
Title Evaluating sets of multi-attribute alternatives with uncertain
preferences

Authors Toffano, Federico

Publication date 2020-09

Original Citation Toffano, F. 2020. Evaluating sets of multi-attribute alternatives
with uncertain preferences. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2020 Federico Toffano. - https://creativecommons.org/licenses/
by-nc-nd/4.0/

Download date 2024-04-23 12:10:30

Item downloaded
from

https://hdl.handle.net/10468/11277

https://hdl.handle.net/10468/11277

Evaluating Sets of Multi-Attribute
Alternatives with Uncertain

Preferences

Federico Toffano
MSC COMPUTER ENGINEERING

Thesis submitted for the degree of
Doctor of Philosophy

�
NATIONAL UNIVERSITY OF IRELAND, CORK

COLLEGE OF SCIENCE, ENGINEERING AND FOOD SCIENCE

SCHOOL OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

INSIGHT CENTRE FOR DATA ANALYTICS

September 2020

Head of Department: Prof. Cormac J. Sreenan

Supervisors: Dr. Nic Wilson

Research supported by Research supported by Insight Centre for Data
Analytics and Science Foundation Ireland under Grant No. 12/RC/2289 which

is co-funded under the European Regional Development Fund.

Contents

Contents
List of Figures . iv
List of Tables . vi
Abstract . ix
Acknowledgements . xii

1 Introduction 1
1.1 Outline and Contributions . 4
1.2 Publications . 6

2 Background and Related Work 8
2.1 Multi-Attribute Utility Theory 8

2.1.1 Preferences under certainty 9
2.1.2 Pareto Dominance . 10
2.1.3 Preferential independence 11
2.1.4 Additive utility function 12
2.1.5 Generalised additive independence utility model 14

2.2 Classical Methods for Preference Elicitation 14
2.2.1 Complete elicitation of the utility function 15
2.2.2 Interactive optimisation 16
2.2.3 Bayesian preference elicitation 18
2.2.4 Minimisation of an error function 18

2.3 Parameterised Preferences . 19
2.3.1 ISMAUT . 21
2.3.2 Minimax Regret decision criterion 23

2.3.2.1 Setwise Minimax Regret decision criterion . . . 26
2.3.2.2 Incremental elicitation based on Minimax Regret 29
2.3.2.3 Minimax Regret with linear utility function . . 32

2.4 Relations and Optimality Classes 33
2.4.1 Relations . 34
2.4.2 Optimality classes . 35

2.5 Conclusions . 38

3 Minimality and Comparison of Sets of Multi-Attribute Vectors 40
3.1 Introduction . 41
3.2 Preference Relations for Set of Alternatives 42
3.3 Filtering A and Minimal Equivalent Subsets 48

3.3.1 Operators for set of alternatives 49
3.3.2 Filtering . 56
3.3.3 PSOW(A) as unique minimal equivalent set 59

3.4 Setwise Max Regret . 63
3.5 Implication for Incremental Preference Elicitation 66
3.6 EEU Method for Testing A <W∀∀∃ B and Computing SMRW(A,B) . 69
3.7 The Case of Multi-Attribute Utility Vectors 76

3.7.1 Linear programming for SMRW(A,B), and A <W∀∀∃ B . . . 78

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

i Federico Toffano

Contents

3.7.2 Using extreme points of epigraph to compute minimal
equivalent subset . 78

3.8 The Structure of the Algorithms 81
3.8.1 Computing minimal equivalent set 82
3.8.2 Testing A <W∀∀∃ B . 84

3.9 Experimental Testing . 87
3.10 Conclusions . 89

4 A Multi-objective Framework based on User-Preferences 90
4.1 Introduction . 91
4.2 Literature review . 92
4.3 Problem Requirements . 94
4.4 Terminology and Definitions . 95
4.5 The Structure of the Framework 96

4.5.1 The Mixed Integer Linear Programming model 98
4.5.2 User-preference elicitation approach 102

4.5.2.1 Max regret . 102
4.5.2.2 Discrepancy measure 103
4.5.2.3 Query generation 104
4.5.2.4 Stopping criterion 106

4.6 Computational Experiments . 108
4.6.1 Instances structure . 108
4.6.2 Experimental results . 110

4.7 Conclusions . 116

5 An exact algorithm to compute the Setwise Minimax Regret 118
5.1 Introduction . 118
5.2 Setwise Max Regret . 120
5.3 An Efficient Algorithm to Compute Setwise Minimax Regret . . 121

5.3.1 Pruning the search space using SAT 122
5.3.2 Computation of setwise max regret 124
5.3.3 Generating subsets of A using depth-first search 125
5.3.4 Further implementation details 126

5.4 Pseudocode . 127
5.5 Experimental Results . 130
5.6 Conclusions . 135

6 Conclusions & Future Work 137
6.1 Summary . 137
6.2 Possible Future Works . 139

A A1
A.1 Random Problem Generator . A1

B B3
B.1 Random Catalogue Generation B3
B.2 Random Database Generator B4

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

ii Federico Toffano

Contents

B.3 Lead-time and Lateness Predictor B5

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

iii Federico Toffano

List of Figures

List of Figures

2.1 Plot of the linear utility functions uw(·) of the alternatives α =
(8, 5) (blue dotted) and β = (4, 7) (green solid) with respect to
the scenarios U = {w ∈ IR2 : wi ≥ 0,∑2

i=1 wi = 1}. 25
2.2 Plot of the linear utility functions uw(·) for the alternatives α =

(2, 8) (blue dotted), β = (8, 2) (green dashed) and γ = (6, 6)
(black solid), and Val{α,β}(w) = max(uw(α), uw(β)) (red dash-
dotted) with respect to the set of scenarios U = {w ∈ IR2 : wi ≥ 0,∑2
i=1wi = 1} . 29

2.3 Utility function uw(·) for each alternative in A = A′ ∪ A′′ =
{(11, 1), (7, 5), (6, 6), (10, 4), (4, 7)}, where w ∈ U = {(w1, w2) :
w1 + w2 = 1, w1 ≥ 0}. 38

3.1 utility function uw(α) = w · α for each alternative of the sets,
A = {(10, 4), (4, 7)}, B = {(11, 2), (8, 5)} and C = {(11, 1), (7, 5))}
where w ∈ U = {(w1, w2) : w1, w2 ≥ 0 & w1 + w2 = 1}. 44

3.2 utility function uw(α) = w · α for each alternative of the sets
A′ = {(11, 1), (7, 5), (6, 6)} and A′′ = {(10, 4), (4, 7)} where w ∈
W = {(w1, w2) : w1 + w2 = 1 & w1 ∈ [0, 2

3]}. 48
3.3 utility function uw(·) for each alternative in A = {(10, 4), (4, 7),

(6, 6), (5, 5)}, where w ∈ U = {(w1, w2) : w1 + w2 = 1}. The
alternative (10, 4) and (4, 7) are strongly feasible answers, and
(6, 6) is a feasible answer, and (5, 5) is not a feasible answer . . 68

3.4 Utility function uw(·) for each alternative in A = {(2, 8), (8, 2)}
(green solid) and B = {(6, 6)} (black dashed), where w ∈ U =
{(w1, w2) : w1 + w2 = 1}. The blue area represents the epigraph
γ(W ,A) = {(w, r) : w ∈ W , r ≥ ValA(w)} of A and the red dotted
line represents ValA(w). 75

3.5 Utility function uw(·) for each alternative in A′ = {(2, 8), (8, 2)}
(green solid) and A′ = {(5, 5), (3, 3)} (black dashed), where
w ∈ U = {(w1, w2) : w1 + w2 = 1}. The blue area is the epigraph
γ(W ,A) = {(w, r) : w ∈ W , r ≥ ValA(w)}, where A = A′ ∪ A′′,
and the red dotted line represents ValA(w). 82

4.1 Structure of the proposed framework 97
4.2 Number of experiments in which the three methods for query

selection achieved the best performances with respect to number
of queries and CPLEX time. 114

4.3 Average CPLEX and query computation time in seconds per
iteration for the three methods for query selection. The graph
shows an average of 20 instances where |I| = 10, |C| = 20 and
ρ = 0.5. 115

4.4 Average CPLEX and query computation time in seconds per
iteration for the three methods for query selection. The graph
shows an average of 20 instances where |I| = 30, |C| = 50 and
ρ = 0.5. 115

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

iv Federico Toffano

List of Figures

5.1 Plot of the linear utility functions uw(·) for the alternatives α1 =
(4, 4) (blue solid), α2 = (2, 10) (black dotted) and α3 = (10, 2)
(green dashed) with w ∈ W = {w ∈ IR2 : wi ≥ 0,∑2

i=1wi = 1}. . 124
5.2 Plot of the linear utility functions uw(·) for the alternatives α1 =

(4, 4) (blue dotted), α2 = (2, 8) (green dashed), α3 = (6, 6) (red
solid) and α3 = (8, 2) (yellow dashed-dotted) with w ∈ W =
{w ∈ IR2 : wi ≥ 0,∑2

i=1wi = 1}. 129
5.3 Average computation time in seconds to compute SMMRkW(A)

with EPI SAT (y-axis) over 20 repetitions varying k and p with
an input set of 100 undominated alternatives andW = U 133

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

v Federico Toffano

List of Tables

List of Tables

3.1 Execution times (in seconds) of methods to compute PSOW(A)
(Section 3.8.1), UDW filtering, EEU (I) and LP (II) (and number
of extreme points of the epigraph), with respect to dim(W) with
|A| = 500 and 4 user preferences. 88

3.2 Number of elements of A′ = UDW(A), B′ = UDW(B) and
B′′ = {β ∈ B′ : ∀α ∈ A, α 6<W β} with respect to dim(W) with
|A| = |B| = 500 and 4 user preferences. 88

3.3 Execution time of methods for testing the dominance A <W∀∀∃ B
(Section 3.8.2), i.e., testing the necessary and the sufficient
condition (NSc) (1), UDW filtering (2) and algorithms TLP 3(a),
TEPU 3(b) and TEEU 3(c) for testing A <W∀∀∃ B, with respect to
dim(W) with |A| = |B| = 500 and 4 user preferences. 89

4.1 Values computed by the three query selection criteria with
respect to each possible query selected from the set S = {α =
(4, 1, 2, 1), β = (3, 4, 1, 1), γ = (1, 3, 4, 1), θ = (3, 3, 1, 4)} with
corresponding extreme points Ext(WΛ) = {(1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1)} . 106

4.2 Mean and standard deviation of the truncated Gaussian distribu-
tion used to sample the demand of a component with respect to
each category. 109

4.3 Intervals of the uniform distributions used to sample the mean
cost of components with respect to each category. 109

4.4 Discount intervals per component category and quantity ordered. 110
4.5 Experimental results with |I| = 10. Bold values represent the

best result among the three methods in that row, with respect to
time in seconds (for the first set of three columns), or number of
queries (for the second set of three columns). 111

4.6 Experimental results with |I| = 20. Bold values represent the
best result among the three methods in that row, with respect to
time in seconds (for the first set of three columns), or number of
queries (for the second set of three columns). 111

4.7 Experimental results with |I| = 30. Bold values represent the
best result among the three methods in that row, with respect to
time in seconds (for the first set of three columns), or number of
queries (for the second set of three columns). 112

5.1 Average computation time in seconds to compute SMMRkW(A)
with EPI SAT, LP SAT, EPI BF and LP BF over 20 repetitions
varying k and p with an input set of 50 undominated alternatives
andW = U . 131

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

vi Federico Toffano

List of Tables

5.2 Average computation time in seconds to compute SMMRkW(A)
with EPI SAT over 20 repetitions varying the number of user
preferences Λ with |UDW(A)| = 500, W = U , k = 2 and p = 4.
|W ′| represents the average number of user preference models
used to evaluate subsets of A with SAT, and UD represents the
algorithm to filter out dominated alternatives. 132

5.3 Average computation time in seconds to compute SMMRkW(A)
with EPI SAT over 20 repetitions varying the size of the input set
UDW(A) of undominated alternatives with |Λ| = 0 (i.e.,W = U),
k = 2, p = 4. |W ′| represents the average number of user
preference models used to evaluate subsets of A with SAT. . . . 133

5.4 Average computation time in seconds to compute SMMRkW(A)
with EPI SAT over 20 repetitions varying p with |UDW(A)| = 100,
|Λ| = 0 (so W = U) and k = 4. |W ′| represents the average
number of user preference models used to evaluate subsets of A
with SAT. 134

5.5 Computation of SMMRkW(A) with the databases considered in the
experimental results of [VB20]. The first four columns show
information regarding the input databases. The fifth and the
sixth columns show the performances of filtering out dominated
elements. The last two columns show the time performance our
algorithm EPI SAT and the method used in [VB20] whose results
are shown in Table 8. 134

B.1 Gaussian distribution parameters to sample the quantity of a
component for an order with respect to component categories. . B4

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

vii Federico Toffano

I, Federico Toffano, certify that this thesis is my own work and has not been
submitted for another degree at University College Cork or elsewhere.

Federico Toffano

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

viii Federico Toffano

Abstract

Abstract

In a decision-making problem, there can be uncertainty regarding the user

preferences concerning the available alternatives. Thus, for a decision support

system, it is essential to analyse the user preferences to make personalised

recommendations. In this thesis we focus on Multiattribute Utility Theory
(MAUT) which aims to define user preference models and elicitation procedures

for alternatives evaluated with a vector of a fixed number of conflicting criteria.

In this context, a preference model is usually represented with a real value

function over the criteria used to evaluate alternatives, and an elicitation

procedure is a process of defining such value function. The most preferred

alternative will then be the one that maximises the value function.

With MAUT models, it is common to represent the uncertainty of the user

preferences with a parameterised value function. Each instantiation of this

parameterisation then represents a user preference model compatible with

the preference information collected so far. For example, a common linear

value function is the weighted sum of the criteria evaluating an alternative,

which is parameterised with respect to the set of weights. We focus on this

type of preference models and in particular on value functions evaluating sets

of alternatives rather single alternatives. These value functions can be used

for example to define if a set of alternatives is preferred to another one, or

which is the worst-case loss in terms of utility units of recommending a set of

alternatives.

We define the concept of setwise minimal equivalent subset (SME) and algo-

rithms for its computation. Briefly, SME is the subset of an input set of alter-

natives with equivalent value function and minimum cardinality. We generalise

standard preference relations used to compare single alternatives with the pur-

pose of comparing sets of alternatives. We provide computational procedures to

compute SME and evaluate preference relations with particular focus on linear

value functions.

We make extensive use of the Minimax Regret criterion, which is a common

method to evaluate alternatives for potential questions and recommendations

with uncertain value functions. It prescribes an outcome that minimises the

worst-case loss with respect to all the possible parameterisation of the value

function. In particular, we focus on its setwise generalisation, namely Setwise
Minimax Regret (SMR), which is the worst-case loss of recommending a set of

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

ix Federico Toffano

Abstract

alternatives. We provide a novel and efficient procedure for the computation of

the SMR when supposing a linear value function.

We also present a novel incremental preference elicitation framework for a

supplier selection process, where a realistic medium-size factory inspires con-

straints and objectives of the underlying optimization problem. This preference

elicitation framework applies for generic multiattribute combinatorial problems

based on a linear preference model, and it is particularly useful when the com-

putation of the set of Pareto optimal alternatives is practically unfeasible.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

x Federico Toffano

To my mother and my father, with love and gratitude.

Acknowledgements

Acknowledgements

My deepest gratitude goes to my supervisor Nic Wilson, who patiently guided
me throughout my whole PhD with valuable comments, encouragement, advice
and critics. I feel very privileged to have had his supervision, which helped me
grow both as a researcher and as a person.

I would like to thank Michele Garaffa, Steve Prestwich and Paolo Viappiani
for the fruitful collaborations, which led to scientific publications and valuable
content for this thesis. I would like to thank the examiners of this thesis, Jérôme
Lang and Barry O’Sullivan, for their valuable feedback and other reviewers of
the here presented publications. Furthermore, this thesis would not have been
possible without the financial support of Science Foundation Ireland (Grant
No. SFI/12/RC/2289), United Technologies Research Center, Cork, and the
European project LOGISTAR.

I would like to thank also the admin office, Ann O’Brien, Eleanor O’Riordan,
Linda O’Sullivan and Caitríona Walsh for all their help handling the adminis-
trative tasks, and Peter MacHale for addressing all my IT needs.

I also wish to thank my friends and colleagues Diego Carraro and Andrea
Visentin. We met 12 years ago, and together we did our bachelors, masters
and PhDs. They have been my best companions during these years, supporting
me in both my private and my work life. A special thanks also goes to Carla
Barcellos for her support and encouragement when writing my thesis, also
to Stefano Ghidoni, Enrico Mattarolo, Jessica Susinni and Ivanka Walsh for
their very genuine friendship throughout these years. I am also grateful to all
current and previous Insight members for the many interesting discussions and
all the pleasant moments of daily PhD life; these years in Cork have been full of
positive experiences and amazing people.

Last but definitely not least, a grateful thought goes to my mother Edi Braido
who always gave me support, advice and strength. She raised me alone but she
ensured that I did not lack anything I needed, and this achievement is also a
fruit of her strength and determination. Unfortunately I did not have the chance
to meet my father Alessandro Toffano. However, I also wish to thank him since
he has been a source of inspiration through my mother.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

xii Federico Toffano

Chapter 1

Introduction

Multi-criteria decision-making (MCDM) (or multi-criteria decision analysis)

[VNM47, Sav51, Fis70, Rai68] is a field of research which aim is to support

a decision-maker (DM) in a decision-making process where the alternatives

are evaluated with different and typically conflicting criteria. In this context

it may not be obvious when an alternative is better than another one. For

example, suppose that we have two alternatives α and β evaluated with respect

to cost and quality. If α has a better cost, and β has better quality, then the

best alternative depends on the DM’s preferences. For this reason, in an MCDM

context, the concept of optimal alternative is often replaced with the set of

undominated (or non-dominated) alternatives with respect to the available

DM’s preference information. However, the set of undominated alternatives

may be too complex to be presented to the DM; MCDM methods help on these

situations in choosing ranking or sorting these type of alternatives.

Several approaches have been studied in the context of MCDM which can be

applied in many academic disciplines, such as Finance, Statistics, Telecommu-

nications and Economic. For an overview of MCDM methods see, e.g., the state

of the art surveys book [FGE+05b], or a more generic survey such as [ZTK14].

In this thesis, particular attention will be dedicated to a branch of MCDM theory

called multi-attribute utility theory (MAUT) [Rai68]. MAUT involves numeri-

cal representations of the DM’s preferences with respect to a set of alternatives

which are evaluated with a fixed number of conflicting criteria. MAUT models

assume the existence of an unknown DM’s utility function representing the DM’s

preferences, where an alternative α is preferred to another alternative β if and

only α has higher value according to the DM’s utility function; this can then be

1

1. INTRODUCTION

used for recommending appropriate alternatives for the DM.

Example 1. Suppose that we have a set of apartments. Each apartment is
evaluated with a vector of three reals values (x1, x2, x3) representing monthly rent,
apartment size and garden size. The DM’s utility function u(x1, x2, x3) aggregates
the criteria (x1, x2, x3) returning a real number r = u(x1, x2, x3) ∈ IR representing
a score of the corresponding apartment. The most preferred apartment will then
be the one with highest score with respect to the DM’s utility function.

The process of learning the DM’s utility function is called preference elicitation.

A classical preference elicitation method is to precisely define the DM’s utility

function with elaborated interview techniques [Rai68]. However, experiments

with real users have shown that this process can be a difficult and error-prone

task [Sim55, TK74, PFT03]. From the 1980s, artificial intelligence has been

widely applied in MAUT contexts to develop more robust preference elicitation

systems. A common approach in modern MAUT preference models is to

consider parameterised utility functions where the parameterisation represents

the uncertainty with respect to the user preferences (see, e.g., [WSD84]). Each

feasible parameter of a such parametrisation corresponds then to a specific

preference model, and two different parameters could then lead to two different

most preferred alternatives.

The aim of the work in this thesis relates to the development of methods for

supporting decision-makers, based on parameterised preference models. These

methods include:

• Reduction of the alternatives of a decision problem without reducing the

maximum utility achievable.

• Preference elicitation approaches to reduce the uncertainty regarding the

DM’s preferences.

• Computational procedures to evaluate sets of alternatives with uncertain

preferences.

In particular, suppose that uw(α) is a real utility function over alternatives α

where the parameter w defines a possible DM’s preference model. The value

of a set A of alternatives supposing a preference model w can be defined as

maxα∈A(uw(α)). Given two sets of alternatives A and B, we will consider the

following related questions:

1. Are there elements of A that can be eliminated unproblematically? In

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

2 Federico Toffano

1. INTRODUCTION

particular, is there a strict subset A′ of A that is equivalent to A for every

consistent preference model w?

2. Given a choice between one situation, in which the available alternatives

are A, and another situation, in which alternatives B are available, is A at

least as good as B for every consistent preference model w?

3. Given a linear utility function uw(α), how can we generate an efficient

query set A for an interactive preference elicitation process in a complex

combinatorial problem?

4. Given a linear utility function uw(α) and a list of alternatives, how can we

efficiently compute an optimal recommendation set A?

We will provide methods addressing the above questions.

Although some of the theoretical contributions apply to generic preference

models, we will focus mainly on parameterised preference models where

reducing the uncertainty of the utility function means reducing the set of

parameters. In particular, we will consider a weighted sum of the criteria

evaluating the alternatives as a preference model. In this case, the set

of weights vectors can be the parameterisation of the utility function, and

each weights vector defines then a different preference model. For example,

a preference elicitation procedure for this preference model could aim to

incrementally reduce the set of possible weights vectors until we get a good

enough approximation of the DM’s preferences according to a predefined

stopping criterion.

To evaluate alternatives with uncertain DM’s preferences, we will consider

methods based on the max regret criterion [Sav72, KY13]. The max regret

is the worst-case utility loss of an alternative with respect to all the feasible

parameters of the DM’s utility function. In other words, the max regret is a real

value evaluating the maximum loss of an alternative in terms of utility units

with respect to a set of possible preference models. The max regret can then

be used to rank a set of alternatives in case of uncertainty regarding the DM’s

preferences. In particular, we will consider its setwise generalisation, i.e., the

setwise max regret criterion, which is used to evaluate the worst-case loss of

a set of alternatives. In this case then the setwise max regret can be used to

rank different sets of alternatives when dealing with uncertain preferences. We

will provide algorithms for the computation of the setwise max regret where

alternatives are evaluated with linear utility functions. In particular, we will

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

3 Federico Toffano

1. INTRODUCTION 1.1 Outline and Contributions

present a novel method to compute the setwise minimax regret, which is the

minimum setwise max regret among a set of sets of alternatives with a specific

cardinality. The latter is a very important measure since it can be used to

compute an optimal recommendation set, but also to compute a myopically

optimal query set for elicitation purposes [VB09, VB20].

1.1 Outline and Contributions

This thesis is organised as follows.

Chapter 2: Background and Related Work This chapter gives an overview of

MAUT models defining standard concepts such as weak orders, multi-attribute

utility functions, Pareto dominance and preferential independence. We discuss

some related works on common preference elicitation with particular attention

to the minimax criterion which is used to evaluate alternatives with uncertain

preferences. We also define preference relations representing parameterised

utility functions and standard optimality classes for sets of alternatives.

Chapter 3: Minimality and Comparison of Sets of Multi-Attribute Vectors

The main purpose of this chapter is to define methods to exclude alternatives

from a decision problem without reducing the maximum utility achievable in

all DM’s preference scenarios. In particular, we define different dominance and

equivalence relations for sets of alternatives including properties and evaluation

procedures. We define the concept of minimal equivalent subset of a set of

alternatives. We show the connection between the minimal equivalent subset

and standard optimality classes of alternatives, and in particular, we show

that for a large variety of utility functions the minimal equivalent subset is

unique and corresponds to the set of possibly strictly optimal alternatives.

We also define procedures to compute the minimal equivalent subset and to

evaluate dominance and equivalence relations for preference models based on

linear utility functions. These algorithms are based on linear programming

approaches and on methods which make use of the epigraph of the utility

function. The latter is a novel approach which can also be used to compute the

setwise max regret of a set of alternatives, and it seems to outperform standard

methods based on linear programming when up to six criteria used to evaluate

alternatives.

The main contributions of this chapter are:

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

4 Federico Toffano

1. INTRODUCTION 1.1 Outline and Contributions

• A generalisation of standard preference relations to evaluate dominance

and equivalence with uncertain preference models of sets of alternatives

rather than single alternatives. This allows simplification of the decision

space, by showing some parts are irrelevant.

• The concept of setwise minimal equivalent subset, and relative conditions

of uniqueness. This allows the set of alternatives to be reduced as far as

possible, without any loss of utility.

• Novel computational approaches to filter and evaluate dominance and

setwise regret for sets of alternatives when supposing a weighted sum

utility function as a preference model.

Chapter 4: A Multi-objective Supplier Selection Framework based on

User Preferences Here we present a novel incremental preference elicitation

framework for a supplier selection process to satisfy the demand for a set

of products. Although it is designed for a specific problem, the underlying

structure of our framework is suitable for preference elicitation in complex

combinatorial problems. We suppose a linear utility function with four

objectives: minimisation of cost, lateness and lead time, and maximisation

of the suppliers’ reputation. The framework iteratively interacts with the

DM asking to compare two alternatives consistent with the DM’s preference

collected so far, and the interaction terminates when a stopping criterion is

satisfied. We define two query strategies based on a novel measure that we call

discrepancy which is strictly related to the max regret criterion, and we compare

them with myopically optimal queries. As shown in our experimental results,

our novel query strategies have the benefit of being simple to be computed

whilst keeping a good value of information.

The main contributions of this chapter are:

• A framework to support a DM in a supplier selection process to satisfy the

demand for a set of products.

• A preference elicitation procedure for problems where alternatives repre-

sented with complex combinatorial problems when supposing a weighted

sum utility function as a preference model.

• Fast query selection strategies based on the max regret criterion.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

5 Federico Toffano

1. INTRODUCTION 1.2 Publications

Chapter 5: An exact algorithm to compute the Setwise Minimax Regret

This chapter introduces a novel efficient algorithm to compute the setwise

minimax regret, i.e., the minimum setwsie max regret of subsets with a specific

cardinality of an input list of alternatives. The setwise minimax regret can be

used to compute optimal recommendation set and myopically optimal query

set. The algorithm makes use of a SAT solver to evaluate the setwise regret of

several sets simultaneously, and applies to linear additive utility function. Our

experimental results show that this algorithm is much faster than the current

state of the art.

The main contribution of this chapter are:

• A novel efficient algorithm to compute the setwise minimax regret when

supposing a weighted sum utility function as a preference model. This

may allow the use of the setwise minimax regret criterion in real-time

applications.

Chapter 6: Conclusions In the conclusion, we summarise the work presented

in this thesis highlighting significant results and possible future works.

1.2 Publications

Chapters 2 and 4 are based on the following published papers which have been

subject to peer review.

1. Federico Toffano, and Nic Wilson. Minimality and Comparison of Sets

of Multi-Attribute Vectors. In Proc. European Conference on Artificial
Intelligence (ECAI) 2020, 2020.

2. Federico Toffano, Paolo Viappiani, and Nic Wilson. Efficient Exact Compu-

tation of Setwise Minimax Regret for Interactive Preference Elicitation. In

Proc. Autonomous Agents and Multi-Agent Systems (AAMAS) 2021, 2021.

The following is a paper based on Chapter 4 which is currently being evaluated

by an editor for the journal Annals of Operational Research.

1. Federico Toffano, Michele Garraffa, Yiqing Lin, Steven Prestwich, Helmut

Simonis, and Nic Wilson. A Multi-objective Supplier Selection Framework

based on User-Preferences.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

6 Federico Toffano

1. INTRODUCTION 1.2 Publications

The following are further papers published during my PhD which are not related

to this thesis.

1. Federico Toffano, and Nic Wilson. Balancing schedules using maximum

leximin. In Proc. European Conference on Symbolic and Quantitative
Approaches with Uncertainty (ECSQARU) 2019, Pages 492-503, 2019.

2. Steven D Prestwich, Federico Toffano, and Nic Wilson. A probabilistic

programming language for influence diagrams. In Proc. International
Conference on Scalable Uncertainty Management (SUM) 2017, Pages 252-

265, 2017.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

7 Federico Toffano

Chapter 2

Background and Related Work

In this chapter, we provide the background material for the thesis, including

an overview of preference elicitation methods. In Section 2.1 we introduce the

main concepts of multi-attribute utility theory (MAUT) and user preferences

which are the basis of this thesis. In Section 2.2 we show a connection

between MAUT and classic recommender systems, and we discuss some

classical methods for preference elicitation such as complete elicitation of the

utility function, and interactive optimisation including Bayesian methods. In

Section 2.3 we discuss parameterised utility functions. We present a classical

work on imprecisely specified multi-attribute utility theory (ISMAUT) which

is one of the first attempts to deal with uncertain preference information in

a MAUT context. We also define the concept and properties of the minimax

regret criterion, including its setwise generalisation, which will be considered

in all the chapters of this thesis. In particular, we will show how it can be

used within an incremental elicitation process and how to compute it with

linear utility functions. In Section 2.4 we define relations and optimality

classes concerning uncertain utility functions which will be extended in the

next chapter to evaluate sets of alternatives. Section 2.5 concludes the chapter.

2.1 Multi-Attribute Utility Theory

Let α ∈ Ω be an alternative for the decision-maker (DM) and let Ω be a (possibly

infinite) set of alternatives. In a MAUT model, alternatives are evaluated with

p evaluators, or criteria, Xi : Ω → IR for all i ∈ [1, p]. Each alternative α is then

associated with a vector X(α) = (X1(α), . . . , Xp(α)) which is called the outcome
of α. Thus, we can think of the p evaluators as a mapping X : Ω → IRp. We

8

2. BACKGROUND AND RELATED WORK 2.1 Multi-Attribute Utility Theory

defineM to be the set of finite non-empty subsets of Ω.

Example 2. Let A ∈M be a list of apartments for rent. Suppose, for example, that
the criteria used to evaluate each apartment are monthly rent in euro (X1), size
in squared metres (X2) and distance from the city center in kilometres (X3). The
outcome of an apartment α ∈ Ω could then be for example X(α) = (1400, 60, 2).

In a MAUT context, the goal of the DM is to select her1 preferred alternative α

among a set of possible alternatives Ω. The DM is associated with a utility

function defining the DM’s trade-offs among the conflicting criteria used to

evaluate an alternative. The preferences of the DM can then be represented

by a utility function u : Ω → IR which measures the value of outcomes of

alternatives and can be used to find an alternative α ∈ Ω that leads to the

best outcome with respect to the DM’s preferences. Note that the precise

function of the DM is usually unknown, and one of the main purposes of MAUT

methods is to define it or approximate it with a preference elicitation method.

Such procedures typically consider a predefined parameterised structure of the

DM’s utility function, where the parameterisation reflects the uncertainty of

the system concerning the DM’s preferences. The goal of preference elicitation

procedures is then to reduce the uncertainty of the DM’s utility function.

2.1.1 Preferences under certainty

Let α and β be two alternatives in Ω. The notation α < β means that a DM

weakly prefers α to β, i.e., α is at least as good as β. The DM’s preference

relation < is assumed to be a total preorder or (weak order) which is defined by

the following two rationality properties:

• Completeness: ∀α, β ∈ Ω, α < β ∨ β < α. This means that a DM can

always say whether or not she prefers one choice to another.

• Transitivity: ∀α, β, γ ∈ Ω, if α < β and β < γ, then α < γ. This,

in conjunction with completeness, implies that a DM can always order

choices from best to worst, allowing ties.

Weak preference can be seen also as a union of two relations:

• Indifference relation: α ≡ β ⇐⇒ (α < β ∧ β < α), which reads "the

DM is indifferent between α and β". ≡ is an equivalence relation (i.e., it

is reflexive, symmetric, and transitive).

1We will be using feminine pronouns for the decision-maker.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

9 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.1 Multi-Attribute Utility Theory

• Strict preference relation: α � β ⇐⇒ (α < β ∧ β 6< α), which reads

"the DM strictly prefers α to β". � is a strict order (i.e., it is acyclic and

transitive).

For A ∈M, a utility-representation theorem [Deb59a] gives necessary and suffi-

cient conditions under which a weak preference relation < can be represented

with a utility function, i.e., such that for any α, β ∈ A:

u(α) ≥ u(β) ⇐⇒ α < β. (2.1)

A utility function defining a weak preference relation with Equation 2.1 is called

an ordinal utility function. For a given A ∈ M, ordinal utility functions are

equivalent up to a monotonic transformation. More precisely, a weak preference

relation < can be represented with two ordinal utility functions u : A→ IR and

u′ : A→ IR such that for any α, β ∈ A:

u(α) ≥ u(β) ⇐⇒ α < β

and

u′(α) ≥ u′(β) ⇐⇒ α < β

(2.2)

if and only if u(·) = h(u′(·)), where h(·) is a monotonic increasing function

(see e.g. [Fis70] or [BC19] for more details and proofs). Thus, ordinal utility

functions define a ranking over the outcome space but they do not contain

information on how much better an alternative is with respect to another.

2.1.2 Pareto Dominance

If an alternative α is at least as good in every criteria and strictly better in at

least one criterion with respect to another alternative β, then we say that α

Pareto dominates β. Pareto dominance is an important concept since one can

discard Pareto-dominated alternatives from a recommendation process without

reducing the quality of a recommendation. Formally, let α and β be two

alternatives with outcomes x = (x1, . . . , xp) and y = (y1, . . . , yp) respectively,

where xi = Xi(α) and yi = Xi(β) ∀i ∈ {1, . . . , p}. We say that α Pareto

dominates β if and only if

xi ≥ yi for all i (2.3)

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

10 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.1 Multi-Attribute Utility Theory

and

xi > yi for some i. (2.4)

The preference relation �P induced by the Pareto dominance is then defined as

α �P β if and only if α Pareto dominates β. An alternative α ∈ Ω is said to be

Pareto optimal if and only if there does not exist an alternative β ∈ Ω such that

β �P α.

The Pareto frontier (also known as efficient set or admissible set) is the set of

Pareto optimal alternatives, i.e., it is composed of all the alternatives that are

not Pareto dominated. Thus, an alternative can be part of the Pareto frontier

even if it does not dominate other alternatives.

Example 3. consider three apartments α, β and γ with outcomes x = (1400, 60, 2),
y = (1200, 60, 2) and z = (1400, 70, 2) respectively, where the criteria represent
monthly rent (the smaller the value, the better), size and number of rooms (the
higher the value, the better). α can be ignored since it has the same size and
number of bedrooms, but higher monthly rent than β, i.e. α is Pareto dominated
by β. On the other hand, β and γ are both Pareto optimal. Thus, in this example,
the choice set of the DM can be reduced to β and γ since β has lower monthly rent
and γ has a larger size.

A utility function u : IRp → IR is said to be monotonic if and only if for all

α, β ∈ Ω:

α �P β =⇒ u(α) ≥ u(β). (2.5)

In the context of preference elicitation, imposing monotonicity means ensuring

Pareto-optimality.

2.1.3 Preferential independence

Let I ⊆ {1, . . . , p} be an index set. we define XI to be a mapping from a set

of alternatives A ∈ M to a sub-outcome state space IR|I| restricted to criteria

indexed by I. Let IC = {1, . . . , p} \ I be the complement of I. Thus, we can

partition an outcome x ∈ IRp as x = (xI , xIC), where xI ∈ IR|I| and xIC ∈ IR|I
C |.

We say that yI ∈ IR|I| is conditionally preferred or indifferent to zI ∈ IR|I| given

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

11 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.1 Multi-Attribute Utility Theory

xIC ∈ IR|I
C | if and only if

(yI , xIC) < (zI , xIC). (2.6)

We say that criteria indexed by I are preferentially independent of the remaining

criteria indexed by IC if and only if the conditionally preference relation

between any pair of suboutcome yI , zI ∈ IR|I| given xIC ∈ IR|I
C | does not depend

on xIC , i.e., for some xIC ∈ IR|I
C |

(yI , xIC) < (zI , xIC) ⇐⇒ (yI , yIC) < (zI , yIC)

for all yI , zI ∈ IR|I| and yIC ∈ IR|I
C |.

(2.7)

When preferential independence does hold, then we know that efforts made to

elicit the DM’s preferences of criteria indexed by I, when fixing the remaining

criteria indexed by IC , does not have to be repeated for other values of the

criteria indexed by IC .

If for each possible index set I ⊆ {1, . . . , p} the criteria indexed by I are

preferentially independent with respect to the remaining criteria indexed by IC ,

then we say that the criteria X1, . . . , Xp are mutually preferentially independent.
Note that the concept of preferential independence then has nothing to do with

stochastic (statistical) independence; in fact, in this case, the independence

refers to the relation between criteria used to evaluate an alternative.

2.1.4 Additive utility function

The criteria X1, . . . , Xp used to evaluate an alternative α ∈ Ω are mutually

preferentially independent if and only if there exists an additive ordinal utility

function such that:

u(α) =
p∑
i=1

ui(Xi(α)) (2.8)

where each ui is a single-criterion subutility functions defined for criterion Xi

[Deb59b, Fis65, Fis70]. Additive independence is often assumed in multi-criteria

optimisation problems because of its simple structure.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

12 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.1 Multi-Attribute Utility Theory

Weighted sum utility function: The weighted sum is one of the most

common models used to aggregate the multi-criteria outcomes of alternatives.

It has been widely adopted in a preference elicitation context such as [Sar78,

KP84, AP97], and also in recent works such as [KS14, KVVA17, BL19]. With

this utility function the DM’s preferences are expressed as a vector of weights

w = (w1, . . . , wp) such that
∑p
i=1wi = 1 and wi ≥ 0 for all i ∈ {1, . . . p}.

Each weight wi quantifies a value related to the importance for the DM of the

criterion xi used to evaluate an alternative. More precisely, the value of an

alternative α ∈ Ω with outcome X(α) = (X1(α), . . . , Xp(α)) ∈ IRp is defined as

follows:

u(α) = w ·X(α) =
p∑
i=1

wiXi(α) (2.9)

where · is the dot product. Thus, by definition, the preference relation <w
induced by the weighted sum utility function with respect to the parameter w

is defined as:

α <w β ⇐⇒ w ·X(α) ≥ w ·X(β). (2.10)

Note that often the weights are wrongly interpreted as the importance that

DM gives to each criterion. For example, consider a utility function uw(α) =
w1 · coste(α) + w2 · times(α), where coste(α) evaluate the cost of α in euro

and times(α) evaluate the time of α in seconds. In this case, it is easy to see

that in general the meaning of the weights vector w = [w1 = 0.5, w2 = 0.5]
does not correspond to an equal importance of the two objectives because of

the different unit of measure. In fact, if we decide to consider a new utility

function u′w(α) = w1 · coste(α) + w2 · timeh(α), where timeh(α) evaluates

the time of α in hours, the new weak preference relation associated with

w = [w1 = 0.5, w2 = 0.5] would be different.

Suppose we normalize the outcome space associated to an input set A ∈M, i.e.,

we define the evaluators as X ′i : A → [0, 1] for each i ∈ {1, . . . p}. In that case,

we may get an interpretation of the weights vector that is more similar to the

concept of importance. However, it may still not be the correct interpretation.

This because the weak preference relation associated with a weights vector w

would be strictly dependent on the lower and upper bounds of each criterion

used to normalize the outcome space with respect to A. Thus, different input

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

13 Federico Toffano

2. BACKGROUND AND RELATED WORK

2.2 Classical Methods for Preference
Elicitation

sets could lead to different bounds and then different weak preference relations

associated with a specific weights vector. However, we can say that the weights

are somehow related to the importance that DM gives to each criterion, since

increasing the value of a specific weight means increasing the importance that

the DM gives to the corresponding criterion.

2.1.5 Generalised additive independence utility model

Generalised additive independence (GAI) models have been first defined by

Fishburn [Fis67a, Fis70]. GAI models are a generalisation of additive models

where preferential independence is related to sets of criteria rather than

each single criterion. Recent works based on this utility model include

[BG13, BBB13, BB12, Bra12].

Let Ij ⊆ {1, . . . , p} be a set of indexes with Ij ∈ {1, . . . ,M} such that

I1∪, . . . ,∪IM = {1, . . . , p}. Let XIj(α) ∈ IR|Ij | be the partial outcome of α

representing the values of the criteria indexed by Ij. The sets of criteria indexed

by I1, . . . , IM used to evaluate an alternative α ∈ Ω are mutually preferentially

independent if and only if there exists an additive ordinal utility function such

that:

u(α) =
M∑
j=1

uj(XIj(α)) (2.11)

where each uj is a subutility function defined over the criteria indexed by Ij

[BG95, GP04]. This enables GAI models to capture preferentially-dependent

criteria.

GAI models have also been represented with graphical structures called GAI

networks [GP04] which is similar to junction graphs used for Bayesian networks

[CDLS06]. A GAI network is an undirected graph where each node represents

a criterion and to each clique corresponds a factor FI . Such a graph keep

track of all the dependencies between the different components of the subutility

function.

2.2 Classical Methods for Preference Elicitation

Preference elicitation refers to the process of assessing the DM’s preferences.

The DM’s preferences can be used, for example, by a recommender system

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

14 Federico Toffano

2. BACKGROUND AND RELATED WORK

2.2 Classical Methods for Preference
Elicitation

capable of supporting the DM in a decision process (see, e.g., [CP04] for some

examples of recommender systems). Some of the most common preference

elicitation approaches adopted by recommeneder systems are classified as

follows [LWM+15, A+16]:

1. Content-based (see, e.g., [PB07]): recommendations are based on similar-

ities between the descriptions of the available alternatives and the user

preferences recorded from previous interactions with the system.

2. Collaborative filtering (see, e.g., [SKKR01]) recommendations are com-

puted considering past similar items liked by the user (item-based) or

considering items liked by a set of users of the system with similar inter-

ests (user-based).

3. Knowledge-based (see, e.g., [Bur02]) recommendations are based on

knowledge about users, items or their relationships. In this case, the user

specifies constraints and preferences over alternatives that will be used to

refine the user preference model and generate recommendations.

The main difference between knowledge-based systems with respect to content-

based and collaborative filtering systems is that the former usually does not

require a big amount of data to compute a recommendation. Thus, knowledge-

based systems are well suited for a cold-start scenario, i.e., when we do not

have any information about the DM’s preferences. In this thesis we will focus on

knowledge-based recommender systems. In particular, we assume a preference

model based on MAUT, which supposes the existence of an unknown DM’s

utility function with a predefined structure. Regarding the preference elicitation

procedures instead, we will focus on systems which reduce the uncertainty of

the DM’s utility function through an iterative interaction with the DM.

The following are a brief summary of some of the main approaches used to

infer the DM’s preference [Bra12, Ben17] in a MAUT context. Note that these

approaches are not mutually exclusive.

2.2.1 Complete elicitation of the utility function

The goal of the classical approach is to completely specify the DM’s utility

function through a series of questions and answers [Fis67b, Rai68, Far84].

This elicitation process can be summarised with the following steps:

1. Determination of the property of the underlying utility function such as

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

15 Federico Toffano

2. BACKGROUND AND RELATED WORK

2.2 Classical Methods for Preference
Elicitation

number of criteria, outcome space and preferential independence.

2. Complete assessment of the parameters of the utility function using

elaborate interview techniques.

3. Check of the consistency of the DM’s responses and sensitive analysis.

In case of inconsistencies, the DM is asked to revise her responses. The

sensitivity analysis evaluates the sensitivity of the output with respect to

different inputs.

Experiments with real users have shown that this process can be a difficult and

error-prone task [Sim55, TK74, PFT03]. Furthermore, it is difficult to apply this

approach in a combinatorial domain since it can rapidly become expensive in

terms of questions for the DM. In fact, with multi-criteria outcomes, often the

number of possible alternatives grows exponentially with respect to the number

of criteria considered. Thus, learning each point of the utility function may not

be feasible in practice.

2.2.2 Interactive optimisation

Interactive optimisation is an approach widely studied in a multi-criteria

decision-making context. It allows the exploration of Pareto-optimal alterna-

tives based on different interactions with the DM and without listing all the

available alternatives (see, e.g., [GDF72, SS78, Kor05, BLL20]). With this ap-

proach, it is common to adopt a parametrised form of DM’s utility function.

The parameterisation represents different DM’s preference scenarios, and the

restrictions on the parameters represent the information obtained by the in-

teraction with the DM. Common utility functions used in this context are lin-

ear scalarising functions such as the weighted sum utility function (see Sec-

tion 2.1.4), or the Chebyshev type scalarising functions, i.e., utility functions

that consider the distance from an ideal utility vector (see, e.g., [Wie80]).

Methods that iteratively interact with the DM to reduce the uncertainty about

a parameterised preference models are also called Incremental [BP15b, BG15,

LB11b]. The purpose of such methods is to recommend alternatives to the DM

without defining a precise utility function for the DM using methods such as the

minimax regret criterion (see Section 2.3.2).

A typical interactive approach consists of the following steps:

1. Computation: generate some solutions belonging to the Pareto frontier.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

16 Federico Toffano

2. BACKGROUND AND RELATED WORK

2.2 Classical Methods for Preference
Elicitation

2. Interaction: show to the DM some of the generated solution asking to

input new preference information.

3. Termination: interruption of the elicitation process by the DM or if some

specified stopping criterion has been satisfied.

Different approaches have been explored to generate new queries for the DM

(see, e.g., [SR91]). A classical interactive approach is based on a comparison

of alternatives (see, e.g., [ZW76, SC83]), i.e., the preference elicitation system

asks the DM to specify her preference between a set of alternatives, and the

response is used to reduce the uncertainty of the preference model. Other

approaches are for example based on queries for the DM asking to define

aspiration levels or interval judgments Aspiration levels are a reference point of

the value of the criteria evaluating an alternative (see, e.g., [Wie80, LSZ92]).

Interval judgments define trade-offs between different criteria (see, e.g.,

[SH92, KM97]).

A drawback of interactive optimisation is that it may require many interactions

with the DM in order to find a solution satisfying the DM’s expectations.

