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Original Article
Systemic RALA/iNOS Nanoparticles: A Potent
Gene Therapy for Metastatic Breast Cancer
Coupled as a Biomarker of Treatment
Cian M. McCrudden,1 John W. McBride,1 Joanne McCaffrey,2 Ahlam A. Ali,1 Nicholas J. Dunne,3 Vicky L. Kett,1

Jonathan A. Coulter,1 Tracy Robson,4 and Helen O. McCarthy1

1School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland; 2Department of Pharmacology and Therapeutics, University College

Cork, Cork T12 YN60, Ireland; 3School of Mechanical andManufacturing Engineering, Dublin City University, Dublin 9, Ireland; 4Royal College of Surgeons in Ireland, 123

St. Stephen’s Green, Dublin 2, Ireland
This study aimed to determine the therapeutic benefit of a
nanoparticular formulation for the delivery of inducible nitric
oxide synthase (iNOS) gene therapy in a model of breast cancer
metastasis. Nanoparticles comprising a cationic peptide vector,
RALA, and plasmid DNA were formulated and characterized
using a range of physiochemical analyses. Nanoparticles com-
plexed using iNOS plasmids and RALA approximated 60 nm
in diameter with a charge of 25 mV. A vector neutralization
assay, performed to determine the immunogenicity of nano-
particles in immunocompetent C57BL/6 mice, revealed that
no vector neutralization was evident. Nanoparticles harboring
iNOS plasmids (constitutively active cytomegalovirus [CMV]-
driven or transcriptionally regulated human osteocalcin
[hOC]-driven) evoked iNOS protein expression and nitrite
accumulation and impaired clonogenicity in the highly aggres-
sive MDA-MB-231 human breast cancer model. Micrometasta-
ses of MDA-MB-231-luc-D3H1 cells were established in female
BALB/c SCID mice by intracardiac delivery. Nanoparticulate
RALA/CMV-iNOS or RALA/hOC-iNOS increased median sur-
vival in mice bearing micrometastases by 27% compared with
controls and also provoked elevated blood nitrite levels. Addi-
tionally, iNOS gene therapy sensitized MDA-MB-231-luc-
D3H1 tumors to docetaxel treatment. Studies demonstrated
that systemically delivered RALA-iNOS nanoparticles have
therapeutic potential for the treatment of metastatic breast
cancer. Furthermore, detection of nitrite levels in the blood
serves as a reliable biomarker of treatment.
Received 30 November 2016; accepted 8 December 2016;
http://dx.doi.org/10.1016/j.omtn.2016.12.010.

Correspondence: Helen McCarthy, Experimental Therapeutics, School of Phar-
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INTRODUCTION
An obstacle to genetic therapies is the absence of a vector with the
DNA delivery ability of a virus that lacks the immunogenicity
commonly associated with viral vectors. We have developed a
cationic fusogenic peptide vector, RALA, that, on exposure to anionic
nucleic acids, self-assembles into nanoscale particles suitable for cell
membrane penetration. Endosomal escape, consequent to conforma-
tional change at low pH, ensures that the genetic cargo can reach the
nucleus and achieve transgene expression.1 We previously demon-
strated the remedial potential of RALA-delivered therapeutic cargoes.
Molecul
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Growth of ZR-75-1 breast cancer xenografts was abrogated by
plasmid FK506-binding protein-like (FKBPL),2 whereas nanocom-
plexation of anionic bisphosphonates with RALA afforded the agents
cytotoxicity against PC-3 prostate cancer cells in vitro and in xeno-
grafts following intratumoral injection.3 In this study, we aimed to
provoke a therapeutic benefit in a model of aggressive breast cancer
by nanocomplexation of plasmid inducible nitric oxide synthase
(iNOS) with RALA.

The paradoxical relationship between nitric oxide ($NO) and trans-
formed tissue, whereby low concentrations of the gasotransmitter
provoke an aggressive phenotype but higher concentrations are detri-
mental to the tumor,4 has led to a divergence in the discipline, with
attempts being made to either promote or interfere with $NO
signaling. The mechanisms by which $NO mediates its effects in
neoplastic conditions are diverse but can be broadly characterized
into promotion (low $NO) or inhibition (high $NO) of apoptosis,
promotion (low) or inhibition (high) of proliferation, and stimulation
(low) or attenuation (high) of angiogenesis.4 $NO can react with inor-
ganic molecules (i.e., oxygen, superoxide, or transition metals), struc-
tures in DNA, prosthetic groups, or proteins and can elicit beneficial
or detrimental responses dependent on radical concentration and
local environmental conditions.5 Host macrophages that infiltrate
tumors rely partially on the cytotoxic properties of $NO to evoke
an anti-tumoral response.6

