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Abstract 

Despite its prevalence, the importance of scavenging to carnivores is difficult to 

ascertain in modern day forms and impossible to study directly in extinct species. Yet, 

there are certain intrinsic and environmental features of a species that push it towards a 

scavenging lifestyle. These can be thought of as some of the principal parameters in 

optimal foraging theory namely, encounter rate and handling time. We use these 

components to highlight the morphologies and environments that would have been 

conducive to scavenging over geological time by focusing on the dominant vertebrate 

groups of the land, sea and air. The result is a synthesis on the natural history of 

scavenging. The features that make up our qualitative scale of scavenging can be 

applied to any given species and allow us to judge the likely importance of this foraging 

behaviour. 

 

Keywords: scavenging, carrion, vertebrates  
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1. Introduction 

Historically, food webs have classified most acts of carnivory as predation events 

(Wilson and Wolkovich 2011). This is clearly a mistaken view because of the existence 

of scavenging, a behaviour displayed by almost all carnivorous vertebrates (DeVault et 

al. 2003). Recent research has begun to redress this imbalance by recognising the 

prevalence of scavenging and its implications for trophic ecology across modern 

ecosystems (Pereira et al. 2014, Périquet et al. 2015). By increasing multichannel 

feeding and the number of food web links, scavenging can confer stability to an 

ecosystem (Moleón and Sánchez-Zapata 2015). Indeed, there is no discrete divide 

between predators and scavengers but rather a continuous gradient in terms of the 

proportion of carrion in the diet (Pereira et al. 2014). Even vultures, the canonical 

example of obligate scavengers, can hunt (Margalida et al. 2011). While it is relatively 

easy to determine whether a species engages in scavenging through observation, 

determining the proportion of carrion in the diet requires extensive behavioral data. This 

is because approaches such as stomach content and stable isotope analysis are unable to 

distinguish between scavenging and predation.  

Unfortunately, the lack of direct behavioural data makes it even more difficult to discern 

scavenging from predation among extinct forms where it was surely exhibited by 

prehistoric vertebrate carnivores. Some simple heuristics can inform us whether or not 

the prey was scavenged, for instance, in cases where it was simply too large to have 

been killed by the ostensible predator (Pobiner 2008). But clearly, a scavenger does not 

only feed on dead animals too big for it to have hunted. 
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There are other methods however, that can allow us to discern the most suitable 

morphologies, physiologies and environments for a scavenging lifestyle to prosper e.g. 

energetics models, comparative anatomy, palaeontology etc. (Shipman 1986, Ruxton 

and Houston 2003; Carbone et al. 2011). Yet, a synthesis describing the natural history 

of scavengers is absent from the literature. Here we rectify this shortcoming in charting 

the natural history of scavenging by assessing its potential among vertebrate groups past 

and present given their ecology, functional traits and the environmental context. 

1.1 The Challenges of Scavenging 

Species that rely on scavenging to sustain substantial portions of their diets must 

encounter a sufficient amount of carrion in order to meet their energetic demands. Once 

found, the scavenger must be able to out-compete any potential competitors and 

efficiently process the, increasingly decaying, carcass replete with invertebrates and 

micro-organism derived toxins (Ruxton et al. 2014). These characteristics can be 

assumed to be under evolutionary selection pressures for traits that increase carrion 

discovery and monopoly. Finally, the potential for scavenging, in either a species as a 

whole, or for individuals within a population, will also depend on the density, size, and 

quality of carcases produced, all of which are affected by complex ecosystem dynamics 

(Moleón et al. 2014b). Each of these facets are essentially the backbone of fundamental 

ecological theory and are the key parameters defined in functional response curves, 

namely encounter rate, handling time and prey availability (Jeschke et al. 2002). By 

considering scavenging in this context of optimal foraging we can identify the 

prerequisite attributes and processes required for the behaviour. This has enabled us to 

propose a qualitative scale of scavenging whereupon we can place a given vertebrate 
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carnivore and assess the likely importance of carrion in its diet. We argue that such a 

scale could be valuable when behaviour cannot be observed directly, e.g. for extinct 

vertebrates. 

2. Encounter Rate 

All foraging processes depend on the encounter rate between consumer and resource. 

Locomotory speed, foraging time and detection radius all determine the encounter rate 

between a scavenger and the carcasses it is searching for and we would thus expect 

selection pressures to act on the various traits that govern these parameters. Selection 

might also drive a species to reduce its metabolic requirements so that it can survive 

long periods between meals, or expand a species’ ability to process tissues or decaying 

flesh that might ordinarily be discarded. However, as we noted above, encounter rate is 

also determined by the productivity of the environment, and ultimately the rate at which 

carcasses are produced. Carcass production itself depends on factors such as predation, 

disease and scavenging itself. For instance, by consuming the majority of carrion, more 

prolific scavengers may deny a resource to their less prolific counterparts obliging the 

latter to hunt more, and thus, increase the amount of carrion (Moleón et al. 2014b). 

