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ABSTRACT

Bovine viral diarrhea (BVD) is a disease in cattle with complex transmission dynamics that causes substantial economic losses and affects
animal welfare. The infection can be transient or persistent. The mostly asymptomatic persistently infected hosts are the main source for
transmission of the virus. This characteristic makes it difficult to control the spreading of BVD. We develop a deterministic compartmental
model for the spreading dynamics of BVD within a herd and derive the basic reproduction number. This epidemiological quantity indicates
that identification and removal of persistently infected animals is a successful control strategy if the transmission rate of transiently infected
animals is small. Removing persistently infected animals from the herd at birth results in recurrent outbreaks with decreasing peak prevalence.
We propose a stochastic version of the compartmental model that includes stochasticity in the transmission parameters. This stochasticity
leads to sustained oscillations in cases where the deterministic model predicts oscillations with decreasing amplitude. The results provide
useful information for the design of control strategies.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0058688

Dynamical systems are often described by deterministic mathe-

matical models, where the state of the system is determined by the

initial conditions. Many real-world processes, however, include

an element of probability or randomness. Even so, determinis-

tic models might still be able to reproduce the main trend as a

mean-field approximation but fail to capture the spectrum of pos-

sible dynamical scenarios of individual realizations. In addition,

stochastic input such as noise can trigger the emergence of hidden

dynamical features with surprising effects such as stochastic res-

onance, coherence resonance, or other noise-induced changes of

dynamical behavior. Here, we present the example of a cattle dis-

ease that is realized as an extended susceptible-infected-recovered

model. To explore the impact of stochasticity on the temporal

behavior of the dynamics, we consider a stochastic transmission

coefficient and systematically investigate the interplay between

parameter noise and the intrinsic time scales of the underlying

deterministic system.

I. INTRODUCTION

Bovine viral diarrhea (BVD) is a viral disease that affects cattle
and has a significant negative economic impact on the global live-
stock industry.1 BVD has a complicated pathogenesis that includes
both transient (temporary) and persistent (life-long) infections. The
spread of the bovine viral diarrhea virus (BVDV) occurs via both
horizontal (contact between animals) and vertical (during certain
stages of gestation) transmission.2 Acute infection in non-pregnant
and non-immune cattle leads to a transient disease with com-
plete recovery within 3 weeks.3 Clinical signs include fever, loss of
appetite, mucosal lesions, and diarrhea4 with a very low associated
mortality rate. The acute infection with BVDV induces a life-long
protective immunity.5,6

Vertical transmission, i.e., transmission from the mother to
the fetus during pregnancy, is a complex process, which depends
on the age of the fetus. Fetal infection in the period between
around day 30 and day 120 can produce calves that remain
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persistently viremic for life.7 Abortions and teratogenic effects can
result from infection during approximately the first 150 days.8–10

Calves infected during the last trimester have an active immune
response.11 The full duration of bovine pregnancy is roughly
280 days.

Persistently infected (PI) animals lack an active immune
response to the pathogen and excrete BVDV throughout their lives,
and they are the most important sources of infection for BVDV.
Possible symptoms include recurrent intestinal and pulmonary
symptoms, neurological disorders, and growth retardation.12,13

Transiently infected (TI) animals are considerably less important
as the source of infection,14 as they shed the virus in smaller quan-
tities. PI cows may also give birth to persistently infected calves;
however, fertility is reduced.15,16 The susceptibility of PI animals
to mucosal disease results in high mortality,13 where mucosal dis-
ease, which is characterized by a mortality of almost 100%, develops
only in PI animals. Clinical signs include anorexia and erosion
of the intestinal tract and death follows approximately one week
after the onset of symptoms.17 The pathogenesis of mucosal dis-
ease is not yet fully understood and is the subject of ongoing
research.18,19

There are various strategies that exist for controlling BVD. For
a long time, control methods were limited to vaccination practices.
This is a relatively inexpensive method but a successful strategy
based solely on vaccination has never been reported.20 With grow-
ing knowledge about the pathogenesis of BVD and the development
of diagnostic tests, PI animals have become the main target to con-
trol the spread of BVD and thus limit the associated economic
impact.

Several models have been developed in order to study BVD
within cattle populations. Some of them focus primarily on the
estimation of economic loss or on various control measures,21–25

whereas others focus on spreading dynamics.26–29 Most models for
BVD are discrete time stochastic models. One such model employs
an agent-based approach,30 which allows the introduction of indi-
vidual heterogeneities and complex network interactions. It is, how-
ever, difficult to derive analytical results from these agent-based
models. Few authors have developed compartmental models with
continuous time for the spreading dynamics of BVD.31–33 Inno-
cent et al. describe a compartmental model and find broad agree-
ment with a stochastic discrete model for large herd sizes.31 Basset
developed a compartmental model formulated as integrodifferential
equations.32

In this paper, we investigate the stochastic effects of our
BVD model and the impact they have on the spreading behav-
ior of BVD. First, we present a deterministic compartmental
model with continuous time that is based on a model suggested
by Cherry et al.33 We identify steady-state solutions (equilibria)
and analyze their stability in the context of a next-generation
matrix. This enables the derivation of an insightful epidemio-
logical quantity that characterizes the behavior of the spread-
ing dynamics: the basic reproduction number, which quantifies
the impact of an infected individual in terms of the number
of expected secondary infections. Subsequently, we introduce a
stochastic transmission coefficient and study its effect on the spread-
ing dynamics.

