
Title Exploration of the relationship between tacit knowledge and
software system test complexity

Authors Geary, Niall

Publication date 2016

Original Citation Geary, N. Year. 2016 . Exploration of the relationship between
tacit knowledge and software system test complexity. PhD Thesis,
University College Cork.

Type of publication Doctoral thesis

Rights © 2016, Niall Geary. - http://creativecommons.org/licenses/by-
nc-nd/3.0/

Download date 2024-04-25 12:43:50

Item downloaded
from

https://hdl.handle.net/10468/3113

https://hdl.handle.net/10468/3113

Exploration of the relationship between tacit knowledge and

software system test complexity

 Niall Geary

109223354

Thesis Submitted to the National University of Ireland, Cork for the

Degree of Doctor of Philosophy

Department of Accounting, Finance and Information Systems

Head of Department: Prof. Ciaran Murphy

Supervisors: Prof. Frédéric Adam

Dr. Tom O’Kane

September 2016

i

TABLE OF CONTENTS

List of Tables .. v

List of Figures .. vii

Abstract ... xi

Acknowledgements ... xiii

1 INTRODUCTION .. 1

1.1 Rationale for Study ... 5

1.2 Research Objective and Research Hypotheses ... 6

1.3 Research Summary ... 8

1.4 Research Conclusion .. 13

2 A REVIEW OF SOFTWARE DEVELOPMENT AND THE ROLE OF

SYSTEM TESTING .. 17

2.1 Traditional Software Development ... 19

2.2 Incremental and Iterative Software Development Models .. 23

2.2.1 The Evolutionary Model ... 23

2.2.2 The Spiral model ... 25

2.2.3 Other Incremental Models ... 28

2.2.4 The Conception of Agile Processes... 29

2.3 A Synthesis of Software Development Models ... 39

2.3.1 The Case for a Flexible Approach to Software Development ... 40

2.3.2 A Comparison of Traditional and Agile Software Development .. 41

2.4 Software Verification and Validation ... 47

2.4.1 Test Planning... 52

2.4.2 Development of Test Suites and Test Cases ... 62

2.4.3 Execution of Test Cases .. 71

2.4.4 Failure Analysis of Test Results.. 77

2.4.5 Measurement of System Quality ... 78

2.4.6 Management of the Test Environment .. 84

ii

2.5 Concluding Analysis of Software Development Processes and System Testing 86

3 A REVIEW OF SOFTWARE SYSTEM TEST COMPLEXITY AND TACIT

KNOWLEDGE ... 93

3.1 The Influence of Complexity on Software Testing ... 96

3.1.1 Software Project Complexity .. 98

3.1.2 Inherent Software Complexity .. 101

3.1.3 Software Task Complexity .. 103

3.2 The Role of Knowledge in Software Development ... 112

3.2.1 The Importance of Knowledge Sharing .. 114

3.2.2 The Core Characteristics of Knowledge Sharing .. 117

3.3 Detailed Discussion on Explicit and Tacit Knowledge .. 120

3.3.1 Explicit Knowledge/Tacit Knowledge debate ... 121

3.3.2 Knowledge Conversion ... 123

3.4 Approaches to Knowledge Management .. 133

3.4.1 Consideration of the Development Environment .. 135

3.4.2 Accommodating an Ad-hoc or Formalised Knowledge Transfer Strategy ... 137

3.4.3 Adoption of a Personalisation Approach to Knowledge Management ... 138

3.5 Concluding Notes relating to System test Complexity and the Role of Tacit Knowledge 143

4 RESEARCH MODEL AND METHODOLOGY .. 149

4.1 Research Objective ... 150

4.1.1 Research Hypotheses .. 151

4.2 Research Strategy ... 153

4.2.1 Research Approach ... 155

4.2.2 Proposed Data Collection Model .. 160

4.2.3 Interview Questions .. 163

4.3 Research Design .. 166

4.3.1 Case Study Selection ... 167

4.3.2 Sampling Strategy ... 172

4.3.3 Data Analysis .. 174

4.4 Summary of the Research Model .. 179

iii

5 FIELD RESEARCH .. 185

5.1 Coding and Analysis of Data Relating to the First Hypothesis ... 187

5.1.1 Complexity Associated with the System under Test ... 188

5.1.2 Tacit Knowledge Associated with the System under Test .. 191

5.2 Coding and Analysis of Data Relating to the Second Hypothesis ... 197

5.2.1 Complexity Associated with the Process of System Testing .. 198

5.2.2 Tacit Knowledge Associated with the Process of System Testing .. 202

5.3 Analysis of Quantitative Data .. 209

5.3.1 Modelling the Quantitative Data ... 211

5.3.2 A Comparison between the Qualitative and Quantitative Analysis .. 216

5.4 Identified Actions for Dealing with System Test Complexity ... 218

5.5 Modelling Research Findings .. 222

5.5.1 A Model of the Relationship between Complexity and Tacit Knowledge .. 223

5.5.2 A Model of Proposed Actions to Reduce the Effects of Complexity .. 225

5.5.3 The Identified Research Findings from a Socio-Technical Perspective .. 227

6 CONCLUSION ... 231

6.1 Summary of Findings ... 233

6.1.1 Observations Relating to the First Hypothesis .. 234

6.1.2 Observations Relating to the Second Hypothesis .. 240

6.2 Concluding Discussion.. 247

6.3 Limitations and Future Considerations .. 258

7 BIBLIOGRAPHY .. 263

8 APPENDIX ... 283

8.1 Analysis of Qualitative Data .. 283

8.1.1 Initial Coding of Complexity Associated with the System under Test ... 283

8.1.2 Initial Coding of Tacit Knowledge relating to the System under Test .. 285

8.1.3 Initial Coding of Complexity associated with the Process of System Testing 288

8.1.4 Initial Coding of Tacit Knowledge related to the Process of System Testing 292

8.2 Recommended Actions to Reduce the Effects of System Test Complexity .. 294

iv

8.2.1 The Availability of Tacit Knowledge within the Test Team ... 294

8.2.2 The Availability of Knowledge from Development Teams .. 295

8.2.3 The Benefit of Support Applications and Support Teams ... 298

v

List of Tables

Table 4.1: Research Questionnaire. ... 166

Table 5.1: Breakdown by Participant Experience. ... 185

Table 5.2: Breakdown by Employed Development Methodology. .. 185

Table 5.3: Analysis of Data Relating to Complexity Affecting the System under Test. 191

Table 5.4: Analysis of Data Relating to Tacit Knowledge Associated with the System under Test. 194

Table 5.5: Analysis of Data Relating to Complexity Associated with the Process of System Testing. 202

Table 5.6: Analysis of Data Relating to Tacit Knowledge Associated with the System under Test. 206

Table 5.7: Quantitative Evidence of System Test Complexity and Tacit Knowledge. 210

Table 5.8: System Test Complexity Indicators. ... 213

Table 5.9: Bivariate Correlations between System Test Complexity Indicators. 213

Table 5.10: System Test Tacit Knowledge Indicators. .. 214

Table 5.11: Bivariate Correlations between System Test Tacit Knowledge Indicators. 215

Table 5.12: Discussion of Quantitative Results. .. 216

Table 5.13: A Breakdown of Actions which may be taken to reduce the Effects of Complexity. 221

Table 6.1: Comparison to Complete Set of Test Functions. .. 249

Table 8.1: Research Data Relating to Tacit Knowledge Associated with the Process of System

Testing. .. 294

Table 8.2: The Availability of Tacit Knowledge within the Test Team. ... 295

Table 8.3: The Availability of Knowledge from Development Teams.. 298

vi

vii

List of Figures

Figure 1.1: Sources of Complexity with a Direct Relationship to Tacit Knowledge. 14

Figure 1.2: Recommended Actions Associated with Complexity. .. 15

Figure 2.1: The Spiral Model of Software Development. .. 27

Figure 2.2: Waterfall Approach from a Static/Dynamic Perspective... 42

Figure 2.3: Agile Approach from a Static/Dynamic Perspective. .. 43

Figure 2.4: Test Completion Progress. ... 72

Figure 2.5: Faults versus Test Effort. ... 73

Figure 2.6: Test Saturation Points. ... 75

Figure 2.7: Fault Removal Points. ... 76

Figure 2.8: Test Saturation Effect. ... 77

Figure 2.9: Test functions and considerations. .. 90

Figure 3.1: Socio-technical of Information Systems.. 95

Figure 3.2: Project Complexity from a Socio-Technical Perspective. ... 100

Figure 3.3: Inherent Complexity from a Socio-Technical Perspective. ... 103

Figure 3.4: Tacit Knowledge to Explicit Knowledge Continuum.. ... 127

Figure 3.5: Knowledge Assets and Knowledge Conversion. ... 129

Figure 3.6: The Knowledge Spiral. .. 132

Figure 3.7: Complexity Literature from a Socio-Technical Perspective (based on model by

Mumford (1983)). .. 145

Figure 4.1: Research Model Constructs. .. 154

Figure 4.2: Research Method Concerns. .. 162

Figure 4.3: Case Study Selection Criteria. ... 168

Figure 4.4: Stages of Data Collection. ... 173

Figure 4.5: Summary of Research Model and Methodology ... 182

Figure 5.1: Research Model Constructs of the First Hypothesis ... 187

Figure 5.2: Complexity and Tacit Knowledge Associated with the System under Test, from a

Socio-Technical Perspective. ... 196

Figure 5.3: Research Model Constructs of the Second Hypothesis. .. 197

Figure 5.4: Qualitative Analysis Relating to the System under Test. .. 207

Figure 5.5: Complexity and Tacit Knowledge Associated with the Process of System Testing, from

a Socio-Technical Perspective. .. 208

Figure 5.6: Model of Quantitative Results. .. 212

Figure 5.7: Actions which may be taken to reduce the Effects of Complexity, from a Socio-

Technical Perspective. ... 222

file:///C:/Users/gearyn/Dropbox/UCC/UCC_Thesis%20Submission_Revised_240816.docx%23_Toc460490623
file:///C:/Users/gearyn/Dropbox/UCC/UCC_Thesis%20Submission_Revised_240816.docx%23_Toc460490633

viii

Figure 5.8: A Model of Sources of Complexity with a Direct Relationship to Tacit Knowledge. 223

Figure 5.9: A Model of Recommended Actions to Reduce the Effects of Complexity. 226

Figure 5.10: A Model of System Test Complexity and Recommended Actions from a Socio-

Technical Perspective. ... 228

Figure 6.1: Complexity Associated with First Hypothesis. ... 234

Figure 6.2: Explicit Knowledge Actions Relating To the First Hypothesis. ... 236

Figure 6.3: Tacit Knowledge Actions Relating To the First Hypothesis. .. 237

Figure 6.4: The First Hypothesis from a Socio-Technical Perspective. .. 239

Figure 6.5: Sources of Complexity Associated with the System under Test. .. 240

Figure 6.6: Explicit Knowledge Actions Relating To the Second Hypothesis. 242

Figure 6.7: Tacit Knowledge Actions Relating To the Second Hypothesis. ... 244

Figure 6.8: The Second Hypothesis from a Socio-Technical Perspective. .. 246

Figure 6.9: Concluding Model of System Test Complexity with a Relationship to Tacit Knowledge. 248

Figure 6.10: Research from a Socio-Technical Perspective. ... 250

Figure 6.11: Complexity Ratings Associated with the System under Test .. 259

ix

The author declares that, except where duly acknowledged, that this thesis is my own

work, and I have not obtained a degree in this university or elsewhere on the basis of

the work submitted in this thesis.

x

xi

Abstract

This research has explored the relationship between system test complexity and tacit

knowledge. It is proposed as part of this thesis, that the process of system testing

(comprising of test planning, test development, test execution, test fault analysis, test

measurement, and test case management), is directly affected by both complexity

associated with the system under test, and also by other sources of complexity,

independent of the system under test, but related to the wider process of system testing.

While a certain amount of knowledge related to the system under test is inherent, tacit

in nature, and therefore difficult to make explicit, it has been found that a significant

amount of knowledge relating to these other sources of complexity, can indeed be

made explicit.

While the importance of explicit knowledge has been reinforced by this research, there

has been a lack of evidence to suggest that the availability of tacit knowledge to a test

team is of any less importance to the process of system testing, when operating in a

traditional software development environment. The sentiment was commonly

expressed by participants, that even though a considerable amount of explicit

knowledge relating to the system is freely available, that a good deal of knowledge

relating to the system under test, which is demanded for effective system testing, is

actually tacit in nature (approximately 60% of participants operating in a traditional

development environment, and 60% of participants operating in an agile development

environment, expressed similar sentiments). To cater for the availability of tacit

knowledge relating to the system under test, and indeed, both explicit and tacit

knowledge required by system testing in general, an appropriate knowledge

management structure needs to be in place. This would appear to be required,

irrespective of the employed development methodology.

xii

xiii

Acknowledgements

I am extremely grateful to Professor Frédéric Adam and Dr. Tom O’Kane for

facilitating this research and sharing their considerable wealth of knowledge. I learned

more than I could ever have imagined.

I would like to thank EMC Corporation (EMC²), SQS Software Quality Systems AG,

Delaware Life, and CoreHR, for their enthusiastic participation in this research, and

affording me invaluable access to willing participants.

Finally, it would be remiss of me not to mention my family and the sacrifices they

have made to allow me devote time to this research.

xiv

1

1 Introduction

In 2009, the Standish Group released their CHAOS report stating that software

development project success rates were running at 32%, outright failures were listed as

24% and 44% of projects were categorised as “challenged” projects. 68% of projects

were either cancelled or seriously over-budget, behind schedule, or short some

requirements (Standish Inc., 2009). A number of other authors have acknowledged the

importance of the identified system development project goals of adhering to project

schedule objectives, adhering to cost objectives, and meeting predefined requirements

objectives ((Berman & Cutler, 1998), (Liu, Chen, Chan, & Lie, 2008), (Catelani,

Ciani, Scarano, & Bacioccola, 2010), (Jones, Gray, Gold, & Jones, 2010), (Clarke &

O'Connor, 2012)). The importance of the software development process in the

achievement of the aforementioned goals has been emphasised ((Royce, 1970),

(Boehm, 1988), (Munassar & Govardhan, 2010)).

Software testing plays an essential role as part of the software development process (

(En-Nouaary, 1998), (Zheng, Alager, & Ormandjieva, 2008), (Holzworth, Huth, &

deVoil, 2011), (Khan & Khan, 2014)). Khan and Khan have highlighted the

importance of testing in enabling the validation of requirements. Software testing, a

dynamic approach to software verification and validation, is not a unique tool in this

respect, in fact many static methods have also been shown to be beneficial in helping

to ensure the quality of software e.g. software inspections, automated source code

analysis, and formal verification (Delahaye, Kosmatov, & Signoles, 2013). However,

static methods, such as those mentioned previously, are performed against non-

operational software, and cannot demonstrate whether the software is operationally

useful. Software testing is described as an important method for validating software

usefulness, and checking software quality characteristics, such as functionality and

reliability (Holzworth, Huth, & deVoil, 2011). In support of this argument, En-

Nouarry (1998), in reference to static techniques such as system specification

verification, have stated that such methods do not guarantee the correctness of system

implementations, and that testing is an important activity in this regard, one which

aims to ensure the quality of such implementations.

2

Just as software testing attempts to validate software characteristics such as

functionality and reliability, there are other important characteristics such as software

complexity, which have a direct effect on the ability to perform effective software

testing, (Zheng, Alager, & Ormandjieva, 2008). Some authors have referred to

complexity associated with the modification of software ((Perrow, 1984), (Brooks F.

P., 1986), (Espinosa, Slaughter, Kraut, & Herbsleb, 2007)), along with complexity

associated with software tasks in general ((Brooks F. P., 1986), (Espinosa, Slaughter,

Kraut, & Herbsleb, 2007)). Espinosa et al. state that this complexity varies greatly

depending on the characteristics of the software task itself, like size and structure, and

on environmental conditions, such as team size and the geographical dispersion of

teams.

Perrow (1984) has made reference to the inherent complexity associated with

technological systems in general and the potential negative consequences of such

complexity. Complexity is also stated as an inevitable consequence of some system

designs in order to achieve the intended goals of the system. Other authors have

referred to the inherent complexity associated specifically with software systems (

(Mumford, 1983), (Brooks F. , 1995), (Lehman, 1996), (Lyytinen, Mathiassen, &

Ropponen, 1998), (Espinosa, Slaughter, Kraut, & Herbsleb, 2007), (de Silva &

Balasubramaniam, 2012)). Lehman (1996) has made reference to the naturally

increasing complexity associated with evolving software systems (E-Type systems),

unless deliberate attempts are made to reduce such complexity ((Lehman, 1996), (de

Silva & Balasubramaniam, 2012)). Providing further insight into the concept of

inherent system complexity, Brooks (1986), in line with the thoughts of Aristotle, has

made the distinction between essential complexity, and accidental complexity,

associated with software engineering. Difficulties associated with the nature of

software, have been referred to as essentially complex, whereas difficulties associated

with software production, have been referred to as being accidentally complex.

Debbarma et al. (2011) have argued that there has been increasing complexity, along

with increasing size and performance demands, of software systems. All of which has

demanded more effective software testing. The difficulty of providing test coverage for

large or complex systems, has similarly been highlighted by other authors ((Zheng,

Alager, & Ormandjieva, 2008), (Lin, Chou, Lai, Huang, & Chung, 2012)). Myers

3

(1979) also made reference to the difficulty and complexity associated with providing

adequate test coverage (as did Ferrer et al. (2013)), and indeed the impracticalities of

providing complete test coverage for software systems in general. Other difficulties

associated with the role of the software tester, have been highlighted by Loveland et al.

(2005), who have inferred that the goals of software testers have changed, from not

only ensuring that among the defects found, are all the defects that would disrupt real

working environments, but to also validating other system characteristics through

specific testing, such as performance, and system recovery testing. Andrade et al.

(2013) has expressed the view, that there have indeed been advancements made

regarding software testing, and that older testing techniques, as devised by Myers

(1979), have been added to by new testing models, such as model-based testing, and

agile testing. As a result of this, new testing techniques have surfaced, such as machine

learning techniques, adaptive random techniques etc. Notwithstanding these

improvements, it is argued that such advancements, combined with the application of

software to new domains and new development models, serve to make software testing

an increasingly knowledge intensive and complex activity (Andrade, et al., 2013).

Rather than the identification of the difficulties and complexity which software testers

face from a technological perspective, some authors have emphasised the importance

of human factors, such as skill, experience, and management, in the achievement of

software development goals ((Guinan et al., 1998), (Espinosa, 2007)), and their

particular relevance in the achievement of software testing goals, (Martin, Rooksby,

Rouncefield, & Sommerville, 2007). Guinan et al. have stated that the aforementioned

factors, namely skill, experience, and management, are more effective enablers of

software project success, than tools and methods. Faraj and Sproull (2000) and Ryan

and O’Connor (2009) have also questioned the contribution of technological solutions

to the performance of successful projects, instead highlighting the importance of

human factors. Ryan and O’Connor (2009) and Dingsøyr and Šmite (2014) have

referred to the importance of human factors such as effective plans, good

communication, and clear goals, providing a clear link between the role of knowledge,

and the success of software development teams. The increasingly important role of

knowledge in the software development process has also been emphasised by Rus et

al. (2001), who have stated that it is necessary to leverage individual knowledge at a

project and organisational level, so as to ensure optimal software development.

4

A link between knowledge of the individual and practical intelligence, is described by

Wagner & Sternberg (1985), who stated that formal knowledge, tacit knowledge, and

general aptitude, are all important elements of practical intelligence. Zack et al. (2009)

referred to knowledge as being an organisations key resource, directly affecting

organisational performance, and thus organisational financial performance. The

importance of the management of knowledge both from a qualitative point of view,

and from a quantitative perspective, has been emphasised. A distinction has been made

by numerous authors between explicit knowledge and tacit knowledge ((Nonaka &

Takeuchi, 1995), (Zack, McKeen, & Singh, 2009), (Holste & Fields, 2010)). Explicit

knowledge has been described as knowledge which can be easily codified. In the case

of a reliance on explicit knowledge, it is suggested that a documented approach to

knowledge transfer makes more sense. Tacit knowledge is described as difficult to

articulate in writing, and is normally acquired through personal experience (Joia &

Lemos, 2010). Examples of such knowledge are given as scientific expertise,

operational know-how, and technological expertise. The transfer of tacit knowledge is

described as being best facilitated through person to person contact. The importance of

both explicit knowledge and tacit knowledge has been emphasised by the

aforementioned authors.

The importance of the role of knowledge to software development team performance

has been emphasised by Chau and Maurer (2004), Turk et al. (2005), Joia and Lemos

(2010), and Nidhra et al. (2013). The transfer of knowledge within software teams

must be enabled, because it is unlikely that all members of a software team will

possess all of the knowledge required, for all software development activities, (Chau &

Maurer, 2004). It is suggested that effective communication between software

development team members, facilitates the transfer of knowledge. Knowledge transfer

and knowledge acquisition is something which Espinosa et al. (2007) has explored, as

part of their investigation into the relationship between team and task familiarity,

complexity, and the overall effect on team performance regarding virtual or

geographically dispersed software development teams.

The following sections of this chapter provide the rationale for this study, the research

objective and research hypotheses, with the final section of this chapter finishing with

an overview of each chapter of this research.

5

1.1 Rationale for Study

System test has been identified as an important part of the software development

process ((Eickelmann & Richardson, 1996), (Cai & Card, 2008), (Desai & Shah,

2011), (Kochhar, Bissyand, Lo, & Jiang, 2013)). The impact of complexity on

software development processes, and relationship between complexity and knowledge

transfer has been referred to by numerous authors ((Chau, Maurer, & Melnik, 2003),

(Espinosa, Slaughter, Kraut, & Herbsleb, 2007), (Ryan & O’Connor, 2009), (Pee,

Kankanhalli, & Kim, 2010), (Staats, Valentine, & Edmondson, 2010), (Lu, Xiang, &

Wang, 2011), (Wang, Huang, & Yang, 2012)). Espinosa et al. (2007) have stated that

additional research of software development work environments is necessary, to help

understand how to deal with the varying complexities which increasingly characterize

software development environments. Fundamental aspects of development processes,

which are common across different approaches to software development, have been

highlighted by Huo et al. (2004):

1. Software specification and design.

2. Software implementation.

3. Software verification and validation.

Andrade et al. (2013) referred to the increasing complexity associated with software

testing tasks, as an important aspect of software verification and validation. Their

research is focussed on the verification of complete software systems, as carried out

through system testing, carried out by an independent test team. This is as distinct

from a more granular approach to software testing, which may be carried out through

module or unit testing. The use of an independent test team has been endorsed by

Talby et al. (2006), who have stated that independent testers allow a more

comprehensive test coverage, especially in the case of complex development projects.

The primary activities associated with software testing, have been identified by

Eickelmann & Richardson (1996), and Desai and Shah (2011), as relating to:

 Test planning.

 Test development.

 Test execution.

6

 Test failure analysis.

 Test measurement.

 Test management.

Desai and Shah (2011) also emphasise the role which tacit knowledge plays in

software testing. A general case for more research into the role of knowledge, as it

relates to the software development process, has been called for by Herbsleb (2007),

who have highlighted concerns regarding the general lack of research in the area of

software development. In his paper on socio-technical coordination, it is claimed that

many authors have applied plausible rules of thumb, to answer questions such as what

development practices are most applicable under what circumstances. Some have held

the view that this is due to the general lack of empirical evidence available, relating to

the stated benefits of software development methodologies ((Mitchell & Seaman,

2009), (Lee & Xia, 2010)). Due to this lack of empirical evidence surrounding the

benefits of particular development approaches, it can be difficult to identify suitable

characteristics of particular methodologies, which are backed by empirical, rather than

anecdotal evidence. Cataldo and Ehrlich (2012) have referred to the lack of existing

research, which examines the communication structures facilitating the transfer of

knowledge, something which is considered key in software development processes,

and also the overall achievement of software development goals such as productivity

or quality.

The following section details the research objective and research hypotheses.

1.2 Research Objective and Research Hypotheses

A primary objective of this research is to add to or extend empirical evidence relating

to the role which tacit knowledge plays in software system test complexity. The case

for research in the area of knowledge, including tacit knowledge, and the role which it

plays in software development processes, has been made by Ryan and O’Connor

(2009), Von Krogh (2012), and Dingsøyr and Šmite (2014), who have emphasised the

need for a greater understanding of this topic.

7

With the aforementioned research objective in mind, the first hypothesis takes account

of the views of McKeen et al. (1994), Huo et al. (2004), Debbarma, et al. (2011) and

Li, et al. (2011), relating to task complexity, and the views of others relating to the

significance of inherent complexity, ((Mumford, 1983), (Brooks F., 1995), (Lehman,

1996), (Lyytinen, Mathiassen, & Ropponen, 1998), (Espinosa, Slaughter, Kraut, &

Herbsleb, 2007), (de Silva & Balasubramaniam, 2012)). Also acknowledged are the

views of Ryan and O’Connor (2009), Desai and Shah (2011), Nonaka and Von Krogh

(2009), and Hedesstrom (2000) regarding tacit knowledge. This hypothesis puts

forward the premise that system testing is affected by complexity related to the system

under test, and that most of such knowledge does not lend itself to being made explicit.

In addition to the aforementioned views, the second hypothesis takes account of the

work of authors such as Andrade et al. (2013), and Brooks (1986), with a distinction

being made between essential complexity and accidental complexity associated with

software engineering. The second hypothesis proposes that such a relationship exists

between complexity associated with system test testing, and the system under test.

1. The process of system testing (comprising of test case planning, test case

development, test case execution, test case fault analysis, test case

measurement, and test case management), is directly affected by

complexity associated with the system under test. There exists a positive

relationship, with an increase in complexity leading to an increase in tacit

knowledge. It is also proposed that most of this tacit knowledge does not

lend itself to being made explicit.

2. That the process of system testing (comprising of test case planning, test

case development, test case execution, test case fault analysis, test case

measurement, and test case management), is affected by other sources of

complexity, independent of the system under test. There exists a positive

relationship, with an increase in complexity leading to an increase in tacit

knowledge. It is proposed that much of this tacit knowledge does indeed

lend itself to being made explicit.

A complete summary of each chapter is provided as part of the next section.

8

1.3 Research Summary

Chapter two provides an overview of different approaches to software development,

and the implications for software testing. As part of this discussion, the common

fundamental aspects of all software development processes are discussed, in line with

the views of Huo et al. (2004). These are highlighted as:

1. Software specification and design: The functionality and constraints associated

with the software must be defined. This may take the form of requirements

definition and software and system designs, or alternative approaches such as

user stories, system metaphors, architectural spikes, and release planning.

2. Software implementation: In line with the requirements, goals and designs, the

software must be produced. This can normally be a planned iterative

development process, or a planned sequential development process.

3. Software verification and validation: The software should be validated to

ensure it acts in accordance with customer requirements or standards. Code

verification can take the form of static checks such as code reviews,

inspections, and peer programming, or dynamic approaches such as software

testing, taking the form of unit and system testing. Validation can take the form

of customer feedback and acceptance testing.

The aforementioned fundamentals are determined by the software development

methodology which is adopted, so a review of prominent approaches to software

development has been carried out in chapter two. Rajagopalan (2014) have stated that

concerns over quality and the future maintenance of software, led to the widespread

adoption of Royce’s waterfall model (Royce, 1970). According to Rajagopalan (2014),

the perception that Royce was promoting the concept of inflexible partitioning as part

of his model, was the primary driver for subsequent software development models.

The necessity of a more flexible approach to software development and the emphasis

of a “practice over process” approach is something which is emphasised, particularly

by those who advocate a more agile approach to software development. Highsmith and

Cockburn (2001), and Chau (2004), have expressed the views that changing customer

9

requirements should be embraced, and that models that enable such a rapid software

change (similar to those advocated from an agile approach) are superior. The focus on

the software development process characteristic of flexibility, particularly by agile

development methodologies, has resulted in a concentration on certain aspects of

software testing. Crispin and Gregory (2009) have referred to the emphasis on agile as

being reflected in the associated software testing. Such testing is stated as being

defined by the business experts’ desired features and functionality, and not generally

by tests which critique the product.

The following general stages of software testing were identified, as part of a discussion

relating to the validation and verification of software. These stages are in line with the

work of Eickelmann and Richardson (1996) (similar functions have been outlined by

Desai and Shah (2011)):

1. Test Planning includes the development of a plan relating to test case

development. This is described as including the foundations for the test

objectives, encompassing features of the system to be tested, risk assessment

issues, organizational training needs, required and available resources,

comprehensive test strategy, resource and staffing requirements, roles and

responsibility allocations, and overall schedule.

2. Test Development is essentially the development of a test approach, which

includes the specification and implementation of a test configuration.

3. Test Execution includes the execution of the implemented source code, and

recording of execution details. The output of this stage includes test output

results, test execution details, and test status.

4. Test Failure Analysis includes behavior verification and documentation, and

an analysis as to the root cause for test execution failure.

5. Test Measurement is closely linked with test execution results, and test failure

analysis. This stage encompasses test coverage measurement and test failure

measurement.

10

6. Test Management relates to the management of test infrastructure and test

resources. This includes management of test environment, including test

environment state preservation.

Chapter three discusses the relationship between the task of system testing (as

opposed to unit or integration testing), complexity, and the corresponding relationship

to tacit knowledge. Regarding the relationship to complexity, a number of key

perspectives are highlighted i.e. inherent software complexity, software project

complexity, and software task complexity. Subsequent sections of chapter three have

made reference to the strong relationship between complexity associated with aspects

of the software development process, and knowledge, from a both a general

perspective ((Staats, Valentine, & Edmondson, 2010), (Wang, Huang, & Yang, 2012)),

and specifically from a geographically distributed development team perspective

(Espinosa, Slaughter, Kraut, & Herbsleb, 2007). Authors such as the aforementioned

and Chau et al. (2003), and Cataldo and Ehrlich (2012), have discussed the topic of

knowledge relating to software development in great detail. However the case for

research on the topic of knowledge, including tacit knowledge (as distinct from

explicit knowledge), and the role which it plays in software development processes has

been made by Ryan and O’Connor (2009), and Dingsøyr and Šmite (2014), who have

emphasised the need for a greater understanding of this particular topic. Whereas

explicit knowledge is stated as having universal character, employed consciously, and

not tied to any particular context, tacit knowledge is described as being tied to actions,

procedures, commitments, ideals, values and emotions, with a strong relationship to

past experiences, true beliefs, and the actions of intuition, and implicit rules of thumb

(Nonaka & Von Krogh, 2009). Of interest in this research case, is knowledge as it

applies to the task of system testing, such as discussed by Desai and Shah (2011) and

Mantyla and Lassenius (2012). This is adopting a more specific view of the subject,

taken by Staats et al. (2010), who also discussed the relationship between task

complexity and tacit knowledge. The aforementioned discussions provide us with the

two primary considerations for this research:

1. Complexity associated with the task of system testing.

2. The relationship between system test complexity and tacit knowledge.

11

The first consideration of this research, detailed above i.e. complexity associated with

the task of system testing, has been broken down further in keeping with the views of

McKeen et al. (1994), and Brooks(1995), with a distinction being made between task

complexity and system complexity. Thus task related complexity has been viewed

from the following perspectives:

1. Complexity associated with the system under test.

2. Complexity associated with the process of software development.

The concept of tacit knowledge, an important aspect of the second research

consideration detailed above i.e. the relationship between system test complexity and

tacit knowledge, is discussed as part of section 3.4 in chapter three. The views of

Nonaka and Von Krogh (2009), who have asked a number of questions relating to

organisational knowledge creation and the relationship between explicit knowledge

and tacit knowledge, are highlighted. Explicit knowledge and tacit knowledge are

described as both being conceptually distinguishable along a continuum, a view

acknowledged by Hedesstrom (2000), and supported by Collins and Kusch (1998), and

Ribeiro and Collins (2007). Tacit knowledge is described as being accessible through

consciousness, if it leans towards the explicit side of the continuum. However, most of

the knowledge relating to skills, due to their embodiment, is described as being

inaccessible through consciousness. This point is echoed by Hedesstrom (2000), who

makes an attempt at categorising the views of Nonaka and Von Krogh (2009), Polanyi

(1966), and Tsoukas (2002). He states that the views of the aforementioned authors

can be encapsulated, by distinguishing between:

 Tacit knowledge which has not been formalised because of cost or time

limitations.

 Tacit knowledge which has not been formalised because of the form of the

knowledge, such as embodied knowledge.

Hedesstrom (2000) has also made reference to the acceptance amongst a growing

number of authors, regarding the clear distinction between tacit knowledge and

explicit knowledge.

12

Chapter four outlines a research model and methodology. As a result of the

discussions which were carried out in chapter two, and chapter three, the following

two hypotheses were put forward for further investigation:

1. The process of system testing (comprising of test case planning, test case

development, test case execution, test case fault analysis, test case

measurement, and test case management), is directly affected by

complexity associated with the system under test. There exists a positive

relationship, with an increase in complexity leading to an increase in tacit

knowledge. It is also proposed that most of this tacit knowledge does not

lend itself to being made explicit.

2. That the process of system testing (comprising of test case planning, test

case development, test case execution, test case fault analysis, test case

measurement, and test case management), is affected by other sources of

complexity, independent of the system under test. There exists a positive

relationship, with an increase in complexity leading to an increase in tacit

knowledge. It is proposed that much of this tacit knowledge does indeed

lend itself to being made explicit.

The method of data collection which was proposed was a series of interviews, a similar

technique to that conducted by Ryan and O’Connor (2009). Flanagan’s critical

incident technique was employed, a technique which has been used by Kaplan and

Duchon (1988), delivered via a series of open questions. Four organisations were

selected for participation, with the corresponding test teams responsible for testing 10

different systems in total. A preference was expressed that face to face interviews be

facilitated, where feasible. The test teams varied in team sizes, from four testers to ten

testers, with all teams operating with some level of geographically dispersion between

team members. Tester experience of the participants varied from 1 years’ experience to

greater than 20 years’ experience. There was also a variation in the employed

development methodology, across the different development environments involved,

with some teams operating in what was considered a traditional development

environment, and some operating in an agile development environment.

13

The importance of the identification of research aims, via pertinent research questions,

has been highlighted by Fitzgerald et al. (2008). To aid the identification of system test

complexity, questions which were presented to selected participants, have been

detailed in section 4.2.3. The selected questions have been based on the previous work

of numerous authors, detailed in chapters two, three, and four, some of whose views

have been discussed in brief, in the previous section. The following section provides

an overview of conclusions which can be drawn from analysis of the research data.

1.4 Research Conclusion

A primary objective of this research is to add to or extend empirical evidence relating

to the role which tacit knowledge plays in software system test complexity. Chapter 5

details the coding and analysis of collected data relating to the proposed hypotheses. In

line with these hypotheses, a distinction was made between complexity and tacit

knowledge associated with the system under test, and complexity and tacit knowledge

associated with the wider process of system testing. The process of system testing has

been defined to include resource considerations and management, as well as

complexity and tacit knowledge associated with the test environment, and

considerations relating to the final system deployment.

Observations are also made as part of chapter five. In keeping with the research

hypotheses, figure 1.1 provides a synopsis of the system test activities which have

been observed as having a positive relationship between complexity and tacit

knowledge, from both a system under test, and a wider system process perspective.

14

Understanding

features of the

system to be

tested.

Test suite

development.

Manual test

execution.

Debugging

potential system

issues.

Manual or in-

depth analysis of

the system under

test as part of

system quality

estimation.

Test

Development

Test

Planning

Test

Execution

Test Fault

Analysis

Test

Management

Test

Measurement

The selection

and prioritisation

of test cases.

Balancing test

resources.

Test

environment

setup.

Accommodating

a test automation

strategy.

Inherent System Complexity associated with System Testing

Complexity associated with the Process of System Testing

Manual test

execution with

incomplete test

case

specifications.

Debugging

potential test

environment

issues.

Development,

execution, or

interpretation of

manual or in-

depth system

quality

estimation.

Balancing

quality versus

time to market

pressures.

Management of

resources.

Figure 1.1 is discussed in detail in sections 5.1 and 5.2. As part of the research

activities, actions which can have a positive effect on the reduction of system test

complexity were also identified in chapter five. These are discussed in brief in the

following section.

Actions which have been proposed to reduce the effects of complexity

A number of actions were highlighted as part of section 5.4 relating to both the transfer

of explicit knowledge and tacit knowledge. The source of such knowledge can be

categorised as being test team related, development team related, or application or

support team related. A model of the proposed actions identified as part of section 5.4,

is detailed in figure 1.2.

Figure 1.1: Sources of Complexity with a Direct Relationship to Tacit Knowledge.

15

The availability of tacit knowledge from development teams

The use of support applications and support teams

Test

Development

Test

Planning

Test

Execution

Test Fault

Analysis

Test

Management

Test

Measurement

Encourage both

explicit and tacit

knowledge

transfer from

development

teams. This can

be passed

through

specifications/

user stories or

workshops,

walkthroughs,

regular

communication

etc.

Encourage tacit

knowledge

transfer from

development

teams. Such

knowledge is

often essential to

help debug the

system under test.

Encourage the

use of support

applications e.g.

automation and

the use of

support teams

e.g. test case

automation

teams.

The introduction

of applications

should be

considered for

the purpose of

test case

measurement.

The availability of knowledge within the test team

Enable the

availability

knowledge

within the test

team via SMEs.

This can help

understanding

what needs to be

tested, and

enable efficient

use of available

resources.

Enable the

availability

knowledge

within the test

team via SMEs.

This can help

ensure the

successful

implementation

of a test

environment and

test cases.

Enable the

availability

knowledge

within the test

team via SMEs.

This can help

ensure correct

test execution in

the case of

manual testing

Enable the

availability

knowledge

within the test

team via SMEs.

This can help

carry out root

cause analysis

from a test

environment and

system under

test perspective.

Encourage tacit

knowledge

transfer from

development

teams. This can

be passed

through regular

communication

during test

execution.

Encourage the

use of project

management

applications and

project

management

support teams.

Applications can

be introduced to

to help manage

the complete test

environment.

If test cases have

been automated

as part of the test

development

stage, this can

significantly

reduce test

execution

complexity.

Figure 1.2: Recommended Actions Associated with Complexity.

Applying the views of Hedesstrom (2000), there is at least some applicable knowledge

identified, which falls into the category of knowledge which could be made explicit

due to time or cost limitations i.e. explicit system knowledge e.g. specifications etc. and

16

knowledge made explicit through the use of support applications. Contrary to this,

knowledge has also been identified relating Subject Matter Experts (SMEs), test team

members and development team members, of which some at least, falls into the

category of knowledge which has not been formalised because of the form of such

knowledge. A complete discussion on this has taken place as part of chapters 5 and 6.

The following section outlines implications for the development process, as a result of

this research.

Research Implications

This research has identified the importance of the availability of both explicit

knowledge and tacit knowledge, relating to both the system under test, and associated

with the wider process of system testing. A certain amount of knowledge relating to the

process of system testing, lends itself to being made explicit, whether through the use

of applications, such as project management, automation, or test measurement

applications, or through system related specifications, user stories etc. Benefits

associated with enabling the availability of tacit knowledge via appropriate people

have been identified in both the case of complexity related to the system under test,

and in the case of complexity associated with the process of system testing. Such

people may be test team accessible SMEs, or development team members.

While the importance of explicit knowledge has been reinforced by this research, there

has been a lack of evidence to suggest that the availability of tacit knowledge to a test

team is of any less importance to the process of system testing, when operating in a

traditional software development environment. To cater for the availability of tacit

knowledge relating to the system under test, and indeed both explicit and tacit

knowledge required by system testing in general, an appropriate knowledge

management structure needs to be in place. This would appear to be required,

irrespective of the employed development methodology.

The next chapter introduces the concept of system testing and the role which it plays in

the software development process.

17

2 A Review of Software Development and the Role of System Testing

In a bid to provide a basis for addressing the primary research question concerning the

relationship between system test complexity and tacit knowledge, the objective of the

literature review is to primarily focus on the following:

 The software development process and the role of software testing.

 Types of complexity which can potentially have an impact on the task of

software testing.

 The importance of tacit knowledge to the development process and in

particular the importance of tacit knowledge to software testing.

Development methodologies relating to both traditional development and agile

development are discussed in this chapter. The purpose of this is to investigate

common relationships which exist between software development and software system

testing, and to give an appreciation of the common environments in which system

testing operates. The first section of the next chapter deals with the types of complexity

which can potentially have an impact on software testing, starting with a broader

discussion on the sources of complexity in the software development process, i.e.

software complexity, project complexity, with subsequent sections concentrating on

the role of complexity as they apply to the task of software system testing.

The second section of next chapter covers literature associated with tacit knowledge

and the importance of tacit knowledge to the software development process, and in

particular, the importance of tacit knowledge to software testing. Literature associated

with knowledge types are discussed, along with the concept of knowledge conversion,

and the importance of knowledge transfer. The role of tacit knowledge in software

development is discussed, and its importance to system testing made evident.

Numerous authors have referred to the importance of software development

methodologies to the software project goals of software quality, the cost of software

development, and the speed of software development, albeit with varying emphasis

being placed on some goals rather than others, depending on project and organisational

priorities ((Huo, Verner, Zhiu, & Bahar, 2004), (Liu, Chen, Chan, & Lie, 2008),

(Mitchell & Seaman, 2009), (Cataldo & Ehrlich, 2012)). In the case of Huo et al.

18

(2004) and Mitchell and Seaman (2009) the important role of software testing to

software development is something which has also been highlighted.

Development methodologies are described as having a direct influence on software

testing. They dictate the work environment in which testing operates, including the

pressures, opportunities and ultimately the role of software testing. The

aforementioned authors give examples of different flavours of development

methodologies, detailing the implications of each method on cost, quality, and time to

market. Although other development methodologies are discussed in this review, in

line with the views of Mitchell and Seaman (2009) and Crispin and Gregory (2009),

this review will focus on what is generally considered to be the two main categories of

software development:

1. Traditional or plan driven software development, focussing on the waterfall

approach to software development.

2. Iterative, also encompassing incremental approaches to software development.

It is important to provide an overview of the characteristics of the main development

methodologies because, as stated by Sommerville (2007), there is no ideal

development process, and many organisations have developed their own approach to

software development, often in an effort to exploit the capabilities of the people in an

organisation. It is also stated that software development processes are commonly

developed in line with the key characteristics of the system to be developed, and the

overall project goals. In the case of critical systems or geographically dispersed

development teams, a more structured development process is often required (this

view is endorsed by Turk et al. (2005) and Dingsøyr and Šmite (2014), whereas in the

case of business systems, with rapidly changing requirements, it is common that small

co-located development teams, and a flexible, agile process is likely to be more

effective (Dingsøyr & Šmite, 2014). In line with the aforementioned views, the

following sections identify the main characteristics of common development

approaches, starting with what are commonly described as, the traditional software

development approaches, (Huo, Verner, Zhiu, & Bahar, 2004), (Rajagopalan, 2014).

19

2.1 Traditional Software Development

In the 1980s and early 1990s, there was widespread view that the best way to achieve

software was through a combination of careful project planning, quality assurance, the

application of analysis and design techniques, and strict software development

processes (Tsui & Karam, 2007). Significant time and effort has went into refining

these original development techniques, and techniques such as the waterfall approach

(the most prominent of these traditional techniques) are stated as having reached a

mature and stable state, having been applied to both large and small development

projects, (Huo, Verner, Zhiu, & Bahar, 2004). Such development approaches are stated

as facilitating knowledge sharing through explicit and extensive documentation,

(Chau, Maurer, & Melnik, 2003). Extensive documentation practices are also stated as

enabling the evaluation of an adherence to processes and plans, as well as supporting

quality improvement initiatives and satisfying legal regulations.

Developed by Royce (1970), the waterfall model has been described as taking both a

linear and sequential approach, each phase depending on the preceding phase

completing before the next begins, see fig 1. Each phase contributes key deliverables

for the next. Mitchell and Seaman (2009) have described this model as the oldest and

still most widely practised of development models. Rajagopalan (2014) stated that

concerns over quality and the future maintenance of software, led to the widespread

adoption of Royce’s model. This resulted in the introduction of a formal requirements

stage in the development process. It is also stated that this model provides important

feedback loops between stages of development as well as guidelines to confine

feedback to successive stages, in an effort to reduce development costs. Another

important aspect of the waterfall model was the introduction of prototyping. This

highlighted the benefits associated with the production of software models as early in

the development process as possible. Such practices enabled earlier, more

comprehensive validation of software designs.

Royce (1970) saw the dependency between development stages as a potential risk of

his model. A prime example of this is given as the test stage, which validates important

elements of the software. This stage is completed at the end of the process, and as such

may highlight not just coding issues but program design issues, which could

20

potentially cause a rework of the program design. Similarly, it was highlighted that

issues identified at the program design change, could cause a rework of the software

requirements, and the subsequent analysis stage. Another disadvantage of the model is

that it is conceded that additional steps to software project analysis and software

coding, do not essentially add value to the software product, drive up costs, and are

generally not desirable for development teams, because of the lack of creativity

involved. It is stated however, that without the additional steps to analysis and coding,

namely requirements, design and testing, that larger software projects are “doomed to

failure” with cost overruns, quality issues, and development delays inevitable.

Analysis

Program

Design

Code

Testing

Operations

Software

Requirements

System

Requirements

The Waterfall Approach to Software Development

Royce (1970) had five key steps which he believed were critical to eliminating

development risk associated with the software development of large software projects

(fig 2.1):

1. Ensure that the preliminary design is complete before the analysis begins, including

system overview, defining data processing needs, applications interfaces,

description of operating procedures and software performance times. This step is

seen as key to avoidance of analysis issues at a later stage.

2. Ensure that all documentation is both current and complete. This was described as

critical by Royce and includes document such as software requirements,

Figure 2.1: Waterfall Model (Royce (1970)).

21

preliminary design specifications, interface design specifications, final design

specifications, test plans, and operating procedures.

3. Contrary to the views of authors such as Chau el al. (2004) and Crispin and

Gregory (2009), Royce actually did promote an iterative development model of

sorts. He proposed that one should prepare to do a development job twice. The

benefits of a preliminary model or prototype of the software product were seen as

extremely beneficial by Royce in getting valuable customer feedback.

4. Plan, control and monitor software testing. Royce saw this as the biggest risk in

terms of costs and overruns. He states that a number of elements are key to

minimising the time spent on the test phase and to a successful test phase

execution.

 Visual code inspections should be carried out in advance of testing,

 Every path in the software should be executed at least once as part of testing.

 Testing should be carried out by an independent specialised test team.

5. Involving the customer as much as possible on a continual basis through the

development process at stages such as requirements, software reviews and software

acceptance, this is seen as key to successful project development. McCracken and

Jackson (1982) have referred to the limited customer or end user involvement of

traditional life cycle concepts but this would appear to be at odds with this key step

which specifically highlights the benefits of customer involvement in validating

requirements, design and functionality.

Checkpoint reviews are suggested to be carried out throughout the process. This

enables progress assessment to be made against entry and exit criteria, in order to

determine readiness for the next phase. The test phase is described as incorporating

unit testing, functional testing, system testing, performance testing, and integration

testing.

The sequential nature of this development approach has been referred to by Chau et al.

(2004) and Crispin and Gregory (2009). Such methods involve the planning of the

entire software development cycle with no formal plan for potentially unavoidable

iterative development. Thus characteristics of the model encouraging sequential

development were not perceived to be suitable in all circumstances. The inflexible

partitioning of projects into distinct stages of development has also been referred to by

22

others (Huo, Verner, Zhiu, & Bahar, 2004). Huo et al. (2004) have also made reference

to the impact of this inflexible partitioning, stating that in practice this has the potential

to cause delays and cost overruns in the face of customer requirement changes.

Although the concept of Royce advocating a concept of inflexible partitioning as part

of his model, is something which is stated as having been misinterpreted from the

original work of Royce (Rajagopalan, 2014), it is conceded that

Traditional/Tayloristic/Plan-driven methods are more likely to encourage the adoption

of a non-accommodating stance when requirements changes are suggested, thus

leading to a higher probability of schedule and cost overruns. This view has been

endorsed by Boehm (2002), who stated that a major contributor to this is the fact that

testing is confined to final stages of development, and therefore any major issues

identified are more likely to be subject to delays and inevitably cost overruns.

Commitments made at early stages in the process have proved problematic in the face

of changing customer requirements.

Davis et al. (1988) have referred to the benefits of the waterfall model in encouraging

the specification of requirements and designs, enabling project management, the

specification of tests. The structured approach also has benefits for future system

modifications, should they be necessary, and enables knowledge transfer of explicit

knowledge, something which is very beneficial in the case of distributed work teams,

(Ramesh, Cao, Mohan, & Xu, 2006). In the case of the waterfall model, the method of

knowledge transfer relating to the software development is clear. It consists of explicit,

documented knowledge, being produced in the form of detailed specifications, which

can then be interpreted by the test team and used in the development of test plans.

According to Ramesh et al. (2006), this explicit approach to documentation, has

distinct benefits in the case of distributed work teams.

It has been claimed that contrary to the original views of Royce (1970), that software

development literature is rich with references to the misconception that Royce

proposed a linear structure to software development, (Rajagopalan, 2014). As a result

of such misconceptions, the view has been expressed that application of rigid

processes, such as those detailed by the waterfall approach, are not suitable for

application as part of the development of every software development project, a point

which is referred to by Chau et al. (2003), and Huo (2004). Rajagopalan stated that

23

such concerns led to the introduction of iterative and incremental models,which are

discussed in the following section.

2.2 Incremental and Iterative Software Development Models

Tarhan et al. (2014) have stated that low success rates of software projects during the

1990s (reported as being at 32% success rate (Standish Inc., 2009)) related to the

application of Traditional software development models, led to the introduction of

incrementally based Agile approaches to software development. Even prior to this,

concerns had led to the introduction of other incremental and iterative development

models, such as the evolutionary model ((McCracken & Jackson, 1982), (Perkusich,

Soares, Almeida, & Perkusich, 2015)). The evolutionary model is described as an

alternative to traditional, sequential, software development models, much in keeping

with the Spiral model. (Boehm, 1988), which was also introduced in the 1980s. Both

the spiral model and the evolutionary model (EVO model) adopt a more dynamic

approach to testing, something which is discussed in more detail in the following

sections.

2.2.1 The Evolutionary Model

McCracken and Jackson (1982) argued that it was not feasible for traditional software

development models to be applied efficiently to all software projects. The authors

make reference to the communication gap that commonly exists between end-users of

software and software analysts, and put forward the notion that requirements cannot be

stated in advance, because at such a stage the end-user does not fully appreciate the

end requirements, not even in principal. The basis for this statement appears to be that

requirements inevitably change throughout the development process, often due to a

lack of realisation at the beginning by the end-user, as to what is actually feasible in

terms of development. It is stated that any development environment must take account

of the fact that the needs of the user, and the final working environment, is liable to

change during the course of the development process.

Two suggestions are made, the first is to allow the product grow organically by way of

models or prototypes, with analysts working hand in hand with the user, until the

24

acceptable product is developed. Under such a method the specification may never be

written. The second suggestion is that an iterative process take place involving design,

specifications, and implementation, with significant involvement again between the

end user and the analysts. The difference between the suggestions is primarly that in

the case of the second suggestion, interaction between the end user and the analyst,

eventually results in the formulation of a design for implemention. Boehm (1988) had

reservations regarding the proposal of this evolutionary model, stating that it was hard

to distinguish between this and the old code-and-fix approach, whereby software

implementation was the first step, and requirements, design, and test were thought

about at latter stages of development. Boehm saw the following potential problems:

1. Issues involving the integration of independently developed applications which had

not been properly planned.

2. Secondly, where temporary work-arounds are deemed unchangegable by the user

after release of one iteration of development, this could make subsequent

development more difficult.

3. Thirdly, in the case of the software replacing a larger existing system, it is stated

that if a proper modular design does not exist, that it can often be difficult and

complex process to provide a bridge between old software and the new software.

May and Zimmer (1996) developed their version of the evolutionary model (EVO

model), and advocated the use of smaller iterative development cycles, which the

authors maintain leads to better risk analysis and mitigation. The authors appear to

have accounted for the lack of natural feedback associated with the waterfall method,

something which the EVO model has included via feedback loops within the small

waterfall cycles. Cycles associated with the EVO model, tend to last two to four weeks

and include all aspects of design, code, and initial testing of a new version of software.

Feedback from the prior cycle is evaluated during the execution of the next cycle. It is

pointed out that in the case of complex software projects, smaller development cycles

and smaller software components may not always be possible to adhere to. The basic

principle is similar to that of the incremental model as discussed earlier, whereby

software is released via code drops, each of which goes through design, development,

and test prior to Beta testing. The difference is that within EVO, interim versions of

the product are developed, and then provided to customers for feedback, whereas the

25

waterfall or similar traditional methods rely primarily on feedback from internal test

groups, from a black box or white box perspective.

In the case of the model proposed by McCracken and Jackson (1982), it is difficult to

see the role which an independent test team plays, if any at all. It would appear as

though the operational usage by the customer is the actual execution of system

verification and validation. Under the model proposed by May and Zimmer (1996), the

relationship between development and test is clearly iterative, with formal interaction

taking the form of specifications being incorporated into the model. This is in keeping

with aspects of the waterfall approach. These specifications can then be utilised by the

test team in the development of test specifications. Another model in response to the

models proposed by Royce, and McCracken and Jackson, is the Spiral model,

proposed by Boehm (1988). This model, which is discussed in the following section,

attempted to retain the structure of the waterfall approach, while introducing

incremental and iterative aspects to the software development process.

2.2.2 The Spiral model

This model was proposed by Barry Boehm (1988) in response to concerns regarding

the waterfall method (Royce, 1970), and the evolution model (McCracken & Jackson,

1982). The Spiral Model (fig 2.2) adopts three important principles from the waterfall

approach:

1. Feedback loops between stages to avoid expensive rework at the end of the

overall process.

2. Introduction of prototyping in the software life cycle as a means of validating

requirements.

3. A structured approach to requirements and design, including associated

documentation.

An iterative element was included in the model, in line with evolution proposals

(McCracken & Jackson, 1982), as well as a risk analysis stage to allow the evaluation

and resolution of project risks. The model is described as providing a cyclic approach

26

to incrementally developing software, while reducing the project risk as the project

goes through cycles of development. As the software project journeys through the four

quadrants associated with the model, it is incrementally developed. A cycle of the

spiral typically begins with the evaluation of project objectives (functionality, ability to

accommodate change etc.), the evaluation of alternative methods of implementation

(based on alternative designs, outsourced, off the shelf software etc.), and

consideration of the constraints imposed on the application (cost, schedule, interfaces

etc.). The next step of the cycle is to evaluate the alternatives in terms of objectives

and constraints and the identification of significant sources of project risk. The initial

stage of development begins with the evolution of a prototype. As the project

progresses there is an emphasis on the identification and evaluation of risk at each

particular stage. Each loop in the spiral represents a phase of the software process i.e.

the innermost may be concerned with system feasibility, the next with requirements,

system design and so on. Each loop is split into four sections:

1. Objective setting: This relates to defining objectives for that phase of the

project. Constraints on the process and the product are identified and a detailed

management plan drawn up. Risks are identified and alternative plans may be

drawn up based on identified risks.

2. Risk assessment and reduction: For each identified project risk, a detailed

analysis is carried out. For example, if there is a risk that the requirements are

inappropriate, then a prototype may be developed.

3. Development and validation: After risk evaluation, a development model is

chosen. If user interface risks are prominent then an evolutionary prototyping

model may be chosen. If multi-system integration is a main risk then the

waterfall method of software development may be chosen.

4. Planning: The project is reviewed and a decision made as to whether to

continue with a further loop of the spiral, if so then plans are drawn up for the

next phase.

27

Code

Review

Integration

and Test

Design

Model

Design

Validation and

verification
 Integration

and Test Plan

Determine objectives,

alternatives, constraints

Evaluate alternatives,

identify, resolve risks

Develop, verify next-level

product
Plan next phase

Requirements

Spec.

Requirements

plan life cycle

plan

Models

Prototypes Prototypes

Prototypes

Unit Test

Acceptance

Test
Impleme

ntation

Development

Plan

Requirements

Validation

Emulations

Detailed

Design

Risk

Analysis

Risk

Analysis

Risk

Analysis

Risk

Analysis

Proto

types

Commitment

partition

(Boehm, B. (1988)

Figure 2.1: The Spiral Model of Software Development.

Through prototyping, requirements definition, design, and implementation, each

revolution independently examines the objectives, risks, implementation and planning

of the phase that follows. This offers regular decision points for determining whether

the software should continue to the next phase, stay in the current phase and continue

efforts, or completely terminate the project. By evaluating the risks at each revolution

of the spiral, improvements can be made to enhance software quality, or to bring the

project back in line with original goals. Issues identified through analysis, can provide

an opportunity to alter the development model to suit particular needs such as quality

concerns. Such concerns could be addressed by scaling down development models for

28

instance. Continual analysis of risks, consistently provide the opportunity to assess

whether focussed testing is unsuccessful in meeting quality concerns, and time to

market challenges. The extension of the radial of the model is stated as representative

of the cost increase as the project progresses, and the angular dimension of the model,

represents the project progression.

The relationship between software development and software test is still linear with

other validation and verification stages built in via the simulations, models and

benchmarks stage to apply quality assurance at all of the development loops. There is a

significant dependency on the ability to assess risk. Dependency also exists on the

quality of simulations, prototypes and models and the quality of interaction with the

end user to validate this phase of development. A risk also exists with the late

application of testing, which as mentioned in the introduction, is considered to be the

foremost method of software verification and validation. The next section discusses

other incremental development models.