2.1 Metabolism 

Because of the ephemeral nature of carrion (DeVault et al. 2003, Ruxton and Houston 

2004b) we expect adaptations that reduce energetic costs of maintenance to be selected 

for in scavengers as it would allow for longer inter-feeding periods. Extant reptiles 

possess an advantage here, in that over the course of a year their food requirements can 

be 30 times lower than an endotherm of equal size (Nagy 2005). DeVault and Krochmal 
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(2002) suggest this is an avenue for scavenging in snakes because they “exhibit 

exceedingly low maintenance metabolisms, and most can survive on a few scant 

feedings per year. It is, therefore, possible for snakes to rely largely on infrequent, less 

energy-rich meals." In the same review the authors found occurrences of scavenging 

spread across five families of snakes and stated that this behaviour is “far more common 

than currently acknowledged."(DeVault and Krochmal 2002).  

The same reasoning can be applied to crocodiles and their allies (Forrest 2003, Moleón 

et al. 2015). Carey et al. (1982) found that sharks, as ectotherms, have the ability to go 

weeks between meals because they focus on the energy-rich sections of carcasses (see 

Handling Time 3). Endotherms have also evolved physiological mechanisms that allow 

them to depress their otherwise high metabolic rates at certain times. For example, 

vultures who do so while resting at their roost and during periods of food deprivation, a 

problem that their large body size also helps to overcome (Bahat et al. 1998, Moleón et 

al. 2014b).  

While it is difficult to infer the metabolisms of extinct species, similarities can still also 

be drawn. Many ectothermic groups such as sharks and bony fish were likely to benefit 

from the ability to bridge long time-spans between meals such as seen in snakes. In 

contrast, forms such as dinosaurs (Grady et al. 2014), pterosaurs (Wellnhofer 1991), 

some marine reptiles (Bernard et al. 2010) and some early mammals (Lovegrove 2016) 

have been proposed to have possessed at least partial endothermy, potentially requiring 

a higher intake of material in comparison to their ectothermic equivalents. However, 

such higher metabolic rates would also have increased the ability of such species to 

actively search for carrion. 
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2.2 Locomotion 

Compared to live prey, carrion is relatively unpredictable and ephemeral, (DeVault et al. 

2003), which means scavenging depends more on the ability to efficiently move over 

larger areas than does predation. This generally requires an efficient transfer of 

metabolic energy into movement which relies on the animal’s anatomy and physiology 

as well as the medium of the environment in which the animal is moving (i.e. aerial, 

aquatic or terrestrial). Perhaps the most efficient form of locomotion in vertebrates is 

found in flying species. Despite the energetic costs of flight, the most prolific modern, 

vertebrate scavengers are the old and the new world vultures. While powered flight is 

energetically expensive, species like vultures have evolved behavioural and anatomical 

features to exploit air currents using their large wingspans, allowing them to soar at a 

cost of only around 1.5 times their metabolic rate (Hedenstrom 1993, Duriez et al. 

2014). By depending on thermal air flows these species can forage over vast ranges 

(Spiegel et al. 2013). An analogous mode of locomotion is also exploited by seabirds, 

who use strong ocean winds to search large areas of the oceans (Norberg 2012, Thaxter 

et al. 2012). While many species of seabird are likely primarily predators, it seems that 

albatrosses, who can range many hundreds of kilometres, take a substantial amount of 

carrion in their diet (Croxall and Prince 1994). This is typically in the form of squid 

carcasses, which float on the surface, allowing the birds to readily pluck their remains 

out of the water (Croxall and Prince 1994).  

The groups from which these modern soaring birds arose, appeared during the 

Palaeocene (66 - 56 Million years ago (Mya); Jetz et al. 2012, Jarvis et al. 2014) and 

Cretaceous (145.5 - 65.5 Mya; Chiappe and Dyke 2006) respectively. However, soaring 
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flight is likely to be far older than this with avian flight originating in the Late Jurassic 

(163.5 - 145 Mya) and vertebrate flight in the Late Triassic (235 - 201.3 Mya) 

coincident with the pterosaurs. Indeed, scavenging among pterosaurs has been 

hypothesised many times before (Witton and Naish 2008). Certain groups of these 

animals could reach enormous sizes (e.g. Azhdarchids with wingspans of 11 metres; 

Witton and Habib 2010) and, notably, appear to have engaged in soaring flight (Witton 

and Habib 2010). It seems probable that at least some of these extinct species used 

soaring as a means for scavenging (Witton 2013).  

While soaring is perhaps the only viable means of locomotion that allows for scavenger 

to rely entirely on carrion (Ruxton and Houston 2004b), powered flight is still an 

efficient means of locomotion. Certainly, avian flight is cheaper per unit distance than 

either walking or running (Tucker 1975).  

We know that many extant birds exist as facultative scavengers because storks, raptors 

and corvids all take substantial quantities of carrion in their diet (Mateo-Tomás et al. 

2015). Similarly, we would expect that extinct species would also scavenge in a similar 

fashion depending on the efficiency of their flight. For example, early birds such as 

Archaeopteryx are predicted to have been poor, relatively inefficient fliers (Nudds and 

Dyke 2010) and so ill-suited to finding carrion. The importance of efficient flying over 

large areas may explain the lack of scavenging behaviour in bats as they are generally 

nocturnal, a time when they would receive no aid from convective air currents (Norberg 

2012).  