II. A DETERMINISTIC COMPARTMENTAL MODEL FOR

THE SPREADING DYNAMICS OF BVD

A. Model development

The model, schematically shown in Fig. 1, is now described
step-by-step. The unit of the compartment variables is hosts/km2.
There are six compartments considered in this model as follows:

• S is the fraction of susceptible animals. This compartment com-
prises three constant subgroups: (1) non-pregnant animals with
fraction p1, (2) animals pregnant 1–150 days with fraction p2,
and (3) animals pregnant 151–280 days with fraction p3 and
p1 + p2 + p3 = 1.

• I denotes the fraction of transiently infected (TI) animals.
• P represents the fraction of persistently infected (PI) animals.
• R1 describes the fraction of recovered, non-pregnant animals.
• R2 denotes the fraction of recovered animals that were pregnant

1–150 days at the time of infection. After birth to a calf, they
return to the R1 compartment.

• R3 describes the fraction of recovered animals that were pregnant
151–280 days at the time of infection. After birth to a calf, they
return to the R1 compartment.

Including the above-mentioned fractions p1, p2, p3, there are a total
of nine parameters used in the model as summarized in Table I and
discussed next. This discussion will finally lead to Eq. (3) below.

Animals in compartment S move to the I compartment due
to interactions with both TI and PI animals; however, we assume

FIG. 1. Flow chart of the bovine viral diarrhea compartmental model. S: fraction
of susceptible hosts, I: fraction of TI hosts, R1: fraction of recovered animals that
were not pregnant at the time of infection and all cows that were infected during
pregnancy but are not pregnant anymore, R2: fraction of pregnant and recovered
animals that were pregnant 1–150 days at the time of infection, R3: fraction of
pregnant and recovered animals that were pregnant 151–280 days at the time of
infection, and P: fraction of PI hosts. Function h(I,R2,R3, P) as defined in Eq. (1).
Other parameters as specified in Table I. Rates that are added to ensure positivity
and constant herd size are colored in orange.
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TABLE I. Parameter values of model Eq. (3) derived from Ref. 33.

Parameter Value Definition

βp 2.01/day Transmission coefficient pertaining to
PI animals

β I 0.134/day Transmission coefficient pertaining to
TI animals

µ 0.001/day Host birth/removal rate
γ 0.057/day Recovery rate
p1 0.45 Probability that host is not pregnant

when first exposed
p2 0.3 Probability that host is pregnant

1–150 days when first exposed
p3 0.25 Probability that host is pregnant

151–280 days when first exposed
φ2 0.005/day Reciprocal of the average time spent

carrying an infected fetus
φ3 0.021/day Reciprocal of the average time spent

carrying an actively immune fetus
θ 0.2 Proportion of infected fetuses which

survive to enter the herd
a 0.0008/day Reduction in birth rate of PI animals
b 0.002/day Additional mortality of PI animals

this is independent of their pregnancy status. The transmission rate
consists of two bi-linear terms corresponding to the infection rates
from transiently and persistently infected animals giving the term
(βII + βPP)S.

TI animals move to one of R1, R2, or R3 depending on their
pregnancy status at the time of infection, i.e., whether they were part
of the p1S, p2S, or p3S susceptible subgroups, respectively, giving rise
to the corresponding γ p1I, γ p2I, and γ p3I terms.

Recovered animals in R2 give birth with rate φ2 and, therefore,
move into the non-pregnant recovered compartment R1. Likewise,
recovered animals in R3 give birth with rate φ3 and therefore move
into the non-pregnant recovered compartment R1. Additionally,
births from the R2 compartment become persistently infected and
move into the P compartment; however, due to infection, not all
calves survive and the number of births φ2R2 is reduced by the factor
θ , giving the term θφ2R2. Furthermore, the births from R3 produce
recovered non-pregnant calves, which enter R1 giving the additional
term φ3R3 entering R1.

Each of the compartments S, I, R1, R2, and R3 is subject to a
natural death rate µ. However, in the case of P, the death rate is
increased by b due to the increased mortality of PI animals. Addi-
tional births occur in compartments S, P, and R1. Births from S and I
move into the susceptible compartment at rate µ, whereas the births
from P occur at a lower rate µ − a and stay in P.

Calculating the change in the total density N = S + I + R1

+ R2 + R3 + P results in

dN

dt
= −µ(I + R3) − (µ − θφ2)R2 − (a + b)P + φ3R3

≡ −h(I, R2, R3, P) + φ3R3. (1)

Avoiding negative compartment variables I, R2, R3, P, which are
biologically unfeasible, it follows that

− h(I, R2, R3, P) ≤ 0, φ3R3 ≥ 0. (2)

In the proposed model, we aim at keeping the herd size constant. For
this purpose, we assume that the reduction in herd density due to
h(I, R2, R3, P) is compensated by the introduction of susceptible ani-
mals. Furthermore, we assume that the increase in herd density due
to φ3R3 is compensated by removing animals from the herd regard-
less of their status. This analysis gives rise to the following set of
equations (cf. Fig. 1):

dS

dt
= −(βII + βPP)S + µ(I + R1 + R3)