2.2.3 Other Incremental Models

The purpose of this review is solely to discuss models which add to the relationship

between development and test, the role of system test, or knowledge transfer to system

test. There have been other models which have been referred to as being prominent

iterative models, such as the cleanroom model ((Mills, Dyer, & Linger, 1987),

(Perkusich, Soares, Almeida, & Perkusich, 2015)). Along with integration models,

and iterative versions of the waterfall model, or indeed hybrid models such as Rational

Unified Process (RUP) model, which have been derived from work on the Universal

Modelling Language (UML), and the associated Unified Software Development

Process, (Rumbaugh & Jacobson, 1999). Such models are not deemed as adding

additional value to this particular discussion and therefore are not discussed in any

detail here. The waterfall model covers the static relationship between development

and test, and the evolution models and the spiral model cover both incremental and

iterative development, dealing with the repetitive, dynamic relationships which may

exist between development and test. The iterative approach to testing would obviously

29

alleviate some of the potential test bottle necks associated with non-iterative models,

such as the waterfall method.

The importance of incremental models, according to Sommerville (2007), is the

separation of phases and workflows, and the recognition that deploying software in a

user’s environment must form part of the process. Phases are dynamic and have goals,

whereas workflows are considered static and are technical activities, not necessarily

associated with any particular phase, but which may be used throughout the

development process in order to achieve the goals of each phase. There has been

extensive work carried out on both traditional models and incremental models, but the

view has been expressed that these methods did not go far enough to accommodate

unstable or incomplete requirement changes, (Highsmith & Cockburn, 2001). The

disadvantages associated with incremental models are investigated by Tarhan and

Yilmaz (2014), who found that Agile development methodologies (designed to

effectively and efficiently accommodate requirement changes) outperformed

incremental models in terms of development productivity and quality. The

development of a completely agile approach to software development is discussed in

more detail in the next section.

2.2.4 The Conception of Agile Processes

During the 1990s, due to the need to reduce time-to-market, a major shift occurred

away from sequential models towards agile (Perkusich, Soares, Almeida, & Perkusich,

2015). Highsmith and Cockburn (2001) and Tarhan and Yilmaz (2014) have stated that

the strength of Agile development processes is the ability to accomodate unstable or

incomplete requirements throughout the development and test phases, something

which the waterfall and incremental model are not designed for. Such development

enviroments enable software to be developed quickly to take advantage of new

opportunities and to respond to competitive pressure, (Highsmith & Cockburn, 2001).

Similar views have been echoed by Lee and Weidong (2010), who have stated that the

primary objective of agile development approaches, is to place priority on the ability to

effectivly respond to user requirement changes, something which the aforementioned

30

authors claim was not not sufficiently catered for with preceding iterative approaches

for software development i.e. the spiral and EVO approach.

Agile development models provide the advantages of all iteratively developed

software, which are accelerated delivery of services and early user enagement with the

system. It is stated that agile development differs from traditional plan driven models,

because of the focus on lean processes rather than detailed front-end plans and heavy

documentation. Highsmith and Cockburn (2001) stated that there are common values

which were identified via the Manifesto for Agile Software Development. These core

values are centred around the notion that one must accept that requirement changes

throughout a software development project are inevitable, and that the most sensible

course of action is to attempt to reduce the costs associated with such changes. The

core values identified are:

 People not process: The skills of the development team should be recognised

and exploited and team member, should be free to develop their own methods

of working, without prescriptive processes.

 Software over documentation: working software should be prioritised over the

production of extensive documentation.

 Customer involvement: customer collaboration should be prioritised over

contract negotiation.

 Embrace change: Expect the system requirements to change, so design the

system to accommodate such change rather than following predetermined

plans.

Lee and Weidong (2010) stated that core values and principles of agile development

have primarily been derived from past experiences, supported by anecdotal evidence.

In an attempt to redress that imbalance, the authors research the effects of two

dimensions which they describe as key to agility:

 Response extensiveness - A software teams response extensiveness is defined

as the proportion of various types of changing user requirements which a

software team can accomodate. This, it is argued, indicates greater software

development agility.

31

 Response efficiency – Software development team efficiency is defined as the

minimal time, cost, personnel and resources that the team requires to respond to

and incorporate a particular requirement change.

The first aspect of the research carried out by the authors was to investigate the

relationship between these two dimensions. Another aspect of the research focusses on

how the team characteristics of autonomy and diversity influence software

development agility. Autonomy is described as the extent to which software teams are

empowered with the authority and control to make decisions during the project. Team

diversity is described as extent to which team members differ in terms of skills,

expertise and work experience. Both team autonomy and team diversity are stated as

being important principles of any Agile development team according to Larman

(2004), and therefore consider this a valuable aspect of their research given the

absence of any empirical research being carried out on this particular subject. The final

aspect of the research was to examine how the two dimensions of software

development agility, namely response extensiveness and response efficiency, affect

development performance in terms of on-time completion, on-budget completion and

software functionality.

Lee and Weidong (2010) found the following relationships:

 Software teams inherently have a dynamic ability to evaluate and find the

appropriate balance between software development agility and software

development performance. This is achieved through assessment of business

impact, the impact on time, cost, scope, and the technical difficulty. Based on

these assessments the appropriate response to user requirments changes is

determined. It was found that response extensiveness has a positive effect only

on software functionality, whereas response efficiency has a positive effect on

time and budget completion, as well as software functionality. Agile practices

which demand time and cost consideration when accepting requirement

changes are useful for improving response efficiency. The non-significant

effect of response extensiveness on time and budget concerns is explained by

an extensive response which is dealt with later in the development cycle

generally requiring substantial time, cost, and resources, whereas an extensive

32

response earlier in the development cycle can result in possible savings in

development time and costs at later stages.

 There is a tradeoff between the software teams response extensiveness and

response efficiency. Reasons for this include that extensive requirement

changes were often found to require upper management signoff, due to

significant business or project impact. It was also found that response

efficiency can diminish through work overload, which also results in a lack of

focus. It was found that managers found that they can strike the correct balance

between efficiency and extensiveness, if user requirements are clearly specified

and understood, and there exists effective management of time and cost. In

contrast to the view of the author, a reduction in response efficiency due to a

workload increase could also be due to a a natural increase in software

complexity if the size of the software task was naturally increasing with the

workload. Such as view would also be supported by Brooks (1986), who refers

to the inherent complexity associated with software, which naturally increases

as the size of the software task increases. Espinosa et al. (2007) and Perrow

(1984) have also referred to the complexity associated with the modification of

software, due to the tight coupling of software module interdependencies.

 Team autonomy was found to have a positive effect mainly on response

efficiency because of the empowerment decisions made by team members.

Autonomous teams tend to limit their response to changing requirements in

order to meet project goals. This is in contrast to less autonomous teams

whereby teams may have no choice but to attempt to implement requirements

with little regard for project goals. This may also explain why autonomy may

have a negative effect on team response extensiveness. The findings could be

explained by the importance of knowledge transfer to teams, as referred to by

other authors ((Chau & Maurer, 2004), (Ryan & O’Connor, 2009), (Cataldo &

Ehrlich, 2012), (Dingsøyr & Šmite, 2014)). Chau and Maurer (2004) referred

to the dependence of teams on knowledge and emphasise the importance of

short communication chains for optimal transfer of such knowledge.

 Team diversity was also found to improve response extensiveness because it

helps solve various problems effectively and helps in understanding a wider

variety of requirements specifications, possibly due to a greater availability of

expertise and skills. Diversity was also found to possibly have a negative effect

33

on response efficiency due to costly conflicts, and costly communications.

Supporting the view that team diversity was found to improve response

extensiveness, Chau and Maurer (2004) argued that it is unlikely that each team

member will possess all of the skills necessary for a successful project

implementation, therefore it would appear plausible that team diversity would

have a positive affect. As mentioned in the previous section, the

aforementioned authors also emphasise the importance of short communication

chains for optimal transfer of knowledge, which may aid reponse efficiency.

With relevance to this particular research, Talby et al. (2006) have stated that in a

traditional development environment that everyone is responsible for quality, but in an

agile development environment, test becomes part of each team members work,

including developers, business analysts and even customers. This makes agile

methodology, a “test-driven development model”, with software test acting as a key

measure of both team and personal productivity. Tests are devised prior to

development being completed, thus focussing on highlighting any software defects as

early in the development cycle as possible. Crispin and Gregory (2009) have

highlighted the negatives of the agile approach to testing, stating that under such an

approach, the testing defined by the business experts’ desired features and

functionality, and not generally by tests which critique the product. Concerns over

agile process are also raised by Turk et al. (2000) who stated that agile processes are

designed to provide developers with an environment to develop software as fast as

possible, which can also cause it’s own efficiency problems. There is a risk that in the

application of such approaches, that software development productivity can often take

priority over software reuse. It is also stated that the agile development works well for

small teams in close proximity with continuous access to end users, which is

unfortuanely not always posible in larger organisations, (Ramesh, Cao, Mohan, & Xu,

2006). This has implications not only for the efficiency and effectiveness of

development but also for software test, a point which is highlighted by Ramesh et al.

(2006). Andrade et al. (2013) have referred to the complexity associated with testing,

which has increasd along with the progress of development methodologies.

There has been some suggestion as to the superiority of extreme programming (XP),

(Beck, 1999), (Beck, 2000). Others have maintained that insufficient research has been

34

carried out examining the key concepts and underlying principles of agile approaches

to software development ((Baskerville, 2006), (Dyba & Dingsøyr, 2008), (Mitchell &

Seaman, 2009), (Petersen & Wohlin, 2010)). Dyba and Dingsoyr (2008) accept the

widespread use of agile development practices, but state that software development

agility is difficult to achieve in practice, with key principles and benefits not based on

scientific evidence. This view would appear to have been endorsed by Mitchell and

Seaman (2009), who carried out a review of research, comparing the waterfall method

of software development, against available research on a varierty of iterative and

incremental development methodologies. The authors firstly found a lack of empirical

evidence which actually compared the two perspectives and secondly, research which

they found did not demonstrate any identifiable cost, development duration benefit, or

quality differentiation, between the two perspectives. Some additional research in this

area has been contributed by Tarhan and Yilmaz (2014). They have indeed found there

to be an empirical advantage in the case of adopting an agile approach to software

development, regarding software quality and development performance, but have

expressed similar sentiment regarding the necessity for further research to be

conducted.

Other agile approaches do exist, such as Scrum (Schwaber & Beedle, 2001), Crystal

(Cockburn, 2001), Adaptive Software Development (Highsmith J. , 2000), DSDM

(Dynamic Systems Development Method) (Stapleton, 1997), Feature Driven

Development (Palmer & Felsing, 2002), but XP has been described as the most

popular of agile methods ((Martin R. , 2003), (Tsui & Karam, 2007)). Given the

similar underlying characteristics of the aforementioned agile appraoches to software

development, and the popularity of XP, this is the only agile software development

approach which is discussed here in any detail. All of the agile development models

appear to have the common characteristics of:

1. The processes of specification, design and implementation run concurrently. There

is no detailed system specification, and design documentation is minimised or

generated automatically by the programming environment. Usually only the most

important characterics of the system are defined as part of the user requirements

document.

35

2. The system is developed in a series of increments. End-users and other system

stakeholders are involved in specifying and evaluating each increment after which

changes and new changes are proposed to be catered for via subsequent

increments.

3. System user interfaces are often developed using an interactive development. This

enables quick creation of interface design.

eXtreme Programming

eXtreme programming (XP) is used as an example of an agile development method

because as previously mentioned, XP has been described as the most popular of the

agile methods. XP was developed out of necessity for software development

methodologies to embrace and deal with change efficiently throughout the software

life cycle, rather than attempt to specify all requirements at the the beginning of a

software lifecycle and discouraging changes at later stages, Highsmith and Cockburn

(2001). Accepting that change is inevitable, XP attempts to deal with change

efficiently, by validating work as soon as possible in the development process. The

following steps are an attempt to reduce the cost of change whilst retaining quality:

 Produce the first delivery in weeks.

 Invent simple solutions, thus allowing easier evolution of software.

 Improve design quality continually. This is stated as helping to reduce the costs

of the next story or iteration of development.

 Test constantly and as early as possible in order to keep development costs to a

minimum.

XP, as with other Agile processes, is designed to enable swift reaction to changing

customer requirements, (Paetsch, Eberlein, & Maurer, 2003). Critical to the

development process is the formulation of user stories which provide a description of a

particular feature aimed at providing business value to a customer. This process of

detailing customer expectations through methods such as brainstorming and interview

processes, is descibed as being based on the important characteristic of feedback,

between the customer of the software and the developers. Contrary to the other

development methodologies, whereby feedback is also a necessary characteristic to aid

36

error correction and design flaws, in the case of XP, feedback is used to actually create

the design, and provide the development team with sufficient information to estimate

development effort. This in turn enables the development of user stories, leading to

explicit user requirments and expectations. As is the case with other agile development

practices, XP makes extensive use of test driven development. Acceptance tests are

defined by the customer against user stories. These tests are created up front, prior to

implementation of the software they will run against. The purpose of this method, is so

that the developer is constantly considering the tests which his software will have to

pass. Talby et al. (2006) appear to disagree with the concept of developers detailing

tests. They have referred to the benefits of the use of independent test professionals in

writing such tests. Tests are batched together and each release of software must pass all

defined tests.

A difference between traditional software development methods and XP, is that XP

doesn’t provide the requirements and design documents which traditional software

development models demand. In keeping with other agile development methods,

documentation is discouraged beyond what is necessary to implement the code

correctly, with product and task knowledge becoming increasingly tacit, (Nerur,

Mahapatra, & Mangalaraj, 2005). The aforementioned authors refer to the importance

of the transfer of knowledge between team members, which could be facilitated by a

continuous rotation of team membership, thus ensuring this knowledge is not

monopolized by a few individuals. The importance of knowledge management in

testing is emphasised by Andrade et al. (2013). In the absence of such measures, a lack

of documentation may impede future modifications of software, particularly in the

absence of the availability of the original developers, who may have moved on to other

work after a project has completed. The dependence on tacit knowledge within agile

teams instead of formal documented knowledge is something which has been

highlighted ((Paetsch, Eberlein, & Maurer, 2003), (Turk, France, & Rumpe, 2005),

(Dingsøyr & Šmite, 2014)). Paetsch et al. have stated that whilst traditional software

development tend to err on the side of overdocumentation, agile approaches such as

XP tend to underestimate the risks due to a lack of proper documentation which could

serve to offset knowledge loss, due to the unavailability of the original developers.

37

This possible deficiency in necessary knowledge, has a potential impact on all aspects

of the development process including system test ((Paetsch, Eberlein, & Maurer,

2003), (Chau, Maurer, & Melnik, 2003)). Through the development of customer driven

acceptance tests, agile caters for functional requirements but quesions have been asked

as to the ability of agile methodologies such as XP to handle non-functional

requirements such as maintainability, portability, safety or performance. Other authors

raise questions as to whether agile software development such as XP processes, are

suited to a large complicated project, where documentation, strict quality control, and

objectivity, are critical, (Sommerville I. , 2007).

In a comparison made by Huo et al. (2004), between waterfall and agile software

development approaches from a software quality perspective, it was established that

the development of code at an earlier stage in the development process, invites the

application of quality assurance techniques at an earlier and continually throughout the

cycle. Testing is stated as being integrated into the development phase, with early and

continual customer releases bringing customer feedback for product validation and

requirements verification. Huo et al. (2004) did not detail a specific role for a seperate

software test team, instead highlighting the following aspects of quality assurance to

be applied:

 The application of test driven development (TDD), whereby developers create

their tests prior to software implementation. This leads to a constant focus on

customer requirements from the project outset with tests being designed in line

with known requirements, and acknowledgement by development of tests the

system will have to pass.

 The application of static techniques such as code inspections, pair

programming, refactoring, collective code ownership (shared responsibility for

all sections of code), and coding standards.

 Early product validation through early software releases allow acceptance

testing and encourage continuous integration.

Contrary views to the model of test driven development were put forward by Talby et

al. (2006), who carried out research of the application of professional testers in an

agile development environment, associated with a large-scale project. Given the

38

increasing complexity associated with testing, a model of a professional test approach

is also supported by Andrade et al. (2013). The complexity associated with the

development of acceptance tests for such a project, required that professional testers be

employed in order to achieve comprehensive test coverage. The use of an independent

test team in an agile software development environment, is described as a common

practise in larger software projects, and something which is also referred to by

Striebeck (2005). In the case of the research carried out by both Striebeck and Talby et

al., the authors found some evidence to suggest that when test was not closely

integrated with development during the development process, but rather carried out in

a more traditional manner i.e. testing subsequent to development freeze dates and

testing in test scripts developed in accordance with development specifications, there

were some mismatches found between the system specifications, and the software

system, but relatively few bugs found with the actual software itself. This is explained

as a result of relatively comprehensive unit testing being carried out by development

prior to the test team receiving the software. In both of the aforementioned cases, when

the test team is integrated with the development process, it was generally considered a

more efficient and productive approach for the acceptance testing to pursue. In such as

scenario, the test team works to define tests in paralell with developers during the

software planning and implemention phase.

In both research cases, the development of an automated test suite was considered the

more productive option. In the case of the research by Striebeck (2005), it was the

actual developers who implemented the automated acceptance tests after they were

defined in consultation with the test team, but in this case it was considered a more

beneficial option, if the test team was closely integrated with the development team

during implementation of the actual acceptance tests. The role of an independent test

team in carrying out quality assurance, as previously referred to, is important aspect of

this particular research due to the specific focus on the relationship between

development teams and test teams. The following section provides an overview of

development processes, as well as a more detailed overview of the role of software

testing, it’s prominence as a quality assurance technique, and the characteristics which

define it.

39

2.3 A Synthesis of Software Development Models

This section initially defines the role of software test as a quality assurance technique,

and proceeds to detail the characteristics of software testing. It must be noted that in

addition to the aforementioned software development approaches, of which software

test plays a significant role, many organisations also employ software process

assessment and standardisation models in an attempt to achieve quality, cost, or

schedule goals, ((Tsui & Karam, 2007), (Liu, Chen, Chan, & Lie, 2008), (Perkusich,

Soares, Almeida, & Perkusich, 2015)). Such process assessment and standardisation

models have a direct effect on the role of software test within any development

process, so merit some discussion. Tsui and Karam (2007) have made reference to

both the Software Engineering Institute’s Capability Maturity Model (CMM), and

Capability Maturity Model Integrated (CMMI), which are described as frameworks

used to help organisations define its level of software development maturity. Also

referenced is the International Standards Organisation (ISO), which defines a series of

software quality standards, such as the ISO 9000 series, including standards which can

be applied to software activities. It is stated that software engineering development and

support processes, have continued to be modified, improved, and invented through

countless studies, experiments and implementations, to varying degrees of success and

failure. Liu et al. (2008) stated that the goal of such standards is to aid organisations

instil better controls, through structured activities during development of a software

product or system.

The aforementioned authors investigated the relationship between the standardization

of the software development process, software flexibility, and project performance.

The importance of software systems to be flexible or easily modified, to enable the

accommodation of new user requirements, is something which authors such as de Silva

and Balasubramaniam (2012) have also referred to. Liu et al. (2008), through their

investigation into whether software standardisation has a positive or negative

relationship on software flexibility, and final project performance, found evidence of

such a relationship. Therefore it is advised that software flexibility concerns should be

considered in an effort to standardise software processes, because substantial parts of

software process improvement frameworks, or the implementation of standards of

practice, are biased towards discipline (control), rather than creativity. This is

described as something which can have a negative impact on software flexibility, or

40

the degree to which the software can be maintained or changed. This view relating to

the flexibility and modifiability of the software subject is supported by Jamwal (2010).

Alternatively, Kelly (2008) have made a distinction between the benefit of software

standards, as applied to software destined for a safety critical role, and software

projects which demand a more flexible and innovative approach to development. The

view is expressed that software standards often struggle, with enabling the

achievement of product integrity, which is key to all software systems. It is stated that

software standards often find it difficult to bridge the gap, between obtaining the

required goal of the software, and meeting the needs of the customer, and how to

implement that correct usage at a coding level.

2.3.1 The Case for a Flexible Approach to Software Development

The necessity of a flexible approach to software development and the emphasis of a

“practice over process” approach is something which is emphasised by those who

advocate a more agile approach to software development. Highsmith and Cockburn

(2001) and Chau (2004) have stated that changing customer requirements should be

embraced, and that models that enable such a rapid software change (similar to those

advocated from an agile approach) are superior. It should be noted however that

Martin et al. (2007), and Mitchell and Seaman (2009) have cited the lack of empirical

evidence to back up such claims, and Lee et al. (2006) have cautioned against the

promotion of software development flexibility at the expense of explicit documented

knowledge, particularly in the case of geographically distributed software development

environments. Although Tarhan and Yilmaz (2014) do actually provide empirical

evidence in support of an agile approach, relating to developer performance and

software quality, additional research in this area is encouraged to be undertaken.

The focus on the software development process characteristic of flexibility,

particularly by agile development methodologies, has resulted in a concentration on

certain aspects of software test. Crispin and Gregory (2009) referred to the emphasis

on agile as being reflected in the associated software testing. Such testing is stated as

being defined by the business experts’ desired features and functionality, and not

41

generally by tests which critique the product. An explanation for this has been

provided by Martin et al. (2007), in reference to the role of software test operating in

an agile development, they stated that there is somewhat of a rejection of the latter

phases of a traditional phased approach to software testing, which often tend to have a

non-functional focus and are generally tests which do not easily conform to

automation. This is explained as being a product of the test design process whereby the

focus tends to be on tests relating to functionality and how different users would use

the system. This view is backed up by Patel and Ramachandran (2008) who have

argued that the general application of agile frameworks tends to attract a focus on

functional requirements where there should also be a focus on other non-functional

requirements such as operability, observability, controllability, understanding,

performance, and usability of the software. Even though non-functional requirements

are stated as playing a vital role in satisfying overall customer requirements, they are

stated as not generally being covered by the exploration phase of agile based projects.

A lack of focus on non-functional requirements, at the initial stages of the software

development process, can prove increasingly difficult and costly to address at the latter

stages of the process.

2.3.2 A Comparison of Traditional and Agile Software Development

Huo et al. (2004) has provided us with a comparison of the waterfall development

methodology and agile development methodologies in terms of quality assurance

techniques.

42

Waterfall phases of

development

Waterfall quality

assurance

Requirements

definition

Software and

system design

Implementation

and unit testing

Integration and

system testing

 Requirement

reviews

 Prototyping

 Model validation

 Questionnaires/

checklists

 Metrics validation

 Scenario based

validation

 Model checking

 Code review

 Code inspection

 Code walkthrough

 Simulation

 Symbolic

Execution

 Integration testing

 Acceptance testing

Operation and

maintenance

 Change request

control tools

Static

technique

Static and

dynamic

techniques

Dynamic

technique

(Huo et al. (2004)

Figure 2.2: Waterfall Approach from a Static/Dynamic Perspective.

Figures 2.2 and 2.3 present the general phases of development for both waterfall based

projects and agile based projects, respectively, with the nature of the technique (static

or dynamic) highlighted. This is interesting because this provides us with a perspective

in terms of the core characteristics of the software development processes, from a

quality assurance perspective (including test).

43

Agile phases of

development

Agile quality

assurance

User stories

Release planning

 Iteration

planning

 Create unit tests

 Develop code

 Continuous

integration

 Acceptance

testing

 Small releases

System in use

 System metaphors

to help clarify goals

 Architectural spikes

to give reliable

estimates

 On-site customer

feedback

 Code refactoring

 Pair programming

 Stand up meetings

 CRC models,

simplifying problems

 Pass 100% of unit

tests

 Customer feedback

Static and

dynamic

techniques

Static and

dynamic

techniques

Static and

dynamic

techniques

(Huo et al. (2004)

Figure 2.3: Agile Approach from a Static/Dynamic Perspective.

Notwithstanding the conflicting views on the appropriate development approach to

follow, there are a number of fundamental activities that can be identified from section

2.3.1 of this chapter, which are common across traditional or agile development

approaches. These are evident form the comparison as provided by Huo et al. (2004)

(detailed in figure 2.2 and figure 2.3), and are associated with three principle activities:

1. Software specification and design: The functionality and constraints associated

with the software must be defined. This may take the form of requirements

definition and software and system designs or alternatively approaches such as

user stories, system metaphors, architectural spikes, and release planning.

44

2. Software implementation: In line with the requirements, goals and designs, the

software must be produced. This can be a planned, iterative, development

process, or a planned, sequential, development process.

3. Software verification and validation: The software must be validated to ensure

it acts in accordance with customer requirements or standards. Code

verification can take the form of static checks such as code reviews,

inspections, and peer programming, or dynamic approaches such as software

unit testing and system testing. Validation can take the form of customer

feedback and acceptance testing.

The software implementation stage is key in any software development environment

but in the context of this research, of particular interest are the general software

process activities of software specification and design, and software verification and

validation. Software specification and design is important because, amongst other

objectives, this activity facilitates the transfer of knowledge between two key stages of

the software development processes, namely development and test. The importance of

knowledge transfer to software development has been emphasised by Chau et al.

(2003) and Cataldo and Ehrlich (2012). Chau et al. (2003) have referred to the

importance of knowledge to all aspects of software development. It is stated that it is

unlikely that all members of a software development team will possess all of the

required knowledge for software activities such as requirments gathering, design,

development, test, deployment, maintenance, and project coordination. Another area of

importance which is discussed in greater details in a forthcoming chapter, relates to the

importace of tacit knowledge which is associated with both traditional software

development approaches, and agile development approaches such as XP (Boehm,

2002). It is stated that there is a risk of architectural mistakes because of an

unrecognised shortfall in tacit knowledge, and that traditional or plan driven methods,

reduce this risk by investing in life-cycle architectures and plans.

A downside of a formal approach to software development, are the costs associated

with documentation updates, and the associated risks of such documentation being

incorrect or not up to date. These views are also emphasised by Paetsch et al. (2003)

who stated that the lack of documentation may present particular issues in the case of

somebody leaving with key knowledge, and also suggested that tacit knowledge

45

transfer can become difficult in the case of complex projects (a view which has also

been backed up by Turk et al. (2005), and Moe et al. (2012)). Another key difference

identified by authors, between documentation associated with traditional development

environments, and agile development environments, is the tendancy to focus on

functional requirements in the case of agile documentation, and not necessarily devote

resources to documenting requirements such as resources, maintainability, portability,

safety or performance ((Paetsch, Eberlein, & Maurer, 2003), (Patel & Ramachandran,

2008)). The impact of both explicit documented knowledge and implicit knowledge on

the software test aspect of the development process, which is key to this particular

research, is discussed in greater detail in the next chapter.

Of primary interest for this research is the topic of software verification and

validation. Huo et al. (2004) have stated that the encouragement of agile software

development techniques to develop code early on in the development process, has

invited many opportunities for quality assurace techniques to also be applied at an

earlier basis. Dynamic activities such as the application of test driven development

(TDD), and early acceptance testing by the customer, play a key role in maintaining

software quality, along with static techniques such as code inspections, the

development of user stories, the detailed consideration of architectural spikes, and the

analysis of customer feedback, all of which are deemed vital to quality assurance. It is

stated that, contrary to common perception, the frequency which quality assurance

practices occur under agile methodologies, is greater than those proposed under the

waterfall approach, but the key is in the application of those practices by development

teams. The difficulty with making a comparison of the costs associated with the

application of various development approaches, is something which is also referred to

by Mitchell and Seaman (2009). They refer to the little empirical evidence which

exists to provide an indication as to the cost, development duration timeframe, or

quality benefits of one technique over the other. Tsui and Karam (2007) stated that

testing is primarily carried out by three distinct groups:

1. Software developers: the role of software development testing is described as

being primarily to create and run tests to verify that software programs run as

intended and complete without major error.

46

2. Software testers: this role is described as involving technical persons whose

role it is just to write and execute specific test cases with specific goals. It is

stated that although development knowledge is extremely useful for testers,

that it is a very different activity to that of software development, with

completely different requirements. This view is also endorsed by Loveland et

al. (2005). A major difference between the testing carried out by developers

and testing carried out by professional testers, would appear to be that the role

of software testers is often analyse test results and make assessments regarding

software quality, often being called in to assist on making product release

decisions.

3. Customers or end-user testing: it is stated that it is a good idea to involve users

in testing in order to identify usability issues, and to expose the software to

range of inputs in real world environments. User testing may also form the

basis for software product acceptance decisions.

The focus for section 2.4, and subsequent sections, is on software verification and

validation. Further discussions will take place from the perspective of software testing,

involving independent software test teams, as distinct from testing driven primarily by

development, or testing carried out by customers or end-users of the software. This is

in keeping with authors views which are relating to traditional software development

models, such as outlined by Royce (1970), Pfleeger (2001), Crispin and Gregory

(2009), Talby et al. (2006) and Striebeck (2005), who specificaly have referred to the

use and benefits of test professionals in an agile software development environment,

particularly in the case of larger projects.

This acceptance of an independent test team working in an agile software development

environment, is not necessarily in keeping with the views of all authors. Huo et al.

(2004) and Patel and Ramachandran (2008), have outlined an agile environment,

which makes extensive use of test driven development, proposing that developers are

at the very least largely responsible for the development of software tests. The

involvement of testers, aids the acquisition of requirements from customers, helping

customers express their requirements as tests, as well as advocating quality on behalf

of the cutomer, during the development process ((Pfleeger, 2001), (Crispin &

Gregory, 2009)). Talby et al. (2006) have stated that independent testers allow a more

47

comprehensive test coverage, especially in the case of complex development projects.

Such an approach also allows development to concentrate on developing code, as

opposed to dedicating a significant portion of time on test case or test suite

development.

By focussing on development environments which utilise independent test teams, there

is an obvious dependence on knowledge transfer between development teams and test

teams. Difficulties associated with geographical distributed development teams has

been highlighted by Chau and Maurer (2004), and Lee et al. (2006). Lee et al. (2006)

have highlighted the varying success with communication, in geographically dispersed

development enviroments. It is stated that where there is less of an emphasis on

explicit documentation, that geographical dispersion makes it increasingly difficult to

share knowledge. The importance of knowledge sharing, and specifically tacit

knowledge, in software development environments, has been emphasised by Ryan and

O’Connor (2009). This is dealt with in more detail in the following chapter.

2.4 Software Verification and Validation

Verification and validation are described as important tools to enable a check to be

carried out that a software product conforms to its requirements and specifications (

(Tsui & Karam, 2007), (Sommerville I. , 2007), (Khan & Khan, 2014)). Sommerville

(2007) stated that testing is the primary software validation and verification technique.

Verification is described as confirming that system additions and modifications, made

through the development phases, conform to system specifications, whereas validation

is usually applied at the end of the project, to a complete software system and goes

beyond checking that the system conforms to specifications, to validating that the

software does as the customer expects it to do. Software testing, a dynamic approach to

software verification and validation, is not a unique tool in this respect, in fact many

static methods have also been shown to be beneficial in helping to ensure the quality of

software e.g. software inspections, automated source code analysis, and formal

verification (Delahaye, Kosmatov, & Signoles, 2013). However, these are performed

against non-operational software, and cannot demonstrate whether the software is

48

operationally useful. Software testing is described as an important method for

validating software usefulness, and checking software quality characteristics, such as

functionality and reliability (Holzworth, Huth, & deVoil, 2011). Tsui and Karam

(2007) have stated, that the level of required confidence, that all of the customers’

expectations that will be met, is dependent on three main factors:

 Software function: How critical the software is to an organisation. An example

is given that the level of confidence required for safety critical systems may be

higher than otherwise necessary.

 User expectations: Prior to the 1990s, there was a generally low expectation of

software and failure did not necessarily come as a surprise. However the author

states that now more than ever, it is now considered unacceptable to deliver

unreliable systems, so companies must therefore devote more time and effort to

validation and verification.

 Marketing environment: When a system a system is marketed, the level of

confidence required, will be dictated to a certain degree by the quality, price

and supply of competing products.

To enable meeting customer expectations, the author refers to the complementary roles

which software inspections and testing play in the software process, highlighting the

fact that in you can only test a system when a program or executable is actually

developed. Stated also is that requirements and design reviews are the main techniques

used for error detection in the specifications and designs. Several methods are referred

to which can be used for detection of errors in programs, both from a static point of

view (verification and validation of non-running code e.g. via code reviews) and from

a dynamic point of view (verification and validation of running code):

 Testing involves executing the software in a controlled environment and

verifying that the output is correct.

 Inspections and reviews, which can be applied to programs or relevant

documentation. These generally involve more than one individual in addition to

the document or program creator. These are described as being labour intensive

but an extremely effective method of finding errors.

49

 Formal Methods involve mathematical techniques used to prove that a program

is correct.

 Static analysis involves analysing the static structure of a program or relevant

documentation. Usually automated, this method can detect errors or error-prone

conditions.

Such methods are common in both traditional and agile software development

environments ((Huo, Verner, Zhiu, & Bahar, 2004)). As referred to in the introductory

section, Sommerville (2007) emphasised that techniques such as software inspections,

automated source code analysis, and formal verification, can only check the validity of

a program is in accordance with the specifications, and cannot demonstrate whether the

software is operationally useful (this view has been endorsed by Delahaye et al.

(2013)). Software testing, a dynamic technique, is described as being the foremost

method for software validation and verification, checking properties of the software

such as performance and reliability. The fact that code coverage tools deal with static

code and ignore operational context, is something which is seen as a disadvantage.

Although code coverage tools provide developers with an excellent method of ensuring

that tests execute against specific lines of code as planned, there are a number of

problems which code coverage tools may not help address, such as bugs relating to

running code, relating to specific timing events, and other events which occur as a

result of code being executed in parallel (Loveland, Miller, Prewitt, & Shannon, 2005).

The importance of software testing has also been emphasised by other authors (

(Wegener, Baresel, & Sthamer, 2001), (En-Nouaary, 1998), (Mattiello-Francisco,

Martins, Cavalli, & Yano, 2011), (Yin & Ding, 2012)). Wegener et al. (2001),

Mattiello-Francisco et al. (2011) and Yin and Ding (2012) have emphasised the merits

of a structured approach to software testing, in terms of effectiveness and efficiency

over an ad-hoc approach. A structured to testing has been provided by Eickelmann and

Richardson (1996), who have highlighted key functions which software test

environments have evolved to include over a period of time:

1. Test Execution includes the execution of the instrumented source code and

recording of execution traces. The output of this stage includes test output

results, test execution traces, and test status.

50

2. Test Development is essentially the development of a test approach which

includes the specification and implementation of a test configuration. The

output of this stage are the test suites including individual test cases, test input

criteria, test documentation, and test adequacy criteria.

3. Test Failure Analysis includes behavior verification, and the documentation

and analysis, of test execution pass/fail statistics. The output of this stage

includes the pass/fail status and test failure reports.

4. Test Measurement includes test coverage measurement and analysis. Source

code is described a typical instrument used to collect execution traces.

Executed test runs have associated test coverage measures and test failure

measures.

5. Test Management includes support for the complete test infrastructure, along

with test environment state preservation. Test process automation usually

requires a repository for the test infrastructure.

6. Test Planning includes the development of a plan relating to test case

development. This provides the foundation for the development of test

objectives. Detailed as part of test planning, are features of the system to be

tested, risk assessment issues, organizational training needs, required and

available resources, a comprehensive test strategy, outlining resource and

staffing requirements, the roles and responsibilities, and the overall schedule.

Development of a test architecture which outlines the required and available

resources is also carried out at this stage.

Fundamentally, the model proposed by Desai and Shah (2011) relating to the functions

of software test, is similar to that highlighted above, with the slight difference of an

emphasis on a test environment preparation stage, as opposed to a test management

stage. Notwithstanding that test management is an ongoing activity, which may be

invoked at the start of projects also, the following order is proposed as the standard

execution order of the aforementioned test related functions. This is also the order

which they are discussed in the following section:

1. Test Planning

2. Test Development

3. Test Execution

51

4. Test Failure Analysis

5. Test Measurement

6. Test Management

In their classification of different types of testing, Walter and Grabowski (1999)

specifically highlighted as important, the key aspects of test objectives, test approach,

and test architecture. These aspects of software testing are used in the forthcoming

sections to give an indication of the importance of structure to software testing. The

consideration of test objectives is in reference to the consideration of expected

behaviour of the system under stimuli. This can be categorised as functional or non-

functional. Functional whereby there is correct system behaviour under stimuli which

would be associated with operational circumstances and non-functional which could

account for testing of general timing constraints, reliability, robustness, and possible

organisational impacts such as ease of use, efficiency etc. Approaching the objective

of non-functional testing could prove most difficult in the case of complex real time

systems, because this arguably involves the correct behaviour of the system under

failure, which can be due to an exhaustive list of reasons. The consideration of a test

approach relates to the task of test case specification. Test cases and may be specified

from a perspective of black box testing, white box testing, or a combination of both

(discussed at the end of this chapter). The third consideration, as detailed by Walter

and Grabowski (1999) refers to the test architecture. The authors describe this as being

a combination of test equipment, all interconnectivity between elements of the system

under test, and the actual system under test. Such architectures may also be of a

distributed nature.

The aforementioned topics of test objectives, test approaches, and test architecture,

are discussed in more detail in the forthcoming sections. Test objectives are discussed

as part of test planning, test approach is discussed primarily as part of test

development, and test architecture is discussed in the forthcoming section, as part of a

discussion on test management.

52

2.4.1 Test Planning

Test planning has been described by Desai and Shah (2011) as involving the plan of

the test case development, and the outlining of test objectives. As part of the

consideration of test objectives, this section considers the many different phases of

software testing, such as functional, regression, integration, product, unit, coverage,

and user-oriented. All of the aforementioned are verification methods, which may be

applied during or after the development phase ((Horgan & Mathur, 1996), (Huo,

Verner, Zhiu, & Bahar, 2004)). As detailed at the start of this section, we are most

concerned with testing carried out by independent test teams. Both of the

aforementioned authors refer to phases of testing of having a focus on testing of the

system functionality, testing of the software structure, or testing of the user view of the

software respectively. According to Horgan et al. (1996), any of these methods may be

applied to the various phases of software development.

The three general test areas identified by Berman and Cutler (2004) as encompassing

any test process are unit testing, integration testing, and system testing. These three

areas form the basis of the forthcoming discussions, in addition to a discussion on

acceptance testing. This is in keeping with the high level view of testing from a

perspective of testing of the software structure (unit testing), testing of the system

functionality (integration of system testing), and testing of the user view of the

software (alpha or acceptance testing). An insight into the reasoning for all of these

different stages of test is provided by Loveland et al. (2005), who state that different

test phases are designed to target different software bugs, and that no single phase is

adept at catching all defects. Each phase is described as having its own limitations in

terms of effectiveness, primarily due to defect visibility and often applied cost

restrictions. The question is also posed as to “why not merge particular test phases?”

The answer to this question is that, as described in the forthcoming section, although

some of the test phases may appear quite similar, they actually carry out different,

valid functions. Thus while the system test team carries out testing on the software,

and a failure may block progress in the system test area, the goals of the test team

covering functional testing are described as being that much different, that they can

continue and may therefore not being prohibited from proceeding.

53

As referred to in the software development overview section (2.3), Tsui and Karam

(2007) and Huo et al. (2004) have made reference to the three principle test groups as

being software developers, software testers, and end-users. As well as addressing the

different forms of testing from a developer, tester and user perspective, this section has

also made reference to important software characteristic of reliability, also referred to

by Walter and Grabowski (1999). The importance of reliability as a software system

attribute has been emphasised by Cai (1998), who have stated that software reliability

is the most important software attribute. The author ranks issues relating to software

reliability alongside those of cost, schedule and functionality. The importance of

reliability as a software characteristic has been emphasised by other authors also, such

as Patel and Ramachandran (2008). In keeping with the common project goals of cost,

quality and time to market, a discussion takes place at the end of this section regarding

the limits associated with software test methods.

2.4.1.1 Unit, Stub, Module, or Function Testing

Software developers often create and run tests to verify that software programs run as

intended and complete without major error. Yeates et al. (1994) described unit or

program testing as a stage to ensure that all programs are fully functional. This is

described in similar terms by other authors ((Horgan & Mathur, 1996), (Bentley &

Whitten, 2007), (Tsui & Karam, 2007)). While there are agreements that unit testing

relates to testing of modules, there is a slight difference between how authors

categorise the unit test phase. Pfleeger (2001) stated that testing of individual

component testing, often referred to as module, component or unit testing, verifies that

the individual components operate as expected based on inputs. The purpose of this

test phase is to verify code paths involving all inputs and outputs from logical code

blocks such as functions, sub-routines, diagnostics etc. Tsui and Karam (2007) detailed

a similar view. Bentley and Whitten (2007) made a distinction between the unit

testing, and stub or module testing. Stub or module testing is what they refer to a test

stage prior to unit testing, involving all sub-components associated with a program

such as events or modules. They emphasise the importance of this stage stating that it

is not beneficial to defer all testing until programs are completed. An important

characteristic of the unit test stage is the requirement of test plans which are produced

by developers, and generally verified by independent engineers.

54

Another level of testing relating to developers involves the testing of the interfaces

between programs in the same functional area ((Horgan & Mathur, 1996), (Loveland,

Miller, Prewitt, & Shannon, 2005), (Tsui & Karam, 2007)). This requires the testing of

all interacting programs, ensuring that not only is data correct and happening in the

correct sequence but also that specified response times are being adhered to. Bentley

and Whitten (2007) have referred to this stage as integration testing, whereas Horgan

and Mathur (1996), Pfleeger (2001) and Tsui and Karam (2007), have referred to this

stage as also forming part of function testing. Loveland et al (2005) have made the

distinction between product-wide integration of software modules (often described as

system integration testing), and the integration of modules on a function by function

basis, therefore they describe this stage as Function Verification Test (FVT) and not

integration testing. This stage is described as being white box based, with testers

focussing on testing functions, internal and external interfaces, operational limits,

messages, crash codes and module and component level recovery. One particular

benefit of this test phase, according to Loveland et al. (2005), is that it deals with

modules collectively, focussing on the encompassing software functions, and often

allowing testers to develop and execute detailed test scenarios which result in the

execution of all aspects of the applicable code. The focus at this stage is whether the

software performs as designed, and verification that it performs in line with customer

expectations.

While there are a number of positives associated with this type of testing such as

allowing a code coverage view whilst still being at a sufficient level to execute specific

software functions, there are also some limitations. In this phase the test focus is

generally from a basic functionality perspective, and thus testing may also be limited

in terms of the stress which the system may be placed under, in comparison to the final

deployed environment. The fact that this type of testing focuses on individual

functions, and is therefore not verifying the interactivity and timing associated with the

complete system, could be considered a limitation. There can be a considerable amount

of work involved in testing all the functions of a system, but software test and

automation tools can provide great assistance, in improving test efficiency and

reducing costs. As distinct from unit, stub or module testing, function testing is often

performed by a separate integration test team, providing an independent perspective

55

from that of a development team (Pfleeger, 2001). An important point has been raised

by Tsui and Karam (2007), who stated that when testing a unit that depends on many

other modules, that there may be a mix of unit and integration testing being carried out,

thus there may well be situations whereby the software developers are carrying out

some, if not all of the functional testing.

Another important point is raised applying to system testing, with the statement that

when developing software components for use by other software components, on

analysis, the system as a whole may constitute a traditional functional unit. This may

result in the merging of function testing with system testing.

2.4.1.2 System or Integration Testing

Independent software testers are technical persons, whose role it is just to write and

execute specific test cases, with specific goals. Although testers may be closely

associated with development teams and may have a detailed knowledge of the

software, the goals of the testers are not necessarily in line with that of development.

Whereas the ultimate goal of development is to implement functionally correct

software, the role of tester is to advocate quality on the customers’ perspective,

assisting development in achieving business value (Crispin & Gregory, 2009). It is

stated that testers often analyse test results and make assessments regarding software

quality, often being called in to assist on making product release decisions. System

integration testing is described as a precursor to system testing which involves

building the system from its components and testing the resultant system for problems

that arise from component interactions (Sommerville I. , 2007). According to

Sommerville, three different components are recognised as being involved in

integration:

1. Off the shelf components.

2. Reusable components that have been adapted for a particular system.

3. Newly developed components.

56

Integration Testing

Integration testing then checks that integrated components are called correctly and that

data is correctly transferred at the correct time across interfaces. It is stated that a top

down approach could be taken whereby functional components are added in

increments to an overall skeleton system. A bottom up approach to integration

involves adding all infrastructure components such as network and database access

initially with functional components being added subsequently. In both cases

additional software is often necessary to simulate other components to allow the

system to execute. An incremental approach to integration is advised, where possible,

in order to enable easier diagnosis of errors. A recommended approach is to integrate

the components that implement the most frequently used functions initially, thus

ensuring that such components receive the most testing over the full development

cycle. In reality however this may prove difficult, because features may be spread

across multiple components, and thus all necessary components may have to be

integrated to allow testing. Testing may reveal faults in interactions between

components and repairs may involve changes to multiple components thus making the

repair process more difficult. Regression testing is highlighted as an important part of

integration, and involves rerunning tests relating to previous software increments, and

running tests relating to new functionality. This is considered an easier process when

development models such as XP are employed because of the upfront focus on test

development.

System Testing

The Institute of Electrical and Electronics Engineers (IEEE) define system testing as

testing a completely integrated system to ensure it meets its requirements (IEEE,

1990). Other authors define the system testing task as a set of activities intended to

assess the performance and interoperability of the completed features of an application

(or complete system) with respect to its requirements (and intended use) ((Miller,

DeCarlo, Mathur, & Cangussu, 2006), (Bentley & Whitten, 2007)). The idea of a

completed system is not necessarily always the case. In the case of an iterative

development model being applied, system test may well be applied to a non-complete

working system ((Loveland, Miller, Prewitt, & Shannon, 2005), (Sommerville I. ,

2007), (Tsui & Karam, 2007). System test involves focussing on the software’s

function, but at a higher level than unit testing or integration testing ((Loveland,

57

Miller, Prewitt, & Shannon, 2005), (Bentley & Whitten, 2007), (Tsui & Karam,

2007)). Crispin and Gregory (2009) described testing such as system testing, as going

beyond functional testing such as covered by test driven development or acceptance

testing (dealt with in the next section), to dealing with other critical forms of testing

such as load, performance, stress, and usability. Under this phase, system test views

the software from the customer perspective, carrying out all activities such as all

functional activity as well as configuration related activities such as upgrades,

downgrades, installs.

System testing may also incorporate failure recovery from a variety of activities, to

ensure that if failure does occur that the system handles such failure gracefully. The

system test effort attempts to identify the most complex of system defects which may

relate to a combination of certain events relating to specific timings. Heavy workloads

and stress testing run over extended periods of time are described as increasing the risk

of data integrity issues. Security defects and complex recovery defects are also targeted

during this phase of testing. According to Loveland et al. (2005), system test has a goal

of exposing architectural disconnects which may have occurred. This drives the system

test stage to operate in an environment as close as possible to that of any potential

customers. If virtualised environments are being utilised then they obviously have the

benefit of cost reduction but any such environment should be capable of achieving its

goals and objectives. A risk assessment should be carried out, regarding any deviation

from customer deployed environments.

There may be difficulty associated with system testing when attempting to identify the

source of defects using messages, logging, and other low level interfaces. Another

difficulty may be the implementation of such a framework to cater for such activities.

Once such a framework is in place to aid the identification of the source of any

particular defects, then there are obvious positives to testing against a system which is

similar to its proposed deployed state. A downside associated with system test

environments can be the associated costs with building complicated hardware

configurations in attempts to mirror the working environments of the most typical

customers. Decisions have to be made in attempts to achieve system test goals, while

meeting budget challenges. As previously referred to virtualisation is one area which

should be explored in attempts to meet such challenges.

58

Regression Testing

Regression testing, described as a critical part of the system and integration phases, is

described by Harman and Yoo (2007) as an activity performed to provide confidence

that changes do not harm the existing behaviour of the software. Yeates et al. (1994)

have provided a similar definition, but differentiate between ensuring the correctness

of minor modifications which have taken place during system test, and the application

of regression testing to maintenance phases to help ensure the correctness of

modifications and enhancements which have taken place during such stages.

Regression testing relates to the retesting of a modified software product, and as such

has been considered a form of system testing (Yeates, Shields, & Helmy, 1994)), or

may be considered as an independent phase of testing ((Horgan & Mathur, 1996),

(Loveland, Miller, Prewitt, & Shannon, 2005)). Lin et al. (2012) have referred to the

pressures associated with the regression test phase, stating that there can be

considerable cost and time pressures associated with the regression phase of testing.

Over the lifetime of a larger software product, the number of test cases could scale up

quite considerably, as new versions of the software are released (the development

methodology deployed has a considerable impact here, please see earlier sections for

more detail on development methodologies). Running a complete test suite for every

release can be both costly and inefficient, so software testers may be under pressure to

construct a reduced test suite for regression testing, at a reasonable cost. The specific

issue of test case optimisation is dealt with later in this chapter.

Performance Evaluation

As previously identified, Patel and Ramachandran (2008), have identified

performance, along with reliability, as a key software quality indicator. Yeates et al.

(1994) have made reference to system testing incorporating similar classes of testing

such as performance driven testing, volume or stress testing (soak) testing. Yeates et

al. (1994) have referred to the evaluation of performance, and state that any such

evaluation requires relatively stable software, to allow for consistent results. As such,

performance evaluation requires extensive test and debug, which has been carried out

prior to execution. Loveland et al. (2005) have described performance testing as a

method of evaluating performance, and state that this involves the validation of all

response times or that the maximum transaction time period that can be met by the

59

system. This includes how long a system takes to respond to a user request, timing

normal case paths through processing and exception cases. Performance testing is

described as not only forming a necessary part of system test, but such testing may also

apply to unit testing and functional verification testing. The main goal is described as

being able to identify all system performance strengths and weaknesses, often

compared against industry benchmarks. This type of testing may be related to how the

software interacts with certain hardware or software bottlenecks. Virtualised test

environments may often force the concentration on software bottlenecks. As is the case

with system testing in general, performance testing can identify defects which require

complicated solutions and thus may prove costly defects to resolve.

Load/Stress Testing

Yeates et al. (2004) described volume or soak testing as verification that the system

can handle the specified maximum volume of usage, over a predefined period of time.

Loveland et al (2005) have made a distinction between load/stress testing for

performance verification and load/stress testing for the benefit of defect removal.

Load/stress applied for performance analysis is to aid the identification of bottlenecks

and to measure the execution speed of the software. The primary objective in this case

is not to identify defects, but as previously stated, it actually depends on code stability

for successful, repeatable, and consistent throughput, for specific events. A distinction

is made between functional bottlenecks, unintended behaviour in software, which

causes a reduction in expected performance and throughput, and performance

degradation due to physical issues, such as memory or hard disk issues. Testing for

defects through load/stress targets particular defects related to such things as complex

combinations of events. To achieve this, the system test team applies load/stress to the

software through a variety of workloads intended to mirror customer processing

patterns. The distinction between this type of testing and performance based load/stress

testing is that, as previously stated, whereas the performance team aims for clean,

smooth, controlled test runs in order to gain precise, repeatable measurements, this

type of testing uses load/stress as a testing tool for creating chaos. The aim is to

recreate the most chaotic or complex of customer environments in an attempt to prove

that the software is not stable. Even though similar tools may be utilised, they have

opposing objectives.

60

Service Testing

Another possible aspect of regression testing is what is referred to as the service test

phase. Service test is referred to as a primary approach to testing software fixes, both

individually and bundled together (Loveland, Miller, Prewitt, & Shannon, 2005). It is

described as not only affecting the fixes themselves, but also ensuring that those fixes

don’t have side effects that interfere with other areas of the software. It applies to unit

testing, function verification testing, and system verification test levels. Typically fixes

are validated by unit testing and/or function verification testing. The software load or

bundle is then fed into the service test environment, which may or may not be similar

to the product’s system test environment. At this stage the service runs all the test

scenarios and workloads, to ensure that no fix or fixes cause any software defects or

performance issues. Service test is often limited by time constraints. There can be

considerable pressure when fixes related to customer issues which are affecting

customer business, are going through the service test phase. Service testing can be

considered an efficient method of carrying out service testing on released software.

This involves the grouping of software fixes into periodic releases rather than having

extensive service testing being carried out on many separate releases.

This section has dealt with numerous forms of testing which are conducted by testers.

Testing from the perspective of eventual customers or end-users of the software

(referred to as acceptance testing or alpha testing in this particular research) was not

discussed in this section, but has the obvious benefit of the system being tested by the

natural end-user, in ideally a similar environment to that of a finally deployed system,

Tsui and Karam (2007).

2.4.1.3 Acceptance or Alpha Testing

The importance of testing from the perspective of the end-user has been emphasised by

many authors ((Royce, 1970), (Tsui & Karam, 2007), Ko et al. (2011)). This type of

testing often forms the basis for software product acceptance decisions (acceptance

testing), and described as a key stage of testing for agile development approaches (

(Martin R. , 2003), (Huo, Verner, Zhiu, & Bahar, 2004), (Crispin & Gregory, 2009)).

Martin (2003) has stated that acceptance tests verifies that the system as a whole works

and that the customer requirements are being met. Tsui and Karam (2007) stated that it

61

is a good idea to involve users in testing in order to identify usability issues and to

expose the software to range of inputs in real world environments. If the users are from

within the developing organisation then this is referred to as “Alpha Testing”, whereas

if the users are from outside of the developing organisation, then this is referred to as

“Beta Testing”. The role of alpha and beta testing has been detailed by Loveland et al.

(2005) and Tsui and Karam (2007), although Loveland et al. (2005) does describe

alpha testing as a phase of integration testing but the goal is similar to as described in

this section. Beta test broadens the exposure of the software to a range of customer

environments, giving access to each customer’s perspective on the software’s impact

to its business during and after deployment. This serves as an important phase in

preparation for General Availability (GA) of the software, whereby the software is

fully released to customers. The downside associated with Beta testing, is that it may

be difficult to cover every possible environment and the amount of time a Beta release

may be active prior to the software going GA may be limited.

A clear distinction is made between the role of system testing and the role of alpha

testing. While system testing ensures that new software doesn’t introduce major

incompatibilities with prior test levels, the role of alpha testing is to assess whether it

is possible to migrate to a new version of software, without disrupting the flow of

work in a simulated customer environment. Therefore alpha testing is dependent on

earlier test phases extracting lower level bugs, and all significant stability problems.

Loveland et al. (2005) stated that if the alpha test team spends their time

predominantly finding system specific functional issues then there is a risk that

interoperability issues may not receive adequate investigation. Another important point

made in relation to integration test, is that while the alpha team attempts to achieve a

customer-like environment, it can’t necessarily be all-inclusive but should be

representative. The integration team’s effectiveness is limited by the quantity and

quality of customer information at its disposal, to aid the testers understanding of

customers work environments, and how they choose their software packages to solve

their business problems.

There are similarities between this stage of testing and general system test, because of

the goal of identifying defects relating to timing, serialization, recovery, and integrity,

but the authors argue that the bugs primarily surface due to the new context, which is

62

only one component of a bigger solution. One effect of striving to emulate customers

work environments is that there may also be a necessity for professionals in specific

areas such as systems administration, database administrations, application

development and deployment etc. Using this method, employees have a greater chance

of encountering the issues that may arise at a customer site. Such a process can also

lead to defining best practices and product deployment documents, something which

can add help customers in their deployment and usage of the system.

This section discussed the test process from a test planning perspective, outlining the

potential objectives which would be considered in the development of a test plan.

After defining a test plan and the associated test objectives, the next stage, as outlined

by Desai and Shah (2011), is the consideration of test development. This is stated as

involving the development of a test approach and test suites. These are developed in

line with the previously defined objectives.

2.4.2 Development of Test Suites and Test Cases

Test development is described as involving the specification and implementation of a

test configuration, which results in test suites, and any associated documentation (

(Eickelmann & Richardson, 1996)). In line with the views of Walter and Grabowski

(1999), test approach is discussed here as an important aspect of test development. It

is described as a key element in any software testing strategy, and as primarily being

concerned with the method of test case specification. As stated in the introductory

section of this chapter, Horgan et al. (1996) have referred specifically to the testing

methods of functional, coverage, and user-oriented, and link these phases directly to

the testing of the system functionality, testing of the software structure, or testing of

the user view of the software, respectively. An approach to any test method may be

from a perspective of black box testing, white box testing, or a combination of both

(Walter & Grabowski, 1999). What is generally referred to as black box testing, is

where tests are specified with limited knowledge of the internal workings of the

system, and test cases are generally derived from related specifications, such as

functional specifications, system or feature designs etc. White box testing involves

testing of the structure of the software via test cases, which involves required

63

knowledge of the program code, with test sequences being derived on analysis of the

software structure. Littlewood et al. (2002) have also referred to the relationship

between white box testing and black box testing. Walter and Grabowski (1999) refer to

a hybrid form of black box testing and white box testing, which they refer to as grey

box testing. Grey box testing is referred to as utilising the specifications for test case

development, but with analysis of the software structure also taking into account

during test case development. White box or coverage testing uses the structure of the

software to measure the quality of testing. The authors describe this white box testing

as being particularly important in the estimation of requirements such as reliability.

The aforementioned authors go on to describe white box testing methods as including:

 Statement Coverage: Statement coverage involves the design of test cases so

that each statement or block of code is planned to be executed at least once.

 Decision Coverage: The principle of decision coverage is that each decision in

each program is covered at least once.

 Data Flow Coverage: Data flow coverage directs the tester to construct test

cases which cover both the data definition and the subsequent value usage.

 Mutation Coverage: Mutation testing is described as involving the testing of all

non-equivalent mutations of any program P. A mutant is described as being the

product of a change to P, in accordance with a given set of rules.