Similar to aerial species, aquatic scavengers have a locomotory benefit because water is 

a medium that is conducive to low-cost movement (Tucker 1975, Williams 1999). This 
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has led some researchers to argue for the likelihood of an obligate scavenging fish 

(Ruxton and Houston 2004a, Ruxton and Bailey 2005).  

Sharks are one likely candidate for general scavenging behaviors as their locomotion, 

which depends on large pectoral fins to generate lift as they swim, resembles that of the 

large soaring fliers. Many shark species have large foraging ranges (e.g. the great white 

sharks Carcharodon carcharias; Bruce et al. 2006) and it seems reasonable that they 

would use oceanographic currents to further reduce movement costs (Ruxton and 

Houston 2004a). In fact, facultative scavenging is seen in many selachian groups, 

including species of extant sharks like white sharks (known to feed on whale carcasses; 

Fallows et al. 2013), Greenland sharks (feeding on seals; Watanabe et al. 2012), and 

sixgill sharks (Anderson and Bell 2016). There is evidence too of scavenging in extinct 

species, where shark teeth have been found in the remains of dinosaurs, mosasaurs and 

Pliocene mysticete whales (5.3 - 3.6 Mya; Schwimmer et al. 1997, Ehret et al. 2009).  

Interestingly, however, style of swimming in fishes does not significantly affect the cost 

of movement (Williams 1999). Hence, it is likely that many aquatic species with large 

ranges will encounter scavenging opportunities.  

We might expect then that by combining an aquatic environment and an endothermic 

metabolism marine mammals would especially prosper as scavengers. Fossil pinnipeds 

and cetaceans from 60 Mya have transitional features indicative of their evolutionary 

trajectory to fully aquatic species (Williams 1999). But despite their movement away 

from land their energetic savings were negligible because the total cost incurred by a 

swimming marine mammal is high (Williams 1999). Indeed, the total energetic cost is 

similar to an equivalent terrestrial or aerial mammal (Williams 1999). This underscores 
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the tradeoffs between the benefits of endothermy in terms of activity periods and the 

costs of maintaining such an energetically expensive system. That said, aquatic 

endotherms have and do scavenge. For instance, early whales such as Basilosaurus (38 - 

36.5 Mya) seem to have fit into the same niche as killer whales (Orcinus orca) and we 

have some evidence for scavenging in both (Fahlke 2012, Whitehead and Reeves 2005).  

Terrestrial environments are the most energetically costly in which to move (Tucker 

1975). Unlike aerial and aquatic environments, support must be provided through the 

animal’s posture. The early transition from a sprawling gait, seen in early tetrapods, to 

the more erect posture of synapsids and later dinosaurs and mammals, has often been 

supposed as conferring a huge advantage to the latter groups (Sullivan 2015). The 

purported advantages include benefits in terms of speed, efficiency, muscle effort and 

manoeuvrability (Sullivan 2015). Clearly, for a scavenger, an ability to efficiently cover 

an area at a high speed would increase the encounter rate with carrion. Despite being 

intuitive, Sullivan (2015) states most of the hypotheses in favour of this idea remain to 

be tested in the context of archosaur evolution. One noted consequence of a sprawling 

gait is the phenomenon known as Carrier’s constraint such that the animal can’t move 

and undergo coastal ventilation at the same time because the lateral movements impedes 

its lungs (Carrier 1987). The evolution of an upright posture has been offered as one of 

the primary mechanisms that allowed early archosaurs to overcome this constraint 

(Uriona and Farmer 2008).  

Whatever the case, it is with the evolution of endothermy in the therapsid-mammal 

lineage (Clarke and Pörtner 2010) that terrestrial vertebrates would have gained the 

ability to range more widely, a vital component in seeking out carrion. Modern 
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endothermic mammals can sustain longer periods of energetically expensive activity 

(Bennett and Ruben 1979) resulting in larger foraging ranges.  

Today, terrestrial scavenging in mammals is probably best known in the African 

Savannah context where hyenas and lions can all take sizeable proportions of carrion in 

their diet (Pereira et al. 2014, Périquet et al. 2015). In the spotted hyena (Crocuta 

crocuta), striped hyena (Hyaena hyaena) and brown hyena (Hyaena brunnea) it can be 

over 90% (Jones et al. 2015). Most, if not all, vertebrate terrestrial carnivores take 

carrion to some extent (DeVault et al. 2003, Beasley et al. 2015, Pereira et al. 2014). 

The particular ability of hyenas to subsist on high proportions of carrion means we can 

use them as examples of efficient terrestrial scavengers to compare with other forms 

(Périquet et al. 2015). In terms of locomotion, they employ a characteristic “rocking 

horse gait” which allows them to cover great distances efficiently, loping at 10 km/hr 

(Mills 1989, Jones et al. 2015). Such long-distance travel is apparent in many other 

cursorial predators (Pennycuick 1995, Janis and Figueirido 2014, Pereira et al. 2014). In 

contrast, big cats rely on ambush (Pennycuick 1995, Pereira et al. 2014). This difference 

means ambush predators tend to be more obligate hunters (Pereira et al. 2014). These 

insights allow us to compare extant terrestrial species to their prehistoric forebears given 

the dominance of mammalian carnivores since the Eocene (56-33.9 Mya) where the 

order split into the Caniforma and Feliforma (Van Valkenburgh 1987). To take one 

example, Anyonge (1996) found that Nimravides, a genus of sabretooth cat from the 

