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Abstract: 

 This work outlines an experimental and theoretical investigation of the effect of 

molybdenum (Mo) doping on the oxygen vacancy formation and photocatalytic activity of 

TiO2. Analytical techniques such as X-ray diffraction (XRD), Raman, X-ray photoelectron 

spectroscopy (XPS) and photoluminescence (PL) were used to probe the anatase to rutile 

transition (ART), surface features and optical characteristics of Mo doped TiO2 (Mo-TiO2). 

XRD results showed that the anatase to rutile transition was effectively impeded by 2 mol % 

Mo doping up to 750 °C, producing 67 % anatase and 33 % rutile. Moreover, the crystal growth 

of TiO2 was affected by Mo doping via its interaction with oxygen vacancies and the Ti—O 

bond. The formation of Ti—O—Mo and Mo—Ti—O bonds were confirmed by XPS results. 

Phonon confinement, lattice strain and non-stoichiometric defects were validated through the 

Raman analysis. DFT results showed that, after substitutional doping of Mo at a Ti site in 
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anatase, the Mo oxidation state is Mo6+ and empty Mo-s states emerge at the titania conduction 

band minimum. The empty Mo-d states overlap the anatase conduction band in the DOS plot. 

A large energy cost, comparable to that computed for pristine anatase, is required to reduce 

Mo-TiO2 through oxygen vacancy formation. Mo5+ and Ti3+ are present after the oxygen 

vacancy formation and occupied states due to these reduced cations emerge in the energy gap 

of the titania host. PL studies revealed that the electron-hole recombination process in Mo-

TiO2 was exceptionally lower than that of TiO2 anatase and rutile. This was ascribed to 

introduction of 5s gap states below the CB of TiO2 by the Mo dopant. Moreover, the photo-

generated charge carriers could easily be trapped and localized on the TiO2 surface by Mo6+ 

and Mo5+ ions to improve the photocatalytic activity.  

 

Keywords: Photocatalysis; Ceramics; Dopant; XPS; Titania 

 

1. Introduction: 

Titanium dioxide (TiO2) has been identified as an interesting nanomaterial in the 21st 

century, owing to its promising physical, chemical and optical properties for numerous eco-

friendly applications, such as water treatment, air purification, energy production and self-

cleaning coatings using solar light (1). The commercialisation of photocatalysis technology has 

gained significant interest in recent decades. The photocatalysis concept has been successfully 

established for various commercial products, such as cement (2), air purifier (3), paints (4), 

water filter (5), deodorisers (6), mosquito repellent fabrics (7), and antimicrobial coatings (8, 

9). The most commonly existing crystalline polymorphs of TiO2 are anatase, rutile and brookite 

(10-12). Anatase is accepted to be the more active phase of TiO2 and is preferred by the ceramic 

industries to fabricate light active antimicrobial indoor building materials such as ceramics, 

glass, tiles and sanitary surfaces (13, 14). This requires thermal stability of the anatase phase 

under typical ceramic processing conditions. TiO2 anatase is mainly fabricated at low 

calcination temperatures (~500 °C) to prevent the anatase to rutile phase transition (ART) (15-

17), which produces the less photo-active rutile phase. The photo-activity of anatase arises 

from its appropriate band edge positions, electron affinity, ionization potential, and the long 

lifetime of charge carriers (10, 12, 18). Moreover, transient photo-conductance analysis has 

revealed that the electron-hole recombination phenomena in anatase (101) phase is much 

slower compared to rutile (110), which is credited in part to the indirect band gap of anatase 

(11, 19).  
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The unit cells of anatase and rutile phases are composed of TiO6 octahedra with titanium 

atoms at the centre and oxygen atoms at the vertices (20). Both anatase and rutile have a 

tetragonal primitive cell with space groups I41/amd for anatase and P42/mnm for rutile (20). The 

octahedral structures of the anatase crystal has a distorted four edge sharing centre (4 corners 

and 4 edges), whereas the rutile owns a non-distorted two edge sharing centre (2 corners and 6 

edges) (21). The ART phase transformation is believed to occur via contraction of the c-axis, 

changes in lattice parameters and structural reformation (breaking and making of bonds) (13, 

21). TiO2 anatase phase is easily prepared at a calcination temperature around 500 °C, owing 

to its low surface free energy (13, 20). The phase transformation of TiO2 mostly relies on 

surface defects (oxygen vacancies, Ti interstitials), crystal strain, particle size, existence of 

additives or dopants, and calcination conditions (20-22). ART of TiO2 at high temperature 

could be controlled by the addition of metal ions, suitable chemical modifiers and an 

appropriate synthesis method (13). Doping with metal ions is a one of the profitable ways to 

retard the ART (14, 21, 23-31). Metal ions could improve the thermal stability of TiO2 through 

the reduction in contact points, and nucleation sites (32). 