A distinct advantage of these methods is that each of them provides adequacy criteria,

against which a test can be evaluated. Test data which is data coverage adequate is also

said to be decision adequate. Similarly, test data which is stated as being mutation

adequate, is also said to be data adequate. Functional testing does not provide any such

precise and measurable criteria, according to the authors. In fact the authors state that

even after extensive functional testing, that test data cannot be shown to data flow

adequate and therefore cannot be shown to be mutation adequate. It is stated however

that for several types of errors, that structural testing is not sufficient but functional

testing is. Furthermore, functional testing is described as the first step in verifying that

the specific functions of a program perform correctly.

Mattiello-Francisco et al. (2011) and Yoo and Harman (2010), have highlighted two

main aspects of the any approach to software testing:

64

 The role of operational profiles

 Test case selection problems

A key concern, which the aforementioned authors refer to, is that the authors maintain

that traditional methods for automatic test generation are based on exhaustive black

box testing, and as a direct result face test case explosion when dealing with complex

communicating subsystems. This is also backed up other authors ((Zheng, Alager, &

Ormandjieva, 2008), (Lin, Chou, Lai, Huang, & Chung, 2012)). In keeping with the

issues identified in the introductory section, Lin et al. (2012) have made reference to

the cost and time-to-market pressures associated with repetitive software testing. A

solution which is proposed by Mattiello-Francisco (2011) is the development of an

operational profile to guide software testing, by progressively breaking down system

usage. Occurrence probabilities of the system operations can be based on their

operational usage, allowing proportionally more time to be committed to those

operations whose occurrence probabilities are higher. Walter & Grabowski (1999)

have also referred to the lack of practicality regarding validation of responses for all

input/output combinations of systems, stating that the number of state/input pairs is

generally infinite. Management of test cases through various approaches such as test

case prioritisation, test case selection, and test case minimisation, are other common

methods for dealing with test case explosion, (Yoo & Harman, 2010). These

approaches are in response to the impracticalities associated with providing complete

test coverage for software systems, referred to in the introductory section as being

highlighted by Myers (1979). As referenced in the previous section, there is also a

discussion in this section on the importance of reliability to any software testing

approach, from a perspective of both black box, and white box testing.

2.4.2.1 Operational Profiles

Mattiello-Francisco et al. (2011) have referred to the use of operational profiles as

which attempt to model the intended usage of the system, in terms of operations and

occurrence probabilities. The use of operational profiles is also referred to by other

authors ((Horgan & Mathur, 1996), (Desmoulin & Viho, 2007), (Sommerville I. ,

2007)). An operational profile approach to system testing involves the specification of

65

the intended usage of the system, often dealing with the system from a functional

requirements level, in order to break down the intended usage. It is stated that a test

model based on operational profiles, defines test effort of system operations, in

relation to their operational use, with proportionally more effort being applied to those

operations which have a higher occurrence probability. An operational profile is also

seen as key to reliability estimation, reflecting how the software will be used in

practice, enabling the specification of classes of input and the probability of their

occurrence ((Horgan & Mathur, 1996), (Littlewood, Popov, & Strigini, 2002), (Cai K.

, 1998)). Both Horgan and Mathur (1996) and Mattiello-Francisco (2011) detailed

similar steps in the development of an operational profile. A customer profile is

developed first based on input from perspective customers. This profile is refined in a

number of steps to develop an operational profile. Test cases are selected in line with a

particular operational profile based on occurrence probabilities. One test framework

proposal based on service prioritisation involves the following steps. Firstly, detailing

of a service profile relating to deployed usage. Mattiello-Francisco et al. (2011) have

highlighted the relative compensation through test effectiveness based on effort being

applied at the prior stage of operational profile development. The authors found, that

there is a positive relationship between significant effort being applied when detailing

service profiles relating to deployed usage, and compensation in the effective use of

the test purposes, thus leading to more effective testing. A solution to the

aforementioned issue of exhaustive list of possible test combinations, is also put

forward by the aforementioned authors, who suggest a proposal of selection of major

and minor timing deviations, thereby enabling them to emulate a situation of early or

late messages, in addition to covering test purposes relating to lost, rushed, or

duplicated messages. Despite the benefits, there are a number of difficulties

highlighted by Horgan and Mathur (1996) associated with the employment of

operational profiles:

1. Inadequate test set – Black box testing based on an operational profile,

inevitably means that tests have been based on the features of the profile. An

issue arises when a profile has not properly detailed all features, or when

feature usage has been incorrectly estimated. The problem with such a strategy

is that the adequacy of such a test set relies on the accuracy of the data relating

to statistical sampling, used to develop the operational profile. This approach

66

does not account for the fact that an inaccurate profile may result in a poor test

set. This point is echoed by Loveland (2005) who stated that if the system is to

be fault tolerant, then the probability of failure of application modules needs to

be determined. This can be quite difficult to achieve with new software, or

indeed with new features. Such failure probabilities may depend on well

understood phenomena, or not so well understood phenomena. Lack of

customer base knowledge is likely to add a certain degree of uncertainty to the

occurrence of probability estimates of features. On a similar note Sommerville

(2007) cited difficulties associated with developing operational profiles when

software is new and innovative, but also refers to the problem of operational

profiles changing as the system is used, stating that as users become more

confident with a system, they often use it in more sophisticated ways. Due to

this reason it is difficult to be confident about the accuracy of an operational

profile.

2. Coarse features – Although black box tests may have been constructed to

exercise a feature thoroughly, there is often no measure of how well the feature

has actually been exercised. There may in fact be areas of the code which has

not been exercised, even though the feature occurs with a high probability in

the operational profile. This is more likely to happen with random selection of

test cases from the input domain of the tester is generating test cases manually,

without knowledge of how well the code corresponding to this feature has been

exercised to date. Horgan and Mathur have made reference to empirical data

relating to two particular applications which had been tested extensively over

several years. This data indicated that tests generated manually, using

knowledge of program features and the functions used to implement them, is

sufficient to obtain a high level of code coverage. On the other hand inadequate

testing is likely to result in misleading failure data, and inaccurate reliability

estimates, even assuming an accurate operational profile.

3. Interacting features – In a larger system, features tend to interact in a variety

of ways. A simple form of interaction is when for instance, feature f1 works

correctly when exercised before exercising feature f2, but not otherwise. The

greater the number of features, the more complex and difficult it becomes to

67

check systematically the interaction of these features. Failure to check for

faulty interactions may generate misleading failure data, leading to inaccurate

reliability estimates. A similar point has been made by Loveland (2005)

regarding feature interactions and the resultant complexity from an operational

profile perspective. The tester may have no idea regarding feature granularity

and the amount of lines of code involved per feature.

Operational profiles are described as one tool which can be used to increase the

efficiency and effectiveness of software testing. The next section deals specifically

with the task of software testing and difficulties associated with test case selection

problems, focussing on test case prioritisation, test case selection and test case

minimisation.

2.4.2.2 Test Case Selection Problems

The management of large numbers of test cases is something which numerous authors

have referred to ((Zheng, Alager, & Ormandjieva, 2008), (Yoo & Harman, 2010), and

(Lin, Chou, Lai, Huang, & Chung, 2012)). Running a complete test suite for every

release can be both costly and inefficient, so software testers may be under pressure to

construct a reduced test suite for regression testing, at a reasonable cost. The

underlying assumption of running a reduced test suite while maintain quality goals,

according to Walter and Grabowski (1999), is that if a system operates correctly for

selected test cases, then it will operate correctly for all possible state/input pairs. Yoo

and Harman (2010) have referred to the difficulties relating to test suite prioritisation,

test suite selection, and test suite minimisation. Test suite prioritisation is described as

driven by a desire to order test cases, enabling early maximisation of some desirable

properties, such as the rate of fault detection. Such an approach ensures that the tester

obtains maximum benefit, even if the testing is prematurely halted at some arbitrary

point. The approach is first credited as being mentioned by Wong et al. (1998). Harold

and Rothermal (1999) are credited with proposing and evaluating the approach in a

more general context. To overcome the difficulty of not knowing fault detection

information until testing is finished, test case prioritisation techniques instead hope

that early maximisation of a certain chosen surrogate property will result in the

maximisation of earlier fault detection. It is stated that in the case of a controlled

68

regression testing environment, the result of prioritisation can be evaluated by

executing test cases in accordance with the detection rate. Lin et al. (2012) have

provided six algorithms which are implemented by a database-driven method to reduce

the size of test suites, with experiments being conducted by an automated production

system which provides information on code coverage traces and execution times for

each test case.

According to Yoo and Harman (2010), the test selection approach is essentially similar

to the test suite minimisation approach; both problems are about choosing a subset of

test cases from the test suite. The key difference is described as being whether the

focus is on changes to the system under test. Test suite minimisation is often based on

metrics such as coverage measured from a single version of the program under test. By

contrast, in regression test selection, tests are often selected because their execution is

relevant to the changes between the previous and the current version of the system

under test. Therefore the approaches to test case selection are modification-aware with

regards to emphasising the coverage of code changes. Rothermal and Harrold (1994)

are credited with introducing the concept of modification-revealing test cases, between

the original and the new release of a program. Rothermal is also credited with adopting

a weaker criterion that selects all the modification-traversing test cases. A test case is

modification-traversing, if and only if, it executes new of modified code in the new

release of a program, or attempts to execute formerly existing code, removed from the

current software. Lin et al (2012) have stated that this approach led to a premise that

selecting a subset of modification-traversing test cases and the removal of test cases

that are guaranteed not to reveal faults in a new release of a program is possible. Thus

an approach to the problem of regression test selection was introduced by Rothermal

and Harrold (1997). Though still not safe for detecting all possible faults, this approach

provides a method of selecting modification-traversing test cases into a reduced test

suite.

Although the above section refers to the main consideration of code coverage when

carrying out a test case minimisation assessment, Lin et al. (2012) have stated that the

criteria for selection of test cases may include:

 Coverage criteria.

 Resource constraints.

69

 Fault detection capability.

Lin et al. (2012) have stated that many regression test selection algorithms are based

on code coverage or fault density capabilities. It is pointed out however that many of

these algorithms demand a long execution time, with huge numbers of test cases often

existing, when dealing with a large body of code. The potential for large volumes of

test cases are something which is highlighted by other authors also ((Zheng, Alager, &

Ormandjieva, 2008)). Through concentration on a function level of granularity, there

are two metrics which are identified as important:

 Test Intensity - The percentage of test cases covered by a function.

 Function Reachability - The percentage of functions reached by a test case.

Lin et al. focus on providing a solution to the problem of how to select test cases, as

part of a reduced test suite, yet still retain tests to effectively reveal faults. As part of a

survey carried out by Yoo and Harman (2010), three test optimisation problems are

highlighted. Two of these problems have already been referred to, namely test suite

prioritisation and test case selection. A related third issue relating test suite

minimisation is also referred to in this section. Horgan and Mathur (1996) have made

reference to some considerations to be made when selecting tests. They state that a test

case is defined as being useful, only if it increases some type of coverage. This has the

potential to carry out execution of software, relating to what is referred to as disjoint

subsets or partitions, described as causing a particular program to behave different

under identical test conditions. There is a reliance on different test methods to expose

such partitions. Without consideration of the code being covered during test execution,

it is stated as being difficult to determine the usefulness of a test. Another point raised,

relates to the consideration of rare events. For any given test case, a failure is

considered a rare event, if the probability of occurrence is arbitrarily small.

Coverage based estimated, have been found to be more realistic to the ones that ignore

coverage data. This is expected to lead to an increase in testing effort to raise the

estimated reliability to a sufficient satisfactory level. Secondly a study of coverage

helps the tester construct new test cases, in addition to the ones constructed during

functional testing. Such test cases are likely to reveal faults that remained uncovered

70

during functional testing, based perhaps on the operational profile. Thus, failures that

may have proved rare events during operation may in fact occur during testing.

The test suite minimisation problem seeks to identify redundant test cases and to

remove them in order to reduce the size of the test suite. Lin et al. (2012) have stated

that this method is also referred to as “test suite reduction”, inferring that the reduction

is permanent. In an effort to counter the negative views which may exist regarding test

case reduction, an empirical study was conducted by Wong et al. (1998), to determine

the relative importance of the size and coverage attributes, in affecting the fault

detection effectiveness of a randomly selected test set. Results from the study

conducted by Wong et al. indicate that as the size of a test set is reduced, if the code

coverage is kept constant, then there is little or no reduction in the fault detection

effectiveness of the reduced test set. Yoo and Harman have referred to a minimal

hitting set algorithm (Harrold, Gupta, & Soffa, 1993), which categorised test cases

according to the degree of essentialness. The hitting set algorithm is based on the

assumption that each requirement can be satisfied by a single test case, which

according to the Yoo and Harman (2010), may not be true. An example is given of a

test requirement that is functional, rather than structural, and requires more than one

test case to be satisfied. This means that the minimal hitting set formula no longer

applies, and the functional granularity of test case needs to be adjusted accordingly,

which may involve either:

1. A view involving a higher level of abstraction being taken: such an approach

results in each test case requirement being met with a single test scenario

composed of relevant test cases.

2. Division of larger functional requirements: under this approach functional

requirements which demand multiple test cases, will be divided into smaller

sub-requirements which can be serviced by individual test cases.

This problem is described as being NP-complete in that there is no known efficient

method of locating a solution. Thus Yoo and Harman encourage the application of

heuristics i.e. a solution that is accepted which achieves an acceptable, but is not

necessarily the optimal solution. Chen and Lau (1998, 1998b) applied GR and GRE

heuristic algorithms, which are developed depending on the essential, the 1-to-1

71

redundant, and the greedy strategies (G: greedy strategy, E: essential strategy and R: 1-

to-1 redundant strategy). The aforementioned authors are described as defining

essential test cases as the opposite of redundant test cases. If a test requirement ri can

be satisfied by one and only one test case, then the test case is an essential test case.

On the other hand, if the test case satisfies only a subset of the test requirements

satisfied by another test case, it is considered a redundant test case. Based on this Yoo

and Harman summarise the concepts of GR and GRE as:

GE heuristic: first select all essential test cases in the test suite; for the remaining test

requirements, use the additional greedy algorithm, i.e. select the test case that satisfies

the maximum number of unsatisfied test requirements.

GRE heuristic: first remove all redundant test cases in the test suite, which may make

some test cases essential; then perform the GE heuristic on the reduced test suite.

It is suggested that no single technique is better than the other. This is a natural

finding, because the techniques concerned are heuristics, rather than precise

algorithms. Wong et al. (1998) have adopted a heuristic approach to regression test

suite minimisation, and conclude that there are at least two attributes that determine

the fault detection of a given test set. The first attribute identified, is the size of the test

set (measured as the number of test cases). Code coverage is also identified and is

measured by executing the software across all elements of test set. The fault detection

effectiveness of the test set is the ratio of the number of faults guaranteed to result in

software failure, when executed on the test set, to the total number of faults present in

the software. At the start of this section, the importance of operational profiles was

mentioned. The strong link between operational profiles and reliability was also

referred to as being highlighted by Horgan and Mathur (1996). The development of a

test environment and test architecture is discussed in more detail in the following

section.

2.4.3 Execution of Test Cases

Test execution has been described as being an obvious necessity for any test process,

facilitating software debugging, and important activities such as reliability estimation

72

to be carried out (Eickelmann & Richardson, 1996). Test execution may be impeded

by certain defects in the code and another difficulty highlighted is the saturation effect

(Desai & Shah, 2011). The saturation effect is something which is referred to by

Horgan and Mathur (1996) as affecting all testing methods. An understanding of this

effect is described as a prerequisite to realising the shortcomings of any test model.

The saturation effect relates to the tendency of an individual testing method to attain a

limit in its ability to reveal faults in a given program. It is this limit which may cause

over or underestimates of reliability, using existing models. As a test phase progresses,

test information becomes increasingly available regarding necessary resources, failure

data etc. Loveland et al. (2005) have referred to the saturation effect in relation to an

iterative approach to testing, stating that there’s always one big question: “how do you

know when you are done?” The authors describe the measure of progress for

traditional software testing, consisting of a non-iterative cycle between development

and test. They describe this as the classic pattern following an “S” curve (figure 2.4).

Progress is initially slow but the number of tests completed rises quite rapidly.

Towards the end of the test phase, successful completion dwindles as testing awaits

final fixes and tests such as performance and reliability tests are nearing completion.

(Loveland (2005))

Completed

Tests

Time

Figure 2.4: Test Completion Progress.

73

Horgan and Mathur (1996) discussed the impact of the saturation effect on the

complete software test process. They state that a program contains a certain number of

faults. As testing proceeds the number of remaining faults decreases. However when

applied, each testing method has a limit on the number of faults which it can reveal for

a given program. Figure 2.5 is provided by Horgan and Mathur to give an indication of

the saturation effect, the test effort associated with a particular test method and the

faults revealed.

Figure 2.5: Faults versus Test Effort.

Fx relates to the number of faults revealed, tx relates to the test effort associated with a

particular test method x with an associated start s and end e. The particular test methods

have previously been discussed in this section under test planning. The authors

maintain that each testing method has a limit on the number of faults that it can reveal

for a given program. For instance in the case of functional testing, this limit is assumed

Faults versus Testing Effort (Horgan and Mathur (1996)).

74

to have been reached after tbs effort has been expended. Also functional testing has

revealed Fb out of F faults when its limit has been reached. The authors state that in

practice a variety of criteria, both formal, such as reliability estimates, and informal,

such as market pressures are applied to terminate testing. Once the limit has been

reached, if no additional faults are found and that a tester, testing continues testing

without the discovery of any more faults to tbe. The reliability estimate can be

improved by increasing the number of test cases executed in the saturation region.

Switching between test methods is assumed to occur at txe, where x refers to the

particular test method. Using the above aforementioned example in figure 2.5, after

testing has completed, there are a total of FbUdUfUm faults revealed. There is a general

assumption with the model provided by Horgan and Mathur, that each test step will

reveal an increasing number of faults i.e. 0 ≤ Fb ≤ FbUd ≤ FbUdUf ≤ FbUdUfUm ≤ F.

The previously mentioned assumption is backed up by analysis of test data which

enabled the conclusion that intensive functional testing may fail to test a significant

part of the code, and therefore may fail to reveal faults in the untested parts of the

system. The authors use this observation to justify the claim that the saturation effect is

exhibited by functional testing, and that coverage data must be used during reliability

estimation (figure 2.6). Another consequence of the saturation effect according to

Horgan and Mathur, is that it can lead to an overestimation of reliability. This may

occur if for example the Musa model was being utilised whereby increasing inter-

failure times usually results in an increase in an estimate of reliability, �̅�.

75

Figure 2.6: Test Saturation Points.

An assumption is made that the reliability estimate is a stochastically increasing

estimate, implying that even though it may fluctuate, that it will eventually increase if

the number of remaining faults decreases. Figure 2.6 indicates that as faults are

discovered in the various test phases, the estimated reliability, �̅�, increases. As the

testing progresses throughout a particular phase, faults are discovered and the value of

�̅�x increases. In general it is not possible to detect the saturation point and thus testing

may continue well past this point, increasing �̅�x but not necessarily Rx. This is

explained by the continuation of testing with no new faults being detected and can lead

to a considerable overestimation in reliability. This effect can occur when other test

methods such as white box testing are applied also. Thus over a number of subsequent

test phases considerable overestimation in reliability may occur.

Test Saturation Points (Horgan and Marthur (1996))

76

Figure 2.7: Fault Removal Points.

The example in figure 2.7 is of course based on faults being found and fixed on a

gradual basis, whereas in fact the reality is more likely to be as detailed in figure 2.5,

based on testing effort relating to CPU time and being carried out on a phase basis.

This stepwise rise of reliability causes the considerable fluctuation in reliability

estimation, �̅�.

Another difficulty associated with identification of the saturation effect, is highlighted

by Loveland et al. (2005). When utilising some test methodologies such as Algorithm

Verification Test (AVT), no new test phase can be considered complete, until all or

nearly all of the tests are successful. Thus the plot of tests test progress is quite slow

until finally a significant amount of progress is achieved regarding tests completed

(figure 2.8). The authors state that methods such as this are particularly difficult to

Fault Removal Points (Horgan and Marthur (1996))

77

recognise the point of significantly diminishing returns from testing or saturation

point.

Time

Completed

Tests

Test Saturation Effect (Loveland (2005))

Figure 2.8: Test Saturation Effect.

Loveland suggests charting progress against defined goals, breaking the definition of

the test into logical chunks. For each chunk you can test whether the code is available,

the test is underway, and that a particular algorithm has met a predefined exit criteria.

Closely integrated with test execution is test failure analysis which can be used to

determine overall software quality.

2.4.4 Failure Analysis of Test Results

Eickelmann and Richardson (1996) have referred to test failure analysis as relating to

the verification, documentation, and analysis of test execution results, with the added

responsibility of failure reporting. Failure analysis plays a key role in the estimation of

software reliability (dealt with primarily in the next section), the importance of which

is emphasised by Cai (1998), and Patel and Ramachandran (2008). Fenton and Ohlson

78

(2000) have provided an interesting insight into software failures. They found the

following through their research:

 The Pareto principle of distribution of faults and failures does actually apply

and that a small number of modules contain most of the faults discovered in

both pre-release and also in the case of post-release software.

 However it was also discovered that those modules that proved to be the most

error prone, pre-release, turned out to be amongst the least error prone, post-

release, and vice versa.

 The above could neither be explained by the size nor complexity of the

software, nor was there any evidence to suggest that there was a relationship

between the size of a software module and fault density.

 There was no evidence to suggest that popular complexity metrics were good

predictors of failure. The number of failures discovered in pre-release testing

was found to be a multiple of those found in post-release software.

The benefit of recording test failure results, as outlined by Eickelmann and Richardson

(1996), is supported by Kuhn et al. (2004). They also state that empirical research into

quality and reliability has suggested that there is at least some evidence to suggest that

relatively few parameters within software systems are actually responsible for failures.

It is suggested that, because we can never know in advance, what interaction is

required to trigger all faults in a system, that a more practical alternative to exhaustive

testing is to record failure interactions, and the related parameters. A long history of

certain failures and associated parameters, could allow the reduction in parameter sets

for future test runs, by focussing on combinations of parameters which have previously

resulted in failure. The analysis and associated measurement of collected test failure

data, is carried out as part of the following, test measurement stage of system testing.

2.4.5 Measurement of System Quality

Eickelmann and Richardson (1996) have made reference to test measurement as

including test coverage and test failure analysis. The resulting artefacts are test

coverage measures and test failure measures. This is described as supporting the

evaluation-oriented period, and enabling the evaluation and improvement of the test

79

process. The importance of reliability estimation as an indicator of software quality has

been previously mentioned as being emphasised by Cai (1998), and Patel and

Ramachandran (2008). Horgan and Mathur (1996) have highlighted the importance of

reliability estimation is to a software development process, providing organisations

with a method of quantifying the level of quality associated with a software product.

This method is not without its difficulties however, and the aforementioned authors

highlight difficulties associated with the inaccuracy of operational profiles and thus the

potential inaccuracy of any estimated reliability. Sommerville (2007) has referred to

the difficulties associated with test failure measurement, or reliability measurement:

 Operational profile uncertainty: The operational profile may be based on

experience with other systems and may not be an accurate reflection of the real use

of the system.

 High costs of test data generation: It can be expensive to generate large volumes

of data required in an operational profile unless the process can be heavily

automated.

 Statistical uncertainty: when high reliability is specified: You have to generate a

statistically significant number of failures to allow accurate reliability

measurements. When the software is already reliable, relatively few failures occur

and it may be difficult to generate new failures.

Operational profiles have been previously described as an important element of black

box testing by numerous authors ((Horgan & Mathur, 1996), (Loveland, Miller,

Prewitt, & Shannon, 2005), (Sommerville I. , 2007)). Another concern regarding

reliability estimation is highlighted by Tsui and Karam (2007), who stated that

software stability is demanded for reliability estimation, and thus any such estimation

is usually applied at the completed software stage. Horgan and Mathur (1996) stated

that because of the implicit relationship between test case development, and reliability

estimation involved with black box testing, that this is not an adequate method of

reliability estimation. They develop a methodology to cater for reliability estimation as

an iterative software development process, consisting of test execution, fault

identification, software modification (there is an assumption of a relatively high level

of hardware reliability) and re-testing. This proposed method involved both black box

and white box testing.

80

This view is supported by a model proposed by Littlewood et al. (2002), who in a

discussion of a solution to reliability assessment of diverse fault tolerant software

based systems, stated that the best way to assess the failure of such systems is to

observe under failure at a white box level. A black box approach to testing is

considered whereby the probability of failure on demand could then be calculated from

the amount of realistic testing performed and the number of failures seen but this

model is ruled out, due to the amount of testing and associated costs required for a

high PFD (or PFOD) value. Instead the authors investigate a combination of white box

testing and a number of inference procedures. These procedures required certain

assumptions to be made regarding reliability and were, by the authors own admissions,

quite complex to implement.

The model put forward by Horgan and Mathur (1996) suggested incorporating

knowledge gained during white box testing into reliability estimation, with the aim of

reducing the effect of operational profile errors on reliability estimates. This solution is

based on time/structure based software reliability estimation. The authors maintain that

a software reliability metric which relates to the probability of software failure within a

specified time of operation is a very important and useful metric. This metric can be

used to decide whether to release the software or not at any given time. A large

number of software reliability models are described as applying to data obtained from

working software which has resulted in the accuracy of such models regarding the

predicted versus the actual software failure, varying from one project to another. In

this particular case the model put forward takes account of the fine structure of the

software under development, distinguishing the aforementioned authors’ model from

other models which may also employ time-domain models. It is also claimed by the

authors that structure based models are more likely to provide more accurate reliability

estimates that the existing time-domain based models.

Defining Tk as the time at which the kth failure occurs and Nk as the number of test

cases used by Tk. Ek is defined as the effort spent in testing:

 Ek = Tk - Tk – 1in relation to time based testing

and

 Ek = Nk - Nk – 1 ...in relation to test-case-based models.

81

Denoting ei as the effort spent during the ith execution of P and Ek can be expressed as:

 𝐸k = ∑ 𝑒i
𝑙2
𝑖=𝑙1

Whereby el1 and el2 , respectively, denote the effort spent in the first and last

executions of P during the kth failure interval. The reliability R or P is defined as the

probability of no failure over the entire input domain, D.

 R = P{P(d)is correct for any d D} ...where d is a selected test case

from the input domain D.

According to Horgan and Mathur, a common assumption made during black box

testing is that testing is carried out in accordance with the operational profile. This

implies that testers know and make use of the operational profile of the inputs.

Knowledge of the operational profile implies knowing what frequency distribution

relates to specific test inputs when the software operates in its intended environment.

Reliability models put forward by the aforementioned authors, impose test

methodologies, with the effect of improving data input to a reliability model. The

outcome is a better reliability estimate with predictions being less sensitive to the

possible differences between the true operational profile, and its approximation,

derived during testing.

Test failure measures

With the verification and validation of failure, which comes as a result of the failure

analysis stage, we are in a position to carry out failure measurement. Although

recognised as just one aspect of software quality, software reliability is accepted as a

key factor since it enables the quantification of software failures (Lyu, 1996).

According to ANSI, it is defined as “the probability of failure-free software operation

for a specified period of time”. Cai (1998) stated that software reliability is the most

important software attribute and ranks issues relating to software reliability alongside

82

those of cost, schedule, and functionality. Similarly, Patel and Ramachandran (2008)

rank reliability (2008), as one of the primary indicators of software quality.

Sommerville (2007), have stated that software reliability is a complex concept that

should always be considered at system level rather than at component level. The

reason provided for a adopting a system view is that failure can propagate through a

system and affect the operation of other components. The complexity associated with

reliability estimation has been emphasised by Littlewood et al. (2002), but the view of

adopting a system wide view is argued against by other authors ((Horgan & Mathur,

1996), (Lin, Chou, Lai, Huang, & Chung, 2012)).

Cai (1998) has stated that accompanying the focus on software reliability, are metrics

relating to reliability, run reliability, failure intensity and Mean Time To Failure

(MTTF). A distinction is made between dynamic software reliability behavior, and

static software reliability. Dynamic software reliability is described as being heavily

dependent on the operational profile of the software (operational profiles are discussed

in more detail in the following test creation section). Identical software systems are

stated as possibly demonstrating dramatically different reliability behavior, depending

on the operational environments. MMTF is given as an example of dynamic software

reliability metric. The role of dynamic software reliability estimation is also

emphasized by Littlewood et al. (2002) who stated the importance of being able to

estimate the probability of failure per demand (PFD) of safety critical software

systems.

In support of both dynamic reliability estimation, and approaching such estimation

from a white box perspective, Littlewood et al. (2002) stated that the simplest way to

assess the reliability of a system, fault tolerant or otherwise, is to observe failure,

whether real or simulated, under operation. Reliability estimation from white box

perspective is stated as ignoring the fact that the system is fault-tolerant. Static

software reliability, which is independent of software operational profiles, is described

as attracting significantly more attention from software development personnel. The

number of faults remaining in software is provided as an example of static software

reliability metric. In the case of reliability estimation relating to software, Horgan and

Mathur (1996) have made reference to the valuable output of failure data, a

characteristic of system test which can be used to facilitate this activity. Failure data is

83

obtained by testing the system against a series of inputs associated with specific test

cases. Metrics relating to the estimation of software reliability, referred to by Horgan

and Mathur (1996) are:

1. Probability of failure on demand (POFOD or PFD): This metric also

relates to dynamic software reliability and is most appropriate for systems

where services are demanded at unpredictable or at relatively long intervals

and where there are serious consequences if the service is not delivered,

(Littlewood, Popov, & Strigini, 2002). This can be measure by the number

of system failures given the number of requests for system services. The

difficulty associated with estimation of this metric is referred to by the

aforementioned authors.

2. Rate of occurrence of failures (ROCOF): This metric should be used where

regular demands are made on system services and where it is important that

these services are correctly delivered. This can be measured by the time (or

number of transactions) between system failures.

3. Mean time to failure (MTTF): This metric also relates to dynamic software

reliability and should be used in systems where there are long transactions.

That is, where people use the system for a long time. The MMTF should be

longer than the average length of each transaction. This can be measured by

the time (or number of transactions) between system failures.

Many authors have referred to the use of test information in the estimation of the

quality of a software system, and the importance of reliability as a goal of software

quality ((Farr, 1996), (Horgan & Mathur, 1996), (Yoo & Harman, 2010), (Lin, Chou,

Lai, Huang, & Chung, 2012)). As well as a key tool in the estimation of software

quality, reliability prediction can also aid in the identification of optimal test selection

and the removal of redundant test cases (refer to section 4.2). This can have a

significant impact on the costs associated with the test and overall development

process, (Lin, Chou, Lai, Huang, & Chung, 2012). Various authors have employed

various methods in reliability prediction, from both a white box and a black box

perspective, (Yoo & Harman, 2010).

84

2.4.6 Management of the Test Environment

Test Management is described by Eickelmann and Richardson (1996) as including

support for the complete test environment, including preservation of the test

environment state. Desai and Shah (2011) refer to this stage as involving a graphical

layout of the test architecture, the test equipment, quantities and descriptions with

possible accommodation for multiple test environments catering for test scalability and

with a focus on test time reduction. Test architecture, which forms an important part of

this stage, is described by Walter and Grabowski (1999) as being a combination of:

 Test equipment.

 The actual system under test.

 All interconnectivity between elements of the system under test.

The important of test equipment is referred to by author such as Loveland et al. (2005),

who state that the execution of many test activities by system testers and in particular

performance testers (which may be focussing on load or stress testing), could not be

performed without the availability of such tools. Tsui and Karam (2007) have made

reference to the complexity associated with the software testing task, and the many

activities of software test involving test methodologies, techniques, tools, and

resources, necessary in order to achieve required goals. Eickelmann and Richardson

(1996) have stated that the test architecture facilitates the test environment and the

previously referred to test functions, namely:

 Test execution

 Test development

 Test failure analysis

 Test measurement

 Test management

 Test planning

It is stated that the same qualities which are important to software, are also important

to a software test environment, namely correctness, reliability, efficiency, integration,

85

usability, maintainability, flexibility, testability, portability, reusability and

interoperability. Difficulties involved in facilitating the replication of customer

environments are described by Loveland et al. (2005). The size of customer

environments has been referred to as a particularly difficult thing to replicate, which is

important in terms of scalable tests, Desai and Shah (2011). Size combined with other

customer specific characteristics such as distributed systems with interconnecting

cables can be very difficult and costly to implement. Other difficulties associated with

this stage include the potential heterogeneous nature of customer environments

whereby it is very highly likely that there are significant differences between different

customer environments. These environmental differences should therefore be

accommodated in a test environment where possible. Along with the difficulties

associated with the practical implementation of customer environments, the lack of

understanding of customer environments, which may exist in both development and

test teams, is also highlighted as a potential issue for test management. This may cause

both the non-recognition of customer usage, as well as the dismissal of valid usage as

unrealistic. The purpose of this stage is to facilitate the test environment to enable test

execution. Test execution and associated issues is discussed in more detail in the

forthcoming section.

This section has emphasised the important role which test measurement plays in any

test process. This concludes an overview of the previously identified functions,

identified by Eickelmann and Richardson (1996) and Desai and Shah (2011), namely

test planning, test development, test execution, test failure analysis, test measurement,

and test management. Also discussed in this section was testing from a perspective of

developers, testers and users, as well as focusing on testing from a perspective of test

objectives, test approach and test architecture, which is in keeping with the views of

Walter and Grabowski (1999). The following chapter provides a greater

understanding of the types of complexity which potentially affect software

development environments.

86

2.5 Concluding Analysis of Software Development Processes and System Testing

As part of an overview of software development methodologies, the views of

Rajagopalan (2014) were discussed. Views such as those expressed by Rajogoplan,

have helped explain the movement from traditional software development

methodologies, to increasingly agile methodologies. He has stated that concerns over

quality and the future maintenance of software, led to the widespread adoption of

traditional methodologies, such as Royce’s waterfall model (Royce, 1970). The

necessity of a more flexible approach to software development and the emphasis of a

“practice over process” approach is something which led to the development and

adoption of more agile approaches to software development. Highsmith and Cockburn

(2001) and Chau (2004) have held the view that changing customer requirements

should be embraced, and that models that enable such a rapid software change (similar

to those advocated from an agile approach) are superior. The focus on the software

development process characteristic of flexibility, particularly by agile development

methodologies, has resulted in a concentration on certain aspects of software testing.

Crispin and Gregory (2009) referred to the emphasis on agile as being reflected

through software testing being defined by the business experts’ desired features and

functionality, and not generally by tests which critique the product.

As part of a software development overview in section 2.3 of this chapter, fundamental

aspects of development processes were outlined which are common across different

approaches to software development i.e. irrespective of whether a traditional or agile

approach to software development is adopted. These were in keeping with the work of

Huo et al. (2004), and identified as:

1. Software specification and design: The functionality and constraints associated

with the software must be defined. This may take the form of requirements

definition and software and system designs or alternatively approaches such as

user stories, system metaphors, architectural spikes, and release planning.

2. Software implementation: In line with the requirements, goals and designs, the

software must be produced. This can be a planned iterative development

process, or a planned linear development process.

3. Software verification and validation: The software must be validated to ensure

it acts in accordance with customer requirements or standards. Code

87

verification and validation can take the form of static checks such as code

reviews, inspections, and peer programming, or dynamic approaches such as

software testing in the form of unit and system testing. Validation can also take

the form of customer feedback and acceptance testing.

Tsui and Karam (2007) highlighted several methods which can be used for detection of

errors in programs, both from a static point of view (verification and validation of non-

running code e.g. via code reviews), and from a dynamic point of view (verification

and validation of running code):

 Testing involves executing the software in a controlled environment and

verifying that the output is correct.

 Inspections and reviews, which can be applied to programs or relevant

documentation. These generally involve more than one participant, in addition

to the document or program creator. These are described as being labour

intensive, but an extremely effective method of finding errors.

 Formal Methods involve mathematical techniques which are used to prove that

a program is correct.

 Static analysis involves analysing the static structure of a program or relevant

documentation. Usually automated, this method can detect errors or error-prone

conditions.

Such methods are common in both traditional and agile software development

environments ((Huo, Verner, Zhiu, & Bahar, 2004)). As referred to in the introductory

section, Sommerville (2007) has emphasised that techniques such as software

inspections, automated source code analysis, and formal verification, can only verify

that a program is in accordance with the specifications, and cannot demonstrate

whether the software is operationally useful (this view is endorsed by Delahaye et al.

(2013)). Software testing, a dynamic validation and verification techniques, has been

identified as an important part of the software development process ((Eickelmann &

Richardson, 1996), (Cai & Card, 2008), (Desai & Shah, 2011), (Kochhar, Bissyand,

Lo, & Jiang, 2013)). It is described as being the foremost method for software

validation and verification, checking properties of the software such as performance

and reliability (Holzworth, Huth, & deVoil, 2011). The importance of software testing

88

is also emphasised by other authors ((Wegener, Baresel, & Sthamer, 2001), (En-

Nouaary, 1998), (Mattiello-Francisco, Martins, Cavalli, & Yano, 2011), (Yin & Ding,

2012)).

Wegener et al. (2001), Mattiello-Francisco et al. (2011) and Yin and Ding (2012)

emphasised the merits of a structured approach to software testing, in terms of

effectiveness and efficiency, over adopting an ad-hoc approach. A structure to testing

has been provided by Eickelmann and Richardson (1996), who has highlighted key

functions which software test environments have evolved to include, over a period of

time:

1. Test Execution includes the execution of the instrumented source code and

recording of execution traces. The output of this stage includes test output

results, test execution traces, and test status.

2. Test Development is essentially the development of a test approach, which

includes the specification and implementation of a test configuration. The

output of this stage is the test suites and the individual test cases, test input

criteria, test documentation, and test adequacy criteria.

3. Test Failure Analysis includes behavior verification and documentation. The

output of this stage includes recording of test results (such as pass or fail) and

test failure reporting.

4. Test Measurement includes test coverage measurement and analysis. Source

code is described a typical instrument used to collect execution traces.

Executed test runs have associated with them test coverage measures and test

failure measures.

5. Test Management includes support for the complete test infrastructure along

with test execution state preservation. The test process may require a repository

for the test infrastructure.

6. Test Planning includes the development of a plan relating to test case

development. This is described as including the foundations for test objectives.

This involves detailing the features of the system to be tested, risk assessment

issues, organizational training needs, required and available resources,

development of a comprehensive test strategy, reconciling required and

available resource and staffing requirements, roles and responsibility

89

allocations, and overall schedule. Development of a test architecture which

outlines the required and available resources would also be carried out at this

stage.

Fundamentally, the model proposed by Desai and Shah (2011) relating to the different

functions of software test, is similar to that highlighted above, with the slight

difference of an emphasis on a test environment preparation stage, as opposed to a test

management stage. Accepting that test management is an ongoing activity, which may

be invoked at the start of projects also, and test case planning is carried out at the

beginning of a project, the following order is proposed as the standard execution order

of the aforementioned test related functions:

1. Test Planning

2. Test Development

3. Test Execution

4. Test Failure Analysis

5. Test Measurement

6. Test Management

Covered in figure 2.9 are the important key aspects of test objectives, test approach,

and test architecture, as referred to by Walter and Grabowski (1999).

90

Test Functions and Considerations (Walter and Grabowski (1999)).

Test objectives

(functional v

non-

functional).

Understanding

features to be

tested.

Risk

assessment.

Facilitating

training

requirements.

Balancing

necessary vs

available

resources

(both human

and technical).

Test strategy

(test selection,

minimisation

and

prioritisation).

Roles and

responsibility.

Schedule

development.

Test

Planning

Test Case

Development

Test

Execution

Test Fault

Analysis

Test

Measurement

Test

Management

Implementation

of a test

approach i.e. a

complete test

configuration

(facilitating

white box or

black box).

Development

of test suites.

Test

Execution

against

system under

test.

Test artefact

recording i.e.

test output

results, test

traces, test

status.

Test result

verification.

Test result

analysis and

documentation

(pass/fail, test

coverage).

Consideration

of the test

architecture

and test

environment

preservation.

Maintenance

of test

resource

repository

(necessary in

the case of an

automated

test process).

Test coverage

measurement.

Test failure

measurement.

As part of verification and validation, the importance of software testing to the

development process has been dealt with in this chapter. The next chapter addresses

the two core elements of this research:

1. Complexity associated with the task of system testing.

2. The relationship between system test complexity and tacit knowledge.

Figure 2.9: Test functions and considerations.

91

The strong relationship between complexity associated with aspects of the software

development process, and knowledge, has been highlighted by numerous authors, from

a general software development perspective ((Staats, Valentine, & Edmondson, 2010),

(Lu, Xiang, & Wang, 2011), (Wang, Huang, & Yang, 2012)), and specifically from a

geographically distributed development team perspective (Espinosa, Slaughter, Kraut,

& Herbsleb, 2007). In the case of Lu et al., the complexity of information systems

development is acknowledged, as is the necessity of knowledge sharing, identified as

an important factor in the development of information systems. Staats et al. (2010), in

their research carried out at Wipro Technologies, relating to the use of knowledge

repositories, have investigated how the use of knowledge affects performance. As a

result of this research, the importance of the distribution of knowledge amongst team

members is emphasised, particularly in the case of complex tasks.

The strong relationship between system testing and knowledge has been emphasised

by Talby et al. (2006), and Desai and Shah (2011). Talby et al. referred to the

importance of knowledge to independent test teams, and raised concerns regarding the

availability of knowledge under certain geographical settings. Similar difficulties have

been highlighted by others ((Chau & Maurer, 2004), (Lee, Delone, & Espinosa,

2006)). Cataldo and Ehrlich (2012) have made reference to the lack of existing

research, which examines the communication structures facilitating the transfer of

knowledge, something which is considered key in software development processes,

and also to the overall achievement of software development goals, such as

productivity, and quality. The importance of tacit knowledge to software testing has

been emphasised by Andrade et al. (2013), and a case for further research into the area

of tacit knowledge and the role which it plays in software development processes has

been made by Ryan and O’Connor (2009), and Dingsøyr and Šmite (2014), who have

emphasised the need for a greater understanding of this particular topic.

92

93

3 A Review of Software System Test Complexity and Tacit Knowledge

The goal of this research, much in keeping with the views of Casti & Karlqvist (1986),

is an attempt to reduce the effects of complexity through understanding its

characteristics, influences and effects. As an introduction to complexity relating to

software and in line with the views of Brooks (1995), software complexity can be

viewed from two different perspectives:

3. Complexity inherent in software.

4. Complexity associated with the process of software development.

The topic of inherent complexity is dealt with in significant detail by Perrow (1984),

who referred to the inherent complexity associated with technological systems in

general, and the potential negative consequences of such complexity. Complexity is

stated as an inevitable consequence of some system designs, necessary in order to

achieve the intended goals of the system, often providing efficiency through system

characteristics such as multifunctional components. The concept of inherent

complexity associated with software systems is endorsed by other authors ((Mumford,

1983), (Brooks F. , 1995), (Lehman, 1996), (Lyytinen, Mathiassen, & Ropponen,

1998), (Espinosa, Slaughter, Kraut, & Herbsleb, 2007), and (de Silva &

Balasubramaniam, 2012)). The second perspective of complexity, as outlined by

Brooks, relating to complexity associated with the process of software development, is

of significant relevance to this research because of the interest in complexity

associated with the task of system testing. Espinosa et al. (2007), after research relating

to distributed software development teams, have stated that complexity varies greatly

depending on the characteristics of the software task, like size and structure, and on

environmental conditions, such as team size and geographic dispersion. Lee et al.

(2013) emphasised the importance of process standardization, process rigor, and

process agility, in dealing with such complexity.

Lu et al. (2011) have acknowledged the general complexity of information systems

development, and the necessity of knowledge sharing, in any effort to mitigate the

effects of such complexity. In line with the views of Lu et al. (2011), Rus et al. (2001)

and Pee et al. (2010), have also highlighted the increasingly important role which

94

knowledge plays in the software development process, and state it is necessary to

leverage individual knowledge at both a project and organisational level, so as to

ensure optimal software development. The topic of tacit knowledge is strongly linked

to the human aspects of software development, as opposed to technological aspects (

(Faraj & Sproull, 2000), (Ryan & O’Connor, 2009)). Ryan and O’Connor (2009) have

emphasised this perspective in questioning the contribution of technological solutions

to the performance of successful projects, instead highlighting the importance of such

human factors. The importance of effective plans, good communication and clear

goals, are specifically referred to, and a link is provided between the role of tacit

knowledge, and the success of software development teams. The effective utilisation

of tacit knowledge is stated as demanding a structured knowledge management

approach ((Rus.I, Lindvall.M, & Sinha, 2001), (Desai & Shah, 2011)). Even though

such an approach to knowledge management is stated as demanding time and effort, at

both an individual and organisational level, if applied in the case of software testing, it

is stated as eventually leading to a reduction in time, cost, and effort. This is stated as

being applicable for any software testing which may be carried out in the case of future

projects (Desai & Shah, 2011). The role of knowledge in software development forms

an important part of further discussions in this chapter, with particular emphasis being

placed on the role of tacit knowledge.

There have been recognised benefits associated with applying socio-technical models

in helping to understand the effect of information systems in organisations ((Lyytinen,

Mathiassen, & Ropponen, 1998), (Vidgen & Madsen, 2003), (Herbsleb, 2007),

(Sommerville I. , 2007), (Lu, Xiang, & Wang, 2011), (Sommerville, et al., 2012),

(Davis, Challenger, Jayewardene, & Clegg, 2013)).The socio-technical model, as

outlined by Mumford (1983), in figure 3.1, (based on the original work of Leavitt

(1954)), provided a useful tool when highlighting the organisational, human, task, and

technological aspects of software development, as used in the aforementioned

discussion relating to the importance of knowledge sharing in systems development.

95

People

(with values and needs)

Technology

(with requirements and

constraints)

Organisational

Environment

(reflecting company

objectives)

Task

(which require motivation

and competence)

Socio-technical Model (Mumford (1983))

Figure 3.1: Socio-technical of Information Systems.

One criticism of the original model (Leavitt, 1964), was its static nature and lack of

reference to environment, something which Mumford included when applying the

model to the area of software development, (Mumford, 1983). The reference to

organisational environment instead of referencing organisational structure is something

which other authors have also taken account of (Lyytinen, Mathiassen, & Ropponen,

1998). The model views organisations as comprising of four interacting components:

tasks (requiring motivation and competences), organisational environment (reflecting

company objectives), people (with values and needs) and technology (with

requirements and constraints). The aforementioned model, as proposed by Leavitt,

suggests that the four aforementioned components are strongly related, and that a

change in one has an effect, whether planned or unplanned, on the other components.

The framework also proposes that these components are continuously changing and

interacting due to environmental influences and those variations are both constant and

inevitable.

This socio-technical model is applied at various stages throughout this chapter. The

application of the model is aimed at providing a consistent socio-technical link through

96

discussions regarding system test complexity and the role of tacit knowledge. The

increasing importance of viewing system testing from a socio-technical perspective has

been made by Mantyla et al. (2012). Though commonly applied in the case of system

design, to help provide an understanding of the potential effects of systems on

organisations (Sommerville I. , 2007), views have been expressed relating to the

benefits of applying a socio-technical models to a wider context of issues involving

complex systems (Davis, Challenger, Jayewardene, & Clegg, 2013). The following

sections provide an insight into the relationship between complexity and the task of

system testing, with a particular interest also being shown for the relationship between

tacit knowledge and system testing.

3.1 The Influence of Complexity on Software Testing

As stated in the introductory section, the identification of complexity associated with

the task of system testing is a key element of this particular research. Steinmann

(1976) held the view that complexity equated to the absolute amount of information

involved in a task, the internal consistency of that information, and the variability and

diversity of that information. In relation to the task of system testing, Debbarma et al.

(2011) have argued that there has been increasing complexity, along with the

increasing size and performance demands of software systems, all of which demands

more effective software testing. Other difficulties associated with the role of the

software tester have been highlighted by Loveland et al. (2005), who infer that the role

of software testers have progressively become more demanding, from not only

ensuring that among the defects found are all the defects that would disrupt real

working environments, but to also validating other system characteristics through

specific testing, such as performance and system recovery testing. Tsui and Karam

(2007) have adopted a similar point of view, highlighting the general complexity

associated with the task of software testing, and the many activities of software testing,

involving test methodologies, techniques, tools, and resources, which are commonly

used in order to achieve required goals. Baig and Khan (2010) have taken a slightly

different perspective, focussing on the goals of system testing, stating that significant

difficulty and complexity associated with testing, stems from the question of how to

97

carry out testing more efficiently. The aforementioned authors identify the goal of test

time reduction, without impacting the software testing goals of correctness,

completeness, and quality, as being an important source of complexity.

The difficulty of providing test coverage for large or complex systems has been

highlighted (Zheng, Alager, & Ormandjieva, 2008), (Lin, Chou, Lai, Huang, & Chung,

2012), (Ferrer, Chicano, & Alba, 2013)). In keeping with this view, Myers (1979) has

made reference, not alone to the difficulty and complexity associated with providing

adequate test coverage, but the impracticalities with providing exhaustive test coverage

for software systems in general. Subsequent sections deal with different aspects of

complexity, associated with the process of software development, an area in which

considerable research has been carried out, identifying complexity from a number of

different perspectives, such as general task complexity ((Wood, 1986), (Campbell,

1988), (McKeen, Guimaraes, & and Wetherbe, 1994), (Li, et al., 2011)), complexity

associated with specific tasks such as system deployment ((Ribbers & Schoo, 2002),

team complexity (Espinosa, Slaughter, Kraut, & Herbsleb, 2007)), and project

complexity ((Lyytinen, Mathiassen, & Ropponen, 1998), (Pee, Kankanhalli, & Kim,

2010)).

This research is primarily concerned with complexity associated with the task of

system testing. The importance of task complexity is emphasised by authors such as Li

et al. (2011), who highlight such complexity as a task characteristic which has a

significant effect on task performance. Through their analysis of literature relating to

the topic of task complexity, Li et al. (2011) have identified two general perspectives

which have been adopted in relation to task complexity:

1. An objective perspective, whereby task complexity is a characteristic of the

task.

2. A subjective perspective, whereby task complexity is complexity as perceived

from the task doer.

Wood (1986) and Campbell (1988) are stated as referring to objective complexity. In

line with the views of Campbell, Li et al. (2011) defined objective task complexity as

implying “an increase in information load, information diversity, or a change in the

98

rate of information”. Subjective task complexity is described as the degree of

complexity of a task, from the perspective of the task executer. The link between the

task of system testing, and project complexity, is provided by Pee et al. (2010), who

highlighted the relationship between task performance and project complexity, through

their research relating to knowledge sharing in information systems development.

3.1.1 Software Project Complexity

A discussion of complexity from a perspective of the overall project has been taken by

a number of authors ((Wood, 1986), (Baccarini, 1996), (Xia & Lee, 2005), (Williams,

1999), (Pee, Kankanhalli, & Kim, 2010), (Açıkgöz, Günsel, Bayyurt, & Kuzey,

2013)). Wood (1986) has stated the greater the number of software changes in a

particular software project, the more complex that software project inevitably is. Much

in keeping with that view, Turner and Cochrane (1993) have suggested that project

complexity is relative to the extent to which project goals are poorly defined, and are

subject to future changes. Baccarini (1996) have defined project complexity in terms of

the number of varied elements, and interdependency between those elements. Project

complexity is stated as comprising of organisational complexity and technological

complexity. Organisational complexity is defined as encompassing relationships,

hierarchical levels, formal organisational units and specialisations. Technological

complexity is defined as encompassing inputs, outputs, tasks and technologies. A

similar classification theme is followed by Williams (1999), who identified structural

complexity and uncertainty-based complexity. He contended that a complete picture of

project complexity includes not only structural complexity originating from the

underlying structure of the project but also uncertainty-based complexity originating

from the changes in the project environment. The author maintained that the distinction

between structural and uncertainty based complexity is important, because he states

that organisations tend to deal well with structural complexity, but do not tend to be

sufficiently equipped to deal with uncertainty based complexity. Shenhar and Dvir

(1996) have suggested that the uncertainty-based complexity is based on the level of

technological uncertainty at the initial stage of the project (Shenhar & Dvir, 1996). Xia

and Lee (2005) suggested that technological complexity demands a more dynamic

approach.

99

Comprehensive analysis of available research in the area of information system project

complexity has been carried out by Xia and Lee (2005). At one level the framework

differentiates between structural complexity and dynamic complexity, and on another

level the framework differentiates between organisational and technological

complexity. Structural complexity is defined as variety, multiplicity, and

differentiation of project elements and the interdependency, interaction, coordination

and integration of project elements. Dynamic complexity is defined as the uncertainty,

ambiguity, variability and dynamism, which are caused by changes in organisational

and technological project environments. On another level, a differentiation is made

between organisational complexity and technological complexity. Organisational

complexity is defined as the complexity of organisation environments surrounding a

project. This is described as including stakeholders such as user groups, senior

management, project teams, contractors, vendors as well as organisational structures

and business processes. Technological complexity is defined as involving the

technological environment of the information systems development project. This may

include the technological platform, design techniques and computing languages,

development methodologies, and system integration (McKeen (1994)).

The four complexity dimensions of information system development projects

identified by Xia and Lee (2005) are:

 Structural organisational complexity: the multiplicity and interdependency of

organisational elements of an information systems development project.

 Structural IT complexity: the multiplicity and interdependency of technological

elements of an information systems development project.

 Dynamic organisational complexity: the rate and pattern of changes in the

information systems development project organisational environments,

including changes in user needs, business processes, and organisational

structures.

 Dynamic IT complexity: The rate and pattern of changes in the IT environment

of an information systems development project, including changes in IT

infrastructure, architecture and software development tools.

100

Changes may occur as a result of the stochastic nature of the environment or a lack of

information and knowledge. Dynamic complexity is described as being increasingly

relevant because both business and IT environments are changing with unprecedented

pace.

A significant distinction between the frameworks detailed by Williams (1999) and the

framework highlighted by Xia and Lee (2005) is the prominence of what Xia and Lee

claimed is that dynamic complexity associated with technology and organisational

environment. Xia and Lee also identified the specific characteristics of each

complexity dimension which they have concluded from literature.

So, in line with the view of Baccarini (1966), project complexity appears to touch on

all aspects of the socio-technical model, as detailed in figure 3.2.

Organisational

based

complexity

Technology

based

complexity

People

(with values and

needs)

Technology

(with requirements

and constraints)

Organisational

Environment

(reflecting company

objectives)

Task

(which require

motivation and

competence)

Figure 3.2: Project Complexity from a Socio-Technical Perspective.

Referenced as part of the previous discussion on project complexity, is the topic of

task complexity. The next section will focus specifically on the topic of inherent

complexity. The significance of further research in the area of inherent complexity,

101

and indeed the importance of the socio-technical aspects to future research, which has

been highlighted by Sommerville et al. (2012).

3.1.2 Inherent Software Complexity

This characteristic of inherent complexity associated with software and software

systems in particular is something which numerous authors have made reference to (

(Mumford, 1983), (Brooks F. , 1995), (Lehman, 1996), (Lyytinen, Mathiassen, &

Ropponen, 1998), (Espinosa, Slaughter, Kraut, & Herbsleb, 2007), (de Silva &

Balasubramaniam, 2012)). Brooks (1986) stated that computers are described as more

complex than most things people build but software is described as having orders-of-

magnitude more states than computers. Analysing such complexity, and in line with

the thoughts of Aristotle, Brooks makes the following distinction between essential

complexity and accidental complexity associated with software engineering:

 Difficulties associated with the nature of software are referred to as essentially

complex.

 Difficulties associated with software production are referred to as being

accidentally complex.

Conceptual constructs associated with software are described as being essentially

complex, affecting the specification, design and test of software systems. Similar

views have been expressed by de Silva and Balasubramaniam (2012), who recognised

the negative consequences associated with inherent software complexity in terms of

maintenance and modification. Such complexity is stated as making it harder to

understand and change software designs. This leads developers to make engineering

decisions which could damage the architectural integrity of the system. The

modification of software is described as extremely complex, because software

elements are described as inevitably interacting with each other, thereby increasing the

whole complexity of the system ((Brooks F. P., 1986), (Bhattacharya, Iliofotou,

Neamtiu, & Faloutsos, 2012)).

102

The effects of the tight coupling of software components

Some authors have made reference to naturally increasing complexity associated with

evolving software systems (referred to as E-Type systems by Lehman), unless

deliberate attempts are made to reduce such complexity ((Lehman, 1996), (de Silva &

Balasubramaniam, 2012), (Bhattacharya, Iliofotou, Neamtiu, & Faloutsos, 2012)).

Bhattacharya et al. (2010) have referred to the difficulties, complexity, and costs

associated with ensuring the reliability of evolving software systems. Similar views

have been expressed by Espinosa et al. (2007), who have also referred to the

complexity associated with the modification of software, due to the tight coupling of

software module interdependencies. The relationship between tight coupling of system

components and complexity is a topic which has been analysed by Perrow (1984). The

aforementioned authors provide some possible reasons for tight coupling, whereby

components are interdependent and the performance of one tightly coupled component

has a direct effect on the performance of another tightly coupled component. Pressures

due to system timing are described as possibly requiring the tight coupling of

components, in order to achieve performance, quality, or efficiency goals.

Similar views referencing the trade-off between performance improvements and

complexity are echoed by de Silva and Balasubramaniam (2012), with complexity

identified as a natural characteristic of many system designs, introduced through

attempts to accommodate new user requirements and maintain acceptable levels of

performance, often carried out in order to prevent software becoming obsolete too

soon. Perrow offers a reason as to why software systems are regularly so complex. In

some cases it is argued that complexity is a natural consequence of some system

designs because the knowledge or ability does not exist to allow the system to be

designed as a linear system with limited interaction between system components. It is

argued that the goals of efficiency and performance in some system designs, which

regularly involve the presence of multi-functional or multi-mode components, is a

major contributor to complexity.