Miocence (10.3 - 5.3 Mya), were likely to have been ambush predators which would 

argue against them taking a lot of carrion.  
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Of course, terrestrial animals can also move bipedally. Although the evolution of 

bipedal movement was significant in that it freed up the forelimbs for other purposes 

(e.g. climbing, tool-use, wing development etc.) it does not differ radically in cost from 

quadrupedal locomotion (Williams (1999), and references therein). For instance, 

Alexander (2004) shows that, in the case of humans, we are more economical than 

predicted while walking and less so while running according to predicted costs of 

terrestrial movement calculated by allometric scaling relationships. Our locomotory 

efficiency has fed into the question of where our ancestors placed on the hunter-

scavenger axis during the Plio-Pleistocene, which has been a matter of debate for years 

(Capaldo and Peters 1995, Domínguez-Rodrigo 2002). Ruxton and Wilkinson (2013) 

added to this debate with their argument that long distance endurance running was not 

an important feature of hominin scavenging but was instead used by humans for hunting 

prey by chasing them to exhaustion over large distances. Even when considering the use 

of weapons and social foraging, the authors argue that the high cost of running long 

distances would render it an unattractive foraging strategy for scavenging. Yet, it still 

may have been useful to signal the location of carrion to others.  

Aside from humans and our allies, the best-known terrestrial bipeds are the dinosaurs 

and unsurprisingly, given their enduring appeal, the prevalence of scavenging has been 

extensively explored in the carnivorous theropods. These were the dominant terrestrial 

carnivores for most of the Mesozoic Era (252.17 - 66 Mya) and ranged from the 

chicken-sized to the whale-sized, all of which were bipedal. While the locomotory 

ability of theropods has been debated since their first inception, more recent studies 

have reconstructed them as relatively mobile animals (Pontzer et al. 2009). Despite 

some suggestions that larger species may have had some advantage in scavenging, 
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partially due to the ability to search large areas (Ruxton and Houston 2003), more recent 

work has shown that the energetic demands of locomotion in such large forms meant 

scavenging was likely more prevalent in mid-sized theropods of approximately half a 

tonne (Kane et al. 2016). 

2.3 Sensory Detection  

As predicted by the importance of an increased encounter rate, known scavengers have 

evolved well-developed senses, with the visual and olfactory sensory systems most 

often associated with scavenging behavior. This is perhaps no surprise because sensory 

systems that rely on detecting signals associated with living animals, such as 

audioception, electroreception, thermoreception and echolocation will be limited in their 

ability to detect an already dead animal. 

Apart from the basic capacity of these senses to detect carrion, how they function in 

different environments is also important. In the simplest case, the search space is a two 

dimensional plane (Pawar et al. 2012). If the scavenger itself is searching on the plane, 

as is so for terrestrial species, the detection range is simply defined by the radius of their 

sensory organs. Consequently, the ability to detect carrion can be seriously restricted for 

visually reliant, terrestrial species. They may overcome this restriction however, by 

using olfaction, which is less affected by the relief of the land. For example, hyenas 

have the ability to smell a rotting carcass 4 km away (Mills 1989), which exceeds the 

500 m range deemed necessary by Ruxton and Houston (2004b) to be able to survive as 

a scavenger.  
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Indeed, the olfactory senses of many extant (and in all probability extinct) carnivores 

meet this required distance, making scavenging feasible for most terrestrial carnivores 

(Farlow 1994, Mech and Boitani 2010). Among extinct species in particular, we can use 

the ratio of olfactory bulb to brain size to infer a preference for olfactory foraging 

(Zelenitsky et al. 2011). This approach was used by Zelenitsky et al. (2011) to 

hypothesise such a mode for the theropod dinosaur Bambiraptor and by Witmer and 

Ridgely (2009) for tyrannosaurs. The flying pterosaurs however, had tiny olfactory 

bulbs indicating this sense was not relied on (Witton 2013).  

Species capable of flight have added an extra spatial dimension (i.e. the vertical 

component) to their sensory environment over land animals. This allows them to look 

down on a landscape where they are unencumbered by obstacles that would obstruct the 

view of a terrestrial scavenger. In this way they are effectively cheating the 2D system 

by gaining a bird’s eye view which has obvious benefits in detecting carrion. Certainly, 

vultures are known to have impressive visual acuity, with one estimate indicating 

lappet-faced vultures (Torgos tracheliotus) are capable of detecting a 2 metre carcass 

over 10 km away (Spiegel et al. 2013). Eagles too are known to have highly developed 

vision (Reymond 1985). The flying pterosaurs also convergently evolved large orbits 

and optic lobes (Witton 2013). It follows that the evolution of flight allowed aerial 

animals to detect far more carrion than their terrestrial counterparts through vision 

(Lisney et al. 2013).  

The terrestrial-olfaction, aerial-visual divide is not total though. Terrestrial species like 

hyenas and hominins exploit the efficiency of birds by looking to the skies for groups of 

vultures to follow to carrion (Jones et al. 2015, Ruxton and Wilkinson 2013). And many 
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birds, e.g. turkey vultures (Cathartes aura), have well-developed olfactory systems 

(Lisney et al. 2013) which they use to forage in heavily forested areas where vision is 

limited (Houston 1986).  