Generally, doping of an element with higher oxidation state compared to Ti4+ would 

improve charge carrier separation on the photocatalyst surface (33). Molybdenum (Mo; with a 

highest oxidation state of Mo6+) as a dopant is inexpensive, non-toxic and has high solubility 

in the TiO2 anatase lattice (33). The ionic radius of Mo6+ is almost identical to that of Ti4+, 

being 0.062 nm and 0.068 nm, respectively, and, therefore, Mo6+ ions could easily replace Ti4+ 

ions in the anatase crystal lattice (34, 35). This kind of doping would minimise the lattice 

distortion (35, 36). Mo doping could also generate energy states within the band gap of TiO2 

to enhance the light absorption and minimise the electron-hole recombination (35-37). Khan 

and Berk suggested that an impurity level of Mo6+/Mo5+ (Mo6+ 4d0 1e– → Mo5+ 4d1) could be 

generated below the conduction band (CB) of TiO2. During photoexcitation, electron transition 

could occur from the 0 2p valence band (VB) of TiO2 into the Mo6+/Mo5+ impurity level and 

then to the CB of TiO2 through d(Mo5+)-d(Ti) transition (38). The photo-induced electrons 

could initiate the reduction of Ti4+ ions to Ti3+ states at the surface. Moreover, the calcination 

process creates oxygen vacancies. The substitution of Mo dopant in the TiO2 crystal lattice 

could strongly influence the number of oxygen vacancies due to the charge compensation. The 

formation of Ti3+ surface defects and oxygen vacancies could amplify the photocatalytic 

efficiency of Mo-TiO2 via creating new energy levels and capturing of CB electrons at the 

surface after the relaxation process (38).  
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Kemp and McIntyre (39) investigated the photocatalytic activity of Mo-TiO2 for the 

degradation of polyvinylchloride. XRD results revealed that 34 % of TiO2 anatase content was 

retained by 1 % Mo doping at a 600 °C calcination temperature. Fisher et al. (40) studied the 

antimicrobial property of Mo-TiO2 coated films on the soiled surfaces in a beer industry under 

visible light irradiation. The coatings were fabricated on a stainless steel substratum by a 

magnetron sputtering ion plating technique with the aim to avoid microbial fouling. The 

bacterium was selected through the isolation of microorganisms on the soiled surface. Mo-TiO2 

coated films showed 5-log reduction against Escherichia coli under dark and light conditions. 

Mo-TiO2 coatings could function as a secondary barrier to restrain the microbial contamination. 

Recently, Miljević et al. (33) examined the photocatalytic (coated on glass substrate) and self-

cleaning (coated on brick and stone) efficiency of Mo-TiO2-layer double hydroxide (LDH) 

nanocomposite coatings under visible light irradiation. The results showed that the 

photocatalytic and self-cleaning properties of Mo-TiO2-LDH (Mo/Ti = 0.03 mass ratio) were 

higher than that of TiO2-LDH. After 24 h of light irradiation, the water contact angle (WCA) 

of Mo-TiO2-LDH coated brick (87°) and stone (36°) was significantly decreased as compared 

to uncoated brick (105°) and stone (58°), suggesting hydrophilicity of the coating. In another 

study, Yoon et al. (41) reported the photocatalytic activity of transparent Mo-TiO2 (Mo = 3 

at.%) films templated using cellulose nanocrystals (CNCs). The optical analysis showed that 

the visible light absorption capability of Mo-TiO2-CNCs was significantly higher than bare 

TiO2.  