Also, the higher the number of queries, the higher the risk of collecting

inconsistent preference information with respect to the (unknown) real DM’s

preference. However, in the literature we can find interactive methods dealing

with inconsistent user preferences; the most common (presented in the next

two sections) are based on a Bayesian representation of the preference state

space, or focused on the minimisation of an error function. Alternatively, with

a preference elicitation method such as [DTP18], we can start the learning

process with a predefined instantiation of the utility function parameters, and

update it at each DM’s response.

Automatic systems implementing an interactive elicitation procedure require

also a user interface to interact with the DM in order to collect her preferences

(see, e.g., [KL86, Kli92, Bly02]). Such an interface may be used also to show

the current state of the system, since detailed information displayed with a

graphical interface may also increase the DM’s awareness with respect to the

consequences of her input preferences. Furthermore, if the system detects an

inconsistency in the input preferences, with a user interface it could be directly

notified to the DM, asking for a resolution.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

17 Federico Toffano

2. BACKGROUND AND RELATED WORK

2.2 Classical Methods for Preference
Elicitation

2.2.3 Bayesian preference elicitation

Standard Bayesian approaches for preference elicitation represent the uncer-

tainty of the DM’s utility function with a prior probability distribution which

can be, for example, computed using data collected from other users with sim-

ilar preferences. Without any other information about the DM’s preference, it

seems to be reasonable to recommend the alternative that maximises the expec-

tation of the DM’s utility function. On the other hand, if there is the possibility

of interacting with the DM, then we can consider asking her some questions to

try to improve the accuracy of the utility function. In fact, Bayesian approaches

are often used along with an incremental preference elicitation process interact-

ing with the DM until a stopping criteria is satisfied (see, e.g., [CKP00, BB06]).

In this context, the value of information of a query is associated with the

expectation of the utility function. Thus, a response to a query with a high

value of information comes with a high increase of the expectation of the

DM’s utility function. However, finding the query with the highest value of

information is in practice often unfeasible. This is because to compute the

exact value of information, we should consider all the possible future queries

and responses (see, e.g., [Bou02]), and this may well be very computationally

expensive. Therefore, it may be more practical to adopt a myopic strategy (see,

e.g., [VB10]), where the value of information of a query is computed comparing

the expected utility before and after the DM’s answer.

It has been shown that a Bayesian approach for an interactive preference

elicitation allows one to formulate relevant and personalised recommendations

with a reasonable amount of interaction with the DM (see, e.g., [GS10a,

VB10]). Also, an advantage of this approach relates to its intrinsic property

of being robust with respect to inconsistent DM’s preferences given that an

input preference does not exclude preference models; instead, it redefines the

probability distribution over preference state space. However, the complexity

of the process of query selection is usually very high, also adopting a myopic

strategy. Thus in some cases, such methods are approximated in practice using,

for example, Monte Carlo methods [Via12, VLHB19].

2.2.4 Minimisation of an error function

In the literature, we can find methods that consider an input set of preferences

of a specific DM and try to estimate a precise utility function minimising an

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

18 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

error function. For example, there is a class of methods called Utilié Additive
(UTA) (e.g., [JLS82, SGM05, SGMP18]) where the purpose is to assess an

additive utility function from a set of DM’s preferences given as input. The

input preferences could, for example, express a weak ordering of a subset of

alternatives, or specify if some criteria are more important than others. In this

case, a common approach is to estimate a utility function solving a constraint

optimisation problem and minimising the utility error (see, e.g., [MR05]). A

weak point of this approach lies in the choice of the function to optimise (e.g.,

quadratic error [MR05] or variance [Koj07]), which sometimes seems rather

arbitrary.

A similar approach makes use of a support vector machine (SVM) algorithm

[MW16] to estimate a weighted sum utility function parameterised with respect

to the set of weights. Briefly, SVM can be used for binary classification in

IRp defining a hyperplane that maximises the distance of the points belonging

to two different classes. This preference learning method is based on an

interactive approach with binary queries of the form "is alternative α better

than alternative β?". Each query is represented as a point in a p-dimensional

space and the hyperplane learned with the SVM algorithm will divide queries

which answer is yes from queries which answer is no. Such a hyperplane can

then be used to rank an input set of alternatives.

A more general approach is based on robust ordinal regression [GSFM10,

GMS14] which has been introduced to take into account all the sets of

parameters of a preference model compatible with the preference information

given as input. This method is a generalisation of UTA where the preference

information is used to define a set of linear constraints representing conditions

on the compatible utility functions. However, without a predefined structure for

the utility function, we may need more input data to get a good approximation

of the DM’s preferences.

2.3 Parameterised Preferences

As we discussed in the previous section, the precise definition of the DM’s

utility function is liable to be a difficult and error-prone task. Thus, modern

MAUT preference elicitation systems consider different preference models

parameterised by a set U of scenarios. Each scenario w ∈ U , i.e., a specific

configuration of the parameters of the utility function defines an ordinal utility

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

19 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

function uw which can be used to compare different alternatives. Suppose that,

in a particular situation, A is the set of alternatives that are available to the

decision-maker. If we knew that w was the true scenario, so that uw represents

the DM’s preferences over alternatives, then we would be able to choose the

best element of A with respect to uw. More precisely, we assume here that

the utility function uw of a scenario w ∈ U represents a weak preference

relation <w defined over the space of alternatives. Thus, w is viewed as a

model of the DM’s preferences that is consistent with the preference information

we know. However, the situation can be ambiguous, given a non-singleton

set U of possible user models or scenarios. The main purpose of preference

elicitation system based on parameterised utility functions is then to reduce

the uncertainty of the DM’s preferences represented by the set U of possible

parameters. Common utility functions used in preference elicitation context

are such as the weighted sum presented in Section 2.1.4, ordered weighted

average (see, e.g., [Yag88]) and Choquet integral (see, e.g., [GPS10]).

In the context of social choice, utility functions are usually called social choice
functions or rank aggregation functions (see, e.g., [LB11a]). In this context

the preferences of each voter are usually given as input and represented as a

ranking of the available alternatives. The main purpose of social choice is to

define the function used to aggregate the input preferences of the voters, which

can be used to find a consensus alternative or a consensus ranking. Common

social choice functions are such as the Plurality Rule or the Borda Count

(see, e.g., [FSST17]). In Chapter3 we will define the concepts of minimal

equivalent subset, and it is worth noting that in the context of social choice

this corresponds to the set of alternatives which are not Pareto dominated

with respect to the vectors of agents scores associated with each alternative.

Similarly, the concept of dominance for a set of alternatives reduces in this

context to the Pareto dominance.

A major division in recent work on parameterised preference models is whether

a Bayesian model is assumed over the parameters, or if there is a purely quali-

tative (logical) representation of the uncertainty. Bayesian approaches include

for example [CKP00, Bou02, VB10]. Work involving a qualitative uncertainty

representation includes [BPPS06, VB09, BB07, MRW13, BPV17a]. In particu-

lar, qualitative imprecise preference models based on the weighted sum value

function have been considered in work such as [SH10, MRW12, KVVA17], in-

cluding in a conversational recommender system context [BR07, VB09]. As we

have discussed in the previous section, Bayesian approaches have the advan-

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

20 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

tage of being more robust with respect to inconsistent input preferences at the

expense of an increased computational complexity. Qualitative methods instead

are in general more efficient in terms of computational complexity, but incon-

sistent query responses can compromise the quality of the recommendation. In

this thesis we will focus mainly on the latter type of parameterised preference

models.

In the following two sections we describe in detail imprecisely specified multi-
attribute utility theory (ISMAUT) and the minimax regret criterion (MMR).

ISMAUT is one of the earliest attempt to deal with parameterised utility

information, and it is based on the weighted sum value function. MMR is

a method to rank alternatives when there is uncertainty on the DM’s utility

function, and it will be considered in all the chapters of this thesis.

2.3.1 ISMAUT

The main idea behind ISMAUT [WSD84] is to translate the DM’s preferences

into linear inequalities reducing the set of feasible parameters of the utility

function, and then reducing also the set of alternatives to those that are not

dominated by any other alternative. Related research such as [Haz86] and

[Web87], deals with similar issues. ISMAUT methods consider a finite set of

alternatives A, and an additive utility function parameterised with respect to

the weights vector w = (w1, . . . , wp) and evaluators X = (Xi, . . . , Xp) , i.e., the

DM’s utility function of an alternative α ∈ A is defined to be:

uw,X(α) =
p∑
i=1

wiXi(α) = w ·X(α) (2.12)

where w ∈ {w ∈ IRp : wi ≥ 0,∑p
i=1 = 1} is a point of the unit (p − 1)-simplex,

and X : A → IRp defines the p-dimensional vector of evaluators for alternative

α. The idea behind ISMAUT is to interact with the DM in order to collect a set

of preference information used to reduce the set of possible utility functions.

Such input preferences can be categorised as follows:

1. Weights constraints: the DM can define tradeoff between the weights

(e.g. wcost ≥ wtime) or bounds on their value (e.g. wtime ∈ [0, 0.5]).
These constraints define the subset of feasible weights vector W ⊆
{w ∈ IRp : wi ≥ 0,∑p

i=1 = 1}.

2. Constraints on evaluators: supposing that the domain of criteria can be

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

21 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

labelled, the DM can specify a preference between different values of a

criterion (e.g. Xcost(cheap) ≥ Xcost(expensive)), or bounds on the utility

value of a criterion value (e.g. Xcost(cheap) ∈ [0, 0.2]). These constraints

define the set X of feasible evaluators X = (X1, ..., Xp).

3. Pairwise comparison of alternatives: If the DM prefers an alternative α to

another alternative β, then we can translate the preference α < β into the

inequality w ·X(α) ≥ w ·X(β) that can be used to further reduce the set of

possible parameters. Let Λ = {(α, β) ∈ A× A : α < β} be the set of such

pairwise comparisons.

This input preference information is used to define the set of feasible scenarios

〈w,X〉 ∈ U and the corresponding utility function uw,X . More precisely, the

tuple 〈w,X〉 ∈ U if and only if:

1. w ∈ W

2. X ∈ X

3. w ·X(α) ≥ w ·X(β), for all (α, β) ∈ Λ.

The goal of classical ISMAUT approaches is to reduce the uncertainty of the

feasible set U of utility functions in order to reduce also the set of undominated

alternatives to a manageable size. In this context, an alternative α dominates

another alternative β if and only if:

min
〈w,X〉∈U

w · (X(α)−X(β)) ≥ 0. (2.13)

The parameterisation of the utility function of classical ISMAUT refers to the

weights vectors w and single-criterion utility functions X. Thus, to check

dominance between alternatives, we need to solve a quadratic problem.

In works such as [ILC01b] and [GK03] the authors consider an incremental

approach based on the ISMAUT model but limiting the paramtrisation of the

utility function to the weights vector w, i.e., assuming fixed input single-

criterion utility functions. The idea is to ask a series of queries binary queries

such as "Do you prefer the alternative α or the alternative β?", and to translate

the response into a linear constraint with the purpose of reducing the state

space of the feasible weights vectors. In Chapter 4, Chapter 5, and in the

experimental results of Chapter 3, we will focus on this preference model

supposing then the evaluators given as input.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

22 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

2.3.2 Minimax Regret decision criterion

The Minimax Regret [Sav72, KY13] criterion is generally used to solve decision

problem under uncertainty. More recently, it has been used in the context

of artificial intelligence to evaluate alternatives for potential questions and

recommendations, where the uncertainty refers to the parameters of the

decision-model [SH01, Bou02, BPPS06, BB06]. It prescribes an outcome that

minimises the worst-case loss with respect to the utility function uncertainty

represented by the set of feasible scenarios U , and it is, therefore, a reasonable

criterion used to evaluate alternatives in decision support systems. Applications

include, for example, the elicitation of multi-attribute utilities (e.g., [WB03,

BB07, BP15b], or the elicitation of preferences for ranking and voting problems

(e.g., [LB11b, BDDPV16, BPV17b]. The practical effectiveness of this approach

has been proven in numerous works (e.g., [WB03, Bra12, Ben17] and in

particular during a study carried out with real users [BB10].

In this thesis we will consider the minimax regret criterion to evaluate

alternatives with respect to parameterised utility functions. For simplicity we

suppose a set of parameters U ⊂ IRp closed and bounded, and for any w ∈ U
a continuous utility function uw(α) with respect to w for any α ∈ Ω. However,

the following definitions can be generalised to generic sets of parameters U and

utility functions uw replacing maxw∈U with supw∈U .

Pairwise Max Regret (PMR): The PMR in W ⊆ U of an alternative α ∈ Ω
with respect to another alternative β ∈ Ω is defined by:

PMRW(α, β) = max
w∈U

(uw(β)− uw(α)). (2.14)

The PMRW of α with respect to β is then the worst-case loss among all the

feasible utility functions uw with respect to W of recommending α instead of

β. Note that if PMRW(α, β) ≤ 0 then uw(α) ≥ uw(β) for any w ∈ W which

means that alternative α is at least as good as alternative β with respect to the

available preference information.

Max Regret (MR): The MR in W ⊆ U of an alternative α with respect to a

finite set of alternatives A ⊆ Ω is defined by:

MRW(α,A) = max
β∈A

PMRW(α, β) (2.15)

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

23 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

The MRW of αwith respect to A is then the worst-case loss among all the feasible

utility functions uw with respect toW of recommending α instead of any other

β ∈ A. In other words, it is the maximum loss of an alternative in terms of utility

units with respect to all the alternatives in A and all the possible scenariosW.

The following two lemmas state well-known properties of max regret; proofs

are included for completeness.

Lemma 2.3.1. Let A ⊆ Ω be a finite set of alternatives and α ∈ A. For W ⊆ U ,
MRW(α,A) ≥ 0.

Proof. Since α ∈ A and we are maximising w.r.t. any β ∈ A, with β = α we get

uw(α) = uw(β) = 0 for any w ∈ W. Thus:

MRW(α,A) = max
β∈A

PMRW(α, β)

= max
β∈A

max
w∈W

(uw(β)− uw(α))

≥ max
β∈{α}

max
w∈W

(uw(β)− uw(α)) = 0

(2.16)

�

Lemma 2.3.2. Let A ⊆ Ω be a finite set of alternatives and α ∈ A. For W ⊆ U ,
MRW(α,A) = 0 if and only if uw(α) ≥ uw(β) for any w ∈ W and for any β ∈ A.

Proof. Since α ∈ A, From Lemma 2.3.1 it follows that MRW(α,A) ≥ 0.

Therefore, MRW(α,A) = maxβ∈A maxw∈W(uw(β) − uw(α)) = 0 if and only if

arg maxβ∈A(maxw∈W(uw(β) − uw(α)) = α which is if and only if uw(α) ≥ uw(β)
for any w ∈ W and for any β ∈ A. �

Lemma 2.3.2 can be used to recommend optimal alternatives with respect to

the DM’s preferences represented by W ⊆ U , since if alternative α is such that

MRW(α,A) = 0, then it must be one of the most preferred alternatives with

respect to any scenario w ∈ W.

Minimax Regret (MMR): The MMR in W ⊆ U of a finite set of alternatives

A ⊆ Ω is defined by:

MMRW(A) = min
α∈A

MRW(α,A) (2.17)

The value MMRW(A) is then the minimum max regret we can get from

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

24 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

alternatives in A. An alternative α ∈ A that minimises MMRW(A) is then an

optimal recommendation in W with respect to the minimax regret criterion

and it can be interpreted as the best worst-case loss recommendation. By

recommending to the DM an alternative associated with minimax regret, i.e.,

alternative α∗ ∈ arg maxα∈A MRW(α,A), we provide robustness in face of

uncertainty (due to not knowing the DM’s utility function).

When uw is a linear function with respect to a set of possible parameters

U ⊆ IRp, the regret of an alternative (and the minimax regret) is maximised

in one of the extreme points of W (see, e.g., [KVVA17]). This is a simple but

very important result since it allows an efficient computation of the MMR.

Figure 2.1: Plot of the linear utility functions uw(·) of the alternatives α = (8, 5)
(blue dotted) and β = (4, 7) (green solid) with respect to the scenarios
U = {w ∈ IR2 : wi ≥ 0,∑2

i=1wi = 1}.

Example 4. Consider a linear utility function uw(α) = w · α parameterised
with respect to w ∈ U , where α = (α1, α2) is an alternative evaluated with
two criteria α1, α2 ∈ IR and U = {w ∈ IR2 : wi ≥ 0,∑2

i=1wi = 1} is the set of
weights vectors representing all the possible parameters of uw. (Note that since
w1 = 1 − w2, the utility function uw can be expressed as function of a single
weight, i.e., uw = w1 · α2 + (1− w1 · α2).

Figure 2.1 shows the utility function uw(·) (vertical axis) of the two alternatives

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

25 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

α = (8, 5) and β = (4, 7) for each possible scenario w (horizontal axis). Let
A = {α, β}.

The regret in U of α and β with respect to A is maximised in w1 = 0 and w1 = 1
respectively, i.e.:

• MRU(α,A) = maxw∈U(uw(β)− uw(α)) = (0, 1) · ((4, 7)− (8, 5)) = 2

• MRU(β,A) = maxw∈U(uw(α)− uw(β)) = (1, 0) · ((8, 5)− (4, 7)) = 4

The minimax regret of the set of alternatives A is minimised in w1 = 0 by the
alternative α, i.e.:

• MMRU(A) = min(MRU(α,A),MRU(β,A)) = 2.

2.3.2.1 Setwise Minimax Regret decision criterion

In many applications, it is desirable to produce a recommendation set, and

not just a single recommendation, allowing the decision-maker to pick the

alternative (among those of the recommendation set) that provides the most

value to her. Intuitively, by providing several recommendations, it is more likely

that at least one of them will have high utility value to the decision-maker. As

originally observed by Price and Messinger [PM05] it is, therefore, a good idea

to show diverse recommendations that have high value for different parts of the

parameter space U .

In [VB09] and [VB20] the authors generalised the concept of Minimax Regret

defining the Setwise max Regret (SMR) which is used to evaluate a set of

alternatives rather than a single alternative, and the setwise minimax regret

(SMMR) which is used to select an optimal set with respect to SMR. This

provides a principled method for capturing the idea of recommendation sets.

Assume that, when we provide A as recommendation set, the DM is able to

pick the most preferred item (the one with the highest value) in A. The DM

then perceives a value ValA(w) = maxα∈A uw(α) where the true utility function

is dictated by the parameter w ∈ U .

Utility function of A ∈ M: For a set of alternatives A ∈ M, we define the

DM’s utility function of A with respect to a parametersation w ∈ U as:

ValA(w) = max
α∈A

uw(α) (2.18)

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

26 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

The regret of a set A with respect to another set B in w is the difference between

the utility of the best item under w in B and the utility of the best item with

respect to w in the set A; that is, ValB(w)− ValA(w). As for the max regret, with

the definition of the setwise max regret we suppose that the set of parameters U
is closed and bounded and for any w ∈ U the utility function uw(α) is continuous

with respect to w for any α ∈ Ω. However, replacing maxw∈U with supw∈U we

get a generalised definition which is suitable for generic sets of parameters U
and utility functions uw.

Setwise Max Regret (SMR): The SMR in W of a finite set of alternatives

A ⊆ Ω with respect to another finite set of alternatives B ⊆ Ω is defined by:

SMRW(A,B) = max
w∈W

(ValB(w)− ValA(w)) (2.19)

The value SMRW(A,B) is then the worst-case loss of recommending the best

alternative α ∈ A instead of the best alternative β ∈ B supposing that the DM’s

utility function parameter could be any w ∈ W. From the definition it follows

immediately that if SMRW(A,B) < 0, then A is strictly better than B is every

scenario w ∈ W, i.e., for any w ∈ W and β ∈ B there exists α ∈ A such that

uw(α) > uw(β).

The following lemmas state well-known properties of setwise max regret; proofs

are included for completeness.

Lemma 2.3.3. Let B ⊆ Ω be a finite set of alternatives and A ⊆ B. For W ∈ U ,
SMRW(A,B) ≥ 0.

Proof. Since ValB(w) = maxβ∈B uw(β), ValA(w) = maxα∈A uw(α) and A ⊆ B,

then ValB(w) ≥ ValA(w). Thus, SMRW(A,B) = maxw∈W(ValB(w) − ValA(w)) ≥
maxw∈W(ValB(w)− ValB(w)) = 0. �

Lemma 2.3.4. Let B ⊆ Ω be a finite set of alternatives and A ⊆ B. For W ⊆ U ,
SMRW(A,B) = 0 if and only if for any w ∈ W and for any β ∈ B there exists α ∈ A
such that uw(α) ≥ uw(β)

Proof. Since A ⊆ B, from Lemma 2.3.3 it follows that SMRW(A,B) ≥ 0.

Therefore, SMRW(A,B) = maxw∈W(ValB(w) − ValA(w)) = 0 if and only if

ValB(w) − ValA(w) = 0 for all w ∈ W which is if and only if for any w ∈ W
and for any β ∈ B there exists α ∈ A such that uw(α) ≥ uw(β). �

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

27 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

Lemma 2.3.5. Let A,B ⊆ Ω be two finite sets of alternatives. For W ⊆ U ,
SMRW(A,B) = maxβ∈B SMRW(A, {β})

Proof. maxβ∈B SMRW(A, {β}) = maxβ∈B maxw∈W SMR{w}(A, {β}), which equals

maxw∈W maxβ∈B SMR{w}(A, {β}) = maxw∈W SMR{w}(A,B) = SMRW(A,B). �

Minimax Setwise Regret (SMMR): The SMMR inW ⊆ U of all the subsets A

of cardinality k of a finite set of alternatives B ⊆ Ω is defined by:

SMMRkW(B) = min
A⊆B:|A|=k

SMRW(A,B) (2.20)

The value SMMRkW(B) is then the minimum setwise max regret we can get from

all the possible subset of alternatives A with cardinality k of B with respect to

any parameter w ∈ W. A subset A of B that minimises SMMRkW(B) is an optimal

set of recommendation with cardinality k with respect to the Minimax criterion.

Recommendation sets can be used in elicitation, where they are treated as

choice queries (i.e., questions of the kind “Among a, b, and c, which one do you
prefer?”) with the goal of reducing uncertainty to improve the quality of future

recommendations; that is, reducing minimax regret. It turns out [VB09, VB20]

that optimal recommendation sets w.r.t. SMMR are also myopically optimal in

an elicitation sense, as they ensure the highest worst-case (with respect to

the possible query’s responses) reduction of minimax regret a posteriori (see

Section 2.3.2.2 below for details).

Example 5. Consider the linear utility function uw defined in Example 4.
Figure 2.2 shows the utility function uw(·) (vertical axis) of three alternatives
α = (2, 8), β = (8, 2) and γ = (6, 6) for each possible scenario w (horizontal
axis). Let Ω = {α, β, γ}, A = {α, β}, B = {α, γ}, C = {β, γ}. The dash-
dotted red line in Figure 2.2 represents the function ValA(w) = max(uw(α), uw(β))
used to compute the setwise max regret of A with respect to the set of scenarios
U = {w ∈ IR2 : wi ≥ 0,∑2

i=1wi = 1}

The setwise max regret of A, B and C in U with respect to A is maximised in
w1 = 0.5, w1 = 1 and w1 = 0 respectively i.e.:

• SMRU(A,Ω) = maxw∈U(ValΩ(w)− ValA(w)) = (0.5, 0.5) · ((6, 6)− (8, 2)) = 1

• SMRU(B,Ω) = maxw∈U(ValΩ(w)− ValB(w)) = (1, 0) · ((8, 2)− (6, 6)) = 2

• SMRU(C,Ω) = maxw∈U(ValΩ(w)− ValC(w)) = (0, 1) · ((2, 8)− (6, 6)) = 2

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

28 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

Figure 2.2: Plot of the linear utility functions uw(·) for the alternatives α = (2, 8)
(blue dotted), β = (8, 2) (green dashed) and γ = (6, 6) (black solid), and
Val{α,β}(w) = max(uw(α), uw(β)) (red dash-dotted) with respect to the set of
scenarios U = {w ∈ IR2 : wi ≥ 0, ∑2

i=1wi = 1}

The setwise minimax regret of all the subsets of Ω of cardinality 2 is minimised in
w = (0.5, 0.5) by the subset A, i.e.:

• SMMRU(Ω) = min(SMRU(A,Ω), SMRU(B,Ω), SMRU(C,Ω) = 1

2.3.2.2 Incremental elicitation based on Minimax Regret

Using the Minimax regret criterion to select an alternative without any

knowledge about the DM’s preferences may be too risky. In fact, when the

MMR has a high value, the quality of an optimal alternative with respect to the

Minimax criterion may be too low. If possible, it may be then useful to elicit

some of the DM’s preferences to reduce the MMR and increase then the quality

of the optimal alternatives. A common elicitation strategy used along with the

Minimax regret criterion is based on an iterative interaction with the DM, where

at each iteration we ask an informative query, i.e. a query whose answer is

guaranteed to ensure the reduction of the uncertainty on the DM’s preferences.

In such context, the Minimax criterion can be used as a stopping criterion, i.e.,

if the value MMR is less or equal than a specific threshold ε ≥ 0, then we stop

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

29 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

the interaction, recommending an alternative that minimises MMR. In fact, a

reduction of set U representing the uncertainty of the user preferences to a new

setW ⊆ U ensures that the new MMR cannot increase.

Lemma 2.3.6. For anyW ⊆ U ⊆ IRp:

(i) PMRW(α, β) ≤ PMRU(α, β) for any α, β ∈ Ω

(ii) MRW(α,A) ≤ MRU(α,A) for any α ∈ Ω and A ∈M

(iii) SMRW(A,B) ≤ SMRU(A,B) for any A,B ∈M

Proof. (i): Since W ⊆ U , PMRW(α, β) = maxw∈W(uw(β) − uw(α)) ≤ maxw∈U
(uw(β)− uw(α)) = PMRU(α, β).

(ii): Since W ⊆ U , MRW(α,A) = maxβ∈A maxw∈W(uw(β) − uw(α)) ≤ maxβ∈A

maxw∈U(uw(β)− uw(α)) = MRU(α,A).

(iii): Since W ⊆ U , SMRW(A,B) = maxw∈W(ValB(w) − ValA(w)) ≤ maxw∈U
(ValB(w)− ValA(w)) = SMRU(A,B).

�

The monotonic nature of the Minimax regret criterion with respect to queries

for the DM makes this method well-suited for incremental elicitation processes.

Furthermore, as we have shown before with Lemma 2.3.2, if the max regret in

W ⊆ U of an alternative α ∈ A equals zero, then α has to be one of the most

preferred alternatives in A for the DM according to the preference information

represented byW.

To minimise the number of interactions with the DM, we need to carefully

choose the queries to reduce the uncertainty as fast as possible. Ideally,

evaluating a question at a given iteration should take into account all future

questions and possible responses (e.g., [Bou02, HWI03]). However, in practice,

this evaluation is often carried out myopically. Let A ⊆ B be a query set
defined as a subset of the a finite set B ⊆ Ω of available alternatives, and let

the DM’s response to a query set be her most preferred outcome γ ∈ A. For

W ⊆ U and γ ∈ A, we define OptA
W(γ) to be the subset of w ∈ W such that

uw(γ) ≥ uw(α) for each α ∈ A. OptA
W(γ) is then the subset of the DM’s utility

function prameterisationsW consistent with the user response γ to a query set

A. With following definitions we describe the myopic value of information and

how it can be used to compute an optimal query set in these terms with respect

to the Minimax regret criterion [VB09, VB20]:

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

30 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

Max a posteriori regret (MPR): Given a finite set of alternatives B ⊆ Ω, the

MPR inW ⊆ U of a query set A = {α1, . . . , αn} ⊆ B is defined by:

MPRW(A,B) = max
α∈A

MMROptA
W (α)(B). (2.21)

MPR is defined to be the myopic value of information of the query A ⊆ B inW
with respect to the minimax regret criterion.

Minimax a posteriori regret (MMPR) : The MMPR in W of all the possible

query sets of cardinality k of a finite set of alternatives B ⊆ Ω is defined by:

MMPRkW(B) = min
A⊆B:|A|=k

MPRW(A,B). (2.22)

A query set A of cardinality k that minimise MPRW(A,B) is defined to be

myopically optimal with respect to the minimax regret criterion. In Chapter 3

we show that every outcome of a query set A should to be optimal in at least one

scenario, i.e., for each α ∈ A there should exist w ∈ W such that uw(α) ≥ uw(β)
for any β ∈ B \ {α}. Otherwise, a reduction of the uncertainty of the utility

function and the consistency of the preference information are not guaranteed.

In [VB09, VB20], the authors show that an optimal recommendation set of

size k of a set of alternatives B is also a myopically optimal query set of size

k with respect to the minimax regret criterion, and MMPRkW(B) = SMMRkW(B).
This makes it compelling to display an optimal set of items with respect to

SMR with a combined elicitation and recommendation purpose: the system

proposes a set of recommended items, the DM picks the one she prefers, then

the system updates the model and shows a new set of items; this proceeds until

a termination condition (max regret lower than a threshold, or when the user

is satisfied) is met. However, setwise regret is computationally very demanding

to optimise.

To the best of our knowledge, the state of the art of the algorithms for the

computation of the SMMR are presented in [VB20]. These algorithms are based

on a linear utility model and differ with respect to two classes of alternatives

representation, namely, configuration problems and database problem.

Configuration problems: The alternatives are defined by a set of variables

and hard constraints where the optimal configuration depends on the DM’s

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

31 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.3 Parameterised Preferences

preferences. For example, the set of alternatives may be given by the possible

configurations of computer parts for a customised laptop, where each part

corresponds to a vector of reals representing, e.g., price and quality. The

total value of a laptop could then be the overall price and quality given by

the combinations of the corresponding components. The procedure to compute

the SMMR for this type of problems is encoded with a mixed-integer program

and solved by techniques such as Bender’s decomposition and constraints

generation. Examples of configuration problems in a regret based context can

be found in [BPPS06, BB07, BL19].

Database problem: The alternatives are enumerated and represented with

an explicit list of multi-attribute outcomes. For example, the set of alternatives

may corresponds to a catalogue of laptops already assembled, where each

laptop is associated with a vector of reals representing, e.g., price and quality.

In this case, the SMMR computation is based on the generation of all the

possible sets of a specific size k and the corresponding maximum regret.

Examples of configuration problems in a regret based context can be found

in [BB07, BB10, BPV17b]

Given the complexity of the computation of an optimal query set using the

SMMR criterion, in [VB09, VB20] have also been proposed heuristics named

setwise chain of adversaries strategy (SCAS) and Query iteration strategy (QI)

that can be used for both configuration problems and database problems.

Given the complexity of the computation of an optimal query set using the

SMMR criterion, in [VB20] the authors propose two heuristics, namely, setwise

chain of adversaries strategy (SCAS) and Query iteration strategy (QI). These

heuristics can be used for both configuration problems and database problems.

2.3.2.3 Minimax Regret with linear utility function

Of particular interest in this thesis is the weighted sum utility function

uw(α) = α · w parameterised with respect to a sets of weights W ⊆ U =
{w ∈ IRp : wi ≥ 0,∑p

i=1 = 1}. Given a finite set Λ = {λi : i = 1, . . . , k} of

vectors in IRp, and corresponding real numbers ri, we can define WΛ as the

set of w ∈ U such that for all i = 1, . . . , k, w · λi ≥ ri. In particular, such linear

inequalities can arise from input preferences of the form α is preferred to β,

leading to the constraint w · (α− β) ≥ 0.

Considering the above model and a set of alternatives A ∈ M, the max regret

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

32 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.4 Relations and Optimality Classes

MRWΛ(α,A) of an alternative α ∈ A can be computed as the maximum regret of

α with respect to the set Ext(WΛ) of extreme points ofWΛ (see, e.g., [KVVA17]).

The pseudocode is shown in Algorithm 1. The pseudocode of the minimax

regret of a set A is shown in Algorithm 2, which is an iterative computation of

the max regret for each α ∈ A.

Algorithm 1 Max Regret

1: procedure MRWΛ(α, A)
2: MR← −∞
3: for γ ∈ A do
4: for w ∈ WΛ do
5: MR← max((γ − α) · w,MR)
6: return MR

Algorithm 2 Minimax Regret

1: procedure MMRWΛ(A)
2: MMR←∞
3: for α ∈ A do
4: min(MRWΛ(α,A),MMR)
5: return MMR

Regarding the computation of the setwise regret SMRWΛ(A,B) of a set A ∈ M
with A ⊆ B, a standard method consists of the evaluation of a linear program-

ming problem for each β ∈ B (see, e.g., [VB20]). Since SMRWΛ(A, {β}) =
maxw∈WΛ(β · w − ValA(w)), we can compute SMRWΛ(A, {β}) as the maximum

value δ subject to the constraints w ∈ WΛ, and (β − α) · w ≥ δ for each α ∈ A.

Thus, since SMRWΛ(A,B) = maxβ∈B SMRWΛ(A, {β}) (see Lemma 2.3.5), we can

compute SMRWΛ(A,B) solving |B| linear programming problems as shown in Al-

gorithm 3. The setwise minimax regret SMMRkWΛ
(B) will then be the minimum

setwise regret computed for each A ∈ Ak, where Ak is the set of all the subsets

of B with cardinality k. The pseudocode for the computation of SMMRkWΛ
(B) is

shown in Algorithm 14 in Section 5.4 of Chapter 5.

In Section 3.6 of Chapter 3 we will present a novel method to compute

SMRWΛ(A,B) and in Chapter 5 a novel method to compute SMMRkWΛ
(B).

2.4 Relations and Optimality Classes

In this section we define reltaions and optimality classes for alternatives arising

from parameterised utility functions.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

33 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.4 Relations and Optimality Classes

Algorithm 3 Setwise Max Regret

1: procedure SMRWΛ(A, B)
2: SMR← −∞
3: for β in B do
4: δM ← Maximize δ subject to
5: {

(β − α) · w ≥ δ ∀α ∈ A
w ∈ WΛ

}
6: if δM > SMR then
7: SMR← δM
8: return SMR

Algorithm 4 Setwise Minimax Regret

1: procedure SMMRkWΛ
(B)

2: SMMR←∞
3: for A ∈ Ak do
4: SMMR← min(SMRWΛ(A,B), SMMR)
5: return SMMR

2.4.1 Relations

Recall that U is the set of parameters of a parameterised utility function

representing a set of possible DM’s preference models. With the following

relation we represent a weak order (see Section 2.1.1) corresponding to a

parameterised utility function whose parameter w is known.

Relation <w: To each parameter w ∈ U is associated a utility function

uw : Ω → IR; this gives rise to a total pre-order <w on a set of alternatives

Ω given by α <w β ⇐⇒ uw(α) ≥ uw(β), for α, β ∈ Ω. We define �w to be

the strict part of <w, i.e., α �w β if and only if α <w β and ¬(β <w α), which

is if and only if uw(α) > uw(β). We define equivalence relation ≡w to be the

symmetric part of <w, given by α ≡w β if and only if α <w β and β <w α, which

is if and only if uw(α) = uw(β).

The following relation instead is derived from utility functions parameterised

with respect to a set of parameter W ⊆ U compatible with the available

preference information. The main difference with respect to <w is that it does

not define a total preorder since the property of completeness does not hold,

i.e., there could exist α, β ∈ Ω such that α 6<W β and β 6<W α.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

34 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.4 Relations and Optimality Classes

Relation <W: ForW ⊆ U we define relation <W on Ω by α <W β if and only

if for all w ∈ W, α <w β. Thus, α <W β if and only if α is at least as good as

β in every parameter in W, i.e., uw(α) ≥ uw(β) for any w ∈ W. We define �W
to be the strict part of <W , i.e., for α, β ∈ Ω, α �W β if and only if α <W β and

β 6<W α, which is if and only if uw(α) ≥ uw(β) for any w ∈ W and there exists

w′ ∈ W such that uw′(α) > uw′(β). Thus, α �W β if and only if α is at least as

good as β in every parameter inW, and strictly better in at least one parameter

inW. Relation �W is transitive and acyclic. We define equivalence relation ≡W
to be the symmetric part of <W , given by α ≡W β if and only if α <W β and

β <W α, i.e., uw(α) = uw(β) for any w ∈ W.

The following are definitions of dominance corresponding to the parameterised

preference relation defined above.

Weakly dominance: We say that an alternative α ∈ Ω weakly dominates an

alternative β ∈ Ω with respect toW ⊆ U if and only if α <W β.

Dominance: We say that an alternative α ∈ Ω dominates an alternative β ∈ Ω
with respect toW ⊆ U if and only if α �W β.

Equivalence: We say that an alternative α ∈ Ω is equivalent to an alternative

β ∈ Ω with respect toW ⊆ U if and only if α ≡W β.

In Chapter 3 we will introduce relations and definitions of dominance with

respect to set of alternatives rather than single alternatives.

2.4.2 Optimality classes

Over the years, parameterised utility functions led to different notion of

optimality that can be used to classify alternatives (see, e.g., [WO11]). The

following is a summary of those of interest with respect to this thesis. Let A be

a finite set of alternatives.

Optimal alternative: An alternative α ∈ A is defined to be optimal with

respect to a specific parameter w ∈ U if and only if it maximises the

corresponding utility function uw, i.e., uw(α) ≥ uw(β) for any β ∈ A.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

35 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.4 Relations and Optimality Classes

Undominated alternative: An alternative α ∈ A is defined to be undominated
(or nondominated) with respect to a feasible set of parameters W ⊆ U if and

only if there does not exists β ∈ A that dominates α, i.e., β 6�W α for any β ∈ A.

The Undominated operator UDW: For W ⊆ U we define UDW(A) to be the

set of α ∈ A such that there does not exist γ ∈ A such that γ �W α. Thus, the

alternative α of A is not in UDW(A) if and only if there exists some γ ∈ A such

that γ is at least as good as α in every scenario, and strictly better in at least

one scenario. The set UDW(A) is a natural generalisation of the Pareto-optimal

elements, and is sometimes referred to as the set of undominated elements in A.

Possibly optimal alternative: An alternative α ∈ A is defined to be possibly
optimal with respect to a feasible set of parameters W ⊆ U if and only if there

exists w ∈ W in which α is optimal, i.e., uw(α) ≥ uw(β) for all β ∈ A.

Possibly Optimal operator POW(A): for each w ∈ U we define Ow(A) to be

all alternatives α of A that are optimal in A in scenario w, i.e., such that for

all β ∈ A, α <w β. For W ⊆ U we define POW(A) to be
⋃
w∈W Ow(A), the

set of alternatives that are optimal in some parameter, i.e., optimal for some

consistent user preference model.

Possibly strictly optimal alternative: An alternative α ∈ A is defined to be

possibly strictly optimal with respect to a feasible set of parameters W ⊆ U if

and only if there exists w ∈ W in which α is strictly optimal, i.e., uw(α) > uw(β)
for all β ∈ A.

Possibly Strictly Optimal operator PSOW(A): For each w ∈ W with W ⊆ U ,

we define SOWw (A) to be all alternatives α of A such that α �w β, for all β ∈ A

with β 6≡W α. These alternative α are said to be strictly optimal in parameter
w. We define PSOW(A), the set of possibly strictly optimal elements, to be⋃
w∈W SOWw (A), i.e., all the elements that are strictly optimal for some parameter

inW. If there do not exists α, β ∈ A such that β ≡W α, then PSOW(A) consists

of all alternatives α ∈ A which are uniquely optimal in some parameter w ∈ W
(i.e., Ow(A) = {α}).

Necessarily optimal alternative: An alternative α ∈ A is defined to be

necessarily optimal with respect to a feasible set of parameters W ⊆ U if and

only if it is optimal for any w ∈ W, i.e., α <W β for any β ∈ A.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

36 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.4 Relations and Optimality Classes

Necessarily Optimal operator NOW(A): for each w ∈ U and A ∈M we define

NOW(A), the set of necessarily optimal elements, to be
⋂
w∈W Ow(A), i.e., all the

elements that are optimal in at least one scenario w ∈ W. If there do not exists

α, β ∈ A such that β ≡W α and NOW(A) 6= ∅, then NOW(A) is a singleton.

The set of undominated alternatives UDW(A) is a natural class of optimality

when considering uncertain preference models and it appears in numerous

contexts (see, e.g., [WSD84, MRW13, KVVA17]). In [Haz86, Web87] we can

find the firsts attempt to define a different class of alternatives with respect to

a non singleton set of parameters of a utility function; the authors noted that

for α ∈ UDW(A) there could exists a subset B of A such that for all w ∈ W
there exists β ∈ B such that uw(β) > uw(α) which means that an undominated

alternative may not be possibly optimal. Later, possibly optimal alternatives

POW(A) (also known as potentially optimal) have been considered in many

other publications, such as [AP97, GPR+10, WRM15, BP15a, BP17] becoming

a fundamental concept of MAUT. The possibly strictly optimal set PSOW(A)
and the necessarily optimal set NOW(A) instead has been considered much

less (see, e.g, [WO11, OW13]). However, as we will show in Chapter 3,

alternatives composing a choice query should be possibly strictly optimal.

Otherwise, there is the risk of modelling the DM’s preference with respect to

events with zero probability. Necessarily optimal alternatives instead can be

used as stopping criteria for an iterative preference learning approach. This

is because a necessarily optimal alternative maximises a parameterised utility

function for any admissible parameter in W. The concepts of possibly optimal

alternatives and necessarily optimal alternatives have also been considered in

voting problems [KL05, XC11]. In this context, several preference profiles

concerning a set of candidates are considered. If a candidate wins for at least

one preference profile, then it is defined as a possible winner; if a candidate wins

for every feasible preference profile, it is defined as a necessary winner.

Example 6. Consider the Figure 2.3 showing the utility function uw(·) of the
alternatives of the sets A′ = {(11, 1), (7, 5), (6, 6)} and A′′ = {(10, 4), (4, 7)},
with w ∈ U = {(w1, w2) : w1 + w2 = 1, w1 ≥ 0}. Let A = A′ ∪ A′′.
Suppose that we get as input the preference information w1 ≤ 2

3 . This leads
to a new set of feasible parameters W = {(w1, w2) : w1 + w2 = 1, 0 ≤ w1 ≤ 2

3}
(white background). The set of undominated alternative inW is then UDW(A) =
{(10, 4), (7, 5), (6, 6), (4, 7)}. From Figure 2.3 we can easily see that UDW(A) does
not contain the alternative (11, 1) since the alternative (10, 4) has better utility for
every parameter w ∈ W. Abbreviating w to just its first component w1 we can

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

37 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.5 Conclusions

Figure 2.3: Utility function uw(·) for each alternative in A = A′ ∪ A′′ = {(11, 1),
(7, 5), (6, 6), (10, 4), (4, 7)}, where w ∈ U = {(w1, w2) : w1 + w2 = 1, w1 ≥ 0}.

represent the set of possible parameters as W = [0, 2
3]. Let OptA

W(α) be the set
of parameters in W in which alternative α is optimal. OptA

W((10, 4)) = [1
3 ,

2
3];

OptA
W((6, 6)) = {1

3}, OptA
W((4, 7)) = [0, 1

3] and OptA
W(11, 1) = OptA

W(7, 5) = ∅.
Thus, POW(A) = {(10, 4), (6, 6), (4, 7)} since these alternatives have the best utility
for at least one parameter w ∈ W, and PSOW(A) = {(10, 4), (4, 7)} since these
alternatives have strictly better utility with respect to the remaining alternatives
in A for at least one parameter w ∈ W. The PSOW operator thus leads here to
stronger filtering than the POW operator since (6, 6) is optimal only in w = 1

3

along with (10, 4) and (4, 7).

2.5 Conclusions

In this chapter, we summarised the main related works in the topics of interest

to our research, especially in the area of multi-attribute utility theory and

preference elicitation. We also introduced parameterised utility functions

representing different scenarios of the DM’s preferences. Parameterised utility

function in a MAUT setting will be the type of preference model considered in

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

38 Federico Toffano

2. BACKGROUND AND RELATED WORK 2.5 Conclusions

this thesis.

We have defined in details the minimax regret criterion and its setwise

generalisation to evaluate alternatives with parameterised value functions, and

we have shown how max regret methods can be used in a preference elicitation

context. The minimax regret criterion will be considered in all the chapters

of this thesis: in chapter 3 we define a new method for the computation of

the setwise max regret, and in chapter 4 we will define a new method for the

computation of the setwise minimax regret.

We concluded the chapter defining relations and optimality classes for alterna-

tives evaluated with parametrised utility functions, which will be generalised to

evaluate set of alternatives in the next chapter.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

39 Federico Toffano

Chapter 3

Minimality and Comparison of Sets
of Multi-Attribute Vectors

In this chapter we provide definitions and prove general properties of pref-

erence relations for sets of alternatives evaluated with uncertain utility func-

tions. We define the concept of setwise minimal equivalent set with respect to

generic parametrised utility functions, in particular, we show that for impor-

tant classes of preference models, the set of possibly strictly optimal alterna-

tives is the unique minimal equivalent subset. We also discuss potential issues

of sets of alternatives used as query sets for incremental preference elicitation

methods, and how to avoid them. We derive mathematical results that allow

different computational techniques to evaluate relations and to compute the

setwise minimal equivalent subset. We focus especially on alternatives repre-

sented as multi-attribute utility vectors, with a user preference model based on

the weighted sum utility function. The main computational procedures pre-

sented in this chapter are based on linear programming (LP), or, alternatively,

a novel method using the extreme points of the epigraph of the utility function

(which we abbreviate to EEU). These approaches can be used to compute both

the setwise minimax regret and the set of strictly possibly optimal elements

supposing a weighted sum utility function. We validate our methods with some

experimental results showing that EEU outperforms LP up to a certain number

of criteria used to evaluate alternatives.

40

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.1 Introduction

3.1 Introduction

Let W be a set of scenarios, where, associated with each scenario w ∈ W, is

a utility function uw over alternatives. As we discussed in 2.3.2, given a finite

set of alternatives A, the best alternative of a decision-maker supposing that w

were the true scenario lead to a utility function ValA(w) = maxα∈A uw(α). In

this chapter we consider the following related pair of questions raised in the

introduction of this thesis:

(1) Are there elements of A that can be eliminated unproblematically? In

particular, is there a strict subset A′ of A that is equivalent to A?