The majority of attempts to exploit the tumoricidal properties of $NO
involve using an $NO donor molecule. Many such donors exist and
are broadly represented by the organic nitrates, metal-NO complexes,
S-nitrosothiols, sydnonimines, diazeniumdiolates (NONOates), and
$NO-drug hybrids.4 One $NO-donating prodrug that has received
particular attention is JS-K. JS-K induced apoptosis in a range of
ar Therapy: Nucleic Acids Vol. 6 March 2017 ª 2017 The Authors. 249
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Figure 1. Complexation of Plasmid DNA with RALA Produces Nanoparticles Suitable for Cellular Delivery

(A) Incubation of plasmid DNAwith RALA resulted in nanoparticles that did not exceed 100 nm in diameter, with a positive charge of approximately 20–25mV. (B) Cy3-labeled

DNA forms nanoparticles with RALA that resemble those formedwith unlabeled DNA. Data points represent mean ±SD. nR 3. (C) Orthogonal sectioning of z stacks ofMDA-

MB-231-luc-D3H1 cells transfected with RALA/Cy3-pEGFP-1. RALA delivers plasmid DNA to the nuclei of MDA-MB-231-luc-D3H1 cells within 120 min. Green, actin

cytoskeleton; blue, nucleus; red, Cy3.

Molecular Therapy: Nucleic Acids
breast cancer cell lines but spared normal human microvascular
endothelial cells (HMECs) and MCF-10A.7 JS-K was recruited into
the National Cancer Institute’s Rapid Access to Interventional Devel-
opment (RAID) program, accelerating its progression as a potential
therapeutic agent.8

As an alternative approach to achieving therapeutic levels of intra-
tumoral $NO, we,9–14 and others15–17 have demonstrated the benefit
of iNOS as a therapeutic transgene. Constitutive iNOS expression
abolished clonogenicity in ZR-75-1 breast cancer cells13 and sensi-
tized to cisplatin in human cancer cell lines and murine RIF-1 xeno-
grafts9 and in A549 models of human primary and metastatic lung
cancer.17 To limit $NO release from an iNOS gene therapeutic to
target tumors, we have deployed a transcriptional targeting approach
using the human osteocalcin (hOC) promoter to drive iNOS expres-
sion. The hOC promoter is activated by transcription factors such as
Runx2 and Fra-2, which are commonly overexpressed in cancers that
metastasize to bone.18 hOC-iNOS-derived $NO achieved almost
complete elimination of colony-forming ability in PC-3 and
DU145 castration-resistant prostate cancer cells and induced stasis
in PC-3 xenografts.11,19
250 Molecular Therapy: Nucleic Acids Vol. 6 March 2017
The purpose of the current study was to determine whether cationic
RALA-based nanoparticles (NPs) carrying an iNOS transgene had a
therapeutic effect in mice bearing MDA-MB-231 (known to be sensi-
tive to the $NO donor diethylenetriamine (DETA)/NO through gen-
eration of dinitrogen trioxide)20 micrometastases.

RESULTS
Nanoparticle Characterization

Incubation of RALA with plasmid DNA in water resulted in the for-
mation of nanoparticles with physical characteristics suitable for
cellular internalization (Figure 1A).1,2,21

Subcellular Nanoparticle Localization

Labeling with Cy3 did not affect the physicochemical properties of
nanoparticles (Figure 1B). The ability of RALA to deliver Cy3-
labeled pEGFP-1 nanoparticles to the nuclei of MDA-MB-231-
luc-D3H1 cells was confirmed by confocal fluorescence microscopy
using orthogonal sectioning (to construct XZ and YZ images to
correspond to an area of interest in an XY image following collec-
tion of a z stack of images). By 60 min following commencement of
transfection, Cy3 fluorescence was evident within the confines of



Figure 2. Administration of RALA/pEGFP-N1 Nanoparticles to Immunocompetent Mice Does Not Provoke a Neutralizing Antibody Response

(A) Flow cytometric analysis of GFP in ZR-75-1 cells after incubation of RALA/pEGFP-N1 nanoparticles with sera from C57BL/6 mice that received the indicated treatment

(PBS/DNA/RALA/NPs) weekly for up to 3 weeks. *p < 0.05, **p < 0.01, ***p < 0.001 compared with expression elicited by RALA/pEGFP-N1 NPs that had been incubated in

sera from mice that had received nanoparticles (multiple comparisons ANOVA). (B) Fluorescence micrographs of ZR-75-1 cells transfected with RALA/pEGFP-N1 nano-

particles following incubation in FBS or sera from mice that received two administrations of RALA/pEGFP-N1. (C) Serum-neutralizing antibody (immunoreactivity of an anti-

mouse IgA, IgG, and IgM) content analyzed by ELISA. Data points represent mean ± SD, n R 3.

www.moleculartherapy.org
the cell and, within 120 min, was detected within the nucleus
(Figure 1C).