The aforementioned section covered inherent software complexity, which can be

considered as relating to technology, figure 3.3.

103

People

(with values and

needs)

Technology

(with requirements

and constraints)

Organisational

Environment

(reflecting company

objectives)

Task

(which require

motivation and

competence)

Figure 3.3: Inherent Complexity from a Socio-Technical Perspective.

The following section discusses task complexity, the importance of which has been

emphasised by Tsui and Iriele (2011).

3.1.3 Software Task Complexity

Akman et al. (2011) described the software development process as being an error-

prone, time-consuming, and labour intensive activity, which can involve considerable

complexity. Complexity associated with software testing, an important aspect of the

development process, is something which has been highlighted by numerous authors (

(Yeates, Shields, & Helmy, 1994) (Zheng, Alager, & Ormandjieva, 2008), (Debbarma,

Singh, Shrivastava, & Mishra, 2011)). Yeates et al. (1994) have referred to complexity

as being inherent in testing, whereas Akman et al. (2011) have maintained that

complexity associated with code written in an increasingly complex manner, can lead

to increased complexity in software testing. Loveland et al. (2005) and Martin (2007)

have argued that that an imbalance exists, between the advancements made from a

software development perspective and from a software testing perspective. They state

that while advancements have been made to tools and methodologies associated with

the development process, that not nearly the same improvements have been made in

relation to software testing tools, to aid the identification of software faults.

104

In contrast to the aforementioned views, Andrade et al. (2013) have expressed the view

that there have indeed been advancements in software testing models, with testing

techniques, such as devised by Myers (1979), having been added to by new testing

frameworks and techniques. Model-based testing and agile testing were provided as

examples of frameworks, along with examples of new testing techniques, such as

machine learning techniques, adaptive random techniques etc. It is stated that such

advancements, combined with the application of software to new domains and new

development models, makes software testing knowledge more intensive and

increasingly complex. Tsui and Iriele (2011) have maintained that complexity

associated with the software testing relates to one of the sub-tasks of test case

development, test environment setup, test execution and recording and test result

analysis. Of the aforementioned tasks, test case development is described as possibly

the most challenging and time consuming.

Research in the area of task complexity is stated as having been conducted from a

subjective complexity or objective complexity perspective, (Li, et al., 2011). Objective

task complexity is stated as being a characteristic of the task, whereas subjective task

complexity is based on the perception of the task executer. A general perspective of

task complexity has been adopted by numerous authors ((Wood, 1986), (Campbell,

1988), (Espinosa, Slaughter, Kraut, & Herbsleb, 2007)). An interesting analysis of task

complexity highlighting the effects on task accomplishments has been provided by

Campbell (1988). This framework presents complexity as having a positive

relationship to the following four characteristics:

 When multiple potential paths to successful goal attainment exist. Multiple

paths lead to increased complexity when multiple paths exist as potential

possibilities, but not all lead to successful goal attainment, alternatively when

there is efficiency criterion embedded in the task and paths must be evaluated

against such criteria. Multiple paths decrease complexity when multiple paths

exist, they all lead to goal attainment, and efficiency criteria associated with

path evaluation is not relevant.

 When multiple desired outcomes are required. Campbell describes it as

thinking of each outcome as a task dimension and that complexity increases

105

with an increase in the number of different dimensions being considered as

information processing demands increase. Again the exception being that if all

outcomes are positively related, then the degree of complexity reduces.

 When there exists conflicting interdependence among paths. Complexity can

occur because of a negative relationship amongst desirable outcomes. If

achieving one outcome conflicts with achieving another desired outcome,

complexity increases. Typically the activities that increase quality preclude the

activities leading to quantity. Campbell gives the example of a previous

situation, whereby processing had to increase, but that associated labour costs

had to decrease and that one objective conflicted directly with the actions of the

other.

 When the connection between path activities and desired outcomes cannot be

established with any certainty. If probabilistic linkages exist, information load

is affected i.e. potential paths cannot be eliminated quickly, and diversity is

impacted i.e. different action-outcome activities must be evaluated. Uncertainty

can also increase complexity through increasing the potential pool of paths to a

desired outcome. If such uncertainty exists then the existence of a more

effective path must be considered.

Wood (1986) has taken a similar approach to Campbell in that the focus is also on task

complexity. Where the views differ, is that Wood (1986) has defined three types of

task complexity: component, coordinative and dynamic. These take into account the

quality of task instruction and the changing states of task environments, as well as task

execution. Component complexity has been defined as relating to the number of

distinct tasks which must be executed in the performance of the task, and the amount

of information that must be processed in the performance of those particular acts.

Coordinative complexity refers to the nature of the relationships between task inputs

and outputs. The form and strength of the relationships between task information,

execution, and products, are all defined as aspects of coordinative complexity.

Dynamic complexity is caused by changes in the state of the task environment.

Campbell has also identified associative characteristics which are often linked to task

complexity such as lack of structure, ambiguity and difficulty. He states that these

106

require special attention because their relationship to objective task complexity is not

straight forward. Poor structure, ambiguity, and difficulty, may also be a consequence

of basic task characteristics i.e. tasks which have multiple paths which are imprecisely

linked to several desired, but have conflicting outcomes, are likely to be unstructured,

and may be difficult and ambiguous. However tasks may be unstructured, ambiguous,

and difficult, for reasons other than the characteristics of the task itself. Incomplete

training of what would be generally perceived as a straightforward task could be one

example of such a situation. The factors which make the task complex are external to

the task itself but serve to make the task complex. Campbell has made the distinction

between the two, stating that certain tasks may be difficult (require significant effort)

but not necessarily complex, and certain other tasks can be difficult because they are

complex. There is also the point made that task difficulty is subjective, with a

dependence on one’s ability.

An important distinction is made between task types via the following task complexity

classification:

 Simple tasks – appear to contain no task complexity characteristics.

 Decision tasks – a common task here involves choosing or discovering an

outcome that optimally achieves multiple desired end-states. These tasks

normally involve selection of the best alternative from many possibilities. Task

types may be distinguished within this category by interdependence among

outcomes and by either the absence or presence of uncertainty.

 Judgement tasks – these tasks require the individual undertaking the task to

first consider and integrate diverse sources of information and subsequently to

make a judgement or prediction about the likelihood of some future event.

These types of tasks are based on inconsistent or contradictory information and

may thus require deeper analysis, prioritisation and assimilation of information

prior to any judgement taking place. Examples provided relate to intelligence

analysis, stock market analysis etc.

 Problem tasks – such tasks are defined as having a common characteristic of

multiple paths, leading to a well specified, desirable outcome. These tasks

involve finding the best way to achieve the desired outcome. They have been

labelled problematic because the tasks differ in terms of the paths, relationship

107

to each other, and the desirable outcome. Examples of such tasks are given as

check problems, anagrams, and jigsaw puzzles etc.

 Fuzzy tasks – these tasks are labelled so because they are described as having a

common characteristic of having multiple desired end-states, and multiple ways

of attaining each of the desired outcomes. An example here is given as

involving the manufacture of a new product which included several innovative

and attractive characteristics with each characteristic (multiple outcomes)

attainable through different production methods (multiple paths).

A slightly different perspective has been provided by McKeen et al. (1994), who focus

on information system development complexity, with a distinction being made

between task complexity and system complexity, as opposed to task and team

complexity in the case of Espinosa (2007). Task complexity is defined in terms of

ambiguity surrounding the users understanding of the task. In the context of the

research carried out by McKeen et al., system complexity is defined in terms of the

development project. Tait and Vessey (1988) have taken a similar view to McKeen et

al. defining system complexity in terms of the difficulty in determining the information

requirements of the system, the complexity of processing, and the complexity of the

overall system design. Meyer and Curley (1991) have defined technology complexity

of an expert system, taking into account the diversity of technologies used, database

intensity, and integration effort.

A specific task perspective has been adopted by Ribbers and Schoo (2002) who focus

on system deployment, and recognising three dimensions of system implementation

complexity. The first dimension is variety, which is related to the number of project

elements involved, such as the number of sites affected by a system implementation.

The second dimension is variability, which relates to project goal and scope. The third

dimension, integration, focuses on the coordination of various project elements.

The following section provides a brief discussion on task and team characteristics

which can influence task complexity.

108

3.1.3.1 Dealing with Complex Tasks

Espinosa et al. (2007) has referred to the complexity associated with software tasks in

general relating to distributed software development teams, stating that this complexity

varies greatly depending on the characteristics of the software task itself, like size and

structure, and on environmental conditions such as team size and geographic

dispersion. They investigated the effect on team performance, by software tasks and

team familiarity, and software tasks and team complexity. Task complexity was simply

defined as relating to the magnitude and structure of tasks. The authors investigated

whether complexity increases as tasks are larger or structurally more complex (the

authors took the number of lines of code affected for task complexity and the number

of modules affected for structural complexity). Team complexity was defined simply

as relating to environmental conditions such as team coordination, and was gauged by

complexity increases when teams are larger or more geographically dispersed

(something which is becoming more common (Lee, Espinosa, & DeLone, 2013)). The

effect of team sizes on complexity associated with software development tasks has

been acknowledged by Akman et al. (2011).

The Role of Task Familiarity

The conclusion reached regarding task familiarity, was that team performance was not

affected by task size (number of lines of code added, deleted, or updated). As the size

of software tasks increased, software development time increases, and conversely, as

task familiarity increases, software development time decreases proportionally but in

such cases, no dramatic productivity improvements were attributed to task familiarity.

A second view expressed by the authors, was that dramatic productivity improvements

are possible in more structurally complex tasks (complexity was defined by the

number of modules affected by a particular “modification request” which is dealt with

by a developer) through task familiarity alone. This would appear to be supported by

Banker and Slaughter (2000) who have stated that task familiarity is increasingly

important in larger software tasks, because relevant sections of software areas can be

identified more easily, due to a more detailed knowledge of the software product.

109

Brooks (1995) has expressed a slightly contrasting view, stating that there is inherent

complexity in software tasks which is irreducible as software becomes increasingly

complex. As this inherent complexity increases, the addition of developer experience

is stating as having a negligible effect on such complexity. The aforementioned views

would also appear to be at odds with Chau and Maurer (2004), who found that task

familiarity helped reduce task completion time for tasks with lower structural

complexity only, but that dramatic productivity improvements do not appear possible

for more structurally complex tasks, at least not through task familiarity alone. Going

some way towards reconciling the views of Espinosa et al. and Brooks, it was

suggested that the benefit of task familiarity may be dependent on the source of

complexity, rather than the level of complexity.

The Role of Team Familiarity

The relationship between team familiarity, complexity and team performance, has

been investigated by Espinosa et al. (2007), through research relating to geographically

dispersed software development teams. The following two research questions were

proposed:

1. “Whether team familiarity and geographical dispersion have a positive effect

on team performance such that the effect of team familiarity on team

performance is more evident when teams are geographically dispersed?”

2. “Whether team familiarity and team size interact positively on team

performance such that the effect of team familiarity is more evident when

teams are larger?”

What the authors found was that team familiarity helped to mitigate the negative

effects associated with team coordination complexity on team performance, relating to

both geographically dispersion and team size. It was suggested that team familiarity

helps the identification of specific knowledge sources within the team, regardless of

location, thus enabling cooperation and responses to any questions to be obtained

quicker. With geographically dispersed teams, team members must coordinate their

work in some way. It is suggested that such teams do not enjoy the benefit of presence

110

awareness which could aid the identification of specific knowledge, as well as the

benefit of frequent communication and contextual reference.

Previous work, such as carried out by Kelly and McGrath (1985), has emphasised the

importance of team interaction to team performance. Subsequent work from Hsu et al.

(2011) has endorsed the views of Espinosa et al. by highlighting the importance of the

team in sharing and knowledge utilisation, as part of task accomplishment. Contrasting

views have been provided by Brooks (1995) who has suggested that larger teams

represent an increase in the communication links between team members, which

eventually has a negative effect on team performance. In support of Brooks, Espinosa

et al. (2007) have concluded that all other things being equal, team performance may

indeed decrease when team members are not familiar with each other, but in contrast

to Brooks, it is stated that team familiarity not only negates the effects of team size on

team performance, but becomes critical as team sizes increases. This is more beneficial

in the case of team coordination complexity, whereas other team characteristics such

as interaction, coordination, and information sharing are actually challenged. In an

endorsement of the research of Espinosa et al (2007), Hsu et al. (2011) have stated the

importance of team familiarity, stating that it enables better management and use of

information utilisation, in the case of information systems development projects. Team

building activities are said to encourage familiarity, and such activities should be

directed at improving communications involving all members in problem solving, role

clarification, and goal establishment. Activities such as team building are stated are

being especially important for teams with high employee turnover rates. Adopting a

more general perspective regarding knowledge within teams, Rus et al. (2001) and

Chau and Maurer (2004) have emphasised the importance of “Knowing who knows

what”. This has been referred to as directory structure by Chau and Maurer (2004).

Knowledge Utilisation

Hsu et al. (2011) has focussed on the importance of primary influences such as the

availability and acquisition of information within teams, to overcome issues such as

project complexity. The complexity and often unstructured nature of Information

Systems development projects is acknowledged. Team mental models are described as

111

being an important aspect in facilitating information utilisation, which in turn helps

deal with such issues, helping to improve project performance. The proposed model is

based on the input-process-output model, as put forward by McGrath (1966), whereby

collective information is shared via interaction to achieve desired outcomes. It was

found that continual team-building activities relating to communication, problem

solving, goal setting, and role clarification, lead to higher levels of teamwork.

Hsu et al. (2011) also highlight the importance of mental models, as well as the

following points relating to knowledge availability and use for successful IS projects:

1. Understanding team mental models for Information Systems projects. This is

of particular importance when a co-working philosophy must be developed in a

short period of time, and time pressures exist regarding developing a working

relationship and project goals.

2. Management interventions and practices, involving all members in the decision

making process, might also facilitate team mental models.

3. Information utilisation by the team is affected by the level of common

understanding among team members on how to interact with other team

members to enable the acquisition of necessary information. Therefore

interpersonal skills and communication skills also become relevant.

This section has covered task complexity and the important role which task and team

familiarity, and mental models plays in relation to task complexity. Examples of

actions towards the reduction of task complexity are provided by Bhattacharya et al.

(2010) and de Silva and Balasubramaniam (2012). Bhattacharya et al. (2010) have

provided an example of a model proposed to aid the improvement of software

verification and validation, through the identification of which software components to

debug, test, or refactor first. This model also provides some assistance in defect count

prediction of modified code. An example of dealing with complexity associated with

the system under test is proposed by de Silva and Balasubramaniam (2012). In that

particular case the authors have highlighted the benefit of an automated execution

environment in dealing with complexity associated with evolving systems. It was

suggested that this aids the easy validation and testing of both structural and

behavioural aspects of the software system, helping to deal with increasing

112

complexity. A broader discussion on the role of knowledge in software development is

carried out in the following section.

3.2 The Role of Knowledge in Software Development

Rus et. al. (2001), Leidner et al. (2008), and Nonaka and Von Krogh (2009) have all

referred to the important role which knowledge transfer plays in an organisation. The

key role which knowledge plays in the software development process has also been

stated ((Neisser, 1976), (Wagner & Sternberg, 1985), (Chau & Maurer, 2004), (Ryan

& O’Connor, 2009), (Pee, Kankanhalli, & Kim, 2010), (Desai & Shah, 2011),

(Grambow, Oberhauser, & Reichert, 2015)), and the importance of providing access to

such knowledge ((Chau & Maurer, 2004), (Pee, Kankanhalli, & Kim, 2010), (Rabelo,

et al., 2015)). One possible explanation for the importance of knowledge is that it is

unlikely that all members of a software team will possess all of the knowledge

required for all software development activities, thus activities such as knowledge

sharing become important aspects of software development, facilitating the transfer of

knowledge between team members (Chau & Maurer, 2004). Knowledge can take the

form of being documented or undocumented (Rus.I, Lindvall.M, & Sinha, 2001), is

tied to the beliefs of the holder, and is organised by the flow of information, (Nonaka

& Takeuchi, 1995). Many authors have made the distinction between two primary

types of organisational knowledge, explicit knowledge and tacit knowledge ((Nonaka

& Takeuchi, 1995), (Rus.I, Lindvall.M, & Sinha, 2001), (Zack, McKeen, & Singh,

2009), (Holste & Fields, 2010)). Joia and Lemos (2010) define these knowledge types

as:

1. Explicit knowledge is described as knowledge which can be codified and

transferred easily.

2. Tacit knowledge is described as difficult to articulate in writing and is normally

acquired through personal experience.

Important to this research is the concept, characteristics, and the role of explicit and

tacit knowledge within organisations, both on a conceptual, and a practical basis (

113

(Polanyi, 1966), (Hansen, Nohria, & Tierney, 1999), (Nonaka & Takeuchi, 1995),

(Tsoukas, 2002), (Nonaka & Von Krogh, 2009)). There are acknowledged benefits

associated with explicit knowledge, such as reducing organisational uncertainty,

facilitated through the easy transfer of knowledge, using mediums such as periodical

reports, rules, operational standards, procedures and data analysis (Daft, Lengel, &

Trevino, 1987).

The second type of knowledge, tacit knowledge, is described as difficult to express in

formal language, comes from experience, perceptions and values, and is related to

context (Joia & Lemos, 2010). It is linked to practical intelligence, along with formal

knowledge and general aptitude ((Wagner & Sternberg, 1985)). Not all authors are in

full agreement regarding the definition of tacit knowledge. Gottfredson (2002) has

disagreed with the clear distinction made between academic intelligence and tacit

knowledge, as made by Wagner and Sternberg (1985) and Sternberg et al. (2000).

However a concession is made with an acknowledgement that the concept of tacit

knowledge does indeed lend itself to a form of wisdom (knowledge), which is

generally developed through experience or observation. Tacit knowledge has been

described as having the following characteristics according to Wagner and Sternberg

(1985):

 Practical rather than academic.

 Informal rather than formal.

 Tacit rather than directly taught.

Polanyi (1966) has considered tacit knowledge to be something personal, an ability or

skill, enabling one to do something or solve a problem, which is partly based on one’s

own experience and learning. As long as one uses appropriate language, a good deal of

knowledge is described as knowledge which can be shared easily among people. Chau

and Maurer (2004) described tacit knowledge as knowledge which is not usually

documented, and does not tend to be explicitly taught through formal training. To

facilitate knowledge transfer, in the case of tacit knowledge, there is a particular

dependence on individuals to engage in the practise of knowledge sharing ((Hansen,

Nohria, & Tierney, 1999), (Chau & Maurer, 2004), (Espinosa, Slaughter, Kraut, &

Herbsleb, 2007), (Pee, Kankanhalli, & Kim, 2010), (Desai & Shah, 2011)). The

114

challenges associated with the effort and willingness of team members to facilitate the

transfer of tacit knowledge has been highlighted by Pee et al. (2010) and Desai and

Shah (2011). The relevance of knowledge transfer to tacit knowledge is discussed in

greater detail in a forthcoming section. A subsequent section discusses knowledge

transfer and knowledge sharing, an area which has been identified as important to

software development ((Chau & Maurer, 2004), (Pee, Kankanhalli, & Kim, 2010),

(Cataldo & Ehrlich, 2012)), but which regularly faces significant challenges ((Pee,

Kankanhalli, & Kim, 2010), (Desai & Shah, 2011)).

Desai and Shah (2011) have highlighted the strong link between knowledge

management and software testing, stating that effective management of such

knowledge is essential to improving the quality of software testing. The approach to

knowledge management is something which has been shown to have a significant

effect on the role of tacit knowledge within organisations ((Hansen, Nohria, &

Tierney, 1999), (Leidner, Alavi, & Kayworth, 2008), (Kimble, 2013)). In keeping with

the second goal of this research i.e. the relationship between system test complexity

and tacit knowledge, there is a significant focus on the role which tacit knowledge

plays in software development environments, and in particular, the role which it plays

in software development tasks such as system testing. The importance of both explicit

knowledge and tacit knowledge has been emphasised by numerous authors ((Chau,

Maurer, & Melnik, 2003), (Desai & Shah, 2011), (Cataldo & Ehrlich, 2012)). The case

for research in the area of tacit knowledge (Joia & Lemos, 2010), and an emphasis of

the need for a greater understanding of this particular topic and the role which it plays

in software development processes, has been made by Ryan and O’Connor (2009) and

Dingsøyr and Šmite (2014).

3.2.1 The Importance of Knowledge Sharing

Nonaka and Von Krogh (2009) have emphasised knowledge transfer as a critical

component of the learning process, enabling the sharing of employee’s experiences,

mental models, and their beliefs and perspectives, so that knowledge is made available

to others. The combination of knowledge received from other sources, with one’s own

insights and beliefs, is described as contributing to the creation of new knowledge. The

115

benefits of knowledge sharing in terms of creativity have also been highlighted by

Wang et al. (2012). Knowledge sharing can be ad-hoc or organised within a project or

organisation, facilitated through formal communication. Dorairaj et al. (2012) and

Wang et al. (2012) have highlighted the importance of knowledge sharing to the

software development process, providing a clear link between the role of knowledge

and the success of software development teams. Chau and Maurer (2004) suggested

that it is most likely that there will always be some dependence on the knowledge of

colleagues amongst software development teams, and that it is unlikely that every team

members will possess all of the required knowledge to carry out all software

development activities.

The importance of the role of knowledge sharing is emphasised in the case of

geographically distributed work teams, an increasingly common characteristic of

software development environments ((Rus.I, Lindvall.M, & Sinha, 2001), (Espinosa,

Slaughter, Kraut, & Herbsleb, 2007)). Groups need to communicate and collaborate,

irrespective of time and location, and knowledge sharing is an important element of

such work arrangements, facilitating collaboration. The impact of knowledge on the

performance of a geographical dispersed team has been stated by Espinosa et al.

(2007). Knowledge is stated as playing a critical role, as the size of a geographically

dispersed team increases. Both knowledge relating to task familiarity, and directory

structure (knowing where to locate specific knowledge within the team), are important

elements of successful team performance (similar points have been echoed by Chau

and Maurer (2004)). The aforementioned factors are said have a substitutive rather

than a complementary relationship, as either type of knowledge increases. An

explanation for this is that having more task knowledge makes one less dependent on

colleagues, whereas having knowledge as to who holds what expertise, makes one less

dependent on task expertise (Espinosa, Slaughter, Kraut, & Herbsleb, 2007). The

importance of knowledge to the system test process has been emphasised by

Eickelmann and Richardson (1996), and Desai and Shah (2011).

Chau et al. (2003), Turk et al. (2005), and Moe et al. (2012), have acknowledged the

relationship between the applied development methodology, the approach to

knowledge management, and knowledge sharing. Some software development

methodologies such as agile have been described as being heavily reliant on the

116

communication of tacit knowledge via interpersonal contact. Chau at al. (2003) have

referred to traditional software development as striving to achieve idealistic goals via

Tayloristic processes. Such traditional models are described as relying on explicit

documentation in order to provide the process and product information, to enable team

members to effectively achieve their goals (Turk, France, & Rumpe, 2005). Handovers

between stages are primarily document based, incomplete, and often lead to

information loss between one development stage and the next (Chau, Maurer, &

Melnik, 2003). From another perspective, Traditional, Tayloristic, or Plan-driven

methods, are stated as reducing the risk of knowledge loss by investing in lifecycle

architectures and plans. This also provides the benefit of enabling the adoption of a

definitive stand that when requirements changes are introduced unexpectedly during a

project. The downside of this is that one can expect a higher probability of schedule

and cost overruns, as a result of adopting such an inflexible approach (Rajagopalan,

2014).

Turk et al (2005) have argued that there is an increased importance of tacit

communication via personal contact, given the movement away from traditional

development strategies, which many see as rigid, plan driven models (Chau, Maurer,

& Melnik, 2003). This has resulted in a decreased reliance on explicit knowledge,

through a reduction of the length of communication chains, and a corresponding

increased reliance on direct, face-to-face communication, for relevant tacit knowledge.

The success of agile development methodologies is based on team members

understanding, experience, and their ability and willingness to share applicable, tacit

knowledge. This is carried out on a continuous, informal basis, between software

development team members, and customers (Turk, France, & Rumpe, 2005). Turk et

al. state, that when the team’s tacit knowledge is sufficient for the application’s life-

cycle needs, things work fine, but that there is also the risk that the team will become

overly dependent on experts, and may suffer from “corporate memory loss”, either of

which could result in unrecognized shortfalls in available tacit knowledge. The core

characteristics of knowledge sharing are discussed in the following section before a

more detailed discussion on the concept of tacit knowledge.

117

3.2.2 The Core Characteristics of Knowledge Sharing

Pee et al. (2010) have identified the core elements associated with knowledge sharing

based on the communication perspective of Berlo (1960). The communication

perspective identifies sender, receiver, channel, transmission, and effect as the basic

elements of communication, described as inherent in knowledge sharing.

1. Sender relates to the knowledge source.

2. Receiver is described as the entity acquiring the knowledge.

3. Channel corresponds to the medium through which knowledge is shared.

Examples of face to face meetings, computer, phone, documentation etc. are

provided.

4. Transmission relates to the actual process and activity of sending and receiving

knowledge through particular channels. The effectiveness of transmission is

impacted by factors such as motivation and the social relationships.

5. Effect refers to the end result of any knowledge sharing exercise such as

performance, learning, and satisfaction.

Relevant factors which are stated as influencing the source of knowledge are the

sources command of language, the ability to express knowledge clearly, experience,

credibility, etc. The knowledge recipients ability to utilise knowledge (also referred to

by Hsu et al. (2011)) is also described as important along with the richness of the

communication channel, the environment in which the communication take place, and

the nature of relationships between relevant stakeholders.

In their related investigation of the interdependence of subgroups involved in software

development, Pee et al. (2010) have acknowledged the relevance of the theory of

social interdependence (credited to Deutsch (1949), but having its origins Lewin

(1935)). In line with this theory, Pee at al. (2010) have focussed on the

interdependence of goals, tasks and rewards between subgroups, and the influence of

goals, tasks and rewards on the immediate and future outcomes of other subgroups. In

the context of information systems development, social interdependence is described

as playing an important role in understanding knowledge sharing in development

projects. Perceived social interdependence is focussed on, rather than actual

118

interdependence, because in line with the views of Johnson and Johnson (2005),

behaviour is determined by how a situation is perceived, rather than objectively

assessed. Pee et al. (2010) have identified goal, task and reward interdependence as:

 Goal interdependence is described as going beyond goal alignment, and

requiring that subgroups goals are not only compatible, but also that there is a

perception of a reliance on common goal attainment between subgroups. The

goal of successful system completion has been identified as a common goal

amongst groups involved in the implementation of information systems. It is

stated, in line with the social interdependence theory as outlined by Deutsch

(1949), that interactions will be promoted when there is a perceived

interdependence between subgroups.

 Task interdependence refers to the perception of the extent to which any

particular subgroup is dependent on another particular subgroup to successfully

carry out their work. When subgroups tasks are perceived as to be

interdependent, there is an increased likelihood of the promotion of interactions

between subgroups.

 Reward interdependence is related to the perception that the rewards of a

subgroup are dependent on the performance of another subgroup. Reward

interdependence is based on the assignment of rewards to a subgroup and the

subsequent effect, if any, on the performance of another subgroup.

As a result of the research by Pee et al., it was found that goal, task, and reward

interdependencies are significantly related to the process of knowledge sharing

between subgroups which are involved in software development. A strong relationship

was found between knowledge sharing, the goal, task and reward interdependencies,

and software development project performance. It was also found through this research

that perceived goal interdependence, significantly influenced task interdependence.

Knowledge sharing was not found to be significantly affected by indirect factors such

as prior collaboration history, project phase, team size, project complexity, and project

contract type.

119

Regarding facilitating knowledge sharing, an important consideration in any

development environment is a strong relationship between the quality of social

interaction ((Ryan & O’Connor, 2009), (Talby, Karen, Hazzan, & Dubinsky, 2006),

(Moe, A.B., & Dybå, 2012)). This is discussed in more detail in the following section.

Socialisation Difficulties associated with Knowledge Sharing

Hsu et al. (2011) have highlighted the importance of the work environment in enabling

knowledge sharing within teams, along with a required ability to utilise such

knowledge. Ryan and O’Connor (2009) have specifically made reference to the

important link between tacit knowledge, social interaction, and the achievement of

project goals. Talby (2006) and Moe et al. (2012) have stated that the link between

social interaction and the achievement of project goals is of particular importance in

relation to agile software development. Difficulties associated with knowledge sharing

and system testing have been identified by Desai and Shah (2011), who state that a

socialisation approach to knowledge sharing, involving the transfer of tacit knowledge

between individuals, is described as having certain difficulties, and is affected by the

following factors:

1. General lack of time to identify colleagues in need of specific knowledge.

2. Apprehension or fear that sharing may affect job security.

3. Low awareness and realization of value and benefit of possessed knowledge to

others.

4. Dominance in sharing explicit over tacit knowledge such as know-how and

experience that requires hand-on learning, observation, dialogue and

interactive problem solving.

5. Use of strong hierarchy, position-based status and formal power.

6. Insufficient capture, evaluation, feedback, communication and tolerance of

past mistakes that would enhance individual and organizational learning

effects.

7. Differences in experience and educational levels.

8. Poor verbal/written communication and interpersonal skills.

9. Age and gender differences.

10. Lack of social network.

120

11. Taking ownership of intellectual property due to fear of not receiving just

recognition and accreditation from managers and colleagues.

12. Lack of trust in people because they may misuse knowledge or take unjust

credit for it.

13. Differences in national culture or ethnic background and values and beliefs

associated with it.

Joia and Lemos (2010) have highlighted similar concerns to the ones highlighted

above, but also, in line with the core characteristics identified by Pee et al. (2010),

they have highlighted transmission and communication channel impacts, detailing

factors such as time management issues, common language, mutual trust, relationship

network, type of training, knowledge transference (is the organisational capable of

explicit knowledge management?),knowledge storage, power, favourable environment

for questioning, type of valued knowledge (whether it’s embodied tacit knowledge),

and media used. As well as possible difficulties associated with the transfer of

knowledge, also highlighted are incentives in the form of rewards. Rewards are core to

knowledge sharing ((Rus.I, Lindvall.M, & Sinha, 2001), (Joia & Lemos, 2010)), and

should form part of employees’ goals, covering both those with considerable expertise,

and those that facilitate the transfer of knowledge. Rewards should also cover both

know-how as well as formal knowledge. The introduction of penalties to encourage the

transfer of tacit knowledge is not considered a viable alternative (Joia & Lemos, 2010).

This section has dealt with the role of both explicit and tacit knowledge in software

development. The following section discusses the specific concept of tacit knowledge

in greater detail.

3.3 Detailed Discussion on Explicit and Tacit Knowledge

Previous sections have highlighted the role which both explicit knowledge and tacit

knowledge plays in Traditional and Agile software development environments. In an

Agile development environment, that there is a greater potential for formal

documentation and explicit knowledge, to be replaced by informal communications

121

among software development team members, via continuous feedback between

development teams and customers (Turk, al., France, & Rumpe, 2000). The following

sections highlight the different perspectives relating to the concept of explicit and tacit

knowledge, a term credited to Polanyi (1966). Discussed are contrasting views of

authors such as Hansel et al. (1999), Nonaka and Von Krogh (2009), Tsoukas (2003),

Ribeiro and Collins (2007), with reference to the concept of tacit knowledge,

knowledge creation, and the theory of knowledge conversion. The increasingly

important role which tacit knowledge plays in the software development process has

been emphasised by Rus et al. (2001), and the necessity for a greater understanding of

this particular topic, has been expressed by Ryan and O’Connor (2009) and Dingsøyr

and Šmite (2014).

3.3.1 Explicit Knowledge/Tacit Knowledge debate

Whereas explicit knowledge is stated as having universal character, employed

consciously, and not tied to any particular context. Tacit knowledge is described as

being tied to actions, procedures, commitments, ideals, values and emotions, with a

strong relationship to past experiences, true beliefs, and the actions of intuition, and

implicit rules of thumb (Nonaka & Von Krogh, 2009). Holste and Fields (2010) have

described tacit knowledge in similar terms, as being tied to ones abilities, developed

skills, experiences, undocumented processes, and ‘‘gut-feelings’’, etc. It is not

surprising that the concept such as intuition, described as where one is unable to

consciously account for the relationship, between problem, and solution (Dane & Pratt,

2007), is identified as having a strong relationship to tacit knowledge (Nonaka & Von

Krogh, 2009).

Tacit knowledge is described as being acquired with little environmental support, and

not through formal means (Ryan & O’Connor, 2009). Nonaka and Von Krogh (2009)

have asked a number of questions relating to organisational knowledge creation, and

the relationship between explicit knowledge and tacit knowledge. Explicit knowledge

and tacit knowledge are described as both being conceptually distinguishable along a

continuum. Tacit knowledge is described as being accessible through consciousness if

it leans towards the explicit side of the continuum. However, most of the knowledge

122

relating to skills, due to their embodiment, is described as being inaccessible through

consciousness. The view of Nonaka and Von Krogh (2009) differ from the views of

Polanyi (1966) and Tsoukas (2003) regarding the proposition of the concept of

knowledge externalisation (conversion of tacit knowledge to explicit knowledge).

As previously highlighted, Polanyi (1966) has considered tacit knowledge to be

something personal, an ability or skill to do something or solve a problem, partly based

on one’s own experience and learning. As long as one uses appropriate language, a

good deal of knowledge can be shared among people but not all knowledge. Numerous

authors have referred to the benefits associated with attempting to make knowledge

within an organisation explicit and available ((Basili, Lindvall, & Costa, 2001),

(Hansen, Nohria, & Tierney, 1999), (Ryan & O’Connor, 2009)). These views are

based on the assumption that a significant amount of knowledge within organisations

can actually be made available as explicit knowledge, and therefore can be stored in

knowledge and experience management databases. Ryan and O’Connor (2009)

maintained that some tacit knowledge can be articulated, and can therefore be

transformed into explicit knowledge, which may be useful for team performance

within organisations.

Acknowledging the concept of tacit knowledge to explicit knowledge conversion,

authors such as Hansen et al. (1999) have warned against the dangers of attempting to

convert the majority of knowledge within an organisation to explicit knowledge, citing

a spectacular failure at Xerox. Xerox attempted to replicate the expertise of service-

men into an expert system, embedded in their photocopiers. It eventually transpired

that the expert system could not replicate the knowledge which is necessary to deal

with every different issue which was resolved by the service and repair men on a

regular basis, some of which was on the job knowledge acquired on a regular basis,

through sharing knowledge between the employees.

The acquisition of tacit knowledge, such as that employed by the Xerox servicemen in

order to solve field issues (Hansen, Nohria, & Tierney, 1999), is something which has

been touched on by Steinberg et al. (2000), and Ryan and O’Connor (2009). Research

by Ryan and O’Connor has found that tacit knowledge affecting team performance on

successful software projects is not actually written down, and formalised in work

123

practices, rather it’s more practical or work experienced based. This view is an

endorsement of the similarly held views of Polanyi (1966) and Nonaka and Takeuchi

(1995). As previously mentioned, it has been suggested that some tacit knowledge can

be articulated, and can therefore be transformed into explicit knowledge which may be

useful to team performance within organisations, from a general software perspective

((Ryan & O’Connor, 2009), (Holste & Fields, 2010), (Joia & Lemos, 2010)), and

specifically from a geographically distributed development team perspective

(Espinosa, Slaughter, Kraut, & Herbsleb, 2007). This conversion of knowledge has

been dealt with in detail as part of Nonaka’s knowledge creation theory (Nonaka,

1994), and knowledge conversion theory (Nonaka & Takeuchi, 1995), both of which

are discussed in the forthcoming section.

3.3.2 Knowledge Conversion

Daft et al. (1987), Hansen et al (1999), Leidner et al. (2008), Nonaka and Krogh

(2009), and Murphy and Salamone (2013) have all highlighted the importance of

making created knowledge widely available, and connected to an organization’s

knowledge system. An area which has also been discussed in great details by authors is

the conversion of knowledge from tacit knowledge to explicit knowledge ((Nonaka &

Takeuchi, 1995), (Hansen, Nohria, & Tierney, 1999), (Tsoukas, 2002), (Ribeiro,

2007), (Murphy & Salomone, 2013)). Notwithstanding the importance of groups to

organisations, Rus et al. (2001) have stated that ultimately it is the individual who

performs tasks in any attempt to achieve organisational goals, and therefore within any

organisation, knowledge and learning at the individual level is of the utmost

importance. The work of groups is described as being wholly dependent on the ability

of the individual group members, to apply their knowledge ((Rus.I, Lindvall.M, &

Sinha, 2001), (Tsoukas, 2002)). Knowledge conversion, something which happens at

the individual level, is something which Nonaka and Von Krogh (2009) believe helps

explain the interaction between explicit knowledge and tacit knowledge. To give

credibility to the argument of knowledge conversion, Nonaka and Takeuchi (1995) use

an example of Matshusita’s bread-making machine:

124

A product development group at a company was failing to produce a product that

could produce good bread. The issue they had is described as being technical; the

main issue was that the dough could not be kneaded in a way that brought sufficient

air and lightness to the bread. A young engineer named Tanaka acquired the

necessary tacit knowledge required to adequately knead the dough from jointly

working with a local master baker at a nearby hotel. Upon returning to the company

Tanaka made the knowledge explicit by illustrating to the product development group

how the master baker handled and kneaded the dough.

Analysis of the story has been provided by Ribeiro and Collins (2007). In a bid to

clarify the distinction between tacit knowledge and explicit knowledge, and building

on further work by Collins and Kusch (1998), Ribeiro and Collins have distinguished

between polimorphic behaviour, which is used in describing the tacit knowledge

element of the master bread maker, and mimeomorphic behaviour, referred to as a

mimicking of original behaviour of the baker, which was based primarily on tacit

knowledge. Kneading, although it proved to be a process which could be imitated, is

described as mastered only as a piece of tacit knowledge by humans, described in

similar terms to riding a bicycle. The authors argue that imitation of behaviours based

primarily on tacit knowledge i.e. mimeomorphic behaviour, does not necessarily

equate to similar behaviour in related circumstances, which the original tacit

knowledge, would enable. Riding a bike is given as an example; because you can

automate the balance associated with riding a bike, which could be determined as

mimeomorphic behaviour, this does not mean that you necessarily appreciate all the

nuances with riding a bike, such as riding a bike in traffic etc. something which could

be considered polimorphic behaviour. The way the bread-maker mixes and kneads,

differs from the way it is done by the Japanese bread-making machine and probably

differs from the way humans do it, but in this case the imitation of the exact behaviour

associated with the kneading act, proved adequate for machine performance.

Ribeiro and Collins (2007) have provided support for Nonaka and Takeuchi (1995) as

part of the distinction made between explicit knowledge and tacit knowledge.

However, it is argued that at the end of the example given by Nonaka and Takeuchi

(1995), that the master baker’s tacit knowledge has been neither fully explained, nor

incorporated into the bread-making machine. Advice and instructions may aid the

125

mastery of polimorphic actions, but the advice cannot replace experience associated

with such actions (Hedesstrom, 2000).

Tsoukas (2002) has argued that tacit knowledge conversion is not sustainable. This

argument, in line with the views of Polanyi (1962), is that tacit knowledge and explicit

knowledge are not two ends of a continuum but rather described as “two sides of the

same coin”, with even the most explicit of knowledge is supported by tacit knowledge.

Tsoukas accepts the views expressed by Polanyi (1962), that tacit knowledge consists

as a set of supporting ancillary knowledge, which we are aware of as we focus on

something else. An example is provided related to the task of hammering a nail. The

primary focus is on the nail, with tacit knowledge manifesting itself as effable

knowledge of either the hammer or the swing. According to Tsoukas (2002), tacit

knowledge is completely intertwined with the associated focus with which it is linked

and efforts to separate tacit knowledge from that focus, for it to be examined

independently, risks losing the true meaning of such knowledge. Thus the true

meaning of such knowledge cannot be articulated, and is therefore lost in conversion.

It is argued that the meaning of tacit knowledge is derived from the connection to a

particular focus. When we focus on a new set of particulars, it is a new context of

action, demanding a new set of ancillary knowledge, thus rendering the notion of a

conversion from tacit knowledge to explicit knowledge, as outlined by Nonaka and

Takeuchi (1995), unsustainable. Even though, in line with the aforementioned views, it

is maintained that we cannot fully discuss skilled performances in which we are

involved, Tsoukas does entertain the notion that we can command a clearer view a

particular tasks, if we remind ourselves of how we do things. If done, distinctions

which we had not previously noticed may be brought to our immediate attention.

Contrary to the views of Ambrosini and Bowman (2001), which enforces the necessity

to externalise (make explicit) tacit knowledge, it is argued that we need to find new

methods of talking, connecting and interacting, in order to create tacit knowledge.

Tacit knowledge cannot be captured, translated, or converted, only displayed in what

we do. Therefore it is only through social interaction that new knowledge is created

(Tsoukas, 2002).

126

Nonaka and Von Krogh (2009) have stated that there are three major aspects to

arguments against the notion of knowledge conversion from explicit knowledge to

tacit knowledge:

1. The conceptual basis.

2. The relationship of knowledge conversion in social practice.

3. The outcome of knowledge conversion.

Cases against knowledge conversion on the conceptual basis are described as being

based on the original views of Polanyi (1966). The accepted premise is that tacit is

knowledge is essentially inexpressible, therefore it can never be converted or

externalised and written down in explicit form. Another argument stream centres

around the relationship between knowledge conversion and social practice, based on

the view that in Nonaka and Takeuchi (1995) “Matshusita’s bread-making machine”

story, that Tanaka acquired tacit knowledge by working jointly with the master baker.

This view that tacit knowledge is only ever created through social interaction has been

emphasised by Hedesstrom (2000), and Tsoukas (2002). The third argument stream,

relates to the outcome of knowledge conversion. As previously referred to, author’s

such as Ribeiro and Collins (2007) have argued that although certain aspects of the

master baker’s behaviour was incorporated into the bread making machine, that this

merely relates to an imitation of certain aspects of the master baker’s bread making

process, and does not constitute a conversion to explicit knowledge, of any aspect of

the master baker’s tacit knowledge.

Nonaka and Von Krogh (2009) responded to the criticism of both Tsoukas (2002) and

Ribeiro and Collins (2007), as part of an attempt to justify the concept of knowledge

conversion in the face of criticism. Nonaka and Von Krogh justified knowledge

conversion, based on the premise of a tacit knowledge to explicit knowledge

continuum, figure 3.4.

127

Tacit

Knowledge

Explicit

Knowledge

Tacit Knowledge to Explicit Knowledge Continuum (Nonaka and Takeuchi (1995))

Figure 3.4: Tacit Knowledge to Explicit Knowledge Continuum..

The premise of all explicit knowledge being founded in tacit knowledge is core to the

argument of Nonaka and Von Krogh (2009). They have referred to the views of Day

(2005), who has stated that some tacit knowledge must be the basis for explicit

knowledge. The work of scientists is given as an example. The centre of all scientific

investigation must be the ability to make explicit, tacit knowledge relating to such

things as discovery processes, the results of scientific improvisations with instruments

in the laboratory, and errors to avoid when attempting replicate the experiments. Thus,

it has been suggested by Day, and by Nonaka and Von Krogh, that some knowledge

may move along the continuum, from tacit knowledge to explicit scientific knowledge,

to become knowledge which is independent of the scientist themselves. Hedesstrom

(2000) has made an attempt at reconciling the views of Nonaka and Von Krogh,

Polanyi (1966), and Tsoukas (2002). They state that the views of the aforementioned

authors can be encapsulated by distinguishing between tacit knowledge: which has not

yet been formalised because of the following reasons:

1. Tacit knowledge which has not been formalised because of cost or time

limitations.

2. Tacit knowledge which has not been formalised because of the form of the

knowledge, such as embodied knowledge.

The concept of an explicit knowledge to tacit knowledge continuum is increasingly

being discussed in literature (Hedesstrom, 2000). Such a continuum backbones the

argument by Nonaka and Von Krogh (2009) relating to knowledge conversion, also

enabling organisations the capability of distinguishing between organisational

knowledge assets which are quite tangible, such as technology and procedures, and

128

knowledge which is described as demanding “thick” levels of interpretation, such as

organisation culture or expertise. The ability to make such distinctions between the

knowledge assets of a firm is said to aid management practice. The authors clarify

their viewpoint, stating in line with the organisational knowledge creation theory, that

not all knowledge is capable of being made explicit. Knowledge relating to

physiology, sensory and motor function, is stated as not lending itself to being

articulated and detailed. The argument which Ribeiro and Collins (2007) have made,

regarding the master bakers tacit knowledge being explicated and made explicit is

described as a misinterpretation of the original text of Nonaka and Takeuchi (1995).

The argument is made that some explicit knowledge can enable machines to solve very

specific, constrained problems, but as referred to by Dreyfus and Dreyfus (1986),

expert knowledge can never be fully captured in computer software due to the

existence of embodied tacit knowledge.

In support of the theory of knowledge conversion, Nonaka and Von Krogh (2009)

have stated that after individuals acquire explicit knowledge, that knowledge is

internalised through acting on that acquired knowledge, through action, practise and

reflection. To reinforce this view, Nonaka and Von Krogh, have detailed studies, such

as those carried by Chou and He (2004), as providing evidence of knowledge

conversion. A survey was conducted of 204 organisations in a variety of industries,

with a concentration on knowledge conversion and knowledge assets. As part of this

research a distinction was made between four different types of organisational

knowledge assets:

1. Experiential knowledge assets: this type of tacit knowledge asset is built

through shared hands-on experience amongst members of an organisation. It is

stated as also relating to emotional knowledge such as care, love, and trust.

2. Conceptual knowledge assets: this knowledge is described as explicit

knowledge, articulated through images, symbols, and language. Such assets are

described as communicated through models, analogies, and metaphors.

3. Systemic knowledge assets: this consists of systematic and packaged explicit

knowledge, consisting of elements such as technologies, product specifications,

manuals, and organisational documents and information. Such knowledge is

often stored in a knowledge repository.

129

4. Routine knowledge assets: this consists of tacit knowledge relating to the

routine work practices and actions of an organisation.

The relationship between these knowledge assets and the following knowledge

conversion variables was investigated:

 Socialisation: the process of creating tacit knowledge through shared

experience.

 Internalisation: the process of embodying explicit knowledge into tacit

knowledge.

 Externalisation: the process of embodying tacit knowledge into explicit

knowledge.

 Combination: the combination, editing and processing of explicit knowledge to

form new explicit knowledge.

Conceptual

Knowledge Assets
Internalisation

Externalisation

Combination

Socialisation
Systemic

Knowledge Assets

Routine Knowledge

Assets

Experienetial

Knowledge Assets

Knowledge Assets and Knowledge Conversion (Chou and He (2004))

Figure 3.5: Knowledge Assets and Knowledge Conversion.

130

Figure 3.5 details the relationships that were found as a result of the study carried out

by Chou and He (2004). It was found that all knowledge assets contributed to

knowledge creation, with conceptual knowledge having the most significant effect,

and systemic knowledge assets found to have the least significant effect on knowledge

creation. Internalization and externalization variables were found to have the strongest

relationship to conceptual knowledge assets. Experiential knowledge was found to

have a strong relationship to the combination variable and internalisation. There was a

weak relationship found between systemic knowledge assets and the combination

variable but this was not deemed significant enough, in comparison to the other

relationships, to be detailed.

In further support of Nonaka and Von Krogh (2009), and the concept of knowledge

conversion, are the views expressed by Sun et al. (2001). A model for skill learning,

based on implicit (procedural knowledge) is developed. A distinction is made between

top-down knowledge, whereby declarative knowledge is turned into procedural

knowledge through practise, and bottom-up knowledge where procedural knowledge

comes first and then declarative knowledge i.e. implicit knowledge comes first, then

explicit knowledge relating to how to perform a particular task. It is claimed that

models adopting a top-down approach, are more common in literature, with most

claimed to focus on learning, taking instructions/examples and turning them into

procedural skills. Investigation is carried out by the authors on a bottom-up approach,

allowing for the capture of both procedural and declarative knowledge, with the

acquisition of procedural knowledge prior to, or simultaneous to, the acquisition of

declarative knowledge. When there is no sufficient, relevant, a priori knowledge

available, learning may occur on a bottom-up basis, with implicit knowledge the

primary influence, and explicit knowledge the secondary influence. Under such

circumstances, on undertaking a task, relevant past experiences are retrieved

implicitly, with a response selected. Such responses may be based on previously stored

instances, or the summarisation of instances. These instances are used by comparing

against a current situation, and depending on similarity, a response is formed which is

specific to the current situation.

131

In line with the views of Anderson (1983), Sun et al. (2001) have stated that, when

skill has been derived from declarative knowledge, that over time and with practice,

that procedural knowledge can be used with minimal declarative knowledge necessary.

The reference to the externalisation of explicit knowledge from tacit knowledge

provides a strong link to the work of Nonaka and Von Krogh (2009). It has been

proposed that explicit knowledge lags behind tacit knowledge and is actually extracted

from tacit knowledge. Although, in line with the model proposed by Sun et al. (2001),

declarative knowledge plays a secondary role in bottom-up skill development, the

importance of declarative knowledge is emphasised as often speeding up the learning

process, facilitating the transfer of skill by speeding up learning in new settings.

Declarative knowledge is also stated as facilitating the communication of knowledge.

An example of explicit to tacit knowledge conversion is stated as being provided

through the work of Ashby et al. (1998), who carried out research as to the existence

of separate verbal and implicit learning systems, deemed particularly important in the

case of individuals with learning, verbal, and memory affecting medical conditions,

such as Parkinson’s and Amnesia. It was found that an individual may acquire explicit

knowledge through both verbal and procedural learning systems, and that with training

and experience, that tacit knowledge may actually become more important in solving

that task over time. Further credibility is given to the idea of knowledge conversion by

Rus et al. (2001) who have referred to the relevance of the knowledge transformation

spiral, figure 3.6 (as outlined by Nonaka and Takeuchi (1995)), in their development

of an approach to knowledge management.

132

(Nonaka and Takeuchi (1995))

Figure 3.6: The Knowledge Spiral.

According to Rus et al. (2001), a significant principle of the spiral is that that

knowledge is enriched when shared and is not diminished through use. In order for

knowledge to be transferrable, it must first be transformed into information

(externalised) which involves the process of capturing information about knowledge.

Knowledge must then be converted back from information into knowledge

(internalised), which involves the process of understanding, putting it into context with

one’s own existing knowledge, thereby transforming the information into knowledge.

Some concerns have been highlighted regarding application of the model as proposed

by Nonaka and Takeuchi (1995), which Nonaka and Von Krogh (2009) take the time

to address. As previously referred to, Nonaka and Von Krogh (2009) have asked a

number of questions relating to organisational knowledge creation and the relationship

between explicit knowledge and tacit knowledge. Both explicit knowledge and tacit

knowledge are described as both being conceptually distinguishable along a

continuum. Tacit knowledge is described as being accessible through consciousness, if

it leans towards the explicit side of the continuum. It is suggested that tacit knowledge

is bound by rules associated with social practice. An example is given of a pianist, who

learns the rules of performance including skills, values, beliefs, and norms associated

133

with the social practice of piano playing. An argument against a tacit / explicit

continuum is provided by Tsoukas (2003), who appear to enforce the opinion of all

tacit knowledge being embodied, providing Polanyi’s (1962) analysis in relation to

map reading. No matter how elaborate a map is, it cannot read itself but rather requires

the judgement of a skilled reader who will relate the map to the world through both

cognitive and sensual means (Polanyi, 1962).

It is this description of tacit knowledge, as being very much embodied, which is at

odds with the views of Nonaka and von Krogh (2009). The identification of aspects of

tacit knowledge, such as social considerations, albeit we may be subconsciously aware

of them, appears to separate the views of Polanyi (1962), and Nonaka and Von Krogh

(2009). Social practices in organisations, involving members with varying experiences

of different social practices (and thus diverse tacit knowledge), have been argued by

Nonaka and Von Krogh (2009), as being an important source of knowledge creativity.

It is argued through knowledge conversion (externalisation and combination), that a

member’s diverse tacit knowledge, at least partly acquired through diverse social

practices, can lead to new ways of defining problems, and new ways of searching for

solutions. Knowledge creativity is a topic which has been identified as an important

element of software testing (Desai & Shah, 2011).

This section has dealt with the subject of tacit knowledge. Desai and Shah (2011) have

highlighted the importance of a structured approach to knowledge management, in the

case of software testing. This is described as being of particular importance in the case

of tacit knowledge and something which can eventually result in a reduction in time,

cost, and effort, for software testing. Knowledge management is discussed in greater

detail in the following section.

3.4 Approaches to Knowledge Management

This management of knowledge in software engineering relates to the ultimate goal of

capitalizing on an organisations intellectual capital, something which is described as

important to the software development process ((Rus.I, Lindvall.M, & Sinha, 2001),

134

(Dingsøyr & Šmite, 2014)). This goal is achieved through a process of knowledge

creation, sharing, and capture in organisations (Nonaka & Von Krogh, 2009). Desai

and Shah (2011) identified the benefits of a managed approach to both explicit and

tacit knowledge, particularly in the case of software testing. Frameworks have been

put forward for the management of knowledge in a software development

environment, enabling consistent access to knowledge ((Rus.I, Lindvall.M, & Sinha,

2001), (Von Krogh, 2012)). In a review of empirical studies relating to knowledge

management of global software development projects, Dingsøyr & Šmite (2014) have

put forward five common approaches to knowledge management:

1. Systems school: related to the application of techonlogy for knowledge

management e.g. knowledge repositories.

2. Cartographic school: related to the knowledge maps and the creation of

knowledge directories. Such an approach is useful for storing knowledge

relating to resources, skills, projects opportunities etc.

3. Engineering school: such an approach focusses on processes and knowledge

flow within organisations. This has been referred to as focussing primarily

on processes for mapping knowledge, conducting project retrospectives,

accomodating mentoring programs, and catering for detail relating to work

processes e.g. CMM (the capability maturity model). This model is stated as

being primarily based on explcit knowledge.

4. Organisation school: this approach is concerned with networks for sharing

or pooling knowledge. This is often put into practise by way of communities

of practise related to a common topic of interest. It is stated that such

communities facilitate the transfer of both tacit knowledge and explcit

knowledge, with the explcit knowledge transfer, typically being less formal

than the case of knowledge repositories.

5. Spatial school: this approach is related to how an office space can facilitate

the knowledge management. This can range from setting up whiteboards, to

the use of an open plan office structure to encourage engagement. A popular

use in the case of an agile approach to software development, is the use of

taskboads, which relate to project status and visible to stakeholders. This

approach is staed as being dependent on colocation and appears to work well

for smaller teams.

135

Those global organisations employing a more traditional approach to software

development are stated as predominantly relying on systems or engineering schools,

whereas those working in accordance with agile methodologies are stated as relying on

spatial and organisational schools. The cartographic school is stated as providing a

cost-effective means of knowledge management, irrespective of the employed

development methodology.

Even with the recognised knowledge management systems that are available,

providing required knowledge to the appropriate people within organisations, still

remains a major issue (Grambow, Oberhauser, & Reichert, 2015). This might be

explained by the fact that such approaches demand a considerable time and effort, both

at an individual and organisational level (Rus.I, Lindvall.M, & Sinha, 2001). The

following sections deal with some concerns associated with the management of

knowledge.

3.4.1 Consideration of the Development Environment

The aforementioned might be explained in some part, by the fact that there are

different approaches required regarding knowledge management, depending on the

software development approach which is being applied. For instance, Chau and

Maurer (2004) described Tayloristic and Agile methods as necessitating different

training mechanisms, to encourage the transfer of knowledge. Formal training sessions

are required in the case of Tayloristic methods, and informal practices in the case of

agile methods. An example given is pair programming, used in the case of XP, which

involves software developers carrying out work in pairs. Formal training has the

advantage of allowing training content and practices, to be standardized and applied

consistently, across organizational teams. The downside is that formal training is

expensive, resulting in a loss of development time for both the trainers and the

trainees. It is claimed that informal training practices, as applied in the case of Agile

practices such as XP, can result in learning curves being significantly reduced,

136

communication and coordination improved, and the sharing of tacit knowledge

facilitated.

Rus et al. (2001) have highlighted some of the drivers in software development

organisations, for the adoption of knowledge management approaches. These drivers

relate to both business needs, and knowledge needs:

Business needs:

 Decreasing time and costs, and increasing quality: This primarily relates to an

avoidance of mistakes relating to previous projects, through the

acknowledgement and explicit documentation of such process knowledge,

enabling ease of access for future projects.

 Enabling better decision making: Leveraging of individual knowledge to

enable better decision making to be made at group, and organisational levels.

Knowledge needs:

 Acquiring knowledge about new technologies: organisations must acquire

knowledge quickly about newly adopted technologies in order to avoid delays

associated with learning by doing approach.

 Accessing domain knowledge: Software development requires domain

knowledge relating to not only the system and development environment, but

also relating to the final deployment site.

 Sharing knowledge regarding local policies and practices: while the informal

dissemination of knowledge relating to software development practices is

important, such knowledge should be made formal, where possible. This allows

all organisational employees to benefit from access to such knowledge.

 Capturing knowledge relating to who knows what: knowledge of “who knows

what” within an organisation is essential to creating a strategy. The goal of

which is to avoid a situation which may occur through attrition, whereby

knowledge is not fully appreciated until it is actually lost. This has been

referred to as directory structure by Chau and Maurer (2004), and is described

as being primarily tacit in nature. It is stated that people in software

organisations spend up to 40% of their work time searching for, and accessing,

different types of information related to projects, Henninger (1997). In the

137

absence of employee’s expertise, people are stated as spending 3-4 days of any

project locating experts.