(2) Given a choice between one situation, in which the available alternatives

are A, and another situation, in which alternatives B are available, is A at

least as good as B in every scenario?

Regarding (1), we need to be able to eliminate unimportant choices, to

make the list of options manageable, in particular, if we want to display the

alternatives to the user. We interpret this as finding a minimal subset A′ of A

such that ValA(w) = ValA′(w) for every scenario w ∈ W.

Question (2) concerns a case in which the user may have a choice between (I)

being able to obtain any of the set of alternatives A, and (II) any alternative in

B (and thus, the user could obtain any alternative in A ∪ B). Sets A and B may

correspond to different choices Y = a and Y = b of a fundamental variable

Y , and determining that A dominates B may lead us to exclude Y = b, thus

simplifying the problem. For instance, A may correspond to hotels in Barcelona,

and B to hotels in Valencia, for a potential weekend away. We want to be able

to determine if one of these clearly dominates the other; if, for instance, A

dominates B, then there may be no need for the system and the user to further

consider B, and, for example, may focus on Barcelona rather than Valencia. We

interpret this task as determining if in every scenario the utility A is at least that

for B, i.e., ValA(w) ≥ ValB(w) for all w ∈ W.

The rest of the chapter is organised as follows. Section 3.2 defines preference

relations for sets of alternatives along with some basic properties. Section 3.3

considers the problem of reducing the size of a set A, whilst maintaining equiva-

lence. Section 3.4 defines a form of maximum regret in this context, shows how

it relates to dominance, and gives properties that will be useful for computa-

tion. Section 3.5 discusses the importance of the possibly optimal and possibly

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

41 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.2 Preference Relations for Set of Alternatives

strictly optimal alternatives in incremental preference elicitation. Section 3.6

describes the EEU method. Section 3.7 brings together the computational tech-

niques for the weighted sum utility function. Sections 3.8 and 3.9 describe the

implementation and experimental testing, and Section 3.10 concludes.

3.2 Preference Relations for Set of Alternatives

Based on a setW of scenarios, and the corresponding set of relations <W , and

for w ∈ W, <w (see section 2.4.1), we will consider different relations on M,

the set of finite subsets of Ω.

Dominance relation between sets: For subset W of U , we define binary

relation <W∀∀∃ onM as follows. Consider any A,B ∈M.

• A <W∀∀∃ B if and only if for all w ∈ W and for all β ∈ B there exists α ∈ A

such that α <w β. Since each relation <w is a total pre-order, and A is

finite (as is B), we have A <W∀∀∃ B if and only if if for each scenario w ∈ W,

there exists an alternative in A that weakly dominates all the alternatives

in B. We define ≡W∀∀∃ to be the symmetric part of <W∀∀∃, with A ≡W∀∀∃ B if

and only if A <W∀∀∃ B and B <W∀∀∃ A.

One can also consider a (strong form of) strict dominance A�W∀∀∃ B defined as

for all w ∈ W, ValA(w) > ValB(w); this corresponds with the dominance relation

defined in Definition 2 of [BP15b].

Relation <W∀∀∃ and its corresponding symmetric part ≡W∀∀∃ are the main foci

of attention in this chapter. However, for computational reasons we consider

two variations, which allow computationally efficient sufficient conditions for

A <W∀∀∃ B. We define <W∀∃∀ and <W∃∀∀ onM as follows.

• A <W∀∃∀ B if and only if for all β ∈ B there exists α ∈ A such that α <W β

(i.e., for all w ∈ W, α <w β). Thus, A <W∀∃∀ B if and only if for all

the alternatives β ∈ B there exists at least one alternative α ∈ A that

weakly dominates β in all the possible scenarios W. We define ≡W∀∃∀ to

be the symmetric part of <W∀∃∀, with A ≡W∀∃∀ B if and only if A <W∀∃∀ B and

B <W∀∃∀ A.

• A <W∃∀∀ B if and only if there exists α ∈ A such that for all β ∈ B,

α <W β which is if and only if there exists α ∈ A such that for all w ∈ W
uw(α) ≥ ValB(w). Thus, A <W∃∀∀ B if and only if there exists at least one

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

42 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.2 Preference Relations for Set of Alternatives

alternative in A that weakly dominates all the alternatives in B in all the

possible scenarios W. We define ≡W∃∀∀ to be the symmetric part of <W∃∀∀,

with A ≡W∃∀∀ B if and only if A <W∃∀∀ B and B <W∃∀∀ A.

Example 7. Consider the sets of utility vectors A = {(10, 4), (4, 7)}, B =
{(11, 2), (8, 5)} and C = {(11, 1), (7, 5))} associated with hotels in Barcelona,
Valencia and Málaga respectively. Suppose that the first value of each utility
vector is a score evaluating the distance from the beach and the second value is
a score evaluating the distance from the city center, where the higher the score,
the better. We assume a linear utility functions with uw(α) = w1α1 + w2α2,
where w ∈ U = {(w1, w2) : w1, w2 ≥ 0 & w1 + w2 = 1} represents the possible
preference scenarios and α = (α1, α2) is the utility vector of an apartment. We
assume that the user has an associated (unknown) weights vector w∗ and we
want to recommend to the user a trip to Barcelona or Valencia or Málaga based
on some input preference information. Suppose then that we ask the user her
preference between the hotel with utility (10, 4) and the hotel with utility (11, 2).
An input preference of (10, 4) over (11, 2) implies w · (10, 4) ≥ w · (11, 2) and so
2w2 ≥ w1 and thus, w1 ≤ 2

3 . This leads to the new set of preference scenarios
W = {(w1, w2) : w1 + w2 = 1 & 0 ≤ w1 ≤ 2

3}. This example is illustrated in
Figure 3.1, and supposing this input preference information, it is easy to see that
in this case A <W∀∀∃ B and A <W∀∀∃ C since for 0 ≤ w1 ≤ 1

3 there is no line above
the line associated to (4, 7) ∈ A, and for 1

3 ≤ w1 ≤ 2
3 there is no line above the

line associated to (10, 4) ∈ A, i.e., @β ∈ B s.t. uw(β) > ValA(w) and @γ ∈ C
s.t. uw(γ) > ValA(w) for any w ∈ W. Therefore, the optimal recommendation
would be a trip to Barcelona since it has an optimal hotel for each preference
scenario. Note that, A 6<W∃∀∀ B, A 6<W∀∃∀ B, A 6<W∃∀∀ C and A 6<W∀∃∀ C. This can be
easily seen from Figure 3.1, since for each alternative of A there exists at least one
scenario w ∈ W in which at least one alternative of B and C have better utility
values uw(·). On the other hand, B <W∀∃∀ C, since for each alternative of C there
is a better alternative in B for all the possible scenarios in W. Reducing the set
W to W ′ = {(w1, w2) : w1 + w2 = 1 & 0 ≤ w1 ≤ 1

3}, we also get that B <W ′
∃∀∀ C

since (8, 5) ∈ B is the best alternative with respect to B and C for all the possible
scenarios inW ′.

We now give some properties of the relations defined above.

The following result shows that the relation <W∀∀∃ and its corresponding

equivalence relation ≡W∀∀∃ can be expressed in terms of the utility function.

Part (iii) gives another representation of the relation <W∃∀∀ that allows efficient

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

43 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.2 Preference Relations for Set of Alternatives

Figure 3.1: utility function uw(α) = w · α for each alternative of the sets,
A = {(10, 4), (4, 7)}, B = {(11, 2), (8, 5)} and C = {(11, 1), (7, 5))} where
w ∈ U = {(w1, w2) : w1, w2 ≥ 0 & w1 + w2 = 1}.

computation.

Lemma 3.2.1. Consider anyW ⊆ U and A,B ∈M.

(i) A <W∀∀∃ B ⇐⇒ for all w ∈ W, ValA(w) ≥ ValB(w).

(ii) A ≡W∀∀∃ B ⇐⇒ for all w ∈ W, ValA(w) = ValB(w).

(iii) A <W∃∀∀ B if and only if there exists α ∈ A such that for all w ∈ W,
uw(α) ≥ ValB(w).

Proof: (i): For all w ∈ W, ValA(w) ≥ ValB(w), if and only if for all w ∈ W,

maxβ∈B uw(β) ≤ maxα∈A uw(α), which is if and only if for all w ∈ W, for all

β ∈ B, uw(β) ≤ maxα∈A uw(α). This holds if and only if for all w ∈ W and β ∈ B

there exists α ∈ A such that uw(α) ≥ uw(β), which is if and only if A <W∀∀∃ B.

(ii): A ≡W∀∀∃ B holds if and only if A <W∀∀∃ B and B <W∀∀∃ A, which by (i) is if and

only if for all w ∈ W, ValB(w) ≤ ValA(w) and ValB(w) ≥ ValA(w), which is if and

only if ValWB = ValWA .

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

44 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.2 Preference Relations for Set of Alternatives

(iii): For α ∈ Ω, {α} <W∃∀∀ B ⇐⇒ {α} <W∀∀∃ B. Then, A <W∃∀∀ B if and only

if there exists α ∈ A such that {α} <W∃∀∀ B, which is if and only if there exists

α ∈ A such that for all w ∈ W, uw(α) ≥ ValB(w), using part (i). �

Lemma 3.2.2. Consider anyW ⊆ U and A,B ∈M. <W∃∀∀ ⊆ <W∀∃∀ ⊆ <W∀∀∃, i.e.:

(i) A <W∃∀∀ B =⇒ A <W∀∃∀ B

(ii) A <W∀∃∀ B =⇒ A <W∀∀∃ B

Proof. (i): If A <W∃∀∀ B then there exists α′ ∈ A such that for all β ∈ B, α′ <W β.

Thus, A <W∀∃∀ B since for all β ∈ B there exists α ∈ A, i.e., α′, such that α <W β.

(ii): If A <W∀∃∀ B then for all β ∈ B there exists α′ ∈ A such that α′ <W β. Thus,

A <W∀∀∃ B since for all w ∈ W and for all β ∈ B there exists α ∈ A, i.e., α′, such

that α <w β.

�

The following result, states transitivity and chaining properties of the three

relations. These are valuable, for instance, if we are comparing a number of

sets Ai, i = 1, . . . , K, since if we determine that Ai <W∀∀∃ Aj and Aj <W∀∀∃ Ak, then

we do not need to check that Ai <W∀∀∃ Ak, since it is implied.

Lemma 3.2.3. Each of the relations, <W∀∀∃, <
W
∀∃∀ and <W∃∀∀ on M, is transitive.

Furthermore, we have the following chaining properties:

(i) If A <W∀∃∀ B and B <W∃∀∀ C then A <W∃∀∀ C.

(ii) If < is any of the relations <W∀∀∃, <
W
∀∃∀ and <W∃∀∀, then A <W∃∀∀ B and B < C

implies A <W∃∀∀ C.

Proof. (i): Assume that A <W∀∃∀ B and B <W∃∀∀ C. Since B <W∃∀∀ C, there exists an

alternative β in B such that β <W γ for all γ ∈ C. Such β exists since B <W∃∀∀ C.

Since A <W∀∃∀ B, there exists α ∈ A such that α <W β. Since <W is transitive

on Ω and α <W β and β <W γ for all γ ∈ C, then α <W γ for all γ ∈ C, which

implies A <W∃∀∀ C.

(ii): From Lemma 3.2.2 it follows that B <W∀∃∀ C =⇒ B <W∀∀∃ C and

B <W∃∀∀ C =⇒ B <W∀∀∃ C. Thus, if (ii) is true when < equals <W∀∀∃, then it

is true also for the other two cases. We then need to prove that A <W∃∀∀ B and

B <W∀∀∃ C implies A <W∃∀∀ C: since there exists α ∈ A such that for all β ∈ B

α <W β (A <W∃∀∀ B), and for all γ ∈ C there exists β ∈ B such that β <W γ

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

45 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.2 Preference Relations for Set of Alternatives

(B <W∀∀∃ C), then, by the transitivity of <W , there exists α ∈ A such that such

that α <W γ for all γ ∈ C, i.e., A <W∃∀∀ C.

Transitivity of <W∃∀∀ onM is implied by (ii).

Transitivity of <W∀∀∃ on M: we have transitivity of <{w}∃∀∀ on M, which is the

same as <{w}∀∀∃ onM, and thus transitivity of <W∀∀∃ onM, as the intersection of

an arbitrary set of transitive relations is transitive.

Transitivity of <W∀∃∀ onM: Suppose If A <W∀∃∀ B and B <W∀∃∀ C and consider any

γ ∈ C. Because B <W∀∃∀ C, there exists β ∈ B such β <W γ. A <W∀∃∀ B implies

there exists α ∈ A such that α <W β, and thus for the transitivity of<W , α <W γ

for all γ ∈ C, proving that A <W∀∃∀ C.

�

For < being either <W∀∀∃ or <W∀∃∀, to determine if A < B it is sufficient to check

that A < {β} holds for each β ∈ B. In more detail: we say that relation

< on M satisfies the Right Decomposition property if A < B if and only if

A < {β} holds for each β ∈ B. < is reflexive if for all A ⊆ Ω, A < A. As

well as being reflexive, relations <W∀∀∃ and <W∀∃∀ satisfy the Right Decomposition

property, which is useful computationally, since it means that, for< being either

<W∀∀∃ or <W∀∃∀, to determine if A < B it is sufficient to check that A < {β} holds

for each β ∈ B.

Lemma 3.2.4. For any W ⊆ U . Let <W be any of <W∀∀∃, <
W
∀∃∀ and <W∃∀∀, and let

A′,B ∈M and let A ⊆ A′ and let B′ ⊆ B, and letW ′ ⊆ W.

(i) If A <W B then A′ <W ′ B′.

(ii) Relations <W∀∀∃ and <W∀∃∀ satisfy Right Decomposition.

(iii) Relations <W∀∀∃ and <W∀∃∀ are reflexive.

(iv) If A ⊇ B then A <W∀∀∃ B and A <W∀∃∀ B.

Proof. (i): since A′ ⊇ A then for any α ∈ A, α ∈ A′.

Assume A <W∀∀∃ B, and consider any w ∈ W ′ and β ∈ B′; since W ′ ⊆ W and

B′ ⊆ B, we have w ∈ W and β ∈ B, and thus, since A <W∀∀∃ B, there exists α ∈ A

such that α <w β. This proves that A′ <W ′
∀∀∃ B′

Assume A <W∀∃∀ B, and consider any β ∈ B′; since B′ ⊆ B, we have β ∈ B, and

thus, since A <W∀∃∀ B, there exists α ∈ A such that α <w β for all w ∈ W, and

thus also for all w ∈ W ′ sinceW ′ ⊆ W. This proves that A′ <W ′
∀∃∀ B′.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

46 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.2 Preference Relations for Set of Alternatives

Assume A <W∀∀∃ B; since A <W∀∀∃ B, there exists α ∈ A such that α <w β for all

w ∈ W and for all β ∈ B, and thus also for all w ∈ W ′ since W ′ ⊆ W, and for

all β ∈ B′ since B′ ⊆ B. This proves that A′ <W ′
∀∃∀ B′.

(ii): (i) implies that if A <W B, then A <W {β} for any β ∈ B. Regarding the

converse for <W∀∀∃, if A <W∀∀∃ {β} for any β ∈ B, then for all β ∈ B there exists

α ∈ A and w ∈ W such that α <w β, thus showing A <W∀∀∃ B. Regarding the

converse for <W∀∃∀, if A <W∀∀∃ {β} for any β ∈ B, then for all β ∈ B there exists

α ∈ A such that α <W β, and so we have A <W∀∃∀ B.

(iii): If for all β ∈ B there exists α ∈ A such that α <W β, then A <W∀∃∀ B. Thus

for B = A we can take α = β and we get that α <W β for all β ∈ B, and so we

have A <W∀∃∀ A. Regarding<W∀∀∃, from Lemma 3.2.2(ii) it follows that if A <W∀∃∀ A

then A <W∀∀∃ A.

(iv): We prove the result for <W∀∀∃; the result for <W∀∃∀ follows in exactly the

same way. Let A = B ∪ C. (iii) implies B <W∀∀∃ B and (i) implies that if A ⊇ B

and B <W∀∀∃ B then A <W∀∀∃ B.

�

Since the relations <W∀∀∃ and <W∀∃∀ are reflexive and transitive, the symmetric

parts, ≡W∀∀∃ and ≡W∀∃∀, of these relations are equivalence relations. Also,

Lemma 3.2.2 implies that ≡W∀∃∀ ⊆ ≡W∀∀∃.

Clearly, <W∀∀∃ and <W∀∃∀ determine the corresponding equivalence relations;

conversely, <W∀∀∃ and <W∀∃∀ can be expressed in terms of their corresponding

equivalence relations:

Lemma 3.2.5. For all A,B ∈ M, A <W∀∀∃ B ⇐⇒ A ≡W∀∀∃ A ∪ B; and A <W∀∃∀ B
⇐⇒ A ≡W∀∃∀ A ∪ B.

Proof: We prove the result for <W∀∀∃; the result for <W∀∃∀ follows in exactly the

same way. Lemma 3.2.4 implies that A ∪ B <W∀∀∃ A holds for any A,B ∈ M. It

is then sufficient to show A <W∀∀∃ B ⇐⇒ A <W∀∀∃ A ∪ B. From Lemma 3.2.4(ii)

(Right Decomposition property) it follows that A <W∀∀∃ A ∪ B if and only if

A <W∀∀∃ A and A <W∀∀∃ B. Since <W∀∀∃ is reflexive, A <W∀∀∃ A is true for any A ∈M.

Thus, A <W∀∀∃ A ∪ B ⇐⇒ (A <W∀∀∃ A) ∧ (A <W∀∀∃ B) ⇐⇒ A <W∀∀∃ B. �

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

47 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

3.3 Filtering A and Minimal Equivalent Subsets

In this section we consider the question, raised in the introduction of the

chapter, regarding replacing A with an equivalent subset of A, i.e., filtering

out elements of A that are redundant.

Equivalence-free: we say that A (∈M) is ≡W -free (or equivalence-free) if for

all α, β ∈ A, α 6≡W β. One can reduce any A to an equivalence-free set A′ by

including exactly one element in A′ of each ≡W -equivalence class in A.

Setwise-minimal equivalent subsets: We define SMEW(A) to be the set of

subsets B of A that are setwise-minimal equivalent to A, i.e., such that B ≡W∀∀∃ A

and there does not exist any strict subset C of B such that C ≡W∀∀∃ A.

Figure 3.2: utility function uw(α) = w · α for each alternative of the sets
A′ = {(11, 1), (7, 5), (6, 6)} and A′′ = {(10, 4), (4, 7)} where w ∈ W = {(w1, w2) :
w1 + w2 = 1 & w1 ∈ [0, 2

3]}.

Example 8. Consider the set of alternatives A = A′∪A′′, where A′ = {(11, 1), (7, 5),
(6, 6)} and A′′ = {(10, 4), (4, 7)}. The utility function uw(α) = w · α of the
alternatives α ∈ A is shown in Figure 3.2. If we suppose W = {(w1, w2) :

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

48 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

w1 + w2 = 1 & w1 ∈ [0, 2
3]}, then the unique setwise minimal equivalent subset of

A is A′′ since for each w ∈ W and α ∈ A, ValA′′(w) ≥ w · α.

For the computation and the characterisation of SMEW(A), we will consider

some of the operators for filtering defined in Section 2.4, namely, UDW(A),
which removes dominated alternatives from A, POW(A), which removes

alternatives that are not possibly optimal, and PSOW(A) which removes

alternatives that are not possibly strictly optimal. With Theorem 3.3.6

defined in Section 3.3.1 we determine when SMEW(A) is a singleton, and in

Section 3.3.2 we give a simple method to compute it. In section 3.3.3 we

will also define the operators MPOW(A) and SMPOW(A) that will be used to

characterize SMEW(A) more precisely under specific circumstances, and with

Theorem 3.3.15 we show that for analytic utility functions SMEW(A) equals

PSOW(A).

3.3.1 Operators for set of alternatives

Here we briefly recall the definitions of the operators UDW(A), POW(A) and

PSOW(A) defined in Section 2.4, and we define some related properties with

respect to the setwise preference relations introduced in this chapter. In

particular, we show that the operators UDW(A) and POW(A) can be used filter

out elements whilst maintaining setwise equivalence, and with Theroem 3.3.6

we show the connection between PSOW and SMEW .

Operator UDW(A): Recall that UDW(A) is the set of α ∈ A such that there

does not exist γ ∈ A such that γ �W α.

We give a simple fundamental property of the set UDW(A), which is used to

prove e.g., Lemma 3.3.2 below.

Lemma 3.3.1. Consider any A ∈M.

(i) If α ∈ A \ UDW(A) then there exists γ ∈ UDW(A) such that γ �W α.

(ii) If α ∈ A then there exists γ ∈ UDW(A) such that γ <W α.

Proof: (i): Consider any α ∈ A \ UDW(A). By the definition of UDW(A), for any

β ∈ A\UDW(A) there exists β′ ∈ A such that β′ �W β. Let α1 = α. We construct

a sequence α1, α2, . . ., where for each i = 1, 2, . . ., we have αi+1 �W αi, where

we stop the sequence when we reach an element αi such that either (a) αi has

appeared earlier in the sequence, or (b) αi ∈ UDW(A). Because A is finite,

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

49 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

there must be a last element αk in the sequence. Transitivity of �W implies that

if 1 ≤ i < k then αk �W αi, so, in particular, αk �W α. If (a) αk = αi for some

i < k then αk �W αk which contradicts the fact that �W is irreflexive. Thus, we

have (b) αk ∈ UDW(A) and αk �W α, showing part (i).

(ii): Consider any α ∈ A. If α ∈ A \ UDW(A) then, by part (i), there exists

γ ∈ UDW(A) such that γ <W α. Otherwise, α ∈ UDW(A), and, by reflexivity of

<W we have α <W α, so we can let γ = α. �

Example 9. Consider the running example in Figure 3.2 with A = A′ ∪ A′′ =
{(11, 1), (7, 5), (6, 6), (10, 4), (4, 7)} and W = {(w1, w2) : w1 + w2 = 1 & w1 ∈
[0, 2

3]}. We have that UDW(A) = A \ {(11, 1)}. As an example of Lemma 3.3.1, we
have that (10, 4) �W (11, 1) and, for example, (10, 4) <W (10, 4).

Lemma 3.3.2. Assume that W ⊆ U and A ∈ M. Then, UDW(A) is non-empty
and the following hold.

(i) UDW(A) ≡W∀∃∀ A and UDW(A) ≡W∀∀∃ A.

(ii) For B ∈M and, for < being any of <W∀∀∃, <
W
∀∃∀ or <W∃∀∀, we have A < B ⇐⇒

UDW(A) < UDW(B).

Proof. (i): UDW(A) ≡W∀∃∀ A if and only if A <W∀∃∀ UDW(A) and UDW(A) <W∀∃∀ A.

Since UDW(A) ⊆ A, from Lemma 3.2.4 follows that A <W∀∃∀ UDW(A). Regarding

the converse, let B = A\UDW(A), so that A = B∪UDW(A). From Lemma 3.3.1(i)

it follows that for all α ∈ B there exists γ ∈ UDW(A) such that γ �W α,

which is if and only if UDW(A) <W∀∃∀ B. Thus, from Lemma 3.2.5 follows

UDW(A) <W∀∃∀ B ∪ UDW(A), i.e., UDW(A) <W∀∃∀ A.

Since ≡W∀∀∃⊇≡W∀∃∀, then UDW(A) ≡W∀∃∀ A implies UDW(A) ≡W∀∀∃ A.

(ii): Part (i) implies part (ii) when < is either <W∀∀∃ or <W∀∃∀. This is

because, if ≡ is the corresponding equivalence relation, then UDW(A) ≡ A

and UDW(B) ≡ B. Then, A < B implies UDW(A) ≡ A < B ≡ UDW(B), and thus,

UDW(A) < UDW(B) by transitivity of <. Similarly, UDW(A) < UDW(B) implies

A < UDW(A) < UDW(B) < B and thus, A < B.

Regarding relation <W∃∀∀, we have, by part (i), A <W∀∃∀ UDW(A) and B <W∀∃∀
UDW(B). First suppose, A <W∃∀∀ B. We have UDW(A) <W∀∃∀ A <W∃∀∀ B <W∀∃∀
UDW(B). Applying parts (i) and (ii) of Lemma 3.2.3 implies UDW(A) <W∃∀∀
UDW(B). Now, assume that UDW(A) <W∃∀∀ UDW(B). We have A <W∀∃∀

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

50 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

UDW(A) <W∃∀∀ UDW(B) <W∀∃∀ B. Applying again parts (i) and (ii) of Lemma 3.2.3

we obtain A <W∃∀∀ B. �

Operator POW(A): Recall that Ow(A) is the set of elements α of A such that

for all β ∈ A, α <w β. POW(A) = ⋃
w∈W Ow(A).

Definition of OptA
W(α): We define, for α ∈ A, OptA

W(α) to consist of all

scenarios w ∈ W in which α is optimal, i.e., α ∈ Ow(A). Thus, α ∈ POW(A)
⇐⇒ OptA

W(α) 6= ∅.

Lemma 3.3.3. Let W ⊆ U and let A ∈ M. For B ⊆ A, B ≡W∀∀∃ A if and only if⋃
β∈B OptA

W(β) =W. In particular,
⋃
α∈A OptA

W(α) =W.

Proof: We first prove that
⋃
α∈A OptA

W(α) = W. Clearly,
⋃
α∈A OptA

W(α) ⊆ W.

Now, consider any w ∈ W. Ow(A) is clearly non-empty (since A is finite and

<w is a total pre-order), so let α be some element of it. Then OptA
W(α) 3 w, so⋃

α∈A OptA
W(α) ⊇ W.

Since B ⊆ A, we have B ≡W∀∀∃ A ⇐⇒ B <W∀∀∃ A ⇐⇒ for all w ∈ W and

for all α ∈ A there exists β ∈ B such that β <w α. This holds if and only if

for all w ∈ W there exists β ∈ B such that for all α ∈ A, β <w α, i.e., for

all w ∈ W there exists β ∈ B such that OptA
W(β) 3 w, which is equivalent to⋃

β∈B OptA
W(β) =W. �

Example 10. Consider the running example in Figure 3.2 with A = A′ ∪
A′′ = {(11, 1), (7, 5), (6, 6), (10, 4), (4, 7)} and W = {(w1, w2) : w1 + w2 =
1 & w1 ∈ [0, 2

3]}. We have that Ow(A) = {(4, 7)} for w ∈ [0, 1
3), Ow(A) =

{(10, 4), (4, 7), (6, 6)} for w ∈ [1
3 ,

1
3], Ow(A) = ({10, 4}) for w ∈ (1

3 ,
2
3], and

then
⋃
w∈W Ow(A) = POW(A) = {(10, 4), (4, 7), (6, 6)}. Also, as an example

of Lemma 3.3.3, we have that POW(A) ≡W∀∀∃ A since OptA
W((4, 7)) = [0, 1

3],
OptA

W((10, 4)) = [1
3 ,

2
3], OptA

W((6, 6)) = [1
3 ,

1
3], and then

⋃
β∈POW (A) OptA

W(β) =
[0, 2

3] =W.

Lemma 3.3.4. Assume thatW ⊆ U and A ∈M. Then, the following all hold.

(i) POW(A) is non-empty, and for all w ∈ W, Ow(A) is non-empty.

(ii) For all w ∈ W and for all α ∈ A \ Ow(A) there exists γ ∈ Ow(A) such that
γ �w α, and thus, there exists γ ∈ POW(A) such that γ �w α.

(iii) POW(A) ≡W∀∀∃ A.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

51 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

(iv) For B ⊆ Ω we have A <W∀∀∃ B ⇐⇒ POW(A) <W∀∀∃ B; and B <W∀∀∃ A
⇐⇒ B <W∀∀∃ POW(A). Thus, if B is also finite then A <W∀∀∃ B ⇐⇒
POW(A) <W∀∀∃ POW(B).

Proof. (i): If A is non-empty and finite, then we can compute α∗ = arg maxα∈A

uw(α). By definition of <w, α∗ <w α for all α ∈ A which is if and only if

α∗ ∈ Ow(A). Therefore Ow(A) is non-empty and then POW(A) = ⋃
w∈W Ow(A) is

non-empty.

(ii): From (i) it follows that Ow(A) is not empty, then if α ∈ A \ Ow(A) then

there exists γ ∈ Ow(A) such that uw(γ) > uw(α) which is if and only if γ �w α.

Thus, since POW(A) = ⋃
w∈W Ow(A), γ ∈ POW(A).

(iii): POW(A) ≡W∀∀∃ A if and only if A <W∀∀∃ POW(A) and POW(A) <W∀∀∃ A.

Since POW(A) ⊆ A, from Lemma 3.2.4 follows that A <W∀∀∃ POW(A). Regarding

the converse, let B = A \ POW(A), so that A = B ∪ POW(A). From (ii) it

follows that for all α ∈ B and for all w ∈ W there exists γ ∈ POW(A) such that

γ �w α, which implies POW(A) <W∀∀∃ B. Thus, from Lemma 3.2.5 we get that

POW(A) <W∀∀∃ B ∪ POW(A), i.e., POW(A) <W∀∀∃ A.

(iv): From (iii) follows that PSOW(A) <W∀∀∃ A and A <W∀∀∃ PSOW(A). Thus,

for the transitivity of <W∀∀∃, we have A <W∀∀∃ B ⇐⇒ POW(A) <W∀∀∃ B; and

B <W∀∀∃ A ⇐⇒ B <W∀∀∃ POW(A). Suppose B ∈ M. If A <W∀∀∃ B then

PSOW(A) <W∀∀∃ A <W∀∀∃ B <W∀∀∃ PSOW(B), and if PSOW(A) <W∀∀∃ PSOW(B)
then A <W∀∀∃ PSOW(A) <W∀∀∃ PSOW(B) <W∀∀∃ B. Thus, A <W∀∀∃ B ⇐⇒
POW(A) <W∀∀∃ POW(B).

�

Operator PSOW(A): Recall that SOWw (A) is the set of elements α of A such

that α �w β, for all β ∈ A with β 6≡W α. PSOW(A) = ⋃
w∈W SOWw (A).

Example 11. Consider the running example in Figure 3.2 with A = A′ ∪ A′′ =
{(11, 1), (7, 5), (6, 6), (10, 4), (4, 7)} and W = {(w1, w2) : w1 + w2 = 1 & w1 ∈
[0, 2

3]}. We have that SOw(A) = {(4, 7)} for w ∈ [0, 1
3), SOw(A) = ∅ for w ∈ [1

3 ,
1
3],

SOw(A) = ({10, 4}) for w ∈ (1
3 ,

2
3], and then

⋃
w∈W SOw(A) = PSOW(A) =

{(10, 4), (4, 7)}. Note that in this case
⋃
β∈PSOW (A) OptA

W(β) 6=W

Lemma 3.3.5. Consider anyW ⊆ U and an A ∈M.

(i) For B ⊆ A, if B ≡W∀∀∃ A then for all α ∈ PSOW(A) there exists β ∈ B with
β ≡W α. In particular, if A is ≡W -free then B ⊇ PSOW(A).

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

52 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

(ii) If α ∈ A \ PSOW(A) then
⋃
β∈A\{α}OptA

W(β) =W and so A \ {α} ≡W∀∀∃ A.

Proof: (i) Assume that B ≡W∀∀∃ A. By Lemma 3.3.3,
⋃
β∈B OptA

W(β) =W. Consider

any α ∈ PSOW(A). Then there exists w ∈ W such that SOWw (A) 3 α. Also,

there exists β ∈ B such that OptA
W(β) 3 w, and so, Ow(A) 3 β. The definition

of SOWw (A) implies that β ≡W α. In particular, if A is ≡W -free then for all

α ∈ PSOW(A), α ∈ B, so B ⊇ PSOW(A).

(ii): Suppose that α ∈ A \ PSOW(A) and consider any w ∈ W. Then

Ow(A) 6= {α} so there exists β ∈ Ow(A) \ {α}, and thus, OptA
W(β) 3 w. This

shows that
⋃
β∈A\{α}OptA

W(β) = W, and thus, by Lemma 3.3.3, A \ {α} ≡W∀∀∃ A.

�

Theorem 3.3.6 below gives some relationships between PSO, SME and the dom-

inance relation <W∀∀∃, for equivalence-free A. Any setwise-minimal equivalent

subset of A contains PSOW(A), the set of possibly strictly optimal elements. The

latter set is equivalent to A if and only if there is a unique minimal equivalent

subset, which is thus equal to PSOW(A).

The condition that PSOW(A) is equivalent to A holds in the linear multi-

objective case considered in Section 3.7 below (see Theorem 3.3.15), and so

then PSOW(A) is the unique minimal equivalent subset of A. Part (ii) implies

that the relation <W∀∀∃ can be used for computing PSOW(A).

Theorem 3.3.6. Assume that A (∈ M) is ≡W -free and let W ⊆ U . Then the
following hold:

(i)
⋂

B∈SMEW (A) B = PSOW(A);

(ii) PSOW(A) is the set of all α ∈ A such that A \ {α} 6<W∀∀∃ {α};

(iii) PSOW(A) ≡W∀∀∃ A if and only if SMEW(A) is a singleton, which is if and only
if PSOW(A) is the unique setwise-minimal equivalent subset for A.

Proof: (i) First consider any B ∈ SMEW(A), and thus, B ≡W∀∀∃ A. Lemma 3.3.5

implies that B ⊇ PSOW(A). Hence,
⋂

B∈SMEW (A) B ⊇ PSOW(A). Conversely,

consider any α ∈ A \ PSOW(A). Lemma 3.3.5 implies A \ {α} ≡W∀∀∃ A. Since A

is finite, there exists a subset C of A \ {α} that is setwise-minimal equivalent to

A, and so C ∈ SMEW(A) and C 63 α, which implies that
⋂

B∈SMEW (A) B 63 α. This

proves that
⋂

B∈SMEW (A) B ⊆ PSOW(A).

(ii): Consider any α ∈ A \ PSOW(A). Lemma 3.3.5 implies A \ {α} ≡W∀∀∃ A, and

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

53 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

thus A \ {α} <W∀∀∃ {α}. Conversely, if A \ {α} <W∀∀∃ {α} then for each w ∈ W
there exists γ ∈ A such that γ <w α, i.e., γ 6∈ PSOW(A).

(iii): Now let us assume that SMEW(A) is a singleton, say {B}. By definition,

B ≡W∀∀∃ A, and, by (i), B = PSOW(A), showing that PSOW(A) ≡W∀∀∃ A.

Conversely, assume that PSOW(A) ≡W∀∀∃ A, which implies that there exists some

subset C of PSOW(A) such that C ∈ SMEW(A). Using (i) we have PSOW(A) =⋂
B∈SMEW (A) B ⊆ C ⊆ PSOW(A). Thus, C = PSOW(A) = ⋂

B∈SMEW (A) B and so

PSOW(A) ∈ SMEW(A), and any element of SMEW(A) contains PSOW(A). By

definition of SMEW(A) this implies that SMEW(A) = {PSOW(A)}.

We conclude this subsection introducing two further operators, namely, the

Maximally Possibly Optimal Set (MPOW(A)) and the Strictly Maximal Possibly

Optimal Set (SMPOW(A)). These will be used to further characterize minimal

equivalent subsets.

Operator MPOW(A): Let us define the maximally possibly optimal elements to

be those that are optimal in a maximal set of scenarios. For A ∈ M, we define

MPOW(A) to consist of all γ ∈ A such that there exists no α ∈ A such that

OptA
W(α) % OptA

W(γ).

Lemma 3.3.7. Assume thatW ⊆ U and A ∈M. MPOW(A) ⊆ UDW(A).

Proof. From Lemma 3.3.1 it follows that if γ 6∈ UDW(A) then there exists

α ∈ UDW(A) ⊆ A such that α �W γ, thus OptA
W(α) % OptA

W(γ), i.e.,

γ 6∈ MPOW(A). �

Operator SMPOW(A): Let us define SMPOW(A) (the Strictly Maximal Possibly
Optimal elements of A) to consist of all γ ∈ A such that for all α ∈ A if

OptA
W(α) ⊇ OptA

W(γ) then α ≡W γ.

Lemma 3.3.8. Assume thatW ⊆ U and A ∈M. SMPOW(A) ⊆ MPOW(A).

Proof. SMPOW(A) ⊆ MPOW(A): If γ 6∈ MPOW(A) then there exists α ∈ A such

that OptA
W(α) % OptA

W(β). Thus from the definition of SMPOW(A) it follows

that β 6∈ SMPOW(A) since OptA
W(α) ⊇ OptA

W(β) but α 6≡W γ. �

The following result states relationships between the different operators, and

shows that we can replace A and B by (for instance) POW(A) and POW(B),
respectively, in testing A <W∀∀∃ B.

Lemma 3.3.9. Assume thatW ⊆ U and A ∈M. Then the following hold:

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

54 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

(i) PSOW(A) ⊆ SMPOW(A) ∩ UDW(A) ⊆ SMPOW(A) ⊆ MPOW(A) ⊆
POW(A) ⊆ A.

(ii) OPW(A) ≡W∀∀∃ A if OPW(A) is any of the following: MPOW(A) ∩ UDW(A),
MPOW(A), POW(A) ∩ UDW(A), or POW(A). Thus, A <W∀∀∃ B ⇐⇒
OPW(A) <W∀∀∃ OPW(B).

Proof: (i):PSOW(A) ⊆ SMPOW(A) ∩ UDW(A) ⊆ SMPOW(A): If γ ∈ PSOW(A),
then there exists w ∈ W such that γ �w α for any α ∈ A. Thus, γ ∈ SMPOW(A)
since there does not exists α ∈ A such that OptA

W(α) ⊇ OptA
W(γ). SMPOW(A) ⊆

UDW(A) follows from Lemma 3.3.7 and Lemma 3.3.8. �

SMPOW(A) ⊆ MPOW(A): This follows from Lemma 3.3.8.

MPOW(A) ⊆ POW(A): If γ 6∈ POW(A), then OptA
W(γ) = ∅. Thus, OptA

W(α) %
OptA

W(γ) for any α ∈ PSOW(A) which implies γ 6∈ MPOW(A).

POW(A) ⊆ A: POW(A) is by definition a subset of A.

(ii): we show that MPOW(A)∩UDW(A) ≡W∀∀∃ A. Since MPOW(A)∩UDW(A) ⊆ A

we have A <W∀∀∃ MPOW(A) ∩ UDW(A). We need to show the converse, that

MPOW(A) ∩ UDW(A) <W∀∀∃ A. Consider any w ∈ W and α ∈ A; it is

sufficient to show that there exists β ∈ MPOW(A) ∩ UDW(A) with β <w α.

Finiteness of A implies that there exists γ ∈ A such that γ ∈ Ow(A), i.e.,

w ∈ OptA
W(γ), and there does not exist δ ∈ A with OptA

W(δ) % OptA
W(γ), and

thus, γ ∈ MPOW(A) which by (i) implies γ ∈ MPOW(A). From Lemma 3.3.1(ii)

it follows that there exists β ∈ UDW(A) with β <W γ, which implies that

β ∈ MPOW(A) ∩ UDW(A) and β <w α. Now, if MPOW(A) ∩ UDW(A) ⊆ B ⊆ A

then A <W∀∀∃ B <W∀∀∃ MPOW(A) ∩ UDW(A) <W∀∀∃ A and so A ≡W∀∀∃ B. Using

part (i), we thus have OPW(A) ≡W∀∀∃ A if OPW(A) is any of the following:

MPOW(A) ∩ UDW(A), MPOW(A), POW(A) ∩ UDW(A), or POW(A).

We also define here the following technical lemma which is used later, to prove

Corollary 3.3.16.1.

Lemma 3.3.10. Let A ∈ M and let W ⊆ U . Assume that PSOW(A) ≡W∀∀∃ A and
that for any B ⊆ A, SMPOW(B) = PSOW(B). Then MPOW(A) = PSOW(A).

Proof: Suppose otherwise, and so there exists some α ∈ MPOW(A) \PSOW(A).
Let B = PSOW(A) ∪ {α}. Now, OptA

W(α) is not contained in (or equal to)

OptA
W(β) for any β ∈ PSOW(A), since if OptA

W(α) ⊆ OptA
W(β) then α ∈

MPOW(A) implies OptA
W(α) = OptA

W(β), which would then imply α ≡W β

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

55 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

(since α ∈ PSOW(A)), which contradicts α /∈ PSOW(A). Thus, α ∈ SMPOW(B),
which equals PSOW(B) by the hypothesis. Now, PSOW(B) ⊇ PSOW(A), since

PSOW(A) ⊆ B, so each element of PSOW(A) is still possibly strictly optimal in

the reduced set B. Thus, PSOW(B) = B, and we have PSOW(A) $ PSOW(B) =
B ⊆ A, and PSOW(A) ≡W∀∀∃ A and so, PSOW(A) ≡W∀∀∃ B. But Lemma 3.3.5(i)

implies that there exists γ ∈ PSOW(A) with γ ≡W α (since α ∈ PSOW(B) and

PSOW(A) ≡W∀∀∃ B), which implies that α ∈ PSOW(A), which is the contradiction

required. �

3.3.2 Filtering

A simple way of generating a minimal equivalent subset of A is to sequentially

delete elements α of A that are not needed for maintaining equivalence, i.e., are

such that A \ {α} <W∀∀∃ {α}, since then A \ {α} ≡W∀∀∃ A. This is what is done in

the operation Filterσ(A;<W∀∀∃) defined below, to produce a minimal equivalent

subset of A.

For α ∈ A, define Filter(A, α;<W∀∀∃) to be A \ {α} if A \ {α} <W∀∀∃ {α}; otherwise

it equals A.

More generally, for B ⊆ A, we define Filter(A,B;<) to be A \ B if A \ B < B;

otherwise it equals A.

Let us label A as α1, . . . , αn, where n = |A|. Formally the labelling is a bijection

σ from {1, . . . , n} to A (so that σ(i) = αi), and let Λ be the set of all labellings.

We define Filterσ(A;<W∀∀∃) iteratively as follows. We set A0 = A. For i = 1, . . . , n,

we set Ai = Filter(Ai−1, αi;<W∀∀∃). We then define Filterσ(A;<W∀∀∃) to be An, i.e.,

the set remaining after iteratively deleting elements from A that are dominated

with respect to relation <W∀∀∃.

Example 12. Consider the set of alternatives A0 = {(10, 4), (11, 1), (4, 7), (7, 5),
(6, 6)}, where the utility function uw(α) = w · α of the alternatives α ∈ A with
w ∈ W = {(w1, w2) : w1 + w2 = 1 & w1 ∈ [0, 2

3]} shown in Figure 3.2. In this
case, A1 = Filterσ(A0, (6, 6);<W∀∀∃) = A0 \ {(6, 6)} since A0 \ {(6, 6)} <W∀∀∃ {(6, 6)}.
A2 = A1 \{(7, 5)} since A1 \{(7, 5)} <W∀∀∃ {(7, 5)}. A3 = A2 since A2 \{(4, 7)} 6<W∀∀∃
{(4, 7)}. A4 = A3 \ {(11, 1)} since A3 \ {(11, 1)} <W∀∀∃ {(11, 1)}. A5 = A4 since
A4 \ {(10, 4)} 6<W∀∀∃ {(10, 4)}. Thus, we get Filterσ(A;<W∀∀∃) = {(10, 4), (4, 7)}.

We define Filter(A, α;<W∀∃∀) and Filterσ(A;<W∀∃∀) analogously.

Lemma 3.3.11. Let < be either <W∀∀∃ or <W∀∃∀, and let ≡ be the corresponding

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

56 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

equivalence relation. Let A,A′ ∈M and let σ be any labelling of A. Then we have:

(i) If A′ ⊆ A and A′ < A \ A′ then A ≡ A′;

(ii) For B ⊆ A, Filter(A,B;<) ≡ A.

(iii) A ≡ Filterσ(A;<) ⊆ A.

(iv) Filterσ(A;<W∀∃∀) ⊆ UDW(A).

(v) SMEW(A) = {Filterσ(A;<W∀∀∃) : σ ∈ Λ}.

(vi) Filterσ(A;<W∀∀∃) ⊆ POW(A).

(i): From Lemma 3.2.5 it follows that A′ < A \ A′ ⇐⇒ A′ ≡ A′ ∪ (A \ A′), i.e.

A′ ≡ A.

(ii): By definition, if A \ B 6< B then Filter(A,B;<) = A, and thus Filter(A,B;<
) ≡ A. On the other hand, if A \ B < B then Filter(A,B;<) = A \ B, but from

Lemma 3.2.5 it follows that if A \ B < B with B ⊆ A, then A \ B ≡ A, i.e.,

Filter(A,B;<) ≡ A.

(iii): From (ii) it follows that for any i ∈ {1, . . . , n}, Ai = Filter(Ai−1, {αi};<
) ≡ Ai−1. Thus, Filterσ(A;<) = An ≡ · · · ≡ A0, i.e., A ≡ Filterσ(A;<). Since

Ai ⊆ Ai−1 for any i ∈ {1, . . . , n}, then Filterσ(A;<) = An ⊆ · · · ⊆ A0, i.e.,

Filterσ(A;<) = An ⊆ A.

(iv): Suppose that αi ∈ A \ Filterσ(A;<W∀∃∀). Then, using the notation above,

Ai 63 αi, i.e., α /∈ Filter(Ai−1, αi;<W∀∃∀), and thus, there exists γ ∈ Ai−1 with

γ <W α. If αi ∈ UDW(A) this implies that γ ≡W α. Applying this iteratively, we

see that if αi ∈ UDW(A) \ Filterσ(A;<W∀∃∀) then there exists γ ∈ Filterσ(A;<W∀∃∀)
with γ ≡W αi.

Now assume that αi ∈ A \ UDW(A); then, by Lemma 3.3.1, there exists β ∈
UDW(A) with β �W αi; by the above argument, there exists γ ∈ Filterσ(A;<W∀∃∀)
with γ ≡W β and thus, γ �W αi. We have γ ∈ Filterσ(A;<W∀∃∀) ⊆ Ai−1, which

implies that αi /∈ Ai, and thus, αi /∈ Filterσ(A;<W∀∃∀).