+ (µ − θφ2)R2 + (a + b)P − φ3R3S, (3a)

dI

dt
= (βII + βPP)S − (γ + µ)I − φ3R3I, (3b)

dR1

dt
= γ p1I + φ2R2 − µR1 + (2 − R1)φ3R3, (3c)

dRi

dt
= γ piI − (φi + µ + φ3R3)Ri, i = 2, 3, (3d)

dP

dt
= θφ2R2 − (a + b)P − φ3R3P. (3e)

It can be easily seen that the vector field of (3) at the boundary
of (R≥0)

6 does not point out of (R≥0)
6. Therefore, solutions of model

(3) are non-negative for all t ≥ 0 if the initial conditions are non-
negative. This is an important requirement for an epidemiological
model to be meaningful and is not met in the model by Cherry et al.33

Figure 2 shows the behavior of model (3) after the introduction
of one PI animal per km2 into a herd of susceptible animals with a
host density of 67 animals/km2. The outbreak of disease is followed
by an approach to the endemic equilibrium.

B. Equilibria and stability

By defining F ,V , and g as follows:

F(I, R2, P, S) =





βIIS + βPPS
γ p2I

θφ2R2 + (µ − a)P



 , (4a)

V(I, R2, P, R3) =





(γ + µ)I + φ3R3I
−γ p2I + (φ2 + φ3R3 + µ)R2

(µ + b)P + φ3R3P



 , (4b)

g(I, R2, P, S, R1, R3)

=





−(βII + βPP)S + µR1 + h(I, R2, R3, P) − φ3R3S
γ p1I + φ2R2 − µR1 + (2 − R1)φ3R3

γ p3I − (φ3 + µ + φ3R3)R3



 , (4c)
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FIG. 2. Time series of all compartments shown in Fig. 1. Introduction of PI ani-
mals into a herd of susceptible animals at time t = 0. Parameters as in Table I.
Initial conditions:S(0) = 1 − P(0),P(0) = 1/67, and I = R1 = R2 = R3 = 0.

we can rewrite model (3) as

dxi

dt
= Fi(x, y) − Vi(x, y), i = 1, 2, 3,

dyi

dt
= gi(x, y), j = 1, 2, 3,

(5)

where x = [I, R2, P] denotes the disease compartments and
y = [S, R1, R3] the disease-free compartments. The model satisfies
the following conditions and is, therefore, a well posed epidemio-
logical model according to Chap. 2 of Ref. 34:

(i) Fi(x, y) ≥ 0 for all non-negative x and y and i = 1, 2, 3.
(ii) Fi(0, y) = 0 and Vi(0, y) = 0 for all non-negative y and

i = 1, 2, 3, i.e., the disease-free set (0, y) is an invariant set.
(iii) Vi(x, y) ≤ 0 if xi = 0 for i = 1, 2, 3.
(iv)

∑n
i=1 Vi(x, y) ≥ 0 for all non-negative x and y.

(v) The disease-free system
dyi
dt

= gi(0, y) has a unique asymptoti-
cally stable equilibrium y0. Considering assumption (ii), this is
an equilibrium of whole system (5) and is called the disease-free
equilibrium.

Linearization around the disease-free equilibrium leads to

dx

dt
= (F − V)x, (6)

Fij =
∂Fi

∂xj

(0, y0), Vij =
∂Vi

∂xj

(0, y0), (7)

where F and V are equal to

F =





βI 0 βP

0 0 0
0 θφ2 µ − a



 , V =





γ + µ 0 0
−γ p2 φ2 + µ 0

0 0 µ + b



 .

(8)

The dominant eigenvalue of FV−1 equals the basic reproduc-
tion number R0 and determines the stability of the disease-free
equilibrium.35 The disease-free equilibrium is locally asymptotically
stable if R0 < 1

R0 = ρ(FV−1) =
1

2

(

βI

γ + µ
+

µ − a

µ + b

+

√

(

βI

γ + µ
−

µ − a

µ + b

)2

+ 4
βPγ p2θφ2

(γ + µ)(µ + φ2)(µ + b)



 .

(9)

For the parameters in Table I, the basic reproduction number equals
7.035. This result is in agreement with the unstable disease-free
equilibrium in Fig. 2.

A successful control measure may be achieved by choosing the
removal rate for PI animals above a critical value using the expres-
sion for R0. A necessary condition to achieve R0 < 1 by increasing
the removal rate of PI animals is

lim
b→∞

R0 =
βI

γ + µ
< 1. (10)

The role of TI animals as the source of infection is not entirely
clear.36 Therefore, in Fig. 3, the dependence of R0 on b and βI

is shown. To gain an insight, we calculate the necessary addi-
tional removal rate for PI animals in the case of βI = 0 and find
b > 0.098/day. Thus, we end up with a total removal rate from
compartment P of (µ + b) = 0.099/day. This means that PI ani-
mals should be removed from the herd before reaching an age of
1/(µ + b) ≈ 10 days.