 Collaborating and sharing knowledge: the collaboration and sharing of

knowledge within software development teams is a very important activity,

irrespective of the geographical dispersion of the teams.

Basili et al. (2001) have highlighted some similar drivers to that of Rus et al. (2001),

specifically those relating to the avoidance of previous project mistakes, employee

attrition, organisation processes, and team collaboration i.e.:

 The costly repetition of mistakes, which if documented from a previous project

could have been avoided.

 The impact of the sudden departure of an employee.

 The lack of knowledge availability regarding current organisational processes

or products due to no-documentation of same.

 The non-availability of knowledge to enable accurate estimation of potential

projects.

3.4.2 Accommodating an Ad-hoc or Formalised Knowledge Transfer Strategy

Nonaka and Von Krogh (2009) have stated that knowledge transfer can be ad-hoc or

organised within a project or organisation, facilitated through communication. If this

communication and sharing of knowledge is systematic, and there is a process in place

to document it, then exchanged knowledge may be captured and organized into

organisational or group memory. Authors such as Leidner (2008) and Hansen et al.

(1999) have shown that knowledge sharing is important to all types of organisations,

regardless of the knowledge management strategy employed. Leidner et al. (2008) has

stated that organisations have traditionally adopted one of two approaches to

knowledge management. The first approach involves a focus within the organisation

on communities of practice, or alternatively, the second approach focuses on

facilitating the process of creation, sharing, and the distribution of knowledge. While

organisations may adopt different aspects of both approaches, both approaches are

claimed to present different challenges. The first approach is said to be cognisant of

138

the fact that a great deal of organisational knowledge is in fact held tacitly. Formal

processes and technologies are stated as not being suitable for enabling the

transmission of such knowledge. The approaches to knowledge management from both

a community perspective, and a process perspective, have also been referred to as

personalisation or codification approaches, respectively (Hansen, Nohria, & Tierney,

1999). Facilitating the knowledge of tacit knowledge is of particular importance in the

case of a personalisation/communities of practice approach to knowledge management

((Hansen, Nohria, & Tierney, 1999), (Leidner, Alavi, & Kayworth, 2008)).

Hansen et al. (1999) have provided examples of different approaches to knowledge

management and knowledge sharing, as employed by technology giants such as Dell

and HP. Dell are described as investing heavily in an codification approach, providing

access to knowledge using electronic storage and access to knowledge, whereas HP

are described as adopting a personalisation approach, investing in enabling efficient

access to personal (tacit) knowledge, enabled by actively promoting person to person

meetings, albeit at significant organisational cost. Another key point raised, is that

firms which rely heavily on explicit knowledge, tend to fare better with a codification

(externalisation) approach to knowledge sharing, whereas firms which rely

predominantly on tacit knowledge tend to fare better with a personalisation (or

socialisation focussed) approach to knowledge sharing. These views would appear to

be in line with the views of Chou and He (2004). The following sections discusses in

more detail, personalisation and codification approaches to knowledge management.

3.4.3 Adoption of a Personalisation Approach to Knowledge Management

Rus et al. (2001) have made reference to communities of practice approach to

knowledge management, whereby a group of individuals team up to work on a project,

or develop a product. Such an approach has also been referred to as a personalisation

approach by Hansen et al. (1999). This approach to knowledge management

recognises social environments and communities, as the primary means for facilitating

the sharing of knowledge ((Leidner, Alavi, & Kayworth, 2008), (Von Krogh, 2012)).

Other communities and organisational groups which facilitate the exchange of

139

information in different settings and for different purposes have been referred to by

Agresti (2003):

 Community of practice (COP): This includes people performing similar work

activities.

 Community of expertise (COE): These individuals possess high levels of

knowledge in the same subject area.

 Community of interest (COI): This group includes those who share an interest in a

subject area.

 Community of learning (COL): These people self-organize to learn and grow

professionally and personally.

 Project team: These individuals come together as a group for a specified period of

time to do a job and then disband.

 Task force: This group has similar attributes of a project team, but in this case

people work in a totally dedicated fashion with a single objective, working over

shorter periods of time, often under a great deal of pressure. This group is also

related to a Community of Purpose.

 High-performance team: This group is said to possess attributes more closely

associated with a true team than the typical group working on a project. They are

said to be a highly effective unit, developed over a period of time which often stays

together over successive work assignments, growing in maturity and effectiveness.

 Organizational unit: These people share membership in an entity defined as part of

the organization’s structure.

In line with the views of Agresti (2003), Rus et al. (2001) have also highlighted

communities as being essential for learning within organisations, particularly in the

case of communities of interest, and communities of practice. Knowledge acquisition is

described as potentially occurring from numerous sources such as organisational

projects, inter-company learning (such as software vendors and other software

development companies), and from industry wide knowledge such as communities of

experts (guidelines, standards etc.).

A Codification Approach to Knowledge Management

140

Hansen et al. (1999), Basili et al. (2001) and Leidner et al. (2008) have all made

reference to a codification approach to knowledge management. Basili et al (2001)

have stated that an improvement of business processes requires that experience be

analysed and synthesized, which in turn requires that it be captured, structured, and

made available. A number of steps are mentioned as important for an organisation to

perform in order to facilitate a codification strategy:

1. The organisation needs to become less dependent on its employees in order to

mitigate the effects of knowledge loss due to employee departure.

2. The organisation needs to unload its experts. The organisation needs to elicit

and store the knowledge of experts in order to make available valuable

experience.

3. Third, it needs to create productive employees sooner. New employees need

much information to become productive, but they might not know what they

are looking for. The organization needs to package experience in a form that

makes it easy for new employees to get up to speed fast without bugging the

experts of the organization.

4. Fourth, it needs to improve its business processes. Improvement of business

processes requires that experience be analysed and synthesized, which in turn

requires that it be captured, structured, and made available. Thus the

organization needs to model its business processes and make them available to

its employees.

Basili et al. (2001) does not appear to endorse the views of Hansen et al. (1999) and

Leidner et al. (2008) regarding the eliciting and storage of expert knowledge. The

following section deals with literature related to the appropriateness of a

personalisation or codification approach to knowledge management.

A Word of Caution Regarding the Selected Knowledge Management Approach

Rather than all firms unloading their experts, a firm may alternatively, adopt a

personalisation strategy with regards to knowledge management ((Hansen, Nohria, &

141

Tierney, 1999), (Leidner, Alavi, & Kayworth, 2008)). A codification (externalisation

approach) has been described by Hansen et al. (1999) as consisting of elaborate

methods of codifying, storing and reusing knowledge via electronic form. This

approach is stated as being practised by consulting firms such as Andersen Consulting

and Ernst and Young. Reusable knowledge objects are extracted from the creator and

made independent of that person for future use. This people-to-document approach

results in the creation of knowledge objects, which may be searched and accessed for

information at subsequent stages, without the cooperation of the original creator. A

personalisation approach to knowledge management (based on socialisation) is

described as being practised by firms such as McKinsey consulting. Which method is

used to manage knowledge is described as being wholly dependent on:

1. The method by which clients are served. Some customers may require a highly

customized innovative solution whereas other customers may require a highly

efficient knowledge management system for efficient access to knowledge in

future case.

2. The economics of the business. Some organisations are described as having a

codification strategy based on the “economics of reuse” whereby once a

knowledge object is defined it may be communicated electronically and reused

effectively repeatedly and at low cost. Other organisations employing a

codification strategy rely on “expert economics”, whereby tacit knowledge is

the primary knowledge type, and knowledge is transferred via a slower

personal contact. Such organisations can be highly effective in delivering

customised, innovative solutions for customers which extensive networks of

personal experts built up within the organisation.

3. The employees which are hired. Organisations employing a codification

strategy, such as Andersen Consulting, train graduates to work in developing

and working with information systems. Employees are aided by the knowledge

repository to help develop different scenarios business processes. Employees of

such firms are described as implementers and not inventors. The McKinsey and

Bain organisations are provided as examples of organisations which employ a

personalisation strategy and employ primarily based on analytical skill and

innovative capabilities. In such organisations it is essential that employees are

142

capable of knowledge sharing via person-to-person contact and thus the

recruitment process can be somewhat protracted.

Hansen et al. (1999) have stated that knowledge sharing is important to all types of

organisations, regardless of the knowledge management strategy employed, and is

important at different organisational levels. This point of the importance of knowledge

sharing is echoed by other authors, in the context of software development ((Basili,

Lindvall, & Costa, 2001), (Chau & Maurer, 2004), (Joia & Lemos, 2010)), and

specifically to the task of system testing (Desai & Shah, 2011). Firms which rely

heavily on explicit knowledge, tend to fare better with a codification approach to

knowledge sharing, whereas firms which rely predominantly on tacit knowledge, tend

to fare better with a personalisation approach to knowledge sharing.

Lam (1997) and Hansen et al. (1999) have questioned the necessity for organisations

which make significant attempts to externalise tacit knowledge, with Hansen citing the

failure of Xerox in their attempts to replace the tacit knowledge associated with service

men with an expert system. Also cited are examples of successful approaches to

knowledge management, including those that have a knowledge management policy

involving the externalisation of tacit knowledge. It is advised that any approach to

knowledge management should be taken on a case by case basis, and that

organisational strategy, capability, and goals, should all be taken into consideration in

development of any such approach. Alternative approaches, as put forward by Wang et

al. (2012), enabling knowledge sharing, are described as being more appropriate in the

case to a personalisation approach to knowledge management.

Regardless of the approach to software development, Desai and Shah (2011) identified

the necessity to manage knowledge with relation to software testing, and the various

stages associated with software testing i.e. test planning, test development, test

management, test execution, test fault analysis and test measurement. The particular

importance of a knowledge management approach has been highlighted as part of this

section. The following section provides concluding notes relating to the overall

discussion which has taken place relating to both complexity and knowledge.

143

3.5 Concluding Notes relating to System test Complexity and the Role of Tacit

Knowledge

This chapter has provided an overview of system test complexity and its relationship to

tacit knowledge. This started with a discussion of literature relating to complexity

which may impact the software development process, and specifically the task of

system testing. An important concept at the outset of this chapter relates to the views

of Brooks (1995), who states that software complexity can be viewed from two

different perspectives:

1. Complexity inherent in software.

2. Complexity associated with the process of software development.

A distinction has been made between essential complexity and accidental complexity

associated with software engineering, with difficulties associated with the nature of

software, being described as essentially complex, and difficulties associated with the

production of software, being described as accidentally complex (Brooks F. P., 1986).

Much in keeping with the views of Brooks, McKeen (1994), also focussing on

information system development complexity, has made a distinction between task

complexity and system complexity. Task complexity is stated as originating from a

user’s environment, and relates to ambiguity and uncertainty associated with the

practise of business i.e. relating to activities or issues which the system is attempting to

address. System complexity originates in the developers environment, and relates to

the ambiguity and uncertainty associated with the practise of system development.

In line with the aforementioned views, a number of key perspectives have been

highlighted in this chapter, relating to complexity associated with the system under

test, and the complexity associated with the process of software development

(inclusive of software testing):

 Inherent software complexity: This characteristic of inherent complexity, which

may affect the specification, design, development, and testing of software, is

something which numerous authors have made reference to, from a general

software development perspective ((Mumford, 1983), (Brooks F. , 1995),

144

(Lehman, 1996), (Lyytinen, Mathiassen, & Ropponen, 1998), (de Silva &

Balasubramaniam, 2012)), and specifically from a geographically distributed

development team perspective (Espinosa, Slaughter, Kraut, & Herbsleb, 2007). The

modification of software is potentially a complex activity ((Brooks F. P., 1986),

(Espinosa, Slaughter, Kraut, & Herbsleb, 2007), (Bhattacharya, Iliofotou, Neamtiu,

& Faloutsos, 2012)).

 Software task complexity: The process of software development has been described

as an error-prone, time-consuming, labour intensive activity, which can involve

considerable complexity, (Akman, Misra, & Cafer, 2011). Other authors have

specifically referred to the complexity associated with the task of software testing,

(Yeates, Shields, & Helmy, 1994) (Zheng, Alager, & Ormandjieva, 2008),

(Debbarma, Singh, Shrivastava, & Mishra, 2011). Examples of actions towards the

reduction of task complexity have been discussed in this chapter. Examples of such

actions have been provided by Bhattacharya et al. (2010), and de Silva and

Balasubramaniam (2012), and concern models relating to test selection, test

measurement, and test automation, respectively.

The socio-technical model was also introduced in this chapter, due to its stated benefits

in helping to understand the effect of information systems in organisations ((Lyytinen,

Mathiassen, & Ropponen, 1998), (Vidgen & Madsen, 2003), (Herbsleb, 2007),

(Sommerville I. , 2007), (Lu, Xiang, & Wang, 2011), (Davis, Challenger,

Jayewardene, & Clegg, 2013)). The socio-technical model provided in figure 3.7

provides an indication of some of the views which have been expressed in this chapter.

A focus on complexity associated with task execution has been provided by Wood

(1986) and Campbell (1988). Espinosa et al (2007) and Hsu et al. (2011) have

highlighted other influences on task complexity, such as the influence of software

development teams (also referred to by Brooks (1995)), and organisational

environmental influences, such as the geographical dispersion of teams.

145

People

(with values and

needs)

Technology

(with requirements

and constraints)

Organisational

Environment

(reflecting company

objectives)

Task

(which require

motivation and

competence)
Primary area of

focus by

Campbell (1988)

and Wood

(1986)

Espinosa et al.

(2007)

McKeen et al.

(1994)

Figure 3.7: Complexity Literature from a Socio-Technical Perspective (based on model by

Mumford (1983)).

The strong relationship between complexity associated with aspects of geographically

dispersed software development process and knowledge, has been highlighted by

Espinosa et al. (2007), Staats et al. (2010), and Wang et al. (2012). Lu et al. (2011)

have also acknowledged the complexity of information systems development and have

emphasised the necessity of knowledge sharing. This distribution of knowledge

amongst team members is particularly important in the case of complex tasks, Staats et

al. (2010). The relationship between system test complexity and tacit knowledge is

also provided by Staats et al. (2010).

The role of Tacit Knowledge

Nonaka and Von Krogh (2009) have asked a number of questions relating to

organisational knowledge creation and the relationship between explicit knowledge

146

and tacit knowledge. Explicit knowledge and tacit knowledge are described as both

being conceptually distinguishable along a continuum, a view acknowledged by

Hedesstrom (2000), and supported by Collins and Kusch (1998), and Ribeiro and

Collins (2007). Tacit knowledge is described as being accessible through

consciousness, if it leans towards the explicit side of the continuum. However, most of

the knowledge relating to skills, due to their embodiment, is described as being

inaccessible through consciousness. This point has been echoed by Hedesstrom

(2000), who have made an attempt at categorising the views of Nonaka and Von

Krogh (2009), Polanyi (1966), and Tsoukas (2002). He has stated that the views of the

aforementioned authors can be encapsulated by distinguishing between:

 Tacit knowledge which has not been formalised because of cost or time

limitations.

 Tacit knowledge which has not been formalised because of the form of the

knowledge, such as embodied knowledge.

Hedesstrom has made reference to the acceptance amongst a growing number of

authors, regarding the clear distinction between tacit knowledge and explicit

knowledge. In line with the views of Nonaka and Von Krogh (2009), he has referred to

the link between some aspects of tacit knowledge (related to actions which are referred

as polymorphic in nature) and society. It has been argued that such that actions such as

riding a bike through traffic cannot be learned without the consideration of society.

Therefore, as society cannot be replicated, advice and instructions may aid the mastery

of such polimorphic actions, but the advice cannot replace experience.

This research involves the consideration of knowledge as it applies to the software

development process, as discussed by Chau et al. (2003), and Cataldo and Ehrlich

(2012). Of particular interest is knowledge as it applies to the task of system testing, as

discussed by Desai and Shah (2011). In the previous chapter, knowledge dependency

associated with software testing was highlighted as affecting the different stages of

system testing i.e. test planning, test development, test management, test execution, test

fault analysis and test measurement ((Eickelmann & Richardson, 1996), (Desai &

Shah, 2011)). In line with the views of Brooks (1986), and McKeen (1994), two

147

categories of knowledge are identified below, which have a direct effect on the ability

to execute these system test related functions:

1. Test Knowledge is an important element in the consideration and achievement

of any test objectives and test approaches. This applies to the task of system

testing. This is emphasised by the views of Mattiello-Francisco (2011), which

has highlighted the importance of a structured approach to testing, stating that

ad-hoc testing is no longer acceptable as an efficient and effective form of

testing.

2. System knowledge and knowledge of system requirements: is a critical aspect of

software testing, with some test approaches demanding in depth knowledge of

both the system and system requirements. Such a test approach is arguably of

greater importance in the case of white box testing, whereby detailed system

component testing is being performed, Horgan and Mathur (1996), Lin et al.

(2012), and Yoo and Harman (2010).

This chapter has discussed the important role which software testing plays as part of

the software development process, and also the significant role which both complexity

and tacit knowledge play in this process. The importance of both explicit knowledge

and tacit knowledge has been emphasised by numerous authors ((Chau, Maurer, &

Melnik, 2003), (Desai & Shah, 2011), (Cataldo & Ehrlich, 2012)). The case for

additional research in the area software development has been called for by Herbsleb

(2007), with further research relating to tacit knowledge, and the role which it plays in

software development processes, called for by Ryan and O’Connor (2009), and

Dingsøyr and Šmite (2014). As part of chapter four, a research model and

methodology are outlined, including hypotheses development, based on discussions

which have taken place in chapters two and three.

148

149

4 Research Model and Methodology

This chapter outlines a research model based on literature covered in chapter two and

three. The initial sections of this chapter identify hypotheses, based on the

aforementioned literature, with subsequent sections proposing a method of field

research, to be carried out in a bid to ascertain the validity of the identified hypotheses.

Eisenhardt (1989) has offered some advice regarding theory building from field

research, and in doing so highlights the importance of some primary steps which

should be taken into consideration, prior to entering field research:

1. Definition of a research focus and identification of a priori knowledge.

2. The development of hypotheses and constructs.

3. Case study identification and selection of research instruments and

protocols.

In keeping with the definition of a research focus, the purpose of any case study is to

address the primary research question. In this particular case, this relates to an

investigation into the relationship between system test complexity and tacit knowledge.

The use of a priori in the identification of constructs has been applied to good effect by

Pee et al. (2010), prior to field research relating to knowledge sharing in information

systems. This has been described as often important by Eisenhardt (1989), with claims

that it helps shape the design of initial theory formation, often allowing researchers to

measure constructs more accurately, and providing a firm empirical grounding if such

constructs prove important as the research progresses. Initial a priori constructs

provide the basis for hypotheses development, through a review of literature which has

been covered in relation to the following topics:

 The software development process and the role of software testing.

 Types of complexity which can potentially have an impact on the task of

software testing.

 The relationship between tacit knowledge to the development process and in

particular the relationship of tacit knowledge to software testing.

150

Eisenhardt (1989) has stated that ideally, theory-building research is begun as close as

possible to the ideal of no prior theory under consideration, and no initial hypotheses

to test, a view endorsed by Urquhart (2010). According to Eisenhardt, that while this is

impossible to achieve in practice, that researchers should strive to formulate research

problems with important variables detailed, backed up by literature, but one should

avoid thinking about specific relationships and theories. In keeping with the views of

Eisenhardt (1989), and supported by an approach applied by Cataldo and Ehrlich

(2011), the next step is the identification of relevant hypotheses, along with constructs

which are identifiable through discussions, conducted as part of chapter two and three.

In addition to detailing hypotheses, the subsequent sections deal with the other primary

considerations of preparing for field research which have been previously been

identified, namely case study identification and the selection and the creation of

instruments and protocols (dealt with as part of a proposed approach to data

collection). The focus and objectives of field research are also outlined, with

approaches to each research stage discussed in detail, and ideal participants identified.

4.1 Research Objective

Research hypotheses which are developed as part of this chapter have been based on

previously discussed literature. The objective of these hypotheses is to provide

empirical evidence regarding the relationship between system test complexity and tacit

knowledge. The important role which hypothesis development can play, when carried

out prior to research, has been highlighted by Pee et al. (2010), Brown et al. (2011)

and Cataldo and Ehrlich (2011). The role of software testing, discussed as part of

chapter two, along with system test complexity and the concept of tacit knowledge,

discussed as part of chapter three, are key to the development of the hypotheses. A

detailed discussion on the hypotheses takes place in the following section.

151

4.1.1 Research Hypotheses

As part of a discussion of literature associated with the verification and validation of

software, the importance of software test was emphasised. Views expressed were in

keeping with the views of a number of authors ((Horgan & Mathur, 1996),

(Eickelmann & Richardson, 1996), (Walter & Grabowski, 1999), (En-Nouaary, 1998),

(Desai & Shah, 2011), (Holzworth, Huth, & deVoil, 2011). The strong relationship

between complexity associated with aspects of the software development process, and

knowledge, has been highlighted by Espinosa et al. (2007), Staats et al. (2010), Lu et

al. (2011), Wang et al. (2012). In the software development overview section (2.4),

fundamental aspects of development processes were outlined which are common to

software development, Huo et al. (2004). These were highlighted as:

1. Software specification and design: The functionality and constraints associated

with the software must be defined. This may take the form of requirements

definition and software and system designs, or alternative approaches such as

user stories, system metaphors, architectural spikes, and release planning.

2. Software implementation: In line with the requirements, goals and designs, the

software must be produced. This can be a planned iterative development

process, or a planned, sequential, development process.

3. Software verification and validation: The software must be validated to ensure

it acts in accordance with customer requirements or standards. Code

verification can take the form of static checks such as code reviews,

inspections, and peer programming, or dynamic approaches such as software

testing in the form of unit and system testing. Validation can take the form of

customer feedback and acceptance testing.

Chapter two has outlined the main activities associated with software testing, a

software verification technique, including the views expressed by Eickelmann &

Richardson (1996), and Tsui and Iriele (2011) i.e. covering test planning, test

development, test execution, test failure analysis, test measurement, and test

management. Covered as part of chapter three, is the concept of tacit knowledge. The

significance of tacit knowledge in software development environments has been

emphasised by Ryan and O’Connor (2009), and Desai and Shah (2011). Central to the

152

first and second hypothesis, are the views of Nonaka and Von Krogh (2009), and

Hedesstrom (2000).

Considering discussions which have taken place covering the work of McKeen et al.

(1994) and Huo et al. (2004), Debbarma, et al. (2011) and Li, et al. (2011), the

relationship between system test complexities associated with the system under test

becomes important. Chapter three introduced the concept of inherent complexity

associated with software systems ((Mumford, 1983), (Brooks F., 1995), (Lehman,

1996), (Lyytinen, Mathiassen, & Ropponen, 1998), (Espinosa, Slaughter, Kraut, &

Herbsleb, 2007), (de Silva & Balasubramaniam, 2012)). The first Hypothesis puts

forward the premise that system testing is affected by complexity which is related to

the system under test, and that most of the related knowledge does not lend itself to

being made explicit.

Andrade et al. (2013) have referred to the increasing complexity associated with

software testing tasks. Brooks (1986) has made a distinction between essential

complexity and accidental complexity associated with software engineering, with

difficulties associated with the nature of software, being described as essentially

complex, and difficulties associated with the production of software, being described

as accidentally complex. The second hypothesis is concerned with the production of

software, from the perspective of system testing. Debbarma, et al. (2011) have argued

that there has been increasing complexity, along with the increasing size and

performance demands of software systems, all of which demands more effective

software testing. Hypothesis two proposes that such a relationship exists between

complexity associated with system test testing, and the system under test. In contrast to

Hypothesis 1 (H1):

The process of system testing (comprising of test case planning, test case

development, test case execution, test case fault analysis, test case measurement,

and test case management), is directly affected by complexity associated with the

system under test. There exists a positive relationship, with an increase in

complexity leading to an increase in tacit knowledge. It is also proposed that most

of this tacit knowledge does not lend itself to being made explicit.

153

the knowledge associated with the system under test, it is proposed that a certain

amount of knowledge relating to the process of system testing does actually lend itself

to being made explicit.

The following section outlines a research strategy, which essentially details how one

might validate the aforementioned hypotheses.

4.2 Research Strategy

This section attempts to align the research strategy with the research objectives. The

previous section detailed hypotheses which are the basis for further investigation of the

relationship between complexity and tacit knowledge associated with system testing.

Also highlighted, and detailed in figure 4.1, there are two primary areas of focus

regarding complexity and tacit knowledge, complexity and tacit knowledge relating to

system under test and complexity and tacit knowledge relating to the actual system

testing.

Hypothesis 2 (H2):

That the process of system testing (comprising of test case planning, test case

development, test case execution, test case fault analysis, test case measurement,

and test case management), is affected by other sources of complexity,

independent of the system under test. There exists a positive relationship, with

an increase in complexity leading to an increase in tacit knowledge. It is

proposed that much of this tacit knowledge does indeed lend itself to being made

explicit.

154

Task

Complexity

Complexity Associated

with the

System under Test

Test Planning

Test Case

Development

Test Management

Test Execution

Test Fault

Analysis

Test Measurement

System test complexity

construct

Tacit knowledge related

construct

Task related Tacit

Knowledge

System related Tacit

Knowledge

Hypothesis One Hypothesis Two

Figure 4.1: Research Model Constructs.

Detailed in figure 4.1 are:

 The functions or stages of system testing i.e. system test planning, system test

development, system test execution, test fault analysis, test measurement and

test management, as defined by Desai and Shah (2011).

 Complexity and tacit knowledge relating to both the system under test and the

wider process of system testing. These two primary focus areas relate to the

first and second hypothesis respectively.

The relationship between aspects of the model, detailed in figure 4.1, is proposed to be

tested through field research. The following section offers potential research approaches,

including the four assessment models as discussed by Wagner and Sternberg (1985) i.e.

the motivational, the critical incident, the simulation and the assessment center

approaches. The proposed approach to data collection (creation of instruments and

protocols) is also discussed in the following section. The final section of the research

strategy highlights the proposed interview questions.

155

4.2.1 Research Approach

This section discusses potential research approaches, with a case being made for what

is perceived to be the most suitable approach. Authors such as Wagner and Sternberg

(1985), Ryan and O’Connor (2009), Connelly et al. (2012) and Ahmad et al. (2012)

have adopted more general interview approaches to field research. Four assessment

models that may be applied through an interview approach to research have been

proposed by Wagner and Sternberg (1985), the motivational, the critical incident, the

simulation and the assessment center. These are discussed in more detail along with

the repertory grid technique, developed by Ford et al. (1991), (used in the

identification of tacit knowledge by Ryan and O’Connor (2009)), and the grounded

theory method, developed by Glaser and Strauss (1967), (the application of which is

referred to by Charmaz (1995), Martin et al. (2009), and Urquhart et al. (2010)).

1. The first approach, the motivational approach, attempts to increase

understanding and predictability of real-world intellectual competence by

considering the role of motives that drive and are satisfied by intellectual

behaviour (such motives are referred to as n-Arch). Schüler et al. (2010) have

described this technique as being based on the assumption that motives differ in

strength and that these differences can explain behavioural differences.

2. The simulation approach attempts to highlight job competencies through work

observation. The in-basket technique, developed by Frederiksen et al. (1957) is

an example of this approach. This technique was defined to help measure and

understand the skills associated with complex tasks, whilst also highlighting the

problems and events associated with such tasks. This techniques also aids

understanding of the decision making process which is central to task

accomplishment. Wagner and Sternberg (1985) described this technique as

consisting of providing the subject with a set of tasks, with performance being

evaluated on accomplishment. It has been applied effectively by Sternberg et al.

(1999) who employed this technique as a means of capturing and understanding

the tacit knowledge associated with U.S. army commanders. The goal in that

particular case was to make explicit tacit knowledge which could be then used

156

to train less experienced team members and also to formalise a method for tacit

knowledge assessment.

3. Another framework suggested for tacit knowledge measurement is the

assessment center approach. It is considered as another simulation approach by

Sternberg (1999). Credited to Thornton and Byham (1982), it is a collection of

various aspects of other approaches involving in-basket tests, interviews, and

group discussions. In their execution of traditional aptitude and personality

tests, Wagner and Sternberg (1985) have applied an assessment center

approach, with performance appraisal consisting of summary judgements and

ratings by groups of assessors.

The motivational approach is not as desirable in the context of this particular research,

considering the objectives at hand. This research is primarily concerned with the

relationship between tacit knowledge and system test complexity, as opposed to the

motivational factors affecting system test complexity and tacit knowledge.

Notwithstanding the benefits of the other approaches detailed i.e. the simulation

approach and assessment centre approach, significant access to participants is required,

either for observational reasons, in the case of the simulation approach, or in order to

perform a collection of different approaches, required as part of the assessment centre

approach. After taking into account the human resource cost of prolonged participant

involvement, neither of these methods was deemed feasible for this research. Another

downside to the simulation approach is highlighted by Sternberg (1999), who states

that while this particular approach has the advantage of closely representing actual job

performance, it is somewhat subjective as to what aspects of the job should be chosen

to simulate, or how performance should be evaluated. Other more suitable methods

discussed, which lend themselves to a more general interview approach, are the critical

incident technique, the repertory grid technique and the grounded theory approach:

4. The critical incident technique is described as being based on research

conducted on the Air Force during World War II by Flanagan (1954). Wagner

and Sternberg have used the example of this technique which was later applied

by McClelland (1976) to assess managerial competence. This method consisted

of asking team members to detail several incidents which they handled

157

particularly well and several incidents which they handled particularly poorly.

These detailed incidents are then analysed on a qualitative basis. This method is

seen as a viable alternative to work observation but the validity of this approach

is based on team members’ willingness and ability to respond and the

subsequent the qualitative analysis is sufficiently reliable. A similar approach

has been used to good effect by Connelly et al. (2012), in a research effort to

identify hidden knowledge.

5. The repertory grid technique of knowledge assessment is provided by Ford el

al. (1991), Ryan and O’Connor (2009), and Cho and Wright (2010). This

technique is founded on Kelly’s (1955) theory of human understanding called

the Personal Construct Theory. It has been proposed as a method for the

identification and clarification of tacit knowledge by Jankowitz (2004) and

Ryan and O’Connor (2009). According to Jankowitz there are four key

elements:

1. The topic

2. Constructs

3. Elements

4. Links

The repertory grid provides a two-way classification of information in which

relationships are uncovered between a person’s observations of the world,

elements, and how they classify or make sense of those observations (via

constructs). The central theme of the personal construct theory is that people are

made up of contrasts rather than absolutes and a central premise of the theory is

that every person’s construct system is composed of a finite number of

dichotomous or directly opposing constructs. The identification of constructs of

a given topic is described as a very straight forward task, requiring the

interviewee to be given plenty of examples of that topic, and analysing the

results after they put those examples together. Repertory grids are described as

an excellent method for structured interviewing, allowing the interviewee’s

viewpoint to be expressed with minimal contamination. It is also described as a

method by which a stronger link can be made between qualitative data resulting

from the repertory grid technique and quantitative research data.

158

6. Grounded theory method is defined by Glaser and Strauss (1967). This method

is described as the discovery of theory from data which is systematically

obtained through social research. Charmaz (1995) has provided an overview of

grounded theory. Starting with individual cases, incidents or experiences, one

develops more abstract conceptual categories, to synthesize, to explain and to

understand data and ultimately to identify patterned relationships within

accumulated data. Fundamentally, it is stated that grounded theories unite the

research process with theory development. Urquhart et al. (2010) have claimed

that this method offers well signposted procedures for data analysis, and

potentially allows for the emergence of original and rich findings that are

closely tied to data. This potential relationship between findings and the

accumulated data can provide researchers with great confidence. Five main

characteristics of the grounded theory method are outlined by Urquhart et al.:

1. The main purpose of the theory is theory building.

2. As a general rule, the researcher should make sure that their prior expertise

does not lead them to pre-formulated hypotheses that their research then

seeks to verify. Such preconceived ideas could hinder the emergence of

ideas which should be firmly rooted in the data.

3. Analysis and concept development are enabled through data collection and

comparison, where data is compared against all existing concepts and

constructs to see if it adds or enhances the knowledge regarding existing

categories.

4. The data collected is acquired by a method of theoretical sampling, where

the researcher decides where to sample from next, based on analytical

grounds.

Urquhart et al (2010) have stated that studies in information systems have been

criticised for having a relatively low level of theory development. Applications

of the theory in the area of information systems (and other areas) have used

grounded theory as method of coding data, instead of a method of generating

theory. The authors felt that such an application of grounded theory limits the

potential of the theory and the ultimate goal of the theory application should be

as an enabler in the development of new theories. This view is backed up by

159

Charmaz (1995) who has stated that the simultaneous activities of data-

gathering and analysis, as part of grounded theory are explicitly aimed towards

theory development.

The grounded theory has not been applied in this instance, even though successful

application of this approach has been carried out by Martin et al. (2009) and Urquhart

et al. (2010). The approach to this particular research would appear to be at odds with

the main principles of grounded theory, as described by Urquhart et al. (2010), who

states that as a general rule, the researcher should make sure that prior knowledge does

not lead them to pre-formulated hypotheses. Section 4.2 outlines the pre-formulated

hypotheses relating to this particular work and while, according to Urquhart (2010),

aspects of grounded theory has been used successfully applied without staying true to

the original theory, there are perceived to be other more suitable techniques available

such as the critical incident technique, as devised by Flanagan (1954). The critical

incident technique is an appropriate technique for use in this particular research

because, as referred to by Butterfield et al. (2005) and Fitzgerald et al. (2008), this

method has demonstrated its merit in the following aspects of research:

 The identification of effective and ineffective ways of doing something, and also

the identification of factors which either help or hinder.

 The collection of functional or behavioural descriptions of events or problems.

 The examination of success and failure.

 The determination of characteristics which are critical to important aspects of

an activity or event.

Give the benefit of the critical incident technique in the identification, collection and

examination and determination of behaviours, events and activities, it would appear to

be a suitable approach to identifying tacit knowledge, given that Ahmad et al. (2012)

has referred to the measurement of learning, thinking, and decision making skills as

considerations in the measurement of tacit knowledge, one of the primary focus areas

for this research. Fitzgerald et al. (2008) have highlighted other benefits of such an

approach, stating that the flexibility associated with the critical incident approach to

case study research is a major benefit, with the method being most suited to one-on-

160

one interviews. Fitzgerald et al. (2008) have outlined the following key steps to

performing critical incident based research:

1. Identification of general aims: pertinent research questions are described as

being important prior to undertaking any type of research.

2. Planning: issues relating to participant selection, researcher familiarity with the

research context, the methods of data collection, and the method of data

analysis, are all considered important aspects of planning which should be

considered prior to field research.

3. Data Collection: a number of key points are raised in relation to data collection.

These are dealt with in more detail in the following section.

The following section proposes a suitable data collection model based on the chosen

research approach.

4.2.2 Proposed Data Collection Model

As referred to in the previous section, McGrath (1984) has stated that any research

ideally should ideally consider goals relating to the generalization of evidence over the

population of actors, the precision of measurement of the behaviours under study, and

the realism of the situation or the context of the research setting. What has been

advocated by McGrath (1984), and Woodside (2009) is a balanced approach to

evidence gathering. A fixed-point, survey questionnaire type approach, has been

adopted by Pee et al. (2010), Hsu et al. (2011) and Akman et al. (2011). However such

an approach is referred to as lacking in realism of context, and is deemed to be low in

precision of measurement (McGrath, 1984). Similar concerns have been raised by

Woodside (2009) (see figure 4.3), who states that there are four principle arguments

against a questionnaire type approach to research:

1. The difficulty with the translation of implicit thought to explicit thought and

further difficulty associated with the rating of such thoughts, as often required

by a fixed-point survey type approach.

161

2. The lack of suitability of fixed point constructs such as questionnaires to

feelings such as trust, perceived quality, and satisfaction.

3. There is an assumed symmetrical relationship between independent and

dependent variables. This is described as not being necessarily truthful because

of the possibility of alternative routes to a given outcome, often outside of the

bounds of the questionnaire and therefore resulting in not being detailed.

4. The unsuitability to measuring alternative complex relationship between

dependent and independent variables. This highlights the limitation of such

approaches in measuring the unique contribution of each independent variable,

and the variation in dependent variables.

The shortcomings of individual approaches to data collection such as a fixed-point

survey approach or approaches such as a case study research approach are detailed in

figure 4.2. Woodside (2009) highlights the following concerns relating to a case study

approach:

1. Difficulties with researchers carrying personal and cultural value

configurations implicitly into the field research thereby affecting judgments

and statements.

2. Difficulties associated with “thick descriptions” relating to process in specific

context. Such descriptions make a case for generalization beyond the

immediate case.

3. Variability which may exist in different interpretations of verbal data relating

to “thick descriptions”, which are provided by participants.

4. Questionable relevance of the case study to other contexts given the absence of

deductive theory or due to a small number of contexts to which the case study

may have been applied.

162

Fixed-

point

survey

Case

study

research

Accuracy

Generalisation

Low

HighLow

High

Research Method Concerns (Woodside (2009))

Figure 4.2: Research Method Concerns.

McGrath (1984) has held similar concerns, highlighting difficulties relating to

precision of measurement when applying case study methods such as interviews. As an

alternative to an independent questionnaire or case study approach, a more general

interview approach, in with the previously discussed critical incident technique (used

to good effect by Kaplan and Duchon (1988)), is proposed to be employed here. A

general interview approach has been used to good effect by Ryan and O’Connor

(2009), and helps address concerns addressed by Woodside (2009) and McGrath

(1984), both of whom have questioned the ability of approaches such as fixed-point

surveys, to measure alternative complex relationships, when used in isolation. The

proposed approach also attempts to address the concerns expressed by Woodside and

Baxter (2013), whereby a fixed point questionnaire approach is rejected, based on the

inability of such an approach to provide the detail and accuracy necessary.

The following section provides the proposed interview questions.

163

4.2.3 Interview Questions

The importance of the identification of research aims via pertinent research questions

is highlighted by Fitzgerald et al. (2008). In an effort to validate the research aims

which have been outlined, and as part of the research strategy, interview questions

have been identified which are outlined in this section. These have been categorised in

table 4.1. The selected questions have been based on previous work carried out by

Sternberg (2000), Chau et al. (2003), Espinosa et al. (2007), and Ryan and O’Connor

(2009). Sternberg (2000) highlighted a number of sources of problem types relating to

practical intelligence and tacit knowledge, but more relevant to this work, is the

identification of critical areas in a development process which depend on knowledge

transfer (Chau, Maurer, & Melnik, 2003). As well as the identification of system test

complexity and the relationship to tacit knowledge, the influence of factors relating to

geographical distribution of teams, software development characteristics, the role and

experience of the participant, knowledge management, test environment

characteristics, are also of interest. Also key is the identification of sources of

complexity which may be due to common development practices in operation.

Relevant development characteristics were described in section 2.1, as part of an

overall discussion on development models.

The questions detailed in table 4.1 are designed to preserve the anonymity of the

subject to encourage honest and open responses. A quantitative element to the

questions has been included via the request for appropriate ratings. These ratings help

ascertain the significance of a relationship, with a likert scale is being used (on a scale

of 1-7, where one highlights a weak or non-existent relationship and 7 highlighting a

very strong relationship). Also included in this table is detail relating to how the output

of each question is expected to feed into further analysis. It’s expected that questions

3, 4, and 5, will provide the basis for quantitative analysis.

Number Questions
Relationship

to Analysis

1. Your team consists of co-located (locally based) team members?

Yes/No

Qualitative

2. How would you describe your current job? i.e. Manager, lead Qualitative

164

engineer, or engineer.

3. What level of experience do you have which is relevant to the

current role (number of years)?

Quantitative /

Qualitative

4. Have you encountered complexity associated with the following

system testing tasks, whereby there was insufficient or an

absence of necessary documented knowledge to enable a

satisfactory solution? Please elaborate with reference to the

following stages of system testing. Please relate your experiences

to a previous project, which might be typical of your experience:

1. Test Case Planning (what needs to be tested and how it

should be tested, given available resources)

2. System test Development (development of a test

environment and test suites)

3. Test Suite Execution (execution of test cases, from a

manual or automated test perspective

4. Test Case Fault Analysis (debug and root cause analysis

of issues which arise after test execution)

5. Test Case Measurement (assessment of overall system

quality)

6. Test Case Management (management of the test

environment, resources, etc.)

Quantitative /

Qualitative

5. Have you encountered complexity in execution of your job due to

insufficient knowledge relating to the actual system under test?

(Such complexity may relate to system functionality or system

deployment.)

How would you rate the relationship (if any), of the system under

test, to complexity and tacit knowledge?

Relationship to complexity rating:

Relationship to tacit knowledge rating:

Quantitative /

Qualitative

6. Could you please provide examples of other sources of

complexity associated with your job?

If yes, please provide an example:

How would you rate the relationship (if any), of such sources of

complexity to complexity and tacit knowledge?

Qualitative

165

Relationship to complexity rating:

Relationship to tacit knowledge rating:

7. How would you describe the communication of development

specifications i.e. are they mainly communicated formally e.g. in

the form of user stories or functional specifications, or informally

via verbal communication? Are they communication on an

incremental basis?

How would you rate the relationship (if any), of such

specifications to complexity and tacit knowledge?

Relationship to complexity rating:

Relationship to tacit knowledge rating:

Qualitative

8. How would you describe communication with the development

team? Is it on a regular basis, starting from the system test

planning/user story development phase?

How would you rate the relationship (if any), of such

development communication to reducing complexity and how

would you rate the tacit knowledge associated with such

knowledge?

Relationship to complexity rating:

Relationship to tacit knowledge rating:

Qualitative

9. Would you agree that there is strong dependency within your

team, on the knowledge of other team members (please ignore if

irrelevant)? How important is the availability of such knowledge?

How would you rate the relationship (if any), of such knowledge

in reducing complexity associated with your job. How also would

you rate the relationship to tacit knowledge necessary for your

job?

Relationship to complexity rating:

Relationship to tacit knowledge rating:

Qualitative

166

10. How familiar are you of the work of any other team members

who work independently from you?

How would you rate the relationship (if any), of such work to

complexity and tacit knowledge?

Relationship to complexity rating:

Relationship to tacit knowledge rating:

Qualitative

11. Have you encountered specific gaps in available knowledge

which has affected your ability to excel in your job?

How would you rate the relationship (if any), of such gaps in

available knowledge to complexity and tacit knowledge?

Relationship to complexity rating:

Relationship to tacit knowledge rating:

Qualitative

Table 4.1: Research Questionnaire.

As part of the interview stage, additional questions have been identified in table 4.1,

relating to previous experiences of system text complexity and tacit knowledge, and an

additional question relating to team composition. The importance of a balanced

approach to evidence gathering has been referenced by McGrath (1984), and

Woodside (2009). The next section deals with putting into practice the outlined

research approach. The criteria for suitable research candidates are identified, with a

sampling strategy outlined.

4.3 Research Design

The previous sections dealt with the research objectives and the proposed research

strategy. This section deals with research design and preparatory stages to be

considered prior to field research i.e. case study identification and selection.

Eisenhardt (1989) and Fitzgerald et al. (2008) have described population selection as

167

an important consideration for case selection, enabling the definition of a set of entities

from which research samples can be drawn. The following section discusses such

considerations, following on with a subsequent discussion on appropriate data

collection approaches.

4.3.1 Case Study Selection

Consideration of population selection can provide control over environmental variation

as well as enabling the definition of limits for the analysis of findings (Eisenhardt,

1989). As suggested by Pettigrew (1988), and observed by Eisenhardt, it makes sense

to select cases such as extreme situations and polar types in which the process of

interest is “transparently observable”. Therefore, in line with this view, cases are

chosen on the likelihood that they have the potential to replicate or extend emergent

theory. This would also be in keeping with goals, highlighted by McGrath (1984), who

states that as part of the data collection process, that the following goals should be

considered:

1. The generalization of the evidence over the population of actors.

2. The precision of measurement of the behaviours under study. Also mentioned

is the precision of control over extraneous facets or variables that are not being

studied.

3. The realism of the situation or the context of the research setting. This is

referred to as relating to the context to which you want your evidence to refer.

In addition to the above guidance, fig 4.3 highlights additional, desirable

characteristics, which are being sought regarding potential research organisations.

168

Organisation 1

Operating in industry A

Case Study Selection

A mix of traditional and

agile development

environments

Organisational

characteristics

System test teams

consisting of both a mix

of experienced and non-

experienced participants

System Test Team

Characteristics

A mix of co-located

and geographically

dispersed development

and test teams
Organisation n

Operating in industry Z

Figure 4.3: Case Study Selection Criteria.

As detailed in figure 4.3, the selected organisations selected organisations should have

the following desirable attributes:

 Independent test teams, consisting of a mix of co-located and geographically

dispersed development and test employees.

 A mix of experienced and inexperienced system testers.

 There was a mix of traditional and agile software development environments being

employed across the chosen organisations.

The following four organisations were selected because they displayed the attributes

and circumstances that made them suitable case studies for this research project:

EMC Corporation (EMC²), SQS Software Quality Systems AG, Delaware Life, and

CoreHR:

1. EMC² is an American multinational corporation, headquartered in Hopkinton,

Massachusetts, United States. They offer data storage, information security,

virtualization, analytics, cloud computing and other products and services that

enable businesses to store, manage, protect, and analyse data. EMC was founded in

1979, has grown to over 60,000 employees, and is currently considered one of the

world’s largest providers of data storage systems.

http://en.wikipedia.org/wiki/Multinational_corporation
http://en.wikipedia.org/wiki/Hopkinton,_Massachusetts
http://en.wikipedia.org/wiki/Hopkinton,_Massachusetts
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Data_storage_device
http://en.wikipedia.org/wiki/Information_security
http://en.wikipedia.org/wiki/Virtualization
http://en.wikipedia.org/wiki/Cloud_computing

169

The chosen system test teams were interviewed at the EMC office at Ovens, Cork,

Ireland. They displayed the following characteristics:

 There were 37 participants interviewed in total. This involved four different

projects and eleven different system test teams. 1 interview was discounted

due to the participant’s focus on automation rather than on the various

stages of the system test process.

 27 system testers were operating in a traditional software development

environment, with 10 system testers operating in an agile software

development environment.

 The system test experience ranged from just over 1 years’ experience, to 23

years’ experience.

 The teams work on a daily basis with system test colleagues and developers

based in Boston, MA, US, and in Bangalore, India.

2. SQS Software Quality Systems AG is a consultancy company based in Cologne,

Germany. The company describes itself as the largest independent provider of

software testing and quality management services. The SQS Group was founded in

Cologne in 1982 and has around 3,800 employees. SQS has offices in 13 countries

covering Europe, Africa, Asia and North America.

The SQS participants all work in the SQS Dublin office. This set of participants

were characterised by the following characteristics:

 There were 5 participants interviewed in total. These participants worked

on five different projects, involving different system test teams.

 4 system testers were operating in a traditional software development

environment, with 1 system tester operating in an agile software

development environment.

 The system test experience ranged from just over 2 years’ experience, to 15

years’ experience.

 The participants all had regular experience of working with remote

development teams.

http://en.wikipedia.org/wiki/Cologne
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Managed_services
http://en.wikipedia.org/wiki/Cologne

170

3. Delaware Life, a leading provider of annuity and life insurance products, is based

in Boston, in the United States. Delaware Life was established in August 2013 in

connection with the purchase by Delaware Life Holdings, LLC, of the domestic

U.S. annuity business and certain individual life and corporate markets insurance

businesses, from Sun Life Financial Inc. After the acquisition, a section of Sun

Life Financial employees were transitioned over to Delaware Life, including a

subset of the Sun Life employees in Waterford. Sun Life has had a strong presence

in Waterford for over 15 years, part of a wider global workforce of more than

15,000 employees and 12,000 advisors. More than 500 employees transitioned in

total from Sun Life to Delaware Life.

The Delaware Life participants all work in the Waterford office. They displayed

the following characteristics:

 There were 6 participants interview in total, operating on different aspects

of a migration project. The migration project consisted of moving data and

applications from the original company, Sun Life, to the new Delaware life

organisation.

 All system testers were operating in an agile software development

environment.

 The system test experience ranged from just over 6 years’ experience, to 18

years’ experience.

 The participants all had regular experience of working with remote teams,

located in the head office in Boston, MA, US.

4. CoreHR has been providing HR and Payroll software solutions to organisations in

the UK, Ireland, and Europe for over 30 years. The organisation’s headquarters are

in Cork, Ireland, with offices also located in London, Dublin and Kilkenny.

CoreHR has more than 200 employees at present.

The CoreHR participants work in the Ballincollig office in Cork, and the Kilkenny

office. They displayed the following characteristics:

 There were 4 participants interview in total, working on four different

projects with CoreHR.

171

 3 system testers were operating in a traditional software development

environment, with 1 system tester operating in an agile software

development environment.

 The system test experience ranged from just over 2 years’ experience, to 12

years’ experience.

 The participants all had experience of working with remote colleagues.

The test teams from the four participating organisations were in total responsible for

testing ten different systems. The test teams varied in team sizes from four testers to

ten testers, with all teams operating some level of geographically dispersion between

team members. Sixty two interviews were conducted in total across the four

participating organisations. A preference was expressed for face to face interviews to

be facilitated, where possible. There was a split in the employed development

methodology, across the different development environments involved. Those that

were applying a traditional approach to software development were carrying out the

process of specification, design and implementation, prior to any significant system

testing taking place, whereas those teams which were adopting an agile approach to

software development were in line with some, if not all, of the following common

characteristics of an agile software development approach, detailed in chapter 2:

1. The processes of specification, design and implementation ran concurrently.

Detailed system specification, and design documentation are minimised or

generated automatically by the programming environment used to implement

the system. Usually only the most important characterics of the system are

defined as part of the user requirements document.

2. Systems are developed in a series of increments. End-users and other system

stakeholders are involved in specifying and evaluating each increment after

which changes and new changes are proposed to be catered for in subsequent

increments.

3. System user interfaces are often developed using an interactive development.

This approach enables the quick creation of interface designs.

As a whole, the selected test teams displayed the following primary characteristics:

172

1. The test teams from the four participating organisations were in total

responsible for testing 10 different systems.

2. The test teams varied in team sizes, from four testers to ten testers, with all

teams operating with some level of geographically dispersion between team

members.

3. 62 interviews were conducted in total across the four participating

organisations (one was discounted due to a lack of participant exposure to all

stages of system testing).

4. Experience of the participants varies from 1 years’ experience to some

participants with greater than 20 years’ experience.

5. There was a variation in the employed development methodology, across the

different development environments involved, with some teams operating in a

traditional development environment, and some operating in an agile

development environment.

The following section discusses the participating teams in more detail, highlighting

also the proposed approach to data collection.

4.3.2 Sampling Strategy

Fitzgerald et al. (2008) have highlighted the following key points relating to data

collection:

1. Observations should be reported and recorded for future analysis.

2. Such observations should be recorded as close to the time they occurred as

possible, thus encouraging the accuracy of findings.

3. Central to the concept of the critical incident approach is the concept of trust,

both in the accuracy of the reporting of the observer and between the observer

and the participants. Trust between the observer and the participant usually

requires a guarantee of anonymity for the participant.

4. Reports can be made as part of individual or group interviews, through

questionnaires or through record forms. The collection method is stated as

depending on choice such as participant availability, and the research subject

173

etc. The best option is described as being the individual interview approach,

allowing for the best explanation of the aims of the study and clarification of

ambiguities in the reports.

5. The number of required reports is described as something which is difficult to

determine in advance, often demanding that sampling continue until a

saturation point is reached whereby no further samples contribute any model

influencing information for analysis.

Figure 4.4 outlines the data collection and analysis stage of the research. The potential

repetitive nature of the data collection process is highlighted.

Interview stage to gather quantitative and

qualitative data relating to software test complexity

and tacit knowledge. Also gathered will be

additional detail relating to the development

methodology, experience etc.

Stage 1

This will involve

data collection,

via the recording

of observations

from conducted

interviews

Stage 3

Evaluation of

sample

contribution to

theory

Development of theory

The analysis of collected reports.

This consists of a primary stage of qualitative

analysis, followed by supporting quantitative

analysis.

Stage 2

Coding and

analysis of data,

facilitating

theory evaluation

Repeat process so as to satisfy

theoretical saturation

requirements (Eisenhardt, 1989)

Figure 4.4: Stages of Data Collection.

174

As previously outlined, the primary goal of stage one of data collection, the interview

stage, is the collection of data relating to system test complexity, and the relationship

between system test complexity and tacit knowledge. Data collected relating to

personal, organisational or environmental factors also form part of this stage. Stage

two relates to the coding and analysis of data collected from stage one. Stage three

evaluates the information collected, and thus facilitates a decision relating to the

contribution of the samples which have been collected to date, with the eventual goal

of field research ultimately being theory development. The next section provides an

overview of the quantitative analysis, which was also conducted.

4.3.3 Data Analysis

The qualitative data relates to the output of the series of interviews which were

conducted as part of this research. The method of data collection for this research is a

collection of interviews, a similar technique to that conducted by Ryan and O’Connor

(2009). Flanagan’s critical incident technique has been employed, a technique which

has been used by Kaplan and Duchon (1988), delivered via a series of open questions.

The field research activities can be classified as having one of three objectives:

1. Data collection. This was achieved by carrying out a number of selected

interviews. Data collected relating to personal, organisational or environmental

factors also form part of this stage.

2. The coding and analysis of collected data.

3. The evaluation of analysed data, facilitating a decision to be made relating to

the contribution of the samples which have been collected to date.

In addition to the qualitative data which was retrieved as a result of the 62 interviews

conducted, there was also a quantitative aspect to these interviews. This is much in

keeping with the views of Casti & Karlqvist (1986), who investigated the

characteristics, influences and effects of complexity, in an ultimate attempt to reduce

its effects. The quantitative analysis was carried out on way of variance based, partial

least squares approach to structural equation modelling (PLS-SEM), using the

175

SmartPLS application, Ringle et al. (2005). This was used primarily because of its

suitability for theory development, Hair et al. (2011). Further, confirmatory analysis of

data is also proposed to be carried out by way of a covariance approach, using the

Lisrel application, with analysis relating to indicator correlation proposed to be carried

out using the IBM SPSS application. The SmartPLS has been shown some support,

Lowry & Gaskin (2014). There were two primary features associated with SmartPLS

algorithm, which are used for analysis:

1. The bootstrapping procedure involves taking a large number of subsamples

(i.e., bootstrap samples) being drawn from the original sample with

replacement (each time an observation is drawn at random from the sampling

population, it is returned to the sampling population before the next

observation is drawn). This confidence interval is derived from the t-statistic

values, available as an output from the bootstrap procedure.

2. The PLS algorithm was used to calculate standardised regression coefficients

between variables, providing an indication of the positive or negative

relationship which may exist between the variables. Such relationships are

referred to in the next section.

The primary constructs of system test related complexity and system test related tacit

knowledge are reflected by six indicators. These six indicators reflect complexity and

tacit knowledge, as they relate to the six different functions (stages) associated with

system testing:

1. System test planning

2. System test development

3. System test execution

4. System test fault analysis

5. System test measurement

6. System test management

These indicators are correlated, thus making the variables reflective as opposed to

formative. To measure the system test complexity and system test related tacit

knowledge, participants were asked to rate the level of system test complexity, and

176

system test tacit knowledge, associated with each of the aforementioned indicators.

The ratings were based on a seven point likert scale. Cenfetelli and Bassellier (2009)

have provided some guidance for interpreting results associated with formative

constructs. The following issues and guidance are provided:

1. Muiticollinearity. When excessive collinearity exists between indicators

(multicollinearity), this introduces the potential for unstable indicator weights.

An investigation into bivariate correlation between indicators and constructs

should be performed. It is advised that variance inflation factors (VIF) should

be assessed to determine whether multicollinearity is an issue. Any excessive

overlap between indicators may be rectified by the removal of the offending

indicators but consideration should also be given as to the effect the removal

would have on the overall the meaning of the construct.

There is recognition of the role which multicollinearity can play in destabilising a

model, Diamantopolous et al. (2008), Marciniak et al. (2014). O’Brien (2007) has

described VIF (and tolerance), as being based on the proportion of variance which any

one particular indicator, associated with a construct, shares with other independent

indicators, associated with the same construct. As part of guidance to avoid

multicollinearity, Kim et al. (2010) have recommended that formative indicators

should cover the entire domain space of a construct, should be designed to avoid

sharing a common theme, and therefore should not be interchangeable. There is an

alternative view, that multicollinearity must be acknowledged as an accepted

consequence in certain circumstances, and that it may be a difficult task to separate

influences of the indicators associated with a particular construct (O'Brien, 2007).

Other concerns and guidelines raised by Cenfetelli and Bassellier (2009) involving

indicator assessment are:

1. The number of indicators. With an increase in the number of indicators which

determine a formative construct, there is an increased likelihood of some low

or insignificant indicators. In the case of there being a large number of

indicators, it is advised that steps such as the introduction of multiple

indicators, the creation of second-order constructs can take place. In the

177

absence of the aforementioned steps being taken, there should be at least a

discussion on the absolute contribution of the indicators.

2. The co-occurrence of both negative and positive indicator values. Negative

values may be as a result of suppressor effects, whereby there is more variance

between indicators than with the formatively measured construct. Thus

investigation should be carried out as to the presence of suppressor effects. An

investigation of bivariate correlation should also be carried out. One step which

can be taken in the case of the presence of both positive and negative indicator

weightings is the removal of indicators. This is providing the indicator is both

acting as a suppressor and there is evidence of bivariate correlation also

existing. An indicator with a significant negative weight, and with a positive

bivariate correlation, should be interpreted as having a negative effect on other

indicators.