(v): Firstly, we observe that if α ∈ Filterσ(A;<) then Filterσ(A;<) \ α 6< {α}.
(This follows using the fact that if αi = α then Ai = Filter(Ai−1, αi;<) 3 αi

in the sequence of sets, i.e., Ai−1 \ {αi} 6< {αi}, which, by monotonicity,

implies Filterσ(A;<) \ {αi} 6< {αi}, since Filterσ(A;<) ⊆ Ai−1.) This implies,

using Lemma 3.2.5, that no strict subset of Filterσ(A;<) is equivalent to A. In

particular, for the case in which < equals <W∀∀∃, we obtain that Filterσ(A;<W∀∀∃

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

57 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

) ∈ SMEW(A).

Conversely, for B ∈ SMEW(A); to complete the proof we will show that there

exists σ ∈ Λ such that Filterσ(A;<W∀∀∃) = B. We choose σ to list the elements of

B last. Now, B <W∀∀∃ A, and so, B <W∀∀∃ {α} for each α ∈ A \ B. This implies that

Filterσ(A;<W∀∀∃) ⊆ B. Since, we have Filterσ(A;<W∀∀∃) ≡W∀∀∃ A, and B ∈ SMEW(A),
by definition of SMEW(A) we have Filterσ(A;<W∀∀∃) = B.

(vi): From (v) it follows that for any α ∈ Filterσ(A;<W∀∀∃) there must be w such

that α ∈ Optw(A), i.e., α ∈ POW(A), otherwise Filterσ(A;<W∀∀∃) \ {α} would

be equivalent to A, i.e., Filterσ(A;<W∀∀∃) 6∈ SMEW(A). Thus, Filterσ(A;<W∀∀∃) ⊆
POW(A).

As the proposition below states, when applying the filtering operation Filterσ(A;
<W∀∀∃), (i) equivalence is always maintained; and (ii) we always obtain a

minimal equivalent subset, and any such subset can be achieved for some

ordering. Part (iii) implies that for any labelling σ we have Filterσ(A;<W∀∀∃) =
PSOW(A) if PSOW(A) ≡W∀∀∃ A.

Proposition 1 immediately follows, using Lemma 3.3.11, and with part (iii) also

using Theorem 3.3.6.

Proposition 1. Let A ∈M and let σ be any labelling of A. Then we have:

(i) A ≡W∀∀∃ Filterσ(A;<W∀∀∃) ⊆ A.

(ii) SMEW(A) = {Filterσ(A;<W∀∀∃) : σ ∈ Λ}.

(iii) If A is ≡W -free and PSOW(A) ≡W∀∀∃ A then Filterσ(A;<W∀∀∃) = PSOW(A) for
any labelling σ.

Proof. (i): It follows from Lemma 3.3.11(iii).

(ii): See Lemma 3.3.11(v).

(iii): If A is ≡W -free, Theorem 3.3.6 implies that SMEW(A) = {PSOW(A)}, so

part (ii) then implies that Filterσ(A;<W∀∀∃) = PSOW(A) for every labelling σ. �

Let �W∀∀∃ be the strongly strict version of the dominance relation <W∀∀∃, i.e.,

A �W∀∀∃ B if and only if for all w ∈ W, ValA(w) > ValB(w). One can define

Filterσ(A;�W∀∀∃) analogously with the result being POW(A), irrespective of σ,

and without requiring any conditions on A.

Proposition 2. For A ∈M, Filterσ(A;�W∀∀∃) = POW(A).

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

58 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

For a proof of Proposition 2 see Theorem 1 of [BP15b].

3.3.3 PSOW(A) as unique minimal equivalent set

In order to show the uniqueness of a minimal equivalent set in certain

circumstances, we first prove some lemmas.

Lemma 3.3.12. For each α, β ∈ Ω, let Hα≥β = {w ∈ U : uw(α) ≥ uw(β)}. Let
W ⊆ U and let A ∈M.

(i) For α ∈ A, OptA
W(α) =W ∩ ⋂β∈A Hα≥β.

(ii) Suppose that for each α ∈ Ω, uw(α) is a continuous function over w ∈ U .
Then for each α, β ∈ Ω, Hα≥β is a topologically closed subset of U , and
OptA

W(α) is a topologically closed subset ofW.

Proof: (i): w ∈ W ∩ ⋂β∈A Hα≥β if and only if w ∈ W and for all β ∈ A,

uw(α) ≥ uw(β), i.e., w ∈ OptA
W(α).

(ii): The function G : U → IR, given by G(w) = uw(α) − uw(β), is continuous.

Then Hα≥β = {w ∈ U : G(w) ≥ 0}. Since [0,∞) is a closed subset of the reals,

Hα≥β is a closed subset of U , and therefore Hα≥β ∩W is a closed subset of W.

Using (i) OptA
W(α) is an intersection of closed subsets ofW, and so is closed.�

Lemma 3.3.13. Let A ∈ M and let W ⊆ U = IRp. Assume that for each α ∈ A,
uw(α) is a continuous function of w. Consider any measure on W such that
OptA

W(α) is measurable for each α ∈ A and such that W has non-zero measure.
Define Â to be elements α of A such that OptA

W(α) has non-zero measure.

(i) IfW is such that, for any open ball S in IRp intersecting withW, S ∩W has
non-zero measure then

⋃
α∈Â OptA

W(α) =W.

(ii) Assume that for any α, β ∈ A, if Wα=β = {w ∈ W : uw(α) = uw(β)} then
either Wα=β = W or Wα≥β has measure zero. If α and β are elements of Â
with α 6≡W β then OptA

W(α) ∩OptA
W(β) has measure zero.

Proof: (i): Assume that W is such that, for any open ball S in IRp intersecting

with W, S ∩ W has non-zero measure. To show that
⋃
α∈Â OptA

W(α) = W
we proceed by contradiction, so suppose that

⋃
α∈Â OptA

W(α) 6= W. Then

there exists w ∈ W ′′ = W \ ⋃
α∈Â OptA

W(α). Since
⋃
α∈A OptA

W(α) = W,

W ′′ ⊆ ⋃
α∈A\Â OptA

W(α), with the latter, by definition of Â, being of measure

zero. Thus W ′′ is of measure zero. Now, by Lemma 3.3.12, for any α ∈ A,

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

59 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

OptA
W(α) is a topologically closed subset of W. Since Â is finite,

⋃
α∈Â OptA

W(α)
is closed, soW ′′ is an open subset ofW. Then there exists an open ball S in IRp

with w ∈ S ∩W ⊆ W ′′. By the hypothesis, S ∩W has non-zero measure, which

contradictsW ′′ having zero measure.

(ii): Let α and β be elements of Â with α 6≡W β. Let W ′ = {w ∈ W : uw(α) =
uw(β)}. Since α 6≡W β, W ′ 6= W. By the hypothesis, we assume that W ′

has measure zero. Let W ′′ = OptA
W(α) ∩ OptA

W(β). Then for all w ∈ W ′′,
uw(α) = uw(β) soW ′′ ⊆ W ′, and thus,W ′′ has measure zero.

Lemma 3.3.14. Let A ∈ M and let W ⊆ U = IRp. Assume that for each α ∈ A,
uw(α) is a continuous function of w. Consider any measure on W such that
OptA

W(α) is measurable for each α ∈ A and such that W has non-zero measure.
We assume two further properties:

(a) W is such that, for any open ball S in IRp intersecting with W, S ∩W has
non-zero measure; and

(b) for any α, β ∈ A, if W ′ = {w ∈ W : uw(α) = uw(β)} then either W ′ = W
orW ′ has measure zero.

Then PSOW(A) equals the set of elements of A such that OptA
W(α) has non-zero

measure. If A is ≡W -free then there exists a unique setwise-minimal equivalent
subset for A, i.e., SMEW(A) is a singleton, and this equals PSOW(A).

Proof: Again, let Â be the set of elements α of A such that OptA
W(α) has non-zero

measure. Lemma 3.3.13(i) implies that
⋃
α∈Â OptA

W(α) = W. By Lemma 3.3.3,

this implies that Â ≡W∀∀∃ A.

Consider any α ∈ Â. Let Bα be the set of β ∈ A such that α 6≡W β,

and let Cα be
⋃
β∈Bα OptA

W(β). Lemma 3.3.13(ii) implies that for β ∈ Bα,

OptA
W(α) ∩ OptA

W(β) has measure zero, and thus, OptA
W(α) ∩ Cα has measure

zero. Since OptA
W(α) has non-zero measure, this implies that OptA

W(α) 6⊆ Cα.

Choose some w ∈ OptA
W(α) \ C, which implies that β ∈ Ow(A) (if and) only if

α ≡W β, and thus, α ∈ PSOW(A). We have then shown that Â ⊆ PSOW(A).

Also, Â ≡W∀∀∃ A implies, using Lemma 3.3.5, that for all α ∈ PSOW(A) there

exists β ∈ Â with β ≡W α. The definition of Â then ensures that α ∈ Â,

so we have PSOW(A) ⊆ Â. Therefore we have Â = PSOW(A). Hence,

PSOW(A) ≡W∀∀∃ A, so, by Theorem 3.3.6, if A is ≡W -free then PSOW(A) is the

unique setwise-minimal equivalent subset for A. �

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

60 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

We show that in certain very important classes of problem we do have

PSOW(A) ≡W∀∀∃ A, leading (by Theorem 3.3.6) to PSOW(A) being the unique

setwise-minimal equivalent subset for equivalence-free A. The result below

covers the linear case in which uw(α) = w ·α, but also much more general forms

of utility function. This contrasts with the general case in which PSOW(A) may

well not be equivalent to A; it is even easy to construct small discrete examples

in which PSOW(A) is empty; see e.g., Table 2 of [WO11].

Theorem 3.3.15. Let Ω = U = IRp and let W be a convex subset of U . Assume
that for each α ∈ Ω, {uw(α) : w ∈ W ′} is an analytic function of w, where W ′ is
the smallest affine space containing W. Assume that A (∈ M) is ≡W -free. Then
there exists a unique setwise-minimal equivalent subset for A, i.e., SMEW(A) is a
singleton, and this equals PSOW(A), which equals the set of elements α of A such
that OptA

W(α) has the same dimension asW.

The assumption that W is convex can be very much weakened. For instance,

we might assume that W is a subset of affine space W ′, and W is a subset of

the closure of its interior.

As well as the formal proof, we include a proof sketch which gives the basic idea

behind the proof for the linear case (and which extends to the general case).

Sketch of proof: Let dim(W) be the dimension of W. For any B ⊆ A,

W \⋃α∈B OptA
W(α) is an open subset ofW, which implies that it is either empty

or has dimension dim(W). It follows that
⋃
α∈Â OptA

W(α) =W, where Â is the set

of elements α of A such that OptA
W(α) has dimension dim(W). By Lemma 3.3.3,

we have Â ≡W∀∀∃ A, and Theorem 3.3.6 then implies that PSOW(A) ⊆ Â.

We next show that Â ⊆ PSOW(A). Let α ∈ Â, and let Cα be
⋃
β∈A\{α}OptA

W(β).
For β ∈ A \ {α} let Wα=β = OptA

W(α) ∩ OptA
W(β), so that w · (α − β) = 0

for all w ∈ Wα=β. If it were the case that dim(Wα=β) = dim(W) then

w · (α − β) = 0 for all w ∈ W, and so α ≡W β, which contradicts A being ≡W -

free. Hence, dim(Wα=β) < dim(W). This implies that dim(Cα ∩ OptA
W(α)) ≤

maxβ∈A\{α} dim(Wα=β) < dim(W) = dim(OptA
W(α)), and thus, OptA

W(α) 6⊆ Cα,

so there exists w in OptA
W(α) \ Cα. α is strictly optimal in scenario w, and thus,

strictly possibly optimal, i.e., α ∈ PSOW(A), showing that Â ⊆ PSOW(A).

Therefore, Â = PSOW(A). and thus, PSOW(A) ≡W∀∀∃ A, so, by Theorem 3.3.6,

PSOW(A) is the unique setwise-minimal equivalent subset for A. �

Proof: By considering a standard measure on the smallest affine space con-

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

61 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.3 Filtering A and Minimal Equivalent
Subsets

taining W, we have that OptA
W(α) is measurable for each α ∈ A and W

has non-zero measure. We will use Lemma 3.3.14. Also, (a) for any open

ball S in IRp intersecting with W, S ∩ W has non-zero measure. Regarding

condition (b) of Lemma 3.3.14, consider for any α, β ∈ A, the set Wα=β =
{w ∈ W : uw(α) = uw(β)}. Let g(w) = uw(α) − uw(β) for w ∈ W ′, which is an

analytic function on W ′. If Wα=β has non-zero measure, then it contains an

open subset of W ′ and so has dimension the same as W. Thus, g is zero on an

open subset ofW ′ so is the zero function, since it is analytic. Thus,Wα=β =W.

Lemma 3.3.14 implies that there exists a unique setwise-minimal equivalent

subset for A, i.e., SMEW(A) is a singleton, and this equals PSOW(A), which

equals the set of elements of A such that OptA
W(α) has non-zero measure, i.e.,

with dimension equal to that ofW. �

Lemma 3.3.16. Assume that W is a convex subset of IRp, and consider A ∈ M
and for w ∈ IRp, α ∈ IRp, uw(α) = w · α. Then SMPOW(A) = PSOW(A).

Proof: SMPOW(A) ⊇ PSOW(A) follows from Lemma 3.3.9. Regarding the

converse, consider any γ ∈ SMPOW(A) and let A′ consist of all α ∈ A such

that α 6≡W γ. Then, by definition of SMPOW(A), for all α ∈ A′ there exists

wα ∈ W such that wα ∈ OptA
W(γ)\OptA

W(α). Let w equal 1
|A′|
∑
α∈A′ wα. Consider

any β ∈ A′. Since, for any α ∈ A′, wα ∈ OptA
W(γ), wα · γ − wα · β ≥ 0, and

this is strictly positive if α = β, since wα /∈ OptA
W(α). Thus, w · γ − w · β =

1
|A′|
∑
α∈A′(wα · γ − wα · β) > 0. This implies that w /∈ OptA

W(β) for all

β ∈ A′, and w ∈ OptA
W(γ), showing that γ ∈ PSOW(A). We have shown that

SMPOW(A) ⊆ PSOW(A), and hence, SMPOW(A) = PSOW(A). �

From the theorem we can prove the following further equality, which is useful

computationally. In particular, it implies Corollary 3.3.16.2, that MPOW is an

Optimality Operator in the sense defined in [WRM15], since MPOW always

satisfies the first and third axiom, and PSOW satisfies the first and second

axiom, so all three axioms are satisfied if PSOW equals MPOW . This enables

a good deal of flexibility in the use of incremental algorithms for computing

MPOW . Proposition 2 of [WRM15] then implies, for instance, that a bottom-up

incremental algorithm can be used to compute PSOW(A).

Corollary 3.3.16.1. With the conditions of Theorem 3.3.15, and with linear
utility functions, PSOW(A) = MPOW(A).

Proof: Theorem 3.3.15 implies that PSOW(A) ≡W∀∀∃ A and Lemma 3.3.16

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

62 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.4 Setwise Max Regret

implies that that for any B ⊆ A, SMPOW(B) = PSOW(B). Lemma 3.3.10 then

shows that MPOW(A) = PSOW(A). �

Corollary 3.3.16.2. With the conditions of Theorem 3.3.15, and with linear util-
ity functions, PSOW is an Optimality Operator onM (in the sense of [WRM15]),
i.e., for all A,B ∈M:

(i) PSOW(A) ⊆ A

(ii) If B ⊆ A then PSOW(A) ∩ B ⊆ PSOW(B)

(iii) If PSOW(A) ⊆ B ⊆ A then PSOW(B) = PSOW(A)

Proof. (i): POW(A) is by definition a subset of A.

(ii): From Theorem 3.3.6(ii) follows that α ∈ PSOW(A) if and only if

A \ {α} 6<W∀∀∃ {α}. Thus, for any subset B of A, we get that if α ∈ PSOW(A)
then B \ {α} 6<W∀∀∃ {α}, which implies that if α is also member of B, then

α ∈ PSOW(B). Therefore, if α ∈ PSOW(A) and α ∈ B, then α ∈ PSOW(B),
i.e., PSOW(A) ∩ B ⊆ PSOW(B).

(iii): From Theorem 3.3.15 follows that PSOW(A) is the unique minimal

equivalent subset of A. Thus, since PSOW(A) ⊆ B ⊆ A, PSOW(A) is the unique

minimal equivalent subset also for B, i.e., PSOW(A) = PSOW(B).

�

3.4 Setwise Max Regret

The condition A <W∀∀∃ B states that in every scenario, the set of alternatives A

is at least as good as the set B. A natural related numerical measure is setwise

max regret SMRW(A,B) (See Section 2.3.2.1) since we have SMRW(A,B) ≤ 0 if

and only if A <W∀∀∃ B (see Proposition 3.4.1 below).

The definitions and results from earlier sections (apart from Section 3.3.3),

regarding <W∀∀∃, SME, PO, PSO and UD, depended only on the orderings <w,

for w ∈ W, and so were ordinal, in the sense that they are not affected by any

strictly monotonic transformations of each function uw (which can be different

for each w). However, this is not the case for SMR, which has much weaker

invariance properties.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

63 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.4 Setwise Max Regret

In contrast with Section 2.3.2.1, Here we consider an alternative definition of

setwise minimax regret by replacing maxw∈U with supw∈U in Equation 2.19:

SMRW(A,B) = sup
w∈W

(ValB(w)− ValA(w)) (3.1)

We say that SMRW(A,B) is achieved if there exists w ∈ W such that ValB(w) −
ValA(w) = SMRW(A,B), so that then SMRW(A,B) = maxw∈W ValB(w) − ValA(w)
which corresponds to the definition of setwise max regret in Section 2.3.2.1;

this always happens, for instance, if for each α ∈ Ω, uw(α) is a continuous

function of w, and W is compact. The reason to consider a more generic

definition is to highlight properties that are valid only if SMRW(A,B) is achieved.

We give some further basic properties of the setwise maximum regret function

below. Parts (i) and (ii) give decomposability properties, with (i) being more

useful computationally. (ii) is a slight generalisation of Observation 4 in

[VB09]. (iii) relates the function SMRW with the relation <W∀∀∃, and (iv) with

the Possibly Optimal operator POW , and (v) with the Possibly Strictly Optimal

operator PSOW . Property (vi) enables pre-processing of the sets A and B.

Proposition 3. Consider A,B ∈M andW ⊆ U .

(i) SMRW(A,B) = maxβ∈B SMRW(A, {β})

(ii) SMRW(A,B) = maxα∈POW (A) SMROptA
W (α)({α},B).

(iii) SMRW(A,B) ≤ 0 if and only if A <W∀∀∃ B.

(iv) If SMRW(A,B) is achieved then SMRW(A,B) ≥ 0 if and only if POW(A∪B)∩
B 6= ∅.

(v) For equivalence-free A, and α ∈ A, SMRW(A \ {α}, {α}) > 0 if and only if
PSOW(A) 3 α.

(vi) If A′ ≡W∀∀∃ A and B′ ≡W∀∀∃ B then SMRW(A′,B′) = SMRW(A,B).

This proposition follows immediately from parts of the following lemma.

Lemma 3.4.1. (i) SMRW(A,B) is monotonically decreasing in A, monotoni-
cally increasing in B and monotonically increasing in W, i.e., if A′ ⊇ A,
and B′ ⊆ B, andW ′ ⊆ W then SMRW ′(A′,B′) ≤ SMRW(A,B).

(ii) SMRW(A,B) = maxβ∈B SMRW(A, {β})

(iii) SMRW(A,B) ≤ 0 if and only if A <W∀∀∃ B.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

64 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.4 Setwise Max Regret

(iv) If SMRW(A,B) is achieved then SMRW(A,B) ≥ 0 if and only if POW(A∪B)∩
B 6= ∅.

(v) If A′ ≡W∀∀∃ A and B′ ≡W∀∀∃ B then SMRW(A′,B′) = SMRW(A,B).

(vi) If A′ ⊆ A and B′ ⊆ B and A′ <W∀∀∃ A \ A′ and B′ <W∀∀∃ B \ B′ then
SMRW(A′,B′) = SMRW(A,B).

(vii) If B′ ⊆ B and A <W∀∀∃ B \ B′ and SMRW(A,B) ≥ 0 then SMRW(A,B′) =
SMRW(A,B).

(viii) SMRW(A,B) = maxα∈POW (A) SMROptA
W (α)({α},B).

(ix) For equivalence-free A, and α ∈ A, SMRW(A \ {α}, {α}) > 0 if and only if
α ∈ PSOW(A).

Proof: (i): The fact that A′ ⊇ A and B′ ⊆ B implies that for all w ∈ U ,

SMRw(A′,B′) ≤ SMRw(A,B). Then SMRW ′(A,B) = supw∈W ′ SMRw(A′,B′) ≤
supw∈W SMRw(A′,B′) ≤ supw∈W SMRw(A,B) = SMRW(A,B).

(ii): We have that maxβ∈B SMRW(A, {β}) = maxβ∈B supw∈W SMRw(A, {β}), wh-

ich equals supw∈W maxβ∈B SMRw(A, {β}) = supw∈W SMRw(A,B) = SMRW(A,B).

(iii): SMRW(A,B) ≤ 0, i.e., supw∈W ValB(w) − ValA(w) ≤ 0, if and only if

ValB(w) ≤ ValA(w) for all w ∈ W, which is if and only if A <W∀∀∃ B, by

Lemma 3.2.1.

(iv): Assume that SMRW(A,B) is achieved; then SMRW(A,B) ≥ 0 if and only if

there exists w ∈ W such that SMRw(A,B) ≥ 0. Now, SMRw(A,B) ≥ 0 if and only

if maxβ∈B uw(β) − maxα∈A uw(α) ≥ 0, which is if and only if there exists β ∈ B

such that for all γ ∈ A ∪ B, uw(β) ≥ uw(γ). This implies that SMRw(A,B) ≥ 0 if

and only if i.e., B ∩ Ow(A ∪ B) is non-empty. Thus, SMRW(A,B) ≥ 0 if and only

if B ∩ ⋃w∈W Ow(A ∪ B) is non-empty, i.e., POW(A ∪ B) ∩ B 6= ∅.

(v): From Lemma 3.2.1(ii) follows that A ≡W∀∀∃ A′ ⇐⇒ for all w ∈ W,

ValA(w) = ValA′(w). Thus, SMRW(A,B) = supw∈W ValB(w) − ValA(w) =
supw∈W ValB′(w)− ValA′(w) = SMRW(A′,B′).

(vi): From Lemma 3.3.11(i) follows that if A′ ⊆ A and A′ < A \ A′ then A ≡ A′.

Thus, from (v) follows that if A′ ⊆ A and B′ ⊆ B and A′ <W∀∀∃ A \ A′ and

B′ <W∀∀∃ B \ B′, then SMRW(A′,B′) = SMRW(A,B).

(vii): Assume that B′ ⊆ B and A <W∀∀∃ B \ B′ and SMRW(A,B) ≥ 0. (ii)

implies that SMRW(A,B) = max(SMRW(A,B′), SMRW(A,B\B′)), and (iii) implies

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

65 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.5 Implication for Incremental Preference
Elicitation

that SMRW(A,B \ B′) ≤ 0. Thus, SMRW(A,B′) ≥ SMRW(A,B \ B′) and so

SMRW(A,B′) = SMRW(A,B).

(viii): SMRW(A,B) = supw∈W ValB(w) − ValA(w), which can be written as

maxα∈POW (A) supw∈OptA
W (α) ValB(w) − ValA(w), since

⋃
α∈POW (A) OptA

W(α) = ⋃
α∈A

OptA
W(α) = W, using Lemma 3.3.3. For w ∈ OptA

W(α), ValA(w) = uw(α), so

supw∈OptA
W (α) ValB(w) − ValA(w) = supw∈OptA

W (α) ValB(w) − uw(α), which equals

SMROptA
W (α)({α},B), showing the result.

(ix): Consider equivalence-free A, and α ∈ A. Then, SMRW(A \ {α}, {α}) > 0
⇐⇒ supw∈W uw(α)−ValA\{α}(w) > 0, which is if and only if there exists w ∈ W
such that for all γ ∈ A \ {α}, uw(α) > uw(γ), which, since A is equivalence-free,

holds if and only if PSOW(A) 3 α. �

The following result shows that we can pre-process A and B using UDW and

<W∀∃∀. It follows easily using Proposition 3.

Lemma 3.4.2. Consider any A,B ∈M.

(i) SMRW(UDW(A),UDW(B)) = SMRW(A,B).

(ii) If B′ ⊆ B and A <W∀∃∀ B \ B′ and SMRW(A,B) ≥ 0 then SMRW(A,B′) =
SMRW(A,B).

Proof: (i): By Lemma 3.3.2, UDW(A) ≡W∀∀∃ A and UDW(B) ≡W∀∀∃ B. Then

Lemma 3.4.1(v) implies the result.

(ii): Assume B′ ⊆ B and A <W∀∃∀ B \ B′ and SMRW(A,B) ≥ 0. Lemma 3.4.1(ii)

implies SMRW(A,B) = max(SMRW(A,B′), SMRW(A,B \ B′)). Because A <W∀∃∀
B \ B′, we have by Lemma 3.4.1(iii) that SMRW(A,B \ B′) ≤ 0. Thus,

SMRW(A,B \ B′) ≤ SMRW(A,B′) and therefore, SMRW(A,B′) = SMRW(A,B).
�

3.5 Implication for Incremental Preference Elicita-

tion

Let α and β be alternatives. Preference model w is said to satisfy a preference

statement α ≥ β if uw(α) ≥ uw(β), i.e., α is at least as good as β given w. For

set of alternatives A the preference statement α ≥ A means α ≥ β for all β ∈ A.

Thus, for α ∈ A, w satisfies α ≥ A if and only if (given w) α is a most preferred

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

66 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.5 Implication for Incremental Preference
Elicitation

element in A, α ∈ Ow(A), i.e., w makes α optimal in A. This holds if and only if

w ∈ OptA
W(α).

In incremental elicitation a common strategy is to generate a small set of

alternatives A, and to ask the user which element of A is most preferred. If

they reply “α” then this is interpreted as α ≥ A. We will then update W to the

set of all w ∈ W such that α is a most preferred option in A, i.e., we updateW
to OptA

W(α).

There can be forms of inconsistency, of different kinds, between the user

answers and the model we have of the user.

Feasible answer: We say that, given set of preference models W, alternative

α is a feasible answer to query A if OptA
W(α) is non-empty, i.e., there exists some

user preference model inW under which α is optimal in A.

Strongly feasible answer: We say that α is a strongly feasible answer to query
A (givenW) if OptA

W(α) has the same dimension asW.

Example 13. In the example in Figure 3.3, with the query A = {(10, 4), (4, 7),
(6, 6), (5, 5)}, the alternatives (10, 4) and (4, 7) are strongly feasible answers, and
(6, 6) is a feasible answer, and (5, 5) is not a feasible answer.

The following result, which follows from Theorem 3.3.15, characterises strongly
feasible answers to queries.

Proposition 4. Consider A ∈M andW ⊆ U .

(i) α is a feasible answer to query A givenW if and only if α ∈ POW(A).

(ii) Under the conditions of Theorem 3.3.15 on Ω, U ,W and u we have that α is
a strongly feasible answer to query A givenW if and only if α ∈ PSOW(A).

Proof: (i): α is a feasible answer to query A given W if and only if OptA
W(α) is

non-empty, i.e., α ∈ POW(A).

(ii): α is a strongly feasible answer to query A given W if and only if OptA
W(α)

has the same dimension asW. If A is equivalence-free then, by Theorem 3.3.15,

this is if and only if α ∈ PSOW(A).

More generally, it is sufficient to show that OptA
W(α) has the same dimension as

W if and only if α ∈ PSOW(A).

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

67 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.5 Implication for Incremental Preference
Elicitation

Figure 3.3: utility function uw(·) for each alternative in A = {(10, 4), (4, 7),
(6, 6), (5, 5)}, where w ∈ U = {(w1, w2) : w1 + w2 = 1}. The alternative (10, 4)
and (4, 7) are strongly feasible answers, and (6, 6) is a feasible answer, and (5, 5)
is not a feasible answer

Choose an equivalence-free subset A′ of A containing α such that every element

of A is equivalent with some element of A′. Then OptA
W(α) = OptA′

W(α). Hence,

OptA
W(α) has the same dimension as W if and only if OptA′

W(α) has the same

dimension as W, which, by Theorem 3.3.15, is if and only if α ∈ PSOW(A′),
which is if and only if α ∈ PSOW(A), as required. �

If the user chooses α from A, and α is not a feasible answer to A, then we get an

inconsistency since the updated W will be empty. Suppose now, on the other

hand, α is not a strongly feasible answer to A. We can still consistently update

W, so this is a less strong kind of inconsistency; however, such an answer would

still be seriously troubling. For instance, suppose W ⊆ IRp, and consider any

probability distribution overW, regarding which is the true user model w, such

that (as one would expect) the probability distribution is compatible with the

measure of the sets. If α is not a strongly feasible answer to query A then the

probability that w is such that α ≥ A holds would be zero (since OptA
W(α) has

then measure zero in W, being of lower dimension than W). A choice, by the

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

68 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.6 EEU Method for Testing A <W
∀∀∃ B and

Computing SMRW(A, B)

user, of α would hence correspond with an event of probability zero.

To ensure that every answer to a query A is feasible, we thus require that

POW(A) = A. And, to ensure that every answer to A is strongly feasible, we

require that PSOW(A) = A, i.e., that every element of A is strictly possibly

optimal in A.

We thus argue that the standard methods for generating queries in incremental

preference learning should be modified to ensure that every element in the

query set is strictly possibly optimal. Learning an inconsistency could in

theory be useful information, allowing the potential of updating the model in

some way to restore consistency; however, this would probably have a heavy

computational cost, and in a practical application, one will want to avoid

the incremental elicitation procedure breaking down. Since Theorem 3.3.15

implies that PSOW(A) is non-empty, (and indeed equivalent to A) we can

therefore replace a potential query A by PSOW(A).

As we have discussed in Section 2.3.2.2, choosing the subset A of a specific

cardianlity k, of the set of available alternatives B, that minimises the setwise

regret SMRW(A,B) is a desirable and well-founded choice for an informative

query. However, it can easily happen that, for such a query A, we have

PSOW(A) 6= A and even POW(A) 6= A. Such a choice of A is then in danger

of leading to an inconsistency, as described above. Fortunately, one can easily

solve this problem by replacing A by PSOW(A), since if A maximises setwise

regret then PSOW(A) also maximises setwise regret (under the conditions

in Theorem 3.3.15 on Ω, U , W and u) because SMRW(PSOW(A),B) =
SMRW(A,B), by Theorem 3.3.15 and Proposition 3.4.1.

3.6 EEU Method for Testing A <W∀∀∃ B and Comput-

ing SMRW(A,B)

Computing the extreme points of W can lead for the linear case to an easy

way of testing if α <W β (for α, β ∈ IRp): it is easy to see that α <W β

holds if and only if for each extreme point w of W, we have w · (α − β) ≥ 0
[KVVA17]. Similarly, it follows immediately that standard maximum regret

over the convex polytope W can be computed using the extreme points of W,

as observed e.g., in [Tim13]. However, for setwise max regret it is not sufficient

to consider the extreme points of W. Here we develop a novel extreme points

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

69 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.6 EEU Method for Testing A <W
∀∀∃ B and

Computing SMRW(A, B)

method for testing A <W∀∀∃ B and computing SMRW(A,B), by moving to a higher

dimensional space.

Epigraph γ(W ,A) of the utility function ValA on W: Given W, the utility

function ValA(w) (over w ∈ W) can be viewed as a subset ofW×IR, and we can

test A <W∀∀∃ B by considering such subsets. Let us define γ(W ,A) ⊆ W × IR ⊆
IRp × IR to be {(w, r) : w ∈ W , r ≥ ValA(w)}, i.e., the epigraph [BV04] of the

utility function ValA onW. IfW is convex and compact and for all α ∈ A, uw(α)
is a convex and continuous function of w ∈ W, then γ(W ,A) is a closed convex

set. We write Ext(γ(W ,A)) for the extreme points of γ(W ,A). For any W ⊆ U ,

and any α ∈ IRp we define JαW to be the set {(w, r) : w ∈ W & r ≥ uw(α)}.

We first give two basic lemmas involving the set JαW defined above.

Lemma 3.6.1. Define JαW = {(w, r) : w ∈ W , r ≥ uw(α)}.

(i) IfW is closed and uw(α) is continuous with respect to w then JαW is a closed
subset of IRp × IR.

(ii) IfW is convex and uw(α) is a convex function of w then JαW is convex. (uw(α)
is a convex function means that for any s ∈ (0, 1), and any w1, w2 ∈ IRp,
uw(α) ≤ suw1(α) + (1− s)uw2(α) where w = sw1 + (1− s)w2.)

Proof: (i): Showing JαW is closed if W is closed and uw(α) is continuous:

Suppose (w, r) /∈ JαW . Either (a) w /∈ W or (b) r < uw(α). If (a) w /∈ W then

the fact thatW is closed implies that there’s an open ball S in IRp containing w

and such that S ∩W = ∅. Let S ′ = S × (a, b) for any open interval (a, b) of IR

containing r. Then S ′ is an open ball in IRp×IR, and (w, r) ∈ S ′ and S ′∩JαW = ∅.

If (b) r < uw(α): let ε = 1
3(uw(α)− r). By continuity of uw(α), there exists δ > 0

such that for all w′ ∈ IRp with |w′ − w| < δ we have |uw′(α) − uw(α)| < ε. Let

Sδ = {w′ ∈ IRp : |w′ − w| < δ}. Let S ′′ = Sδ×(r−ε, r+ε) which contains (w, r).
For any (w′, r′) ∈ S ′′, |uw′(α) − uw(α)| < ε and |r′ − r| < ε so |uw′(α) − r′| > ε,

since |uw(α)− r| = 3ε. Thus, S ′′ is an open set containing (w, r) that is disjoint

from JαW .

We’ve shown that for any (w, r) /∈ JαW there exists an open set containing (w, r)
that is disjoint from JαW , which proves that (IRp × IR) \ JαW is an open subset of

IRp × IR, and thus, JαW is a closed subset.

(ii): Showing JαW is convex if W is convex and uw(α) is a convex function:

Consider any (w1, r1), (w2, r2) ∈ JαW , let s ∈ (0, 1) and let (w0, r0) = s(w1, r1) +

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

70 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.6 EEU Method for Testing A <W
∀∀∃ B and

Computing SMRW(A, B)

(1 − s)(w2, r2), so that w0 = sw1 + (1 − s)w2 and r0 = sr1 + (1 − s)r2. Since,

(w1, r1), (w2, r2) ∈ JαW we have r1 ≥ uw1(α) and r2 ≥ uw2(α). Since uw(α) is a

convex function of w we have uw0(α) ≤ suw1(α)+(1−s)uw2(α) ≤ sr1+(1−s)r2 =
r0. Thus, (w0, r0) ∈ JαW , proving that JαW is convex. �

Lemma 3.6.2. Consider any finite subset A of IRp, and any W ⊆ U , and any
α ∈ IRp. Define JαW = {(w, r) : w ∈ IRp, r ≥ uw(α)}. Then:

(i) γ(W , {α}) = {(w, r) : w ∈ W & r ≥ uw(α)} = (W × IR) ∩ JαW ;

(ii) γ(W ,A) = ⋂
α∈A γ(W , {α}) = (W × IR) ∩ ⋂α∈A J

α
W .

(iii) IfW is closed and for all α ∈ A, uw(α) is continuous then γ(W ,A) is closed.

(iv) If W is convex and for all α ∈ A, uw(α) is a convex function of w then
γ(W ,A) is convex.

(v) If W is a convex polytope and for w ∈ IRp, α ∈ IRp, uw(α) = w · α then
γ(W ,A) is a convex polytope.

Proof: (i): (w, r) ∈ γ(W , {α}) if and only if w ∈ W and r ≥ Val{α}(w) = uw(α),
so γ(W , {α}) = (W × IR) ∩ JαW .

(ii): Given w ∈ W, we have (w, r) ∈ γ(W ,A) if and only if and r ≥ ValA(w) =
maxα∈A uw(α) if and only if for all α ∈ A, r ≥ uw(α), which, by part (i), is if and

only if for all α ∈ A, (w, r) ∈ γ(W , {α}). Thus, γ(W ,A) = ⋂
α∈A γ(W , {α}) =

(W × IR) ∩ ⋂α∈A J
α
W .

(iii): Assume that W is closed and for all α ∈ A, uw(α) is continuous.

Lemma 3.6.1(i) implies that for all α ∈ A, JαW is closed, which implies that

γ(W ,A) is closed using (ii), since an intersection of closed sets is closed.

(iv): Assume that W is convex and for all α ∈ A, uw(α) is a convex function of

w. Then Lemma 3.6.1(ii) implies that for all α ∈ A, JαW is convex, which implies

that γ(W ,A) is convex using (ii), since an intersection of convex sets is convex.

(v): Assume thatW is a convex polytope and for w ∈ IRp, α ∈ IRp, uw(α) = w ·α.

Then, for each α ∈ A, JαW is a closed half-space and thus a convex polytope.

Therefore, using (ii), γ(W ,A) is a convex polytope, since it is the intersection

of a finite number of convex polytopes. �

The following technical lemma is important in proving Lemmas 3.6.4 and 3.6.5

and thus Theorem 3.6.6.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

71 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.6 EEU Method for Testing A <W
∀∀∃ B and

Computing SMRW(A, B)

For E ⊆ IRp we let CH(E) be the convex hull of E.

Lemma 3.6.3. Assume that W is a compact and convex subset of IRp, and for
all α ∈ A, uw(α) is a convex and continuous function of w ∈ W. There exists
real value N such that for all w ∈ W, N > ValA(w). Define γN(W ,A) to be the
intersection of γ(W ,A) with the half-space {(w, r) : r ≤ N}. Assume thatW is a
convex polytope. Then

(i) γN(W ,A) is compact and convex.

(ii) CH(Ext(γN(W ,A))) = γN(W ,A).

(iii) If (w, r) ∈ Ext(γ(W ,A)) then r = ValA(w).

(iv) Ext(γ(W ,A)) ⊆ γN(W ,A).

(v) Ext(γ(W ,A)) ⊆ Ext(γN(W ,A)).

(vi) If (w, r) ∈ Ext(γN(W ,A)) \ Ext(γ(W ,A)) then r = N .

Proof: Firstly, ValA(w) is a continuous function on compact setW so is bounded;

we can therefore choose N and M such that for all w ∈ W, M < ValA(w) < N .

(i): γN(W ,A) is bounded and thus compact, since it is a subset of the cylinder

W × [M,N], andW is compact. γN(W ,A) is therefore a compact and convex.

(ii): Using a well-known property of extreme points (e.g., the Krein–Milman

theorem [Fan63]), (i) implies CH(Ext(γN(W ,A))) = γN(W ,A).

(iii): This follows from the fact that the line {(w, r′) : r′ ≥ ValA(w)} is a subset

of γ(W ,A).

(iv): Since N > ValA(w), from (iii) follows that Ext(γ(W ,A)) ⊆ γN(W ,A).

(v): From (iv) follows that if it were the case that (w, r) ∈ Ext(γ(W ,A)) \
Ext(γN(W ,A)), then there would exist a line segment containing (w, r) as

inner point, within γN(W ,A), and thus, within γ(W ,A), which contradicts

(w, r) ∈ Ext(γ(W ,A)). Therefore, Ext(γ(W ,A)) ⊆ Ext(γN(W ,A)).

(vi): Assume that (w, r) ∈ Ext(γN(W ,A)) \ Ext(γ(W ,A)). Now, (w, r) ∈
γ(W ,A) \ Ext(γ(W ,A)), so there exists a line segment L within γ(W ,A) which

has (w, r) as an internal point. Let L′ be the line segment intersected with the

half-space {(w, r) : r ≤ N}. Then L′ ⊆ γN(W ,A). Since (w, r) ∈ Ext(γN(W ,A)),
(w, r) cannot be an internal point of L′, and so r must equal N . �

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

72 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.6 EEU Method for Testing A <W
∀∀∃ B and

Computing SMRW(A, B)

Lemma 3.6.4. Assume that W is a compact and convex subset of IRp, and
for all α ∈ A, uw(α) is a convex and continuous function of w ∈ W. Let
Θ(W ,A) = {(w,ValA(w)) : w ∈ W}. Then CH(Ext(γ(W ,A))) contains Θ(W ,A),
i.e., for all w ∈ W, CH(Ext(γ(W ,A))) contains (w,ValA(w)).

Proof: Consider any w ∈ W. By definition (w,ValA(w)) is a point in γ(W ,A).
Lemma 3.6.3 implies the existence of N such that for all w ∈ W, N > ValA(w)
and with (w,ValA(w)) ∈ γN(W ,A). Using Lemma 3.6.3(ii), CH(Ext(γN(W ,A))) 3
(w,ValA(w)) so we can write (w,ValA(w)) as

∑J
j=1 τjqj where qj ∈ Ext(γN(W ,A)),

and the τj are non-negative reals that sum to 1. We will show that τj = 0 unless

qj ∈ Ext(γ(W ,A)). This then implies that (w,ValA(w)) ∈ CH(Ext(γ(W ,A))),
proving Lemma 3.6.4.

So, suppose that there exists k with τk > 0 and qk ∈ CH(Ext(γN(W ,A))) \
Ext(γ(W ,A)). By Lemma 3.6.3(vi), qk = (w′, N) for some w′ ∈ W and

N > ValA(w′). Let q′ = ∑J
j=1 τjq

′
j, where q′k = (w′,ValA(w′)), and q′j = qj for

j 6= k. Then for all j, q′j ∈ γ(W ,A) and so, by convexity of γ(W ,A), q′ ∈ γ(W ,A).
Also, q′ can be written as (w, r′) for some r′, and r′ < ValA(w). The definition of

γ(W ,A) implies that (w, r′) /∈ γ(W ,A), giving the required contradiction. �

The following result states that γ(W ,A) is determined by its extreme points,

even though it is not compact.

Lemma 3.6.5. Consider any finite subsets A and B of IRp, and any compact
and convex subset W of IRp, and assume that for all α ∈ A ∪ B, uw(α) is a
convex and continuous function of w ∈ W. Then γ(W ,A) = γ(W ,B) ⇐⇒
Ext(γ(W ,A)) = Ext(γ(W ,B)).

Proof: If γ(W ,A) = γ(W ,B) then obviously Ext(γ(W ,A)) = Ext(γ(W ,B)).
Regarding the converse, assume that Ext(γ(W ,A)) = Ext(γ(W ,B)). For any w ∈
W, (w,ValA(w)) ∈ γ(W ,A) and (w, r) ∈ γ(W ,A) if and only if r ≥ ValA(w). Now,

Lemma 3.6.4 implies that (w,ValB(w)) is in the convex hull of Ext(γ(W ,B)), and

thus, in the convex hull of Ext(γ(W ,A)); hence, (w,ValB(w)) ∈ γ(W ,A), which

shows that ValB(w) ≥ ValA(w), which holds for an arbitrary element w of W.

This implies γ(W ,A) ⊇ γ(W ,B). Switching the roles of A and B in the argument

shows also γ(W ,A) ⊆ γ(W ,B), and thus, γ(W ,A) = γ(W ,B). �

The following result leads to two different ways of testing A <W∀∀∃ B. Firstly,

we can compute the extreme points of both γ(W ,A) and γ(W ,A ∪ B); by (ii),

these two sets of extreme points are equal if and only if A <W∀∀∃ B. Alternatively,

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

73 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.6 EEU Method for Testing A <W
∀∀∃ B and

Computing SMRW(A, B)

we can test A <W∀∀∃ B, using part (iii), after computing Ext(γ(W ,A)). We can

compute the pairwise max regret SMRW(A,B) as maxβ∈B SMRW(A, {β}) (see

Lemma 3.4.1), and use part (iv) below.

Theorem 3.6.6. Consider any finite subsets A and B of IRp, any β ∈ IRp, and any
compact and convex subset W of IRp, and assume that for all α ∈ A ∪ B ∪ {β},
uw(α) is a convex and continuous function of w ∈ W.

(i) A <W∀∀∃ B ⇐⇒ γ(W ,A) ⊆ γ(W ,B) ⇐⇒ γ(W ,A) = γ(W ,A ∪ B).

(ii) A <W∀∀∃ B if and only if Ext(γ(W ,A)) = Ext(γ(W ,A ∪ B)).

(iii) A <W∀∀∃ B holds if and only if for all (w, r) ∈ Ext(γ(W ,A)) and for all β ∈ B
we have uw(β) ≤ r.

(iv) SMRW(A, {β}) = max {uw(β)− r : (w, r) ∈ Ext(γ(W ,A))}.

Proof: Regarding (i): Lemma 3.2.1(i) implies that A <W∀∀∃ B ⇐⇒ for all

w ∈ W, ValA(w) ≥ ValB(w), which is if and only if γ(W ,A) ⊆ γ(W ,B). Using

Lemma 3.6.2, γ(W ,A∪B) = γ(W ,A)∩γ(W ,B). This implies γ(W ,A) ⊆ γ(W ,B)
⇐⇒ γ(W ,A) = γ(W ,A ∪ B).

(ii): By (i), A <W∀∀∃ B if and only if γ(W ,A) = γ(W ,A ∪ B), which, by

Lemma 3.6.5 is if and only if Ext(γ(W ,A)) = Ext(γ(W ,A ∪ B)).

(iii): Using (i), A <W∀∀∃ {β} holds if and only if γ(W ,A) ⊆ γ(W , {β}). Recall

that Θ(W ,A) = {(w,ValA(w)) : w ∈ W}. Now, γ(W ,A) ⊆ γ(W , {β}) ⇐⇒
Θ(W ,A) ⊆ γ(W , {β}) which is if and only if CH(Ext(γ(W ,A))) ⊆ γ(W , {β})
because Θ(W ,A) ⊆ CH(Ext(γ(W ,A))) ⊆ γ(W ,A), by Lemma 3.6.4. Because,

by Lemma 3.6.2(iv), γ(W , {β}) is convex, CH(Ext(γ(W ,A))) ⊆ γ(W , {β}) holds

if and only if Ext(γ(W ,A)) ⊆ γ(W , {β}), which, using Lemma 3.6.2(i), is if

and only if for all (w, r) ∈ Ext(γ(W ,A)), uw(β) ≤ r. Then A <W∀∀∃ B holds

if and only if for all β ∈ B, A <W∀∀∃ {β}, which holds if and only if for all

(w, r) ∈ Ext(γ(W ,A)) and for all β ∈ B we have uw(β) ≤ r.