The above studies show that Mo is a potential dopant to improve the photocatalytic 

performance of TiO2. Mo doping could influence the surface characteristics, oxygen vacancies, 

crystallinity and formation of Ti3+ centres, however, there is still no comprehensive studies on 

the antimicrobial activity of high temperature stable anatase Mo-TiO2. Thus, the focus of the 

present investigation is to study systematically the influence of Mo doping on the phase 

stability of anatase, formation of oxygen vacancies, and the photocatalytic activity to show that 

Mo doping could preserve the anatase content at high calcination temperature and thus enhance 

the activity of TiO2. A comprehensive analysis on the relationship between the dopant 

concentration and the surface characteristics of TiO2 is discussed. Electron-hole recombination 

was studied through photoluminescence (PL) spectra. Density functional theory (DFT) 

calculations were also performed to examine the Mo oxidation state and the formation energy 

of oxygen vacancies and its role in the oxidation states of the cations and the resulting electronic 

structure, which is vital for the photocatalytic activity. The photocatalytic activity of Mo-doped 

anatase was studied using the disinfection of total bacteria in wastewater under UVA-LED 
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light irradiation. The result demonstrates that Mo is a significant dopant to enhance the 

photocatalytic activity of TiO2 anatase. 

 

2. Materials and Methods: 

Analytical grade chemicals were used in this study. All the chemicals were used as received 

without further purification.  

 

Synthesis of Mo-TiO2: 

In a typical procedure to prepare 0.5 mol % Mo-TiO2, titanium isopropoxide (TTIP; 41.81 

ml) was mixed with isopropanol (200 ml) under stirring for 15 min, denoted as solution A. In 

the meantime, solution B was prepared by mixing 0.1225 g of ammonium molybdate 

tetrahydrate ((NH4)6Mo7O24.4H2O) in 200 ml of double distilled water under vigorous stirring 

for 15 min. Afterwards, solution B was added drop by drop into solution A to initiate the 

hydrolysis process under stirring for 30 min. The resultant milky white solution was dried at 

100 °C for 24 h. The amorphous powders were then calcined at various temperatures (500 °C, 

600 °C, 700 °C, 750 °C, and 800 °C) in a muffle furnace with a heating rate of 10 °C/min for 

2 h. In a similar fashion, 1 mol %, 1.5 mol % and 2 mol % of Mo-TiO2 samples were also 

synthesised. Pure TiO2 (0 mol % Mo-TiO2) was synthesised by the same procedure without 

addition of any Mo precursor. 

 

DFT calculations: 

DFT calculations were executed by the VASP 5.4 (42, 43) code, using projector augmented 

wave (44, 45) (PAW) potentials to describe the core-valence interaction. The exchange-

correlation functional is estimated by the Perdew-Wang functional (PW91) (46). The potentials 

for titanium (Ti), oxygen (O) and molybdenum (Mo) explicitly account for 12, 6 and 12 valence 

electrons, respectively. The energy cut-off for the plane wave basis set is 400 eV and the 

convergence criteria for electronic and ionic relaxations are 10-4 eV and 0.02 eV/Å. The bulk 

lattice parameters of the anatase unit cell were computed as: a = 3.791 Å and c = 9.584 Å; these 

compare with experimental values of a = 3.785 Å and c = 9.514 Å (47). A (3 × 3 × 1) anatase 

supercell, with 108 atoms, was constructed using the computed lattice parameters given above 

for undoped anatase and Mo was substitutionally doped at a Ti site to give a dopant 

concentration of 2.8 at. %.  

A (3 × 3 × 4) k-point sampling grid was used. The calculations were spin-polarised and 

no symmetry constraints were imposed. The calculations implemented an on-site Hubbard 
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correction (DFT+U) (48, 49) to describe the partially filled Ti 3d and Mo 4d states; U = 4.5 eV 

is applied to Ti 3d states and U = 4.0 eV is applied to Mo 4d with these choices for U informed 

by previous studies.(50-54) 

We considered reduction of Mo-doped TiO2 via oxygen vacancy formation. To identify the 

most stable site for vacancy formation, multiple oxygen sites of the Mo-doped structure were 

considered, taking into account the symmetry of the system. For each oxygen site the vacancy 

formation energy was computed from the following equation: 

𝐸𝑣𝑎𝑐 = 𝐸(Mo𝑥Ti1−𝑥O2−𝑦) + 1/2𝐸(O2) −  𝐸(Mo𝑥Ti1−𝑥O2)      (1) 

Where 𝐸(Mo𝑥Ti1−𝑥O2−𝑦) denotes the total energy of Mo-TiO2 with a single oxygen 

vacancy. 𝐸(Mo𝑥Ti1−𝑥O2) represents the total energy of Mo-TiO2 without an oxygen vacancy. 