3. The absolute versus relative indicator contributions. Indicators which have a

relatively small contribution, in comparison to other indicators, may still have

an important contribution, if that indicator is assessed independently from other

indicators. Bivariate correlations should be determined to assess the

contribution of independent variables. In such a case, where an indicator has a

low, relative, contribution and a high bivariate correlation, the indicators

importance should be recognised. If the indicator has both a low relative

contribution and a low bivariate correlation, then the continued inclusion of

such indicators becomes questionable.

Kim et al. (2010) have addressed some of the concerns highlighted in the previous

points. In the case of formative constructs, the number of indicators can vary but the

indicators should cover the entire domain of the construct and, and should avoid

sharing a common theme which makes them interchangeable. Concern has been raised

regarding activities relating to either the elimination of individual indicators relating to

a construct, and the combination of indicators ((Kim, Shin, & Grover, 2010),

(Diamantopoulos, Riefler, & Roth, 2008)). The aforementioned authors suggest

caution against the removal of indicators, because it may result in an unexpected

change in the overall meaning of the construct. Similarly, caution is advised regarding

the impact of combining indicators, which may be carried out in an effort to increase

indicator contributions.

178

Two additional concerns have been raised by Cenfetelli and Bassellier (2009), relating

to the validity assessment of formative indices:

4. Nomological network effects and construct portability. Some degree of change

in indicator weights should always be expected as the estimation of a

formatively measured construct depends on other constructs in the model, but

large changes are deemed to imply a lack of portability and thus threaten the

generalizability of the interpretation of a given indicators contribution and so

also the interpretation of the results of a model. An example is provided, that if

a formative indicator weight which changes from being a large value in one

nomological network, to a small value in another that would make the

interpretation of its importance difficult to gauge. MIMIC/redundancy analysis

is proposed as one method which can be used to assess the likelihood of

interpretational confounding and an evaluation of the structural

misspecification and the relevance of the choice of outcomes.

5. The choice of technique. If using a PLS technique, or if excluding construct

error while using CB techniques, consideration must be given in interpreting

results, to the potential inflation in weights.

In response to concerns relating to the nomological network effects and construct

portability, serious consideration should be given to the assessment of indicator

validity ((Edwards & Bagozzi, 2000), (O'Brien, 2007), and (Kim, Shin, & Grover,

2010)). Similar to the concerns to those raised relating to nomological network effects

and construct portability, have been raised by Kim et al. (2010), who highlight

interpretational confounding and the external consistency of data as being two aspects

which should be examined in some detail. Interpretational confounding and external

consistency are issues which may be faced as a result of incorrectly specified

formative models. To deal with the effects of these issues, the importance of the pre-

examination of data is emphasised as being particularly important in the case of

formative indices, Kim et al. (2010). One approach which is recommended to identify

the existence of interpretational confounding, is the comparison of both correctly, and

deliberately incorrectly specified models. Issues associated with external consistency

are recommended to be investigated by a review of the correlation between the

formative indicators of a construct and the measures of a dependent construct. The

179

choice of technique and possible weight inflation should be also taken into

consideration due to the application of a PLS techniques.

The following section provides an over of the research model which has been

discussed in this chapter, including the research objective, research strategy and

research design.

4.4 Summary of the Research Model

In line with the views of Eisenhardt (1989), the following points were taken into

consideration, prior to entering field research:

1. Definition of a research focus and identification of a priori knowledge.

2. The development of hypotheses and constructs.

3. Case study identification, and the selection and research of instruments

and protocols.

The use of a priori knowledge in the identification of constructs has been applied to

good effect by Pee et al. (2010), prior to field research relating to knowledge sharing in

information systems. A priori constructs have also been used to good effect in this

research case. This provides the basis for hypotheses development, through a review of

literature which has been covered as part of chapters two, and three, relating to the

following topics:

 The software development process and the role of software testing.

 Types of complexity which can potentially have an impact on the task of

software testing.

 The relationship of tacit knowledge to the development process and in

particular the relationship of tacit knowledge to software testing.

180

In line with the second step, as outlined by Eisenhardt (1989), subsequent sections of

this chapter deal with the development of hypotheses and constructs. The first

hypothesis was developed taking into account of the views of authors such as McKeen

et al. (1994), Huo et al. (2004), Debbarma, et al. (2011) and Li, et al. (2011), relating

to task complexity. The views of others relating to the significance of inherent

complexity, ((Mumford, 1983), (Brooks F., 1995), (Lehman, 1996), (Lyytinen,

Mathiassen, & Ropponen, 1998), (Espinosa, Slaughter, Kraut, & Herbsleb, 2007), (de

Silva & Balasubramaniam, 2012)), were also acknowledged, as were the views of

Ryan and O’Connor (2009), Desai and Shah (2011), Nonaka and Von Krogh (2009),

and Hedesstrom (2000), regarding tacit knowledge. This hypothesis puts forward the

premise that system testing is affected by complexity related to the system under test,

and that most of such knowledge does not lend itself to being made explicit.

The second hypothesis is based on the work of authors such as Andrade et al. (2013),

and Brooks (1986), with a distinction being made between essential complexity and

accidental complexity associated with software engineering. Hypothesis two proposes

that such a relationship exists between complexity associated with system test testing,

and the system under test. In contrast to the knowledge associated with the system

under test, it is proposed that a certain amount of knowledge relating to the process of

system testing actually lends itself to being made explicit.

Rather than the identification of the difficulties and complexity which software testers

face as a technological issue, some authors emphasise the importance of human

factors, such as skill, experience, and management, in the achievement of software

development goals ((Guinan et al., 1998), (Espinosa, 2007)), and their particular

relevance in the achievement of software testing goals, (Martin, Rooksby, Rouncefield,

& Sommerville, 2007). The link between tacit knowledge and experience has been

made by both Polanyi (1966), and Nonako and Van Krogh (2009). The importance of

experience has been emphasised by Crispin and Gregory (2009), and Desai and Shah

(2011).

181

In summary, the two hypotheses which were proposed are:

1. The process of system testing (comprising of test case planning, test case

development, test case execution, test case fault analysis, test case

measurement, and test case management), is directly affected by

complexity associated with the system under test. There exists a positive

relationship, with an increase in complexity leading to an increase in tacit

knowledge. It is also proposed that most of this tacit knowledge does not

lend itself to being made explicit.

2. That the process of system testing (comprising of test case planning, test

case development, test case execution, test case fault analysis, test case

measurement, and test case management), is affected by other sources of

complexity, independent of the system under test. There exists a positive

relationship, with an increase in complexity leading to an increase in tacit

knowledge. It is proposed that much of this tacit knowledge does indeed

lend itself to being made explicit.

To investigate the identified hypotheses, the proposed method for data collection

which was a series of interviews, a similar technique to that conducted by Ryan and

O’Connor (2009). Flanagan’s critical incident technique was employed, a technique

which has been used by Kaplan and Duchon (1988), delivered via a series of open

questions. The proposed data collection method, which consisted of a combination of a

quantitative and qualitative approach, and a variety of open questions, relating to the

qualitative aspect of the interview, would appear to be very much in keeping with the

law of requisite variety (Ashby, 1956), whereby the fact that evidence is being sought

from a variety of perspectives, relating to both tacit knowledge and complexity,

demanded a certain variety in the research approach. Figure 4.5 provides an overview

of the proposed research model and methodology in practice.

182

The method of data collection which was proposed

was a series of interviews, a similar technique to

that conducted by Ryan and O’Connor (2009).

Flanagan’s critical incident technique was

employed, a technique which has been used by

Kaplan and Duchon (1988), delivered via a series

of open questions.

Data collection (employed method)

(chapter 4, section 4.2) :

Four organisations were selected for participation,

with the corresponding test teams responsible for

testing 10 different systems in total. The test teams

varied in team sizes, from four testers to ten testers,

with all teams operating with some level of

geographically dispersion between team members.

Tester experience of the participants varied from 1

years’ experience to greater than 20 years’

experience.

A preference was expressed that face to face

interviews be facilitated, where feasible.

There was also a variation in the employed

development methodology, across the different

development environments involved, with some

teams operating in what was considered a

traditional development environment, and some

operating in an agile development environment.

Interviews consisted of a series of open questions, to

determine the impact of perceived complexity and

tacit knowledge. An open interview technique was

used similar to Kaplan and Duchon (1988). This

facilitated the retrieval of both qualitative and

quantitative data (via likert scale ratings).

Qualitative data analysis

(dealt with in chapter 5, section 5.1, and section 5.2) :

Case study selection

(development environment characteristics)

Data collection

(interview charactistics):

Case study selection (test team characteristics)

(chapter 4, section 4.3.1) :

Data collection (social characteristics):

Complexity Associated

with the

System under Test

Test Planning

Test Case

Development

Test Management

Test Execution

Test Fault

Analysis

Test Measurement

System test complexity

construct

Tacit knowledge related

construct

System related Tacit

Knowledge

Complexity Associated

with the Process

of System Testing

Tacit

Knowledge Asociated

with the Process of

System Testing

Bound by System

Test Activity

Supporting quantitative

data analysis

(chapter 5, section 5.1, and section 5.3) :

The quantitative data associated with the organisations in question

(C = complexity; T = tacit knowledge; 1.1 = test planning...1.6 test management; 2 = system under test)

Figure 4.5: Summary of Research Model and Methodology

Summary of Research Model and Methodology

183

Figure 4.5 makes reference to the interviews and interview questions, which are a key

aspect of the data collection approach. The interview questions are detailed in section

4.2.3. The selected questions have been based on previous the work of numerous

authors, detailed in chapters two, three, and four, some of which has been discussed in

brief in the previous section. The following section provides an overview of

conclusions which can be drawn from the analysis of the research data, including

quantitative data which was also analysed.

Also referenced in figure 4.5, is a brief overview of the case study selection details,

which had the following characteristics in detail:

 Four organisations were selected for participation, with the corresponding

test teams responsible for testing ten different software systems in total.

 Sixty two participants were identified in total, involving test teams from

the four selected organisations (one was discounted due to a lack of tester

exposure to all stages of system testing). A preference was expressed that

face to face interviews be facilitated.

 The test teams varied in team sizes, from four testers to ten testers, with all

teams operating with some level of geographically dispersion between

team members.

 Experience of the participants varied from one years’ experience to greater

than twenty years’ experience.

 There was also a variation in the employed development methodology,

across the different development environments involved, with some teams

operating in what was considered a traditional development environment,

and some operating in an agile development environment.

The bottom of figure 4.5 highlights the role of the quantitative data, in supporting the

qualitative analysis. Presented are the average figures for the quantitative responses

relating to questions 4 and 5 (as detailed in section 4.2.3). These questions specifically

relate to complexity and tacit knowledge associated with the process of system testing

(Cx1.x and Tx1.x), and complexity and tacit knowledge relating to the system under

test (Cx2 and Tx2). These results are discussed in detail as part of chapters five and

six.

184

185

5 Field Research

As proposed in chapter four, the method of data collection employed at the four

organisations was a series of interviews, a similar technique to that conducted by Ryan

and O’Connor (2009), and Connelly et al. (2012). Sixty one interviews were analysed

in total across the four participating organisations, of which fifty three were conducted

face to face, and eight were conducted remotely via teleconference. One additional

interview was discounted because the participant was solely involved in development

and maintenance of the test environment, and therefore had no exposure to test suite

execution, test fault analysis, and test measurement aspects of system testing. The

interviews were conducted during the time period between the 18
th

 of October, 2013,

and the 28
th

 of March, 2014. There was a wide variation of participant experience

across the organisations concerned, as detailed in table 5.1.

Participant Experience Mean Minimum Maximum

Total employees (n=61)

8.16

1

23

< 10 years of experience (n=39) 4.79 1 9

>= 10 years of experience (n=22) 14.14 10 23

Table 5.1: Breakdown by Participant Experience.

There was also a split in the employed development methodology, as detailed in table

5.2. There were 41 candidates who considered the applied development methodology

as being traditional in nature, with 20 candidates considering the adopted approach as

being an agile development approach.

 Development Methodology Number of Samples

 Traditional Development Methodology

 41

 Agile Development Methodology 20

Table 5.2: Breakdown by Employed Development Methodology.

n = the number of samples;

186

Those that were applying a traditional approach to software development were

carrying out the process of specification, design, and implementation, prior to any

significant system testing taking place, whereas those teams which were adopting an

agile approach to software development were in line with some if not all of the

common characteristics associated with an agile software development approach,

namely concurrent specification, design and development stages, and the adoption of

an incremental development approach.

This section provides an overview of the qualitative and quantitative analysis. This is

conducted in sections 5.1, 5.2, and 5.3. As stated at the start of the analysis section, we

are ultimately concerned with validation of the hypotheses as outlined in chapter 4.

The two hypotheses which were outlined are:

1. The process of system testing (comprising of test case planning, test case

development, test case execution, test case fault analysis, test case

measurement, and test case management), is directly affected by

complexity associated with the system under test. There exists a positive

relationship, with an increase in complexity leading to an increase in tacit

knowledge. It is also proposed that most of this tacit knowledge does not

lend itself to being made explicit. The first hypothesis is primarily

concerned with sections 5.1.1, and 5.1.2.

2. The process of system testing (comprising of test case planning, test case

development, test case execution, test case fault analysis, test case

measurement, and test case management), is affected by other sources of

complexity, independent of the system under test. There exists a positive

relationship, with an increase in complexity leading to an increase in tacit

knowledge. It is proposed that much of this tacit knowledge does indeed

lend itself to being made explicit. Relevant analysis associated with the

second hypothesis, was covered as part of sections 5.1.3 and 5.1.4.

A number of relationships were evident from analysis carried out in previous sections.

In line with the first and second hypotheses highlighted above, a distinction was been

187

made between complexity which is associated with the system under test, and

complexity associated with the process of system testing (related to the process of

system testing but excluding the system under test in practice). A similar distinction

has been made between tacit knowledge associated with the system under test, and

tacit knowledge associated with the process of system testing.

The following section provides analysis of data collected from field research

interviews. Interviews were initially recorded and then transcribed from tape to

facilitate detailed analysis of the various sentiments which were expressed by

participants. Ultimately the analysis is aimed at evaluating the aforementioned

hypotheses detailed.

5.1 Coding and Analysis of Data Relating to the First Hypothesis

The first hypothesis proposes that there is a positive relationship between complexity

associated with the system under test and the relationship to tacit knowledge. This has

been coded and categorised in sections 5.1.1, and 5.1.2.

Complexity Associated

with the

System under Test

Test Planning

Test Case

Development

Test Management

Test Execution

Test Fault

Analysis

Test Measurement

System test complexity

construct

Tacit knowledge related

construct

System related Tacit

Knowledge

Bound by System

Test Activity

Figure 5.1: Research Model Constructs of the First Hypothesis

188

Figure 5.1 details the main constructs and indicators associated with this particular

hypothesis. The constructs are complexity associated with the system under test, and

tacit knowledge associated with the system under test. These constructs are used in

conjunction with the following six functions (stages) of system testing, which provides

us with indicators for use in the forthcoming coding and analysis:

1. System test planning

2. System test development

3. System test execution

4. System test fault analysis

5. System test measurement

6. System test management

The following section will carry out coding and analysis from a complexity

perspective with a subsequent section carrying out the coding and analysis from a tacit

knowledge perspective.

5.1.1 Complexity Associated with the System under Test

This section strives to validate the first hypothesis, which proposes a positive

relationship between complexity associated with the system under test and tacit

knowledge. As part of this effort, evidence of complexity associated with the system

under test in practice, and associated tacit knowledge, was sought from the collected

interview data. Table 5.3 provides a coding and categorisation of data by sentiments

expressed. The expressed sentiments have been broken down by system test stage (or

function) and by system test activity. A count for the sentiments expressed has been

detailed also, with an additional indication as to whether the sentiment is in support of

the hypothesis (+) or contrary to the hypothesis (-). Sentiments which add additional

information are identifiable by (a).

189

Test Stage System Test

Activity

Primary Sentiments

Expressed

Count of

similar

sentiments

Test Planning Understanding

features of the

system to be

tested

Deciding what aspects of the

system can and should be

tested can be a complex

activity.

41 (+)

This is often due to system

interoperability and

interdependencies associated

with different elements of the

system.

17 (a)

There needs to be a complete

understanding of how the

feature/system is expected to

operate, and how it could be

used.

20 (a)

A lack of understanding at

this stage can lead to issues

with effective test

specification and the

estimation of required

resources.

6 (a)

Test

Development

Test suite

development

The implementation of test

cases as planned, an activity

which must be carried as part

of the test development

stage, can be quite a complex

task.

32 (+)

190

This is often due to system

interoperability and

interdependencies associated

with different elements of the

system.

8 (a)

Test Execution Manual test

execution

If tests have not been

specified properly or clearly

defined, then it can introduce

complexity at the test

execution stage.

12 (+)

Complexity is more

prevalent if testing is manual

in nature, as opposed to

being automated.

13 (a)

Test Fault

Analysis

Debugging

potential

system issues

System complexity affects

the ability to carry our fault

analysis or debug on

potential issues, and to be

able to differentiate between

what is an actual bug, and

what is a test environment

issue. The fault analysis

stage demands an

understanding of the exact

test which was being

performed i.e. what the test

was attempting to achieve,

what effect it had on the

system, and what effect it

should have had on the

system.

33 (+)

191

Test

Measurement

Manual or in-

depth analysis

of the system

under test as

part of system

quality

estimation.

Complexity appears to come

into play when deeper

analysis is carried out as part

of the test measurement

stage, in order to accurately

evaluate the quality of the

system under test.

7 (+)

A balance must be achieved

between adequate system

quality against time to

market pressures.

2 (a)

Test

Management

 Evidence of complexity

relating to management of

the actual system under test

was not found.

0

Table 5.3: Analysis of Data Relating to Complexity Affecting the System under Test.

As can be seen from table 5.3 evidence involving all stages of system testing, with the

exception of test management, was identifiable from the interview data. The following

section codes and categorises data relating to tacit knowledge relating to the system

under test, another important aspect of hypothesis one (outlined at the beginning of

this chapter). A model is proposed at the end of 5.1.2 which includes the primary detail

from table 5.3.

5.1.2 Tacit Knowledge Associated with the System under Test

The goal of this section is to identify evidence of a positive relationship between

activities which have been identified in section 5.1.1 as being impacted by complexity,

and tacit knowledge. Tacit knowledge was distinguished from explicit knowledge,

through the primary characteristics of being difficult to articulate, and acquired

192

through experience (in line with the views of Joia and Lemos (2010)). Table 5.4

outlines a coding and categorisation of data by sentiments expressed. The expressed

sentiments have been broken down by system test stage (or function) and by system

test activity. A count for the sentiments expressed has been detailed also, with an

additional indication as to whether the sentiment is in support of the hypothesis (+) or

contrary to the hypothesis (-). Sentiments which add additional information are

identifiable by an (a).

Test Stage System Test

Activity

Evidence of Tacit

Knowledge

Count of

similar

sentiments

Test planning Understanding

features of the

system to be

tested.

The availability of tacit

knowledge relating to the

system under test is

essential to enabling

effective completion of the

planning stage.

41 (+)

Test

Development

Test suite

development.

The availability of such

tacit knowledge relating to

the system under test,

interoperability etc. is

imperative to successfully

completing the test

development stage. Equally

important is knowledge

relating to final system

deployment.

25 (+)

For test case development,

and to enable effective

assessment of automation

possibilities, there needs to

be an understanding of

what has to be tested and

how it could be used after

4 (a)

193

deployment at a customer

site.

System test

execution:

Manual Test

Execution

A strong relationship was

stated as existing between a

manual approach to system

testing e.g. load or stress

testing, and tacit

knowledge.

16 (+)

A certain amount of the test

execution normally lends

itself to be made explicit.

21 (-)

System test fault

analysis

Debugging

potential

system issues

To fully appreciate what

component of the system

bugs are emanating from,

one requires tacit

knowledge relating to the

system under test,

specifically relating to how

system components

interoperate.

24 (+)

Debugging brings a

dependency on

development teams for

applicable knowledge (or

support teams).

17 (a)

The view was also

expressed that a certain

amount of debug

knowledge can indeed be

made explicit.

3 (-)

194

System test

measurement

Manual or in-

depth analysis

of the system

under test as

part of system

quality

estimation.

Required tacit knowledge

is associated with current

system evaluation against

expected, with a balance

having to be achieved

between available test

resources, and the

achievement of sufficient

quality of the system within

a certain timeframe.

9 (+)

Most of this knowledge

lends itself to being made

explicit.

25 (-)

Test measurement lends

itself to being automated

(and therefore explicit).

6 (-)

System test

management

 Any relationship between

tacit knowledge associated

with test management and

tacit knowledge was not

evident.

0

Table 5.4: Analysis of Data Relating to Tacit Knowledge Associated with the System under

Test.

Figure 5.2: provides an overview of the detail presented in table 5.3 and table 5.4.

195

Qualitative Analysis Relating to the System under Test

Complexity

associated with

the

system under

test

Tacit

knowledge

associated

with the

System under

test

Test

developmentTest

planning

Test

execution

Fault

analysis Test

measurement Test

management

Test

development

Test

planning

Test

execution

Fault

analysis

Test

measurement

Test

management

Understanding

features of the

system to be

tested

(41+)

Test suite

development

(32+)

Debugging

potential system

issues

(33+)

Manual test

execution

(12+)

Manual or in-

depth analysis of

the system under

test as part of

system quality

estimation

(7+)

Nothing of Note

Understanding

features of the

system to be

tested

(41+)

Test suite

development

(25+)
Manual test

execution

(16+)(21-)

Debugging

potential system

issues

(24+)

Manual or in-

depth analysis of

the system under

test as part of

system quality

estimation

(9)(31-)

Nothing of Note

Figure 5.2: Qualitative Analysis Relating to the System under Test.

As can be identified by tables 5.3 and 5.4 and figure 5.2, evidence of complexity and

tacit knowledge was found in the case of all stages of system testing stages and

activities, with the exception of the system test management stage. Similar to tables 5.3

and 5.4, the sentiments expressed in figure 5.2 are accompanied by the count of

participants who expressed support for the sentiment (+), and the count of those who

contradicted the sentiment.

196

Figure 5.3 provides the relationships which have been detailed in table 5.4 and figure

5.2, from a socio-technical perspective. The relationships detailed in this table all

appear to relate to the task of system testing and the system under test (relating to

technology).

People

(with values and

needs)

Technology

(with requirements

and constraints)

Organisational

Environment

(reflecting company

objectives)

Task

(which require

motivation and

competence)System Test Planning

System Test Development

System Test Execution

System Test Fault Analysis

System Test Measurement

Complexity

Associated

with the

System under test

Figure 5.2: Complexity and Tacit Knowledge Associated with the System under Test, from a

Socio-Technical Perspective.

The analysis and observations associated with this section are discussed in more detail in

the concluding chapter. The following section deals with coding and analysis relating to

the second hypothesis, which is concerned with the relationship between complexity

associated with the wider process of system testing and tacit knowledge.

197

5.2 Coding and Analysis of Data Relating to the Second Hypothesis

The second hypothesis proposes that there exists a positive relationship between

complexity associated with the process of system testing and tacit knowledge. This is

coded and categorised in sections 5.2.1, and 5.2.2.

Complexity Associated

with the Process

of System Testing

Test Planning

Test Case

Development

Test Management

Test Execution

Test Fault

Analysis

Test Measurement

System test complexity

construct

Tacit knowledge related

construct

Tacit

Knowledge Asociated

with the Process of

System Testing

Bound by System

Test Activity

Figure 5.3: Research Model Constructs of the Second Hypothesis.

Figure 5.4 details the main constructs and indicators associated with the this

hypothesis. These constructs are complexity associated with the process of system

testing, and tacit knowledge associated with the process of system testing. These

constructs are used in conjunction with the following six functions (stages) of system

testing, which provides us with the indicators for use in the forthcoming coding and

analysis:

1. System test planning

2. System test development

3. System test execution

4. System test fault analysis

5. System test measurement

6. System test management

198

The following section details the coding and analysis from a complexity perspective

with the following section dealing with the coding and analysis from a tacit knowledge

perspective.

5.2.1 Complexity Associated with the Process of System Testing

This section strives to validate the second hypothesis, which proposes a positive

relationship between complexity associated with the system under test and tacit

knowledge. As part of this effort, evidence of complexity associated with the wider

process of system testing, and associated tacit knowledge, was sought from the

collected interview data. Table 5.5 provides a coding and categorisation of data by

sentiments expressed. The expressed sentiments have been broken down by system

test stage (or function) and system test activity. A count for the sentiments has been

detailed also, with an additional indication as to whether the sentiment is in support of

the hypothesis (+) or contrary to the hypothesis (-). Sentiments which add additional

information are identifiable by an (a).

System Test

Stage

System Test

Activity

Relevant Sentiments

Expressed

Count of

similar

sentiments

System Test

Planning

Balancing test

resources

Missing or incomplete,

functional specifications,

relating to system usage can

be a contributor to

complexity.

15 (+)

This can influence one’s

ability to carry out estimation

of necessary resources i.e.

human, technical and time.

2 (a)

199

The selection

and prioritisation

of test cases

The view was expressed that

complexity at the planning

stage can affect one’s ability

to specify appropriate tests,

and carry out effective

selection and prioritisation of

test cases.

16 (+)

A balance must be achieved

between adequate system

quality and time to market

pressures.

18 (a)

System Test

Development

Test

environment

setup

To build a test environment

which is reflective of final

deployment can also be a

quite complex process.

15 (+)

There is often a deficit of

standards or guidance to

enable test environments to

accurately reflect those of

customers. There is often

insufficient knowledge

relating to the actual

deployed system in practice.

20 (a)

There can be multiple

different routes for successful

testing to be achieved and

this introduces a certain

amount of complexity.

7 (+)

200

Accommodating

test automation.

The role of test automation

was also cited as a potential

contributing factor to

complexity i.e. what should

be automated and how?

11 (+)

System test

execution:

Manual test

execution with

incomplete test

case

specifications.

If tests have not been

specified properly or clearly

defined, then it can introduce

complexity at the test

execution stage.

17 (+)

This has been described as

being particularly relevant if

testing is manual in nature

e.g. exploratory or non-

standard testing, as opposed

to being automated.

13 (+)

A lot of this knowledge can

be made explicit.

12 (-)

System test

fault analysis

Debugging

potential test

environment

issues.

The effects of complexity are

often visible at the fault

analysis stage, when you

must determine is a failure

due to automation or due to

actual system failure.

19 (+)

201

The automation of test cases

is described as something

which contributes greatly to

general complexity

associated with system

testing. Sometimes

automation masks the exact

system interoperability,

thereby having the effect of

reducing the general

understanding of system

operation.

4 (+)

System test

measurement

Development,

execution, or

interpretation of

manual or in-

depth quality

analysis.

Complexity appears to come

into play when an automated

test measurement framework

has not been implemented, or

when deeper analysis is

carried out, in order to

accurately evaluate the

quality of the system under

test.

14 (+)

Balancing system quality and

time to market pressures can

also prove a complex

activity.

3 (+)

System test measurement

does lend itself to being

made explicit and automated,

particularly if kept simplistic

(pass or fail).

21 (-)

202

System test

management

Management of

resources.

Management of resources,

which involves the balancing

of resources associated with

the test environment,

enabling test case

preservation, can be quite a

complex task. Such

management is stated as

requiring experience and

know-how in order to

balance resources properly.

22 (+)

Most of this knowledge can

be made explicit.

4 (-)

Table 5.5: Analysis of Data Relating to Complexity Associated with the Process of System

Testing.

The following sections carry out further analysis on the concept of tacit knowledge as

it relates to the wider system test process. This is an important aspect of the second

hypothesis, referred to at the beginning of section 5.1. A model is proposed at the end

of 5.2.2 which includes the primary detail from table 5.5.

5.2.2 Tacit Knowledge Associated with the Process of System Testing

The goal of this section is to identify evidence of a positive relationship between

activities which have been identified in section 5.2.1 as being impacted by complexity,

and tacit knowledge. Similar to the previous hypothesis, tacit knowledge was

distinguished from explicit knowledge, through the primary characteristics of being

difficult to articulate, and acquired through experience. Table 5.6 provides a coding

and categorisation of data by sentiments expressed. The expressed sentiments have

been broken down by system test stage (or function) and by system test activity. A

count for the sentiments expressed has been detailed also, with an additional indication

203

as to whether the sentiment is in support of the hypothesis (+) or contrary to the

hypothesis (-). Sentiments which add additional information are identifiable by an (a).

System Test

Stage

System Test

Activity

Relevant Sentiments

Expressed

Count of

similar

sentiments

Tacit

knowledge

relating to the

task of system

test planning

Balancing of test

resources.

The importance of tacit

knowledge relating to test

case planning, which is

gained through experience,

has been emphasised by

numerous participants.

27 (+)

Prioritisation and

selection of test

cases.

A shortfall in tacit

knowledge could result in

a lack of appreciation for

what tests are necessary in

order to test the system

properly, given available

resources.

7 (+)

A certain amount of

knowledge relating to

planning does lend itself to

being made explicit e.g.

via specifications etc.

9 (-)

Tacit

knowledge

relating to the

task of system

test

development

Test

environment

setup

Applicable test

environment development

knowledge is usually tacit

in nature and difficult to

make explicit.

28 (+)

204

Knowledge relating to the

test environment may not

be as easy to acquire if the

system being implemented

is a bespoke system, being

developed from scratch by

a separate team e.g.

automation team, or in the

case of a geographically

dispersed test team.

5 (a)

A contrary view was

expressed by a minority

that a lot of test

environment knowledge

can be made explicit.

3 (-)

Tacit

knowledge

relating to the

task of system

test execution

Manual test

execution with

incomplete test

case

specifications.

The views were expressed

that tacit knowledge is

often involved when a

manual approach to testing

is taken. This may involve

complex test steps, and

may form part of load

testing or exploratory

testing, which would

require more detailed test

environment knowledge.

16 (+)

A certain amount of the

test execution knowledge

normally lends itself to be

made explicit.

21 (-)

Tacit

knowledge

relating to the

task of fault

analysis

Debugging

potential test

environment

issues.

An ability to debug is

primarily dependent on the

experience and tacit

knowledge of the tester.

16 (+)

205

When carrying out fault

analysis, one needs to rule

out the involvement of the

test environment, as

opposed to the system

under test.

19 (a)

Knowledge associated with

automated test

environments, is described

as often being primarily

tacit in nature. Debugging

of issues associated with

automated environments,

often brings a dependency

on other team members

(including those focussed

on development and

maintenance of the test

environment)

6 (+)

Tacit

knowledge

relating to the

task of system

test

measurement

Development,

execution, or

interpretation of

manual or in-

depth quality

analysis.

Required tacit knowledge

is associated with system

evaluation, and achieving a

balance between resources,

and the achievement of

sufficient level of system

quality within a defined

timeframe.

9 (+)

Test case measurement is

described as being based

on experience, but

something with a weak

relationship to tacit

knowledge.

25 (-)

206

Test case measurement can

be taken care of, to a large

extent, on an automated

basis (by its nature

explicit), which simplifies

matters.

6 (-)

Tacit

knowledge

relating to the

task of system

test

management

Tacit knowledge

relating to the

task of system

test management

The dependence on tacit

knowledge appears to be

required with the

introduction of new

systems, modifications to

test environments, or

optimisation efforts, all of

which can also make test

environments quite

complex to manage.

7 (+)

Most of test case

management does lend

itself to being made

explicit.

20 (-)

Table 5.6: Analysis of Data Relating to Tacit Knowledge Associated with the System under

Test.

Figure 5.5: provides an overview of the detail presented in tables 5.5 and 5.6.

207

Qualitative Analysis Relating to the Process of System Testing

System test

related

complexity

System test

related

tacit

knowledge

Test

developmentTest

planning

Test

execution

Fault

analysis Test

measurement Test

management

Test

development

Test

planning

Test

execution

Fault

analysis

Test

measurement

Test

management

Balancing test

resources

(27+)

The selection

and prioritisation

of test cases

(7+)(9-)

Test environment

setup

(28+)(3-)

Accommodating

test automation

(11+)

Manual test

execution with

incomplete test

case

specifications

(16+) (21-)

Debugging

potential test

environment

issues

(16+)

Development,

execution, or

interpretation of

manual or in-

depth quality

analysis

(9+)(25-)

Management of

resources.

(7+)(20-)

Balancing test

resources

(15+)

The selection

and prioritisation

of test cases

(16+)

Test environment

setup

(15+)

Accommodating

test automation

(11+)

Manual test

execution with

incomplete test

case

specifications

(17+) (12-)

Debugging

potential test

environment

issues

(19+)

Development,

execution, or

interpretation of

manual or in-

depth quality

analysis

(14+)(21-)

Management of

resources.

(22+)(4-)

Figure 5.4: Qualitative Analysis Relating to the System under Test.

Similar to table 5.6, the sentiments expressed in figure 5.5 are accompanied by the

count of participants who expressed support for the sentiment (+), and the count of

those who contradicted the expressed sentiment.

208

Figure 5.6 provides us with an overview of the evidence detailed in table 5.6, from a

socio-technical perspective.

People

(with values and

needs)

Technology

(with requirements

and constraints)

Organisational

Environment

(reflecting company

objectives)

Task

(which require

motivation and

competence)
System Test Planning

System Test Development

System Test Execution

System Test Fault Analysis

System Test Measurement

System Test Management

System Test

Process

Complexity

Figure 5.5: Complexity and Tacit Knowledge Associated with the Process of System Testing,

from a Socio-Technical Perspective.

In this particular case, there appears to be a greater influence of organisation or project

drivers or complexity, along with complexity associated with the task related

complexity.

The following section provides us with an overview of the quantitative analysis which

has been conducted. A synopsis of the qualitative analysis which has been conducted

in sections 5.1.1, 5.1.2, 5.2.1, and 5.2.2, is carried out as part of the concluding section

of this chapter i.e. section 5.5.

209

5.3 Analysis of Quantitative Data

As previously highlighted, there are two primary constructs in the proposed research

model, relating to system test related complexity, and system test related tacit

knowledge. These constructs are used in conjunction with the following six functions

(stages) of system testing, to provide us with indicators for use in the following

sections:

1. System test planning

2. System test development

3. System test execution

4. System test fault analysis

5. System test measurement

6. System test management

The indicators used are formative in nature, and cover the entire domain space of the

system test complexity construct, as recommended by Kim et al. (2010). These

indicators are also in line with the stages of system testing as outlined by Eickelmann

and Richardson (1996), and Desai and Shah (2011). The bases for the quantitative

analysis are responses provided to questions 3, 4, and 5, as outlined in table 4.1. The

data in table 5.7 provides a synopsis of the relationships between complexity

associated with the different stages of system testing, and tacit knowledge. Figures

detailed, are derived from data displayed in figure 5.7. Confidence levels are detailed

in brackets:

1. System test measurement showed a strong relationship to complexity. Test case

planning and test case management also displayed a reasonably strong relationship

to complexity, with ~76%, and 72% level of confidence, respectively. The other

stages, system test development, system test execution and system test fault

analysis, all displayed a relatively weak relationship to complexity.

2. System test measurement again showed a strong relationship to tacit knowledge

(>99% level of confidence). Besides system test management (~68% level of

confidence), system test development (~54% level of confidence), and system test

fault analysis (~50% level of confidence) displayed reasonable relationship to

210

system test related tacit knowledge, with system test planning (~12% level of

confidence), and system test execution (~27% level of confidence), displaying

rather weak relationships.

Stage
Relationship to System Test

Complexity

Relationship to Tacit

Knowledge

System Test Planning (~76%) (~12%)

System Test

Development
(~27%) (~54%)

System test Execution (~41%) (~27%)

System Test Fault

Analysis
 (~13%) (~50%)

System Test

Measurement
 (>99%) (>99%)

System Test

Management
 (~72%) (>68%)

Table 5.7: Quantitative Evidence of System Test Complexity and Tacit Knowledge.

In addition to the aforementioned, the following relationships were also identifiable:

The bivariate correlation values highlight significant relationships (p < 0.05)

between the following system test complexity indicators:

 System test planning and both system test development, system test

execution, and system test management.

 System test development and both system test fault analysis and system test

management.

 System test execution and system test measurement, and system test

management.

 System test fault analysis and both system test measurement.

211

The bivariate correlation values highlight significant relationships (p<0.05)

between:

 System test planning and both system test execution and system test

measurement.

 System test development and fault analysis.

 System test fault analysis and system test management.

 System test measurement and system test management.

Further analysis was carried out using a partial least squares (PLS) approach. This is

discussed in detail in the following section.

5.3.1 Modelling the Quantitative Data

The data was analysed using a variance based, partial least squares (PLS), structure

equation modelling (SEM) approach. This was primarily chosen because of its

recommended use in the case of formative variables, but also because of the

recognised benefit of such an approach in theory development (Hair, Ringle, &

Starstedt, 2011), and in accommodating smaller sample sizes, of between 50 and 100

participants (Iacobucci, 2010). The principal PLS-SEM tool used was SmartPLS.

Further validation of the bivariate correlation between indicators was carried out

adopting a covariance based approach, using IBM SPSS. Taking into account the

guidance, as provided by Cenfetelli and Bassellier (2009), figure 5.7 shows the

indicator weightings and t-values associated with the system test related complexity

construct.

212

Complexity

associated with

the

system under

test

System test

related

complexity

System test

related

tacit

knowledge

Tacit

knowledge

associated with

the

System under

test

0.170

(t 1.303)

0.312

(t 1.936*)

0.698

(t 10.599****)

Test

development
Test planning

Test execution Fault analysis
Test

measurement Test

management

Test

development

Test planning

Test execution Fault analysis

Test

measurement

Test

management

0.162

(t 1.168)

0.129

(t 0.544)

0.032

(t 0.163)0.063

(t 0.346)
0.231

(t 1.078)

0.824

(t 3.102****)

0.782

(t 3.083****)0.144

(t 0.676)
0.086

(t 0.342)

0.144

(t 0.745)

-0.025

(t 0.145)

0.252

(t 1.001)

Experience of

System Tester

0.052

(t 0.639)

0.119

(t 0.791)

Figure 5.6: Model of Quantitative Results.

There was no evidence of any multicollinearity in effect because, as detailed, the VIF

values detailed in figure 5.8, are all well below a generally recommended rule of

thumb of being less than a value of 5.0 (Hair, Ringle, & Starstedt, 2011), 4.0 (O'Brien,

2007), and 3.3 ((Diamantopoulos & Siguaw, 2006), (Marciniak, Amrani, Rowe, &

Adam, 2014)). In addition to the weightings, and t-statistic values, table 5.8 provides

us with the variance inflation factors associated with the system test complexity

indicators.

System Test Complexity Indicators Weights t-Values Variance Inflation

Factor

System test planning (SC1) 0.162 1.168 1.246

System test development (SC2) 0.063 0.346 1.260

NB: *p<0.10; **p<0.05;* **p<0.01;****p<0.0005;

213

System test execution (SC3) 0.129 0.544 1.210

System test fault analysis(SC4) 0.032 0.163 1.171

System test measurement (SC5) 0.824 3.102**** 1.190

System test management (SC6) 0.231 1.078 1.176

NB: *p<0.10; **p<0.05;*

p<0.01;* *p<0.0005;

Table 5.8: System Test Complexity Indicators.

As can be seen from the results, only the weighting associated with system test

measurement, is shown as significant (having a t-statistic equating to 3.102, which is

representative of a greater than 99% level of confidence). It must also be noted, that

whilst the other weightings may not be highly significant, the values associated with

system test planning and system test management, against system test related

complexity, are not insignificant, equating to ~76%, and ~72%, levels of confidence,

respectively.

Table 5.9 provides us with the bivariate correlations between the indicators detailed in

figure 5.7.

 SC1 SC2 SC3 SC4 SC5 SC6

SC1 1.000

SC2 0.334*** 1.000

SC3 0.309*** 0.172 1.000

SC4 0.061 0.270** 0.119 1.000

SC5 0.016 -0.025 0.259** 0.248** 1.000

SC6 0.238** 0.241** 0.222** 0.194* 0.221 1.000

Table 5.9: Bivariate Correlations between System Test Complexity Indicators.

NB: *p<0.10; **p<0.05;***p<0.01;

214

The bivariate correlation values highlight significant relationships (p<0.05) between

the following system test complexity indicators:

 System test planning and both system test development, system test execution,

and system test management.

 System test development and both system test fault analysis and system test

management.

 System test execution and system test measurement, and system test

management.

 System test fault analysis and both system test measurement.

Similar to table 5.8, table 5.10 provides us with the results of initial analysis of the

indicators, but in this case relating to the other primary construct, system test related

tacit knowledge.

System Test Tacit Knowledge Indicators Weights t-value Variance

Inflation Factor

System test planning (ST1) -0.025 0.145 1.357

System test development (ST2) 0.144 0.745 1.078

System test execution (ST3) 0.086 0.342 1.282

System test fault analysis(ST4) 0.144 0.676 1.095

System test measurement (ST5) 0.782 3.083**** 1.235

System test management (ST6) 0.252 1.001 1.337

NB: *p<0.10;

p<0.05;*p<0.01;****p<0.0005;

Table 5.10: System Test Tacit Knowledge Indicators.

Similar to the system test complexity indicators, table 5.10 also highlights only the

values associated with system test measurement, as being significant (having a t-

statistic or t-value of 3.083, equating to a level of confidence greater than 99%). The

value associated with test management displays a confidence level close to equating to

~70%. Both system test development and system test fault analysis, display moderate

levels of confidence of ~50%. The VIF values detailed in table 5.10 do not show any

215

evidence of excessive multicollinearity, again being less than a generally

recommended rule of thumb of being less than a value of 5.0 (Hair, Ringle, &

Starstedt, 2011), 4.0 (O'Brien, 2007), 3.3 ((Diamantopoulos & Siguaw, 2006),

(Marciniak, Amrani, Rowe, & Adam, 2014)).

Table 5.11 details the bivariate correlations between the indicators detailed in figure

5.7.

 ST1 ST2 ST3 ST4 ST5 ST6

ST1 1.000

ST2 0.097 1.000

ST3 0.457*** 0.135 1.000

ST4 0.124 0.457*** 0.135 1.000

ST5 0.272** 0.138 0.155 0.141 1.000

ST6 0.239* 0.247* 0.165 0.284** 0.393*** 1.000

Table 5.11: Bivariate Correlations between System Test Tacit Knowledge Indicators.

The bivariate correlation values highlight significant relationships (p<0.05) between:

 System test planning and both system test execution and system test

measurement.

 System test development and fault analysis.

 System test fault analysis and system test management.

 System test measurement and system test management.

The next section performs a comparison of the qualitative data which has been

previously covered, and the quantitative data covered in this section.

The following section provides a brief overview of actions which can be taken to

combat the effects of system test complexity.

NB: *p<0.10; **p<0.05;***p<0.01;

216

5.3.2 A Comparison between the Qualitative and Quantitative Analysis

Table 5.12 highlights those relationships with a quantitative rating equivalent to

greater than 70% level of confidence.

Stage
Relationship to System Test

Complexity

Relationship to Tacit

Knowledge

System Test

Planning
(quantitative)

System Test

Development

System test

Execution

System Test

Fault Analysis

System Test

Measurement
(quantitative) (quantitative)

System Test

Management
(quantitative)

Table 5.12: Discussion of Quantitative Results.

When compared to the qualitative analysis, the following discrepancies are obvious

regarding which activities displayed a relationship between complexity and tacit

knowledge:

1. The quantitative data did not appear to highlight a relationship to complexity at the

test planning stage. This is at odds with the previously discussed qualitative data

which highlighted strong support, amongst participants, in line with the following

sentiment which was regularly expressed: with testing of complex systems, the

availability of tacit knowledge relating to the system under test, interoperability

etc. is imperative to enable effective completion of the planning and test

development stages.

217

2. Quantitative data relating to the test development stage appears to be also at odds

with the qualitative data, which appears to show a general consensus amongst

testers that there is often a deficit of standards or guidance regarding the setup of

test environments which accurately reflect customer deployments, and often

insufficient knowledge relating to the actual system in practice. This was generally

stated as having particular relevance to the task of system test development. The

availability of separate independent test environment support teams, and the

assistance of more experienced team members, may help explain why some

participants did not perceive there to be high levels of complexity associated with

this stage, thus explaining the variance in reported values. Both the availability of a

separate test development team, and the availability of more experienced team

members, was referred to as helping to reduce complexity associated with the

system test development stage.

3. A strong positive relationship to complexity or tacit knowledge associated with test

execution does not appear to be acknowledged from a quantitative perspective. The

quantitative analysis does not appear to be keeping with the commonly expressed

sentiment that if tests have not been specified properly, or clearly, then it can

introduce complexity at the test execution stage. Having said that, numerous

experienced participants went on to state that a lot of this knowledge can be made

explicit, with little support being displayed for a strong relationship between

system test execution and tacit knowledge. The qualitative data did show support

for complexity associated with the system under test, and the wider system test

process, when a manual approach to test execution is employed, as opposed to use

of an automated infrastructure.

4. Quantitative data displayed a weak positive relationship between the fault analysis

stage of testing, to both complexity and tacit knowledge. This in contrast to the

qualitative data which appeared to highlight a positive relationship to both

complexity and tacit knowledge. A strong relationship to development teams as a

source of tacit knowledge applicable to this particular stage was also highlighted as

part of the qualitative data.

5. The quantitative data displayed a positive relationship between system test

measurement and tacit knowledge. The qualitative data displayed a similar

relationship, but associated with a manual test measurement approach, and also

218

relating to the achievement of a balance between quality and time to market

pressures.

6. There was perceived to be a positive relationship between system test management

and complexity, from analysis of quantitative data. The significance of complexity

to the management stage was not apparent from the qualitative data, from a system

under test perspective, but there was evidence of complexity from a wider system

test process perspective. This related to a manual approach to test environment

management being adopted.

The lower quantitative results can be explained in most case by the high median but

high variance between ratings which were provided. One explanation for this variance

between ratings could be the employment of positive actions which are actively being

taken by some test teams, with the purpose of complexity reduction. This would

explain the lower complexity and tacit knowledge ratings in those particular cases.

Another point to consider is the possible lack of consistent appreciation and

recognition for the presence and effect of tacit knowledge amongst participants. These

reasons might go some way towards explaining the inconsistent ratings for complexity

and tacit knowledge, versus the qualitative analysis linked to a series of open

questions, which reflected a stronger presence of complexity and tacit knowledge for

the various stages of system testing. The following section continues support for the

qualitative analysis, highlighting the research findings from a socio-technical

perspective.

The following section provides an overview of recommended actions which could be

taken as part of efforts to reduce the effects of complexity.

5.4 Identified Actions for Dealing with System Test Complexity

As an outcome of the interview stage, a number of actions were identified as having a

positive effect in the reduction of complexity associated with system testing. The

support of system testing and facilitating the flow of knowledge, have been identified

as being of the upmost importance. The following key areas were identifiable:

219

1. The availability of knowledge within the test team.

2. The availability of knowledge from development teams.

3. The use of support applications and support teams

Table 5.13 provides a coding and categorisation of the three aforementioned areas, by

sentiments expressed during the interview stage. The expressed sentiments have been

broken down by the knowledge source and system test activity.

Action Knowledge

Source

Evidence of Tacit

Knowledge

Count of

similar

sentiments

The

availability of

knowledge

within the test

team.

The dependence

on tacit

knowledge from

team members

and the

availability of

SMEs.

It has been explained that

the availability of subject

matter experts, providing

necessary tacit knowledge

relating to the actual

system under test and the

system test environment,

is important in the

reduction of complexity.

43

The importance of

explicit knowledge

in reducing

complexity

At planning stages, there

is a great deal of

information which can be

made explicit via function

specifications, user stories

etc. which can help in

reducing complexity

associated with system

testing.

46

The

availability of

The importance of

the transfer of

Due to the inadequacies of

formal documentation, a

25

220

knowledge

from

development

teams

tacit knowledge

from developers in

reducing system

test complexity

significant amount of time

is spent trying to acquire

tacit knowledge from

development teams,

especially in relation to

system interactions and

expected outcomes under

different operating

conditions.

The benefit of

support

applications

and support

teams

The use of

development and

test support teams

and support

applications.

There is a benefit of

providing test support

teams, which are separate

to system testing, but

closely aligned, such as

project management teams

or test environment

support teams e.g. test

environment automation

teams. Such teams provide

ongoing support for

system testing from a

development process and

a test environment

perspective.

14

The use of automated

systems which may be

custom built or off the

shelf, can help

significantly in reducing

complexity associated

with test case execution

and measurement stages

of system testing.

5

221

The use of project

management

applications

Project management tools

such as JIRA and

Confluence were

described as helping to

clarify what architectural

decisions have been made,

and the principal drivers.

Tools such as wiki pages

are described as being

effective to detail such

architectural decisions.

2

Table 5.13: A Breakdown of Actions which may be taken to reduce the Effects of Complexity.

Figure 5.8 provides us with an overview of this section, from a socio-technical

perspective. Included are the main actions areas which have been identified, i.e. test

team knowledge, development team knowledge, support applications, and support

teams. Interestingly, the identified actions against complexity, relate to interactions

with development, test, automation, and project management teams i.e. people

interactions, and technological solutions, such as project management and automation

applications.

222

People

(with values and

needs)

Technology

(with requirements

and constraints)

Organisational

Environment

(reflecting company

objectives)

Task

(which require

motivation and

competence)

1. Test team knowledge

2. Development team knowledge

3. Support applications

4. Development and test support

teams

Figure 5.7: Actions which may be taken to reduce the Effects of Complexity, from a Socio-

Technical Perspective.

5.5 Modelling Research Findings

This section provides a model of the analysis which has been conducted as part of

sections 5.1, 5.2, and 5.4. Activities with a common positive relationship to system test

complexity and tacit knowledge have been identified in sections 5.1 and 5.2. Section 5.1

highlighted system test activities which are affected by complexity associated with the

system under test which have a positive relationship to tacit knowledge. Section 5.2

identified activities which are primarily affected by complexity associated with the wider

process of system testing, and which also have a positive relationship to tacit knowledge.

The following section 5.5.1, models observations from the coding and categorisation

which has taken place in sections 5.1 and 5.2. Section 5.5.2 models the highlighted

actions which have been taken to reduce the effects of system test complexity, as detailed

in section 5.4. The final section of this chapter provides a socio-technical representation

of the research findings.

223

5.5.1 A Model of the Relationship between Complexity and Tacit Knowledge

Figure 5.9 highlights those activities (detailed in section 5.1 and section 5.2), which

are affected by complexity (as provided in the previous chapter), and display a positive

relationship to tacit knowledge. The model details activities from both a system under

test and a wider system test process perspective.

Understanding

features of the

system to be

tested.

Test suite

development.

Manual test

execution.

Debugging

potential system

issues.

Manual or in-

depth analysis of

the system under

test as part of

system quality

estimation.

Test

Development

Test

Planning

Test

Execution

Test Fault

Analysis

Test

Management

Test

Measurement

The selection

and prioritisation

of test cases.

Balancing test

resources.

Test

environment

setup.

Accommodating

a test automation

strategy.

Complexity associated with the system under test

Complexity associated with the process of system testing

Manual test

execution with

incomplete test

case

specifications.

Debugging

potential test

environment

issues.

Development,

execution, or

interpretation of

manual or in-

depth system

quality

estimation.

Balancing

quality versus

time to market

pressures.

Management of

resources.

Figure 5.8: A Model of Sources of Complexity with a Direct Relationship to Tacit

Knowledge.

Complexity associated with the system under test was perceived to be very important

in the case of a number of activities during the test process. Prior to test execution,

activities such as understanding the system features to be tested (required for test

planning), development of individual test suites (test cases), and manual test execution

(as opposed to automated test execution), all appear to be relevant. Complexity

224

associated with manual test execution was linked to the correct execution of tests

against the system under test, as opposed to complexity related to the test environment.

After test execution, activities such as debugging of potential issues from a system

under test perspective, and manual efforts to estimate system quality, were also found

to have a relationship to both complexity and tacit knowledge.

Complexity was also found, and detailed in figure 5.9, relating to activities associated

with the wider system test process. Prior to test execution, the prioritisation and

selection of test cases, and balancing test resources, have been found to be potentially

complex at the test planning stage (the criteria for selection of test cases has been

referred to as including coverage criteria, resource constraints, and fault detection

capability (Lin, Chou, Lai, Huang, & Chung, 2012)). At the test development stage

evidence of complexity associated with setup of the test environment, and

accommodation of an automated test strategy, was also found to be potentially

complex. Manual test execution was found to be complex from a test environment

perspective, particularly when tests have not been specified properly. After test

execution, complexity can affect activities such as debugging potential test

environment issues as part of the fault analysis stage. Complexity can also be

associated with activities associated with a test measurement framework, independent

of the system under test, and also achieving a balance between quality and time to

market pressures. Test management can be affected by complexity associated with the

management of test resources, whereby the test environment must be preserved, with a

view to ensuring consistent test repeatability, which can be difficult to achieve if the

test environment is not being used exclusively but is rather being shared amongst

different teams.

In addition to the identification of complexity with a relationship to tacit knowledge,

the previous chapter also identified actions which were suggested as having a positive

effect in the reduction of complexity associated with system testing. These actions are

discussed in more detail in the next section.

225

5.5.2 A Model of Proposed Actions to Reduce the Effects of Complexity

Actions have been identified as part of section 5.4 which encourage the availability of

both tacit and explicit through knowledge transfer, and also encourage the conversion

of appropriate tacit knowledge to explicit of knowledge. Three primary sources of

knowledge which have been identified are:

 The availability of knowledge within the test team, both from a personal and

team perspective. Such knowledge, as often held by subject matter experts

(SMEs), can have a positive effect on the reduction of complexity associated

with test planning, test development, test case execution, and test fault analysis.

 The availability of accessible tacit knowledge from development teams can

have a positive effect on the reduction of complexity associated with the test

planning, test execution, and test fault analysis stages.

 The use of support applications and support teams has been highlighted as

being beneficial in the reduction of system test complexity associated with the

test planning, test development, test execution, test management and test

measurement stages.

A model of the identified actions is detailed in figure 5.10.

226

The availability of knowledge from development teams

The use of support applications and support teams

Test

Development

Test

Planning

Test

Execution

Test Fault

Analysis

Test

Management

Test

Measurement

Encourage both

explicit and tacit

knowledge

transfer from

development

teams. This can

be passed

through

specifications/

user stories or

workshops,

walkthroughs,

regular

communication

etc.

Encourage tacit

knowledge

transfer from

development

teams. Such

knowledge is

often essential to

help debug the

system under test.

Encourage the

use of support

applications for

e.g. automation

and the use of

support teams

e.g. test case

automation

teams.

The introduction

of applications

should be

considered for

the purpose of

test case

measurement.

The availability of knowledge within the test team

Enable the

availability

knowledge

within the test

team via SMEs.

This can help

understanding

what needs to be

tested, and

enable efficient

use of available

resources.

Enable the

availability

knowledge

within the test

team via SMEs.

This can help

ensure the

successful

implementation

of a test

environment and

test cases.

Enable the

availability

knowledge

within the test

team via SMEs.

This can help

ensure correct

test execution in

the case of

manual testing

Enable the

availability

knowledge

within the test

team via SMEs.

This can help

carry out root

cause analysis

from a test

environment and

system under

test perspective.

Encourage tacit

knowledge

transfer from

development

teams. This can

be passed

through regular

communication

during test

execution.

Encourage the

use of project

management

applications and

project

management

support teams.

Applications can

be introduced to

to help manage

the complete test

environment.

If test cases have

been automated

as part of the test

development

stage, this can

significantly

reduce test

execution

complexity.

Figure 5.9: A Model of Recommended Actions to Reduce the Effects of Complexity.

The availability of test team knowledge via subject matter experts (SMEs) was found

to provide benefit at the test case planning (providing knowledge relating to system

227

understanding and resource management), test case development (test environment

development and the development of test cases), test execution, and fault analysis

stages. Complexity can be reduced at the test development and test execution stages by

the introduction of an automated test environment, with a separate team tasked with

handling the setup of such an environment.

Regarding the availability of tacit knowledge from development teams, the availability

of both explicit and tacit knowledge from developers has been shown to be important

at the test planning, test execution, and fault analysis stages, but of lesser importance at

the test development, test measurement, and test management stages. This could be

explained by a reliance on development teams for initial system understanding, but a

diminished reliance at the test development stage, because of previously acquired

knowledge at the test planning stage. Validation of the test environment, from a

development perspective, can come as part of the test execution stages, and test fault

analysis stages. Outside of the transfer of tacit knowledge from developers, the transfer

of knowledge which can be made explicit relating to the system under test has also

been shown to be important. Such knowledge is usually passed via specifications, user

stories etc. The conversion to explicit knowledge was also evident through comments

referring to the benefit of the use of support applications, and test measurement

applications, which is effectively making explicit, knowledge relating to those

particular aspects of system testing.

The use of support applications and support teams has been found to be beneficial at

all stages with the exception of the fault analysis stage.

5.5.3 The Identified Research Findings from a Socio-Technical Perspective

This section details the qualitative research findings from a socio-technical

perspective. As explained in the previous section, the disparity between quantitative

and qualitative analysis was attributed to the high median, but high variance, between

ratings which were provided as an indication of complexity and tacit knowledge. It is

argued that the qualitative analysis provided a greater insight into the relationship to

system test complexity, and tacit knowledge, due to the use of open questions, a

228

technique which has previously been used to good effect by Kaplan and Duchon

(1988), and Kothari et al. (2012). There is recognised benefit in applying a socio-

technical model to the research findings ((Herbsleb, 2007), (Lu, Xiang, & Wang,

2011), (Sommerville, et al., 2012), (Davis, Challenger, Jayewardene, & Clegg, 2013)).