Although aquatic species also have a vertical component to their environment, they 

must contend with low-light levels where visual detection distances are far lower (< 100 

m) than they would be for air. As such, aquatic animals detect resources through chemo- 

and mechanoreception more so than through vision (Ruxton and Houston 2004a). This 

is particularly relevant to sharks and aquatic snakes who are deemed as having the most 

suitable physiology for scavenging. A hypothesis put forth by Sazima and Strüssmann 

(1990) argued that chemical gradients in water would allow for a relatively easier 

detection of carrion by snakes. This gained some support from DeVault and Krochmal 

(2002), who found a preponderance of aquatic snake species in their review of this 

behaviour. Smell seems to be the primary means of carcass detection in sharks as well. 

Fallows et al. (2013) found that wind speed determined the number of sharks feeding at 

whale carcasses due to chemical stimuli from the carcasses being propagated through 

the water by the wind, indicating they were dependent on detecting the odours from the 

decaying whales. 

2.4 Carcass Availability 

 2.4.1 Abiotic effects 

 The environmental influence on carcass availability is an aspect that greatly affects 

encounter rate. Aspects including, primary productivity, relief, and temperature will all 

affect scavenging tendency. Something as simple as the physical structure of the 
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environment can have an impact, for example, snakes can access carrion in burrows that 

is otherwise inaccessible to other species (DeVault & Krochmal 2002).  

Ruxton and Houston (2004b) suggest an historic ecosystem with a productivity similar 

to the Serengeti could have supported an obligate mammalian or reptilian terrestrial 

scavenger. Indeed, in systems that were dominated by large ectothermic or mesothermic 

herbivore vertebrates, the same primary productivity would have supported a greater 

biomass, due to the scaling of mass with metabolic rate (McNab 2009). The upshot of 

this may have been a higher biomass of herbivores dying and offering scavenging 

opportunities (although these larger species may have also lived longer). 

In fact, scavenging behaviour may have evolved on land as soon as the first terrestrial 

tetrapods emerged. Some of the earlier tetrapods tracks dating back to the early Middle 

Devonian (393.3 - 387.7 Mya) were found in intertidal environments (Niedzwiedzki et 

al. 2010). These environments are isolated from marine systems twice a day leaving 

potential carrion unexploited by marine vertebrates. Niedzwiedzki et al. (2010) suggest 

that these environments “would thus have allowed marine ancestors of tetrapods 

gradually to acquire terrestrial competence while accessing a new and essentially 

untouched resource.”  

The physical differences between water and air mean carcass availability is radically 

different between these environments (Beasley et al. 2012). For one, carcasses get 

moved around by water which results in a more diffuse signal being produced for 

would-be scavengers. Carcasses also tend to sink in water where they are no longer 

accessible to pelagic scavengers (Beasley et al. 2012) (although there may be a second 

floating stage due to the action of bacteria (Teather 1995)). Research has shown that an 
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animal need only travel 36 km to encounter a fresh whale carcass (Smith and Baco 

2003). The phenomenon of occasional bounties of carrion in the form of these whale 

falls has led some researchers to investigate if a scavenger could survive by seeking out 

these remains exclusively. Ruxton and Bailey (2005) argued that although this is 

energetically feasible it’s ecologically unlikely. Any animal that could find such whale 

carcasses is unlikely to have ignored other types of carrion.  

Although no aquatic species have ever exceeded the size of whales, some enormous 

animals have evolved in this environment before the evolution of cetaceans, including 

Leedsichthys, a bony fish from the Middle Jurassic (174.1 - 163.5 Mya) and the aquatic 

Mesozoic reptiles, the plesiosaurs, pliosaurs and ichtyosaurs, that could all exceed 15 

metres in length (Ruxton 2011, Danise et al. 2014). So, despite being unlikely, the 

energetic feasibility of a marine scavenger that specialises on large carcasses has a long 

history.  

Perhaps the greatest environmental driver of scavenging tendency is that of temperature 

which has a significant bearing on the availability, predictability and persistence of 

carrion. We know from the geological record that the Earth has undergone radical 

fluctuations in temperature over time. On land, there are a wide variety of vegetation 

types, from thickly forested areas to open grassland and the extent of this vegetation 

changes with season. To illustrate the point, a 10C increase in ambient temperature can 

double carcass decomposition rates (Parmenter and MacMahon 2009) and geological 

evidence indicates that the Mesozoic Earth was on average at least 6C warmer than now 

(Sellwood and Valdes 2006). In terms of specific habitats, it has been shown that 
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decomposition is greater in warm and moist areas versus more xeric ones (Beasley et al. 

2015).  