It is also possible to prove the global stability of the disease-
free equilibrium for R0 < 1. For this purpose, we consider the
compartmental model rewritten as follows:

dx

dt
= −Ax − f̂(x, y), (11a)

dy

dt
= g(x, y), (11b)

FIG. 3. Contour plot of the basic reproduction number as a function of the addi-
tional mortality of PI animals b and the transmission coefficient pertaining to TI
animals βI . Other parameters as in Table I.
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where A is given by

A = V − F =





γ + µ 0 0
−γ p2 φ2 + µ 0

0 0 µ + b



−





βI 0 βP

0 0 0
0 θφ2 µ − a





=





γ + µ − βI 0 −βP

−γ p2 φ2 + µ 0
0 −θφ2 a + b



 , (12)

and f̂ equals

f̂(x, y) =





βII(1 − S) + βPP(1 − S) + φ3R3I
φ3R3R2

φ3R3P



 . (13)

Then, the following theorem as proven in Chap. 2 of Ref. 34 holds:

If A is a non-singular M-matrix and f̂ ≥ 0, then the disease-free

equilibrium is globally asymptotically stable. Obviously, f̂ ≥ 0 is true.
An M-matrix can be defined as Z-matrix with eigenvalues whose
real parts are non-negative and a Z-matrix is a matrix whose off-
diagonal entries are less than or equal to zero. A sufficient condition
for a non-singular Z-matrix to be a M-matrix is that it has all
non-negative column sums.37 This tells us that V is a non-singular
M-matrix. Next, we use the following proposition: if F is non-
negative and V is a non-singular M-matrix, then ρ(FV−1) < 1 if and
only if all eigenvalues of (V − F) have positive real parts.34 Therefore,
we conclude that in the case of ρ(FV−1) < 1 the Z-matrix A is a
non-singular M-matrix and the disease-free equilibrium is globally
asymptotically stable.

As seen in Fig. 2 and in accordance with the basic reproduction
number equal to 7.035, model (3) approaches the endemic equilib-
rium. Numerical calculation of the endemic equilibrium results in

S? = 0.030, I?=0.016, R?
1=0.884,

R?
2 = 0.045, R?

3=0.010, P?=0.015.

The predicted PI animal prevalence of 1.5% is in good agreement
with the prevalence of 1.4% found in Danish dairy herds.38

C. Removal of PI hosts

To simulate a situation where all PI calves are removed from
the herd at birth the differential equation for P and the PI transmis-
sion coefficient are removed from model (3). In addition, the term
θφ2R2 is removed from the equation for susceptible hosts to adjust
for constant total host density. This model assumes that all calves
are tested for BVD at birth and that the test is 100% sensitive and
specific,

dS

dt
= −βIIS + µ(I + R1 + R2 + R3) − φ3R3S, (14a)

dI

dt
= βIIS − (γ + µ)I − φ3R3I, (14b)

dR1

dt
= γ p1I + φ2R2 − µR1 + (2 − R1)φ3R3, (14c)

dRi

dt
= γ piI − (φi + µ + φ3R3)Ri, i = 2, 3. (14d)

The basic reproduction number of this model equals

R0 =
βI

γ + µ
= 2.31. (15)

An example of the behavior of model (14) is shown in Fig. 4, where
the introduction of TI animals in a herd of susceptible animals is
simulated. After the initial outbreak, the fraction of recovered hosts
decreases due to the removal rate and the fraction of susceptible
animals increases. The disease can spread again as soon as the den-
sity of susceptible hosts is large enough. The peak prevalence of the
subsequent outbreak is reduced due to the presence of recovered
animals at the beginning of the outbreak. This behavior results in
a damped oscillations of recurrent outbreaks with decreasing peak
prevalence, which ultimately approaches an endemic equilibrium. A
necessary condition for an outbreak is the presence of TI animals
in the herd. This condition is given in Fig. 4 because the density of
TI hosts does not reach zero between the outbreaks. However, com-
partmental models are not a good approximation if the number of
hosts in a compartment is low. In a more realistic model, the density
of TI animals could reach zero after an outbreak and no subsequent
outbreak would be possible. Nevertheless, the simulation of Eq. (14)
provides important information about the time required after an
outbreak before the herd is susceptible to an outbreak again. This
time is mainly determined by µ, which is a measure for the herd
turnover rate and can be adjusted by the farmer. Figure 5 visual-
izes this dependence assuming that the timescale of the oscillating
behavior is determined by the complex part of the eigenvalues of the
endemic equilibrium if the displacement from the equilibrium is not
too large.

FIG. 4. Introduction of TI animals into a herd of susceptible animals at time t = 0.
All PI infected animals are removed at birth. Parameters as in Table I. Initial
conditions: S(0) = 1 − I(0), I(0) = 1/67, and R1 = R2 = R3 = 0.
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FIG. 5. Oscillation period of the BVD model without PI hosts in dependence on
µ. Other parameters as in Table I. The calculation of the period is based on the
complex part of the eigenvalues of the endemic equilibrium.