(iv): For S ⊆ γ(W ,A), let us define K(S) = max {uw(β)− r : (w, r) ∈ S}. First

we show that K(CH(S)) = K(S). To see this, consider (w1, r1), (w2, r2) ∈ S

and let (w, r) be a convex combination of them, i.e., (w, r) = s(w1, r1) +
(1 − s)(w2, r2) for some s ∈ (0, 1). Convexity of uw(β) implies that uw(β) ≤
suw1(β) + (1 − s)uw2(β), so uw(β) − r = uw(β) − sr1 − (1 − s)r2 ≤ s(uw1(β) −
r1) + (1 − s)(uw2(β) − r2), so uw(β) − r ≤ max(uw1(β) − r1, uw2(β) − r2).
This shows that adding convex combinations of elements of S does not

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

74 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS

3.6 EEU Method for Testing A <W
∀∀∃ B and

Computing SMRW(A, B)

change K(S) and thus, K(CH(S)) = K(S). Proving (iv) amounts to proving

that SMRW(A, {β}) = K(Ext(γ(W ,A))). Next, note that K(γ(W ,A)) =
K(Θ(W ,A)), where Θ(W ,A) = {(w,ValA(w)) : w ∈ W}. Also, K(Θ(W ,A)) =
maxw∈W uw(β) − ValA(w), which equals SMRW(A, {β}). We have K(Ext(γ(W ,

A))) = K(CH(Ext(γ(W ,A)))), and, using Lemma 3.6.4, we have Θ(W ,A) ⊆
CH(Ext(γ(W ,A))) ⊆ γ(W ,A), which implies K(Ext(γ(W ,A))) = K(γ(W ,A)) =
K(Θ(W ,A)) = SMRW(A, {β}), as required. �

Figure 3.4: Utility function uw(·) for each alternative in A = {(2, 8), (8, 2)}
(green solid) and B = {(6, 6)} (black dashed), where w ∈ U =
{(w1, w2) : w1 + w2 = 1}. The blue area represents the epigraph γ(W ,A) =
{(w, r) : w ∈ W , r ≥ ValA(w)} of A and the red dotted line represents ValA(w).

Example 14. In the example in Figure 3.4, Ext(γ(W ,A)) = {(0, 8), (1
2 , 5)(1, 8)},

where we are again abbreviating w to just its first component w1, so that e.g.,
(1

2 , 5) represents the pair (w,ValA(w)) with w = (1
2 ,

1
2). From Theorem 3.6.6(ii)

it follows that A 6<W∀∀∃ B since Ext(γ(W ,A ∪ B)) = {(0, 8), (1
3 , 6), (2

3 , 6), (1, 8)} 6=
Ext(γ(W ,A)). This can be verified also with Theorem 3.6.6(iii) since u(1

2 ,
1
2)((6, 6))

= 6 > 5. Using Theorem 3.6.6(iv), SMRW(A,B) = max(−2, 1,−2) = 1 > 0; for
instance, the middle term in the max equals uw((6, 6))− 5 = 1

2 · 6 + 1
2 · 6− 5 = 1.

Therefore, A 6<W∀∀∃ {(6, 6)}, by Proposition 3.4.1. This illustrates the fact that it is

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

75 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.7 The Case of Multi-Attribute Utility Vectors

not sufficient to just consider the extreme points of W that in this case are (0, 1)
and (1, 0).

From Lemma 3.4.1 and Theorem 3.6.6 follows that SMRW(A,B) can be

computed as maxβ∈B max {uw(β)− r : (w, r) ∈ Ext(γ(W ,A))}

3.7 The Case of Multi-Attribute Utility Vectors

We now consider the situation in which we are especially interested, where

the alternatives in Ω are multi-attribute utility vectors evaluated with a

parameterised weighted sum utility function uw(α) = α · w defined in 2.1.4,

with Ω = IRp, α ∈ Ω and w ∈ U = {w ∈ IRp : wi ≥ 0,∑p
i=1 = 1}. The utility

function of a set of alternatives A is then ValA(w) = maxα∈A w · α.

We will assume W to be a closed polytope in IRp, which can be defined using

a finite set of linear inequalities. Given a finite set Λ = {λi : i = 1, . . . , k} of

vectors in IRp, and corresponding real numbers ri, we can define W to be the

set of w ∈ U such that for all i = 1, . . . , k, w · λi ≥ ri. In particular, such linear

inequalities can arise from input preferences of the form α is preferred to β,

leading to the constraint w · (α− β) ≥ 0.

With these assumptions, the epigraph γ(W ,A) = {(w, r) : w ∈ W , r ≥ ValA(w)}
= {(w, r) ∈ IRp+1 : w ∈ W , r ≥ w · α, ∀α ∈ A} of the value function

ValA(w) is a polytope in IRp+1 since it is defined by the intersection of |A|
(p + 1)-dimensional half-spaces r ≥ w · α with r ∈ IR and w ∈ IRp. Some

of our algorithms require the enumeration of the extreme points Ext(γ(W ,A))
of the epigraph of ValA(w), and the computational complexity of this operation

is O(p|A|) (see, e.g.,[Dye83]). However, as we will see in our experimental

results, for small values of p these algorithms are faster than algorithms based

on the solution of |A| linear programming problems which have a polynomial

computational complexity with respect to a number of constraints |A| and a

number of variables p. For example, the algorithm proposed in [Vai89] to solve

linear programming problems has a computational complexity O((p+|A|)1.5|A|),
but recently faster algorithms have been published (see, e.g., [vdB20]). To

compute the extreme points W0 of W we use the same procedure used to

enumerate of the extreme points of the epigraph, which in this case has a

computational complexity O(p|Λ|). This is in general a faster operation since

usually the number of input preferences Λ is much lower than the number of

input alternatives A, andW is one dimension lower than γ(W ,A).

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

76 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.7 The Case of Multi-Attribute Utility Vectors

This form of preferences has been studied a great deal; for instance, UDW(A)
consists of the non-dominated alternatives in A for a multiobjective program

(MOP) given a cone (with the cone generated as the dual ofW) [Yu74, Wie07,

EW05]. Without any additional preferences, so that W is just the unit (p − 1)-
simplex, <W is the Pareto ordering on alternatives, and UDW(A) is set of Pareto-

optimal alternatives, with the supported alternatives being also in POW(A).

Testing A <W∀∃∀ B and A <W∃∀∀ B

Recall that for E ⊆ IRp, CH(E) is the convex hull of E. The follow simple result

is useful for computing relations <W∀∃∀ and <W∃∀∀.

Lemma 3.7.1. Assume that for w ∈ IRp, α ∈ IRp, uw(α) = w ·α. LetW ,W ′ ⊆ IRp.

(i) If CH(W) = CH(W ′) then<W =<W ′. In particular, ifW is a compact subset
of IRp andW0 = Ext(W) is the set of extreme points ofW then <W = <W0 .

(ii) Binary relations <W∀∃∀ and <W0
∀∃∀ are equal; and <W∃∀∀ equals <W0

∃∀∀, and
A <W∃∀∀ B if and only if there exists α ∈ A such that for all w ∈ W0,
uw(α) ≥ ValB(w).

Proof: (i): LetW ′′ = CH(W) = CH(W ′). We will show that <W equals <W ′′; the

same proof will show <W ′ equals <W ′′, and thus, <W = <W ′. Since W ′′ ⊇ W,

we have <W ⊆ <W ′′; to prove the converse, suppose that α <W β and consider

any w ∈ W ′′. Then, there exists wi ∈ W and strictly positive reals ri, for

i = 1 . . . , k, such that w = ∑k
i=1 riwi. Because α <W β, for each i = 1 . . . , k,

wi · (α − β) ≥ 0, and thus w · (α − β) ≥ 0, showing that w · α ≥ w · β. This

shows that α <W ′′ β, and thus <W equals <W ′′, and hence, <W = <W ′. Since

W is compact andW0 is the set of extreme points ofW we have CH(W0) =W
and so <W = <W0.

(ii): A <W∀∃∀ B if and only if for all β ∈ B there exists α ∈ A such that α <W β.

And A <W∃∀∀ B if and only if there exists α ∈ A such that for all β ∈ B, α <W β.

The first part then implies <W∀∃∀ and <W0
∀∃∀ are equal; and <W∃∀∀ equals <W0

∃∀∀. And

we also have that A <W∃∀∀ B if and only if there exists α ∈ A such that for all

w ∈ W0, uw(α) ≥ ValB(w). �

Because of Lemma 3.7.1, there is a simple way of testing if α <W β (for

α, β ∈ IRp): α <W β holds if and only if for each extreme point w of W,

we have w · (α− β) ≥ 0.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

77 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.7 The Case of Multi-Attribute Utility Vectors

This can then be used for the relations <W∀∃∀ and <W∃∀∀, using, for example,

A <W∀∃∀ B if and only if for all β ∈ B there exists α ∈ A such that α <W β.

In Section 3.6 we gave an EEU method for computing SMRW and testing

dominance; in Section 3.7.1 we give a straight-forward LP method related to

the approaches used in [VB09, BP15b, BP16]. In Section 3.7.2 we give a result

that enables one to compute the minimal equivalent subset using the extreme

points of the epigraph.

3.7.1 Linear programming for SMRW(A,B), and A <W∀∀∃ B

The definitions easily imply that SMRW(A, {β}) equals maxw∈W uw(β)−ValA(w).
Thus, for real-valued x, we have SMRW(A, {β}) ≥ x if and only if there exists

w ∈ W such that for all α ∈ A, w · (β − α) ≥ x. This leads to the following

characterisation.

SMRW(A, {β}) is equal to the maximum value of x such that there exists w ∈ IRp

satisfying the constraints:

(i) w ∈ W.

(ii) For all α ∈ A, w · (β − α) ≥ x.

Since W is a closed polytope, we can use a linear programming solver to

compute SMRW(A, {β}). Applying this for each β ∈ A allows us to compute

SMRW(A,B), and thus, to test if A <W∀∀∃ B, using Lemma 3.4.1.

3.7.2 Using extreme points of epigraph to compute minimal

equivalent subset

We first prove some key properties relating to the the sets OptA
W(α) and their

relationship with the extreme points of the epigraph of the utility function.

Lemma 3.7.2. Assume that W is a convex subset of IRp, and that for w ∈
IRp, α ∈ IRp, uw(α) = w · α. Consider A ∈ M, α ∈ A, w ∈ W. Let
Iα = {(w, r) ∈ IRp × IR : r = w · α}. For K ⊆ IRp × IR we write K↓ for the
projection of K to IRp, i.e., K↓ = {w ∈ IRp : (w, r) ∈ K}.

(i) For any α ∈ A, OptA
W(α) is a convex subset ofW.

(ii) If W is compact and α, β ∈ A, then OptA
W(α) ⊆ OptA

W(β) ⇐⇒
Ext(OptA

W(α)) ⊆ Ext(OptA
W(β)).

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

78 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.7 The Case of Multi-Attribute Utility Vectors

(iii) OptA
W(α) = (γ(W ,A) ∩ Iα)↓.

(iv) Ext((γ(W ,A) ∩ Iα)↓) = (Ext(γ(W ,A) ∩ Iα))↓.

(v) Ext(γ(W ,A) ∩ Iα) = Ext(γ(W ,A)) ∩ Iα.

Proof: (i): Lemma 3.3.12(i) implies that OptA
W(α) = W ∩ ⋂β∈A Hα≥β, where

Hα≥β = {w ∈ IRp : w · α ≥ w · β}. Since each set Hα≥β is convex and W is

convex then their intersection is convex.

(ii): Assume W is compact. Then OptA
W(α) = CH(Ext(OptA

W(α)), and

OptA
W(β) = CH(Ext(OptA

W(β)). Thus, if Ext(OptA
W(α)) ⊆ Ext(OptA

W(β)) then

CH(Ext(OptA
W(α)) ⊆ CH(Ext(OptA

W(β)), and hence, OptA
W(α) ⊆ OptA

W(β).

For the converse, assume that OptA
W(α) ⊆ OptA

W(β), and, proceeding with proof

by contradiction, let us assume that there exists some w ∈ Ext(OptA
W(α)) \

Ext(OptA
W(β)). We have w ∈ OptA

W(α) and thus w ∈ OptA
W(β), so there exists

some w1, w2 ∈ OptA
W(β) and s ∈ (0, 1) such that w = sw1 + (1 − s)w2. Because

w1, w2 ∈ OptA
W(β) for i = 1, 2, wi · β ≥ wi · α, i.e., wi · (β − α) ≥ 0. Also,

since w ∈ OptA
W(α) ⊆ OptA

W(β), w · (β − α) = 0. Thus, 0 = w · (β − α) =
sw1 · (β−α)+(1−s)w2 · (β−α), and so, since both terms are non-negative, they

are both zero: w1·(β−α) = w2·(β−α) = 0, which implies that w1, w2 ∈ OptA
W(α).

This contradicts w being an extreme point of OptA
W(α).

(iii): (w, r) ∈ (γ(W ,A) ∩ Iα) if and only if r ≥ ValA(w) and w · α = r, which is if

and only if r = w · α = ValA(w), which is if only if w ∈ OptA
W(α) and r = w · α.

Thus, OptA
W(α) = (γ(W ,A) ∩ Iα)↓.

(iv): Let us write K = γ(W ,A) ∩ Iα. First we prove, by contradiction, that

Ext(K↓) ⊆ (Ext(K))↓. So, suppose that there exists some w ∈ Ext(K↓) \
(Ext(K))↓. Now, w ∈ K↓, so (w,w ·α) ∈ K. However, w /∈ (Ext(K))↓ implies that

(w,w · α) /∈ Ext(K). Thus, there exists some (w1, r1), (w2, r2) ∈ K and s ∈ (0, 1)
such that (w,w · α) = s(w1, r1) + (1 − s)(w2, r2). We must have r1 = w1 · α
and r2 = w2 · α. w1, w2 ∈ (K)↓ and w = sw1 + (1 − s)w2, which contradicts

w ∈ Ext(K↓).

Conversely, we prove, by contradiction, that Ext(K↓) ⊇ (Ext(K))↓. Suppose

there exists some w ∈ (Ext(K))↓ \ Ext(K↓). Now, because w ∈ (Ext(K))↓, there

exists r such that (w, r) ∈ Ext(K). Then (w, r) ∈ K implies r = w · α, and thus,

(w,w · α) ∈ Ext(K). Since w ∈ K↓ and w /∈ Ext(K↓), there exists w1, w2 ∈ K↓

s ∈ (0, 1) such that w = sw1 + (1− s)w2. Since w1, w2 ∈ K↓, there exists r1 and

r2 such that (w1, r1), (w2, r2) ∈ K. Then, r1 = w1 · α and r2 = w2 · α, and so

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

79 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.7 The Case of Multi-Attribute Utility Vectors

(w,w · α) = s(w1, r1) + (1− s)(w2, r2), which contradicts (w,w · α) ∈ Ext(K).

(v): For any convex subsets P and Q of some set we have Ext(P) ∩ Q ⊆
Ext(P ∩ Q). To show this, we proceed with proof by contradiction: suppose

that x ∈ Ext(P) ∩ Q and x /∈ Ext(P ∩ Q). Since x ∈ P ∩ Q but is not in

Ext(P ∩ Q), there exists a line segment in P ∩ Q that contains x as an internal

point. But this line segment is also in P , contradicting x ∈ Ext(P).

The above result shows that Ext(γ(W ,A) ∩ Iα) ⊇ Ext(γ(W ,A)) ∩ Iα. To prove

the converse, we proceed by contradiction and assume that there exists some

element (w, r) ∈ Ext(γ(W ,A) ∩ Iα) with (w, r) /∈ Ext(γ(W ,A)) ∩ Iα. Since

(w, r) ∈ γ(W ,A) \Ext(γ(W ,A)) there exist some (w1, r1), (w2, r2) ∈ γ(W ,A) and

s ∈ (0, 1) such that (w, r) = s(w1, r1) + (1− s)(w2, r2). Now, (w, r) ∈ Iα implies

that r = w · α; and (w1, r1), (w2, r2) ∈ γ(W ,A) implies that r1 ≥ ValA(w1) ≥
w1 · α and r2 ≥ ValA(w2) ≥ w2 · α. We have r = sr1 + (1 − s)r2 and so

0 = r−(w ·α) = s(r1−w1 ·α)+(1−s)(r2−w2 ·α). Since the two parts of the right-

hand-side are non-negative, they must be zero, showing that r1 = w1 · α and

r2 = w2 · α. This implies that (w1, r1), (w2, r2) ∈ γ(W ,A) ∩ Iα, which contradicts

(w, r) ∈ Ext(γ(W ,A) ∩ Iα). �

For the linear case, with α ∈ A, the set OptA
W(α), consisting of all w in W

that make α optimal in A (see Section 3.3.1), is convex; we abbreviate its

set of extreme points Ext(OptA
W(α)) to EA

W(α). Theorem 3.3.15 implies that

PSOW(A) is the unique minimal equivalent subset of an (equivalence-free) set

A ∈ M, which can be shown to consist of all α ∈ A such that there does

not exist β ∈ A such that OptA
W(β) % OptA

W(α). The following result shows

that the condition OptA
W(β) % OptA

W(α) is (perhaps surprisingly) equivalent to

EA
W(β) % EA

W(α), and that EA
W(α) can be computed by projecting the extreme

points of the epigraph, Ext(γ(W ,A)). This is the basis of our method, described

in Section 3.8.1(II) below, for efficiently computing the minimal equivalent set

PSOW(A).

(In more detail: Corollary 3.3.16.1 implies that PSOW(A) = MPOW(A), and, by

definition, MPOW(A) consists of all α ∈ A such that there does not exist β ∈ A

such that OptA
W(β) % OptA

W(α).)

Proposition 5. Assume thatW is a convex subset of IRp, and that for w ∈ IRp, α ∈
IRp, uw(α) = w · α. Consider A ∈M, w ∈ W, and α, β ∈ A.

(i) OptA
W(α) ⊆ OptA

W(β) ⇐⇒ EA
W(α) ⊆ EA

W(β).

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

80 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.8 The Structure of the Algorithms

(ii) EA
W(α) = {w ∈ IRp : (w,w · α) ∈ Ext(γ(W ,A))}.

(iii) IfW is compact then dim(OptA
W(α)) < |EA

W(α)|.

Proof: (i): It is part (ii) of Lemma 3.7.2.

(ii): Using parts (iii), (iv) and (v) of Lemma 3.7.2, we have Ext(OptA
W(α)) =

(Ext(γ(W ,A)) ∩ Iα)↓ = {w ∈ IRp : (w,w · α) ∈ Ext(γ(W ,A))}.

(iii): Since W is compact, then OptA
W(α) is compact since it is a closed

subset of compact set W, and so, OptA
W(α) = CH(EA

W(α)). This implies that

dim(OptA
W(α)) < |EA

W(α)|. �

Using Theorem 3.3.15 and Proposition 5 we can compute PSOW(A) =
MPOW(A). In fact, for each α ∈ A we can compute Ext(OptA

W(α)) using

Proposition 5(ii). Because of Theorem 3.3.15, we know that any elements

α such that |Ext(OptA
W(α))| − 1 < dim(W) are not in PSOW(A) (since

dim(OptA
W(α)) ≤ |Ext(OptA

W(α))| − 1). If for any α, β ∈ A with α 6≡W β,

Ext(OptA
W(α)) ⊆ Ext(OptA

W(β)), (so then OptA
W(α) ⊆ OptA

W(β)) then we know

that α /∈ PSOW(A), and if those sets are equal we know also that β /∈ PSOW(A).
Now, any of these elements can then be deleted from A, because of a nice

incremental property of MPOW (see an earlier comment). This then gives a

nice incremental approach to computing PSOW(A) = MPOW(A).

Example 15. Let A′ = {(2, 8), (8, 2)}, A′′ = {(5, 5), (3, 3)} and A = A′ ∪ A′′. In
the example in Figure 3.5 we can see that OptA

W((3, 3)) = ∅, OptA
W((5, 5)) =

{(1
2 ,

1
2)}, OptA

W((8, 2)) = {w ∈ W : w1 ∈ [0, 1
2], w2 = 1− w1} and OptA

W((2, 8)) =
{w ∈ W : w1 ∈ [1

2 , 1], w2 = 1− w1}. Thus, EA
W((3, 3)) = ∅, EA

W((5, 5)) = {(1
2 ,

1
2)},

EA
W((8, 2)) = {(1

2 ,
1
2), (1, 0)} and EA

W((2, 8)) = {(1
2 ,

1
2), (0, 1)}. Therefore, (3, 3)

and (5, 5) are not possibly strictly optimal alternatives of A with respect toW since
|EA
W((3, 3))| − 1 = −1 < 1 = dim(W) and |EA

W((5, 5))| − 1 = 0 < 1 = dim(W).
On the other hand, (8, 2) and (2, 8) are possibly strictly optimal alternatives of A
with respect toW since |EA

W((8, 2))| − 1 = |EA
W((2, 8))| − 1 = 1 ≥ 1 = dim(W).

3.8 The Structure of the Algorithms

In this section we make use of mathematical results in previous sections in

developing computational methods for computing the minimal equivalent set

PSOW(A) and testing dominance between sets, for the case of multi-attribute

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

81 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.8 The Structure of the Algorithms

Figure 3.5: Utility function uw(·) for each alternative in A′ = {(2, 8), (8, 2)}
(green solid) and A′ = {(5, 5), (3, 3)} (black dashed), where w ∈ U =
{(w1, w2) : w1 + w2 = 1}. The blue area is the epigraph γ(W ,A) =
{(w, r) : w ∈ W , r ≥ ValA(w)}, where A = A′ ∪ A′′, and the red dotted line rep-
resents ValA(w).

utility vectors, with the set of scenarios W being a convex polytope, and with

linear utility functions.

3.8.1 Computing minimal equivalent set

Given A ∈ M, we aim to generate A′ ⊆ A with A′ ≡W∀∀∃ A, and such that for

strict subset A′′ of A′, A′′ 6≡W∀∀∃ A.

First we pre-process by eliminating elements of A not in UDW(A). At the same

time we can make A equivalence-free (Algorithm 5). This operation requires

the computation of O(|A|2) dot products.

Theorem 3.3.15 implies that there exists a minimal equivalent set, i.e.,

SMEW(A) has a unique element, say, A′, and this equals PSOW(A). We have

two methods for then computing A′.

(I) we use the approach Filterσ(A;<W∀∀∃) defined in Section 3.3.2. This

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

82 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.8 The Structure of the Algorithms

Algorithm 5 UD
1: procedure UD(A,W0)
2: P ← ∅
3: for αi ∈ A do
4: P ← P ∪ {αi}
5: for αj ∈ A \ P do
6: if αi <W0 αj and αj 6<W0 αi then
7: A← A \ {αj}
8: if αj <W0 αi and αi 6<W0 αj then
9: A← A \ {αi}

10: break
11: if αi ≡W0 αj then
12: A← A \ {αj}
13: return return A

involves multiple (i.e., |A|) tests of the form A \ {α} <W∀∀∃ {α}, which

can be achieved using a similar approach to 3.8.2 below, using a linear

programming solver (Algorithm 6). This filtering operation requires then

solving O(|A|) linear programming problems with O(|A|) constraints and

p variables.

Algorithm 6 PSO based on linear programming

1: procedure PSOLP(A,W)
2: for α1 in A do
3: xM ← Maximize x subject to
4: {

(α1 − α2) · w ≥ x ∀α2 ∈ A \ {α1}
w ∈ W

}
5: if xM ≤ 0 then
6: A← A \ α1

7: return A

(II) For each α ∈ A we compute EA
W(α) using Proposition 5(ii), by computing

the extreme points of the epigraph. We can eliminate any element α such

that |EA
W(α)| ≤ dim(W), since Proposition 5(iii) would then imply that

dim(OptA
W(α)) < dim(W), and thus, α /∈ PSOW(A), by Theorem 3.3.15.

If for any α, β ∈ A with α 6≡W β, EA
W(α) ⊆ EA

W(β), (so then OptA
W(α) ⊆

OptA
W(β)) then we know that α /∈ PSOW(A), and if those sets are equal

we know also that β /∈ PSOW(A). Now, any of these elements can

then be deleted from A, because of an incrementality property of PSOW .

We then continue until for all remaining elements α, β ∈ A we have

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

83 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.8 The Structure of the Algorithms

EA
W(α) 6⊆ EA

W(β), and then A = A′, the unique element of SMEW(A),
the set of possibly strictly optimal elements (Algorithm 7). This procedure

requires enumerating the extreme points (w, r) of the epigraph of A which

is an operation with exponential computational complexity with respect

to |A|.

Algorithm 7 PSO based on epigraph

1: procedure PSOEP(A,W)
2: for α in A do
3: if |EA

W(α)| ≤ dim(W) then
4: A← A \ α
5: for α1 in A do
6: for α2 in A do
7: if EA

W(α2) ⊆ EA
W(α1) then

8: A← A \ α2

9: if EA
W(α2) = EA

W(α1) then
10: A← A \ α1
11: break
12: return A

In more detail: Corollary 3.3.16.2 implies the following property of MPOW : if

C ∩MPOW(A) = ∅ then MPOW(A) = MPOW(A \ C). Since MPOW = PSOW by

Corollary 3.3.16.2, if β /∈ PSOW(A) = MPOW(A), we can delete β from A.

3.8.2 Testing A <W∀∀∃ B

Our algorithm includes three steps of increasing complexity:

(1) Efficiently testing (a) a necessary condition A <W0
∀∀∃ B, whereW0 = Ext(W)

is the set of extreme points ofW; and (b) a sufficient condition, whether

there exists α ∈ A such that for all w ∈ W0, uw(α) ≥ ValB(w); (the

conditions can be tested together, by first computing ValB(w) for each

w ∈ W0) (Algorithm 8). If (a) is false then we know that A 6<W∀∀∃ B

(because of monotonicity with respect toW); if (b) is true then we know

that A <W∀∀∃ B holds. If the necessary condition is false, or the sufficient

condition is true, then we need go no further. The complexity of this

step is O(|W0|(|A| + |B|)) with the most complex operation being the dot

product.

(2) Pre-processing by reducing the sets A and B. We replace A by UDW(A)
and B by UDW(B) (Algorithm 5). We then eliminate all elements β from B

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

84 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.8 The Structure of the Algorithms

Algorithm 8 Necessary and sufficient condition for A <W0
∀∀∃ B

1: procedure NSc(A, B,W0)
2: ValA :W0 → IR, ValB :W0 → IR
3: Necessary← true, Sufficient← false
4: A′ ← A
5: for w ∈ W0 do
6: ValA(w)← −∞, ValB(w)← −∞
7: for β ∈ B do
8: ValB(w)← max(ValB(w), β · w)
9: for α ∈ A do

10: if α · w < ValB(w) then
11: A′ ← A′ \ {α}
12: ValA(w)← max(ValA(w), α · w)
13: if ValA(w) < ValB(w) then
14: Necessary← false
15: break
16: if Necessary then
17: Sufficient← |A′| > 0
18: return Necessary,Sufficient

such that for some α ∈ A, α <W β (Algorithm 9). If B becomes empty then

we can stop, since we then have A <W∀∀∃ B. This step has computational

complexity O(|W0||A||B|) with the most complex operation being the dot

product.

Algorithm 9 Filtering using relation <W0
∀∃∀

1: procedure Filt∀∃∀(A, B,W0)
2: for α ∈ A do
3: for β ∈ B do
4: if α <W0 β then
5: B← B \ {β}
6: return B

(3) We determine whether A <W∀∀∃ B holds using one of the methods in

Sections 3.7.1 and 3.6, i.e., doing either (a), (b) or (c) below:

(a) Using linear programming, as described in Section 3.7.1 (Algo-

rithm 10). This operation requires solving |B| linear programming

problems with O(|A|) constraints and p variables.

(b) Using Theorem 3.6.6(ii) and testing Ext(Γ(W ,A)) = Ext(Γ(W ,A∪B))
(Algorithm 11). In this case we then need to enumerate the extreme

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

85 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.8 The Structure of the Algorithms

Algorithm 10 Testing dominance using linear programming

1: procedure TLP(A, B,W)
2: SMR← −∞
3: for β in B do
4: xM ← Maximize x subject to
5: {

(β − α) · w ≥ x ∀α ∈ A
w ∈ W

}
6: if xM > SMR then
7: SMR← xM
8: return SMR ≤ 0

points of Γ(W ,A) and Γ(W ,A ∪ B), which is an operation with

computational complexity exponential in |A ∪ B|.

Algorithm 11 Testing dominance using epigraph - method 1

1: procedure TEPU(A, B,W)
2: Γ(W ,A)← ⋂

α∈A {(w, r) : w ∈ W & r ≥ w · α}
3: Ext(Γ(W ,A))← extreme points of Γ(W ,A)
4: Γ(W ,A ∪ B)← ⋂

γ∈A∪B {(w, r) : w ∈ W & r ≥ w · γ}
5: Ext(Γ(W ,A ∪ B))← extreme points of Γ(W ,A ∪ B)
6: return Ext(Γ(W ,A)) = Ext(Γ(W ,A ∪ B))

(c) Using Theorem 3.6.6(iii) and testing if uw(β) ≤ r for all β ∈ B and

for all (w, r) ∈ Ext(γ(W ,A)) (Algorithm 12). With this procedure

we need to enumerate the extreme points of Γ(W ,A), which is an

operation with computational complexity exponential in |A|.

Algorithm 12 Testing dominance using epigraph - method 2

1: procedure TEEU(A, B,W)
2: SMR← −∞
3: Γ(W ,A)← ⋂

α∈A {(w, r) : w ∈ W & r ≥ w · α}
4: Ext(Γ(W ,A))← extreme points of Γ(W ,A)
5: for β ∈ B do
6: for (w, r) ∈ Ext(Γ(W ,A)) do
7: if β · w − r > SMR then
8: SMR← β · w − r
9: return SMR ≤ 0

Although we focus on non-strict dominance, the same algorithms can also be

used to test the strongly strict dominance A �W∀∀∃ B given as for all w ∈ W,

ValA(w) > ValB(w). In particular, under the conditions of Theorem 3.6.6,

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

86 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.9 Experimental Testing

we have A �W∀∀∃ B ⇐⇒ SMRW(A,B) < 0, which is if and only if for all

(w, r) ∈ Ext(γ(W ,A)) and for all β ∈ B we have uw(β) < r.

3.9 Experimental Testing

All experiments were performed on a computer facilitated by a Core i5 2.70
GHz processor and 8 GB RAM. We used CPLEX 12.8 [ILO17] as the linear

programming solver, and we used the Python library pycddlib [Tro18] for

computing the extreme points of a polytope.

We consider the linear case, where W is a subset of the unit (p − 1)-simplex

which is an intersection of T half-spaces. Specifically, we choose T (consistent)

random user preferences of the form awi + bwj ≥ cwk (meaning that the user

prefers a units of wi and b units of wj to c units of wk), like in [MRW12]. The

alternatives in the sets A and B are integer utility vectors. See Appendix A.1 for

details about our random problem generator.

The pre-processing steps based on the UDW filtering were very worthwhile,

for both computing the minimal set in Section 3.8.1, and in 3.8.2(2) for

dominance; they reduce the sizes of the sets A and B very considerably (see

e.g., Table 3.2), making the algorithms much faster overall, e.g., by an order of

magnitude.

For cases in which dim(W) < 7, the EEU method 3.8.1(I) to compute PSOW(A)
was on average faster, and scaled better with the cardinalities of sets A and B,

than the LP method 3.8.1(II). However, the situation dramatically reverses for

dim(W) ≥ 7; this may well be because the number of extreme points is much

larger then. This is illustrated by Table 3.1 along with the performance of the

UDW filtering, where each figure is an average over 100 random instances.

We also tested our algorithms with larger A such as |A| = 20,000, with

dim(W) = 5 and four user preferences giving an average execution time over

100 experiments of 13 seconds for the UDW filtering, 22 seconds for the LP-

based method and 6 seconds for the EEU method.

We also tested our EEU approach against the standard LP approach to compute

POW and also in this case it looks like that EEU is faster for cases in which

dim(W) ≤ 6. The performances of EEU to compute POW are very similar to

the performances of EEU to compute PSOW shown in Table 3.1. With sets

generated with our random problem generator we observed that the PSOW

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

87 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.9 Experimental Testing

Table 3.1: Execution times (in seconds) of methods to compute PSOW(A)
(Section 3.8.1), UDW filtering, EEU (I) and LP (II) (and number of extreme
points of the epigraph), with respect to dim(W) with |A| = 500 and 4 user
preferences.

dim(W) UDW[s] LP[s] EEU[s] # extreme points

2 0.014 0.057 0.001 13.24
3 0.036 0.192 0.005 57.52
4 0.116 0.548 0.039 248.14
5 0.268 1.467 0.310 1024.74
6 0.439 3.062 2.103 3667.36
7 0.683 5.943 15.630 13483.87

Table 3.2: Number of elements of A′ = UDW(A), B′ = UDW(B) and B′′ =
{β ∈ B′ : ∀α ∈ A, α 6<W β} with respect to dim(W) with |A| = |B| = 500 and 4
user preferences.

dim(W) |A′| |B′| |B′′|
2 10.08 7.99 2.44
3 23.89 22.04 5.11
4 48.70 19.53 11.93
5 92.23 86.94 15.45
6 144.78 142.89 41.15
7 206.93 210.11 64.28

filtering removes around 5% more elements than POW .

In all our experimental testing we have W of maximal dimension, i.e.,

dim(W) = p−1, so thatW is of the same dimension as the unit (p−1)-simplex,

U .

Tables 3.2 and 3.3 give results for testing A <W∀∀∃ B (Section 3.8.2), where each

figure is an average over 100 instances in which the initial test 3.8.2(1) was

inconclusive (i.e., failed to determine whether or not A <W∀∀∃ B holds), and the

size of the set B after the UDW filtering 3.8.2(2) was greater than zero.

Table 3.2 shows how the input sets A and B were reduced by the UDW filtering

3.8.2 (2). As we can see, increasing the size of dim(W), the number of

undominated elements increase and therefore the number of elements removed

by the UDW filtering reduces.

Table 3.3 gives average execution time of the preliminaries steps and the

methods 3(a), 3(b) and 3(c) of Section 3.8.2. The checking of the necessary and

the sufficient condition in 3.8.2(1) were very effective: on approximately 94%

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

88 Federico Toffano

3. MINIMALITY AND COMPARISON OF SETS

OF MULTI-ATTRIBUTE VECTORS 3.10 Conclusions

Table 3.3: Execution time of methods for testing the dominance A <W∀∀∃ B
(Section 3.8.2), i.e., testing the necessary and the sufficient condition (NSc)
(1), UDW filtering (2) and algorithms TLP 3(a), TEPU 3(b) and TEEU 3(c) for
testing A <W∀∀∃ B, with respect to dim(W) with |A| = |B| = 500 and 4 user
preferences.

dim(W) NSc[s] UDW[s] TLP[s] TEPU[s] TEEU[s]

2 0.008 0.028 0.016 0.001 0.001
3 0.010 0.070 0.038 0.003 0.002
4 0.013 0.223 0.131 0.015 0.013
5 0.015 0.504 0.238 0.105 0.088
6 0.015 0.858 0.967 1.179 1.028
7 0.016 1.487 2.232 24.452 14.97

of the problems generated with our random problem generator, the necessary

condition failed, or the sufficient condition succeeded, allowing the algorithm

to stop in advance. On average, method 3(c) seems to be faster than method

3(b), and the LP method seems to the fastest for dim(W) ≥ 6. As for the

previous case, the EEU methods are much worse for the case of dim(W) = 7.

3.10 Conclusions

We defined natural notions of equivalence and dominance for a general model

of sets of multi-attribute utility, and proved general properties. Computationally

we focused especially on the linear (weighted sum) case and we proved that

there is a unique setwise-minimal equivalent subset of any (equivalence-free)

set of utility vectors A. This set then equals the set of possibly strictly optimal

alternatives PSO(A), and is a compact representation of the utility function

for A, giving the utility achievable with A for each scenario. We show that

filtering a query with the PSO operator avoids the potential of inconsistency

in the user response. Along with pre-processing techniques we developed a

linear programming method for generating PSO(A), and a method based on

computing the extreme points of the epigraph of the utility function (EEU),

as well as related methods for testing dominance. We implemented the

approaches and our testing on random problems showed that both methods

scaled to substantially sized problems, with the EEU method being better for

lower dimensions.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

89 Federico Toffano

Chapter 4

A Multi-objective Framework based
on User-Preferences

This chapter presents a novel incremental preference elicitation framework

for a supplier selection process based on a weighted sum utility function

parameterised with respect to the set of weights. A realistic medium-size factory

inspires constraints and objectives of the underlying optimisation problem.

However, the preference elicitation framework applies to generic multi-criteria

configuration problems (see, e.g., [BPPS06, BB07, BL19]).

The main idea is to solve a combinatorial problem multiple times optimally with

different weights assigned to the objectives. Afterwards, a pair of solutions

among those computed is selected through a particular query generation

strategy, and the user expresses a preference between them. These two steps

are repeated in a preference learning loop that stops when we find a solution

with worst-case loss below a certain threshold. As query generation strategies,

we will consider the setwise minimax regret and two other methods based on

a novel measure that we call discrepancy, strongly related to the max regret

measure.

With our computational experiments, we show that our framework is suitable

for large instances. We compare the performance of three different query

generation strategies in terms of the number of iterations in the learning loop

and computation time.

90

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.1 Introduction

4.1 Introduction

Supplier selection is the process of determining the best suppliers for acquiring

the necessary materials for the activities of a firm. Nowadays, this is a

key point of a business strategy, in the case of both a small activity like a

restaurant and a large one like a corporation. Although the decision-makers

still proceed manually in several contexts, many automated methods and tools

have been adopted to solve the problem. This is not just to do with reducing

processing time or optimising the cost; it is a much complex problem in which

different criteria need to be considered in order to sharpen the company’s

competitiveness. For example, common criteria used to evaluate a supplier

are such as lead time, product quality, resilience and reputation (see, e.g.,

[Abd13]). A recent review on the topic [Ste17] gives a qualitative ranking

of the most used criteria. Still, it is not easy to quantify the relative importance

of each criterion, and thus a preference elicitation process seems to suit this

context well.

Here we consider a supplier selection process inspired by a real-world problem

where the alternatives are resented as a configuration problem; evaluation

criteria, constraints and instance structure come from a medium-sized factory.

This work lies between two research areas. On the one hand, it provides an

alternative perspective to the solution of supplier selection problems. On the

other hand, it presents an interactive preference elicitation approach with novel

query selection strategies.

In Section 4.2 we provide a literature review including work on supplier

selection and user preferences. The assumptions made in relation to the

problem definition are discussed in Section 4.3. The notation used across the

chapter is presented in Section 4.4. The structure of the framework is described

in Section 4.5. The two main blocks of the framework are:

• a Mixed Integer Linear Programming model used for the solution of the

combinatorial optimisation problem (described in Section 4.5.1);

• Interactive Preference Elicitation strategies based on the minimax regret

criterion for computing the queries posed to the user (described in

Section 4.5.2).

The main measures that we consider for evaluating the performance of the

framework are the number of interactions with the user and the computational

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

91 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.2 Literature review

time required to execute the whole loop. Section 4.6 presents some computa-

tional results showing how the framework performs with respect to these mea-

sures, analysing the impact of the different user-preference elicitation strate-

gies. Finally, Section 4.7 provides some conclusions about this work and future

developments.

4.2 Literature review

Supplier selection literature is very rich. In particular, many techniques have

been developed and tailored to solve specific versions of the problem, with

different constraints/objectives. A few surveys, such as [WCB91, AHH07,

WSB12, ZFS16], provide a deep introduction on quantitative and qualitative

methods used. Recently, a pair of papers [CLN13, CN20] analyse advancements

in the area of supplier selection from 2008 to 2012 and from 2013 to 2018,

respectively. The second paper includes possible future trends aiming at making

supplier selection a more interdisciplinary field, in which economic theory, big

data analysis, risk analysis and game theory interact.

The most common techniques used to solve supplier selection problems belong

to the following areas: Multi-Criteria Decision-Making (MCDM), Mathematical

Programming (MP), Meta-heuristics, and Artificial Intelligence (AI). The ap-

proach used in our framework involves MCDM, MP and AI methods, following

the interdisciplinary future for supplier selection depicted in [CN20]. MCDM

approaches are generally used to evaluate a set of discrete options according to

several conflicting criteria. Many different methods belong to this family, such

as the Analytical Hierarchy Process (AHP) [T.L88] which is based on the rank-

ing of the evaluation criteria, and Analytical Network Process (ANP) [Saa08]

which can be used instead of AHP when the evaluation criteria are not pref-

erentially independent. See [RS16] for a review on MCDM supplier selection

approaches, and [FGE05a] for surveys on MCDM methods.

MP approaches for supplier selection solve a mathematical model in which one

or more objective functions are specified, and the solutions have to respect a

set of constraints. The nature of the approach used depends on the type of

model. Many supplier selection models are based on Mixed Integer Linear Pro-

gramming (MILP), due to the effectiveness of modern solvers. MILP models are

linear models with potentially both continuous and discrete variables and only

one objective. It should be noted that the single objective can be a weighted

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

92 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.2 Literature review

sum of different linear objectives, where the weights are considered as param-

eters. Many MILP based approaches have been developed for supplier selec-

tion, such as [RD11, CBGVTG15, APW+18, AMD19]. Non-Linear Programming

(NLP) models have also been exploited [WLX11, AV15, AV18, KCM17]. Among

other MP techniques used for supplier selection, Data Envelopment Analysis

[KD14], Fuzzy Programming [SSYT12] and Goal Programming [HY16] have

been widely studied. Finally, Stochastic Programming has received increasing

attention recently, since different stochastic aspects, such as demand uncer-

tainty [ACAL+16], currency fluctuation [HTF14] and disruption risk [HGM14],

can be considered in a stochastic supplier selection model.

Meta-heuristic approaches are often used when the mathematical problem is

too complex to be solved exactly. The price that decision-makers pay is to lose

solution optimality (in the case of a single objective problem) or to approximate

the Pareto frontier (in the case of multi-objective problems). Some of the meta-

heuristics used to tackle supplier selection problems are Genetic Algorithms

[DGH+15] and Particle Swarm optimisation [Che17].

AI techniques have also been widely used. In particular, Neural Networks

have been exploited to evaluate suppliers according to a set of performance

data [TFDCSA16]. Other AI techniques used in supplier selection are Bayesian

Networks [HB16, NY15] and Rough Set Theory [CL14].

Recently, a similar framework has been developed in [BL19] to deal with

complex combinatorial problems in which computing an optimal solution with

respect to known user preference weights vector is computational demanding.

The main difference with respect to our general framework is in the methods

tested for query selection; see the discussion at the end of Section 4.5.2.3.

Note that we assume the correctness of the user responses, which means that

an incorrect answer could well reduce the quality of the final recommendation.

In the literature we can find utility models defined to deal with noisy user

responses [HWI03, VB10, TPV16, DTP18] at the expense of increased time

complexity. Because our problem is computationally challenging even for

optimisation with a known objective function, we focus on a model using a

standard utility representation.

There is some previous work on preference elicitation approaches for supplier

selection. For example, in [CN15] the authors investigate how to elicit human

preferences using a hesitant fuzzy preference relation in order to deal with

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

93 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.3 Problem Requirements

ambiguous opinions of several decision-makers. In works such as [CPRV11,

CR11] the authors consider a linear programming model for the problem of

supplier selection for multiple collaborating businesses. An advantage of our

approach over these previous approaches is that the latter involve the elicitation

of a potentially large number of numerical values. These can be very time-

consuming and difficult to assess. In contrast, our approach involves intuitive

comparison queries and attempts to limit the number of queries asked to the

user. Also, to the best of our knowledge, there are no works describing an

iterative preference-based multi-criteria supplier selection problem to satisfy

the demand for a set of products.

4.3 Problem Requirements

The problem requirements around which our framework is designed come from

a real-world study. More specifically, we interacted with the supply chain

management of a medium-sized manufacturing factory by asking for some

information about their internal supplier selection process. As a result of

this interaction, we included in our problem formulation a set of suppliers’

evaluation criteria and constraints. Furthermore, although the instances

considered in Section 4.6 are artificially generated, they are aligned with this

real-world scenario.

The problem consists of computing the quantities to be ordered for a certain

time horizon from each supplier to satisfy the demand. Upper and lower limits

on the number of suppliers per component are given as input. This is because

the decision-maker wants to have control on defining some backup suppliers in

case of unexpected disruptions. A catalogue of available suppliers is also given

as input, including price and availability of each component.

Four different evaluation criteria are considered in the factory’s supplier

selection process. The first supplier evaluation criterion considered is cost,

including both the direct costs for all the materials and the activation costs

of establishing business relationships with suppliers. The price breaks [CFZ93]

discount scheme is adopted, meaning that the unit cost is defined depending on

how many components of the same type are ordered from the same supplier.

This is the standard mechanism adopted by the factory’s suppliers to determine

the unit costs for a certain material enquiry. The second and third criteria

are the supplier lead time and lateness that relate to past experience with

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

94 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.4 Terminology and Definitions

that supplier. They represent the time agreed with a supplier to provide the

materials and the lateness with respect to the due date, respectively. The last

criterion is the supplier reputation. This is a score assigned by internal experts

to each supplier, by considering different aspects, such as disruption risk, the

relationship between the company and the supplier, and the strategic vision of

the firm.

4.4 Terminology and Definitions

In this section we present the key notations used in this chapter, some of which

have been already defined in Chapter 2 and we recall here for the sake of clarity.