The impacts these can have on scavengers have been empirically supported e.g. Beasley 

et al. (2015) who point to a series of studies showing how microbes and invertebrates 

benefit at higher temperatures to the detriment of vertebrate scavengers such that “above 

20C vertebrates were able to detect and consume only 19% of small-mammal carcasses, 

whereas at temperatures below 18C, vertebrates consumed 49% of carcasses". Spikes in 

temperature can intensify droughts causing mass mortality events which result in 

relatively predictable peaks in carrion availability (Kendall et al. 2014). The Earth has 

also undergone a series of ice ages of various spatio-temporal extent (Diedrich 2012) 

and modern terrestrial settings that experience sub-zero conditions can act as a 

microcosm to show the effect extreme cold can have on scavenging. As with extremely 

hot conditions, extreme cold can result in mass mortality, again, providing carrion for 

the scavenging community (Pereira et al. 2014). Yet, freezing carcasses can become too 

hard to consume by most vertebrate carnivores (Selva et al. 2003).  

2.4.2 Biotic effects  

Foragers do not exist in isolation and we know from field observations that scavengers 

can scrounge on the discoveries of other carnivores. This sort of facilitation occurs 

across a range of scavengers, in the air and on the ground (Kane et al. 2014, Jones et al. 

2015).  

In flight, birds are able to gather a wealth of information from other foragers, be they 

conspecifics or otherwise (Jackson et al. 2008, Kane et al. 2014, Moleón et al. 2014b). 
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Again, returning to vultures, the genus Gyps consists of highly social and colonially 

nesting species (Fernández-Bellon et al. 2015). These behaviours allow them to forage 

far more efficiently because one bird can scrounge information on the location of food 

from another successful forager (Cortés-Avizanda et al. 2014). Information transfer of 

this kind is typically inadvertent and as a consequence no complex social interactions 

are required, simply the ability to recognise a successful forager. Thus, given pterosaurs 

seem to have cohabited in large numbers (Witton 2013), and the theoretical benefits this 

can have for social foraging in birds (Dermody et al. 2011), it seems probable that 

scrounging behaviours were seen in the flying pterosaurs as well.  

This type of facilitation then increases the encounter rate of the facilitated species and 

can increase the population size of the latter (Moleón et al. 2014b). This higher 

population of predators may take more prey and so produce more carcasses. Conversely, 

by feeding on carcasses, predators may hunt less because they are sated by carrion, 

ultimately reducing predation risk on their prey base (Moleón et al. 2014b). 

Modern scavenging assemblages are known to be influenced by carcass size (Moleón et 

al. 2015). Larger carcasses tend to last longer and also present a more conspicuous 

target for a foraging scavenger which results in more species attending them (Moleón et 

al. 2015). This will have had implications for extinct assemblages because body size 

distributions vary across different environments but also across time. O’Gorman and 

Hone (2012) showed Mesozoic faunal distributions may have been skewed towards 

larger species. Similarly, the megafauna of the Pleistocene (Doughty et al. 2013) would 

have produced large carcasses. As a result, the scavenger assemblages during this time 

would have been particularly diverse.  
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3. Handling Time  

Since the food a scavenger depends upon is not dispatched directly, often the most 

easily accessible and choicest components of the carcass will be missing owing to the 

activity of predators and other scavengers, or, if present, will be subject to decay as well 

as competition. So being able to overcome competitors and maximise the nutrient gain 

from the remnants are all essential parts of carcass handling time.  

3.1 Competition  

Large body size has substantial advantages in agonistic interactions (Ruxton and 

Houston 2004b, Moleón et al. 2014b, Pereira et al. 2014). For instance, lions can 

acquire much of their carrion through kleptoparasitism of hyena kills (Trinkel and 

Kastberger 2005, Pereira et al. 2014, Périquet et al. 2015). This line of reasoning 

suggests that some theropod dinosaurs, who could get up to 15 tonnes, would have 

easily monopolised a carcass (Weishampel et al. 2004) provided they could find them 

efficiently (Kane et al. 2016).  

We would expect this trait to be selected for even in the case of weight-constrained, 

scavenging fliers. This is true for many vultures and other major avian scavengers such 

as albatrosses who can have body masses in excess of 10 kg and represent some of the 

heaviest bird species capable of flight (Weimerskirch 1992, Ferguson-Lees and Christie 

2001, Donázar et al. 2002). Indeed, such is the competitive advantage held by vultures 

over other facultative scavenging birds that temporal niche partitioning at the carcass 

has evolved (Kendall 2013, Kane et al. 2014, Moreno-Opo et al. 2016). Additionally, 

many pterosaurs were far bigger again, with estimated body masses of over 200 kg in 
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the Azhdarchids (Witton and Habib 2010). Although Witton and Naish (2008) argued 

that neck inflexibility and straight, rather than hooked jaw morphology points against 

Azhdarchids being as well adapted as vultures to scavenging, their terrestrial proficiency 

indicates they would have been comfortable foraging on the ground. Extant Marabou 

Storks (Leptoptilos crumeniferus) have a comparable morphology and are noted 

facultative scavengers (Monadjem et al. 2012) so it is reasonable to believe that these 

pterosaurs behaved similarly.  

By contrast, extant bats seem poorly equipped to deal with competitors. Their poor 

terrestrial ability, small size and cost of movement on the ground would count against 

them while attempting to fend off other species at a carcass (Riskin et al. 2006, Voigt et 

al. 2012).  