Vector Neutralization Assay

The transfection potency of RALA/pEGFP-N1 in ZR-75-1 breast can-
cer cells was not detrimentally affected by incubation of the nanopar-
ticles with pooled sera frommice that had received RALA/pEGFP-N1
nanoparticles (single or multiple administrations thereof). Repeated
measures two-way ANOVA with Dunnett’s correction for multiple
comparisons was used to compare sera from nanoparticle-treated
mice with other treatments (Figure 2A). In no case did incubation
in sera from nanoparticle-treated mice lessen GFP expression; rather,
nanoparticles incubated in sera from nanoparticle-treated mice pro-
voked a slightly higher transfection ability. The degree of fluorescence
of ZR-75-1 was diminished slightly when nanoparticles were incu-
bated in 10% serum, although this cannot be due to antibody neutral-
ization because nanoparticles incubated in sera from mice that
received PBS, plasmid DNA (pDNA), or RALA only, or those incu-
bated in fetal bovine serum (FBS), also evoked less fluorescence
when the serum concentration was 10% (Figure 2B).

Sera from mice that received PBS, pEGFP-N1, RALA, or RALA/
pEGFP-N1 nanoparticles produced limited immunoreactivity in
RALA/pEGFP-N1 nanoparticle-coated wells of an ELISA plate
(Figure 2C). There was no significant difference (p > 0.05)
in immunoreactivity between sera from mice that received
nanoparticles and mice that received any other treatment
(repeated measures two-way ANOVA with Tukey multiple com-
parisons test).

iNOS Transgene Expression in MDA-MB-231-luc-D3H1 Cells

Transfection of MDA-MB-231-luc-D3H1 cells with cytomegalo-
virus (CMV)- or hOC-iNOS provoked accumulation of nitrites
in the culture medium, as analyzed 48 hr post transfection;
iNOS protein expression was also detectable by western blot
(Figure 3A).

Clonogenics

MDA-MB-231-luc-D3H1 cells transfected with RALA/hOC-iNOS
(61.70% ± 10.39) or RALA/CMV-iNOS (68.40% ± 13.32) had lower
clonogenicity than untransfected control cells. Treatment with
1 mM aminoguanidine (a NOS inhibitor)22 partially blocked this in-
hibition of clonogenicity (79.4% ± 16.2 and 85.4% ± 15.6% of control
for RALA/hOC-iNOS and RALA/CMV-iNOS, respectively) (Fig-
ure 3B). Optimization of transfection conditions is summarized in
Figure S1.
Molecular Therapy: Nucleic Acids Vol. 6 March 2017 251
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Figure 3. Validation of hOC- and CMV-Driven iNOS

Plasmids

(A) iNOS protein expression in MDA-MB-231-luc-D3H1

cells 48 hr post-transfection with RALA/hOC-iNOS or

RALA/CMV-iNOS (comprising 0.5 mg DNA) at N:P10 for

6 h. $NO generation was confirmed by Greiss test. (B)

MDA-MB-231-luc-D3H1 cells overexpressing iNOS form

fewer clonogenic colonies, which is partially inhibited by

1 mM aminoguanidine. Data points represent mean ± SD,

n = 3.
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RALA/iNOS Gene Therapy Slows Progression of Metastatic

Breast Cancer in Mice

Administration of hOC/CMV-iNOS-loaded RALA nanoparticles
delayed bioluminescence accumulation (Figures 4A and 4D) and
disease progression in mice bearing MDA-MB-231-luc-D3H1
micrometastases (Figure 4B). Control and vehicle-only mice had
a median post-implantation survival of 31.5 and 30.0 days, respec-
tively. Median survival was significantly increased (log-rank
[Mantel-Cox] test) by treatment with RALA/hOC-iNOS
(38.5 days, p = 0.001) and RALA/CMV-iNOS therapy (40 days,
p > 0.001).

Figures 4C and 4D comprise biochemical and physical data from a
single mouse per treatment group (individuals whose post-implan-
tation survival was closest to the relevant treatment’s median value;
cumulative data of all mice are presented in Figures S2 and S3).
Mice that received iNOS transgenes lost mass (Figure 4C) and devel-
oped a bioluminescent signal (Figure 4D) more slowly than the
control.

Blood nitrite levels in both RALA/iNOS complex-receiving mice were
up to 9-fold higher than the blood nitrite levels of control mice (Fig-
ure 4E). Opsonization and sequestration by the mononuclear phago-
cyte system is a common fate of cationic nanoparticles following
systemic administration—this could explain why gene expression
following treatment with RALA/pLuciferase1 and other similarly
charged gene therapy nanoparticles23 is seen mainly in the lungs
and livers of mice. To determine whether these organs were less sus-
ceptible to metastasis colonization in RALA/iNOS-treated mice, we
attempted to quantify the number of metastatic lesions in mice at
the endpoint and to make an estimation of the location of the lesions.
The number of lesions evident in the final images (i.e., experimental
endpoint) of each mouse was counted, their location was assigned as
head, thoracic, abdominal, or skeletal, and the number at each loca-
tion was counted. Mice that received iNOS gene therapy had fewer
metastatic foci than control mice, and RALA/CMV-iNOS or
RALA/hOC-iNOS treatment appeared to inhibit metastasis develop-
ment in the abdominal cavity and the head but had no effect on lesion
development in the skeleton or thoracic cavity (Figure S4). The inhi-
bition of lesion development in the abdomen may be due to iNOS
gene overexpression in the liver, although we did not investigate
this further.
252 Molecular Therapy: Nucleic Acids Vol. 6 March 2017
iNOS Sensitizes to Docetaxel In Vitro and In Vivo