III. STOCHASTIC TRANSMISSION COEFFICIENT

Replacing the transmission coefficient βI in the case where
all PI calves are removed from the herd at birth with a stochastic
transmission coefficient,

β∗
I = βI + σξ(t), (16)

where ξ is Gaussian white noise with zero mean and unity variance,
leads to the following stochastic compartmental model:

dS = (−βIIS + µ(I + R1 + R2 + R3) − φ3R3S) dt

− σ ISdW, (17a)

dI = (βIIS − (γ + µ)I − φ3R3I) dt + σ ISdW, (17b)

dR1 =
(

γ p1I + φ2R2 − µR1 + (2 − R1)φ3R3

)

dt, (17c)

dRi =
(

γ piI − (φi + µ + φ3R3)Ri

)

dt, i = 2, 3. (17d)

To keep the probability for a negative transmission coefficient
negligible the maximum noise intensity σ is set to 0.05/day. At
σ = 0.05/day, the probability for negative transmission coefficient
equals 0.4%. Figure 6 compares the deterministic BVD model with-
out PI animals with an example path of the BVD model with a
stochastic transmission coefficient. In contrast to the deterministic
version, the stochastic version is characterized by sustained oscilla-
tions. Figure 7 shows the power spectral density for multiple noise
intensities and initial conditions equal to the equilibrium value of
the deterministic model. The clear peaks in the power spectral densi-
ties indicate nearly regular oscillations. The peak positions are equal
to the oscillation timescale predicted by the complex eigenvalue of
the endemic equilibrium.

To gain an understanding of Fig. 7, we try to derive an expres-
sion for the power spectral density based on some simplifications.
Since the total density is constant, it is sufficient to analyze the four-
dimensional model. Near the deterministic endemic equilibrium

FIG. 6. Comparison of the deterministic BVD model without PI animals with
an example path of the BVD model with stochastic transmission coefficient.
Parameters as in Table I, σ = 0.05/day, initial conditions: S(0) = 1 − I(0),
I(0) = 1/67, and P = R1 = R2 = R3 = 0.

equation (17) can be approximated by linearizing the drift coeffi-
cient around the endemic equilibrium and replacing S and I in the
stochastic term by S? = 1 − I? − R?

1 − R?
2 − R?

3 and I?,

dx(t)

dt
= J
∣

∣

∣

I? ,R?
1 ,R?

2 ,R?
3

x(t) + rξ(t), (18)

where x and r equal

x =
[

I, R1, R2, R3

]ᵀ

, r =
[

σ I?S?, 0, 0, 0
]ᵀ

. (19)

FIG. 7. Power spectral densities of model (17) for TI hosts at different noise inten-
sities σ (color bar) calculated from 300 time series with a simulation period of 104

days and initial conditions at the deterministic endemic equilibrium. The dashed
gray line represents the oscillation frequency predicted by the deterministic model
according to Fig. 5. Inset: dependence of the full width at half maximum of the
peaks (FWHM in 10−4/day) on the noise intensity.
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The endemic equilibrium of the deterministic model without PI
hosts calculated numerically equals

S? = 43.37%, I?=0.89%, R?
1=52.70%,

R?
2=2.47%, R?

3=0.57%.

The Jacobian matrix evaluated at the endemic equilibrium results in

J
∣

∣

∣

I? ,R?
1 ,R?

2 ,R?
3

=







8 −βiI
? −βiI

? −βII
?−φ3I

?

γ p1 −µ − φ3R
?
3 φ2 (2 − R?

1)φ3

γ p2 0 −(φ2 + µ + φ3R
?
3) φ3R

?
2

γ p3 0 0 9






,

(20)

where 8 and 9 equal

8 = βI(I
?+S?) − (µ + γ ) − φ3R

?
3, (21a)

9 = −(φ3 + µ + 2φ3R
?
3). (21b)

Calculating the Fourier transform of Eq. (18) results in

− 2π ifx̂(f) = J
∣

∣

∣

I? ,R?
1 ,R?

2 ,R?
3

x̂(f) + rξ̂ (f). (22)

Bringing all terms to the right side leads to

0 =

(

J
∣

∣

∣

I? ,R?
1 ,R?

2 ,R?
3

+ 2π if1

)

x̂(f) + rξ̂ (f). (23)

Next, we perform a matrix multiplication from the left side and look

at the resulting equation for Î(f),

Î(f) = −

(

J
∣

∣

∣

I? ,R?
1 ,R?

2 ,R?
3

+ 2π if1

)−1

11

σ I?S?ξ̂ (f). (24)

Finally, we calculate the expected value of the squared modulus of

Î(f) to obtain the power spectral density,

〈

∣

∣

∣
Î(f)
∣

∣

∣

2
〉

=

∣

∣

∣

∣

∣

(

J
∣

∣

∣

I? ,R?
1 ,R?

2 ,R?
3

+ 2π if1

)−1

11

σ I?S?

∣

∣

∣

∣

∣

2

. (25)

It follows that the power spectral density is proportional to the
square of the noise intensity. This characteristic is confirmed
numerically in the inset plot of Fig. 7, which indicates an approx-
imately constant full width at half maximum of the peaks in the
power spectral densities within the investigated noise level. This can
be explained by the considered level of noise intensities, which are
chosen to keep the model in a biologically plausible range. In other
words, increasing the noise intensity within the investigated range
increases the amplitude of the oscillation but has no effect on its reg-
ularity. This resembles earlier studies on the van der Pol oscillator
subject to white noise39 and noise-induced oscillators in lasers.40

IV. DISCUSSION AND OUTLOOK

Modeling the complex spreading dynamics of bovine viral diar-
rhea remains a challenging task. Based on previous research, we have
developed a well posed epidemiological compartmental model that

simulates the spreading dynamics within a herd with constant size.
The predicted endemic equilibrium of 1.5% is in good agreement
with the prevalence of 1.4% found in Danish dairy herds.38 The basic
reproduction number indicates that increasing the removal rate of
PI hosts is a successful control strategy if the transmission coeffi-
cient from TI animals is small. This finding is in agreement with
the fact that the removal of PI animals is the central component of
several effective control strategies.41 The removal of PI animals was
found to be effective in other simulations as well.32 The removal of
PI hosts at birth in the deterministic compartmental model results
in recurrent outbreaks with decreasing peak prevalence.