Let P be a combinatorial maximisation problem, A ∈M be the set of its feasible

solutions (or alternatives) and α be an element of A. Let us define U to be the

initial user preferences state space {w ∈ IRp : ∑p
i=1wi = 1, wi ≥ 0,∀i = 1, . . . , p},

i.e., the set of all the normalised non-negative weights vectors w. We consider

p evaluators, Xi : A → IR ∀i ∈ {1, . . . , p} over A defining each of the p criteria

used to evaluate an alternative, and define the vector (X1(α), . . . , Xp(α)) as the

utility vector of solution α. Note that, in contrast with the previous chapters,

an alternative is not directly represented as a vector of reals; as we will show in

the next section, it is instead a feasible configuration of the variables of a MILP

problem. The utility function of α ∈ A with respect to w ∈ U , which is also the

objective function of P, is a weighted sum uw(α) = w · X(α) parameterised

with respect to w. Here we define the outcome X(α) of an alternative as

X(α) = (sign1X1(α), . . . , signpXp(α)) where signi ∈ {1,−1} with i ∈ {1, . . . , p}
defines the sign of the i-th evaluator. The function signi relates to whether one

is minimising rather than maximising the corresponding objective. We indicate

with αw ∈ A an optimal solution of P with respect to the weights vector w ∈ U ,

that is a solution αw such that uw(αw) ≥ uw(α) for any α ∈ A.

Let VΛ be a convex polyhedron in IRp defined by a set of non-strict linear

inequalities Λ; we define WΛ as the convex and closed (and thus compact)

polytope WΛ = U ∩ VΛ. The linear inequalities in Λ can arise from input

preferences of the form β is preferred to γ, leading to the linear constraint

w · (X(β)−X(γ)) ≥ 0.

Let Ext(WΛ) be the set of extreme points of a user preference state space WΛ.

For each extreme point w we choose an optimal solution αw, and we define S
to be the set {αw : w ∈ Ext(WΛ)}. We say that S is a set of optimal solutions with

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

95 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

respect to Ext(WΛ).

4.5 The Structure of the Framework

We denote by P the combinatorial optimisation problem given by the MILP

model in Section 4.5.1 below. Recall from the previous section that A is the

finite set of all the feasible solutions of P. The objective function considered in

P is a weighted sum of four functions X1(α), X2(α), X3(α), X4(α), associating a

measure of the cost, lateness, lead time and reputation with a feasible solution

α ∈ A. The analytic form of these functions is provided in Section 4.5.1.

The weighted sum used as the objective function of P is uw(α) = −w1X1(α) −
w2X2(α) − w3X3(α) + w4X4(α), where wi ∈ [0, 1] (for all i ∈ {1, 2, 3, 4}) is the

weight of the i-th function. The first three signs are negative because the first

three functions have to be minimised, in contrast with X4(α) that has to be

maximised. The parameters of the MILP model come from different sources.

Data such as tariffs and components availability of each supplier come from a

supplier catalogue which in our experimental testing is randomly generated,

as is the demand of each component. Finally, a lateness/lead time predictor

defined in Appendix B.3 is used to predict supplier performances, providing

coefficients to be used in X2(α) and X3(α). The predictions are performed by

relying on a database of components orders, whose entries are referring to a

series of orders related to the past. The method used for random generation of

the database of past orders used in the framework is described in Appendix B.2.

With the learning loop depicted in Figure 4.1, we iteratively ask questions

to the Decision-Maker (DM) in order to estimate a preference vector w∗ =
(w∗1, w∗2, w∗3, w∗4) ∈ U representing her true preferences. Let us consider as a

query Q a subset of A, associated with a question of the form: which solution

do you prefer among the solutions in Q? For example, if Q = {β, γ}, the query

amounts to: do you prefer solution β or γ? This is the type of query that we

use in the framework to learn about w∗. Each answer to a query implies an

inequality of the type: w · (X(β) − X(γ)) ≥ 0 or w · (X(β) − X(γ)) ≤ 0 ,

depending on the DM’s preference between β and γ. At each iteration of the

framework, Λ is the polyhedron defined as the set of inequalities derived from

the user answers to the queries. Such inequalities reduce the user preference

space state U to WΛ, as indicated in Section 4.4. The framework is based on

computing the optimal solutions associated with the extreme points of WΛ,

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

96 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

Performance
Predictor

MILP
Model

Suppliers’ Catalogue
Demand Predictor

Propose α ∈ S
to the DM Solution α

adopted

Query
Generation

Does the DM prefer
β or γ?

Stop criterion
evaluation

Solution α
adopted

Update
S

(β, γ)

UpdateWΛ

Figure 4.1: Structure of the proposed framework

by constructing the set S as defined in the previous section. This is because

computing the set A is usually intractable due to its size.

Algorithm 13 Supplier Selection Framework

1: procedure SUPPLIERSELECTIONLEARNINGLOOP

2: Compute MILP parameters
3: Run performance predictors
4: Retrieve data from the suppliers’ catalogue
5: Λ← ∅
6: WΛ ← U
7: repeat
8: Update S by running the MILP model on the new vertexes ofWΛ
9: α←SELECTRECOMMENDEDSOLUTION(S)

10: if DM accepts α then return α

11: (β, γ)← COMPUTEQUERY(WΛ,S)
12: Question to the DM: Do you prefer β or γ?
13: Update Λ according to the user’s answer
14: UpdateWΛ
15: until STOPCRITERION(WΛ,S)
16: return α

The following lines describe how the framework works in practice, referring to

the block diagram in Figure 4.1 and the pseudocode depicted in Algorithm 13.

The first step is to execute the performance predictors in order to compute

lateness and lead time estimation for each supplier (line 3 of Algorithm 13).

Furthermore, the components cost and availability per supplier need to be

retrieved from the suppliers’ catalogue (line 4). These are input parameters

for the MILP model described in Section 4.5.1.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

97 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

The next step is to initialize the set of constraints Λ to ∅ and thusWΛ to U (lines

5 and 6). The MILP model is then solved for each weights vector w ∈ Ext(WΛ)
(line 8). The first time, this means solving the combinatorial problem four times

by optimizing with respect to each single function Xi(α), i = 1, . . . , 4. Recall

that S is the set of solutions generated, following the definition in Section 4.4.

A solution α ∈ S is selected and proposed to the user, by means of the function

SELECTRECOMMENDEDSOLUTION(S) called at line 9. If the user accepts the

solution, the algorithm stops and provides α as an output (line 10). A pair

of solutions (β, γ), with β, γ ∈ S, is chosen with a user-preference elicitation

strategy, implemented by the function COMPUTEQUERY(WΛ,S) at line 11. The

user then answers the question (line 12): do you prefer solution β or solution

γ? The answer then leads to an update of Λ andWΛ (lines 13-14). A stopping

criterion is then checked by calling the function STOPCRITERION(WΛ,S) (line

15), which determines if WΛ allows one to approximate w∗ with a certain

accuracy. If the function returns true, the solution α is provided as an output.

Otherwise, line 8 is executed again by considering the updated Λ and WΛ,

and the MILP model will run on the extreme points of WΛ that have not been

considered in the previous iterations.

As we can see in Figure 4.1, the main components of our framework are the

MILP model and the query generation. Section 4.5.1 and Section 4.5.2 describe

these components. The description of the functions SELECTRECOMMENDED-

SOLUTION(S), COMPUTEQUERY(WΛ,S), STOPCRITERION(WΛ,S) is included in

Section 4.5.2.

4.5.1 The Mixed Integer Linear Programming model

Let us consider a set of suppliers I and a set of components C. A set

of components Ci is defined for each supplier i ∈ I, consisting of all the

components j ∈ C that can be provided by supplier i. Our MILP model

generates an optimal solution given a fixed weights vector w = (w1, w2, w3, w4)
which will then be an input parameter. Multiple unit costs are provided by each

supplier with respect to a certain part, depending on the quantity bought. A

unit cost is associated with a certain quantity interval, meaning that the unit

cost is the same for any quantity in the interval. The set Ti,j is the set of all the

disjoint quantity intervals for supplier i ∈ I and component j ∈ Ci, whose union

covers the set N. Let us define the parameter mi,j,t ∈ N as the minimum amount

of component j ∈ Ci to be ordered from supplier i ∈ I in the quantity interval

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

98 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

t ∈ Ti,j. As a consequence, Ti,j = (∪|Ti,j |−1
t=1 [mi,j,t,mi,j,t+1 − 1]) ∪ [mi,j,|Ti,j |,+∞],

where mi,j,1 = 0. The unit cost associated with a quantity interval t ∈ Ti,j

defines a certain tariff and it is indicated with ci,j,t. The value ai ∈ R+ indicates

the activation cost of a supplier i ∈ I. Note that all the parameters mentioned so

far, regarding components cost and availability, are coming from the suppliers’

catalogue of the factory.

The parameters li,j,t ∈ R+ and δi,j,t ∈ R+ respectively represent the expected

lead time and the expected lateness of component j ∈ Ci ordered from i ∈ I
in the quantity interval t ∈ Ti,j. These parameters are computed by the

lateness/lead time predictor. The value rj ∈ {1, .., 100} is the reputation of

supplier i ∈ I. This value is assigned by internal experts, as mentioned in

Section 4.3. The values λj,min, λj,max ∈ N are bounds on the number of suppliers

for component j ∈ C. Finally, Dj ∈ N is the estimated demand of component

j ∈ C.

Our MILP model is based on the following integer decision variables:

• φi,j,t ∈ N is the number of component j ∈ Ci ordered from supplier i ∈ I
in the quantity interval t ∈ Ti,j

• ρi,j,t ∈ {0, 1} is equal to 1 if a positive quantity of component j ∈ Ci is

ordered from i ∈ I in the quantity interval t ∈ Ti,j, 0 otherwise

• τi ∈ {0, 1} is equal to 1 if at least one component is ordered from the

supplier i ∈ I, 0 otherwise

• θ1, θ2, θ3, θ4 ∈ R+ are auxiliary variables used to model the min-max/max-

min formulations of the objectives.

Note that the variables φi,j,t and ρi,j,t have three indexes in order to take into

account different costs, lead time and lateness for each triple of supplier i,

component j and quantity interval t.

A feasible solution α ∈ A is determined by a feasible assignment to all these

variables. The four functionsX1(α), X2(α), X3(α), X4(α) are defined as follows.

First, the cost is computed as:

X1(α) =
∑

i∈I,j∈C,t∈Ti,j
ci,j,tφi,j,t +

∑
i∈I
aiτi (4.1)

thus both direct costs and suppliers’ activation costs are taken into account. The

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

99 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

first goal is to minimise this quantity. The second and third objectives are:

X2(α) = max
i∈I,j∈Ci

∑
t∈Ti,j

li,j,tρi,j,t (4.2)

X3(α) = max
i∈I,j∈Ci

∑
t∈Ti,j

δi,j,tρi,j,t. (4.3)

They represent the maximum expected lead time and the maximum expected

lateness related to a certain component and supplier, which are considered as

measures of the quality of service. Our goal is to minimise these quantities. The

fourth and last objective is

X4(α) = min
i∈I

riτi (4.4)

which we want to maximise, since it indicates the minimum reputation among

the suppliers considered in the solution.

The complete MILP model is as follows:

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

100 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

max−w1θ1 − w2θ2 − w3θ3 + w4θ4 (4.5)∑
i∈I

∑
t∈Ti,j

φi,j,t ≥ Dj ∀j ∈ C (4.6)

φi,j,t ≥ mi,j,tyi,j,t ∀i ∈ I, j ∈ C, t ∈ Ti,j (4.7)

φi,j,t ≤M1ρi,j,t ∀i ∈ I, j ∈ C, t ∈ Ti,j (4.8)∑
t∈Ti,j

ρi,j,t ≤ 1 ∀j ∈ C, i ∈ I (4.9)

∑
i∈I,t∈Ti,j

ρi,j,t ≥ λj,min ∀j ∈ C (4.10)

∑
i∈I,t∈Ti,j

ρi,j,t ≤ λj,max ∀j ∈ C (4.11)

θ1 =
∑

j∈C,i∈I,t∈Ti,j
ci,j,tφi,j,t +

∑
i∈I
aiτi (4.12)

θ2 ≥
∑
t∈Ti,j

li,j,tρi,j,t ∀j ∈ C, i ∈ I (4.13)

θ3 ≥
∑
t∈Ti,j

δi,j,tρi,j,t ∀j ∈ C, i ∈ I (4.14)

θ4 ≤M2(1− τi) + riτi ∀i ∈ I (4.15)∑
j∈C,t∈Ti,j

ρi,j,t ≤M3τi ∀i ∈ I (4.16)

∑
j∈C,t∈Ti,j

ρi,j,t ≥ τi ∀i ∈ I (4.17)

(4.18)

where M1,M2,M3 ∈ R+ are large enough (“big-M ") constants and the other

variables/parameters are defined previously. In our implementation, we set M1

as the maximum expected demand with respect to all the components of the

catalogue, M2 as the maximum reputation with respect to all the suppliers of

the catalogue, and M3 as the cardinality of C. The objective function (4.5) is

the weighted sum of the auxiliary variables θ1, θ2, θ3, θ4, where the signs are

minus for the functions to be minimised and plus for the ones to be maximised.

Constraint (4.6) imposes the condition that the demand per part has to be

satisfied. Constraints (4.7) and (4.8) are linking constraints between φi,j,t

and ρi,j,t, which state that ρi,j,t is active if and only if φi,j,t is greater than the

minimum quantity mi,j,t to unlock the tariff. Constraint (4.9) forces that only

one tariff is used when we order a certain quantity from a supplier. Constraints

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

101 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

(4.10) and (4.11) impose the bounds on the number of suppliers to be selected

for each component. Constraint (4.12) links θ1 with the analytical expression

of X1(α). Constraints (4.13) and (4.14) are used for the min-max formulations,

so that the auxiliary variables θ2, θ3 are linked to X2(α), X3(α) when the model

is solved. Analogously, Constraints (4.15) is used for the max-min formulation

regarding X4(α). In fact, the expression M2(1−τi)+riτi is equal to ri in the case

the supplier is selected, and equal to M2 otherwise, meaning that the constraint

(4.16) is disabled in the latter case. This expression is then linked to θ4. Finally,

Constraints (4.15) and (4.16) are linking constraints for ρi,j,t and τi, imposing

that a certain supplier is active if and only if one component is ordered from it.

4.5.2 User-preference elicitation approach

A key point for a good user experience is to reduce the number of interac-

tions with the user by asking informative queries. In this section, we define

different strategies for the query generation, in order to study their impact

on the number of iterations required by the framework to converge towards

a stopping criterion. In Section 4.5.2.1 we recall the main concepts of the min-

imax criterion and we define the function SELECTRECOMMENDEDSOLUTION(S).

Section 4.5.2.2 introduces the discrepancy measure which is a measure related

to the minimax regret criterion that will be used for query selection. Sec-

tion 4.5.2.3 presents different query generation strategies, then different im-

plementations of the function COMPUTEQUERY(WΛ,S). Finally, Section 4.5.2.4

defines the stopping criterion used in the framework, that is the implementation

of STOPCRITERION(WΛ,S).

4.5.2.1 Max regret

Recall from Section 2.3.2 that the maximum regret of a feasible solution α ∈ A

with respect to the user preference state spaceWΛ is given by:

MRWΛ(α,A) = max
β∈A

max
w∈WΛ

(w · (X(β)−X(α))). (4.19)

As mentioned earlier, computing the set A of feasible solutions is not practically

feasible. However, the following lemma (based on a well known property of

maximum regret see Section 2.3.2.3) allows us to compute the maximum regret

of a solution α ∈ A with respect to any w ∈ WΛ and β ∈ A using just the

set Ext(WΛ) of extreme points of WΛ and the corresponding set S of optimal

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

102 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

solutions.

Lemma 4.5.1. Let A be the set of all the feasible solutions with respect toWΛ, let α
be an element of A and let S be a set of optimal solutions with respect to Ext(WΛ).
Then MRWΛ(α,A) = MRExt(WΛ)(α,S)

The function SELECTRECOMMENDEDSOLUTION(S) of Algorithm 13 selects a

solution in A that minimise the worst-case loss with respect to WΛ, i.e., by

Lemma 4.5.1, a solution that minimise MRExt(WΛ)(α,S).

Let ValA(w) be maxα∈A(uw(α)) (i.e., the maximum scalar utility we can get from

solutions α ∈ A supposing that the weights vector is w ∈ WΛ). Recall from

Section 2.3.2.1 that the setwise maximum regret (SMR) for a subset Q ⊆ A

with respect to the user preference state spaceWΛ is defined as:

SMRWΛ(Q,A) = max
β∈A

max
w∈WΛ

(w ·X(β)−max
α∈Q

(w ·X(α)))

= max
w∈WΛ

(ValA(w)− ValQ(w)).
(4.20)

The setwise max regret will be the base of one of the three strategies for query

generation.

4.5.2.2 Discrepancy measure

Recall from Section 4.4 that αw ∈ A is a an optimal solution computed from

the discrete optimisation problem with respect to w ∈ WΛ. We define the

discrepancy of α ∈ A with respect to w as

Dw(α) = w · (X(αw)−X(α)). (4.21)

This is a measure of how good the solution α is, supposing that the user weights

vector is w. Note that Dw(α) ≥ 0 for any β ∈ A since αw is an optimal solution

with respect to w, i.e., w · X(αw) ≥ w · X(α) for any α ∈ A. We will use this

measure in order to select a query composed by two solutions αw1 , αw2 ∈ S with

high valuesDw1(αw2) andDw2(αw1). The idea is to ask to the user her preference

between two optimal solutions that are maximally different with respect to the

corresponding weights vectors in order to get a high value of information from

her answer.

Since S is the set of optimal solutions with respect to the extreme points

Ext(WΛ) of the user preference state space W, by Lemma 4.5.1, MRWΛ(α,A) =

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

103 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

MRExt(WΛ)(α,S) = maxw∈Ext(WΛ) maxβ∈S(w·(X(β)−X(α))), which can be written

as maxw∈Ext(WΛ)(w · (X(αw) − X(α))). Thus, the maximum regret of a solution

can be expressed using the discrepancy function:

MRWΛ(α,A) = MRWΛ(α,S) = max
w∈Ext(WΛ)

Dw(α). (4.22)

4.5.2.3 Query generation

Recall from Section 2.4.2 that a solution β ∈ S is undominated in S with

respect to WΛ, i.e., β ∈ UDWΛ(S), if there does not exist γ ∈ S such that

(i) w · X(γ) ≥ w · X(β) for all w ∈ WΛ, and (ii) w · X(γ) > w · X(β) for at

least one w ∈ WΛ. Also, recall from Section 3.3.1 that S is equivalence-free with

respect toWΛ if and only if β 6≡WΛ γ for all β, γ ∈ S with , which is if and only

if there do not exist β, γ ∈ S such that w ·X(β) = w ·X(γ) for all w ∈ WΛ.

To ensures the consistency of the DM’s preference model after a response to

a binary query Q = {β, γ}, the alternatives β and γ must be strongly feasible

answers givenWΛ (see Section 3.5). In our context this can be ensured making

S equivalence-free and replacing it with UDWΛ(S). In this case, in fact, for any

query Q = {β, γ} we have that γ does not dominate β and β 6≡WΛ γ. Thus,

there exists w1 ∈ WΛ with w1 · X(β) > w1 · X(γ). Similarly, there exists also

w2 ∈ WΛ with w2 ·X(γ) > w2 ·X(β). This means that β, γ ∈ PSOWΛ(Q), which

is, by Proposition 4, if and only if β and γ are strongly feasible answers since Q
is equivalence-free.

Note that UDWΛ(S) = UDExt(WΛ)(S) since the scalar utility of a solution is a

linear function with respect to w ∈ WΛ. Thus we can compute UDWΛ(S)
and at the same time make S equivalence-free as follows. If it is the case

that w · (X(β) − X(γ)) = 0 for all w ∈ Ext(WΛ), then we remove either β

or γ. Thereafter, we remove all γ ∈ S such that there exists β ∈ S with

w ·X(γ) ≤ w ·X(β) for all w ∈ Ext(WΛ).

Once we make S equivalence-free and devoid of dominated elements, we can

then proceed with the query selection process ensuring the consistency of the

preference model. We consider the following three methods to generate a

binary query Q = {αw1 , αw2} from S (with their relative performance being

compared in Section 4.6):

1. Setwise min max regret (SMMR): select a query Q ⊆ S with |Q| = 2 that

minimises SMRWΛ(Q,S).

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

104 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

2. Max min discrepancy (MMD): select a query Q ⊆ S with |Q| = 2 that

maximises min(Dw2(αw1), Dw1(αw2)).

3. Max discrepancy sum (MDS): select a query Q ⊆ S with |Q| = 2 that

maximises Dw2(αw1) +Dw1(αw2) = (w1 − w2) · (X(αw2)−X(αw1)).

Each of these methods can be used to implement COMPUTEQUERY(WΛ,S) used

in Algorithm 13.

SMMR combines the quality of solutions with being myopically optimal (see

Section 2.3.2.2). This ensures a good diversity of solutions shown to the

user, but computing the query that minimises the setwise maximum regret is

quite expensive since we need to solve O(|S|3) linear programming problems.

This is because we have to evaluate the SMR of each possible query Q, and

for each query Q we need to solve O(|S|) linear programming problems (see

Section 2.3.2.3 for the computational complexity of solving linear programming

problems). MDS and MMD are two simpler methods we developed that

consider only the two weights vectors associated with the solutions composing

the query rather than the whole user preference state space WΛ. The aim is

still to be maximally informative but with a lower complexity for the evaluation

of each query. In fact, with these two methods we need to compute O(|S|2)
dot products. Furthermore, we can store and reuse the value of a query for

subsequent iterations in cases when the corresponding extreme points are not

removed by the preference elicitation process.

Example 16. Consider the set of alternatives S = {α = (4, 1, 2, 1), β =
(3, 4, 1, 1), γ = (1, 3, 4, 1), θ = (3, 3, 1, 4)} associated with the extreme points
Ext(WΛ) = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. In Table 4.1 are shown
the values computed by the three query selection criteria with respect to each
possible query. In this example the myopically optimal query Q = {γ, θ} is also
selected by the two methods based on the discrepancy measure.

A very recent paper [BL19] proposes a similar interactive preference elicitation

procedure. As in our framework, queries for the user are computed using

the solutions associated with the extreme points of the polytope representing

the preferences learned so far. The experimental results show that their best

method for query selection is Max-Dist where the query is composed of a pair

of solutions that maximise the corresponding Euclidean distance. During the

development of our framework, we considered this method but discarded it

because our initial experimental results indicated that it was not performing

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

105 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

Table 4.1: Values computed by the three query selection criteria with respect
to each possible query selected from the set S = {α = (4, 1, 2, 1), β =
(3, 4, 1, 1), γ = (1, 3, 4, 1), θ = (3, 3, 1, 4)} with corresponding extreme points
Ext(WΛ) = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}

Q SMRWΛ(Q,S) min(Dw2(αw1), Dw1(αw2)) Dw2(αw1) +Dw1(αw2)
{α, β} 3 1 4
{α, β} 3 2 5
{α, θ} 2 1 4
{β, γ} 3 1 4
{β, θ} 3 1 4
{γ, θ} 1 3 6

well compared to the other methods we are presenting in this chapter. We

believe that the poor efficacy of such method applied to our context is due to

its high sensitivity to the (somewhat arbitrary choice of) scales of the objectives

of the utility function to be optimised. Note that the idea behind our MDS

method is somewhat similar, since we select a pair of solutions that maximise

(w1 − w2) · (X(αw2) −X(αw1)), i.e., the dot product between (i) the difference

between the corresponding utility vectors, and (ii) the difference of the utilities

corresponding extreme points. It may well be that MDS performs better in our

context because it is much less sensitive to changes in the particular choices of

utility scales.

4.5.2.4 Stopping criterion

Recall from Section 2.4.2 that NOWΛ(A) is the set of the necessarily optimal
solutions of A with respect to WΛ, i.e., the set of solutions β ∈ A such that

w · (X(β) − X(γ)) ≥ 0 for any γ ∈ A and for any w ∈ WΛ. Note that usually

there are not any necessarily optimal solutions, unlessWΛ is a small set. Also, if

there is more than one necessarily optimal element then they are all equivalent.

If there exists a solution β ∈ A such that Dw2(β) = 0 for all w2 ∈ Ext(WΛ)
then, since WΛ is a convex and compact set, there is no solution better than β

with respect to the user preference state space WΛ, i.e., β ∈ NOWΛ(A). Also,

as is well known (see e.g., [Tim13] or [BP19b]), β ∈ NOWΛ(A) if and only

if MRWΛ(β,A) = 0. These equivalences are expressed more formally by the

following proposition.

Proposition 6. Let α ∈ A be a feasible solution, then the following statements are
equivalent:

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

106 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.5 The Structure of the Framework

(a) Dw2(α) = 0 for all w2 ∈ Ext(WΛ);

(b) α ∈ NOWΛ(A);

(c) MRWΛ(α,A) = 0.

Proof: (a)⇒(b): If Dw2(α) = 0 for each w2 ∈ Ext(WΛ), then w2 · (X(αw2) −
X(α)) = 0 for each w2 ∈ Ext(WΛ). Therefore, since αw2 is an optimal solution

with respect to w2, also α is optimal for all w2 ∈ Ext(WΛ) and then w · (X(α)−
X(β)) ≥ 0 for each w ∈ Ext(WΛ) and for any β ∈ A. Since WΛ is convex and

compact, any w′ ∈ WΛ can be expressed as a convex combination of extreme

points in Ext(WΛ) = {w1, . . . , wn}, i.e., w′ = ∑n
i=1 λiwi for some λi ∈ [0, 1] such

that
∑n
i=1 λi = 1, then w′ · (X(α) −X(β)) = ∑n

i=1 λiwi(X(α) −X(β)) ≥ 0, and

then α is optimal for any w′ ∈ WΛ, i.e., α ∈ NOWΛ(A).

(b)⇒(c) If α ∈ NOWΛ(A), then w · (X(β)−X(α)) ≤ 0 for any β ∈ A and for any

w ∈ WΛ. Therefore MRWΛ(α,S) = maxβ∈S maxw∈WΛ(w · (X(β) − X(α))) ≤ 0,

but since MRWΛ(α,S) ≥ 0, then MRWΛ(α,S) = 0.

(c)⇒(a) If MRWΛ(α,S) = 0, since MRWΛ(α,S) = maxw2∈Ext(WΛ)(Dw2(α)) (see

Section 4.5.2.2) and Dw2(α) ≥ 0 for any w2 ∈ WΛ, then Dw2(α) = 0 for all

w2 ∈ Ext(WΛ).

�

Because of Proposition 6, if we find a solution α ∈ S such that Dw2(α) = 0 for

each w2 ∈ Ext(WΛ), then we can stop the algorithm and recommend α to the

user since it will be an optimal solution with respect to any w ∈ WΛ.

Our iterative procedure could be repeated until we find a necessarily optimal

solution in S. However, if there are several similar solutions which are optimal

for at least one DM’s preference model w ∈ W, we may need too many

interactions with the user to find a necessarily optimal solution. We then use

an alternative stopping criterion which stops the interaction with the user when

the minimax regret is below a certain threshold. More precisely, we implement

the function STOPCRITERION(WΛ,S) defined in Algorithm 13 as follows. We

compute the maximum regret MRWΛ(α,S) of each solution α ∈ S and if there is

at least one solution with max regret lower than a specific threshold ε, then we

return true, false otherwise. Thus, if the stopping criterion is satisfied, i.e., the

function STOPCRITERION(WΛ,S) returns true, then we stop the algorithm and

we recommend the solution with minimum max regret.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

107 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.6 Computational Experiments

4.6 Computational Experiments

The aim of this section is to assess the computational effectiveness of the frame-

work by considering the three different preference elicitation strategies de-

scribed in Section 4.5.2.3. Two different performance measures are considered:

the number of queries generated and the overall computational time required

to achieve convergence to the stopping criterion. The number of queries gen-

erated is equivalent to the number of interactions with the user, which is an

important measure of the framework usability. Contrary to the computational

time, such performance measure focuses on measuring the quality of the user

preferences strategy adopted, and it does not depend on the approach used to

solve the combinatorial problem.

We tested our framework with randomly generated data since we could not use

the real data provided by the factory with which we have been collaborating

during the development of this framework. The data provided had too many

inconsistencies such as unrealistic delivery time and quantities ordered. Also,

our random generated experiments allow a detailed comparison of how the

algorithm scales with the various parameters, such as the cardinalities of

components and suppliers, and the number of components supplied by each

supplier.

The computational experiments are performed on randomly generated in-

stances that represent realistic scenarios, as described in Section 4.6.1. With

Section 4.6.2 we present the computational results and we discuss how the

framework performs under different conditions.

4.6.1 Instances structure

Each instance considered is generated by considering as an input the number of

suppliers |I|, the number of components |C| and the density parameter ρ ∈ R,

where the latter enforces that the total number of pairs (i, j), (where supplier

i ∈ I can provide component j ∈ C) is equal to ρ · |I| · |C| rounded to the nearest

integer. The component availability of each supplier is randomly assigned such

that the overall density ρ is enforced, by using the procedure described in

Appendix B.1.

The instances are structured in order to reflect a scenario in which the firm

needs a large number of low price components and a small number of expensive

ones. Bearing this in mind, the set of components C is partitioned into three

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

108 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.6 Computational Experiments

categories: Cheap, Average and Expensive, which include, respectively, 75%,

20% and 5% of the overall number of components. The demand Dj of each

component j ∈ C depends on its category. It is sampled from a Gaussian

distribution with mean µdj and standard deviation σdj (discarding values that

are less than or equal to zero), using the values reported in Table 4.2.

Table 4.2: Mean and standard deviation of the truncated Gaussian distribution
used to sample the demand of a component with respect to each category.

Cheap Average Expensive
µdj 3000 600 90
σdj 750 150 22.5

The unit cost of each component depends on its category, the supplier, and

the quantity ordered. An average cost µcj per component j ∈ C is computed

by considering a uniform distribution over the interval associated with the

component category, as defined in Table 4.3. The unit cost of a component

provided by a supplier i ∈ I is then sampled with a uniform distribution on the

interval [0.9µcj, 1.1µcj]. Finally, a random discount is considered for computing

the costs, by sampling uniformly on the intervals indicated in Table 4.4, which

depend on the quantity ordered. The lower limits on the quantities indicated

in such table represent the coefficients mi,j,t of Equation 4.7. By following the

steps described above, the unit cost parameters ci,j,t are computed.

Table 4.3: Intervals of the uniform distributions used to sample the mean cost
of components with respect to each category.

Cheap Average Expensive
[0.05, 3] [4, 30] [50, 200]

The activation costs ai (for i ∈ I) are defined such that the impact on the

overall cost function is of the same order of magnitude as the direct costs. Let

µcj,TOT = ∑
j∈CDj ·µcj be the average total cost to satisfy the whole demand of all

components. Assuming that we rely on only |I|2 suppliers, the average amount

of direct costs per supplier is equal to
2µcj,TOT
|I| . We sample each activation cost ai

from a uniform distribution on the interval [0.82µcj,TOT
|I| , 1.22µcj,TOT

|I|).

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

109 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.6 Computational Experiments

Table 4.4: Discount intervals per component category and quantity ordered.

Cheap

Quantity Discount

1-750 0%

751 - 1000 [3,7]%

1001 - 1250 [8,12]%

> 1251 [13,17]%

Average

Quantity Discount

1-150 0%

151 - 200 [3,7]%

201 - 250 [8,12]%

> 251 [13,17]%

Expensive

Quantity Discount

1-20 0%

21 - 30 [3,7]%

31 - 40 [8,12]%

> 41 [13,17]%

The parameters λj,min (Equation 4.10) and λj,max (Equation 4.11) representing

the bounds on the number of component per supplier j are sampled by using a

discrete uniform distribution on the set of integers {1, 2} and on {λj,min, . . . , 5},
respectively. The parameters representing the expected lead time li,j,t and

expected delay δi,j,t in Equation 4.13 and Equation 4.14 are computed by means

of a supplier performance predictor (see Appendix B.3) based on a database of

past orders (see Appendix B.2). Finally, the reliability ri (Equation 4.15) of

each supplier i is defined by sampling a discrete uniform distribution on the set

{1, . . . , 100}.

4.6.2 Experimental results

The framework was implemented in Python 3.7, including the MILP model

generation and the different preference elicitation strategies. CPLEX 12.8

[ILO17] was used as a MILP and LP solver, while the Python library pycddlib

[Tro18] was used to compute the extreme points of the user-preference

polytope. All the experiments described below were performed on an Intel(R)

Xeon(R) E5620 2.40 GHz processor with 32 GB of RAM.

The instances considered are randomly generated as described in Section 4.6.1.

We generated 20 instances for each triple (|I|, |C|, ρ), such that |I| ∈ {10, 20, 30},
|C| ∈ {30, 40, 50, 60} and ρ ∈ {0.2, 0.3, 0.4, 0.5}. As a result, the overall set of

instances is formed by 20 · 3 · 4 · 4 = 960 elements.

Table 4.5, Table 4.6 and Table 4.7 show the performance of the different

strategies SMMR, MMD and MDS concerning time and number of queries for

experiments with |I| = 10, |I| = 20 and |I| = 30 respectively. The first three

columns of both tables contain the values of the parameters |I|, |C| and ρ, while

the fourth column gives the percentage η of instances where the convergence

to the stopping criterion was achieved within the time limit of 2 hours. The

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

110 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.6 Computational Experiments

Table 4.5: Experimental results with |I| = 10. Bold values represent the best
result among the three methods in that row, with respect to time in seconds (for
the first set of three columns), or number of queries (for the second set of three
columns).

|I| |C| ρ η
SMMR MMD MDS SMMR MMD MDS
µtime µtime µtime µquery µquery µquery

10 30 0.2 100.0% 1.06 0.73 0.76 4.15 4.3 4.3
10 30 0.3 100.0% 6.53 3.13 4.3 5.6 6.1 6.85
10 30 0.4 100.0% 19.35 6.57 10.94 7.1 6.45 8.25
10 30 0.5 100.0% 36.29 16.82 24.95 7.85 8.15 9.2
10 40 0.2 100.0% 1.2 1.0 1.01 4.05 4.3 4.5
10 40 0.3 100.0% 3.05 2.39 2.44 4.75 5.15 5.05
10 40 0.4 100.0% 28.2 15.01 21.68 7.35 7.25 10.65
10 40 0.5 100.0% 36.41 25.51 27.83 8.05 8.05 8.5
10 50 0.2 100.0% 1.44 0.86 0.82 3.65 3.7 3.65
10 50 0.3 100.0% 3.45 2.6 2.36 5.0 5.3 4.9
10 50 0.4 100.0% 14.62 10.39 16.27 6.55 7.15 7.8
10 50 0.5 100.0% 74.2 40.39 60.56 8.7 8.15 9.0
10 60 0.2 100.0% 1.75 1.38 1.11 4.1 4.3 3.95
10 60 0.3 100.0% 2.16 1.53 1.48 3.65 3.7 3.75
10 60 0.4 100.0% 39.63 15.12 16.58 6.7 6.8 7.25
10 60 0.5 100.0% 78.25 40.92 45.83 8.45 8.15 8.45

Average values 1.779 1.027 1.213 1.017 1.038 1.116

Table 4.6: Experimental results with |I| = 20. Bold values represent the best
result among the three methods in that row, with respect to time in seconds (for
the first set of three columns), or number of queries (for the second set of three
columns).

|I| |C| ρ η
SMMR MMD MDS SMMR MMD MDS
µtime µtime µtime µquery µquery µquery

20 30 0.2 100.0% 16.07 9.17 12.07 7.1 6.95 7.75
20 30 0.3 100.0% 94.69 63.48 78.58 9.85 9.65 10.1
20 30 0.4 100.0% 197.66 99.33 144.52 9.85 9.65 10.7
20 30 0.5 100.0% 476.25 364.75 276.31 11.65 11.45 13.05
20 40 0.2 100.0% 17.36 15.92 12.97 6.0 6.95 6.25
20 40 0.3 100.0% 158.36 107.66 95.94 10.45 10.45 10.25
20 40 0.4 100.0% 241.47 200.07 195.73 9.95 10.25 10.25
20 40 0.5 100.0% 309.45 223.2 226.74 9.75 9.35 9.95
20 50 0.2 100.0% 23.04 12.83 16.68 6.65 6.9 8.0
20 50 0.3 100.0% 174.25 99.49 164.75 9.9 9.1 10.2
20 50 0.4 100.0% 216.03 194.69 187.28 8.5 9.05 9.05
20 50 0.5 100.0% 1060.72 545.77 729.69 11.05 10.15 11.35
20 60 0.2 100.0% 23.51 20.76 24.09 6.9 7.4 7.2
20 60 0.3 100.0% 217.26 146.5 175.08 10.1 9.55 11.05
20 60 0.4 95.0% 673.92 441.33 509.27 10.0 9.89 10.84
20 60 0.5 100.0% 748.75 332.97 627.92 10.0 9.05 10.75

Average values 1.6 1.046 1.232 1.031 1.024 1.096

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

111 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.6 Computational Experiments

Table 4.7: Experimental results with |I| = 30. Bold values represent the best
result among the three methods in that row, with respect to time in seconds (for
the first set of three columns), or number of queries (for the second set of three
columns).

|I| |C| ρ η
SMMR MMD MDS SMMR MMD MDS
µtime µtime µtime µquery µquery µquery

30 30 0.2 100.0% 179.3 131.18 145.89 10.25 10.9 11.6
30 30 0.3 100.0% 324.08 187.3 239.96 10.8 10.05 10.25
30 30 0.4 100.0% 1250.47 760.46 554.27 11.75 10.35 10.55
30 30 0.5 90.0% 649.68 396.93 1092.39 10.28 9.94 12.45
30 40 0.2 100.0% 266.6 163.43 158.97 11.0 11.45 11.4
30 40 0.3 100.0% 558.93 417.02 343.79 10.2 10.8 10.3
30 40 0.4 90.0% 1457.82 867.42 1157.63 11.83 10.56 12.44
30 40 0.5 90.0% 2024.71 1075.7 920.72 12.23 11.39 12.67
30 50 0.2 100.0% 137.72 88.14 120.45 8.55 8.4 9.45
30 50 0.3 100.0% 580.08 548.1 570.5 8.85 9.5 10.85
30 50 0.4 100.0% 838.59 774.24 887.99 10.15 10.5 10.9
30 50 0.5 75.0% 909.26 954.31 661.15 9.66 9.93 10.14
30 60 0.2 100.0% 492.32 236.87 285.56 9.95 9.7 9.75
30 60 0.3 90.0% 1022.41 641.09 676.74 10.34 10.05 9.89
30 60 0.4 80.0% 298.74 922.73 780.58 7.56 9.88 10.56
30 60 0.5 95.0% 1815.33 1126.28 1493.48 10.53 10.31 11.16

Average values 1.596 1.207 1.327 1.034 1.039 1.107

remaining columns show the average µtime of the computational time in seconds

and the average µquery of the number of queries, for each of the proposed

strategies. The results reported for these last six columns take into account

only the instances where convergence was achieved within the time limit.

We need a common measure to compare the rows of Table 4.5, Table 4.6 and

Table 4.7, and summarize the performances of the three methods; a simple

mean for each column would strongly bias the results towards the larger

instances. Instead, for each result (i.e., average time or average number of

queries) we compute a score that we call ratio with the best method (RWB),

dividing the result by the corresponding best result among the three methods

in that row; for example, the RWB value for SMMR query time for the first row

is equal to 1.06/0.73. We then consider the mean of these values over all 48

rows; these values are recorded in the last row of the tables.

The 20 instances generated for each triple (|I|, |C|, ρ) have a different unknown

user preference vector, generated randomly by means of the procedure de-

scribed below. The first aspect to consider when defining this procedure is the

different scales of the four objective functions. For example, a user preference

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

112 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.6 Computational Experiments

vector wu = (0.25, 0.25, 0.25, 0.25) does not necessarily describe a case in which

the same importance is given to each of the four objectives since the choice of

scales of the objectives can be somewhat arbitrary. Because of the difference in

scales, a vector of (0.25, 0.25, 0.25, 0.25) might implicitly be giving much higher

importance to, e.g., the first objective. For this reason, we chose not to sample

wu with a uniform distribution (which could lead to, e.g., the first objective be-

ing the most important one for almost all the instance), but with a distribution

that gives higher probability to more extreme vectors. More precisely, we use

the following method:

1. Solve the MILP problem using the extreme points w1 = (1, 0, 0, 0), w2 =
(0, 1, 0, 0), w3 = (0, 0, 1, 0) and w4 = (0, 0, 0, 1) of the initial weights vector

state space U , and let βwi be the solution computed with weights vector

wi where i ∈ {1, . . . , 4}.

2. Compute a value ki = rnd[0,1)
βwi(i)−minj∈{1,...,4}(βwj(i)) for each i ∈ {1, . . . , 4}.

3. Set the weights vector to wp = 1∑4
j=1 kj

· (k1, k2, k3, k4)

The idea is to try to define an approximation of the range of each objective in

order to re-scale a random vector with respect to the ranges of the objective

functions.

The bar chart in Figure 4.2 counts the number of times in which each of the

three methods for query selection achieved the best average performances given

a triple (|I|, |C|, ρ) of Table 4.5, Table 4.6 and Table 4.7, and with respect

to the number of queries and the total computational time in seconds. More

specifically, the frequency in this bar chart is based on giving a score to each

strategy. This score is based on summing up 1 unit in the case the strategy is

the only method achieving the best performances, a half a unit in the case of a

tie between two strategies, and a third of a unit in the case of a three-way tie.

As we can see from Figure 4.2 and the last row of Table 4.5, Table 4.6 and

Table 4.7, it looks like that MMD is on average better than the other two

methods in terms of total time, better than MDS in terms of number of queries,

and (perhaps surprisingly) roughly equivalent to SMMR in terms of number of

queries.

In Figure 4.3 and Figure 4.4 is shown the average CPLEX execution time per

iteration and the average query computation time per iteration for the three

methods for query selection for two different experiment configurations, i.e.,

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

113 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.6 Computational Experiments

Figure 4.2: Number of experiments in which the three methods for query
selection achieved the best performances with respect to number of queries
and CPLEX time.

10 suppliers, 20 components and 0.5 density, and 30 suppliers, 50 components

and 0.5 density, respectively. The average CPLEX execution time per iteration

is computed as the sum of the total CPLEX time for each instance divided by

the sum of the number of iterations for each instance. Similarly, the average

query computation time per iteration is computed as the sum of the total query

time for each repetition divided by the sum of the total number of iterations

for each instance. As we can see in Figure 4.3 and Figure 4.4, the query time

is much higher for the method SMMR. This is not surprising since SMMR has

a worse computational complexity than MMD and MDS. It is interesting to see

that the choice of the query selection method has a substantial impact on the

total time for small instances (see Figure 4.3). On the contrary, the time taken

by the query selection methods is negligible when the size of the instances is

large enough (see Figure 4.4).

Generally speaking, the results show that the strategies SMMR and MMD

look better than MDS in terms of number of queries generated. A possible

explanation is that the discrepancy sum computed in MDS, which drives the

query generation process, can be high even if one of the two solutions in the

selected pair (αw1 , αw2) has a discrepancy value close to zero. In such scenario, it

may happen that the region of the polytopeWΛ in which w·(X(αw2)−X(αw1)) ≥
0 holds is very small. Thus, if the user prefers αw1 to αw2, the cut induced

by the user answer is not highly informative and does not reduce the region

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

114 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.6 Computational Experiments

Figure 4.3: Average CPLEX and query computation time in seconds per iteration
for the three methods for query selection. The graph shows an average of 20
instances where |I| = 10, |C| = 20 and ρ = 0.5.

Figure 4.4: Average CPLEX and query computation time in seconds per iteration
for the three methods for query selection. The graph shows an average of 20
instances where |I| = 30, |C| = 50 and ρ = 0.5.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

115 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.7 Conclusions

WΛ significantly. For this reason, min-max based methods such as SMMR and

MMD achieve better performance, since they aim at computing queries that are

informative whichever the user answer is.

As we have discussed in Section 2.3.2.2, the SMMR method generates a

myopically optimal query with respect to WΛ if we consider all the optimal

solutions associated with WΛ. But at each iteration of our framework, we

consider only the solutions associated with the extreme points Ext(WΛ) of

WΛ and then the query computed by SMMR is the most informative only

with respect to the user preferences Ext(WΛ). Thus, we cannot guarantee the

optimality of the whole sequence of queries since different greedy methods

(such as MMD) might generate a different set of extreme points from which we

might extract more informative queries.

With MMD we evaluate the minimum worst-case loss of a pair of solutions

αw1 and αw2 composing a query only on the corresponding extreme points

w1, w2 ∈ WΛ. On the other hand, with SMMR we evaluate the worst-case loss

of the query rather than of the single solutions composing the query, and with

respect to to the whole set of extreme points Ext(WΛ). Thus, it is interesting

to see that even if MMD is a simplification of SMMR, it is an effective method

since we can reach the stopping criteria with a similar number of queries.

Finally, the computational results presented clearly show that the framework

is very scalable with respect to the number of queries computed to achieve

convergence. In fact, such measure grows very slowly as soon as the instance

size grows (see Table 4.5, Table 4.6 and Table 4.7). This suggests a practical

usability of the framework designed in the context of supplier selection.

4.7 Conclusions

In this chapter we presented a general framework to guide decision-makers

via a query generation mechanism in a multi-criteria supplier selection process

inspired by a real-world scenario. Our computational results show the

performance of three preference elicitation strategies based on the setwise

minimax regret criterion, with two of the three being novel. The usability of

the framework has been shown by highlighting the moderate number of queries

needed to achieve convergence.