The oxygen vacancy formation energy is referenced to half the total energy of gas-phase O2.  

The oxidation states were analysed through Bader charge analysis (55) and computed spin 

magnetisations. Given the lack of such analysis in the available literature and to provide 

benchmark-computed values for the Bader charge of Mo in Mo-TiO2, calculations were 

performed on bulk MoO3 and MoS2 as reference materials. In the former system, the Bader 

charge for Mo was computed as 9.2 electrons, to which we ascribe an oxidation state of Mo6+; 

for the latter system, the computed Bader charge was 10.7 electrons, corresponding to Mo4+. 

 

Photocatalytic wastewater disinfection: 

The photocatalytic activity of Mo-TiO2 (0.1 g/L) was assessed by the disinfection of 

microbes in wastewater (secondary effluent of an urban wastewater (WW) treatment plant, 

Medinaceli, Soria, Spain) under LED light irradiation with different UVA wavelengths. The 

characteristics of effluent were determined by the standard method of wastewater analysis 

(Table S1). The parameters such as pH, conductivity, total volatile solids (TVS), total 

suspended solids (TSS), chemical oxygen demand (COD), and microbial count (Escherichia 

coli, non coliforms and other coliforms) were measured. Two parallel lines of 10 UVA LED 

lights (Seoul Viosys, Republic of Korea) of particular wavelength (385 and 395 nm), which 

were widely scattered to equally cover the reactor surface, was used as the irradiation source. 

250 mA of current intensity was used in each LED light setup. This was equivalent to 

consuming 8.38 W and 8.25 W of electrical power by the 385 nm and 395 nm LED lights, 

respectively. The lamp was located at a distance of 4.5 cm from the water surface. Under this 

experimental condition, the actual irradiated power was determined by potassium ferrioxalate 

actinometry method (56, 57).The results showed that 1682.8 ± 77.1 and 1607.7 ± 56.1 µmol 
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m-2 s-1 of photons emitted from the 385 and 395 nm LED lights, respectively. All the materials 

used in this experiment was previously sterilised in an autoclave at 100 ºC and 1.5 bar for 40 

min. 100 ml of WW was treated in each trial in a glass reactor. 1.0 ml of aliquot was withdrawn 

from the photo-reactor at regular time intervals (such as 4, 8, 15, 30, 45, and 60 min) to measure 

the existence of bacteria, in terms of colony-forming units (CFU), by ISO 9308-1:2014 method 

(58).  

At first, 0.5 mL of the WW sample was mixed with 0.5 mL of saline water (0.9 g L-1 NaCl 

in distilled water). Then the samples were filtrated through 0.45 μm white-gridded mixed 

cellulose ester filter (GN-6 Metricel®, Pall, New York, USA) in a laminar flow hood to avoid 

external contamination. Chromocult® agar plates (Millipore, Merck, Darmstadt, Germany) 

were used as the media to grow the bacterial colonies. CFUs were enumerated after incubating 

the plates at 36 ± 2 ºC for 21-24 h. There are three types of colonies may be identified to grow 

on Chromocult® agar plates such as Escherichia coli (dark-blue to violet colour); other 

coliforms, namely: Enterobacter aerogenes, Citrobacter freundii, (pink to red colour); and 

some non-coliform bacteria, namely: Enterococcus faecalis, Pseudomonas aeruginosa 

(colourless).  