To overcome some limitations of the deterministic compart-
mental model, we have studied a stochastic version that includes
randomness in the transmission coefficient. In contrast to the deter-
ministic compartmental model, the model with stochastic trans-
mission coefficient shows sustained oscillations in the case where
all PI hosts are removed at birth. Noise-sustained oscillations have
been found in many stochastic systems including epidemiological
models.42,43 In our case, the power spectral density of the sustained
oscillations is within the investigated, biologically meaningful noise
level proportional to the square of the noise intensity. This is in
contrast to the well-known phenomenon of coherence resonance
where the coherence of the noise-induced oscillations is maximal for
a certain noise intensity.44,45 Additional effects might be observed for
larger noise intensities such as stochastic bifurcation, which would
result in narrower peaks in the power spectrum as known from the
van der Pol oscillator.46

Our results suggest many fruitful avenues for future research.
The effect of various control strategies could be explored as well
as the effect of including vaccination in the compartmental model.
Since spatial heterogeneity is highly important in host populations,
developing a model involving spatial structure may be of interest.
Furthermore, deriving the basic reproduction number in the case
of stochastic models could be helpful. Agent-based modeling may
be a useful approach to study the transmission dynamics (see, for
example, Ref. 30). Agent-based models might underpin explanations
of spatial heterogeneity and network interactions in the spreading
dynamics of BVD. Furthermore, the deterministic model developed
here could be included in more comprehensive models to study the
within and between-herd infection dynamics.
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1K. Yeşilbağ, G. Alpay, and P. Becher, “Variability and global distribution of
subgenotypes of bovine viral diarrhea virus,” Viruses 9, 128 (2017).
2S. R. Lanyon, F. I. Hill, M. P. Reichel, and J. Brownlie, “Bovine viral diarrhoea:
Pathogenesis and diagnosis,” Vet. J. 199, 201–209 (2014).
3D. Müller-Doblies, A. Arquint, P. Schaller, P. M. Heegaard, M. Hilbe, S. Albini,
C. Abril, K. Tobler, F. Ehrensperger, E. Peterhans et al., “Innate immune responses
of calves during transient infection with a noncytopathic strain of bovine viral
diarrhea virus,” Clin. Diagn. Lab. Immunol. 11, 302–312 (2004).
4A. Lindberg, “Bovine viral diarrhoea virus infections and its control. A review,”
Vet. Q. 25, 1–16 (2003).
5J. Brownlie, M. C. Clarke, C. J. Howard, and D. H. Pocock, “Pathogenesis and
epidemiology of bovine virus diarrhoea virus infection of cattle,” Ann. Rech. Vet.
18, 157–166 (1987).
6T. Sandvik, “Selection and use of laboratory diagnostic assays in BVD control
programmes,” Prev. Vet. Med. 72, 3–16 (2005).
7J. Brownlie, L. Hooper, I. Thompson, and M. Collins, “Maternal recogni-
tion of foetal infection with bovine virus diarrhoea virus (BVDV)—The bovine
pestivirus,” Clin. Diagn. Virol. 10, 141–150 (1998).
8J. Done, S. Terlecki, C. Richardson, J. Harkness, J. J. Sands, D. Patterson,
D. Sweasey, I. Shaw, C. Winkler, and S. Duffell, “Bovine virus diarrhoea-mucosal
disease virus: Pathogenicity for the fetal calf following maternal infection,” Vet.
Rec. 106, 473–479 (1980).
9P. C. Blanchard, J. F. Ridpath, J. B. Walker, and S. K. Hietala, “An outbreak of
late-term abortions, premature births, and congenital deformities associated with
a bovine viral diarrhea virus 1 subtype b that induces thrombocytopenia,” J. Vet.
Diagn. Invest. 22, 128–131 (2010).
10D. Montgomery, A. Van Olphen, H. Van Campen, and T. Hansen, “The fetal
brain in bovine viral diarrhea virus-infected calves: Lesions, distribution, and cel-
lular heterogeneity of viral antigen at 190 days gestation,” Vet. Pathol. 45, 288–296
(2008).
11T. Brown, R. Schultz, J. Duncan, and S. Bistner, “Serological response of the
bovine fetus to bovine viral diarrhea virus,” Infect. Immun. 25, 93–97 (1979).
12C. Bachofen, U. Braun, M. Hilbe, F. Ehrensperger, H. Stalder, and E. Peterhans,
“Clinical appearance and pathology of cattle persistently infected with bovine
viral diarrhoea virus of different genetic subgroups,” Vet. Microbiol. 141, 258–267
(2010).
13L. F. Taylor, E. D. Janzen, J. A. Ellis, J. V. van den Hurk, and P. Ward,
“Performance, survival, necropsy, and virological findings from calves persis-
tently infected with the bovine viral diarrhea virus originating from a single
Saskatchewan beef herd,” Canad. Vet. J. 38, 29 (1997).
14H. Houe, “Epidemiological features and economical importance of bovine virus
diarrhoea virus (BVDV) infections,” Vet. Microbiol. 64, 89–107 (1999).
15P. Straver, D. Journee, and G. Binkhorst, “Neurological disorders, virus persis-
tence and hypomyelination in calves due to intra-uterine infections with bovine
virus diarrhoea virus: II. Virology and epizootiology,” Vet. Q. 5, 156–164 (1983).
16A. McClurkin, M. Coria, and R. Cutlip, “Reproductive performance of appar-
ently healthy cattle persistently infected with bovine viral diarrhea virus,” J. Am.
Vet. Med. Assoc. 174, 1116–1119 (1979).
17J. Brownlie, “Clinical aspects of the bovine virus diarrhoea/mucosal disease
complex,” In Pract. 7, 195–202 (1985).
18M. F. Darweesh, M. K. Rajput, L. J. Braun, J. F. Ridpath, J. D. Neill, and
C. C. Chase, “Characterization of the cytopathic BVDV strains isolated from 13
mucosal disease cases arising in a cattle herd,” Virus Res. 195, 141–147 (2015).
19A. Chernick, A. Ambagala, K. Orsel, J. Wasmuth, G. van Marle, and F. van der
Meer, “Bovine viral diarrhea virus genomic variation within persistently infected
cattle,” Infect. Genet. Evol. 58, 218–223 (2018).
20V. Moennig and P. Becher, “Control of bovine viral diarrhea,” Pathogens 7, 29
(2018).
21E. Pasman, A. Dijkhuizen, and G. Wentink, “A state-transition model to stimu-
late the economics of bovine virus diarrhoea control,” Prev. Vet. Med. 20, 269–277
(1994).
22J. T. Sørensen, C. Enevoldsen, and H. Houe, “A stochastic model for simulation
of the economic consequences of bovine virus diarrhoea virus infection in a dairy
herd,” Prev. Vet. Med. 23, 215–227 (1995).