Transfection of MDA-MB-231-luc-D3H1 cells with either RALA/
CMV-iNOS or RALA/hOC-iNOS nanoparticle complexes before
treatment with docetaxel enhanced the docetaxel response. Docetaxel
dose-dependently inhibited the viability of MDA-MB-231-luc-D3H1
cells (effective concentration 50 [EC50] of 82.7 nM), whereas transfec-
tion with RALA/hOC-iNOS or RALA/CMV-iNOS reduced the EC50

to 33.3 nM and 34.9 nM, respectively (both p < 0.05, as assessed by
repeated measures one-way ANOVA with Geisser-Greenhouse
correction; Figure 5A).

Metastasis-bearing mice that were treated with docetaxel had a me-
dian survival of 44 days. Although co-administration of docetaxel
with RALA/hOC-iNOS (46 days, p = 0.8601) or RALA/CMV-
iNOS (49 days, p = 0.3757) complexes did not significantly improve
median survival, maximal survival (51 days in docetaxel only) was
considerably longer in both the docetaxel + RALA/hOC-iNOS and
RALA/CMV-iNOS treatment groups (78 and 86 days, respectively;
Figure 5B). Figures 5C and 5D represent mass loss and biolumines-
cence accumulation in individual mice whose survival was closest
to median survival; cumulative data on all mice are presented in Fig-
ure S5. As is evident in Figure 5D, luminescence accumulation was
retarded in the gene therapy plus docetaxel groups until therapy
was withdrawn, whereas, in docetaxel-treated mice, luminescence
accumulation progressed from day 5 onward, although at a slower
rate than in the control.

DISCUSSION
The evidence presented here demonstrates, for the first time, the
therapeutic utility of iNOS gene therapy following systemic adminis-
tration. In our assays, both RALA/iNOS strategies impressively pro-
longed the survival of mice bearing MDA-MB-231 micrometastases.
Using blood nitrite measurements, we demonstrated that receiving
either gene therapy regimen provoked $NO generation in these
mice. Assessment of circulating nitrite concentrations in this system
was a viable biomarker for successful transgene expression. Changes
in $NO flux have been used previously to confirm therapeutic $NO
generation,24 although this was by invasive insertion of an amiNO
700 probe.

Nanoparticles formed of RALA and either iNOS plasmid displayed
size and charge characteristics suitable for cellular internalization.



Figure 4. Treatment with RALA/hOC-iNOS or RALA/CMV-iNOS Improves the Survival of MDA-MB-231-luc-D3H1 Metastasis-Bearing Mice

(A) IVIS images of mice (control and RALA/iNOS) at the indicated time points post-implantation. (B) Survival of metastasis-bearing mice (n = 6 [control, RALA] or R 9

[either RALA/iNOS strategy]). (C) Weight loss of exemplary mice. (D) Total bioluminescence in exemplary mice. Inverted triangles denote treatment time points. (E)

Relative blood nitrite levels in control, RALA/hOC-iNOS-, and RALA/CMV-iNOS-treated mice. Datapoints represent mean, and, where appropriate, error bars

represent mean ± SD.
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Indeed, our observations were in agreement with previous studies on
the internalization of RALA/plasmid DNA nanoparticles, which
occurs rapidly and relies on both clathrin- and caveolin-dependent
processes.1 We have demonstrated previously that iNOS gene thera-
pies delivered intratumorally produce an impressive therapeutic
benefit9–12,19 and described reporter gene expression when the Lucif-
erase gene was delivered systemically using RALA,1 but this is the first
description of systemic RALA-mediated therapeutic transgene deliv-
ery and the first description of systemically delivered iNOS for cancer
gene therapy. Both iNOS gene therapy constructs provoked inhibition
of clonogenicity in vitro. $NO exerts its anti-cancer benefit when its
intracellular concentration is in the micromolar range.25 Although
we did not assess intracellular $NO concentration following transfec-
tion, the accumulation of nitrites in the culture medium is indicative
of a considerable increase in intracellular $NO content. The fate of
transfected cells likely depends on the degree of $NO production
but could include apoptosis, attraction of macrophages, or toxicity
because of a bystander effect.26

