture with good mechanical integrity between NF and metal oxide.


Table S2: Comparison of OER and HER overpotential @ 10 mAcm-2 for different catalysts.
	Catalyst
	OER overpotential
@ 10 mAcm-2
	Reference
	Catalyst
	HER overpotential @ 10 mAcm-2
	Reference

	NiCoP/CNF
	268 mV
	[13]
	Co-Cl4 -MOF
	283 mV
	[22]

	NiCo2O4 @NiMoO4
	340 mV
	[14]
	CoMoO4
	353 mV
	[23]

	NiMoO4
	340 mV
	[15]
	CoS2@Co3O4
	320 mV
	[24]

	NiO@NiMoO4
	280 mV
	[16]
	Cu2MoS4
	360 mV
	[25]

	Ni@NiO/N-C
	390 mV
	[17]
	MoS2
	450 mV
	[26]

	NiMoO4
	370 mV
	[18]
	Ni, Co, NiCo
	333, 430 mV
	[27]

	β-Ni(OH)2
	340 mV
	[19]
	NiS2
	302 mV
	[28]

	Ni3S2
	312 mV
	[20]
	Ni3Se2/NiSe
	260 mV
	[29]

	NiCo2S4
	400 mV
	[21]
	Ni CNF
	921 mV
	[30]

	β- NiMoO4
	351 mV
	This work
	β- NiMoO4
	238 mV
	This work
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