Smaller species can compensate for a lack of individual body size by weight of numbers 

in competitive interactions. This is true for a host of notable scavengers, such as 

vultures, early hominins and hyenas, who can and could dominate larger competitors 

provided they substantially outnumber(ed) them (Kane et al. 2014, Trinkel and 

Kastberger 2005, Ruxton and Wilkinson 2013).  

Direct confrontation can be circumvented by certain behavioural adaptations. The 

evolution of nocturnal behaviour in some mammals, for instance, has been put forth as 

an adaptation to reduce competition with the exclusively diurnal vultures as well as with 

other larger predators (Gittleman 2013, Moleón et al. 2014b, Pereira et al. 2014). In 

areas absent of vultures such as the Arctic, terrestrial carnivores like bears and wolves 

take more carrion (DeVault et al. 2003) Thus, in the Palaeozoic, the absence of flying 
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vertebrate competitors may have permitted terrestrial forms to take in a higher 

proportion of carrion in their diet.  

In addition to fending off other vertebrates, scavengers also have to contend with 

competition from invertebrates and micro-organisms, the latter of which may require a 

specialised physiology to deal with. Although the findings of Shivik (2006) that 

“evolutionary pressures favor detection maximizers relative to toxification minimizers 

in competitive interactions for carcasses." appear sound, the fact remains that 

overcoming micro-organism toxins is still a beneficial adaptation to any scavenger. 

Avian scavengers have evolved incredibly acidic stomachs that allow them to consume 

and process putrefied flesh with no ill effects (Houston and Cooper 1975, Roggenbuck 

et al. 2014). This adaptation is not restricted to vultures though, Grémillet et al. (2012) 

showed wandering albatrosses (Diomedea exulans; so-called “vultures of the seas”) had 

an average stomach pH of 1.5, which enables them to consume fisheries discards and 

squid carcasses.  

There is also evidence of selection for “toxification minimizers” beyond birds among 

the ectotherms. From our earlier arguments we know that ecthotherms are limited in 

their ability to find carrion as quickly as endotherms. These later arrivers would thus 

benefit especially from well-developed detoxifying apparatus. Shivik (2006) suggests 

that “specialized oral structures in snakes may have evolved under pressures associated 

with scavenging." Moreover, some researchers have charted an evolutionary course 

from basal fossorial snakes to modern terrestrial species by way of a scavenging 

intermediate (Bauchot 2006). However, snake venom is primary associated with 

predation in extant species suggesting that if venom played such a role aiding digestion 
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of discovered carcasses in extinct species it is no longer its main function (Casewell et 

al. 2013). In water, by contrast, competition with micro-organisms is significantly 

reduced because of the high pressures and low temperatures (Beasley et al. 2012). 

3.2 Facilitation 

In contrast to competitive interactions, there are facilitatory processes at play between 

vertebrate scavengers that can benefit the facilitated species. Rather than there being a 

random assortment of species at a carcass, scavenging assemblages tend to be nested 

(Selva and Fortuna 2007). This means the species that feed on the majority of carcasses, 

for example vultures, are a subset of a larger community which comprises hyenas, 

jackals, raptors etc. (Sebastián-González et al. 2016). We noted above that this often 

results in an increased encounter rate but it can also reduce handling time for the species 

that follow. Some examples of reduced handling time include vultures, hyenas and 

wolves opening the tough hides of ungulate carcasses that would otherwise be 

inaccessible to corvids and smaller mammalian carnivores (Selva et al. 2003, Moleón et 

al. 2015). Unfortunately, these interactions are particularly difficult to detect in extinct 

species.  

3.3 Food Processing  

Another vital component of carrion handling time is the ability to maximise the energy 

gain from the remains while reducing the energetics of doing so. At whale carcasses, 

white and blue sharks are known to preferentially feed on the blubber layer (Long and 

Jones 1996). Blubber is an energy rich portion of the carcass that can allow a shark to 

survive for 1.5 months on 30 kg of the material (Carey et al. 1982).  
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On land many scavengers utilize late-stage carcass material that is less subject to 

decomposition and may be unavailable to other competitors, for example bone. 

Osteophagy is known across a range of terrestrial carnivores and given that some fat-

rich mammalian bones have an energy density (6.7 kJ/g) comparable with that of muscle 

tissue, it makes skeletal remains an enticing resource (Brown 1989). Within mammals, 

this ability reached its zenith among hyenas with the evolution of the estimated 110 kg 

Pachycrocuta brevirostris during the Pliocene (3.6 - 2.58 Mya; Palmqvist et al. 2011). 

Indeed, their extinction has been blamed on the decline of sabretooth cats 

(Machairodontinae), because the unique skull morphology of the latter meant they 

would leave a large amount of food on a carcass for would-be scavengers (Palmqvist et 

al. 2011; note, however that the inability of these cats to deal with bone may be 

overstated; Binder and Van Valkenburgh 2010). Earlier in the evolution of mammals, 

the bone-crushing dogs that evolved during the Oligocene (Borophaginae; 33.9 - 23.03 

Mya) have also been compared to hyenas in terms of their feeding ecology (Van 

Valkenburgh et al. 2003, Martín-Serra et al. 2016).  