A concern associated with indiscriminate production of $NO is the
deleterious side effects that may manifest, such as hypotension.
Numerous strategies have been employed to limit $NO production
to the disease site, including b-galactosidase-provoked release of
$NO/nitroxyl (HNO) from isopropylamine (IPA)/NO,27 or the ni-
troreductase-dependent release of $NO from 1-(2-methylpiperi-
din-1-yl)diazen-1-ium-1,2-diolate.28 Likewise, RRx-001, which
preferentially releases $NO in a hypoxic environment, attenuated
murine squamous cell carcinoma (SCC) VII xenograft growth and
sensitized to fractionated radiotherapy, doubling the survival time
of mice.29 Ligand targeting of nanoparticles is a common targeting
strategy, with tumor-associated dysregulated expression of the
receptors of transferrin, folic acid, epidermal growth factor, and
hyaluronic acid being particularly popular.30 We have previously
employed numerous transcriptional targeting strategies. Utilization
of the prostate-specific membrane antigen (PSMA) promoter eli-
cited iNOS transgene expression in prostate cancer lines but not in
colon or breast carcinoma lines.11 We have also used inducible pro-
moters to control iNOS expression. TheWAF1/p21 promoter, whose
activity is induced by radiation, when used to drive iNOS expression,
evoked RIF-1 and HT29 tumor growth delay that exceeded that
observed with either a fractionated radiotherapy strategy alone12

or with a single X-ray dose (10 or 20 Gy).14
Molecular Therapy: Nucleic Acids Vol. 6 March 2017 253
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Figure 5. Assessment of iNOS Overexpression on

Sensitization of MDA-MB-231-luc-D3H1 Cells to

Docetaxel

(A) Transfection of MDA-MB-231-luc-D3H1 cells with

RALA/hOC-iNOS or RALA/CMV-iNOS increases the

potency of docetaxel in vitro. (B) RALA/hOC-iNOS or

RALA/CMV-iNOS treatment produces a slight additive

improvement in response to docetaxel in MDA-MB-

231-luc-D3H1 metastasis-bearing mice (n R 5). (C and

D) Weight loss and bioluminescence accumulation data

for exemplary mice. Closed inverted triangles denote

gene therapy treatment, and open inverted triangles

denote docetaxel treatment. Datapoints represent

mean, and, where appropriate, error bars represent

mean ± SD.
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It was unsurprising that RALA/CMV-iNOS was more potent than
RALA/hOC-iNOS, given the constitutive activity of the promoter,
although the transcriptionally targeted therapy also significantly
improved the survival of mice bearing metastases. Overexpression
of Runx2, characteristic in MDA-MB-231,31 is responsible for acti-
vation of the hOC promoter.18 We have shown previously that
PC3 prostate cancer cells express GFP and iNOS transgenes as pro-
voked using hOC, but lymph node carcinoma of the prostate
(LNCaP) cancer cells do not;19 LNCaP cells are known to express
Runx2 to a much lower extent than PC3 cells.32 Given that Runx2
expression is elevated in metastatic bone lesions of breast cancer pa-
tients but absent in corresponding primary tumors,31 employment of
a Runx2-activatable therapy should result in maximal iNOS trans-
gene expression in the most aggressive tumor sites and spare normal
tissue.33 Runx2 has also been implicated in the progression of pros-
tate,34 lung,35 and thyroid36 cancers, which preferentially target the
bone for metastatic colonization. We expect that these and other tu-
mors that overexpress Runx2 would benefit from hOC-iNOS gene
therapy.

Despite the compelling evidence of the therapeutic potential of iNOS
gene therapy in neoplastic conditions,9,12,14–16,19,37,38 the dichotomy
of the relationship between $NO and the tumor environment confers
skepticism when it comes to overexpressing $NO. Although iNOS
expression was negatively correlated with lesion grade in a cohort
of invasive ductal breast carcinomas,39 indicating a possible role of
iNOS in the prevention of metastasis, iNOS expression has
conversely been implicated as a marker of poor prognosis in several
malignancies, including prostate, colon, and breast.40 Stratification
of a breast cancer patient cohort by estrogen receptor (ER) expres-
sion revealed that iNOS expression was predictive of poorer survival
in ER� patients,41 whereas high iNOS expression was similarly detri-
mental in a range of triple-negative breast cancer patient cohorts.42
254 Molecular Therapy: Nucleic Acids Vol. 6 March 2017
Consequently, efforts are being made to repress
iNOS activity as a therapeutic strategy. NOS in-
hibitors such as aminoguanidine (AG)22 have
been investigated in pre-clinical settings, and,
more recently, ASP9853, an inhibitor of iNOS
dimerization, was tested in combination with docetaxel in patients
with advanced solid tumors.43