Figure 5.11 highlights the output from the qualitative analysis, from a socio-technical

perspective.

5. The use of project

management applications

should be considered.

System Test

Process

Complexity

People

(with values and

needs)

Technology

(with requirements

and constraints)

Organisational

Environment

(reflecting company

objectives)

Task

(which require

motivation and

competence)

System Test Planning

System Test Development

System Test Execution

System Test Fault Analysis

System Test Measurement

Complexity Associated

with the

System under Test

System Test Planning

System Test Development

System Test Execution

System Test Fault Analysis

System Test Measurement

System Test Management

1. Subject Matter Experts (SMEs)

should be made available

2. Encouraging the availability of

explicit system knowledge.

3. The transfer of tacit knowledge from

developers should be encouraged.

4. The use of development

and test support teams

should be considered.

Figure 5.10: A Model of System Test Complexity and Recommended Actions from a Socio-

Technical Perspective.

Detailed in figure 5.11, are the stages of system testing (both from a system under test,

and from a wider system test perspective) which have shown to have a positive

229

relationship between complexity and tacit knowledge. Stages relating to the system

under test have been detailed in red, whereas stages associated with the wider system

test process have been detailed in grey. Also detailed are actions which can be taken to

reduce the effects of such complexity (numbered and detailed in blue). It was found

that both the system under test, and the wider system test process, were affected by

complexity from a technological e.g. inherent complexity related to the system under

test (associated with system interoperability and interdependencies), and task

perspective e.g. manual testing or manual test measurement. The wider system test

process appeared to be additionally impacted from an organisational environment

perspective e.g. balancing resources and time to market pressures.

Regarding the suggested actions which could be taken in an effort to reduce the effects

of system test complexity, these appeared to primarily relate to people e.g. subject

matter experts, and technological e.g. project management applications. As part of

further efforts to understand the actions which have been detailed, there is a benefit in

applying the views of Hedesstrom (2000). This allows us to further categorise the

underlying knowledge, enabling us to differentiate between:

 Tacit knowledge which has not been formalised because of cost or time

limitations.

 Tacit knowledge which has not been formalised because of the form of the

knowledge, such as embodied knowledge.

There would appear to be at least some knowledge which falls into the category of

knowledge which could be made explicit due to time or cost limitations i.e. explicit

system knowledge e.g. specifications etc. and knowledge made explicit through the use

of support applications. Contrary to this, knowledge has also been identified relating

subject matter experts (SMEs) and development team members, of which some at least,

falls into the category of knowledge which has not been formalised because of the

form of such knowledge.

The analysis which has been presented as part of this chapter will be applied to the

research hypotheses in the following concluding chapter.

230

231

6 Conclusion

A primary objective of this research is to replicate or extend emergent theory relating

to the effect of complexity on the software development process, specifically focussing

on the system testing phase. Andrade et al. (2013) have referred to the increasing

complexity associated with software testing related tasks, an important aspect of

software verification and validation. This research is focussed on the software testing

of complete software systems, or system testing, as performed by independent test

teams. This is distinct from a more granular approach to software testing, which may

be carried out as part of module or unit testing. The use of independent test teams have

been endorsed by Talby et al. (2006), who have stated that independent testers allow a

more comprehensive test coverage, especially in the case of complex development

projects. The primary activities associated with software testing, have been identified

by Eickelmann & Richardson (1996), and Desai and Shah (2011). These relate to:

1. Test Planning includes the development of a plan relating to test case

development. This plan provides an outline of test objectives. Detailed as part

of test planning are features of the system to be tested, risk assessment issues,

organizational training needs, required and available resources, a

comprehensive test strategy, resource and staffing requirements, roles and

responsibilities, and the overall schedule. Development of a test architecture,

which involves the identification of required and available resources, is also

carried out at this stage.

2. Test Development is essentially the development of a test approach which

includes the specification and implementation of a test configuration. The

output of this stage are the test suites, including individual test cases, test input

criteria, test documentation, and test adequacy criteria.

3. Test Execution includes the execution of the instrumented source code and

recording of execution traces. The output of this stage includes test output

results, test execution traces, and test statuses.

4. Test Failure Analysis includes behavior verification, and the documentation of

test execution pass/fail statistics and test failure reports.

5. Test Measurement includes test coverage measurement and analysis. Source

code is described a typical instrument used to collect execution traces.

232

Executed test runs have associated with them test coverage measures and test

failure measures.

6. Test Management includes support for the complete test infrastructure, along

with the state preservation of the test environment. Test process automation

usually requires a repository of the test infrastructure.

Another important aspect of this research is the relationship between tacit knowledge

and system test related complexity. Whereas explicit knowledge is stated as having

universal character, employed consciously, and not tied to any particular context, tacit

knowledge is described as being tied to actions, procedures, commitments, ideals,

values and emotions, with a strong relationship to past experiences, true beliefs, and

the actions of intuition, and implicit rules of thumb (Nonaka & Von Krogh, 2009).

Cataldo and Ehrlich (2012) have referred to the lack of existing research which

examines both the communication structures facilitating the transfer of knowledge

(something which is considered key in software development processes), and also the

overall achievement of software development goals, such as productivity or quality. A

case for further research into the topic of knowledge, including tacit knowledge, and

software engineering, has been made by Ryan and O’Connor (2009), Von Krogh

(2012), and Dingsøyr and Šmite (2014). The subject of knowledge as it may apply to

the task of system testing, has been discussed by Desai and Shah (2011), and Mantyla

and Lassenius (2012).

Taking the aforementioned views into account (and the view of others detailed in

chapter three), the following two primary considerations were identified for this

research:

1. Complexity associated with the task of system testing.

2. The relationship between system test complexity and tacit knowledge.

The first consideration of this research i.e. complexity associated with the task of

system testing, was analysed further in keeping with the views of McKeen et al.

(1994), and Brooks(1995), with a further distinction being made between system

complexity and task complexity:

233

 Complexity associated with the system under test.

 Complexity associated with the process of software development.

The concept of tacit knowledge, an important aspect of the second research

consideration detailed above, along with system test complexity, has been discussed in

detail as part of chapter three. Important in this case are the views of Hedesstrom

(2000), whose work helps to reconcile the work of Polanyi (1966), Nonaka and Von

Krogh (2009), and Tsoukas (2002). He states that the views relating to the

aforementioned authors can be encapsulated, by distinguishing between:

 Tacit knowledge which has not been formalised because of cost or time

limitations.

 Tacit knowledge which has not been formalised because of the form of the

knowledge, such as embodied knowledge.

Hedesstrom (2000) has made reference to the acceptance amongst a growing number

of authors, regarding the clear distinction between tacit knowledge and explicit

knowledge. This was important consideration in the development of hypotheses for

this research. The following section presents the proposed hypotheses and the research

findings. This is followed by a research conclusion, with the final sections of this

chapter dealing with research limitations and future research considerations.

6.1 Summary of Findings

As a result of the discussions which were carried out in chapter two and chapter three,

the following hypotheses were put forward in chapter four for further investigation:

1. The process of system testing (comprising of test case planning, test case

development, test case execution, test case fault analysis, test case

measurement, and test case management), is directly affected by

complexity associated with the system under test. There exists a positive

relationship, with an increase in complexity leading to an increase in tacit

234

knowledge. It is also proposed that most of this tacit knowledge does not

lend itself to being made explicit.

2. The process of system testing (comprising of test case planning, test case

development, test case execution, test case fault analysis, test case

measurement, and test case management), is affected by other sources of

complexity, independent of the system under test. There exists a positive

relationship, with an increase in complexity leading to an increase in tacit

knowledge. It is proposed that most of this tacit knowledge does lend itself

to being made explicit.

The following sections provide an overview of analysis which has been conducted as

part of chapter five and chapter six, relating to these hypotheses.

6.1.1 Observations Relating to the First Hypothesis

After analysing the data acquired through field research (detailed in the preceding

chapters), evidence of a positive relationship between complexity associated with the

system under test, and tacit knowledge, was shown to exist. Evidence of this

relationship is detailed in figure 6.1, through the identification of system test related

activities which are affected by complexity, and which displayed a corresponding

relationship to tacit knowledge.

Understanding

features of the

system to be

tested.

Test suite

development.

Manual test

execution.

Debugging

potential system

issues.

Manual or in-

depth analysis of

the system under

test as part of

system quality

estimation.

Test

Development

Test

Planning

Test

Execution

Test Fault

Analysis

Test

Management

Test

Measurement

System test complexity associated with the system under test

Figure 6.1: Complexity Associated with First Hypothesis.

235

From the analysis conducted, all stages of system testing, with the exception of test

management, displayed a positive relationship to tacit knowledge. Complexity

associated with the system under test, impacts system test planning, by affecting one’s

ability to understand all aspects of the system to be tested, and an appreciation for how

it should be tested. The view was commonly expressed that complexity at this planning

stage can have a knock on effect on the subsequent stages of system testing. The

implementation of test cases, carried out as part of test case/suite development, is also

impacted, as distinct from the development of the test environment, which is another

important aspect of the test development stage. Complexity may come as part of a

required understanding of system interactions, something which may be necessary as a

result of a manual approach to test execution being taken (such as may be taken as part

of load or stress testing). The fault analysis stage has also been found to be affected by

complexity associated with the system under test. This impacts one’s ability to

effectively carry out root cause analysis of issues, and something which in turn brings

a dependency on both test team members and development team members, regarding

expertise and knowledge associated with the system under test in practice. The test

measurement stage was also found to be potentially complex, depending on the level

of analysis which is conducted as part of an estimation of system quality.

Understandably, complexity is reduced significantly if a more straight forward test

measurement approach is adopted, such as the assessment of system quality based on a

collection of simple pass or fails, directly relating to test case execution success or

failure.

Detailed in figure 6.2 are actions related to the system under test, which have some

relationship to explicit knowledge.

236

Test

Development

Test

Planning

Test

Execution

Test Fault

Analysis

Test

Management

Test

Measurement

Encourage the availability of explicit and tacit knowledge from development teams

Encourage both

explicit and tacit

knowledge

transfer from

development

teams. This can

be passed

through

specifications/

user stories or

workshops,

walkthroughs,

regular

communication

etc.

Encourage the availability of tacit knowledge from within the test team

Figure 6.2: Explicit Knowledge Actions Relating To the First Hypothesis.

Numerous authors have referred to the benefits associated with attempting to make

knowledge within an organisation explicit and available ((Basili, Lindvall, & Costa,

2001), (Hansen, Nohria, & Tierney, 1999), (Ryan & O’Connor, 2009), (Dingsøyr &

Šmite, 2014)). It appears that there is certain knowledge relating to the system under

test which can indeed be formalised as explicit knowledge. Such knowledge can be

made explicit in the form of specifications or user stories, which are usually created by

development teams. The concept of knowledge which may be formalised as explicit

knowledge is something which has been put forward by Hedesstrom (2000), in line

with the views of Nonaka and Von Krogh (2009), and Polanyi (1966), and is a concept

which is applied as part of research by Murphy (2014). This benefit of making

available, explicit knowledge relating to the system under test has been emphasised by

numerous research participants. However, the sentiment was also expressed that the

237

benefit of system related specifications in reducing complexity associated with system

testing, is diminished if the functional specifications are incomplete, subject to change,

or arrive late in the software development process. It was found that the level of

documentation associated with a development project does help reduce complexity,

but enterprise systems are described as often being very complex by their very nature,

with only a certain amount of such knowledge lending itself to being made explicit and

documented. The aforementioned findings are considered as supporting this particular

hypothesis.

Figure 6.3 highlights additional actions which can be taken as part of efforts to reduce

the effects of complexity associated with the system under test, through enabling the

flow of tacit knowledge.

Test

Development

Test

Planning

Test

Execution

Test Fault

Analysis

Test

Management

Test

Measurement

Encourage the availability of explicit and tacit knowledge from development teams

Encourage both

explicit and tacit

knowledge

transfer from

development

teams. This can

be passed

through

specifications/

user stories or

workshops,

walkthroughs,

regular

communication

etc.

Encourage tacit

knowledge

transfer from

development

teams. Such

knowledge is

often essential to

help debug the

system under

test.

Encourage the availability of tacit knowledge from within the test team

Enable the

availability of

tacit knowledge

via subject

matter experts

(SMEs). This

can help

understand what

needs to be

tested.

Enable the

availability of

tacit knowledge

via SMEs. This

can help ensure

the successful

implementation

of test cases.

Enable the

availability of

tacit knowledge

via SMEs. This

can help ensure

correct test

execution in the

case of manual

tests against the

system under

test.

Enable the

availability of

tacit knowledge

via SMEs. This

can help carry

out root cause

analysis from a

system under

test perspective.

Encourage tacit

knowledge

transfer from

development

teams. This can

be passed

through regular

communication

during test

execution.

Figure 6.3: Tacit Knowledge Actions Relating To the First Hypothesis.

238

Support demanded of test and development teams, primarily relates to test planning,

test execution, and test fault analysis stage, with the test development stage primarily

demanding the support of the test team in order to assist the implementation of test

cases. This would appear reasonable, given that development team may have an

involvement at the subsequent test execution stage, and thus can provide feedback and

test validation, if necessary, at that particular stage of the process. The support of

development teams has been emphasised by numerous participants, with the common

view being expressed that the level of documentation does indeed help reduce

complexity. However, enterprise systems are described as often being very complex,

with only a certain amount of such knowledge lending itself to being made explicit and

documented. This is very much in line with the views of Heddestrom (2000) regarding

tacit knowledge which does not lend itself to being easily formalised, due to the form

of such knowledge.

A significant amount of time is spent trying to acquire tacit knowledge from

development teams, especially in relation to system interaction and expected outcomes

under different conditions. If the knowledge is not freely flowing, then this can make

the process a lot more inefficient and complex. At the test planning stage this

knowledge can be transferred via workshops, walkthroughs, and regular

communication etc. Regular communication can assist tacit knowledge transfer at the

test execution and test fault analysis stages also. The importance of the distribution of

knowledge amongst team members, particularly in the case of complex tasks, has

previously been highlighted (Staats, Valentine, & Edmondson, 2010).

Figure 6.4 provides a high level view of the complexity and actions which have been

proposed relating to first hypothesis, from a socio-technical perspective.

239

1. Subject Matter Experts (SMEs)

should be made available

2. Encouraging the availability of

explicit system knowledge.

3. The transfer of tacit knowledge

from developers should be

encouraged.

4. The use of development

and test support teams

should be considered.

People

(with values and

needs)

Technology

(with requirements

and constraints)

Organisational

Environment

(reflecting company

objectives)

Task

(which require

motivation and

competence)

System Test Planning

System Test Development

System Test Execution

System Test Fault Analysis

System Test Measurement

Complexity

Associated with

System under Test

Identified

Actions

Figure 6.4: The First Hypothesis from a Socio-Technical Perspective.

Included in figure 6.4 are the stages of system testing which displayed evidence of

being affected by complexity (detailed in red), and actions which have been proposed

to reduce the effects of such complexity (numbered and detailed in blue). The system

test activities which have been identified relate to task and technology, with no

obvious link to people or organisational environment. The actions are associated with

enabling the availability of either explicit or tacit knowledge. Sources of tacit

knowledge have been identified as test team members, development team members,

and subject matter experts (SMEs), with development team members having also been

identified as an important source of explicit knowledge. The identified actions relate to

people interaction in the case of test or development team members, or technology in

the case of explicit knowledge relating to specifications etc.

The following section provides conclusions linked to the second hypothesis.

240

6.1.2 Observations Relating to the Second Hypothesis

The second hypothesis, relates to the identification of complexity associated with the

wider process of system testing, and not directly associated with the system under test

in practice. Evidence of such complexity which was found as part of analysis

conducted in the preceding chapters, is highlighted in figure 6.5.

Test

Development

Test

Planning

Test

Execution

Test Fault

Analysis

Test

Management

Test

Measurement

Balancing test

resources.

The selection

and prioritisation

of test cases.

Test

environment

setup.

Accommodating

a test automation

strategy.

Complexity associated with the process of system testing

Manual test

execution with

incomplete test

case

specifications.

Debugging

potential test

environment

issues.

Development,

execution, or

interpretation of

manual or in-

depth system

quality

estimation.

Balancing

quality versus

time to market

pressures.

Management of

resources.

Figure 6.5: Sources of Complexity Associated with the System under Test.

A lack of system understanding can influence one’s ability to carry out an estimation

of necessary resources to meet test requirements, a necessary aspect of test planning.

The view was also expressed that complexity at the planning stage can affect one’s

ability to develop a test strategy i.e. the specification of appropriate tests, and the

appropriate selection and prioritisation of test cases (the criteria for the selection of test

cases has been referred to as including coverage criteria, resource constraints, and fault

detection capability (Lin, Chou, Lai, Huang, & Chung, 2012)). There is evidence that

Test development is affected by complexity associated with the implementation of a

test environment. This stage may also be impacted by the accomodation of an

automation strategy, which may not always be a good fit, given time, cost, or quality

considerations. Implementation of automation may take a longer initial setup time than

manual testing, and may not necessarily work as originally planned. Test execution can

be complex, if being approached from a manual perspective, and not with the benefit

241

of an automated test environment. Test fault analysis is affected when attempting to

eliminate the involvement of the test environment, as part of root case analysis, after

the test execution stage has completed. Complexity can also come with the estimation

of system quality against expected quality, carried out as part of the test measurement

stage. The last stage, test management, which includes the balancing available

resources associated with the required test environment, and enabling test environment

preservation, can also prove to be a complex stage.

Figure 6.6 details actions associated with the wider process of system testing which are

associated with explicit knowledge.

242

Encourage the use of support applications and support teams where appropriate

Encourage the availability of explicit and tacit knowledge from development teams

Test

Development

Test

Planning

Test

Execution

Test Fault

Analysis

Test

Management

Test

Measurement

Encourage the

use and

availability of

support

applications and

support teams

e.g. automation

and test case

automation

support teams.

The introduction

of applications

should be

considered for

the purpose of

test case

measurement.

Encourage the availability of tacit knowledge from within the test team

Encourage the

use of project

management

applications and

project

management

support teams.

Applications can

be introduced to

to help manage

the complete test

environment.

If test cases have

been automated

as part of the test

development

stage, this can

significantly

reduce test

execution

complexity.

Encourage both

explicit and tacit

knowledge

transfer from

development

teams. This can

be passed

through

specifications/

user stories or

workshops,

walkthroughs,

regular

communication

etc.

Figure 6.6: Explicit Knowledge Actions Relating To the Second Hypothesis.

Development teams, test support teams, and support applications, all play an important

role in the flow and management of explicit knowledge. Important support regarding

the system under test would appear to come from development teams, in the form of

system related specifications, functional specifications, design specifications, user

stories etc. and system deployment knowledge. Such knowledge is essential to enable

243

effective planning of necessary test resources, and in enabling effective test

prioritistion and the selection of appropriate test cases. Project management support

teams can also aid at the planning stage through facilitating the acquisition of system

and final deployed environment knowledge, thus helping to bridge that knowledge gap

between testers and developers. Knowledge can be made explicit via support

applications such as test case automation. This can assist the text execution stage

significantly. It must be noted however, that the use of support teams, such as

automation teams, at the fault analysis stage of testing, can actually introduce

complexity, making it sometimes difficult to quickly determine whether an issue

relates to the system under test, or the actual test environment. Applications can also

be of benefit at the test measurement and test management stages, providing automated

test measurement, and automated test environment management.

Figure 6.7 highlights actions which can be taken to facilitate the transfer of tacit

knowledge associated with the wider system test process.

244

Encourage the use of support applications and support teams where appropriate

Encourage the availability of explicit and tacit knowledge from development teams

Test

Development

Test

Planning

Test

Execution

Test Fault

Analysis

Test

Management

Test

Measurement

Encourage tacit

knowledge

transfer from

development

teams. Such

knowledge is

often essential to

help debug the

system under

test.

Encourage the availability of tacit knowledge from within the test team

Enable the

availability of

tacit knowledge

within the test

team i.e. via

SMEs. This can

help

understanding

what needs to be

tested, and

enable efficient

use of available

resources.

Enable the

availability of

tacit knowledge

within the test

team i.e. SMEs.

This can help

ensure the

successful

implementation

of a test

environment.

Enable the

availability of

tacit knowledge

within the test

team i.e. SMEs.

This can help

ensure correct

test execution in

the case of

manual testing.

Enable the

availability of

tacit knowledge

within the test

team i.e. SMEs.

This can help

carry out root

cause analysis

from a test

environment

perspective.

Encourage tacit

knowledge

transfer from

development

teams. This can

be passed

through regular

communication

during test

execution.

Encourage both

explicit and tacit

knowledge

transfer from

development

teams. This can

be passed

through

specifications/

user stories or

workshops,

walkthroughs,

regular

communication

etc.

Figure 6.7: Tacit Knowledge Actions Relating To the Second Hypothesis.

Tacit knowledge transfer was described by numerous research participants as being

essential in reducing system test complexity. This transfer can be between subject

matter experts available to the test team (SMEs) or development team members.

Knowledge from within the test team can help achieve a balance with resources at the

245

test planning stage, and also provide knowledge relating to exactly what can and

should be tested, enabling the effective prioritisation and selection of test cases. This

knowledge can also help the implementation of a test environment, as part of test

development, including helping to clarify what can and should be automated. Test

team support can assist manual test execution, whereby it is necessary to have a

detailed knowledge of tests which are being executed, and the correct procedure for

execution. At the fault analysis stage, one needs to have available requisite knowledge,

to be in a position to rule out the involvement of the test environment, after a test case

failure.

Support from development teams can help the reduction of complexity at the test

planning, test execution, and test fault analysis stages. As part of the planning stage,

tacit knowledge can be passed via workshops, walkthroughs, and regular

communication etc. At the test execution stage, development support can help ensure

that tests are being executed by the test environment correctly. Another important

aspect to development support is that it also provides essential expertise at the fault

analysis stage, helping to debug and validate the performance of the test environment,

after test execution.

Figure 6.8 provides a high level view of the complexity and actions relating to second

hypothesis, which have been proposed from a socio-technical perspective.

246

5. The use of project

management applications

should also be considered.

System Test

Process

Complexity

People

(with values and

needs)

Technology

(with requirements

and constraints)

Organisational

Environment

(reflecting company

objectives)

Task

(which require

motivation and

competence)

System Test Planning

System Test Development

System Test Execution

System Test Fault Analysis

System Test Measurement

System Test Management

1. Subject Matter Experts

(SMEs) should be made available

2. Encouraging the availability of

explicit system knowledge.

3. The transfer of tacit

knowledge from developers

should be encouraged.

4. The use of development and

test support teams

should be considered.

Identified

Actions

Figure 6.8: The Second Hypothesis from a Socio-Technical Perspective.

It has been found that there is considerable benefit from enabling the availability of

tacit knowledge via appropriate people, which have been detailed in figure 6.8. Such

people can be SMEs or development team members, which have been made available

to test team members. Interestingly in this case, is the extent to which explicit

knowledge can also play in reducing the effects of complexity. A certain amount of

actions which have been detailed, have a link from a technology perspective e.g.

management applications.

Key to this hypothesis, is that a certain amount of knowledge relating to the process of

system testing, does appear to lend itself to being made explicit, whether through the

247

use of applications, such as project management, an automated test setup, test

measurement applications, or through system related specifications. Also interesting

are the concerns which have been highlighted relating to system test automation,

which can be complex to implement effectively and efficiently, but can lead to

significant benefit at the test execution stage, if implemented effectively.

The following section offers a conclusion for this research.

6.2 Concluding Discussion

This section provides an overview of the research which has been conducted, while

also detailing considerations for software development practices. Figure 6.9 details the

test activities which have been identified in previous sections as being affected by

complexity, and which have a direct relationship to tacit knowledge. The model details

activities form both a system under test (system in practice), and from a wider system

test process perspective.

248

Understanding

features of the

system to be

tested.

Test suite

development.

Manual test

execution.

Debugging

potential system

issues.

Manual or in-

depth analysis of

system under

test as part of

system quality

estimation.

Test

Development

Test

Planning

Test

Execution

Test Fault

Analysis

Test

Management

Test

Measurement

The selection

and prioritisation

of test cases.

Balancing test

resources.

Test

environment

setup.

Accommodating

a test automation

strategy.

Complexity associated with the system under test

Complexity associated with the process of system testing

Manual test

execution with

incomplete test

case

specifications.

Debugging

potential test

environment

issues.

Development,

execution, or

interpretation of

manual or in-

depth system

quality

estimation.

Balancing

quality versus

time to market

pressures.

Management of

resources.

Figure 6.9: Concluding Model of System Test Complexity with a Relationship to Tacit

Knowledge.

Table 6.1 provides a comparison between the actions detailed in figure 6.9, against the

software testing functions as outlined by Eickelmann & Richardson (1996), and Desai

and Shah (2011).

249

Balancing

functional v

non-functional

objectives.

Understanding

features to be

tested.

Achievemet of

risk

assessment.

Facilitating

training

requirements.

Balancing

necessary vs

available

resources

(both human

and technical).

Development

of test strategy

(test selection,

minimisation

and

prioritisation).

Allocation of

roles and

responsibility.

Schedule

development.

Test

Planning

Test

Development

Test

Execution

Test Fault

Analysis

Test

Measurement

Test

Management

Implementation

of a test

approach i.e. a

complete test

configuration

(facilitating

white box or

black box).

Development

of test suites.

Test

execution

against

system under

test.

Test artefact

recording i.e.

test output

results, test

traces, test

status.

Test result

verification.

Test result

analysis and

documentation

(pass/fail, test

coverage).

Consideration

of the test

architecture

and test

environment

preservation.

Maintenance

of test

resource

repository

(necessary in

the case of an

automated

test process).

Test coverage

measurement.

Test failure

measurement.

Comparison to Complete Set of Test Functions (Eickelmann & Richardson (1996))

Table 6.1: Comparison to Complete Set of Test Functions.

Those activities (or functions) which were identified as part of this research, have been

highlighted in red font. A noticeable activity which was not referenced as part of the

actions detailed in table 6.1, but which does feature in figure 6.9, is the the reference to

balancing quality versus time to market pressure, which was categorised as being

associated with the test measurement stage. The remaining activities (in black font)

250

detailed in table 6.1, were not found to have any specific relationship to system test

complexity.

As identified in previous sections, actions which should be considered to reduce the

effects of complexity associated with the system under test, relate to the transfer of

both explicit knowledge and tacit knowledge. Further reference to both system test

activities affected by complexity, and actions, from a socio-technical perspective, are

detailed in figure 6.10. The effected stages of system testing have been detailed in red

(relating to the system under test) and grey (relating to the wider process of system

testing). Recommended actions have been numbered and are detailed in blue.

5. The use of project

management applications

should be considered.

System Test

Process

Complexity

People

(with values and

needs)

Technology

(with requirements

and constraints)

Organisational

Environment

(reflecting company

objectives)

Task

(which require

motivation and

competence)

System Test Planning

System Test Development

System Test Execution

System Test Fault Analysis

System Test Measurement

Complexity Associated

with the

System under Test

System Test Planning

System Test Development

System Test Execution

System Test Fault Analysis

System Test Measurement

System Test Management

1. Subject Matter Experts (SMEs)

should be made available

2. Encouraging the availability of

explicit system knowledge.

3. The transfer of tacit knowledge from

developers should be encouraged.

4. The use of development and

test support teams should be

considered.

Identified

Actions

Research from a Socio-Technical Perspective (Mumford (1983))

Figure 6.10: Research from a Socio-Technical Perspective.

251

The model detailed in figure 6.10 is discussed in the following section as part of

research implications.

Implications for the Development Process

This research has identified the importance of the availability of both explicit

knowledge and tacit knowledge, relating to both the system under test, and associated

with the wider process of system testing. A certain amount of knowledge relating to

the process of system testing, lends itself to being made explicit, whether through the

use of applications, such as project management, automation, or test measurement

applications, or through system related specifications, user stories etc. The benefit of

enabling the availability of tacit knowledge, via appropriate people, has been evident

in the case of both complexity related to the system under test, and in the case of

complexity associated with the process of system testing. Such people may be test

team accessible SMEs, or development team members. The availability of both explicit

knowledge and tacit knowledge has obvious benefit in terms of system quality,

through ensuring necessary required knowledge is readily accessible throughout the

test process. Such knowledge can also influence the time to market for the system

under test, if a lack of access to such knowledge is an impediment to progress of

system testing. A lack of access to knowledge could occur as a result of a delay

relating to the receipt of developments specifications, a delay in the development of

the test environment, or a delay in waiting for a system to be debugged, which may be

necessary as part of the fault analysis stage of testing.

Knowledge transfer is an important aspect of software development environments (

(Chau & Maurer, 2004), (Joia & Lemos, 2010), (Nidhraa, Yanamadalaa, Afzalb, &

Torkara, 2013)). Previous chapters have covered the views of authors such as Chau et

al. (2003), Turk et al. (2005), and Moe et al. (2012), who have acknowledged the

relationship between the applied development methodology, the approach to

knowledge management, and knowledge sharing. Some software development

methodologies such as agile, have been described as being heavily reliant on the

communication of tacit knowledge via interpersonal contact. Turk (2005) and

Dingsøyr and Šmite (2014) have argued that there is an increased importance of tacit

252

communication via personal contact, given the movement away from traditional

development strategies, which have been perceived as rigid, plan driven models (Chau,

Maurer, & Melnik, 2003). The success of agile development methodologies is based

on team members understanding, experience, and their ability and willingness to share

applicable tacit knowledge. This is carried out on a continuous, informal basis,

between software development team members, and customers (Turk, France, &

Rumpe, 2005).

Turk et al. state that when the team’s tacit knowledge is insufficient for the

application’s life-cycle needs, things work fine, but that there is also the risk that the

team will become overly dependent on experts, and may suffer from “corporate

memory loss”, either of which could result in unrecognized shortfalls in available tacit

knowledge. Chau at al. (2003) have referred to traditional software development as

striving to achieve idealistic goals via Tayloristic processes. Such traditional models

are described as relying on explicit documentation in order to provide the process and

product information, to enable team members to effectively achieve their goals (Turk,

France, & Rumpe, 2005). Such explicit knowledge reduces the risk of knowledge loss

((Rajagopalan, 2014), (Dingsøyr & Šmite, 2014)).

While the importance of explicit knowledge has been reinforced by this research, there

has been a lack of evidence to suggest that the availability of tacit knowledge to test

teams is of any less importance to the process of system testing, when operating in a

traditional software development environment. The sentiment was commonly

expressed by participants, that even though a considerable amount of explicit

knowledge relating to the system is freely available, that a good deal of knowledge

relating to the system under test, which is demanded for effective system testing, is

actually tacit in nature (approximately 60% of participants operating in a traditional

development environment, and 60% of participants operating in an agile development

environment, expressed similar sentiments). The concept of complexity which is

inherent in the system, is a concept which has been referred to by numerous authors (

(Mumford, 1983), (Brooks F. , 1995), (Lehman, 1996), (Lyytinen, Mathiassen, &

Ropponen, 1998), (Espinosa, Slaughter, Kraut, & Herbsleb, 2007), (de Silva &

Balasubramaniam, 2012)). To cater for the availability of tacit knowledge relating to

the system under test, and indeed both explicit and tacit knowledge required by system

253

testing in general, an appropriate knowledge management structure needs to be in

place. This would appear to be required, irrespective of the employed development

methodology. Research implications, from a knowledge management perspective, are

discussed in the following section.

Knowledge Management Considerations

The importance of a knowledge management approach has been emphasised in the

previous section. This is supported by Desai and Shah (2011) who state that regardless

of the approach to software development, there is necessity to manage knowledge

associated with the various stages of software testing i.e. test planning, test

development, test management, test execution, test fault analysis and test

measurement. Leidner et al. (2008) have stated that organisations traditionally adopt

one of two approaches to knowledge management. The first approach involves a focus

within the organisation on communities of practice, or alternatively, the second

approach focuses on facilitating the process of creation, sharing, and the distribution

of knowledge.

While organisations may adopt different aspects of both approaches, both approaches

are claimed to present different challenges. The first approach is said to be cognisant

of the fact that a great deal of organisational knowledge is in fact held tacitly. Formal

processes and technologies are stated as not being suitable for enabling the

transmission of such knowledge. The approaches to knowledge management from both

a community perspective, and a process perspective, have also been referred to as

personalisation or codification approaches, respectively (Hansen, Nohria, & Tierney,

1999). Facilitating the transfer of tacit knowledge, is of particular importance in the

case of a personalisation/communities of practice approach to knowledge management

((Hansen, Nohria, & Tierney, 1999), (Leidner, Alavi, & Kayworth, 2008)).

The following section provides some common approaches to supporting knowledge

management (Dingsøyr & Šmite, 2014), and specifically how different aspects of

knowledge management are dealt with in practice (Dorairaj, Noble, & malik, 2012). In

a review of empirical studies relating to knowledge management of global software

254

development projects, Dingsøyr & Šmite have identified the following five common

approaches to knowledge management. These approaches provide varying support for

personalisation and codification approaches to knowledge management:

1. Systems school: this relates to the application of technology for knowledge

management e.g. knowledge repositories.

2. Cartographic school: this relates to the knowledge maps and the creation of

knowledge directories. Such an approach is useful for storing knowledge

relating to resources, skills, projects opportunities etc.

3. Engineering school: this supports knowledge management through a focus

on processes and knowledge flow with organisations. This has been referred

to as primarily relating to processes for mapping knowledge, conducting

project retrospectives, accomodating mentoring programs, and catering for

detail relating to work processes e.g. CMM (the capability maturity model).

This model is stated as being primarily based on explicit knowledge.

4. Organisation school: this approach is concerned with networks for sharing

or pooling knowledge. This is often put into practice by way of communities

of practice relating to a common topic of interest. It is stated that such

communities facilitate the transfer of both tacit knowledge and explicit

knowledge. This is typically a less formal approach than in the case of

knowledge repositories.

5. Spatial school: this approach is related to how an office space can facilitate

the knowledge management. This can range from setting up whiteboards, to

the use of an open plan office structures to encourage engagement. A

popular use in the case of an agile approach to software development, is the

use of taskboads, which relate to project status and are visible to

stakeholders. This approach is stated as being dependent on the colocation of

stakeholders, and appears to work well for smaller teams.

Global organisations employing a more traditional approach to software development

are stated as predominantly relying on systems or engineering schools, whereas those

working in accordance with agile methodologies, are stated as relying on spatial and

organisational schools. The cartographic school is stated as providing a cost-effective

255

means of knowledge management, irrespective of the employed development

methodology.

Some indication of the relationship between such schools, and knowledge related

activities in practice, is provided by Dorairaj et al. (2012). In their analysis of

knowledge management approaches, involving 28 agile centred software development

companies, the aforementioned authors have highlighted examples of the principal

knowledge based activities. These activities have been categorised based on their

contribution to knowledge generation, knowledge codification, knowledge transfer,

and knowledge application. Knowledge generation, as described, has at least some

relationship to previously mentioned engineering, organisational and spatial schools,

as mentioned by Dingsøyr & Šmite (2014). Knowledge codification has a relationship

to the systems school. Knowledge transfer, would appear to have at least some

relationship to all of the schools mentioned, similar to knowledge application, which is

also arguably facilitated by each of the schools, via different approaches.

The following examples have been provided by Dorairaj et al. (2012), regarding these

knowledge activities in practice:

Knowledge generation, is stated as being facilitated by:

1. Project inception: workshops etc. facilitating the crystalization of ideas

between stakeholders and developers.

2. Customer collaboration: sources of knowledge relating to the actual required

product, in terms of requirements etc.

3. Formal training: formal training is stated as enabling the standardisation of

training content and practices across multiple sites in an organisation.

4. Communities of practice: these consist of self organising groups of individuals

who share information, insight, experience, and technical skills on a specialised

discipline, and collaborate on common challenges or the stimulation of new

ideas.

5. Self learning: the encouragement of individuals to learn appropriate to their

role, is seen as an important aspect of knowledge generation.

256

Knowledge codification is stated as being facilitated by mediums such as:

1. Wikis: accessible knowledge via wiki pages is seen as an effective method to

encourage knowledge sharing and collaboration.

2. Documentation: the availability of explicit documentation is seen as crucial to

complex software systems which are subject to frequent modification,

providing details relating to requirements, specifications, limitations and

implementation.

3. Technical presentations: notwithstanding the difficulties associated with

sharing ideas, concepts, and technical expertise, through short presentations,

there is a distinct benefit in capturing such knowledge for future access.

Knowledge transfer is facilitated by:

1. Regular development meetings: meetings such as scrums, where ongoing work

is shared and impediments discussed, are seen as beneficial as a team building

exercise.

2. Project inception meeetings: such meetings involving project managers,

technical leads, and business analysts, are seen as beneficial in determining the

viability of potential projects. There is further benefit to knowledge, acquired

as a result of such exercises, being passed to wider groups on completion.

3. Pair programming: the integrative collaboration of developers on projects

through pair programming, is stated as having the benefit of increasing

knowledge transfer, enhancing learning, and encouraging knowledge creation.

4. Knowledge management tools: tools are stated as being readily available off the

shelf, and development processes are stated as benefiting from the integration

of such tools into development processes, thereby facilitating the capture of

knowledge from a variety of sources throughout a project lifecycle.

5. Face-to-face meetings: though knowledge transfer can be facilitated through

audio or video conferencing, face-to-face meetings are said to have an

advantage, especially when dealing with high levels of complexity and

ambiguity in a project.

6. Rotation: in keeping with the previous comment regarding the benefits of face-

to-face meetings, the rotation of team members between different project sites,

has been stated as having a benefit in facilitating higher levels of knowledge

transfer.

257

7. On-site customer visits: on-site customer visits are stated as driving software

development, by continually providing correct and complete understanding of

customer needs and requirements, thus adding to knowledge relating to the

system deployment and use.

8. Cross-functional teams: there is a benefit in grouping teams of developers,

analysts, testers, and individuals with other necessary domain expertise who

can contribute to the success of a project through communication and

collaboration.

9. Discussion: discussion with subject matter experts, regardless of geographical

location, facilitates openness and communication, and offers further

opportunities to generate, refine, and reprioritise, both requirements and

specifications.

Key points in terms of knowledge application are:

1. Repository interaction (referred to as “similar context”): interaction with

knowledge management applications such as Wikis, facilitate the flow of

knowledge to and from individuals, and the collaborative knowledge stored in

the Wiki pages.

2. Information understanding (referred to as “problem solving”): although

technology can assist with the storage and transfer of knowledge, the

knowledge itself can only be created and utilised by individuals, therefore team

members need to understand information contained in Wikis etc. in order to

create new knowledge, which can in turn help realise solutions to future

problems.

3. Future sprints/projects: the availability of knowledge from multiple

technologies and functional documents, is essential for the completion of

complex projects.

As this research supports the necessity for organisations involved in the software

development of large enterprise systems, for adopting a combination of both a

personalisation approach in the case of tacit knowledge, and codification approach in

the case of explicit knowledge, the detailed knowledge management approaches and

activities are all of potential benefit. Some stages such as test case planning have been

shown to benefit significantly from explicit knowledge, which can be made available

258

through knowledge codification activities. Such explicit knowledge can take the form

of system specifications, user stories etc. Knowledge made explicit in the form of

knowledge management tools such as test automation and project management, have

also been shown to be beneficial. On the contrary, stages such as the fault analysis

stage, would appear to have a stronger link to tacit knowledge, therefore knowledge

transfer is a key aspect of this stage. This could be facilitated through knowledge

transfer activities relating to the use of cross-functional teams, involving both

developers and testers, and through the availability of subject matter experts.

The following section discusses both the limitations and future considerations of this

research.

6.3 Limitations and Future Considerations

It must be acknowledged that some concerns have been raised regarding collection

models which are employed as part of this research. A fixed-point, survey

questionnaire type approach, has been adopted by Pee et al. (2010), Hsu et al. (2011)

and Akman et al. (2011), to seemingly good effect. However, such an approach is

referred to as lacking in realism of context, and is deemed to be low in precision of

measurement (McGrath, 1984). Similar concerns have been raised by Woodside

(2009), who state arguments against both questionnaire type approaches, and case

study approaches, when adopted in isolation. As an alternative to an independent

questionnaire or case study approach, a more open interview approach was taken as

part of this research. The critical incident technique (used to good effect by Kaplan and

Duchon (1988)), has been employed for this research, facilitating the retrieval of both

qualitative data (via a series of open questions) and quantitative data (via Likert scale

ratings). A similar unstructured interview approach has previously been used to good

effect by Ryan and O’Connor (2009). The approach which has been taken is an

attempt to take a balanced approach to evidence gathering, as advocated by both

McGrath (1984), and Woodside (2009). This balanced approach was an attempt to

mitigate the limitations of the individual collection models.

259

There may also be a perceived limitation associated with the work environment of the

participants involved in this research. The selection of participants was influenced by a

desire to include some degree of environmental variation. It has been stated that

variation over the population selection can provide control over environmental

variation, as well as enabling the definition of limits for the analysis of findings

(Eisenhardt, 1989). While environmental variation has been welcomed, it must be

acknowledged, that the organisations involved operate in completely different

industries, and the participants test completely different software systems, and operate

in different work environments. However, the participants are engaged in the testing of

enterprise software systems, and it was found that there were relatively high levels of

perceived complexity relating to the system under test, across the four organisations,

as detailed in Figure 6.11 (these details have been taken from figure 4.5).

Industry values Complexity

Enterprise Storage Average ratings 5.8

Test consultancy Average ratings 6.0

Life Assurance Average ratings 6.5

Payroll Average ratings 6.0

 Standard deviation 0.30

Figure 6.11: Complexity Ratings Associated with the System under Test

Although the average ratings of the perceived complexity associated with the system

under test are relatively high, and the standard deviation has been deemed acceptable,

the fact that there were market and work environment differences between the

organisations involved, and these differences have not been considered in terms of this

research, could be perceived as a potential research limitation.

260

In addition to the aforementioned limitations, the following future considerations are

also apparent:

1. The true value of an automation strategy: Interesting concerns were raised

relating to system test automation. This research found that an automated test

environment can be complex to implement effectively and efficiently, and to

debug, but can lead to significant benefit at the test execution stage. Martin et

al. (2007) has carried out some work in this particular area, and has stated that

non-functional tests are often tests which do not easily conform to automation.

Future research could be carried out regarding the role of automated test

environments. One suggested topic could be a cost-benefit analysis associated

with pursuing an automation strategy involving global software development

projects.

2. Participant experience: notwithstanding the fact that the experience of

participants has been taken as a limitation, it can also be taken as an opportunity

for future research. Andrade et al. (2013) state that experience is an important

characteristic of software testing, and there is a benefit relating to experience

which has been gained through past projects. Whereas explicit knowledge is

stated as having universal character, employed consciously, and not tied to any

particular context, tacit knowledge is described as being tied to actions,

procedures, commitments, ideals, values and emotions, with a strong

relationship to past experiences, true beliefs, and the actions of intuition, and

implicit rules of thumb (Nonaka & Von Krogh, 2009). Some quantitative

analysis has been conducted from an experience perspective (participants with

less than 10 years’ experience, and participants with greater than 10 years’

experience). While there was some interesting data, relating to some stages of

system testing, most notably the test planning, test fault analysis, test

measurement and test management stages, which displayed a stronger

relationship between system test complexity and tacit knowledge, with relation

to inexperience testers, there was also notable discrepancies with this analysis

in comparison to the qualitative data (similar to those highlighted in section

5.3.2). Thus, there is an opportunity for further research to be carried out in this

area.

261

3. The effects of task familiarity on system testing: Banker and Slaughter (2000)

have stated that that task familiarity is increasingly important in larger software

tasks, and Espinosa et al. (2007) have stated that as task familiarity increases,

software development time decreases, proportionally. Task familiarity, as it may

apply to the task of software system testing, has not been taken account of as

part of this research. This also leaves an opportunity for future research to be

conducted in this area, as it might apply to system test complexity.

262

263

7 Bibliography

1. Açıkgöz, A., Günsel, A., Bayyurt, N., & Kuzey, C. (2013). Team Climate, Team

Cognition, Team Intuition,and Software Quality: The Moderating Role of Project

Complexity. Science+Business Media, pp.(1145–1176) (Vol.23).

2. Agresti, W. (2003). Tailoring IT Support to Communities of Practice. IT-Pro, 24-

28.

3. Ahmad, M., Mawarny, R., Abdulah, M., Omar, M., Ahmad, K., & Abbas, M.

(2012). Measuring tacit knowledge acquired during problem based learning

teaching method in learning management system environment. AWERProcedia

Information Technology & Computer Science (pp. pp.(775-781)). AWERProcedia

Information Technology & Computer Science.

4. Akman, I., Misra, S., & Cafer, F. (2011). The Role of Leadership Cognitive

Complexity in Software Development Projects: An Empirical Assessment for

SImple Thinking. Human Factors and Ergonomics in Manufacturing & Service

Industries, pp.(516-525) (Vol.21; No.5).

5. Alur, R., & Dill, D. (1994). A Theory of timed automa. Theoretical Computer

Science, pp.181-235 (Vol.126).

6. Andrade, J., Ares, J., Martínez, M., Pazos, J., Rodríguez, S., Romera, J., et al.

(2013). An architectural model for software testing lesson learned systems.

Information and Software Technology, pp 18-34 (Vol.55).

7. Ashby, W. (1956). An Introduction to Cybernetics. In W. Ashby, The Law of

Requisite Variety (pp. pp.(206-218)). London: Chapman and Hall Ltd.

8. Baccarini, D. (1996). The concept of project complexity - A review. International

Journal of Project Management, pp.201-204.

9. Baig, M., & Khan, A. (2010). A Formal Technique for Reducing Software Testing

Time Complexity. Innovations and Advances in Computer Sciences and

Engineering, pp.(197-201).

10. Banker, R., & Slaughter, S. (2000). The moderating effects of structure on

volatility and complexity in software enhancement. Information Systems Research,

pp.219-240 (Vol.11;No.3).

11. Basili, V., & Perricone, B. (1984). Software errors and Complexity: An Empirical

Investigation. Communications of the ACM, pp.42-52 (Vol.27;No.1).

264

12. Basili, V., Lindvall, M., & Costa, P. (2001). Implementing the Experience Factory

concepts as a set of Experience Bases. 13th International Conference on Software

Engineering and Knowlwedge Engineering (pp. pp.(102-109)). Knowledge

Systems Institute.

13. Baskerville, R. (2006). Artful Planning. European Journal of Information Systems,

pp.113-115.

14. Beath, C. (1987). Managing the User Relationship inInformation Systems

Development Projects: A Transaction Governance Approach. Proc. 8th

International Conf. on information Systems, (pp. 415-427). Pittsburgh.

15. Beck, K. (1999). Embracing change with extreme programming. IEEE Computer,

Chaptars 6,17.

16. Beck, K. (2000). Extreme Programming Explained. Boston: Addison-Wesley.

17. Bentley, L., & Whitten, J. (2007). Systems Analysis & Design for the Global

Enterprise. McGraw-Hill.

18. Berlo, D. (1960). The Process of Communication. New York: Holt, Rinehart, and

Winston, Inc.

19. Berman, O., & Cutler, M. (1998). Optimal Software Implementation Considering

Reliability and Cost. Computer Ops Res., pp.857-868 (vol. 25; No. 10).

20. Berman, O., & Cutler, M. (2004). Resource Allocation during tests for optimally

reliable software. Computers & Operations Research, pp.1847-1865 (Vol 31).

21. Beynon, W., Boyatt, R., & Chan, Z. (2008). Intuition in Software Development

Revisited. 20th Annual Psychology of Programming Interest Group Conference.

Lancaster: University of Warwick.

22. Beynon-Davis, P. (1995). Information Systems Failure; The Case of LAS-CAD

Project. European Journal of Information Systems, pp.171-184.

23. Bhadoriya, N., Mishra, N., & Malviya, A. (2014). Agile Software Development

Methods, Comparison with Traditional Methods & Implementation in Software

Firm. International Journal of Engineering Research & Technology, pp. (1656-

1662) (Vol.3; No.7).

24. Bhattacharya, P., Iliofotou, M., Neamtiu, I., & Faloutsos, M. (2012). Graph-Based

Analysis and Prediction for Software Evolution. Proceedings of the 2012

International Conference on Software Engineering (pp. pp.(419-429)). Institute of

Electrical and Electronic Engineers.

265

25. Boehm, B. (1988). A Spiral Model of Software Development and Enhancement.

IEEE Computer 21, pp.61-72.

26. Boehm, B. (2002). Getting ready for agile methods, with care. IEEE, pp.64-69.

27. Boehm, B., & Turner, R. (2004). Balancing agility and discipline: Evaluating and

Integrating Agile and Plan Driven Methods. Proceedings of the 26th International

Conference on Software Engineering (ICSE’04). Institute of Electrical and

Electronics Engineers.

28. Brooks, F. (1995). The Mythical Man-Month. Addison-Wesley.

29. Brooks, F. P. (1986). No Silver Bullet: Essence and Accidents of Software

Engineering. Proceedings of the IFIP Tenth World Computing Conference, (pp.

1069-1076).

30. Brown, S., Venkatesh, V., & Goyal, S. (2011). Expectation Confirmation in

Technology Use. Information Systems Research, pp.(1-14) .

31. Burnstein, I., Suswanassart, T., & Carlson, C. (1996). The Development of a

Testing Maturity Model. Proceedings of the Ninth International Quality Week

Conference. San Francisco.

32. Cai, K. (1998). On Estimating the Number of Defects Remaining in Software.

Journal of Systems and Software, pp.93-114 (Vol.40;No.2).

33. Cai, K., & Card, D. (2008). An analysis of research topics in software engineering -

2006. The Journal of Systems and Software, pp.1051-1058 (Vol 81).

34. Campbell, D. (1988). Task Complexity: a review and analysis. Academy of

Management Review, pp. 40-52 (Vol.13).

35. Casti, J., & Karlqvist, A. (1986). Complexity, Language, and Life: Mathematical

Approaches. Berlin;Heidelberg;NewYork;Tokyo: Springer-Verlag.

36. Cataldo, M., & Ehrlich, K. (2012). The Impact of the Structure of Communication

Patterns on New Product Development Outcomes. ACM, pp.3081-3090.

37. Catelani, M., Ciani, L., Scarano, V. L., & Bacioccola, A. (2010). Software

automated testing: A solution to maximize the test plan coverage and to. Computer

standards and interfaces, pp.152-158 (Vol.33).

38. Cenfetelli, R., & Bassellier, G. (2009). nterpretation of Formative Measurement in

Information Systems Research. MIS Quarterly, pp. 689-707 (Vol. 33; No. 4).

39. Charmaz, K. (1995). Grounded Theory. In J. Smith, R. Harré, & L. Lanenhove,

Rethinking Methods In Psychology (pp. 27-49). London: Sage Publications Ltd.

266

40. Chau, T., & Maurer, F. (2004). Knowledge sharing in Agile Software Teams.

Proceedings of the Symposium on Logic Versus Approximation (pp. 173–183).

Berlin Heidelberg: Springer Verlag.

41. Chau, T., Maurer, F., & Melnik, G. (2003). Knowledge Sharing: Agile Methods vs.

Tayloristic Methods. Enabling Technologies: Infrastructure for collaborative

Enterprises (pp. 302-307). IEEE.

42. Chen, T., & Lau, M. (1998). A new heuristic for test suite reduction. Information

and Software Technology, pp.347-354.

43. Chen, T., & Lau, M. (1998b). A simulation study on some heuristics for test suite

reduction. Information and Software Technology, pp.777-787.

44. Chen, Y., Rosenblum, D., & Vo, K. (1994). A system for selective regression

testing. Proceedings of the 16th International Conference on Software Engineering

(pp. 211-220). Institute of Electrical ad Electronics Engineers.

45. Cho, V., & Wright, R. (2010). Exploring the evaluation framework of strategic

information systems using repertory grid technique: a cognitive perspective from

chief information officers. Behaviour and Information Technology, pp.447–457

(Vol. 29, No. 5).

46. Chou, S., & He, M. (2004). Knowledge management: the distinctive roles of

knowledge assets in knowledge creation. The Journal of Information Science,

pp146-164, (Vol.30; No.2).

47. Clarke, P., & O'Connor, R. (2012). The situational factors that affect the software

development process: Towards a comprehensive reference framework. Journal of

Information Software and Technology, pp 433-447 ((Vol. 54; No. 5).

48. Cockburn, A. (2001). Agile Software Development. Reading, MA: Addison-

Wesley.

49. Collins, H., & Kusch, M. (1998). The shape of actions: What humans and machines

can do. The MIT Press.

50. Connelly, C., Zweig, D., Webster, J., & Trougakos, J. (2012). Knowledge Hiding

in Organizations. Journal of Organizational Behavior, pp.(64–88) Vol. 33.

51. Cooprider, J., & Henderson, J. (1991). Process Fit: Perspectives on Achieving

Prototyping Effectiveness. Journal of Management Information Systems, pp.67-87.

52. Crispin, L., & Gregory, J. (2009). Agile Testing: A Practical Guide for Testers and

Agile Teams. Crawfordsville, Indiana: Addison-Wesley.

267

53. Cule, P., Schmidt, R., Lyytinen, K., & Keil, M. (2000). Strategies for heading off

IS project failure. Information Systems Management, pp.65-73.

54. Curtis, B., Kellner, M., & Over, J. (1992). Process Modelling. Communications of

the ASM, pp.75-90.

55. Curtis, B., Krasner, H., & Iscoe, N. (1988). A Field Study of the Software Design

Process for Large Systems. Communications of the ACM, pp.1268-1287.

56. Daft, R., Lengel, R., & Trevino, L. (1987). ‘Message equivocality, media selection

and manager performance: implications for information systems. MIS Quarterly,

pp.355-366 (Vol.11; No. 3).

57. Dane, E., & Pratt, M. (2007). Exploring Its Role in Management Decision Making:

The Role of Intuition. Academy of Management Review, pp. 44-54 (Vol.32; No.1).

58. Davis, M., Challenger, R., Jayewardene, D., & Clegg, C. (2013). Advancing socio-

technical systems thinking: A call for bravery. Applied Ergonomics, pp.(1-10).

59. day, R. (2005). Clearing up "implicit knowledge": Implications for knowledge

management, information science, psychology, and social epistemology. Journal

for American Society for Information Science and Technology, pp(630-635).

60. de Silva, L., & Balasubramaniam, D. (2012). Controlling software architecture

erosion: A Survey. The Journal of Systems and Software, pp.132-151.

61. Debbarma, M. K., Singh, N. P., Shrivastava, A. K., & Mishra, R. (2011). Analysis

of Software Complexity Measures for Regression Testing. Proceedings of

International Conference on Advances in Computer Engineering, (pp. 88-92).

62. Delahaye, M., Kosmatov, N., & Signoles, J. (2013). Common Specification

Language for Static and Dynamic Analysis of C Programs. Proceedings of the 28th

Annual ACM Symposium on Applied Computing (pp. pp 1230-1235). New York:

ACM.

63. Desai, A., & Shah, S. (2011). Knowledge Management and Software Testing.

International Conference on Emerging Trends in Technology (pp. 767-770).

Mumbai: ACM.

64. Desmoulin, A., & Viho, C. (2007). Automatic Interoperability Test Case

Generation based on Formal Definitions. Proceedings of the 12th International

Workshop on Formal Methods for Industrial Critical Systems FMICS'07 (pp. 234-

250). Berlin Heidelberg: Springer-Verlag.

65. Deutsch, M. (1949). A Theory of Cooperation and Competition. Human Relations,

pp.(129-152).

268

66. Diamantopoulos, A., & Siguaw, J. (2006). Formative Versus Reflective Indicators

in Organizational Measure Development: A Comparison and Empirical Illustration.

British Journal of Management, pp.263-282 (Vol.17).

67. Diamantopoulos, A., Riefler, P., & Roth, K. (2008). Advancing formative

Measurement Models. Journal of Business Research, pp. 1203-1218 (Vol.61;

No.12).

68. Dingsøyr, T., & Šmite, D. (2014). Managing Knowledge in Global Software

Development Projects. IT Professional, pp. (22-29) (No.01; Vol.16).

69. Dorairaj, S., Noble, J., & malik, P. (2012). Knowledge management in Distributed

Agile Software Development. 2012 Agile Conference (pp. pp.(64-73)). CPS.

70. Dorairaj, S., Noble, J., & Malik, P. (2012). Knowledge Management in Distributed

Agile Software Development. (pp. pp 64-73). 2012 Agile Conference.

71. Drucker, P. (1999). Knowledge-worker productivity: The biggest challenge.

California Review Management, pp.79-94 (Vol 41, no.2).

72. Dyba, T., & Dingsøyr, T. (2008). Empirical studies of Agile Software

Development. Information and Software Technology, pp.833-859 (Vol.50;No.9/10)

.

73. Edwards, J., & Bagozzi, R. (2000). On the Nature and Direction of Relationships

Between Constructs and Measures. Psychological Methods, pp.155-174 (Vol.5;

No.2).

74. Eickelmann, N., & Richardson, D. (1996). An Evaluation of Software Test

Environment Architectures. Proceedings of the 18th International Conference on

Software Engineering (pp. 353-364). Berlin: IEEE.

75. Eisenhardt, K. (1989). Building Theories From case Study Research. The Academy

Of Management Review, pp. (532-550) (Vol.14; No.4).

76. En-Nouaary, A. e. (1998). Timed Test cases generation based on characterization

technique. In Real-time System Symposium, IEEE Computer Society, (pp. 220-229).

Madrid.

77. Espinosa, J., Slaughter, S., Kraut, R., & Herbsleb, J. (2007). Familiarity,

Complexity, and Team Performance in Geographically Distributed Software

Development. Oraganisational Science, pp. 613–630 (Vol. 18, No. 4).