In Mesozoic systems some large theropod dinosaurs had a morphology indicative of an 

ability to process bone (e.g. the robust skull and dentition of Tyrannosaurus rex; Hone 

and Rauhut 2010). There is direct evidence that T. rex did this in the form of distinctive 

wear marks on its tooth apices (Farlow and Brinkman 1994, Schubert and Ungar 2005) 

and the presence of bone fragments in its coprolites (Chin et al. 1998). The animal also 

had an enormous bite force, with one estimate putting it at 57000 Newtons (Bates and 

Falkingham 2012) which would have been powerful enough to break open skeletons 

(Rayfield et al. 2001). Osteophagy may have been even more viable during the 

Mesozoic era as well because of the skewed body mass distribution of herbivores 
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towards larger sizes (O’Gorman and Hone 2012). When we couple this with the fact that 

skeletal mass scales greater than linearly with body mass (Prange et al. 1979) there 

would have been a lot of bone material to consume in the environment provided an 

animal had the biology to process it (Chure and Fiorillo 1997).  

Despite not having the anatomical ability to break open bone, the bearded vulture 

(Gypaetus barbatus) has evolved a technique whereby it drops long bones from a 

height, splintering them on the rocks below which allows them to feed (Margalida 

2008). Similarly, early hominins developed the ability to craft tools for breaking open 

bones (Blasco et al. 2014). A recent study investigating potential scavenging 

opportunities for hominins in Kenya found that, in addition to skeletal material, there is 

a substantial amount of scavengeable meat left on predated remains; sufficient to sustain 

the requirements of an adult male Homo erectus (Pobiner 2015). In some historical 

hominin-inhabited areas there were higher populations of felids compared to hyenids. 

Again, this is significant because hyenas are likely to have left far less flesh on a carcass 

than a felid such as a sabretooth, enabling contemporaneous hominins to benefit 

(Pobiner 2015). The use of tools and the cooperative nature of hominins meant they 

could likely get a substantial part of their energetic requirements through scavenging 

depending on their environment (Moleón et al. 2014a).  

On the ground, and despite the advantages of social resource defence, the competitive 

ability of even the largest flying bird is radically diminished in their interactions with 

mammalian competitors, and as such they tend to consume carrion rapidly. Houston 

(1974) observed a group of Gyps vultures consuming all of the soft tissue from a 50 kg 

Grant’s gazelle (Nanger granti) in eight minutes. Their serrated tongues and hooked 
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bills enable them to achieve this feat (Houston and Cooper 1975). Aside from raptors, 

the specialised beaks of many modern bird lineages tends to hinder their ability to eat 

meat which is in contrast to the first lineages that did not have this feature (Martyniuk 

2012). As Martyniuk (2012) notes, this skull morphology of early birds indicates they 

were predominantly carnivorous, implying scavenging was a live opportunity compared 

to many of their descendants. Among the pterosaurs, Witton (2013) makes the case that 

the istiodactyl pterosaurs were the most likely scavengers of this group based on their 

potential handling time. Their skull morphologies are indicative of animals that were 

suited to removing large amounts of flesh from an immobile foodstuff (Witton 2013).  

Again, we can draw a comparison with species that are lacking in these features. Despite 

readily eating carrion in captivity, cheetahs (Acinonyx jubatus) and African Wild Dogs 

(Lycaon pictus) rarely do so in the wild because they are subordinate to many of the 

mammalian competitors they coexist with (Pereira et al. 2014). Extant bats are poorly 

equipped when it comes to feeding on carrion; the larger forms are typically frugivores 

and therefore lack the adaptations for digesting meat, while the smaller carnivorous bats 

are mainly found in the microbats, which are insectivorous (Aguirre et al. 2003). That 

said, Necromantis (“death-eater”), a large bat from the middle to late Eocene (56 - 33.9 

Mya) had a robust cranio-mandibular morphology, and is a likely candidate for an 

extinct scavenging bat (Weithofer 1887, Hand et al. 2012).  

Conclusion  

As is often the case in science, the present provides the key to the past. The animals of 

today, while often different (sometimes radically so) to their ancestors, can be used to 

make informed comparisons to extinct species. We have used this approach to give 
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insight into the drivers of scavenging across vertebrates through time. In common with 

any other forager be they grazer, browser or predator, scavengers past and present have 

had to balance their energetic costs with the gains of food. The main factors we 

considered namely, encounter rate and handling time can be used to create a scale of 

scavenging whereupon any species can be placed in order to predict the qualitative 

importance of carrion in it diet. We hope this approach will be useful in the effort to 

explore this most understudied of feeding ecologies. 
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Figure Legend 

Figure 1: Factors influencing the proportion of scavenging in a vertebrates’ diet. 

Each of the traits/ factors ranges from low on the left to high on the right. A high 

value for a given trait can either increase scavenging propensity (+ +) or reduce it 

(- -), the same is true for a low value of said trait. Silhouettes ids: Basal 

Metabolism - Crocodile and Puma, Locomotion cost - Albatross and five-lined 

skink, Detection rate - shaggy frogfish and Gyps vulture, Carrion availability - fish 

skeleton and dinosaur skeleton, Food processing - insectivorous bat and Hyena, 

Competition - Gyps vulture and Dilophosaurus, Facilitation - Gyps vulture and 

wolverine.  All images from phylopic.org, 

http://creativecommons.org/licenses/by-nc-sa/3.0/ 
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