 

Characterisation: 

ART of Mo-TiO2 was investigated with the help of X-ray diffraction (XRD) and Raman 

spectroscopy. The crystallinity and phase changes were studied through XRD (Siemens D500) 

using Cu Kα radiation (λ= 0.15418 nm) in the 2θ range of 10 °- 80 °. Spurr equation was applied 

to determine the anatase and rutile phase composition as follows: 

 𝐹𝑅 =  
1

1+0.8[𝐼𝐴(101) 𝐼𝑅(110)]⁄
                                      (2) 

Where FR, IA(101) and IR(110) are the rutile phase percentage, intensity of anatase peak and 

intensity of rutile peak, respectively. Scherrer equation was used to determine the average 

crystallite size. Raman spectra of Mo-TiO2 samples were measured for an acquisition period 

of 3 s with a grating of 300 gr/mm. The surface chemical composition, and the bonding 

interactions of Mo-TiO2 were analysed using X-ray photoelectron spectroscopy (XPS) with K-

Alpha+ spectrometer. Photoluminescence (PL) analysis was recorded to study the effect of Mo 

doping on the lifetime of charge carriers (excitation wavelength of 350 nm). 
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3. Results and Discussion: 

The lattice oxygen vacancies and the formation of energy levels in Mo-TiO2 framework 

were studied via DFT calculations. The structural, optical and surface characteristics of Mo-

TiO2 were examined in detail using XRD, Raman, PL and XPS spectra. The phase percentages 

of Mo-TiO2 at different calcination temperatures were investigated by XRD. The effect of Mo 

doping on the changes of TiO2 lattice parameters were examined via Raman spectroscopy. The 

bonding interactions and oxygen vacancies were studied in detail by XPS and PL. Pure TiO2 

anatase (calcined at 500 °C) and rutile (calcined at 700 °C) were used as reference for 

comparison.  

 

DFT: 

 

Fig. 1 Relaxed geometry of Mo-doped TiO2 anatase for (a) stoichiometric Mo-TiO2 and (b) 

after formation of a single, reducing oxygen vacancy. The vacancy site sits at an equatorial 

position relative to the Mo-dopant and the formation energy is included in the inset of panel 

(b). The yellow iso-surface encloses spin densities of up to 0.02 eV/Å3. The site of the removed 

O ion is indicated by the black circle and dashed black lines show the ions to which the removed 

oxygen was bound. In this and subsequent Figures, Ti is represented by grey spheres, O by red 

and Mo by blue. 

The relaxed structure of Mo-doped TiO2 anatase is shown in Fig. 1(a). The computed Bader 

charge for Mo is 9.13 electrons, corresponding to Mo6+ based on comparisons with the Bader 

charge computed for Mo in bulk MoO3. Mo-O distances are 1.94 Å and 2.01 Å for oxygen ions 

in equatorial and apical positions, respectively. These values are almost identical to those 

computed for Ti-O distances in the undoped supercell, 1.94 Å and 2.00 Å, owing to the similar 
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ionic radii of Mo6+ and Ti4+. Mo-O bond lengths are compared with experimentally determined 

Ti-O distances of 1.94 Å and 1.96 Å (47), for apical and equatorial oxygen sites. 

We consider reduction of the system via oxygen vacancy formation as such defects are 

implicated in the ART (23, 59-61). The most stable site for the formation of an oxygen vacancy 

is an equatorial site of the Mo-dopant and the relaxed geometry and excess spin density are 

shown in Fig. 1(b). The formation energy is 5.05 eV and this is more stable than the next most 

stable vacancy by 0.1 eV. By comparison, the vacancy formation energy in the undoped anatase 

supercell is 5.26 eV and so Mo-doping, at this concentration, will not promote vacancy 

formation to a significant degree.    

After formation of a neutral oxygen vacancy, two electrons are released and these localise 

in the vicinity of the vacancy site, as shown in the excess spin density plot of Figure 1(b). The 

computed Bader charge for Mo increases from 9.13 electrons, in the stoichiometric system, to 

9.91 electrons in the reduced system, indicating reduction to Mo5+. The spin magnetisation in 

the d-orbital of Mo is 1.1 μB. For one of the Ti ions to which the removed oxygen was bound, 

the Bader charge increases from 9.61 to 9.91 electrons. This Ti ion has a computed spin 

magnetisation of 0.2 μB. These results suggest that the excess charge occupies the vacancy site 

rather than localising at only the Mo and Ti ions (Fig. 1(b)). Typically, Ti3+ ions exhibit 

computed Bader charges of 10.0-10.5 electrons and spin magnetizations of 0.8-1.0 μB (23, 62). 