However, although iNOS expression may correlate with disease status
in some analyses, it is important to note that protein levels do not
necessarily correlate with activity. Several factors could affect the
translation of iNOS mRNA to functional protein and the production
of $NO. In the mouse renal cancer (RENCA) cell line, iNOS mRNA
expression is not translated into functional protein, resultant from
post-transcriptional modification by microRNA (miR)-146a. Treat-
ment of RENCA cells with anti-miR-146a restores the cells’ ability
to translate iNOS protein with concurrent $NO production, and xe-
nografts of these cells had considerably slower growth dynamics than
negative control anti-miR-treated cells.44 miR-146a expression may
affect iNOS expression in the clinical setting, potentially complicating
prognostication based on iNOS mRNA expression profiling. Indeed,
miR-146a was overexpressed in triple-negative breast cancer cell lines
(including MDA-MB-231) and was significantly overexpressed in tri-
ple-negative breast cancer patient samples compared with non-triple-
negative patients.45 Another factor that plays a role in iNOS activity is
its co-factor tetrahydrobiopterin. NOS enzymes in cancer cells may
preferentially produce superoxide and peroxynitrite over $NO itself,
resultant from inappropriate tetrahydrobiopterin:dihydrobiopterin
(BH4:BH2) proportions. Restoration of appropriate BH4:BH2
proportions in MCF-7 and MDA-MB-231 breast cancer cells using
sepiapterin manifested a dose-dependent cytotoxicity that was
diminished when NOS was inhibited. Oral sepiapterin also delayed
MDA-MB-231 xenograft progression. In this model, aberrant
BH4:BH2 proportion is likely to deprive the tumor of the therapeutic
benefit afforded by $NO.46

We investigated the effect of iNOS overexpression on sensitivity to
docetaxel. A taxane, docetaxel acts by preventing microtubule
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depolymerization, inhibiting mitosis. We did not determine whether
the additive effect we observed was due to sensitization to docetaxel or
the additive effect of iNOS overexpression and docetaxel treatment.
MDA-MB-231 cells treated with 100 nM docetaxel arrested in
G2/M phase of the cell cycle,47 whereas treatment with the $NO
donor DETA-NONOate arrested MDA-MB-231 cells in G1.48 There
is precedent for $NO sensitizing to chemotherapy. In MDA-MB-231,
hypoxia-induced resistance to doxorubicin and 5-hydroxytryptamine
(5-HT) was attenuated by treatment with nitroglycerin (an $NO
donor). Low oxygen levels under conditions of hypoxia prohibit the
biogenesis of $NO, so these findings support a role for endogenous
$NO in chemosensitzation.49 CMV-iNOS treatment sensitized hu-
man cancer cells to cisplatin in vitro and also RIF-1murine xenografts
to the same in vivo.9 In a C6 glioma model, overexpression of dime-
thylarginine dimethylaminohydrolase (DDAH) (which metabolizes
asymmetric dimethylarginine [ADMA], an endogenous NOS inhibi-
tor) sensitized C6 xenografts to docetaxel.50 Additionally, in lung
adenocarcinoma patients, nitroglycerin patch treatment improved
the response to docetaxel/carboplatin therapy.51 It is likely that there
is potential for RALA/iNOS therapy to similarly sensitize to docetaxel
and that optimization of the regimen is required to determine the best
therapeutic window in vivo. It is also possible that iNOS gene therapy
may be of more benefit in a model of docetaxel resistance, which is
more representative of those that have failed chemotherapy.

Conclusions

Our data demonstrate a clear anti-cancer effect of RALA/iNOS gene
therapy for metastatic breast cancer. Overexpression of iNOS with a
concomitant increase in $NO liberation is a strategy for direct cyto-
toxicity and requires additional interrogation for its ability to sensitize
to other cytotoxic approaches. Measurement of circulating nitrites
was a method for confirmation of iNOS transgene activity and could
be harnessed to determine iNOS therapeutic efficacy. The nucleic acid
delivery ability of RALA is unquestionable. Beyond utility as a
reporter gene delivery vehicle,1 it effectively delivers small interfering
RNAs (siRNAs),2 and RALA/DNA nanoparticles were evaluated as
components of a DNA vaccination device.21 However, this is the first
report validating systemically delivered RALA/nucleic acid therapeu-
tics. Further development of this potent RALA/iNOS treatment is
required with respect to dosing, adjuvant therapies, and increasing
circulation times.

MATERIALS AND METHODS
Materials

Unless otherwise stated, the reagents used were from Sigma.

Cell Culture

ZR-75-1 breast cancer cells were purchased from the ATCC and
maintained in RPMI 1640medium (Life Technologies) supplemented
with 10% FBS (PAA Laboratories). MDA-MB-231-luc-D3H1 cells
were purchased from PerkinElmer and maintained in DMEM (Life
Technologies) supplemented with 10% FBS (PAA). Cells were culti-
vated in 175-cm2

flasks in a humidified incubator. When 80%–90%
confluency was reached, cells were passed to maintain exponential
growth. Mycoplasma absence was confirmed monthly using Plasmot-
est (InvivoGen).

Plasmid DNA Preparation

MAX Efficiency DH5a-competent cells containing relevant plasmids
(pEGFP-N1/CMV-iNOS/hOC-iNOS) were cultured in a shaking
incubator overnight at 37�C in Luria broth containing the appropriate
antibiotic. Plasmid DNA was isolated and purified using PureLink
HiPure Plasmid Maxiprep Kits (Life Technologies) using the manu-
facturer’s protocol. Plasmid DNA was dissolved in ultrapure water
and stored at �20�C.