Although we tackled a specific problem, our framework can be applied to

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

116 Federico Toffano

4. A MULTI-OBJECTIVE FRAMEWORK BASED

ON USER-PREFERENCES 4.7 Conclusions

generic configuration problems (see, e.g., [BPPS06, BB07, BL19]). In fact, the

preference elicitation module is independent of the specific problem that we

have to solve. Our MILP model can be replaced by any other configuration

problem as long as the objective function is a weighted sum of a fixed number

of criteria, and the weights vector represents the user preferences with respect

to these criteria. Some examples of domains of application are such as chemical

process engineering [RFH20], flow shop scheduling [MIT96], inventory control

[TC17] and maintenance planning [ABSK+19]. Our framework can be

particularly useful when computing a solution to a configuration problem

is time-consuming also with certain preference information. This because

we face the preference uncertainty solving the problem for fixed preference

models, and thus we do not increase the complexity of the configuration

problem to solve. Also, it can be useful when we do not have any preference

information since with our fast query generation methods we can compute

highly informative queries that can rapidly reduce the uncertainty of the

decision-maker’s preferences.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

117 Federico Toffano

Chapter 5

An exact algorithm to compute the
Setwise Minimax Regret

In this chapter we define a novel efficient approach to compute the setwise

minimax regret, i.e., the minimum setwise max regret, of subsets with a specific

cardinality, of an input set of alternatives. We focus on a preference model

based on the weighted sum utility function parameterised with respect to

the set of weights vectors, and on database problems where alternatives are

enumerated and represented with an explicit list of multi-attribute outcomes.

The main idea behind our approach is to approximately evaluate the setwise

max regret of several subsets simultaneously considering only a discrete subset

of the continuous space representing the DM’s preferences; then, if the latter

evaluation leads to a lower bound of the corresponding setwise max regret

above a specific threshold, we compute the setwise max regret with respect

to all the DM’s preferences consistent with our preference model. The

approximated evaluation of the setwise max regret will be performed with a

novel approach based on a SAT solver, and the exact computation of the setwise

max regret will be performed with algorithms based on concepts presented in

Chapter 3.

5.1 Introduction

On the process of incremental preference elicitation based on queries for the

DM, minimising the number of interactions with the DM is a key point for a

successful preference elicitation system. To evaluate the value of information

118

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.1 Introduction

of a query for the DM we should consider all future queries and possible

responses (see, e.g., [Bou02]), but this may be computationally prohibitive

even for a small set of alternatives. As we have discussed in Section 2.3.2.2,

a simplification widely used is a myopic evaluation based on the worst-case

regret after a single query response. In regret based frameworks for preference

elicitation such as [SH01, BPPS06, BB07, BPV14], to minimise the number of

interactions with the DM we then need to reduce the worst-case regret at each

iteration as much as possible. In [VB09, VB20] the authors have shown that

a query defined as a comparison of alternatives and selected using the Setwise

Minimax Regret (SMMR) criterion is myopically optimal. Furthermore, such

a query is also an optimal recommendation set. An important consequence

of this result is that there is no exploration-exploitation tradeoff with the

Minimax Setwise Regret criterion. On the other hand, this method can be very

computationally demanding despite its myopic nature.

Here we focus on database problems, i.e., on problem based on an explicit

representation of the alternatives (see Section 2.3.2.2). To the best of our

knowledge, the only algorithm in the literature to compute SMMR for database

problems has been proposed in [VB20] and it is based on the generation of all

the possible sets of a specific size k and the corresponding maximum regret.

Our method instead relies on search; nodes in the search tree correspond to

sets of alternatives with cardinality up to k, and leaves correspond to sets with

cardinality exactly k. Pruning is done when we are sure that no extension of

the current set can beat the previously found solution; to check this condition

we use a SAT solver with cardinality constraints to prune the search space. This

idea is combined with our method to compute the setwise max regret based on

the extreme points of the epigraph presented in Section 3.7.2. The resulting

algorithm is a method that is much faster than the state of the art, as is shown

in our experimental tests.

This chapter is organised as follows. In Section 5.2 we state our general

assumptions, we recall the main concepts of setwise max regret defined in

Section 2.3.2, we describe the utility function considered in this chapter, and

provide some basic properties. In Section 5.3 we describe the main ideas behind

our algorithm and its main components; while in Section 5.4 we provide a

detailed description of the main algorithm to compute the SMMR. We provide

some experimental results to validate our approach in Section 5.5, and conclude

with a final discussion in Section 5.6.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

119 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.2 Setwise Max Regret

5.2 Setwise Max Regret

We now give some general background and recall some definitions and lemmas

of interest for this chapter.

We assume a database problem with a MAUT setting (see 2.3.2.2) where the

task is to choose one among a finite and explicit list of alternatives A ∈M. The

Decision-Maker (DM) is assumed to be endowed with a utility or utility function

uw, mapping from A to R; w denote the parameters of the utility function (a

specific choice of w uniquely determines the utility function). The goal is to pick

arg maxx∈A uw(x); however we assume that we (i.e., taking the point of view of a

recommender system tasked to support decision-making) do not have access to

the DM’s true utility function. The problem is to make recommendations under

utility function uncertainty; we suppose that our knowledge about the DM’s

preferences is such that we can identify U as the set of scenarios representing

all the consistent parametrisations w of a DM’s utility function uw.

Let W ⊆ U be the set of scenarios representing all the parametrisation w of a

DM’s utility function uw consistent with previous input information. We define

ValA(w) = maxα∈A uw(α) to be the utility function of a finite set of alternatives A

defined as the maximum utility value that we can get from any alternative α ∈ A

with respect to the utility function uw. The setwise max regret (SMR) inW of a

finite set of alternatives A with respect to another finite set of alternatives B is

defined by:

SMRW(B,A) = max
w∈W

(ValA(w)− ValB(w)) (5.1)

The value SMRW(B,A) is then the worst-case loss of recommending the best

alternative β ∈ B instead of the best alternative α ∈ A supposing that the DM’s

utility function parameterisation could be any w ∈ W. The setwise minimax

regret (SMMR) in W of all the subsets B of cardinality k of a finite set of

alternatives A is defined by:

SMMRkW(A) = min
B⊆A:|B|=k

SMRW(B,A) (5.2)

The value SMMRkW(A) is then the minimum setwise max regret we can get from

all the possible subsets B of alternatives with cardinality k of A.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

120 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET

5.3 An Efficient Algorithm to Compute Setwise
Minimax Regret

Basic properties of setwise regret Recall from Section 2.4.2 that UDW(A) ⊆
A is the set of undominated elements of A with respect to W. We recall also

from Section 2.4.2 the following basic properties of setwise regret that we will

use later:

1. (Lemma 3.4.1(i)) SMRW(B,A) is monotonically decreasing in B, and

monotonically increasing in W, i.e., if B′ ⊇ B and W ′ ⊆ W, then

SMRW ′(B′,A) ≤ SMRW(B,A).

2. (Lemma 3.4.2(i)) SMRW(B,A) = SMRW(UDW(B),UDW(A)) and, for any

k ≥ 1, SMMRkW(A) = SMMRkW(UDW(A)).

Utility functions While the previously introduced concepts of this chapter are

quite general and apply to any kind utility function, also in this chapter we focus

on a preference model based on the weighted sum utility function presented in

Section 2.1.4. Here an alternative α is represented with a vector of p reals, with

each component corresponding to a criterion, and αi being the evaluation of α

with respect to the i-th criterion. We define uw(α) = α · w (= ∑p
i=1wiαi) to be

the utility function parametrised with respect to w, where α ∈ A ⊂ IRp, w ∈ U
and

U = {w ∈ IRp : wi ≥ 0,
p∑
i=1

wi = 1}. (5.3)

Our algorithmic approach assumes thatW is a compact convex polytope subset

of U . More precisely, we define WΛ as the set of elements of U consistent with

an input set Λ of DM’s input preferences, where a DM’s input preference of

alternative α over β leading to the constraint α · w ≥ β · w. Thus,WΛ is the set

of elements of U that satisfy constraints induced by Λ.

5.3 An Efficient Algorithm to Compute Setwise

Minimax Regret

The main idea behind our algorithm is to use a depth-first search over subsets

of A, with setwise max regret computations at leaf nodes of the search tree, and

with a method of pruning branches that reduces the number of setwise max

regret computations. More precisely, for a given subset C of A with cardinality

less than k, we use a method that determines, for a particular discrete subset

W ′ of W, if SMRW ′(B,A) ≥ r holds for all supersets B of C with cardinality

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

121 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET

5.3 An Efficient Algorithm to Compute Setwise
Minimax Regret

k, where r is the current upper bound of SMMRkW(A). If this holds then, by

Lemma 3.4.1(i), SMRW(B,A) ≥ r for all such B, enabling us to backtrack at this

point of the search.

In the next paragraph we define how we represent subsets of A; then we define

how to evaluate the setwise max regret of a set of subsets of A simultaneously

with a Boolean satisfiability (SAT) problem.

Search space: We consider the set of Boolean strings of length at most n = |A|
as a representation of the search space over subsets of A with cardinality less

or equal to k. For string x, let Len(x) be the length of x. Let us label A as

α1, . . . , αn, where n = |A|. We say that a string is complete if it is of length n,

and otherwise it is partial. Each complete string x corresponds to a subset Bx
of A, where Bx is the set of all αi ∈ A such that x has a one at its i-th position.

We say that complete string x is of cardinality k if it contains k ones, i.e., if the

corresponding subset Bx is of cardinality k. If x and y are Boolean strings then

we say that y extends x if Len(y) ≥ Len(x) and the first Len(x) places of y are

the same as those of x. We say that y is a complete extension of x if y extends x

and y is a complete string. Each partial string x represents a set Yx of subsets

of A, i.e., all those subsets of cardinality k that correspond to extensions of x.

Yx is thus the set of all sets By for complete extensions y of x of cardinality k.

In Section 5.3.3 we define how to generate strings x in turn.

Example 17. Let A = {α1, . . . , α5} be a set of n = 5 elements, and let k = 3.
The complete string z = 01101 represents the subset Bz = {α2, α3, α5}. The partial
string x = 011 represents the subsets Yx = {{α2, α3, α4}, {α2, α3, α5}}, where the
complete extensions of x are y = 01101 and y′ = 01110.

5.3.1 Pruning the search space using SAT

Evaluating subsets of A: Given a partial string x, if a set By ∈ Yx is such that

SMRW(By,A) < r, then By has to contain at least one alternative with worst-

case regret lower than r for each w ∈ W ′. This concept is formally defined with

the following lemma and it will be used to check if there could exists a set in Yx
improving the current upper bound r of SMMRkW(A).

Lemma 5.3.1. Let r be an upper bound of SMMRkW(A), W ′ ⊆ W and B ⊆ A.
For w ∈ W, let Γw be the set of α ∈ A such that ValA(w) − uw(α) < r. Then
SMRW ′(B,A) < r if and only if for all w ∈ W ′, there exists α ∈ B such that

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

122 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET

5.3 An Efficient Algorithm to Compute Setwise
Minimax Regret

α ∈ Γw.

Proof. From the definition of setwise max regret it follows that SMRW ′(B,A) < r

if and only if ValA(w)−ValB(w) < r for all w ∈ W ′, which is if and only if for all

w ∈ W ′ there exists α ∈ B such that ValA(w)− uw(α) < r, which is if and only if

α ∈ Γw since B ⊆ A. �

To check if there exists a set By ∈ Yx such that SMRW ′(By,A) < r, we define

a SAT problem with cardinality constraint c (see, e.g., [Sin05]), where the

cardinality constraint is used to define the size k of the sets in Yx.

Example 18. Consider the following SAT formula: X = (X1 ∨ X2) ∧ (X1 ∨ X3)
with cardinality constraint c = 1, where Xi are {0, 1}-valued variable. Xi with
i = {1, 2, 3} are literals, and (X1 ∨X2) and (X1 ∨X3) are clauses. The cardinality
constraint c = 1 means

∑3
i=1 Xi = 1. In this example, X is satisfiable since if

X1 = 1 then X = 1. But if for example we add the constraint X1 = 0, then X

is unsatisfiable since for any valid assignment of the cardinality constraint, i.e.,
(X1 = 0, X2 = 1, X3 = 0) or (X1 = 0, X2 = 0, X3 = 1), we get X = 0.

In our SAT problem, we use a {0, 1}-valued variable Xi for each αi ∈ A. These

are used to reason about the unknown sets By in Yx, which we want to be such

that SMRW ′(By,A) < r. Then Xi = 1 means that By 3 αi. Given a partial string

x, we then define the corresponding SAT problem with cardinality constraint as

follows:

(1) The cardinality constraint |By| = k is expressed as
∑
αi∈A Xi = k.

(2) The constraint that y extends x is expressed as: for all i ∈ {1, . . . , Len(x)},

– if x(i) = 1 then Xi = 1 (where x(i) is the i-th value of x);

– if x(i) = 0 then Xi = 0.

(3) For each w ∈ W ′ we define a clause
∨
αi∈Γw Xi, where Γw is the set of

α ∈ A such that ValA(w)− uw(α) < r.

This SAT problem is satisfiable if and only if there exists By ∈ Yx such that for

all w ∈ W ′ there exists α ∈ By such that α ∈ Γw, which is (by Lemma 5.3.1)

if and only if there exists By ∈ Yx such that SMRW ′(By,A) < r. Therefore, if

the SAT problem is unsatisfiable, then for each By ∈ Yx, SMRW ′(By,A) ≥ r, and

thus (by Lemma 3.4.1(i)) SMRW(By,A) ≥ r. This means that there is then no

need to explore any string y extending x, so we can then backtrack from the

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

123 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET

5.3 An Efficient Algorithm to Compute Setwise
Minimax Regret

Figure 5.1: Plot of the linear utility functions uw(·) for the alternatives α1 =
(4, 4) (blue solid), α2 = (2, 10) (black dotted) and α3 = (10, 2) (green dashed)
with w ∈ W = {w ∈ IR2 : wi ≥ 0,∑2

i=1wi = 1}.

current search node associated with x, saving us from computing SMRW(By,A)
for By ∈ Yx.

Example 19. Consider the set of alternatives A = {α1 = (4, 4), α2 = (2, 10), α3 =
(10, 2)} whose utility function uw(·) with w ∈ W = {w ∈ IR2 : wi ≥ 0,∑2

i=1wi =
1} is shown in Figure 5.1. Let k = 2, W ′ = {(0, 1), (0.5), (1, 0)}, r = 1, and
let x be the string 1. Thus, Γ(0,1) = {α2}, Γ(0.5,0.5) = {α2, α3}, Γ(1,0) = {α3}
and Yx = {{α1, α2}, {α1, α3}} since the complete extensions of x with cardinality
k = 2 are y = ”110” and y′ = ”101”. The corresponding SAT problem is then
X2 ∧ (X2 ∨X3) ∧X3 with cardinality constraints c = 2 and X1 = 1. It is easy to
see that in this case the SAT problem is unsatisfiable; therefore we can avoid the
computation of SMRW({α1, α2},A) and SMRW({α1, α3},A). In fact, the subset B
of A cardinality 2 that minimises SMRW(B,A) is B = {α2, α3}.

5.3.2 Computation of setwise max regret

With linear utility functions uw(·), a standard method to compute the setwise

max regret SMRW(B,A) of a set B ∈ A consists of the evaluation of a linear

programming (LP) problem for each αi ∈ A (see Section 2.3.2.3). Briefly, for

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

124 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET

5.3 An Efficient Algorithm to Compute Setwise
Minimax Regret

αi ∈ A we have SMRW(B, {αi}) = maxw∈W(αi · w − ValB(w)), which means

that we can compute SMRW(B, {αi}) as the maximum value δi subject to the

constraints w ∈ W, and (αi − β) · w ≥ δi for each β ∈ B. We can then compute

SMRW(B,A) as maxαi∈A SMRW(B, {α}).

However, here we also make use of the method based on the extreme points of

the epigraph of the utility function (EP) presented in Section 3.6; let γ(W ,B) =
{(w, r) : w ∈ W , β · w ≤ r ∀β ∈ B} be the epigraph of the utility function

ValB on W. Briefly, from Lemma 3.4.1 and Theorem 3.6.6 follows that we can

SMRW(A,B) compute as maxβ∈B max {uw(β)− r : (w, r) ∈ Ext(γ(W ,A))}.

Our purpose is to find the subset B with minimum SMRW(A,B). Thus, since

SMRW(A,B) ≥ SMRW ′(A,B), before the computation of SMRW(A,B) we can

first check the value of SMRW ′(A,B) which is a much faster operation given that

W ′ is a discrete set. In fact, we can compute SMRW ′(A,B) apllying directly the

definition of setwise max regret (Equation 5.1). We then compute SMRW(A,B)
only if SMRW ′(A,B) < r, otherwise we already know that B cannot improve the

current upper bound r.

5.3.3 Generating subsets of A using depth-first search

We generate strings x representing subsets of A sequentially using a depth-

first search with backtracking on a binary tree T , and with a fixed value and

variable ordering (though the variable ordering depends on the value k: see

Section 5.3.4). Note that we are not interested in all the possible binary strings

of length n. Instead, we want to generate complete strings x with k ones, and

the corresponding sub-strings, since these will represent subsets B of A with

|B| ≤ k. The order in which we reach complete strings (and their associated

subsets) is based on the obvious lexicographic order, i.e., ascending numerical

order if the strings are viewed as binary numbers. We then define T as follows:

the root represents the empty string; internal nodes represent strings of length

less than n; and leaves represent strings of length n with k ones. The out-edges

of an internal node pointing to the corresponding left and right children have

values 0 and 1, respectively. Thus, if an internal node represents the string x,

then the left child represents the string x0 and the right child represents the

string x1.

We generate strings sequentially starting from the left most leaf node repre-

senting the subset (αn−k+1, . . . , αn). Given a generic string xj, we define two

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

125 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET

5.3 An Efficient Algorithm to Compute Setwise
Minimax Regret

methods to generate the next string xj+1, namely, the backtracking case and the

non-backtracking case.

Backtracking case: Let NextBT(xj, n, k) = xj+1 corresponds to the backtrack-

ing case of the j-th string. With NextBT(xj, n, k) we move from the current node

representing xj toward the root until we find an edge e with value zero. Let v

be the parent of e. We define NextBT(x, n, k) as the string represented by the

right child of v. We will use this method to generate the string xj+1 when xj

is a complete string, or when xj is a partial string but SMRW(B,A) ≥ r for all

B ∈ Yxj . Roughly speaking, we use NextBT(xj, n, k) when we want to evaluate

a new set of subsets since Yxj ∩ Yxj+1 = ∅.

Non-backtracking case: Let Next(xj, n, k) = xj+1 be the non-backtracking

case of the j-th string. With Next(xj, n, k) we compute the next string following

the depth-first search logic. We will use this method to generate the string

xj+1 for the cases not covered by the backtracking case, i.e., when xj is not

a complete string and we can’t ensure that SMRW(B,A) ≥ r for all B ∈ Yxj .
Roughly speaking, we use Next(xj, n, k) to reduce the sets to evaluate, in fact,

Yxj+1 ⊂ Yxj .

In both cases, when we visit the root, and the corresponding out-edges have

already been visited, we stop the search. Note that if Yxj+1 is a singleton set

with xj+1 not being a complete string, then we can speed up the computation

by jumping to the leaf node corresponding to the unique set in Yxj+1. This can

happen when xj+1 can be extended only with ones or only with zeros in order

to satisfy the constraint that a complete string x must have k ones.

5.3.4 Further implementation details

Generating W ′: We start with W ′ = ∅. Then for each SMR computation

of a subset B of A, if SMRW(B,A) is greater than the current upper bound r

of SMMRkW(A), we update W ′. Depending on which method we use for the

computation of SMR (see Section 5.3.2)., we use one of the following method

to updateW ′:

1. Epigraph of the value function: W ′ = W ′ ∪ UE(B) where UE(B) is the

projection of Ext(γ(W ,B)) toW.

2. Linear programming: W ′ = W ′ ∪i∈{1,...,n} wi where wi ∈ W is the

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

126 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.4 Pseudocode

preference model in which SMRW(B, {αi}) is maximised.

One could update W ′ using only the point w ∈ W in which SMRW(B,A) is

maximised; however, collecting more points in W ′ adds more clauses to the

SAT problem, and thus increases the possibility of unsatisfiability, leading to

pruning of the search tree.

Incremental updating of SAT instances: For a given W ′, when the SAT

problem associated with a string x is solvable, we can use the corresponding

instantiation to define the SAT problem associated to a string y extending

x. In fact, the SAT problem corresponding to y will be the same as that

associated with x but with the additional constraints Xi = yi for all i ∈
{Len(x) + 1, . . . , Len(y)}. This is particularly useful when y is a substring of the

solution X found for the SAT problem for x, since in this case X is a solution

also to the SAT problem associated with y, and thus we do not need to call the

SAT solver. For example, suppose n = 5, k = 3 and x = 01, and suppose that the

solution of the SAT problem associated with x is X = 01110. Then, if y = 011
and W ′ has not changed, we don’t need to define a new SAT problem from

scratch since the SAT problem associated with y is the same as that associated

with x but with the additional constraint X3 = 1. Furthermore, in this case y is

also a substring of X, thus we do not need to call the SAT solver since X is a

solution also for the SAT problem associated with y.

5.4 Pseudocode

In this section we combine the concepts presented in Section 5.3, defining

the whole procedure for the computation of SMMRkW(A). The inputs of our

algorithm are:

1. A finite set A of alternatives αi where each alternative is represented as a

p-dimensional vector of reals.

2. The DM’s preference state space W representing the possible parametri-

sations w of the utility function uw(·) expressed as a compact subset of

{w ∈ IRp : wi ≥ 0,∑p
i=1wi = 1}.

3. An integer k ≤ |A| representing the cardinality of the subsets of A that we

want to evaluate.

We start withW ′ = ∅, with x equal to n− k zeros followed by n ones, and with

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

127 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.4 Pseudocode

r =∞. Then we proceed as follows:

1) If x is the empty string then we stop the algorithm and return r.

2) If Len(x) = n (i.e., x is a complete string) and SMRW ′(Bx,A) < r then

we compute SMRW(Bx,A), where Bx is the set represented by x, also

generating the set UE(Bx) (that is the projection onW of the set of extreme

points of the epigraph γ(W ,Bx)). If SMRW(Bx,A), r:

a) we update the upper bound r by r = min(r, SMRW(Bx,A));

b) we updateW ′ =W ′ ∪ Ext(WBx);

c) we generate a new string with the backtracking case NextBT(x, n, k).

3) Otherwise, Len(x) < n (i.e., x is a partial string). We call Boolean function

SAT(x, k,A,W ′, r), which returns TRUE if and only if the associated SAT

problem (see Section 5.3.1) is satisfiable, i.e., there exists By ∈ Yx such

that SMRW ′(By,A) < r.

a) If the SAT problem is satisfiable, we move to the next string with the

non-backtracking case Next(x, n, k);

b) If the SAT problem is not satisfiable, we move to the next string with

the backtracking case NextBT(x, n, k).

When we have gone through all of the space of strings, i.e., when x is the

empty string, the value of r will equal SMMRkW(A), i.e., the minimum value of

SMRW(B,A) over all subsets B of A of cardinality k.

In Algorithm 14 we show the recursive procedure to compute SMMRkW(A).

Example 20. Consider the set of alternatives A = {α1 = (4, 4), α2 = (2, 8), α3 =
(6, 6), α4 = (8, 2)} whose utility function uw(·) with w ∈ W = {w ∈ IR2 :
wi ≥ 0,∑2

i=1wi = 1} is shown in Figure 5.1. Let k = 2, W ′ = ∅, r = ∞.
We start with the string x = ”0011” representing the set B0011 = {α3, α4}, and
we compute SMRW(B0011,A) which equals 2 and it is maximised in w = (0, 1).
Since SMRW(B0011,A) < r, we update r = 2, and W ′ = {(0, 1), (2

3 ,
1
3), (1, 0)}.

We then set x = NextBT(”0011”, 4, 2) = ”01” and we call the SAT solver. In this
case we get Γ(0,1) = {α2}, Γ(2

3 ,
1
3) = {α3, α4}, Γ(1,0) = {α4}. The corresponding

SAT formula is then X2 ∧ (X3 ∨ X4) ∧ X4 with cardinality constraints c = 2
and X2 = 1. With X4 = 1 the SAT formula is satisfied, thus we generate
the next string with the non-backtracking case Next(”01”, 4, 2) = ”0101”. Since
SMRW ′(B0101,A) = 0 < r, we compute SMRW(B0101,A) which equals 1 and

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

128 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.4 Pseudocode

Algorithm 14 EPI SAT

1: procedure SMMR(k,A,W)
2: W ′ ← ∅
3: r ←∞
4: x← string of n− k zeros concatenated with k ones
5: do
6: if Len(x) = n then
7: ifW ′ = ∅ or SMRW ′(Bx,A) < r then
8: SMR← SMRW(Bx,A)
9: if SMR < r then

10: r ← SMR
11: W ′ ←W ′ ∪ UE(Bx)
12: x← NextBT(x, n, k)
13: else if SAT(x, k,A,W ′, r) then
14: x← Next(x, n, k)
15: else
16: x← NextBT(x, n, k)
17: while x 6= empty string
18: return r

Figure 5.2: Plot of the linear utility functions uw(·) for the alternatives α1 =
(4, 4) (blue dotted), α2 = (2, 8) (green dashed), α3 = (6, 6) (red solid) and α3 =
(8, 2) (yellow dashed-dotted) with w ∈ W = {w ∈ IR2 : wi ≥ 0,∑2

i=1wi = 1}.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

129 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.5 Experimental Results

it is maximised in (1
2 ,

1
2). Since SMRW(B0011,A) < r, we update r = 1, and

W ′ = {(0, 1), (1
2 ,

1
2), (2

3 ,
1
3), (1, 0)}. We then call NextBT(”0101”, 4, 2) which returns

”0110” since Y011 = {α2, α3} is a singleton. We do not compute the exact setwise
regret of the set B = {α2, α3} since SMRW ′(B0110,A) = 2 < r = 1, and we move
then to the next string NextBT(”0110”, 4, 2) = 1. The corresponding SAT formula
is X2∧X3∧(X3∨X4)∧X4 with cardinality constraints c = 2 and X1 = 1, which is
not satisfiable. NextBT(”1”, 4, 2) = ”” then the algorithm return the current upper
bound r = 1. Thus, the subset of A of cardniality 2 with minimum setwise regret
is B = {α2, α4}. Note that α1 is dominated by α3, thus we could have discarded it
filtering out the dominated alternatives before executing the algorithm.

The most expensive operations in our algorithm are enumerating the extreme

points of the epigraph on the evaluation of SMRW(Bx,A), and the SAT problem

used to evaluate if there exists By ∈ Yx such that SMRW ′(By,A) < r. As we

have discussed in Section 3.7, the computational complexity of enumerating the

extreme points of the epigraph of the value function of a set B of k alternatives

is O(pk). Regarding the SAT problem, the number of clauses equals the size of

|W ′| at the corresponding iteration, and the number of literals for each clause

is O(|A|).

5.5 Experimental Results

In our experimental results we used CPLEX 12.8 [ILO17] as the linear

programming solver, and we used the Python library pycddlib [Tro18] for

computing the extreme points of the epigraph of the value function. As the

SAT solver, we used Minicard implemented in the Python library Pysat [Sto19]

which has a native method to set a cardinality constraint. All experiments

were performed on a computer facilitated by two Intel Xeon E5620 2.40GHz

processors and 32 GB RAM.

From Lemma 3.4.2(i) it follows that SMMRkW(A) = SMMRkW(UDW(A)), where

UDW(A) represents the set of undominated alternatives of A in W. In our

experiments we have noticed that filtering out dominated alternatives can be a

very worthwhile preliminary step. For example, generating 10 random sets A

with |A| = 25000 and p = 4, we got an average of |UDW(A)| = 220 alternatives

computed in roughly 10 seconds. See Appendix A.1 for details about our

random problem generator.

In Table 5.1 we show the average computation time of SMMRkW(A) over 20

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

130 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.5 Experimental Results

Table 5.1: Average computation time in seconds to compute SMMRkW(A) with
EPI SAT, LP SAT, EPI BF and LP BF over 20 repetitions varying k and p with an
input set of 50 undominated alternatives andW = U .

k p Time[s] EPI SAT Time[s] LP SAT Time[s] EPI BF Time[s] LP BF
2 3 0.17 8.5 4.15 413.71
2 4 0.19 6.69 5.88 424.90
3 3 0.43 17.46 76.43 6739.02
3 4 0.63 17.72 115.97 6922.82

repetitions with k ∈ {2, 3}, p ∈ {3, 4}, and an input set of 50 random

undominated alternatives. Time SAT EPI and Time SAT LP indicate the average

time in seconds to compute SMMRkW(A) using the SAT solver, where we compute

SMRW(B,A) using the epigraph of the value function, and a linear programming

solver, respectively. Time BF EPI and Time BF LP indicate the average time in

seconds to compute SMMRkW(A) using a straightforward algorithm evaluating

all the subsets of size k, where also in this case we compute SMRW(B,A)
using the epigraph of the value function, and a linear programming solver,

respectively. Thus, the results on the first column relate to our best algorithm,

and the results on the last column relate to a straightforward algorithm based

on the definition of SMMRkW(A), and as we can see, with our algorithm we get a

very significant improvement. Also, comparing EPI SAT with LP SAT, and EPI BF

with LP BF, we can see that the computation of the setwise max regret using the

epigraph of the value function seems to improve the performance with respect

to the linear programming method.

In Table 5.2 and Table 5.3 we show the average timing of our algorithm

EPI SAT with k = 2 and p = 4 varying the number of user preferences

and the size of the undominated input sets, respectively. The SMMR with

k = 2 is of our particular interest since the corresponding set with minimum

setwise max regret is a myopically optimal binary query [VB20]. Binary

queries have been often used in preference elicitation systems (see, e.g.,

[ILC01b, Abb04, GW05, BB07, BB10, GS10b, BL19]), and our algorithm may be

used as a query selection strategy in these contexts when the set of alternatives

is not too large. In Table 5.2, Λ represents the set of (consistent) user

preferences (corresponding to linear constraints on the user preference space

U), each being of the form α · w ≥ β · w. This constraint can be interpreted

as a preference of alternative α to alternative β. Each set of constraints Λ
therefore defines a subsetWΛ of U , which is in fact a compact convex polytope.

The sets of constraints Λ used in our experiments are generated supposing a

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

131 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.5 Experimental Results

Table 5.2: Average computation time in seconds to compute SMMRkW(A) with
EPI SAT over 20 repetitions varying the number of user preferences Λ with
|UDW(A)| = 500, W = U , k = 2 and p = 4. |W ′| represents the average
number of user preference models used to evaluate subsets of A with SAT, and
UD represents the algorithm to filter out dominated alternatives.

|UDWΛ(A)| |Λ| Time[s] EPI SAT |W ′| Time[s] UD

500 0 16.18 68.4 1.467
267.7 1 5.86 61.8 0.460
180.9 2 2.25 56.8 0.154

140.45 3 1.36 59 0.067
100.55 4 0.76 47.7 0.036
65.15 5 0.49 45.5 0.021
90.6 6 0.88 46.6 0.016
34.1 7 0.26 42.8 0.013
40.8 8 0.43 37.2 0.008
24.45 9 0.24 34.4 0.006

random user preference model w, and simulating an iterative elicitation process

with binary queries. At each iteration, we simulate the user preference with

respect to a myopically optimal binary query Q = {α, β} computed with our

algorithm, and we use the simulated user preference model w to define the

sign of the inequality associated with Q. The resulting constraint will then

be added to Λ. As we can see in Table 5.2, setting for example k = 2
and p = 4 with |UDW(A)| = 500 alternatives, the number of undominated

alternatives rapidly decreases when increasing the number of constraints, with

a consequent improving of the computation time of SMMRkWΛ
(A). In fact, as

we can see in Table 5.3, the time performance of our main algorithm seems

to grow exponentially with respect to the size of the input set UDWΛ(A) of

undominated alternatives. In Table 5.2 we reported also the computation time

to filter out dominated alternatives, and, as we can see, it is a very fast operation

in comparison with the computation of SMMR.

In Figure 5.3 we show how EPI SAT scales with respect to k and p. The y-axis

represents the average timing of our algorithm with a logarithmic scale. The

x-axis represents the number of criteria p ∈ {2, . . . , 6}. Each line represents

the average time performance of 20 repetitions with an input set A of 100

undominated alternatives and varying k ∈ {2, . . . , 6}. As we can see, the

computation times increases exponentially with respect to k, reflecting the

exponential growth of the number of subsets of A of cardinality k. The

computation time seems to grow exponentially also with respect to p, and this

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

132 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.5 Experimental Results

Table 5.3: Average computation time in seconds to compute SMMRkW(A) with
EPI SAT over 20 repetitions varying the size of the input set UDW(A) of
undominated alternatives with |Λ| = 0 (i.e., W = U), k = 2, p = 4. |W ′|
represents the average number of user preference models used to evaluate
subsets of A with SAT.

|UDW(A)| Time[s] EPI SAT |W ′|
100 0.37 46.9
200 1.45 54.3
300 5.29 58.6
400 9.69 62.2
500 28.27 56.9
600 35.95 72.5

Figure 5.3: Average computation time in seconds to compute SMMRkW(A) with
EPI SAT (y-axis) over 20 repetitions varying k and p with an input set of 100
undominated alternatives andW = U .

may be due to the exponential growth of the number of extreme points of W
with respect to p (cf. Table 5.4 for k = 4).

We also tested our algorithm with the databases used in the experimental

results of [VB20]:

1. Synthetic: A synthetic database of 81 alternatives evaluated with p = 12
criteria with binary domain {0, 1}.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

133 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.5 Experimental Results

Table 5.4: Average computation time in seconds to compute SMMRkW(A) with
EPI SAT over 20 repetitions varying p with |UDW(A)| = 100, |Λ| = 0 (soW = U)
and k = 4. |W ′| represents the average number of user preference models used
to evaluate subsets of A with SAT.

p Time[s] EPI SAT |W ′|
2 0.62 20.7
3 2.15 77.6
4 2.53 152.2
5 5.61 301.9
6 8.09 507.5

Table 5.5: Computation of SMMRkW(A) with the databases considered in the
experimental results of [VB20]. The first four columns show information
regarding the input databases. The fifth and the sixth columns show the
performances of filtering out dominated elements. The last two columns show
the time performance our algorithm EPI SAT and the method used in [VB20]
whose results are shown in Table 8.

A k p |A| |UDW(A)| UDW(A)[s] EPI SAT[s] [VB20][s]

Synthetic 2 12 81 81 0.22 0.09 19.47
Synthetic 3 12 81 81 0.22 0.93 -
Synthetic 4 12 81 81 0.22 5.86 -
Synthetic 5 12 81 81 0.22 17.72 -

Rental 2 23 187 100 0.57 0.19 0.17
Rental 3 23 187 100 0.57 0.28 -
Rental 4 23 187 100 057 4.01 -
Rental 5 23 187 100 0.57 172.32 -
Boston 2 14 506 475 3.29 60.73 277.53
Boston 3 14 506 475 3.29 182.18 -

2. Rental: Real university student rental database with 187 alternatives

evaluated with p = 23 criteria with four of them being real values in

the interval [0, 1] and the remaining being binary values {0, 1}.

3. Boston: Boston housing database [Bel82] with 506 alternatives evaluated

with p = 14 criteria with one of them being a binary value {0, 1} and the

remaining being real values. In this case, the alternatives are preprocessed

to lie within a common scale.

In Table 5.5 we compare the performance of our algorithm EPI SAT with

respect to the results reported in Table 8 of [VB20] related to the three

datasets described above. The precise algorithm used in the experimental

results of [VB20] to compute SMMR is not described, and the authors show

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

134 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.6 Conclusions

the performance only for k = 2, with the computation of SMMR for k > 2
not being feasible with their algorithm. Regarding our algorithm EPI SAT, the

computation of SMMR with k = 4 was unfeasible for the Boston database.

However, we were able to compute it for k ∈ {2, 3}. With the datasets Synthetic

and Rental we were able to compute SMMR even with k = 5. Furthermore,

with k = 2, for example, our approach performed better than the heuristic

approximate methods used in [VB20]. Only be able to manage up to k = 3 for

the Boston database may be because of the large number of both alternatives

and criteria. In fact, from Table 5.3 and Figure 5.3 it looks like that the time

performance of our algorithm increases exponentially with respect to these

parameters.

5.6 Conclusions

Interactive elicitation methods maintain a model of the user preferences which

is revised incrementally by recording the answers to questions asked to the

decision-maker. In particular, several works [WB03, BPPS06, Bra12, BPV14,

BPV17b] have used (standard, single-item) minimax regret to provide a robust

recommendation to decision-maker.

The notion of setwise regret [VB09, VB20] allows one to provide a sound

and principled approach for generating, based on the current uncertainty

about the decision-maker’s utility function, a set of alternatives 1) to used

as a recommendation set, and 2) to be used as a choice query to drive the

elicitation forward. Thus it is a valuable method for generating queries and

recommendation sets to help a user find a most-preferred item in the database.

However, the high computational burden of this approach has limited its

adoption in applications. In this chapter we have addressed this issue, providing

an efficient algorithm to compute the setwise minimax regret for database

problems making use of a SAT solver to prune the search.

We validated our approach in numerical experiments that showed very sub-

stantial improvement with respect to the state of the art. In particular, our al-

gorithm may replace heuristic approaches adopted in real-time preference elic-

itation system with binary queries, allowing the computation of optimal query

sets. The computation of a query set with more than two alternatives may in-

stead be too slow for a real-time context since the complexity burden increases

exponentially with respect to k. However, our method unlocked the possibil-

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

135 Federico Toffano

5. AN EXACT ALGORITHM TO COMPUTE THE

SETWISE MINIMAX REGRET 5.6 Conclusions

ity of computing optimal sets for some problems in which such approach was

previously considered unfeasible.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

136 Federico Toffano

Chapter 6

Conclusions & Future Work

In this chapter, we discuss the main results of this thesis, and we describe some

possible future works.

6.1 Summary

Chapter 2 is a summary of the background material of this thesis and some

related works. We presented the main concepts and properties of MAUT

models. MAUT defines the theoretical basis for preference models represented

by the weighted sum utility function defined in Section 2.1.4. This preference

model has been the focus of Chapter 4 and Chapter 5, and it has been used

for examples and algorithms of Chapter 3. We also discussed the connection

of MAUT models with classic recommender systems, and some related works

on preference elicitation. We presented parameterised preference models

introducing imprecisely specified multi-attribute utility theory which is one of

the first attempts to deal with parameterised utility functions. We also described

in details the minimax criterion and its setwise generalisation, which has been

of particular interest for all the chapters of this thesis. We concluded the chapter

describing preference relations, optimality classes and operators for alternatives

evaluated with parameterised value functions.

In Chapter 3 we generalised dominance and equivalence relations introduced

in Chapter 2 to evaluate sets of alternatives with respect to a set of preference

models W. We defined the connections of such preference relations with

some optimality classes, namely, undominated alternatives UDW , possibly

optimal alternatives POW and possibly strictly optimal alternatives PSOW .

137

6. CONCLUSIONS & FUTURE WORK 6.1 Summary

An important contribution of this chapter is the definition of the concept

of setwise minimal equivalent subset of a set of alternatives A, and its

relation with the set of possibly optimal alternatives. In particular, with

Theorem 3.3.6 we have shown that PSOW(A) is the unique setwise minimal

equivalent subset for A if and only if PSOW(A) is equivalent to A, and with

Theorem 3.3.15 we have shown that for analytic utility functions PSOW(A)
is the unique setwise minimal equivalent subset for A. We have also shown

that alternatives composing a choice query in a preference elicitation process

should be possibly strictly optimal. Otherwise, there is the risk of modelling the

DM’s preference with respect to events with zero probability (see Proposition 4

and discussion of Section 3.5). Theorem 3.6.6 and Proposition 5 are other

important contributions of this chapter. These relate to algorithms based on

the epigraph of the utility function for the computation of the setwise max

regret and the setwise minimal equivalent subset, and for testing dominance

of sets of alternatives when supposing the weighted sum utility function as

preference model. The pseudo-code for the novel algorithm to compute the

setwise max regret and to test the dominance of sets of alternatives is shown in

Algorithm 12. The pseudo-code for the novel algorithm to compute the set of

possibly strictly optimal alternatives is shown in Algorithm 7. These methods

outperform standard methods based on linear programming when up to seven

criteria used to evaluate alternatives.

In Chapter 4 we presented a preference elicitation framework for a multi-

criteria supplier selection problem inspired by a real-world scenario. We

supposed a preference model based on the weighted sum utility function with

the criteria evaluating the alternatives being cost, lateness, lead time and

reputation. Although we tackled a specific problem, our framework can be

applied to generic configuration problems based on a linear preference model.

This work lies between two research areas. On the one hand, it provides an

alternative perspective on the solution of supplier selection problems. On the

other hand, it presents an interactive preference elicitation approach with novel

query selection strategies. An advantage of our approach with respect to other

supplier selection frameworks preference-based is that the latter involve the

elicitation of a potentially large number of numerical values. These can be

very time-consuming and difficult to assess. In contrast, our approach involves

intuitive comparison queries and attempts to limit the number of queries asked

to the user. Also, to the best of our knowledge, there are no works describing

an iterative preference-based multi-criteria supplier selection problem to satisfy

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

138 Federico Toffano

6. CONCLUSIONS & FUTURE WORK 6.2 Possible Future Works

the demand of a set of products. Regarding the query selection strategies, our

framework makes use of novel methods based on a discrepancy measure which

is strictly related to the max regret (see Equation 4.22 and Proposition 6).

To evaluate our approach, we compared our query selection strategies with

myopically optimal queries generated with the setwise minimax regret criterion.

Our experimental results show that our query selection strategies have roughly

the same performances as myopically optimal queries in terms of number of

interactions to achieve convergence, but have significantly better performance

in terms of computational time.

Chapter 5 is devoted to the presentation of a novel algorithm to compute the

setwise minimax regret; also in this case we supposed a preference model based

on the weighted sum value function. Our algorithm is based on a SAT solver

which evaluates the setwise max regret of different sets of alternatives of a

specific cardinality simultaneously. This evaluation is made with respect to a

discrete set of parameters representing different DM’s preference models, and

the purpose is to exclude several sets simultaneously without computing the

setwise max regret for each of these sets. Lemma 5.3.1 states the fundamental

property on which our algorithm is based. We presented two variations of the

algorithm, which differ with respect to the method used for the computation of

the setwise max regret. The first is based on the epigraph of the value function

presented in Section 3.6; the second is based on a standard linear programming

approach presented in Section 2.4. Given our experimental results shown in

Table 3.3, the latter may be more suitable for problems in which alternatives are

evaluated with more than six criteria. This may well be due to the exponential

growth of the number of extreme points of the epigraph of the utility function

with respect to the number of criteria. Our experimental results of Section 5.5

show the efficiency of our method for the computation of the setwise minimax

regret, which seems to be largely outperforming the current state of the art

independently of the method used to compute the setwise max regret. For

example, the computation of the setwise minimax regret of size k = 3 with

p = 4 criteria used to evaluate the alternatives outperforms the current state of

the art for more than two orders of magnitude in terms of computational time.

6.2 Possible Future Works

In Chapter 3 we focus on the weighted sum value function for the computation

of the minimal equivalent subset. However, it would be natural to to develop

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

139 Federico Toffano

6. CONCLUSIONS & FUTURE WORK 6.2 Possible Future Works

computational procedures to compute the minimal equivalent subset for more

general linear cases, such as GAI networks, OWA and Choquet integral, based

on our more general characterisation results, such as Theorems 3.3.15 and 3.6.6

and Lemma 3.4.1. Alternatively, one could evaluate the feasibility of our

algorithms relaxing the constraints on the structure of the DM’s utility function

as in [GSFM10]. Our methods for the computation of the minimal equivalent

subset could be directly applied to reduce the set of utility vectors derived for

a multi-objective influence diagram [MRW12] or a multi-objective optimisation

problem [MRW13]. In the latter cases, the set of alternatives is derived from

a combinatorial structure. Thus one could also consider to further develop the

computational techniques that make use of such combinatorial structures. A

further natural application of our model and methods is for computing the Value

of Information [DJ97] for a multi-objective influence diagram. Each observable

variable generates a Value of Information function which is a utility function

ValA, so different observable variables can be compared using the relation <W∀∀∃.

Regarding the preference elicitation framework described in Chapter 4, future

studies may be conducted in order to adapt the framework to the case where

the combinatorial problem is solved by means of some heuristic algorithm with

no optimality guarantee. This should speed up the computation of the solutions

used to generate the queries, and thus it could make the framework suitable for

larger problems. Also, it would be interesting to compare the performance in

terms of execution time of the proposed query selection strategies with respect

to the novel algorithm to compute the setwise minimax regret presented in

Chapter 5, or with respect to the query selection strategies proposed in [BLL20].

Future works related to the novel algorithm presented in Chapter 5 to compute

the setwise minimax regret could involve testing the performances of our

algorithm computing an initial upper bound of the setwise minimax regret

with a heuristic such as those in [VB20]. This could well speed up the initial

iterations of the algorithm since an upper bound close to the minimax regret

value has the potential to reduce the number of exact computations of setwise

max regret. Also, our implementation gives a proof of concept, using an

algorithm of quite a simple structure. However, it can probably be speeded

up a lot using, for example, parallel evaluation of different branches whilst

keeping track of a common upper bound. It would also be interesting to explore

the feasibility of a constraint programming approach replacing the call to the

SAT solver; this may enable propagation of literals to reduce the search space

further. Also, it could be interesting evaluating the computational complexity

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

140 Federico Toffano

6. CONCLUSIONS & FUTURE WORK 6.2 Possible Future Works

of computing the setwise minimax regret. Another direction for future work,

also related to Chapter Chapter 3, is to consider the definition of a procedure

to compute a subset that is not equivalent to the input set A but has a worst-

case loss that is below a given threshold. This can be useful since a small

regret can be acceptable if it helps significantly reduce the size of the input

set. For example, one could perform a search over the cardinality parameter k

starting from the size of a minimal equivalent subset M of A and decreasing this

value until we get SMMRkW(M) > ε. In this case the algorithm based on linear

programming may be faster since the computational complexity of enumerating

the extreme points is O(pk) and starting with k = |M | we may well have high

values of k. Alternatively, one could also start with k = 1 and increase this value

until we get SMMRkW(M) < ε. Note that the number of subsets of cardinality k

is
(
|M |
k

)
and then the most complex problem to solve is with k = |M |

2 . Thus it

may be worth it to use first an heuristic such as those presented in [VB20] to

compute an upper bound of the size k∗ we are looking for. This could help on

deciding if starting with k = 1 or k = |M |.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

141 Federico Toffano

Appendix A

A.1 Random Problem Generator

This appendix includes a description of the random problem generator that is

used for the experiments in Section 5.5 and Section 3.9.