23R. L. Smith, M. W. Sanderson, D. G. Renter, R. L. Larson, and B. J. White,
“A stochastic model to assess the risk of introduction of bovine viral diarrhea virus
to beef cow-calf herds,” Prev. Vet. Med. 88, 101–108 (2009).
24R. L. Smith, M. W. Sanderson, D. G. Renter, R. Larson, and B. White,
“A stochastic risk-analysis model for the spread of bovine viral diarrhea virus after
introduction to naïve cow-calf herds,” Prev. Vet. Med. 95, 86–98 (2010).
25A. Foddai, C. Enøe, K. Krogh, A. Stockmarr, and T. Halasa, “Stochastic simula-
tion modeling to determine time to detect bovine viral diarrhea antibodies in bulk
tank milk,” Prev. Vet. Med. 117, 149–159 (2014).
26A.-F. Viet, C. Fourichon, H. Seegers, C. Jacob, and C. Guihenneuc-Jouyaux,
“A model of the spread of the bovine viral-diarrhoea virus within a dairy herd,”
Prev. Vet. Med. 63, 211–236 (2004).
27A. Damman, A.-F. Viet, S. Arnoux, M.-C. Guerrier-Chatellet, E. Petit, and
P. Ezanno, “Modelling the spread of bovine viral diarrhea virus (BVDV) in a beef
cattle herd and its impact on herd productivity,” Vet. Res. 46, 12 (2015).
28P. Ezanno, C. Fourichon, A.-F. Viet, and H. Seegers, “Sensitivity analysis to
identify key-parameters in modelling the spread of bovine viral diarrhoea virus
in a dairy herd,” Prev. Vet. Med. 80, 49–64 (2007).
29G. Innocent, I. Morrison, J. Brownlie, and G. Gettinby, “A computer simulation
of the transmission dynamics and the effects of duration of immunity and survival
of persistently infected animals on the spread of bovine viral diarrhoea virus in
dairy cattle,” Epidemiol. Infect. 119, 91–100 (1997).
30J. Bassett, P. Blunk, T. Isele, J. Gethmann, and P. Hövel, “An agent-based model
for bovine viral diarrhea,” arXiv:1812.06964 (2018).
31G. Innocent, I. Morrison, J. Brownlie, and G. Gettinby, “The use of a mass-
action model to validate the output from a stochastic simulation model of bovine
viral diarrhoea virus spread in a closed dairy herd,” Prev. Vet. Med. 31, 199–209
(1997).
32J. Basset, “Computational and analytical approaches towards epidemic spread
containment of temporal animal trade networks,” Ph.D. thesis (School Technische
Universität Berlin, 2018).
33B. Cherry, M. Reeves, and G. Smith, “Evaluation of bovine viral diarrhea virus
control using a mathematical model of infection dynamics,” Prev. Vet. Med. 33,
91–108 (1998).
34L. J. Allen, F. Brauer, P. Van den Driessche, and J. Wu, Mathematical Epidemi-
ology (Springer, 2008), Vol. 1945.
35P. Van den Driessche, “Reproduction numbers of infectious disease models,”
Infect. Disease Model. 2, 288–303 (2017).
36A. Meyling, H. Houe, A. Jensen et al., “Epidemiology of bovine virus diarrhoea
virus,” Rev. Sci. Tech. 9, 75–93 (1990).
37J. Ma and Y.-N. Yeh, “Parking functions on nonsingular M-matrices,” Linear
Algebra Appl. 489, 1–14 (2016).
38H. Houe and A. Meyling, “Prevalence of bovine virus diarrhoea (BVD) in 19
Danish dairy herds and estimation of incidence of infection in early pregnancy,”
Prev. Vet. Med. 11, 9–16 (1991).
39E. Schöll, A. G. Balanov, N. B. Janson, and A. B. Neiman, “Controlling stochastic
oscillations close to a Hopf bifurcation by time-delayed feedback,” Stoch. Dyn. 5,
281 (2005).
40V. Flunkert and E. Schöll, “Suppressing noise-induced intensity pulsations in
semiconductor lasers by means of time-delayed feedback,” Phys. Rev. E 76, 066202
(2007).
41V. Moennig and P. Becher, “Control of bovine viral diarrhea,” Pathogens 7, 29
(2018).
42N. T. Dieu, D. Nguyen, N. H. Du, and G. Yin, “Classification of asymptotic
behavior in a stochastic SIR model,” SIAM J. Appl. Dyn. Syst. 15, 1062–1084
(2016).
43R. Kuske, L. F. Gordillo, and P. Greenwood, “Sustained oscillations via coher-
ence resonance in SIR,” J. Theor. Biol. 245, 459–469 (2007).
44A. S. Pikovsky and J. Kurths, “Coherence resonance in a noise-driven excitable
system,” Phys. Rev. Lett. 78, 775 (1997).
45S.-G. Lee, A. Neiman, and S. Kim, “Coherence resonance in a Hodgkin–Huxley
neuron,” Phys. Rev. E 57, 3292 (1998).
46A. Zakharova, T. Vadivasova, V. S. Anishchenko, A. Koseska, and J. Kurths,
“Stochastic bifurcations and coherencelike resonance in a self-sustained bistable
noisy oscillator,” Phys. Rev. E 81, 011106 (2010).