Nanoparticle Complexation and Characterization

RALA was custom-synthesized using solid-state synthesis (fluorenyl-
methyloxycarbonyl [FMOC]) (Biomatik) and supplied as a desalted
lyophilized powder. Reconstitution was in ultrapure water to a stock
concentration of 5.8 mg/mL. Aliquots were stored at�20�C until use.

Plasmid DNA/RALA nanocomplexes were constructed as described
previously.1 Briefly, plasmid DNA was incubated with RALA for
30 min at room temperature to facilitate electrostatic interaction of
the anionic DNA with the cationic peptide. Nanoparticles were com-
plexed at N:P10 (the N:P ratio is the molar ratio of positively charged
nitrogen atoms in the peptide to negatively charged phosphates in the
pDNA backbone—at N:P10, 14.5 mg of RALA is used to neutralize
1 mg of DNA). Nanoparticles were analyzed in terms of their hydro-
dynamic size and particle charge using a Nano ZS Zetasizer and DTS
software (Malvern Instruments).

Intracellular Nanoparticle Tracking

Plasmid DNA (pEGFP-1, analogous to pEGFP-N1 but lacking the
promoter) was labeled with Cy3 using a Mirus Bio LabelIt kit (Cam-
bridge Bioscience) as recommended by themanufacturer. Cy3-labeled
DNA was complexed with RALA as before, and the effect of the fluo-
rophore on nanoparticle size and charge was determined as above.

MDA-MB-231-luc-D3H1 cells were seeded in 24-well plates on
round coverslips at 104 cells/coverslip and allowed to adhere for
2 hr. The wells were then supplemented with complete growth me-
dium and incubated overnight. Following 2 hr of starvation in
Opti-MEM (Life Technologies), nanoparticle complexes were added
to the Opti-MEM, and cells were transfected for 30, 60, and
120 min. The cell actin cytoskeleton was stained using fluorescein iso-
thiocyanate (FITC)-conjugated phalloidin (Life Technologies), and
coverslips were mounted onto microscope slides using Diamond
Antifade with DAPI (Life Technologies).

Nanoparticle subcellular localization was analyzed in MDA-MB-231-
luc-D3H1 cells by confocal fluorescence microscopy using a Leica SP5
microscope and LAS-AF software.

Clonogenic Assay

The effect of RALA/iNOS on the clonogenicity of MDA-MB-231-luc-
D3H1 cells was assessed. MDA-MB-231-luc-D3H1 cells were seeded
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in T25 culture flasks at a density of 106 cells/flask and incubated over-
night. Following 2-hr starvation in Opti-MEM, cells were transfected
with RALA/CMV-iNOS or RALA/hOC-iNOS nanoparticle formula-
tions, equivalent to 6 mg DNA per flask. Transfection was for 6 hr,
and then transfection media were replaced with normal growth
medium, and cells were returned to the incubator for overnight
incubation. After 24 hr, cells were trypsinized, counted, and plated in
triplicate in 6-well plates at 500 or 1,000 cells/well. Plates were incubated
at 37�C for 12 days, and then colonies were fixed and stained using 0.4%
crystal violet (Sigma) in 70% methanol. Excess stain was removed by
gentle washing in water, and when dry, colonies weremanually counted.
Treatment with 1mMaminoguanidine (aNOS inhibitor), where appro-
priate, began 24 hr after plating into clonogenic plates.
Vector Neutralization Assay

Before commencing in vivo therapeutic assessment of RALA/iNOS
nanoparticles, we determined whether repeated administration of
nanoparticles induced vector neutralization in a competent immune
system. Nanoparticles (comprising 10 mg pEGFP-N1 complexed with
RALA at N:P10) were formulated as above in a volume of 100 mL.
Treatments were delivered via the tail vein of male C57BL/6 mice
(6–8 weeks old at the beginning of the experiment) using a 29G insu-
lin syringe (Terumo). PBS and DNA- and RALA-only treatments
were also performed. Treatments were administered once, twice, or
three times (for multiple administrations, 1 week elapsed between
treatments). 1 week after final administration, mice were sacrificed
by CO2 asphyxiation. Blood was collected by cardiac puncture, serum
was isolated, and sera from triplicate mice were pooled, heat-inacti-
vated, and stored at �20�C.