78. Faraj, S., & Sproull, L. (2000). Coordinating expertise in software development

teams. Management Science, pp.1554-1568 (Vol.46;No.12) .

269

79. Farr, W. (1996). Handbook of Software Reliability Engineering. (pp. 71-117).

McGraw-Hill.

80. Fenton, N. E., & Ohlsson, N. (2000). Quantitative Analysis of Faults and Failures

in a Complex Software System. IEEE Transactions on Software Engineering,

pp.797-814 (Vol. 26; No. 8).

81. Ferrer, J., Chicano, F., & Alba, E. (2013). Estimating software testing complexity.

Information and Software Technology, pp 2125–2139 (Vol.55).

82. Fitzgerald, K., Seale, N., & Kerins, C. (2008). The Critical Indicent Technique: A

Useful Tool for Conducting Qualitative Research. Journal of Dental Education,

pp.(299-304) (Vol.72; No.3).

83. Flanagan, J. (1954). The critical incident technique. Psychological Bulletin, pp.327-

358 (Vol. 51).

84. Ford, K., Petry, F., Adams-Webber, J., & Chang, P. (1991). An Approach to

Knowledge Acquisition Based on the Structure of Personal Construct Systems.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, pp.78-88

(Vol. 3; No. 1).

85. Frederiksen, N., Saunders, D. R., & Wand, B. (1957). The In-Basket Test.

Psychological Monographs: General and Applied, Vol. 71, No. 9.

86. Glaser, B., Strauss, A., & Anselm, L. (1967). The Discovery of Grounded

Theory:Strategies for Qualitative Research. Chicago: Aldine.

87. Gottfredson, L. (2002). Dissecting practical intelligence theory its claims and

evidence. Intelligence, pp.1–55 (Vol. 30).

88. Grambow, G., Oberhauser, R., & Reichert, M. (2015). Context-Aware and Process-

Centric Knowledge Provisioning: An Example from the Software Development

Domain. Intelligent Systems Reference Library, pp 179-209 (Vol.95).

89. Guinan, P., Cooprider, J. G., & Faraj, S. (1998). Enabling software development

team performance during requirements definition: A behavioural versus technical

approach. Information Systems Research, pp.101-125 (Vol 9, No. 2.) .

90. Hair, J., Ringle, C., & Starstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet.

Journal of Marketing Theory and Practice, pp. 139–151; (Vol. 19; no. 2).

91. Hansen, M., Nohria, N., & Tierney, T. (1999). What's your strategy for managing

knowledge? Harvard Business Review, pp(1-11); Mar-April.

270

92. Harold, M., & Soffa, M. (1989). Interprocedural data flow testing. TAV3

Proceedings of the ACM SIGSOFT '89 third symposium on Software testing,

analysis and verification (pp. 168-167 (Vol.14;No.8)). New York: ACM.

93. Harrold, M., Gupta, R., & Soffa, M. (1993). A methodology for controlling the size

of a test suite. ACM transactions on software engineering and methodology

(TOSEM), pp.270-285 (Vol.2;No.3).

94. Hedesstrom, T. a. (2000). What is meant by tacit knowledge? Towards a better

understanding of the shape of actions. 8th European Conference on Information

Systems, 3-5 July 2000, Vienna, Austria. Vienna, Austria: LSE (London School of

Economics and Ploitical Science).

95. Herbsleb, J. (2007). The future of socio-technical coordination. Future of software

engineering (IEEE), pp.(188-198).

96. Highsmith, J. (2000). Adaptive Software Development: A Collaborative Approach

to Managing Complex Systms. New York.

97. Highsmith, J., & Cockburn, A. (2001). Agile Software Development: The Business

of Innovation. IEEE Computer Society, pp.120-127 (Vol.34;No.9).

98. Holste, J., & Fields, D. (2010). Trust and tacit knowledge sharig and use. Journal

of knowledge management, pp.128-140 (Vol.14;No.1).

99. Holzworth, D. P., Huth, N. I., & deVoil, P. (2011). Simple software processes and

tests improve the reliability and usefulness of a model. Environmental modelling &

software, pp.510-516 (Vol.26).

100. Horgan, J., & Mathur, A. (1996). Handbook of Software Reliability

Engineering. McGraw-Hill.

101. Hsu, J., Chang, J., Klein, G., & Jiang, J. (2011). Exploring the impact of

team mental models on information utilization and project performance in system

development. International Journal of Project Management, pp.(1-12) (Vol.29).

102. Huo, M., Verner, J., Zhiu, L., & Bahar, M. (2004). Software Quality and

Agile Methods. Proceedings ofthe 28th Annual International Computer Sofwtare

and Applicatios Conference (pp. 520-525 (Vol. 1)). The Computer Society.

103. Iacobucci, D. (2010). Structural equations modeling: Fit Indices, sample

size, and advanced topics. Journal of Consumer Psychology, pp 90-98 (Vol. 20).

104. IEEE. (1990). IEEE Standard Computer Dictionary: A Compilation of IEEE

Standard Computer Glossaries. New York.

271

105. Jackson, M. (2006). What Can we Expect From Program Verification?

IEEE Computer Society, pp. 65-71.

106. Jamwal, D. (2010). Analysis of Software Quality Models for Organizations.

International Journal of Latest Trends in Computing, pp.19-22 (Vol.1;No.2).

107. Jankowicz, A. (2004). The easy guide to the repertory grids. Chichester:

Wiley.

108. Jick, T. (1979). Mixing Qualitative and Quantitative Methods: Triangulation

in Action. Administrative Science Quarterly, pp.602-611 (Vol.24;No.4).

109. Jinzenji, K., Hoshino, T., Williams, L., & Takahashi, K. (2012). Metric-

based quality evaluations for iterative software development approaches like Agile.

23rd International Symposium on Software Reliability Engineering Workshops (pp.

pp.(54-63)). IEEE.

110. Johnson, D., & Johnson, R. T. (2005). New Developments in Social

Interdependence Theory. Genetic, Social, and General Psychology Monographs,

pp.(285-358).

111. Joia, L. A., & Lemos, B. (2010). Relevant factors for tacit knowledge

transfer within organisations. Journal of Knowledge management, pp.410-427

(vol.14;No.3).

112. Jones, C. G., Gray, G. L., Gold, A. H., & Jones, C. (2010). Strategies for

improving systems development project success. Issues in Innformation Systems,

pp.164-173 (vol11;No.1).

113. Kaplan, B., & Duchon, D. (1988). Combining Qualitative and Quantitative

Methods in Information Systems Research: A Case Study. MIS Quarterly, pp.571-

586 (Vol.12;No.4).

114. Keil, M. (1995). Pulling the Plug: Software Project Management and the

Problem of Project Escalation. MIS Quarterly, pp.421-448 (Vol.19;No.4).

115. Keil, M., Cule, P., Lyytinen, K., & Schmidt, R. (1998). A framework for

identifying software project risks. Communications of the ACM, pp.76-83 (Vol.41,

No.11).

116. Kelly, D. (2008). Innovative Standards For Innovative Software. Computer,

pp.88-89 (Vol.41; No.7).

117. Kelly, G. (1955/1991). The Psychology of Personal Constructs, vols. 1 and

2. Routledge.

272

118. Khan, M., & Khan, F. (2014). Importance of Software Testing in Software

Development Life. International Journal of Computer Science Issues, pp 120-123

(Vol.11, Issue 2, No.2).

119. Kim, G., Shin, B., & Grover, V. (2010). Investigating The Contradictory

Views of Formative Measurement in Information Systems Research. MIS

Quarterly, pp. 345-366 (Vol. 34; No. 2).

120. Kimble, C. (2013). Knowledge management, codification and tacit

knowledge. Information Research, pp (1-14) (Vol.18;No.2).

121. Ko, A. J., DeLine, R., & Venolia, G. (2007). Information Needs in

Collocated Software Development Teams. 29th International Conference on

Software Engineering (ICSE'07) (pp. pp. 344-353). Washington D.C.: Institute of

Electrical and Electronic Engineers.

122. Ko, A., Abraham, R., Beckwith, L., Blackwell, A., & Burnett, M. (2011).

The State of the Art in End-User Software Engineering. ACM Computing Surveys

(CSUR) , pp 1-61 (Vol.43;No.21).

123. Kochhar, P., Bissyand, T., Lo, D., & Jiang, L. (2013). An Empirical Study

of Adoption of Software Testing in Open Source Projects. Quality Software

International COnference (pp. pp.(103-112)). Najing : IEEE .

124. Kothari, A., Rudman, D., Dobbins, M., Rouse, M., Sibbald, S., & Edwards,

N. (2012). The use of tacit and explicit knowledge in publichealth: a qualitative

study. Implementation Science, pp (1-12) (Vol.7; No.20).

125. Kuhn, D., Wallace, D., & Gallo Jnr., A. (2004). Software Fault Interactions

and Implications for Software Testing. IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, pp 1-4 (Vol.30;No.6).

126. Lam, A. (1997). Embedded firms, embedded knowledge: Problems of

collaboration and knowledge transfer in global cooperative ventures.

Organisational Studies, pp.973-996 (Vol.18; No.6).

127. Larman, C. (2004). Agile and Iterative Development. Addison-Wesley.

128. Leavitt, H. (1964). Applied Organizational Change in Industry: Structural,

Technical, and Human Approaches in New Perspectives in Organizational

Research. Chichester,: Wiley.

129. Lee, G., & Xia, W. (2010). Toward Agile: An integrated analysis of

quantitative and qualitative field data on sofwtare development agility. MIS

Quarterly, pp.87-114 (Vol.34;No.1).

273

130. Lee, G., Delone, W., & Espinosa, J. (2006). Ambidextrous Coping

Strategies In Globally Distributed Software Development Projects.

Communications of the ACM, pp.35-40 (Vol.49,No.10).

131. Lee, G., Espinosa, J., & DeLone, W. (2013). Task Environment

Complexity, Global Team Dispersion, Process Capabilities, and Coordination in

Software Development. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

pp 1751-1771 (Vol.39).

132. Lehman, M. (1996). Laws of Software Evolution Revisited. Lecture Notes

in Computer Science, pp.108-124 (Vol. 1149/1996).

133. Leidner, D., Alavi, M., & Kayworth, T. (2008). The Role of Culture in

Knowledge Management: A Case Study of Two Global Firms. In D. Leidner, M.

Alavi, & T. Kayworth, Global Information Systems: The Implications of Culture

for IS Management (pp. pp.(263-287)). London: Elsevier Butterworth-Heinemann.

134. Leung, H., & White, L. (1991). A cost model to compare regression test

strategies. Software Maintenance (pp. 201-208). Institute of Electrical and

Electronics Engineers.

135. Lewin, K. (1935). A Dynamic Theory of Personality. New York: McGraw-

Hill.

136. Li, Y., Chen, Y., Liu, J., Cheng, Y., Wang, X., Chen, P., et al. (2011).

Measuring task complexity in information search from user's perspective.

Proceedings of the American Society for Information Science and Technology,

pp.(1-8) (Vol.38; No,1).

137. Lin, Y.-D., Chou, C.-H., Lai, Y.-C., Huang, T.-T., & Chung, S. (2012). Test

coverage for large code problems. The Journal of Systems and Software, pp.16-27.

138. Littlewood, B., Popov, P., & Strigini, L. (2002). Assessing the reliability of

diverse fault-tolerant software-based systems. Safety Science, pp.781-796 (Vol.40).

139. Liu, J. Y.-C., Chen, V. J., Chan, C.-L., & Lie, T. (2008). The impact of

software process standardization on software flexibility and project management

performance. Information and Software Technology, pp.889-896 (Vol.50;No9/10).

140. Loveland, S., Miller, G., Prewitt, R. J., & Shannon, M. (2005). Software

testing techniques: finding the defects that matter. Hingham, Massachusetts:

Charles River Media, Inc.

274

141. Lowry, P., & Gaskin, J. (2014). Partial Least Squares (PLS) Structural

Equation Modeling. IEEE TRANSACTIONS ON PROFESSIONAL

COMMUNICATION, pp.123-146 (Vol. 57; No. 2).

142. Lu, Y., Xiang, C., & Wang, X. (2011). What affects information systems

development team performance? An exploratory study from the perspective of

combined socio-technical theory and coordination theory. Computers in Human

Behavior, pp.(811-822).

143. Lyu, M. (1996). Handbook of software reliability engineering. McGraw-

Hill.

144. Lyytinen, K., Mathiassen, L., & Ropponen, J. (1998). Attention Shaping

and Software Risk - A Categorical Analysis of Four Classical Risk Management

Approaches. Information Systems Research, pp.233-255 (Vol.9;No.3).

145. Mantyla, M., & Lassenius, C. (2012). The Role of the Tester's Knowledge

in Exploratory Software Testing. Software Engineering, IEEE Transactions on, pp

(707-724) (Vol.39; No.5).

146. Mantyla, M., Itkonen, J., & Iivonen, J. (2012). Who Tested my Software?

Testing as an Organizationally Coss-Cutting Activity. Software Quality Journal,

pp.(145–172) (vol.20).

147. Marciniak, R., Amrani, R., Rowe, F., & Adam, F. (2014). Does ERP

integration foster Cross-Functional Awareness? Challenging conventional wisdom

for SMEs and large French Firms. Business Process Management journal, pp. 865-

886 (Vol.20;No.6).

148. Markus, L., & Keil, M. (1994). If We Build It, They Will Come. Sloan

Management Review, pp.11-25.

149. Martin, A., Biddle, R., & Noble, J. (2009). The XP Customer Team: A

Grounded Theory. Agile Conference (pp. 57-64). IEEE Computer Society.

150. Martin, D., Rooksby, J., Rouncefield, M., & Sommerville, I. (2007). 'Good'

Organisational Reasons for 'Bad' Software Testing: An Ethnographic Study of

Testing in a Small Software Company. 29th International Conference on Software

Engineering (pp. 602-611). Grenoble: IEEE Computer Society.

151. Martin, R. (2003). Agile Software Development: Principles, Patterns and

Practices. Upper Saddle River: Prentice Hall.

275

152. Mathiassen, L., & Stage, J. (1992). The principle of Limited Reduction in

Software Design (Information, Technology and People). Information, Technology

and People, pp.171-185 (Vol.6:No2/3).

153. Mattiello-Francisco, F., Martins, E., Cavalli, A. R., & Yano, E.-T. (2011).

An approach for testing interoperability and robustness of real-time embedded

software. Journal of Systems and Software, pp.3-15 (Vol.85;No.1).

154. May, & Zimmer. (1996). The Evolutionary Development Model for

Software. Hewlitt Packard Journal Online, pp.1-8 (Article 4).

155. McClelland, D. (1976). A guide to job competency assessment. Boston:

McBer and Company.

156. McClelland, D., Atkinson, J., Clark, R., & Lowell, E. (1953). The

achievement motive. New York: Appleton-Century-Crofts.

157. McCracken, D., & Jackson, M. (1982). Life Cycle Concept Considered

Harmful. ACM SIGSOFT Software Engineering notes, pp.27-32 (Vol.7;No. 2).

158. McFarlan, F. W. (1981). Portfolio approach to information systems.

Harvard Business Review, pp.142-150 (Issue:September-October).

159. McGrath, J. (1984). Groups: Interaction and Performance. Englewood

Cliffs: Prentice-Hall.

160. McKeen, J., Guimaraes, T., & and Wetherbe, J. (1994). The relationship

between user participation and user satisfaction: An investigation of four

contingency factor. MIS Quarterly, pp.427-451 (Vol.18;No.4).

161. Meyer, M., & Curley, K. (1991). An applied framework for classifying the

complexity of knowledge-based systems. MIS Quarterly, pp.455-472

(Vol.15;No.4).

162. Miller, S. D., DeCarlo, R., Mathur, A., & Cangussu, J. (2006). A Control-

theoretic approach to the management of a software system test phase. The Journal

of Systems and Software, pp.1486-1503 (Vol.79).

163. Mills, H., Dyer, M., & Linger, R. (1987). Cleanroom software engineering.

IEEE Software, pp. (19-25) (Vol. 4).

164. Mitchell, S., & Seaman, C. (2009). A Comparison of Software Cost,

Duration, and Quality for Waterfall vs.Iterative and Incremental Development: A

Systematic Review. Third International Symposiumm on Empirical Software

Engineering and Measurement (pp. 511-515). Institute of Electrical and Electronics

Engineers.

276

165. Moe, N., A.B., A., & Dybå, T. (2012). Challenges of shared decision-

making: A multiple case study of agile Software Development. Information and

Software Technology, pp 853-865 (Vol.54).

166. Muccini, H., Dias, M., & Richardson, D. (2006). Software architecture-

based regression testing. The journal of systems and software, pp.1379-1396

(Vol.79).

167. Mumford, E. (1983). Designing Human Systems. Manchester Business

School.

168. Munassar, N., & Govardhan, A. (2010). A Comparison Between Five

Models Of Software Engineering. International Journal of Computer Science

Issues, pp.94-101 (Vol. 7, Issue 5).

169. Murphy, G., & Salomone, S. (2013). Using social media to facilitate

knowledge transfer in complex engineering environments : a primer for educators.

European Journal of Engineering Education, pp. (70-84) (Vol.38; No.1).

170. Myers, G. (1979). The Art of Software Testing. John Wiley and Sons.

171. Myers, M., & Klein, H. (2011). A set of Principles for Conducting Critical

Research in Information Systems. MIS Quarterly, pp.(17-36) (Vol.35; No.1).

172. Naur, P. (1985). Intuition in Software Development. Lecture Notes in

Computer Science, pp. 60-79 (Vol. 186).

173. Neisser, U. (1976). General, academic and artificial intelligence . In L.

Resnick, The nature of intelligence (pp. 135-144). Hillsdale, NJ: Erlbaum.

174. Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of Migrating

to AGile Methodologies. Communications of the ACM, pp.73-78 (Vol. 48; No. 5).

175. Nguyen, N., Taylor, J., & Bradley, S. (2003). Job autonomy and job

satisfaction: new evidence. Lancaster University Management School.

176. Nidhraa, S., Yanamadalaa, M., Afzalb, W., & Torkara, R. (2013).

Knowledge transfer challenges and mitigation strategies in global software

development—A systematic literature review and industrial validation.

International Journal of Information Management, pp. (333– 355) (Vol.33; No.2).

177. Nonaka, I., & Takeuchi, H. (1995). The Knowledge-Creating Company.

Oxford University Press.

178. Nonaka, I., & Von Krogh, G. (2009). tacit Knowledge and Knowledge

Conversion: Cotroversy and Advancement in organizational Knowledge Creation

Theory. Organization Science, pp(635-652) (Vol. 20; No. 3).

277

179. O'Brien, R. M. (2007). A Caution regarding Rules of Thumb for Variance

Inflation Factors. Qualty & Quantity, pp. 673-690 (Vol. 41; No. 5).

180. Orilkowski, W. (1993). CASE Tools as Organizational Investigating

Incremental and Radical Chages in Systems Development. MIS Quarterly, pp.309-

340.

181. Paetsch, F., Eberlein, D. A., & Maurer, D. F. (2003). Requirements

Engineering and Agile Software Development. Proceedings of the Twelfth IEEE

International Workshop on Enabling Technologies (pp. 308-313). IEEE Computer

Society.

182. Palmer, S., & Felsing, J. (2002). A Practical Guide to Feature-Driven

Development. Englewood cliffs, New Jersey: Prentice Hall.

183. Patel, C., & Ramachandran, M. (2008). Bridging Best Traditional SWD

Practices with XP to Improve the Quality of XP Projects. International Symposium

on Computer Science and its Applications (pp. 357-360). IEEE Computer Society.

184. Pee, L., Kankanhalli, A., & Kim, H. (2010). Knowledge Sharing in

Information Systems Development: A Social Interdependence Perspective. Journal

of the Association for Information Systems, pp.(550-575) (Vol.11; No.10).

185. Perkusich, M., Soares, G., Almeida, H., & Perkusich, A. (2015). A

procedure to detect problems of processes in software development using Bayesian

networks. Expert Systems with Applications, pp. (436-450) (Vol.47).

186. Perrow, C. (1984). Normal Accidents Living With High-Risk Technologies.

New York: Basic Books Inc.

187. Petersen, K., & Wohlin, C. (2010). The effect of moving from a plan-

drivento an incremental software developmentapproach with agile practices.

Empirical Software Engineering, pp 654-693 (Vol.15).

188. Pfleeger, S. (2001). Software Engineering. Upper Saddle River: Prentice

Hall.

189. Polanyi, M. (1962). Personal Knowledge. Chicago: The University of

Chicago Press.

190. Polanyi, M. (1966). The Tacit Dimension. Chicago: University of Chicago

Press.

191. Rabelo, J., Oliveira, E., Viana, D., Braga, L., Santos, G., Steinmacher, I., et

al. (2015). Knowledge Management and Organizational Culture in a Software

278

Organization - a Case Study. IEEE/ACM 8th International Workshop on

Cooperative and Human Aspects of Software Engineering, pp 89-92.

192. Rajagopalan, S. (2014). Review of the Myths on Original Software

Development Model. International Journal of Software Engineering &

Application, pp (103-111) (Vol. 5; No. 6).

193. Ramesh, B., Cao, L., Mohan, K., & Xu, P. (2006). Can distributed sofwtare

development be agile. Coomunications of the ACM, pp.41-46 (Vol. 49, No. 10).

194. Ribbers, P., & Schoo, K. (2002). Program Management and complexity of

ERP implementation. Engineering Management Journal, pp.42-52 (Vol.14;No.2).

195. Ribeiro, R. H. (2007). The bread-making machine: Tacit knowledge and

two types of action. Organisational Studies, pp.(257–262) (vol. 28; no. 9).

196. Ringle, C., Wende, S., & Will, S. (2005). SmartPLS 2.0 (M3) Beta.

[Online]. Available:http://www.smartpls.de.

197. Rothermal, G., & Harrold, M. (1993). A safe efficient algorithm for

regression test selection. Proceedings of the conferece on software maintenance

(pp. 358-367). CSM.

198. Rothermal, G., & Harrold, M. (1996). Analyzing regression test selection

techniques. Software Engineering . IEEE Transactions, pp.529-551.

199. Royce, W. (1970). Managing the Development of Large Software Systems.

200. Rumbaugh, J., & Jacobson, I. (1999). The Unified Software Development

Process. MA: Addison-Welsey.

201. Rus.I, Lindvall.M, & Sinha, S. (2001). Knowledge Management in Software

Engineering. Maryland: Fraunhofer Cente for Experimental Software Engineering.

202. Ryan, S., & O’Connor, R. V. (2009). Development of a team measure for

tacit knowledge in software development teams. Journal of Systems and Software,

pp.229-240 (Vol. 82; No. 2).

203. Sabberwal, R., & Elam, J. (1996). Overcoming Problems in Information

Systems Development By Building and Sustaining Commitment. Accounting,

Management and Information technologies, pp.283-309.

204. Sabberwal, R., & Robey, D. (1995). Reconciling Variance and Process

Strategies for Studying Information Systems Development. Information Systems

Res, pp.303-323.

279

205. Schüler, J., Sheldon, & Frolich, S. M. (2010). Implicit need for achievement

moderates the relationship between competence need satisfaction and subsequent

motivation. Journal of Research in Personality, pp.1-12.

206. Schwaber, K., & Beedle, M. (2001). Agile Software Development with

Scrum. Englewood Cliffs, New Jersey: Prentice Hall.

207. Senguta, B., Chandra, S., & Sinha, V. (2006). A Research Agenda for

Distributed Software Development. Proceedings of the 28th international

conference on software engineering (pp. 731-740). New York: ACM.

208. Shenhar, A., & Dvir, J. (1996). Toward a typological theory of project

management. Research Policy, pp.607-632.

209. Šmite, D., Wohlin, C., Gorschek, T., & Feldt, R. (2010). Empirical evidence

in global software engineering:A Systemic Review. Empirical Software

Engineering , pp. (91-118) (Vol.15;No.1).

210. Sommerville, I. (2007). Software Engineering 8. Addison-Wesley.

211. Sommerville, I., Cliff.D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska,

M., et al. (2012). Large-scale Complex IT Systems. Communications of the ACM ,

pp. 71-77 (Vol.55;No.7) .

212. Sorensen, C. (1993). Adoption of CASE tools - An Empirical Investigation -

PhD Thesis. Department of Mathematics and Computer Science, University of

Aalborg, Denmark.

213. Staats, B., Valentine, M., & Edmondson, A. (2010). Using What We Know:

Turning Organizational Knowledge into Team Performance. Harvard Business

School, pp.(1-35).

214. Standish Inc., T. S. (2009). CHAOS SUmmary 2009: The 10 laws of Chaos.

215. Stapleton, J. (1997). DSDM Dynamic Systems Development Method.

Addison-Wesley.

216. Sternberg, R., Forsythe, G., Hedlund, J., Horvarth, J., Wagner, R., Williams,

W., et al. (2000). Practical Intelligence in everyday life. Cambridge University

Press.

217. Sternberg, R., Forsythe, G., Hedlund, J., Horvath, J., Tremble, T., Williams,

W., et al. (1999). Tacit Knowledge in the Workplace. Alexandria: U.S. Army

Research Institute for the Behavioral and Social Sciences.

218. Strauss, A., & Corbin, J. (1990). Basics of Qualitative Research: Grounded

Theory Procedures and Techniques. Newbury Park, CA.: Sage Publications.

280

219. Striebeck, M. (2005). Ongoing Quality Improvement, or: How We All

Learned To Trust XP. Proceedings of the Agile Development Conference (pp. 267-

271). Denver: IEEE Computer Society.

220. Sun, R., & Merill, R. (2001). From Explicit Skills to Implicit Learning: A

Bottom-Up Model of Skill Learning . Cognitive Science, pp203-244 (Vol. 25; No.

2).

221. Tait, P., & Vessey, I. (1988). The effect of user involvement on system

success: A contingency approach. MIS Quarterly, pp.91-108 (Vol.12;No.1).

222. Talby, D., Karen, A., Hazzan, O., & Dubinsky, Y. (2006). Agile Software

Testing in a Large-Scale Project. IEEE Software, pp.30-37.

223. Tarha, A., & Yilmaz, S. (2014). Systematic analyses and comparison of

development performance and product quality of Incremental Process and Agile

Process. Information and Software Technology, pp. (477-494) (Vol.56).

224. Thorpe, R., & Homan, G. (2000). Strategic Reward Systems. Prentice Hall.

225. Tsoukas, H. (2002). Do we really understand tacit knowledge? In M.

Easterby-Smith, & M. Lyles, Handbook of Organizational Knowledge

Management (pp. pp. (410–27)). Blackwell .

226. Tsui, F., & Iriele, S. (2011). Analysis of Software Cohesion Attribute and

Test Case Development Complexity. Proceedings of the 49th Annual Southeast

Regional Conference (pp. pp.(237-242)). ACM.

227. Tsui, F., & Karam, O. (2007). Essentials of software engineering. Ontario:

Jones and Bartlett.

228. Turk, al., D., France, R., & Rumpe, B. (2000). Limitations of Agile

Software Processes. Third International Conference on eXtreme Programming and

Agile Processes in Software Engineering (pp. 43-46). Springer-Verlag.

229. Turk, D., France, R., & Rumpe, B. (2005). Assumptions Under lying Agile

Software Development Processes. Journal of Database Management, pp. 62-87

(Vol.16;No.4).

230. Turner, J., & Cochrane, R. (1993). Goals-and-methods matrix: Coping with

projects with ill defined goals and/or methods of achieving them. International

Journal of Project Management, 93-102.

231. Urquhart, C., Lehmann, H., & Myers, <. (2010). Putting the 'theory' back

into grounded theory: guidelines for grounded theory studies in information

systems. Information Systems Journal, 357-381 (Vol.20;No.4).

281

232. Venkatesh, V., Brown, S., & Bala, H. (2013). Bridging the Qualitative–

Quantitative Divide:Guidelines for Conducting Mixed Methods Research in

Information Systems. MIS Quarterly, pp.(21-54)(Vol.37;No.1).

233. Vidgen, R., & Madsen, S. (2003). Exploring the socio-technical dimension

of information systems development: use cases and job satisfaction.

234. Von Krogh, G. (2012). How does Social Software Change Knowledge

Management? Toward a Srategic Research Agenda. Journal of Strategic

Information Systems, pp 154-164 (Vol. 21).

235. Wagner, K., & Sternberg, R. (1985). Practical intelligence in real-world

pursuits: The role of tacit knowledge. Journal of personality and social

proceedings, pp.436-458, (Vol. 49, no. 2).

236. Wallace, L., & Keil, M. (2004). Software project risks and their effect on

outcomes. Communications of the ASM, pp.68-73 (Vol. 47, No. 4;).

237. Walter, T., & Grabowski, J. (1999). A framework for the specification of

test cases for real-time distributed systems. Information and Software Technology,

pp.781-798.

238. Wang, M., Huang, C., & Yang, T. (2012). The Effect of the Project

Environment on the Relationship between Knowledge Sharing and Team Creativity

in the Software Development Context. International Journal of Business and

Information, pp. (59-80) (Vol.7; No. 1).

239. Wegener, J., Baresel, A., & Sthamer, H. (2001). Evolutionary test

environment for automatic structural testing. Information and Software

Technology, pp.841-854 (Vol.43; No.14).

240. Willcocks, L., & Margetts, H. (1994). Risk and Information Systems:

Developing the Analysis. London: Chapman-Hall.

241. Williams, T. (1999). The need for new paradigmsfor complex projects.

International journal for project management, pp. 269-273.

242. Wong, W., Horgan, J., London, S., & Mathur, A. (1998). Effect of test set

minimization on fault detection effectiveness. In Software - Practice and

Experience (pp. 347-369).

243. Wood, R. (1986). Task Complexity: Definition of the construct.

Organizational Behavior and Human Decision Processes, 37, pp.60-82.

282

244. Woodside, A. (2010). Bridging the chasm between survey and case study

research: Research methods forachieving generalization, accuracy, and complexity.

Industrial Marketing Management, pp. (64-75) (Vol. 39).

245. Woodside, A., & Baxter, R. (2013). Achieving accuracy, generalization-to-

contexts, and complexity in theories of business-to-business decision processes.

Industrial Marketing Management, pp. (382-393); (Vol. 42).

246. Xia, W., & Lee, G. (2005). Complexity of Information Systems

Development Projects: Conceptualization and Measurement Development. Journal

of Management Information Systems, pp.45-82 (Vol.22; No.1;).

247. Yeates, D., Shields, M., & Helmy, D. (1994). Systems analysis and design.

Pittman publishing.

248. Yin, R., & Ding, X. (2012). How to Improve the Quality of Software

Testing. 2012 International Conference on Systems and Informatics (pp. pp.(2533-

2536)). Yantai : ICSAI.

249. Yoo, S., & Harman, M. (2010). Regression Testing Minimisation, Selection

and Prioritisation : A Survey. Software Testing, Verification and Reliability, pp. 67-

120 (Vol.22; No.2).

250. Zack, Z., McKeen, J., & Singh, S. (2009). Knowledge management and

organizational performance: an exploratory analysis. Journal Of Knowledge

management, pp.392-409 (Vol.13;No.6).

251. Zheng, M., Alager, V., & Ormandjieva, O. (2008). Automated generation of

test suites from formal specifications of real-time reactive systems. The journal of

systems and software, pp.286-304 (Vol. 81).

283

8 Appendix

8.1 Analysis of Qualitative Data

Comments are coded in terms of the count of similarly expressed sentiments. The

counts identify whether they can be attributed to a participant with < 10 years’

experience (red, (inexperienced or i)) or a participant with >= 10 years’ experience

(blue, (experienced or e)), e.g. the following comment relating to the importance of

tacit knowledge:

The system under test is described as consisting of a significant amount of complex features.

Even though a considerable amount of explicit knowledge relating to the system is freely

available, it has been stated that a good deal of knowledge relating to the system, which is

demanded for effective system testing, is actually tacit in nature. (20:i) (17:e). This breaks

down as being associated with the following methodologies: traditional (25); agile (12).

The level of documentation does help reduce complexity but enterprise systems are described

as often being very complex with only a certain amount of such knowledge lending itself to

being made explicit and documented (27:i) (12:e). (This breaks down as traditional: (25);

agile: (14). A significant amount of time is spent trying to acquire tacit knowledge from

development, especially in relation to system interactions and expected outcomes under

different conditions (14:i) (11:e). This breaks down as traditional: (18); agile: (7) If the

knowledge is not freely flowing then this can make the process a lot more inefficient and

complex (2:i) (6:e).

8.1.1 Initial Coding of Complexity Associated with the System under Test

Classification Statement

The impact of

System

Complexity,

primarily

relating to

System test planning i.e. deciding what aspects of the system can

and should be tested can be a complex activity (28:i) (13:e), often

due to system interoperability and interdependencies associated

with different elements of the system (8:i) (9:e). The system is

complex, with the number of different configurations applying to

284

System test

planning

system deployment. Complexity is embodied in the product.

Directory structure knowledge (knowledge of who knows what)

was mentioned as being very important regarding system use, and

how the system can be used under certain circumstances. This was

something which is described as difficult to make explicit (3:i).

There needs to be a complete understanding of how the

feature/system is expected to operate, and how it could be used

(8:i) (12:e). The view was expressed that complexity at the

planning stage can affect one’s ability to specify appropriate tests,

which can have a knock-on effect on the system test development

stage (5:i) (4:e), and can contribute to complexity associated with

the test execution stage (9:i) (2:e). This can also affect the ability

to debug the system at the fault analysis stage, and the test

measurement stage. A lack of system understanding can influence

one’s ability to carry out estimation of required test resources i.e.

human, technical and time (4:i) (2:e).

The impact of

System

Complexity,

primarily

relating to

System test

development

The implementation of test cases as planned, an activity which

must be carried as part of the test development stage, can be quite a

complex task, (21:i) (11:e). Some refer to this as being due to the

interoperability and interdependencies associated with different

elements of the system (4:i) (4:e). If an effective test environment

is not implemented, this is described as causing trouble for later

stages of system testing (5:i) (2:e).

The impact of

System

Complexity,

primarily

relating to

System test

execution

General reference was made to complexity associated with system

test execution stage of system testing i.e.:

If tests have not been specified properly or clearly defined, then it

can introduce complexity at the test execution stage (3:i) (9:e),

particularly if testing is manual in nature, as opposed to being

automated (8:i) (5:e), with non-standard or exploratory testing

being carried out (2:i).

The involvement of complexity relating to the system under test

was not explicitly mentioned, but it cannot be ruled out,

particularly in the case of a manual testing approach being

285

adopted.

The impact of

System

Complexity,

primarily

relating to

System test

fault analysis

System complexity affects the ability to carry our fault analysis or

debug on potential issues, and to be able to differentiate between

what is an actual bug, and what is a test environment issue. The

fault analysis stage demands an understanding of the exact test

which was being performed i.e. what the test was attempting to

achieve, what effect it had on the system, and what effect it should

have had on the system (17:i) (16:e).

The impact of

System

Complexity,

primarily

relating to

System test

measurement

General reference was made to complexity associated with system

test measurement stage of system testing i.e.:

Automation of test case measurement can remove complexity, but

complexity appears to come into play when deeper analysis is

carried out as part of the test measurement stage, in order to

accurately evaluate the quality of the system under test (4:i) (3:e).

A balance must be achieved between adequate system quality

against time to market pressures (1:i) (1:e).

Even though complexity relating the system under test was not

explicitly mentioned, this cannot be ruled out as being a source of

complexity, especially concerning the manual assessment of

system quality.

The impact of

System

Complexity,

primarily

relating to

System test

management

Therefore test management was not found to be impacted by

complexity associated with the system under test.

8.1.2 Initial Coding of Tacit Knowledge relating to the System under Test

Highlighted below is evidence of tacit knowledge relating to the system under test, as

it impacts the various stages of system testing. Tacit knowledge was distinguished

286

from explicit knowledge in that it was described in terms of knowledge which was

difficult to articulate and was acquired through experience. Evidence of such

knowledge was found in the case of system test planning, test case development,

which is carried out as part of test case development, and test debug, which happening

as part of the system test fault analysis stage.

Test planning

related tacit

knowledge

associated

with the

system under

test

As previously stated, the availability of tacit knowledge

relating to the system under test is essential to enabling

effective completion of the planning stage (27:i) (14:e).

Enterprise projects generally require a considerable amount

of system knowledge right through the test planning and test

development stages (5:i) (5:e). This may not be as easy to

acquire if the system being implemented is a bespoke system,

being developed from scratch by a separate team (3:i) (1:e),

or in the case of a geographically dispersed test team (1:i).

Test

development

related tacit

knowledge

associated

with the

system under

test

Views were expressed that projects generally require a

considerable amount of system related tacit knowledge

throughout the test development stage (15:i) (7:e). The

availability of such tacit knowledge relating to the system

under test, interoperability etc. is imperative to successfully

completing the test development stage (15:i) (10:e). Test

environments must accurately reflect the final deployment

scenario at customer sites. For test case development, and to

enable effective assessment of automation possibilities, there

needs to be an understanding of what has to be tested and

how the system could eventually be used (2:i) (2:e).

Test

execution

related tacit

knowledge

associated

with the

system under

test

The effect of tacit knowledge associated with system test

execution, which relates to the system under test, is not

something which was explicitly mentioned. It was stated that

a certain amount of test execution related knowledge does

lend itself to being made explicit, but numerous other

participants did mention that there was a relationship between

manual testing, and tacit knowledge i.e.:

287

A certain amount of the test execution normally lends itself to

be made explicit (15:i) (6:e). Others stated that test suite

execution had a strong relationship to tacit knowledge (10:i)

(6:e), but such views related to when manual approaches to

testing were adopted, involving complex test steps, such as

load testing, or exploratory testing, requiring a more detailed

knowledge (2:i) (3:e).

A relationship between at least some aspects of system test

execution, such as load, or stress testing, and tacit

knowledge, cannot be ruled out.

Fault

analysis

related tacit

knowledge

associated

with the

system under

test

To fully appreciate what component of the system bugs are

emanating from, one requires tacit knowledge relating to the

system under test and how it interoperates (16:i) (8:e).

Contrasting with a common expressed view, some expressed

the view that a lot of debug knowledge can be made explicit

(2:i) (1:e). Debugging of issues often brings a dependency on

system development teams for applicable knowledge (8:i)

(9:e), or other team members (including those focussed on

development and maintenance of the test environment) (2:i)

(4:e).

Test

measurement

related tacit

knowledge

associated

with the

system under

test

Reference has been made to tacit associated with test case

measurement stage of system testing i.e.:

Test case measurement is described as being based on

experience (2:i) (3:e), but something with a weak

relationship to tacit knowledge (15:i) (10:e). Required tacit

knowledge is associated with current system evaluation

against expected, with a balance having to be achieved

between available test resources, and the achievement of

sufficient quality of the system within a certain timeframe

(6:i) (3:e). Test case measurement can be taken care of, to a

large extent, on an automated basis, which simplifies matters

(3:i) (3:e), more or less consisting of a recording of a pass or

fail after test execution (4:i) (1:e).

288

Although there were no direct references made regarding the

relationship between test case measurement and tacit

knowledge associated with the system under test, it was

mentioned that required tacit knowledge does come into play

with the evaluation of system quality against expected. It

therefore could not be ruled out that at least some of this

knowledge relates to understanding of the system under test.

Test

management

related tacit

knowledge

associated

with the

system under

test

Reference has also been made to tacit associated with the

test case management stage of system testing i.e.:

Test case management was expressed to have a moderate

dependence on tacit knowledge i.e. it does lend itself to being

made explicit (10:i) (10:e). However, the introduction of new

systems, modifications to test environments, or optimisation

efforts, can make test environments quite complex to manage,

with some dependence on tacit knowledge (6:i) (1:e).

As highlighted above, evidence was found regarding test

management, but such knowledge was found to relate to the

test environment and the wider process of system testing, as

opposed to the system under test.

8.1.3 Initial Coding of Complexity associated with the Process of System Testing

An effort was also made to highlight complexity which affects the various stages of

system testing but is not directly associated with the system under test, or where the

knowledge may be related to the system under test but explicit in nature, such as in the

case of functional specifications.

Complexity

associated

Functional requirement specifications which have been poorly

specified can be a contributor to complexity associated with the test

289

with the task

of system test

planning

planning stage (10:i) (5:e). The exposure of testers to requirement

details at a late stage in the development process, can also impact

the effectiveness and efficiency of the system tester to plan effective

system tests (1:i) (1:e). A lack of information available at the

planning stage, specifications etc. leads to a deficit of knowledge,

which can introduce a lot of complexity at this and later stages (7:i)

(4:e). Conversely good planning makes the subsequent development

stage less complex (5:i) (1:e). Decisions to be made at the planning

stage, such as those relating to what exactly is feasible in terms of

meeting system test requirements with available resources e.g. test

case selection and prioritisation of test cases, can also introduce

complexity for planning and later stages of testing (12:i) (4:e). A

balance must be achieved between adequate system quality and time

to market pressure (11:i) (7:e). Achievement of such a balance can

have a direct impact on the prioritisation and selection of test cases.

An initial risk assessment, carried out as part of the test case

planning stage, detailing what can and should be tested, within a

certain period of time, is described as being very complex.

Complexity can come into play when broader product knowledge or

customer deployment knowledge is not readily available (3:i) (1:e).

Complexity

associated

with the task

of system test

development

To build a test environment which is reflective of final deployment

can also be a quite complex process (10:i) (5:e). There is often a

deficit of standards or guidance regarding set up of test

environments which accurately reflect customer deployments, and

often insufficient knowledge relating to the actual system in practice

(11:i) (9:e).Test configuration can be very complex to set up,

especially for somebody of lesser experience (1:i) (1:e). The role of

system test automation is cited as a potential contributing factor to

complexity (13:i) (4:e), with the development of such automated

systems described as often being a complex process (1:i) (3:e).

Sometimes automation is insisted, even though it may not be an

appropriate fit i.e. it may not be possible to transfer the manual tests,

to an automated platform, while still retaining the ability to

effectively test the desired operational characteristics of the system

(7:i) (4:e). Although not necessarily complex, there can be time to

290

market and cost pressures associated with setting up automated

environments (1:i) (1:e). There are many different routes for

successful testing to be achieved and this can also introduce

complexity (2:i) (5:e). Development teams often set acceptance

criteria for system tests (1:i), with varying levels of detail involved.

The exposure of testers to the introduction or modification of feature

details at a late stage in the development process, often impacts the

effectiveness and efficiency of the system tester to develop effective

system tests (4:i) (1:e).

Complexity

associated

with the task

of system test

execution

If tests have not been specified properly or clearly defined, then it

can introduce complexity at the test execution stage (8:i) (9:e),

particularly if testing is manual in nature, as opposed to being

automated (8:i) (5:e), with non-standard or exploratory testing being

carried out (2:i). A lot of this knowledge can be made explicit (5:i)

(7:e), but this isn’t necessarily always done (1:e). One tends to go

into more detail in tests and test steps with more experience. With

additional detail comes additional complexity (3:e). Such additional

detail often has a strong link to tacit knowledge. Test suite

execution, does benefit from effective work which has been carried

out at the planning and development stages, but there can be

complexity emanating from requirement changes which may surface

during test suite execution, particularly if the execution is manual in

nature (6:i) (1:e).

Complexity

associated

with the task

of system test

fault analysis

When carrying out fault analysis, one needs to rule out the

involvement of the test environment, as opposed to the system under

test (13:i) (6:e). Debugging can prove to be complex (35:i) (17:e),

with a certain dependency on the experience of the tester (10:i)

(6:e), and on development teams (8:i) (6:e). Often this can be quite

time consuming (days in some instances) and at the same time you

are under pressure to finish your tests (2:i). A bug in one component

could cause a bug in another component and this must be

understood and be identifiable (1:i) (1:e). The automation of test

cases is described as something which contributes greatly to general

complexity associated with system testing. Sometimes automation

masks the exact system interoperability, thereby having the effect of

291

reducing the general understanding of system operation (3:i) (1:e).

Complexity

associated

with the task

of system test

measurement

Test case measurement can be taken care of, to a large extent, on an

automated basis or by a separate team, so may be relatively

simplistic (13:i) (8:e), and more or less consisting of recording a

pass or fail after test execution (10:i) (5:e). Automation of test case

measurement can indeed remove complexity, but complexity

appears to come into play when deeper analysis is carried out as part

of the test measurement stage, in order to accurately evaluate the

quality of the system under test (8:i) (6:e). A balance must be

achieved between adequate system qualities against time to market

pressures (1:i) (2:e). Customer deployed environments are described

as being significantly more complex and larger than the test

environments which are available to system test, and therefore there

is always an offset which one must be aware of regarding the

evaluation of quality (1:i). It can be hard to determine whether all

resources are being maximised and whether testing is being carried

out in line with customer deployment as well as possible. A heavily

automated system with no automated quality measurement

framework built in, is described as contributing to such complexity

(1:i). The inclusion of aspects of code quality such as code

coverage, may also contribute to complexity associated with quality

measurement. Complex measurement frameworks, which must be

approached on a manual basis, can prove quite challenging,

especially when aspects of quality such as code coverage, are

considered as part of quality evaluation (2:i).

Complexity

associated

with the task

of system test

management

Management of resources, which involves the balancing of

resources associated with the test environment, and enabling test

case preservation, can be quite a complex task (14:i) (8:e). Such

management is stated as requiring experience and know-how in

order to balance resources properly (1:i). Most of this knowledge

can be made explicit (2:i) (2:e).This would relate to getting people

on board and trying to speed up the process of getting necessary

resources, so it is described as being more difficult (time

consuming), than complex. The management of fix testing can be

quite a complex task, with pressure for fix signoff. Test environment

292

changes, in terms of the analysis and consideration of changes, can

introduce complexity (1:i) (4:e). If substantial architectural changes

occur during the test process, this can prove complex to manage,

particularly if major test environment changes are necessary (2:i)

(1:e). Such changes can affect all stages of system testing (1:i).

8.1.4 Initial Coding of Tacit Knowledge related to the Process of System Testing

The following section highlights evidence of tacit knowledge relating tacit knowledge

which affects the various stages of system testing but is not directly associated with the

system under test. Tacit knowledge was distinguished from explicit knowledge in that

it was described in terms of knowledge which was difficult to articulate and was

acquired through experience. Evidence of such knowledge was found in the case of

system test planning, the test environment, which is carried out as part of test case

development, test case execution, and test debug, which happens as part of the system

test fault analysis stage.

Tacit

knowledge

relating to

the task of

system test

planning

The importance of tacit knowledge relating to test case planning,

which is gained through experience, was emphasised by numerous

participants (16:i) (11:e). However the view was expressed by a

smaller number of participants that a certain amount of planning

related knowledge, specifications etc. and can be made explicit,

thereby reducing the dependency on tacit knowledge (8:i) (1:e). A

shortfall in tacit knowledge could result in a lack of appreciation for

what tests are necessary in order to test the system properly, given

available resources (2:i) (5:e), is something which has a strong

influence on the final quality of the system. This has been described

as an issue one needs to be conscious of, particularly in the case of

testing being outsourced, and a limited access to appropriate tacit

knowledge. Criteria which are used to determine the quality of the

system may have been set by either the system implementer or the

eventual customer (possibly set by project manager or system

architect) (1:i) (1:e). Sometimes there may be detail you may be

missing during the planning stage, detail which may only become

apparent with an understanding and experience of both system

293

testing, and the actual system under test (2:i) (4:e).

Tacit

knowledge

relating to

the task of

system test

development

Applicable test environment development knowledge is usually tacit

in nature and difficult to make explicit (15:i) (13:e). Knowledge

relating to the test environment is usually acquired through

experience (4:i) (3:e), and may not be as easy to acquire if the system

being implemented is a bespoke system, being developed from

scratch by a separate team (3:i) (1:e), or in the case of a

geographically dispersed test team (1:i). A contrary view was

expressed by some, that a lot of test environment knowledge can

actually be made explicit (1:i) (2:e).

Tacit

knowledge

relating to

the task of

system test

execution

A certain amount of the test execution normally lends itself to be

made explicit (15:i) (6:e). Others stated that test suite execution had a

strong relationship to tacit knowledge (6:i) (10:e), but such views

related to circumstances when manual approaches to testing were

adopted, involving complex test steps, such as load testing, or

exploratory testing, requiring more detailed test environment

knowledge (3:i) (2:e).

Tacit

knowledge

relating to

the task of

fault

analysis

When carrying out fault analysis, one needs to rule out the

involvement of the test environment, as opposed to the system under

test (13:i) (6:e), such ability is primarily dependent on the experience

of the tester (10:i) (6:e). Debug can often be quite time consuming

(days in some instances) and at the same time you are under pressure

to finish your tests (2:i). If there are delays in delivery of an

appropriate response from development or test environment

focussed/automation teams, this can elongate the test process and

have a knock-on effect on issue resolution. Directory structure

associated with who to talk to under what circumstances is described

as something which have an impact on the fault analysis stage of

system testing (11:i) (1:e). Complex test steps can make fault analysis

more complex (3:i). Knowledge associated with automation is

described as being primarily tacit in nature (3:i). Debugging of issues

often brings a dependency on other team members (including those

focussed on the development and maintenance of the test

environment) (2:i) (4:e).

294

Tacit

knowledge

relating to

the task of

system test

measurement

Test case measurement is described as being based on experience

(2:i) (3:e), but something with a weak relationship to tacit knowledge

(15:i) (10:e). Required tacit knowledge is associated with current

system evaluation against expected, with a balance having to be

achieved between available test resources, and the achievement of a

sufficient level of system quality, within a certain timeframe (6:i)

(3:e). Test case measurement can be taken care of, to a large extent,

on an automated basis, which simplifies matters (3:i) (3:e). This can

simply consist of a recording of a pass or fail after test execution (4:i)

(1:e).

Tacit

knowledge

relating to

the task of

system test

management

Test case management was expressed to have a moderate dependence

on tacit knowledge i.e. it does lend itself to being made explicit (10:i)

(10:e). However, the introduction of new systems, modifications to

test environments, or optimisation efforts, can make test

environments quite complex to manage, with some dependence on

tacit knowledge (6:i) (1:e).

Table 8.1: Research Data Relating to Tacit Knowledge Associated with the Process of System

Testing.

8.2 Recommended Actions to Reduce the Effects of System Test Complexity

8.2.1 The Availability of Tacit Knowledge within the Test Team

Table 5.11, focusses on the importance of system test team members in reducing the

effects of system test complexity.

The dependence

on knowledge

from team

members and

the availability

of SMEs

It has been explained that the availability of subject matter experts

(SMEs), providing necessary tacit knowledge relating to the

actual system under test or the system test environment, is

important in the reduction of complexity (27:i) (16:e). The level

of tacit knowledge is described as being proportional to the

complexity of the project (1:e). As a general rule, the bigger the

295

system test team, the greater the necessity for subject matter

experts (SMEs) to be made available to system testers (2:e). This

is often a case of sharing the load in terms of knowledge

resources. A dedicated SME has been described as helping to

provide an ongoing source of tacit knowledge to the system test

team for the system test stages of planning, development,

execution and fault analysis stages (5:i) (3:e). Such an SME

relating to the system, may not always be freely available (1:i),

and this appears to be particularly prevalent in the case of smaller

teams or new enterprise level projects. The lack of availability of

an SME often leads to learning on the job, something which can

be more difficult for less experienced engineers. An SME, with

knowledge pertaining to interacting features, can be difficult to

source without involving software developers. Geographically

distributed test teams can introduce complexity for system testing

(1:i). This is described as being particular pertinent in the case of

shared test environments (1:i). The involvement of someone who

is familiar with how the system is intended to work in practice i.e.

in accordance with the original architecture is of significant value

(5:i) (5:e). Such knowledge enables the system test team to carry

out some debug analysis, ensuring the debug process is more

efficient, by developers not having to consistently debug test

environment issues (1:i).

Table 8.2: The Availability of Tacit Knowledge within the Test Team.

8.2.2 The Availability of Knowledge from Development Teams

The following section highlights the benefit of development team knowledge in the

reduction of system test complexity. Such knowledge can come in the form of

knowledge when lends itself to being made explicit e.g. functional specifications or

user stories etc., or tacit knowledge which cannot be easily made explicit, and is best

communicated via personal interaction.

296

The importance

of explicit

knowledge in

reducing

complexity

At the test planning stage, there is a great deal of information

which can be made available via function specifications, which

can help in reducing complexity associated with system testing

(33:i) (13:e). The benefit of specifications in reducing complexity

associated with system testing is diminished if the functional

specifications are incomplete, subject to change, or arrive late in

the software development process (1:i) (3:e). Applications which

allow the management of formal specifications, and can be used to

document aspects of the system, help in providing a better

understanding of the original drivers for a particular feature. This

information combines with user stories (or specifications), to

provide the basis for test case planning, inclusive of acceptance

tests. Information regarding system operation which is expected,

or not expected, under different operational circumstances, could

reduce complexity associated with the planning and development

stages (1:e).

The importance

of the transfer of

tacit knowledge

from developers

in reducing

system test

complexity

The level of documentation associated with a development project

does help reduce complexity but enterprise systems are described

as often being very complex with only a certain amount of such

knowledge lending itself to being made explicit and documented

(27:i) (12:e). A significant amount of time is spent trying to

acquire tacit knowledge from developers, especially in relation to

system interactions and expected outcomes under different

conditions (14:i) (11:e). If the knowledge is not freely flowing

then this can make the process a lot more inefficient and complex

(2:i) (6:e). A manual approach to system testing can be badly

affected by significant changes to requirements during the

development process (1:i). It was suggested that a more agile

approach to development is very effective in reducing complexity

associated with system testing, through the regular encouragement

of communication between test and development teams. This is in

contrast to teams being involved in a more traditional approach to

software development (2:i) (3:e), described as being particularly

applicable to development teams operating on a geographically

297

distributed basis. Such interaction has been described as being

more important than user stories or specifications, which can

sometimes be inaccurate or not current (1:i).

What structure do such communications take?

At the planning stage, knowledge relating to the system/feature

under test can come through interactions with development, via

walkthroughs, specifications, architectural meetings. These

approaches to knowledge transfer are described as being very

effective in reducing complexity at the planning and development

stages (5:i) (5:e). Also suggested was the concept of workshops,

as a medium for the knowledge transfer. These can be arranged

between the business units, development and test, and hosted by

development teams. The purpose of these workshops was to

provide a detailed overview on the user stories involved in the

forthcoming delivery, enabling testers to plan and develop tests

effectively (1:e). The aforementioned approaches can be helpful

because for new projects it may not be possible to use previously

defined tests. It is possible for developers to specify or outline

initial tests, but often this is either not done or is often extremely

lacking in detail.

Having development sit in with system test, during a test phase,

has shown to be a major reducer of complexity at the test

execution / fault analysis stages of testing, through facilitating the

transfer of knowledge (3:i). The assistance of development teams

in triaging issues as part of the fault analysis stage can have a

strong impact in reducing complexity associated with this stage,

helping to speed up the test process (5:i). Testers should also be

encouraged to highlight all potential issues. It was mentioned that

the co-location of development teams with test teams can lead to

the opportunity of informal communication with development,

helping to reduce complexity through the transfer of tacit

knowledge (12:i) (3:e). The point has also been made that even in

the absence of co-location of development and test, that if there is

a good relationship between the two, and they are accessible via

the same time zone, that this is also very beneficial in resolving

298

issues quicker (1:i).

Table 8.3: The Availability of Knowledge from Development Teams.

8.2.3 The Benefit of Support Applications and Support Teams

The following section provides viewpoints relating to the benefit of support

applications and support teams, in reducing complexity associated with system testing.

The use of

support teams

There is a benefit of providing supporting application and

support teams, which are separate to system testing, but

closely aligned. Examples given are project management

teams or test environment development and support teams.

Deployment knowledge is sometimes difficult to acquire, and

this can have a knock on effect on system test planning and

system test development. To acquire clear and accurate detail

regarding system usage can be a difficult. Project

management (or business analysts) are often used to acquire

such knowledge, in order to facilitate system testing. Project

management can help in recognising necessary test

environment system configuration detail (helping to emulate

deployment environment), which must be accounted for

during the planning stage (3:i) (1:e).

Independent, closely aligned, automation teams e.g. teams

concentrating on test automation development, can also help

in reducing complexity associated with complex test

environments, by providing ongoing support for the test

frameworks (7:i) (7:e). Automation tends to remove some

complexity from the tester, but one must be careful because

this can also reduce test environment knowledge for system

testers, if they have not been involved in the automation

299

process. Being unfamiliar with the test environment can affect

a tester’s ability to accurately evaluate the effectiveness of

tests or to efficiently debug test results. The automation of

test case measurement can significantly reduce complexity.

The use of automated systems which may be custom built or

off the shelf, can help significantly in reducing complexity

associated with test case execution and measurement stages of

system testing (3:i) (2:e).

The use of

project

management

applications

Project management tools such as JIRA and Confluence were

described as helping to clarify what architectural decisions

have been made, and the main drivers for these decisions.

Tools such as wiki pages are also described as being effective

to detail such architectural decisions (2:e). Other applications

such as Zepher help simplify test case measurement, and

"Quality Centre" can help reduce complexity associated with

test case management, aiding the management of the test

environment, and test resources. This combined with a

minimal amount of architecture changes to the test

environment, after initial setup, make test case management

an often easy process. It was stated that developers often

prefer that communication with system testing be on more of

a formal basis. Formal communication is very important but

such communication can in itself be complex, depending on

the context. Interactions between various system components

which may be detailed in a medium such as flow diagrams,

for instance, are beneficial, but such a medium is also

described as not possibly facilitating the full transfer of

knowledge associated with the interactions of a more complex

system. A high degree of such knowledge is described as

being tacit in nature, such as may be involved in the

description of component interactions (1:e).