Chaos 31, 093129 (2021); doi: 10.1063/5.0058688 31, 093129-8

© Author(s) 2021

https://aip.scitation.org/journal/cha
https://doi.org/10.3390/v9060128
https://doi.org/10.1016/j.tvjl.2013.07.024
https://doi.org/10.1128/cdli.11.2.302-312.2004
https://doi.org/10.1080/01652176.2003.9695140
https://hal.archives-ouvertes.fr/hal-00901705/
https://doi.org/10.1016/j.prevetmed.2005.08.015
https://doi.org/10.1016/S0928-0197(98)00030-0
https://doi.org/10.1136/vr.106.23.473
https://doi.org/10.1177/104063871002200127
https://doi.org/10.1354/vp.45-3-288
https://doi.org/10.1128/iai.25.1.93-97.1979
https://doi.org/10.1016/j.vetmic.2009.09.022
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1576666/
https://doi.org/10.1016/S0378-1135(98)00262-4
https://doi.org/10.1080/01652176.1983.9693890
https://europepmc.org/article/med/220208
https://doi.org/10.1136/inpract.7.6.195
https://doi.org/10.1016/j.virusres.2014.09.015
https://doi.org/10.1016/j.meegid.2018.01.002
https://doi.org/10.3390/pathogens7010029
https://doi.org/10.1016/0167-5877(94)90060-4
https://doi.org/10.1016/0167-5877(94)00436-M
https://doi.org/10.1016/j.prevetmed.2008.08.006
https://doi.org/10.1016/j.prevetmed.2010.02.009
https://doi.org/10.1016/j.prevetmed.2014.07.007
https://doi.org/10.1016/j.prevetmed.2004.01.015
https://doi.org/10.1186/s13567-015-0145-8
https://doi.org/10.1016/j.prevetmed.2007.01.005
https://doi.org/10.1017/S0950268897007723
http://arxiv.org/abs/arXiv:1812.06964
https://doi.org/10.1016/S0167-5877(96)01129-4
https://doi.org/10.1016/S0167-5877(97)00050-0
https://doi.org/10.1016/j.idm.2017.06.002
https://doi.org/10.20506/rst.9.1.489
https://doi.org/10.1016/j.laa.2015.09.054
https://doi.org/10.1016/S0167-5877(05)80040-6
https://doi.org/10.1142/s0219493705001407
https://doi.org/10.1103/physreve.76.066202
https://doi.org/10.3390/pathogens7010029
https://doi.org/10.1137/15M1043315
https://doi.org/10.1016/j.jtbi.2006.10.029
https://doi.org/10.1103/PhysRevLett.78.775
https://doi.org/10.1103/PhysRevE.57.3292
https://doi.org/10.1103/physreve.81.011106

	I. INTRODUCTION
	II. A DETERMINISTIC COMPARTMENTAL MODEL FOR THE SPREADING DYNAMICS OF BVD
	A. Model development
	B. Equilibria and stability
	C. Removal of PI hosts

	III. STOCHASTIC TRANSMISSION COEFFICIENT
	IV. DISCUSSION AND OUTLOOK
	ACKNOWLEDGMENTS