5 � 103 ZR-75-1 cells were seeded in triplicate wells of 96-well plates
and allowed to adhere overnight. Cells were starved in Opti-MEM for
2 hr prior to transfection. RALA/pEGFP-N1 nanoparticles were pre-
pared and incubated for 30 min in Opti-MEM containing sera (0%,
0.1%, 1%, and 10% serum) from mice that had received the indicated
treatment. Transfections were for 6 hr, and then Opti-MEM was re-
placed with RPMI 1640 medium. 48 hr later, cells were analyzed for
eGFP expression by fluorescence microscopy using a Nikon Eclipse
TE300 fluorescence microscope and by flow cytometry using a Becton
Dickinson FACSCalibur.
Neutralizing Antibody Assay

Serum-neutralizing antibody content was analyzed by ELISA.52 Max-
isorp ELISA plates (Nunc) were coated overnight at 4�C with RALA/
pEGFP-N1 nanoparticles in PBS. Wells were washed with PBS/0.05%
Tween 20 and blocked with PBS/1% BSA for 1 hr at room tempera-
ture. The wells were probed (1 hr, room temperature) with diluted
sera (1:10, 1:100, and 1:1,000) from mice that had received PBS,
pEGFP-N1, RALA, or RALA/pEGFP-N1 nanoparticles, washed three
times with PBS/0.05% Tween 20, and probed with an anti-mouse
immunoglobulin A (IgA),M,G-horseradish peroxidase (HRP)
secondary antibody (AdB Serotec). Following three further washes,
tetramethylbenzidine substrate was added, quenched with 1 N HCl,
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and absorbance was quantified at 450 nm, with background absor-
bance (550 nm) subtracted.

iNOS Transgene Expression

MDA-MB-231-luc-D3H1 cells were plated (104 cells/well of a 24-well
plate), allowed to adhere overnight, and transfected with RALA/
CMV-iNOS or RALA/hOC-iNOS for 6 hr, and then Opti-MEM
was replaced with phenol red-free MEM/10% FBS. 48 hr later,
MEM nitrite content was assayed using Greiss test for nitrites (Active
Motif) as instructed by the manufacturer. Cellular iNOS transgene
expression was measured via western blot as described previously.11

iNOS-Mediated Docetaxel Sensitization

MDA-MB-231-luc-D3H1 cells were plated in 24 well plates at 105

cells/well and allowed to attach overnight. Cells were transfected
with RALA/hOC-iNOS or RALA/CMV-iNOS nanoparticles (0.5 mg
DNA/well) for 6 hr, and then cells were returned to DMEM. 24 hr
following transfection, DMEM was replaced with DMEM containing
docetaxel (0, 4, 20, 100, 500, and 2,500 ng/mL). Following a further
48-hr incubation, docetaxel-containing DMEM was replaced with
DMEM containing D-luciferin (PerkinElmer) at 150 mg/mL. Subse-
quent to a 2-min incubation, luminescence was determined using
IVIS imaging. Luminescence in wells was quantified using Living Im-
age software (PerkinElmer).

Establishment of Metastatic Disease

All animal experiments were carried out in accordance with the
Animal (Scientific Procedures) Act of 1986 and conformed to the cur-
rent United Kingdom Co-ordinating Committee on Cancer Research
(UKCCCR) guidelines. Mice were bred in-house and maintained us-
ing the highest possible standard of care, and priority was given to
their welfare.

Mice (6–8 weeks old) were anesthetized using isoflurane (3% in O2)
and restrained in a supine position using surgical adhesive tape.
Thoracic fur was removed. Using a 1-mL syringe fitted with a 26G
needle, mice were implanted with 100 mL of MDA-MB-231-luc-
D3H1 cells at 106 cells/mL via the left cardiac ventricle. The cell sus-
pension was gently injected into the ventricle, and then the needle was
held in place for 10 s to minimize leakage of the delivered cells from
the ventricle. To confirm appropriate delivery, mice were injected
with 150 mg/kg D-luciferin intraperitoneally (i.p.), and, after
15-min incubation, isoflurane-anesthetized mice were imaged using
an IVIS200 (Xenogen) imaging system. Appropriate left ventricular
delivery was indicated by the appearance of luminescence throughout
the mouse, whereas inappropriate delivery was indicated by lumines-
cence being limited to the thoracic cavity; suchmice were sacrificed by
CO2 asphyxiation.

Gene Therapy Regimen

Beginning 48 hr post-implantation, mice received treatments twice
weekly for five treatments. Treatments comprised RALA/CMV-
iNOS or RALA/hOC-iNOS complexes (corresponding to 5 � 10 mg
DNA per mouse) at N:P10, whereas vehicle control (RALA equivalent
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to the mass of RALA used in the gene therapy regimens) and
untreated controls were also performed. Treatment was via tail vein
injection. A subgroup of mice received docetaxel treatment in addi-
tion to iNOS gene therapy. Docetaxel treatment (5 mg/kg i.p.)
commenced 7 days post-implantation and was given weekly for
3 weeks; gene therapy treatments were as before.

Mice were monitored for micrometastasis development using routine
(twice weekly) IVIS imaging as described above as well as body mass
measurement. A loss of 20% of original body mass was deemed
sufficient to necessitate sacrifice of the mouse. The degree of whole-
body luminescence in mice was determined using Living Image
software (PerkinElmer). At regular intervals, blood samples were
taken from mice following a tail prick and stored in EDTA-coated
tubes. Blood nitrite levels were assayed using the ArrowSTRAIGHT
nitric oxide measurement system (Lazar Labs).

Statistics

All statistics were performed using GraphPad Prism, version 6.0g for
Mac OS X. The various tests used are described throughout.
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