Let j ∈ {1, . . . , J} be the index of each set of alternatives Aj that we are going

to generate. Consider now any j. For each criterion i ∈ {1, . . . , p} we pick

random parameters µj(i) and δj(i), and each of the n elements α of Aj is picked

independently as follows: for each criterion i, choose value α(i) uniformly in

range [µj(i) − δj(i), µj(i) + δj(i)]. Choosing random parameters µj(i) and δj(i)
for Aj: first we randomly pick µj uniformly in range [−µ, µ], and θj is chosen

uniformly in range [0, 2θ], and δj is chosen uniformly in range [0, 2δ]. Then, for

each criterion i, µj(i) is chosen uniformly in range [µj − θj, µj + θj] and δj(i) is

chosen uniformly in range [0, 2δj]. The pseudocode is shown in Algorithm 15;

the generated sets will contain only undominated elements if the Boolean input

u is True.

Note that if θ and δ are both very small, then each θj and δj will be very small, so

each µj(i) will be very close to µj. Generating two sets A and B (i.e. J = 2), this

would lead to a case in which we will tend to almost always get that A <W∃∀∀ B

or B <W∃∀∀ A (since the elements of e.g., A will be very similar to each other).

This will also tend (to a somewhat lesser extent) to be the case if just θ is very

small. On the other hand, if θ and δ are relatively large, then we will tend to

get less dominance. We tried different values of the input parameters, obtaining

the lowest rate of dominance (∼ 96%) with µ = 10, θ = 50 and δ = 60.

In our random problem generator we also randomly generate T user prefer-

ences of the form awi + bwj ≥ cwk meaning that the user prefers a units of wi
and b units of wj to c units of wk. We ensure the consistency of such constraints

A1

A. A.1 Random Problem Generator

by first randomly picking a normalised vector w, and only including constraints

that are consistent with this vector (e.g., if a constraint randomly generated

that is not consistent with this, then we change the sign of the constraint to

make it consistent).

Algorithm 15 Random instance generator

1: procedure RandomProblem(n, p, J, T, µ, θ, δ, u)
2: Input: n ∈ IN : sets cardinality, p ∈ IN : number of criterion, J ∈ IN :

number of sets, J ≥ 2, T ∈ IN : number of user preferences, θ ∈ IR, δ ∈ IR,
µ ∈ IR, UD: Boolean value

3: W ← {w ∈ IRp : ∑n
i=1w[i] = 1, w[i] ≥ 0}

4: j ← 0
5: while j < J do
6: µj ← rndReal[−µ, µ]
7: θj ← rndReal[0, 2θ]
8: δj ← rndReal[0, 2δ]
9: i← 0

10: while i < p do
11: µji ← rndReal[µj − θj, µj + θj]
12: δji ← rndReal[0, 2δj]
13: i← i+ 1
14: Aj ← ∅
15: while |Aj| < n do
16: α← vector in IRp with α[i] = rndReal[µji − δji, µji + δji]
17: if ¬u or (u and UDW(Aj ∪ α) = Aj ∪ α) then
18: Aj ← Aj ∪ α
19: j ← j + 1
20: t← 0
21: ω ← random vector w ∈ W
22: while t < T do
23: a, b, c← three rndReal[0, 1)
24: i, j, k ← three distinct rndInteger[0, d− 1]
25: if aω[i] + bω[j]− cω[k] ≥ 0 then
26: W ←W ∩ {w ∈ IRp : aw[i] + bw[j]− cw[k] ≥ 0}
27: else
28: W ←W ∩ {w ∈ IRp : aw[i] + bw[j]− cw[k] ≤ 0}
29: t← t+ 1
30: return A,B,W

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

A2 Federico Toffano

Appendix B

B.1 Random Catalogue Generation

This appendix describes how to generate a suppliers’ catalogue for the exper-

iments in Section 4.6. The algorithm assigns to each supplier a certain set of

components, such that an overall density ρ is enforced, a minimum number of

components λj,min = 2 is provided by each supplier, and each component is

provided by one supplier at least.

The suppliers’ catalogue is represented by a |I| × |C| matrix Ψ where each

element (i, j) is equal to 1 if supplier i can provide component j, 0 otherwise.

As previously indicated in Section 4.5.1, Ci is the set of components supplied

by supplier i. Similarly, let Ij be the set of suppliers providing the component j.

The following is the procedure used to randomly generate the matrix Ψ:

1. Set each element (i, j) of Ψ to 0

2. For each supplier i in I choose a random component j in C, add j to Ci,

add i to Ij and set the (i, j)-th element of Ψ to 1

3. For each component j in C such that |Ij| = 0 choose two different random

suppliers i and i′, add j to Ci and Ci′, add {i, i′} to Ij, set the (i, j)-th and

the (i′, j)-th elements of Ψ to 1

4. For each component j in C such that |Ij| = 1, let Ij = {i′}, choose random

supplier i 6= i′, add j to Ci, add i to Ij, and set the (i, j)-th element of Ψ
to 1

5. Let K be the value ρ · |C| · |I| rounded to the nearest integer

6. Let ∆ be the number of elements of Ψ equal to 1

7. Let k = K −∆

B3

B. B.2 Random Database Generator

8. While k > 0, pick a random i ∈ I and j ∈ C. If the (i, j)-th component of

Ψ is equal to 0, then set such element to 1 and decrease k by 1 unit.

B.2 Random Database Generator

This appendix describes how to compute a random database of past orders

for the experiments in Section 4.6. This is used in the framework to simulate

the possibility of predicting the lead time li,j,t and lateness δi,j,t parameters of

the MILP model by means of real data, as a function of the triple supplier i,

component j and tariff t. We assume that each entry of the database is a

random order ok represented by a tuple 〈i(ok), j(ok), q(ok), l(ok), δ(ok)〉, meaning

that supplier i(ok) received an order of quantity q(ok) of component j(ok), and

provided the components with lead time l(ok) and lateness δ(ok).

The number of orders generated for each component j ∈ C supplied by supplier

i ∈ I is sampled from a discrete uniform distribution on the set {5, . . . , 15}. The

quantity of each order ok related to a component j(ok) is the nearest integer of

a value sampled from a Gaussian distribution (where negative and null values

are discarded) whose parameters µq and σq are shown in Table B.1 and depend

on the category of j(ok).

Table B.1: Gaussian distribution parameters to sample the quantity of a
component for an order with respect to component categories.

Cheap Average Expensive
µq 1000 200 30
σq 250 50 7.5

Five different values RDi, RV 1i, RV 2i, RV 3i and RV 4i are assigned to each

supplier in order to model its ability to deliver in time and compute the delay

and lateness of its orders. These values are computed as follows:

• RDi is sampled by using a uniform distribution on the interval [0, 1)

• RV 1i and RV 2i are sampled by using a discrete uniform distribution on

the set {10, . . . , 30}

• RV 3i and RV 4i are sampled by using a discrete uniform distribution on

the set {1, . . . , 10}

The lead time l(ok) of an order ok assigned to a supplier i(ok) and of a quantity

q = q(ok) is then computed by sampling a value from each of the following

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B4 Federico Toffano

B. B.3 Lead-time and Lateness Predictor

distributions:

• a discrete uniform distribution on the set {2, . . . , 20}

• a Gamma distribution with mean RV 1i ·max(log10(10 · q), 1) and standard

deviation σl(ok) = RV 2i ·max(log10(10 · q), 1)

and summing them.

The lateness δ(ok) of a random order ok supplied by supplier i(ok) and of a

quantity q = q(ok) is 0 if a random number sampled between 0 and 1 is less

than RDi. This models the case where the order is not late. Otherwise, δ(ok)
is computed by a sample of a Gamma distribution with mean µδ(ok) = RV 3i ·
max(log10(10 · q), 1) and standard deviation σδ(ok) = RV 4i ·max(log10(10 · q), 1).
Please note that the term max(log10(10 ·q), 1) is used in the computation of both

l(ok) and δ(ok) in order to increase mean and standard deviation for orders with

high quantities.

B.3 Lead-time and Lateness Predictor

This appendix describes a predictor for the experiments in Section 4.6 to

compute expected lead time li,j,t (Equation 4.13) and expected delay δi,j,t

(Equation 4.14) of a triple supplier i, component j and quantity interval t

given a database of past orders. Let us first suppose that we have an objective
order o0 = 〈i(o0), j(o0), q(o0), l(o0), δ(o0)〉 where i(o0), j(o0) and q(o0) are known

and we want to estimate l(o0) and δ(o0). As in Appendix B.2, we indicate

with ok = 〈i(ok), j(ok), q(ok), l(ok), δ(ok)〉 a past order, i.e., the k-th order of a

database. The idea is computing l(o0) and δ(o0) as a weighted average of lead

times and delays of past orders, where each weight depends on the similarity

of the corresponding past order ok with o0.

Two types of similarity measures are considered:

• similarity between the quantities Simq(q(ok), q(o0)) = min(q(ok),q(o0))
max(q(ok),q(o0))

• similarity between the components Simj(j(ok), j(o0)), defined to be 1 if

j(ok) = j(o0), defined to be 0.5 if the category of j(ok) and j(o0) is the

same, and Simj(j(ok), j(o0)) = 0.1, otherwise.

These two similarity measures are used to compute two sub-weights for each

past order ok:

wkq = Simq(q(ok),q(o0))∑n

p=1 Simq(q(op),q(o0)) and wkj = Simj(j(ok),j(o0))∑n

p=1 Simj(j(op),j(o0)) ,

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B5 Federico Toffano

B. B.3 Lead-time and Lateness Predictor

where p ∈ [1, n] are the indexes of all the past orders stored in the database.

After computing wkq and wkj for each past order ok, the lead time l(o0) and the

delay δ(o0) of the objective order o0 are estimated as l(o0) = ∑n
k=1(0.5wkq +

0.5wkj)l(ok) and δ(o0) = ∑n
k=1(0.6wkq + 0.4wkj)δ(ok), where l(ok) and δ(ok) are

delay and lead time of the past order ok. The weight of wkq in the formula used

to compute δ(o0) is set to 0.6 in order to give slightly more importance to past

orders with similar quantities rather than past orders with similar components.

Note that li,j,t and δi,j,t represent an expectation of lead time and delay given

a specific quantity interval, while the method described computes an estimated

lead time and delay given a specific quantity. We manage this issue by

estimating lead time and delay of two objective orders o′0 and o′′0, where the

quantities q(o′0) and q(o′′0) are lower and upper bound of the range of quantities

defining the quantity interval t (see Table 4.4 in Sect. 4.6.1). The values of li,j,t
and δi,j,t are then computed by averaging the values predicted for o′0 and o′′0 as

follows: li,j,t = (l(o′0) + l(o′′0))/2 and δi,j,t = (δ(o′0) + δ(o′′0))/2. Since the upper

bound of the last quantity intervals in Table 4.4 are not defined, we consider

these values to be 1500, 300 and 50 for category cheap, average and expensive,

respectively.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B6 Federico Toffano

References

[A+16] Charu C Aggarwal et al. Recommender systems, volume 1.

Springer, 2016.

[Abb04] Ali Abbas. Entropy methods for adaptive utility elicitation. IEEE
Transactions on Systems, Science and Cybernetics, 34(2):169–178,

2004.

[Abd13] Mohammad Abdolshah. A review of quality criteria supporting

supplier selection. Journal of Quality and Reliability Engineering,

06 2013.

[ABSK+19] Zaharah Allah Bukhsh, Irina Stipanovic, Giel Klanker, Alan

O’Connor, and Andre G Doree. Network level bridges mainte-

nance planning using multi-attribute utility theory. Structure and
infrastructure engineering, 15(7):872–885, 2019.

[ACAL+16] Pedro Amorim, Eduardo Curcio, Bernardo Almada-Lobo,

Ana P.F.D. Barbosa-Póvoa, and Ignacio E. Grossmann. Supplier

selection in the processed food industry under uncertainty. Euro-
pean Journal of Operational Research, 252(3):801 – 814, 2016.

[AHH07] Najla Aissaoui, Mohamed Haouari, and Elkafi Hassini. Supplier

selection and order lot sizing modeling: A review. Computers
& Operations Research, 34(12):3516 – 3540, 2007. Operations

Research and Outsourcing.

[AMD19] Christina Arampantzi, Ioannis Minis, and Georgios Dikas. A

strategic model for exact supply chain network design and its

application to a global manufacturer. International Journal of
Production Research, 57(5):1371–1397, 2019.

[AP97] Antreas D Athanassopoulos and Victor V Podinovski. Dominance

and potential optimality in multiple criteria decision analysis

B7

REFERENCES

with imprecise information. Journal of the Operational research
Society, 48(2):142–150, 1997.

[APW+18] Adi Wicaksono Purnawan, Pujawan I Nyoman, Widodo Erwin,

Sutrisno, and Izzatunnisa Laila. Mixed integer linear program-

ming model for dynamic supplier selection problem considering

discounts. MATEC Web Conf., 154:01071, 2018.

[AV15] Hamza Adeinat and José A. Ventura. Determining the retailer’s

replenishment policy considering multiple capacitated suppliers

and price-sensitive demand. European Journal of Operational
Research, 247(1):83 – 92, 2015.

[AV18] Hamza Adeinat and Jose A. Ventura. Integrated pricing and

supplier selection in a two-stage supply chain. International
Journal of Production Economics, 201:193 – 202, 2018.

[BB06] Darius Braziunas and Craig Boutilier. Preference elicitation and

generalized additive utility. In Proceedings of AAAI, volume 21,

2006.

[BB07] Darius Braziunas and Craig Boutilier. Minimax regret based

elicitation of generalized additive utilities. In Proceedings of UAI,
pages 25–32, 2007.

[BB10] Darius Braziunas and Craig Boutilier. Assessing regret-based

preference elicitation with the utpref recommendation system.

In Proceedings of the 11th ACM conference on Electronic commerce,

pages 219–228, 2010.

[BB12] Darius Braziunas and Craig Boutilier. Local utility elicitation in

gai models. arXiv preprint arXiv:1207.1361, 2012.

[BBB13] Craig Boutilier, Fahiem Bacchus, and Ronen I Brafman. UCP-

networks: A directed graphical representation of conditional

utilities. arXiv preprint arXiv:1301.2259, 2013.

[BC19] Silvia Bacci and Bruno Chiandotto. Introduction to Statistical
Decision Theory: Utility Theory and Causal Analysis. CRC Press,

2019.

[BDDPV16] Nawal Benabbou, Serena Di Sabatino Di Diodoro, Patrice Perny,

and Paolo Viappiani. Incremental preference elicitation in multi-

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B8 Federico Toffano

REFERENCES

attribute domains for choice and ranking with the borda count.

In Proceedings of International Conference on Scalable Uncertainty
Management, pages 81–95. Springer, 2016.

[Bel82] David E Bell. Regret in decision making under uncertainty.

Operations research, 30(5):961–981, 1982.

[Ben17] Nawal Benabbou. Procédures de décision par élicitation incré-
mentale de préférences en optimisation multicritère, multi-agents
et dans l’incertain. PhD thesis, 2017.

[BG95] Fahiem Bacchus and Adam Grove. Graphical models for pref-

erence and utility. In Proceedings of the Eleventh conference on
Uncertainty in artificial intelligence, pages 3–10, 1995.

[BG13] Fahiem Bacchus and Adam J Grove. Graphical models for

preference and utility. arXiv preprint arXiv:1302.4928, 2013.

[BG15] Tim Baarslag and Enrico H Gerding. Optimal incremental pref-

erence elicitation during negotiation. In Proceedings of Twenty-
Fourth International Joint Conference on Artificial Intelligence,

2015.

[BL19] Nawal Benabbou and Thibaut Lust. An interactive polyhedral

approach for multi-objective combinatorial optimization with in-

complete preference information. In Proceedings of International
Conference on Scalable Uncertainty Management, (SUM 2019)
Compiègne, France, December 16-18, pages 221–235. Springer,

2019.

[BLL20] Nawal Benabbou, Cassandre Leroy, and Thibaut Lust. An

interactive regret-based genetic algorithm for solving multi-

objective combinatorial optimization problems. In Proceedings of
Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI’20), 2020.

[Bly02] Jim Blythe. Visual exploration and incremental utility elicitation.

In Proceedings of AAAI/IAAI, pages 526–532, 2002.

[Bou02] Craig Boutilier. A POMDP formulation of preference elicitation

problems. In Proceedings of AAAI/IAAI, pages 239–246, 2002.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B9 Federico Toffano

REFERENCES

[BP15a] N. Benabbou and P. Perny. On possibly optimal tradeoffs in

multicriteria spanning tree problems. In Proceedings of ADT 2015,

volume 9346 of Lecture Notes in Computer Science, pages 322–

337. Springer, 2015.

[BP15b] Nawal Benabbou and Patrice Perny. Incremental weight elici-

tation for multiobjective state space search. In Proceedings of
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[BP16] Nawal Benabbou and Patrice Perny. Solving multi-agent knap-

sack problems using incremental approval voting. In Proceedings
of the Twenty-second European Conference on Artificial Intelligence,

pages 1318–1326. IOS Press, 2016.

[BP17] N. Benabbou and P. Perny. Adaptive elicitation of preferences

under uncertainty in sequential decision making problems. In

Proceedings of IJCAI 2017, pages 4566–4572, 2017.

[BP19a] N. Bourdache and P. Perny. Active preference elicitation based

on generalized gini functions: Application to the multiagent

knapsack problem. In Proceedings of AAAI-2019, 2019.

[BP19b] Nadjet Bourdache and Patrice Perny. Active preference learning

based on generalized gini functions: Application to the multia-

gent knapsack problem. In Proceedings of Thirty-Third AAAI Con-
ference on Artificial Intelligence (AAAI 2019), 2019.

[BPPS06] Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuur-

mans. Constraint-based optimization and utility elicitation us-

ing the minimax decision criterion. Artificial Intelligence, 170(8-

9):686–713, 2006.

[BPV14] Nawal Benabbou, Patrice Perny, and Paolo Viappiani. Incre-

mental elicitation of Choquet capacities for multicriteria decision

making. In Proceedings of ECAI, pages 87–92, 2014.

[BPV17a] N. Benabbou, P. Perny, and P. Viappiani. Incremental elicitation

of Choquet capacities for multicriteria choice, ranking and sort-

ing problems. Artificial Intelligence, 246:152–180, 2017.

[BPV17b] Nawal Benabbou, Patrice Perny, and Paolo Viappiani. Incremen-

tal elicitation of Choquet capacities for multicriteria choice, rank-

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B10 Federico Toffano

REFERENCES

ing and sorting problems. Artificial Intelligence, 246:152–180,

2017.

[BR07] D. G. Bridge and F. Ricci. Supporting product selection with

query editing recommendations. In Proceedings of RecSys 2007,

pages 65–72. ACM, 2007.

[Bra12] Darius Braziunas. Decision-theoretic elicitation of generalized
additive utilities. PhD thesis, 2012.

[Bur02] Robin Burke. Hybrid recommender systems: Survey and exper-

iments. User modeling and user-adapted interaction, 12(4):331–

370, 2002.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge

University Press, Cambridge, England, 2004.

[CBGVTG15] Leopoldo Eduardo Cárdenas-Barrón, José Luis González-Velarde,

and Gerardo Treviño-Garza. A new approach to solve the multi-

product multi-period inventory lot sizing with supplier selection

problem. Computers & Operations Research, 64:225 – 232, 2015.

[CDLS06] Robert G Cowell, Philip Dawid, Steffen L Lauritzen, and David J

Spiegelhalter. Probabilistic networks and expert systems: Exact
computational methods for Bayesian networks. Springer Science

& Business Media, 2006.

[CFZ93] Sohail S. Chaudhry, Frank G. Forst, and James L. Zydiak. Vendor

selection with price breaks. European Journal of Operational
Research, 70(1):52 – 66, 1993.

[Che17] Z.H. Che. A multi-objective optimization algorithm for solving

the supplier selection problem with assembly sequence planning

and assembly line balancing. Computers & Industrial Engineering,

105:247 – 259, 2017.

[CKP00] Urszula Chajewska, Daphne Koller, and Ronald Parr. Making

rational decisions using adaptive utility elicitation. In Proceedings
of AAAI/IAAI, pages 363–369, 2000.

[CL14] Junyi Chai and James Liu. A novel believable rough set approach

for supplier selection. Expert Systems with Applications: An
International Journal, 41:92–104, 01 2014.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B11 Federico Toffano

REFERENCES

[CLN13] Junyi Chai, James N.K. Liu, and Eric W.T. Ngai. Applica-

tion of decision-making techniques in supplier selection: A sys-

tematic review of literature. Expert Systems with Applications,
40(10):3872 – 3885, 2013.

[CN15] Junyi Chai and Eric WT Ngai. Multi-perspective strategic supplier

selection in uncertain environments. International Journal of
Production Economics, 166:215–225, 2015.

[CN20] Junyi Chai and Eric W.T. Ngai. Decision-making techniques in

supplier selection: Recent accomplishments and what lies ahead.

Expert Systems with Applications, 140:112903, 2020.

[CP04] Li Chen and Pearl Pu. Survey of preference elicitation methods.

Technical report, 2004.

[CPRV11] Gianluca Campanella, Alfredo Pereira, Rita A Ribeiro, and Maria

Leonilde R Varela. Collaborative dynamic decision making: A

case study from b2b supplier selection. In Proceedings of Euro
Working Group Workshop on Decision Support Systems, pages 88–

102. Springer, 2011.

[CR11] Gianluca Campanella and Rita A Ribeiro. A framework for

dynamic multiple-criteria decision making. Decision Support
Systems, 52(1):52–60, 2011.

[Deb59a] Gerard Debreu. Theory of value: An axiomatic analysis of
economic equilibrium. Number 17. Yale University Press, 1959.

[Deb59b] Gerard Debreu. Topological methods in cardinal utility theory.

Cowles Foundation Discussion Papers 76, Cowles Foundation for

Research in Economics, Yale University, 1959.

[DGH+15] Baigang Du, Shunsheng Guo, Xiaorong Huang, Yibing Li, and

Guo Jun. A pareto supplier selection algorithm for minimum the

life cycle cost of complex product system. Expert Systems with
Applications, 42, 06 2015.

[DJ97] S. L. Dittmer and F. V. Jensen. Myopic value of information in

influence diagrams. In Proceedings of UAI ’97:, pages 142–149,

1997.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B12 Federico Toffano

REFERENCES

[DTP18] Paolo Dragone, Stefano Teso, and Andrea Passerini. Construc-

tive preference elicitation over hybrid combinatorial spaces. In

Proceedings of Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

[Dye83] Martin E Dyer. The complexity of vertex enumeration methods.

Mathematics of Operations Research, 8(3):381–402, 1983.

[EW05] M. Ehrgott and M. M. Wiecek. Mutiobjective Programming, pages

667–708. Springer New York, New York, NY, 2005.

[Fan63] Ky Fan. On the krein-milman theorem. Convexity, 7:211–220,

1963.

[Far84] Peter H Farquhar. State of the art—utility assessment methods.

Management science, 30(11):1283–1300, 1984.

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover.

Journal of the ACM (JACM), 45(4):634–652, 1998.

[FGE05a] J. Figueira, S. Greco, and M. Ehrgott. Multiple Criteria Decision
Analysis—State of the Art Surveys. Springer International Series

in Operations Research and Management Science Volume 76,

2005.

[FGE+05b] JosÉ Figueira, Salvatore Greco, Matthias Ehrogott, et al. Multiple

criteria decision analysis: State of the art surveys. International
Series in Operations Research and Management Science, 2005.

[Fis65] Peter C Fishburn. Independence in utility theory with whole

product sets. Operations research, 13(1):28–45, 1965.

[Fis67a] Peter C Fishburn. Interdependence and additivity in multivariate,

unidimensional expected utility theory. International Economic
Review, 8(3):335–342, 1967.

[Fis67b] Peter C Fishburn. Methods of estimating additive utilities.

Management science, 13(7):435–453, 1967.

[Fis70] Peter C Fishburn. Utility theory for decision making. Technical

report, Research analysis corp McLean VA, 1970.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B13 Federico Toffano

REFERENCES

[FSST17] Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod

Talmon. Multiwinner voting: A new challenge for social choice

theory. Trends in computational social choice, 74:27–47, 2017.

[GDF72] Arthur M Geoffrion, James S Dyer, and A Feinberg. An interactive

approach for multi-criterion optimization, with an application to

the operation of an academic department. Management science,

19(4-part-1):357–368, 1972.

[GK03] Soumyadip Ghosh and Jayant Kalagnanam. Polyhedral sampling

for multiattribute preference elicitation. In Proceedings of Pro-
ceedings of the 4th ACM conference on Electronic Commerce, pages

256–257, 2003.

[GMS14] Salvatore Greco, Vincent Mousseau, and Roman Słowiński. Ro-

bust ordinal regression for value functions handling interacting

criteria. European Journal of Operational Research, 239(3):711–

730, 2014.

[GP04] Christophe Gonzales and Patrice Perny. Gai networks for utility

elicitation. KR, 4:224–234, 2004.

[GPR+10] M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh.

Elicitation strategies for soft constraint problems with missing

preferences: Properties, algorithms and experimental studies.

Artificial Intelligence, 174(3-4):270–294, 2010.

[GPS10] Lucie Galand, Patrice Perny, and Olivier Spanjaard. Choquet-

based optimisation in multiobjective shortest path and span-

ning tree problems. European Journal of Operational Research,

204(2):303–315, 2010.

[GS10a] Shengbo Guo and Scott Sanner. Real-time multiattribute

Bayesian preference elicitation with pairwise comparison

queries. In Proceedings of Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics, pages

289–296, 2010.

[GS10b] Shengbo Guo and Scott Sanner. Real-time multiattribute

Bayesian preference elicitation with pairwise comparison

queries. In Proceedings of the Thirteenth International Conference

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B14 Federico Toffano

REFERENCES

on Artificial Intelligence and Statistics, (AISTATS-10), pages 289–

296, Chia Laguna Resort, Sardinia, Italy, 2010.

[GSFM10] Salvatore Greco, Roman Słowiński, José Rui Figueira, and Vin-

cent Mousseau. Robust ordinal regression. In Proceedings
of Trends in multiple criteria decision analysis, pages 241–283.

Springer, 2010.

[GW05] Krzysztof Gajos and Daniel S. Weld. Preference elicitation for

interface optimization. In Proceedings of the 18th Annual ACM
Symposium on User Interface Software and Technology (UIST-05),

pages 173–182, Seattle, WA, USA, 2005.

[Haz86] Gordon B Hazen. Partial information, dominance, and potential

optimality in multiattribute utility theory. Operations research,

34(2):296–310, 1986.

[HB16] Seyedmohsen Hosseini and Kash Barker. A Bayesian network

model for resilience-based supplier selection. International
Journal of Production Economics, 180:68 – 87, 2016.

[HGM14] F. Hamdi, A. Ghorbel, and F. Masmoudi. Supplier selection un-

der disruption risks using stochastic mixed linear programming

techniques. In Proceedings of 2014 International Conference on
Advanced Logistics and Transport (ICALT), pages 368–373, May

2014.

[HKBR99] Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John

Riedl. An algorithmic framework for performing collaborative

filtering. In Proceedings of 22nd Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 1999, pages 230–237. Association for Computing

Machinery, Inc, 1999.

[HTF14] Ramzi Hammami, Cecilia Temponi, and Yannick Frein. A

scenario-based stochastic model for supplier selection in global

context with multiple buyers, currency fluctuation uncertainties,

and price discounts. European Journal of Operational Research,

233(1):159 – 170, 2014.

[HWI03] Hillary A Holloway and Chelsea C White Iii. Question selection

for multi-attribute decision-aiding. European Journal of Opera-

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B15 Federico Toffano

REFERENCES

tional Research, 148(3):525–533, 2003.

[HY16] Kuo-Jen Hu and Vincent F. Yu. An integrated approach for

the electronic contract manufacturer selection problem. Omega,

62:68 – 81, 2016.

[ILC01a] Vijay S Iyengar, Jon Lee, and Murray Campbell. Evaluating

multiple attribute items using queries. In Proceedings of the 3rd
ACM conference on Electronic Commerce, pages 144–153. ACM,

2001.

[ILC01b] Vijay S. Iyengar, Jon Lee, and Murray Campbell. Q-Eval:

Evaluating multiple attribute items using queries. pages 144–

153, Tampa, FL, USA, 2001.

[ILO17] IBM ILOG. IBM ILOG CPLEX Optimization Studio, V12.8.0, 2017.

[JLS82] Eric Jacquet-Lagreze and Jean Siskos. Assessing a set of addi-

tive utility functions for multicriteria decision-making, the uta

method. European journal of operational research, 10(2):151–

164, 1982.

[KCM17] Dinçer Konur, James F. Campbell, and Sepideh A. Monfared. Eco-

nomic and environmental considerations in a stochastic inven-

tory control model with order splitting under different delivery

schedules among suppliers. Omega, 71:46 – 65, 2017.

[KD14] E. Karsak and Mehtap Dursun. An integrated supplier selection

methodology incorporating qfd and dea with imprecise data.

Expert Systems with Applications, 41:6995–7004, 11 2014.

[KL86] Pekka J Korhonen and Jukka Laakso. A visual interactive method

for solving the multiple criteria problem. European Journal of
Operational Research, 24(2):277–287, 1986.

[KL05] Kathrin Konczak and Jérôme Lang. Voting procedures with

incomplete preferences. In Proceedings of Proceedings IJCAI-05
Multidisciplinary Workshop on Advances in Preference Handling,

volume 20. Citeseer, 2005.

[Kli92] Ronald Klimberg. Grads: A new graphical display system for

visualizing multiple criteria solutions. Computers & operations
research, 19(7):707–711, 1992.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B16 Federico Toffano

REFERENCES

[KM97] I Kaliszewski and W Michalowski. Efficient solutions and bounds

on tradeoffs. Journal of Optimization Theory and Applications,
94(2):381–394, 1997.

[Koj07] Ivan Kojadinovic. Minimum variance capacity identification. Eu-
ropean Journal of Operational Research, 177(1):498–514, 2007.

[Kor05] Pekka Korhonen. Interactive methods. In Proceedings of Multiple
criteria decision analysis: state of the art surveys, pages 641–661.

Springer, 2005.

[KP84] Zbigniew Wawrzyniec Kmietowicz and AD Pearman. Decision

theory, linear partial information and statistical dominance.

Omega, 12(4):391–399, 1984.

[KS14] Gokhan Kirlik and Serpil Sayın. A new algorithm for generat-

ing all nondominated solutions of multiobjective discrete opti-

mization problems. European Journal of Operational Research,

232(3):479–488, 2014.

[KVVA17] S. Kaddani, D. Vanderpooten, J. M. Vanpeperstraete, and H. Aissi.

Weighted sum model with partial preference information: Appli-

cation to multi-objective optimization. European Journal of Op-
erational Research, 260(2):665–679, 2017.

[KY13] Panos Kouvelis and Gang Yu. Robust discrete optimization and
its applications, volume 14. Springer Science & Business Media,

2013.

[LB11a] Tyler Lu and Craig Boutilier. Budgeted social choice: From

consensus to personalized decision making. In Twenty-Second
International Joint Conference on Artificial Intelligence. Citeseer,

2011.

[LB11b] Tyler Lu and Craig Boutilier. Robust approximation and incre-

mental elicitation in voting protocols. In Proceedings of Twenty-
Second International Joint Conference on Artificial Intelligence,

2011.

[LSZ92] Vahid Lotfi, Theodor J Stewart, and Stanley Zionts. An

aspiration-level interactive model for multiple criteria decision

making. Computers & Operations Research, 19(7):671–681, 1992.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B17 Federico Toffano

REFERENCES

[LWM+15] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and

Guangquan Zhang. Recommender system application develop-

ments: a survey. Decision Support Systems, 74:12–32, 2015.

[MIT96] Tadahiko Murata, Hisao Ishibuchi, and Hideo Tanaka. Multi-

objective genetic algorithm and its applications to flowshop

scheduling. Computers & industrial engineering, 30(4):957–968,

1996.

[MR05] Patrick Meyer and Marc Roubens. Choice, ranking and sorting

in fuzzy multiple criteria decision aid. In Proceedings of Multiple
criteria decision analysis: State of the art surveys, pages 471–503.

Springer, 2005.

[MRW12] R. Marinescu, A. Razak, and N. Wilson. Multi-objective influence

diagrams. In Proceedings of UAI-2012, pages 574–583, 2012.

[MRW13] R. Marinescu, A. Razak, and N. Wilson. Multi-objective con-

straint optimization with tradeoffs. In Proceedings of CP-2013,

pages 497–512, 2013.

[MW16] Mojtaba Montazery and Nic Wilson. Learning user preferences

in matching for ridesharing. In Proceedings of ICAART (2), pages

63–73, 2016.

[NY15] Bimal Nepal and Om Prakash Yadav. Bayesian belief network-

based framework for sourcing risk analysis during supplier selec-

tion. International Journal of Production Research, 53(20):6114–

6135, 2015.

[OW13] C. O’Mahony and N. Wilson. Sorted-pareto dominance and qual-

itative notions of optimality. In Proceedings of ECSQARU’2013,

pages 449–460, 2013.

[PB07] Michael J Pazzani and Daniel Billsus. Content-based recommen-

dation systems. In Proceedings of The adaptive web, pages 325–

341. Springer, 2007.

[PFT03] Pearl Pu, Boi Faltings, and Marc Torrens. User-involved prefer-

ence elicitation. Technical report, 2003.

[PM05] Robert Price and Paul R. Messinger. Optimal recommendation

sets: Covering uncertainty over user preferences. In Proceedings,

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B18 Federico Toffano

REFERENCES

The Twentieth National Conference on Artificial Intelligence and
the Seventeenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages

541–548, 2005.

[Rai68] H. Raiffa. Decision analysis. Addison-Wesley, 1968.

[RD11] Jafar Rezaei and Mansoor Davoodi. Multi-objective models

for lot-sizing with supplier selection. International Journal of
Production Economics, 130(1):77 – 86, 2011.

[RFH20] Gade Pandu Rangaiah, Zemin Feng, and Andrew F Hoadley.

Multi-objective optimization applications in chemical process

engineering: Tutorial and review. Processes, 8(5):508, 2020.

[RS16] K. Renganath and M. Suresh. Supplier selection using fuzzy

mcdm techniques: A literature review. In Proceedings of 2016
IEEE International Conference on Computational Intelligence and
Computing Research (ICCIC), pages 1–6, 2016.

[Saa08] Thomas Saaty. The analytic network process. Encyclopedia of
Operations Research and Management, 1, 04 2008.

[Sar78] Rakesh Kumar Sarin. Elicitation of subjective probabilities in the

context of decision-making. Decision Sciences, 9(1):37–48, 1978.

[Sav51] Leonard J Savage. The theory of statistical decision. Journal of
the American Statistical association, 46(253):55–67, 1951.

[Sav72] Leonard J Savage. The foundations of statistics. Courier Corpora-

tion, 1972.

[SC83] Ralph E Steuer and Eng-Ung Choo. An interactive weighted

tchebycheff procedure for multiple objective programming.

Mathematical programming, 26(3):326–344, 1983.

[SGM05] Yannis Siskos, Evangelos Grigoroudis, and Nikolaos F Matsatsi-

nis. Uta methods. In Proceedings of Multiple criteria decision
analysis: State of the art surveys, pages 297–334. Springer, 2005.

[SGMP18] Olivier Sobrie, Nicolas Gillis, Vincent Mousseau, and Marc

Pirlot. Uta-poly and uta-splines: additive value functions with

polynomial marginals. European Journal of Operational Research,

264(2):405–418, 2018.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B19 Federico Toffano

REFERENCES

[SH92] Ahti A Salo and Raimo P Hämäläinen. Preference assessment

by imprecise ratio statements. Operations Research, 40(6):1053–

1061, 1992.

[SH01] Ahti A Salo and Raimo P Hamalainen. Preference ratios in multi-

attribute evaluation (prime)-elicitation and decision procedures

under incomplete information. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, 31(6):533–

545, 2001.

[SH10] A. Salo and R. P. Hämäläinen. Preference programming –

multicriteria weighting models under incomplete information. In

Proceedings Handbook of Multicriteria Analysis, pages 167–187.

Springer Berlin Heidelberg, 2010.

[Sim55] Herbert A Simon. A behavioral model of rational choice. The
quarterly journal of economics, 69(1):99–118, 1955.

[Sin05] Carsten Sinz. Towards an optimal cnf encoding of boolean

cardinality constraints. In Proceedings of International conference
on principles and practice of constraint programming, pages 827–

831. Springer, 2005.

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl.

Item-based collaborative filtering recommendation algorithms.

In Proceedings of Proceedings of the 10th international conference
on World Wide Web, pages 285–295, 2001.

[SR91] Wan S Shin and Arunachalam Ravindran. Interactive multiple

objective optimization: Survey i—continuous case. Computers &
Operations Research, 18(1):97–114, 1991.

[SS78] Ralph E Steuer and Albert T Schuler. An interactive multiple-

objective linear programming approach to a problem in forest

management. Operations Research, 26(2):254–269, 1978.

[SSYT12] Krishnendu Shaw, Ravi Shankar, Surendra S. Yadav, and Laksh-

man S. Thakur. Supplier selection using fuzzy AHP and fuzzy

multi-objective linear programming for developing low carbon

supply chain. Expert Systems with Applications, 39(9):8182 –

8192, 2012.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B20 Federico Toffano

REFERENCES

[Ste17] Ẑeljko Stević. Criteria for supplier selection: A literature review.

International Journal of Engineering, Business and Enterprise
Applications, 1:23–27, 02 2017.

[Sto19] Russell Stoneback. Python satellite data analysis toolkit 2.1.0,

2019.

[TC17] Shing Chih Tsai and Sin Ting Chen. A simulation-based multi-

objective optimization framework: a case study on inventory

management. Omega, 70:148–159, 2017.

[TFDCSA16] Madjid Tavana, Alireza Fallahpour, Debora Di Caprio, and Fran-

cisco J. Santos-Arteaga. A hybrid intelligent fuzzy predictive

model with simulation for supplier evaluation and selection. Ex-
pert Systems with Applications, 61:129–144, 2016.

[Tim13] Mikhail Timonin. Robust optimization of the Choquet integral.

Fuzzy sets and systems, 213:27–46, 2013.

[TK74] Amos Tversky and Daniel Kahneman. Judgment under uncer-

tainty: Heuristics and biases. science, 185(4157):1124–1131,

1974.

[T.L88] Saaty T.L. What is the analytic hierarchy process? Mathematical
Models for Decision Support, 48:109 – 121, 1988.

[TPV16] Stefano Teso, Andrea Passerini, and Paolo Viappiani. Construc-

tive preference elicitation by setwise max-margin learning. arXiv
preprint arXiv:1604.06020, 2016.

[Tro18] Matthias C. M. Troffaes. Python wrapper for komei fukuda’s

cddlib, 2018.

[Vai89] Pravin M Vaidya. Speeding-up linear programming using fast

matrix multiplication. In 30th annual symposium on foundations
of computer science, pages 332–337. IEEE Computer Society,

1989.

[VB09] Paolo Viappiani and Craig Boutilier. Regret-based optimal re-

commendation sets in conversational recommender systems. In

Proceedings of the third ACM conference on Recommender systems,
pages 101–108. ACM, 2009.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B21 Federico Toffano

REFERENCES

[VB10] Paolo Viappiani and Craig Boutilier. Optimal Bayesian recom-

mendation sets and myopically optimal choice query sets. In

Proceedings of Advances in neural information processing systems,
pages 2352–2360, 2010.

[VB20] Paolo Viappiani and Craig Boutilier. On the equivalence of

optimal recommendation sets and myopically optimal query sets.

Artificial Intelligence, page 103328, 2020.

[vdB20] Jan van den Brand. A deterministic linear program solver

in current matrix multiplication time. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 259–278. SIAM, 2020.

[Via12] Paolo Viappiani. Monte carlo methods for preference learning. In

Proceedings of International Conference on Learning and Intelligent
Optimization, pages 503–508. Springer, 2012.

[VLHB19] Ivan Vendrov, Tyler Lu, Qingqing Huang, and Craig Boutilier.

Gradient-based optimization for Bayesian preference elicitation.

arXiv preprint arXiv:1911.09153, 2019.

[VNM47] John Von Neumann and Oskar Morgenstern. Theory of games

and economic behavior, 2nd rev. 1947.

[WB03] Tianhan Wang and Craig Boutilier. Incremental utility elicitation

with the minimax regret decision criterion. In Proceedings of
IJCAI, volume 3, pages 309–316, 2003.

[WCB91] Charles A. Weber, John R. Current, and W.C. Benton. Vendor

selection criteria and methods. European Journal of Operational
Research, 50(1):2 – 18, 1991.

[Web87] Martin Weber. Decision making with incomplete information.

European journal of operational research, 28(1):44–57, 1987.

[Wie80] Andrzej P Wierzbicki. The use of reference objectives in multi-

objective optimization. In Proceedings of Multiple criteria decision
making theory and application, pages 468–486. Springer, 1980.

[Wie07] M. Wiecek. Advances in cone-based preference modeling for

decision making with multiple criteria. Decision Making in
Manufacturing and Services, 1(1-2):153–173, 2007.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B22 Federico Toffano

REFERENCES

[WLX11] Zhoujing Wang, Kevin W. Li, and Jianhui Xu. A mathematical

programming approach to multi-attribute decision making with

interval-valued intuitionistic fuzzy assessment information. Ex-
pert Systems with Applications, 38(10):12462 – 12469, 2011.

[WO11] N. Wilson and C. O’Mahony. The relationships between qual-

itative notions of optimality for decision making under logical

uncertainty. In Proceedings of AICS-2011, 2011.

[WRM15] N. Wilson, A. Razak, and R. Marinescu. Computing possibly

optimal solutions for multi-objective constraint optimisation with

tradeoffs. In Proceedings of IJCAI-2015, 2015.

[WSB12] Nilesh Ware, Surya Prakash Singh, and D. Banwet. Supplier

selection problem: A state-of-the-art review. Management Science
Letters, 2:1465–1490, 07 2012.

[WSD84] Chelsea C White, Andrew P Sage, and Shigeru Dozono. A

model of multiattribute decisionmaking and trade-off weight

determination under uncertainty. IEEE Transactions on Systems,
Man, and Cybernetics, (2):223–229, 1984.

[XC11] Lirong Xia and Vincent Conitzer. Determining possible and

necessary winners given partial orders. Journal of Artificial
Intelligence Research, 41:25–67, 2011.

[Yag88] Ronald R Yager. On ordered weighted averaging aggregation

operators in multicriteria decisionmaking. IEEE Transactions on
systems, Man, and Cybernetics, 18(1):183–190, 1988.

[Yu74] P. Yu. Cone convexity, cone extreme points, and nondominated

solutions in decision problems with multiobjectives. Journal of
Optimization Theory and Applications, 14(3):319–377, 1974.

[ZFS16] Konrad Zimmer, Magnus Fröhling, and Frank Schultmann. Sus-

tainable supplier management – a review of models support-

ing sustainable supplier selection, monitoring and development.

International Journal of Production Research, 54(5):1412–1442,

2016.

[ZTK14] Edmundas Kazimieras Zavadskas, Zenonas Turskis, and Simona

Kildienė. State of art surveys of overviews on mcdm/madm

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B23 Federico Toffano

REFERENCES

methods. Technological and economic development of economy,

20(1):165–179, 2014.

[ZW76] Stanley Zionts and Jyrki Wallenius. An interactive programming

method for solving the multiple criteria problem. Management
science, 22(6):652–663, 1976.

Evaluating Sets of Multi-Attribute Alternatives
with Uncertain Preferences

B24 Federico Toffano

	List of Figures
	List of Tables
	Abstract
	Acknowledgements
	Introduction
	Outline and Contributions
	Publications

	Background and Related Work
	Multi-Attribute Utility Theory
	Preferences under certainty
	Pareto Dominance
	Preferential independence
	Additive utility function
	Generalised additive independence utility model

	Classical Methods for Preference Elicitation
	Complete elicitation of the utility function
	Interactive optimisation
	Bayesian preference elicitation
	Minimisation of an error function

	Parameterised Preferences
	ISMAUT
	Minimax Regret decision criterion
	Setwise Minimax Regret decision criterion
	Incremental elicitation based on Minimax Regret
	Minimax Regret with linear utility function

	Relations and Optimality Classes
	Relations
	Optimality classes

	Conclusions

	Minimality and Comparison of Sets of Multi-Attribute Vectors
	Introduction
	Preference Relations for Set of Alternatives
	Filtering A and Minimal Equivalent Subsets
	Operators for set of alternatives
	Filtering
	PSOW(A) as unique minimal equivalent set

	Setwise Max Regret
	Implication for Incremental Preference Elicitation
	EEU Method for Testing AW B and Computing SMRW(A, B)
	The Case of Multi-Attribute Utility Vectors
	Linear programming for SMRW(A, B), and AW B
	Using extreme points of epigraph to compute minimal equivalent subset

	The Structure of the Algorithms
	Computing minimal equivalent set
	Testing AW B

	Experimental Testing
	Conclusions

	A Multi-objective Framework based on User-Preferences
	Introduction
	Literature review
	Problem Requirements
	Terminology and Definitions
	The Structure of the Framework
	The Mixed Integer Linear Programming model
	User-preference elicitation approach
	Max regret
	Discrepancy measure
	Query generation
	Stopping criterion

	Computational Experiments
	Instances structure
	Experimental results

	Conclusions

	An exact algorithm to compute the Setwise Minimax Regret
	Introduction
	Setwise Max Regret
	An Efficient Algorithm to Compute Setwise Minimax Regret
	Pruning the search space using SAT
	Computation of setwise max regret
	Generating subsets of A using depth-first search
	Further implementation details

	Pseudocode
	Experimental Results
	Conclusions

	Conclusions & Future Work
	Summary
	Possible Future Works

	
	Random Problem Generator

	
	Random Catalogue Generation
	Random Database Generator
	Lead-time and Lateness Predictor