The values computed for the partially reduced Ti ion in the present work are consistent with 

our previous study of In-doped TiO2 (59). This study showed excess charge distributed over 

the vacancy site in the reduced system, rather than localised at cation sites; the computed Bader 

charge and spin magnetization for Ti sites neighbouring the vacancy were 9.7/9.8 electrons and 

0.1/0.2 μB, respectively. The excess spin density plot in Fig. 1 (b) shows that the charges are 

distributed over Mo and Ti and the electron density extends towards the vacancy site. 

Page 9 of 29 AUTHOR SUBMITTED MANUSCRIPT - JPMATER-100272.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



10 
 

 

Fig. 2 Computed PEDOS for (a) stoichiometric Mo-doped TiO2 anatase and (b) reduced Mo-

doped TiO2 anatase, with one oxygen vacancy. Panel (c) shows the occupied Ti3+ and Mo5+ 

states which emerge in the band gap after vacancy formation. 

 

The projected electronic density of states (PEDOS) were computed for the stoichiometric 

and reduced system, with one oxygen vacancy, and these are shown in Fig. 2. For the 

stoichiometric system (Fig. 2(a)), Mo s-states emerge at the CBM of the TiO2 host and the Mo 

d-states overlap with the titania CB. The emergence of Mo-derived defect states below the 

CBM was reported by the GGA studies of Mo-doped TiO2 (36, 63). Mo d-states below the 

CBM were identified in these studies but there was no discussion of the Mo s-states. In the 

present work, we find that Mo d-states lie above the CBM and this may be ascribed to the 

implementation of a Hubbard U on Mo d-states which shifts these states with respect to the 

TiO2 CBM. After vacancy formation and reduction of Ti and Mo, occupied Ti and Mo d-states 

emerge in the band gap at 1.65 eV above the valence band maximum (VBM), as shown in Fig. 

2(b) and 2(c). 

 

XRD: 

XRD patterns of Mo-TiO2 samples calcined at 600, 700, 750 and 800 °C are shown in Fig. 

3. The results revealed that the anatase phase of TiO2 is significantly preserved up to 750 °C 

by Mo doping (39) (Table 1). A small red shift is observed for the anatase peak when the Mo 
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content is increased from 0 to 2 mol %, suggesting the dopant-induced lattice distortion (38). 

The intensity and width of anatase peaks are strongly influenced by Mo concentration. The 

average crystallite size of as-synthesised materials is given in Table 2. For 600 °C, the average 

crystallite size of anatase is decreased with an increase of Mo content, indicating the crystal 

growth is restrained by Mo content. The existence of Mo ions in the TiO2 lattice could distribute 

point defects as heterogeneous nucleation sites, which may restrict the crystal growth (41, 64). 

Besides, the number of inter-granular contacts between the nearby titania grains may decrease 

when increasing the concentration of Mo (38). For 700 and 750 °C, the average crystallite size 

of TiO2 anatase does not vary much with Mo mol % and the size is increased in some cases 

such as 1 mol % Mo-TiO2 (700 °C) and 1.5 mol % Mo-TiO2 (750 °C). The doping sites of TiO2 

are mainly decided through the ionic radii, coordination number and valence electron of the 

dopant (65). The ionic radius of Mo6+ (0.062 nm) is close to that of Ti4+ (0.068 nm), hence 

Mo6+ could easily substitute Ti4+ ions in the anatase lattice, suggesting changes in lattice 

parameters and crystal plane distance (65-67). The increase of Mo concentration above 2 mol 

% results in the formation of molybdenum trioxide (MoO3). The major peaks of MoO3 are 

analogous to those of anatase (101) and rutile (110) peaks. It could be difficult to distinguish 

the anatase crystalline peaks for samples with high Mo mol % (e.g. 4 mol %, 8 mol %, 16 mol 

%, etc). Consequently, 2 mol % of Mo is sufficient to maintain the anatase percentage of TiO2 

at high calcination temperatures.  
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Fig. 3. XRD patterns of Mo-TiO2 at various calcination temperatures 

 

Table. 1. The phase percentages of Mo-TiO2 samples calcined at various temperatures 

Samples 500 °C 600 °C 700 °C 750 °C 800 °C 
Anatase Rutile Anatase Rutile Anatase Rutile Anatase Rutile Anatase Rutile 

0.0 % Mo-TiO2 100 - 7 93 -    100 - 100 - 100 

0.5 % Mo-TiO2 100 - 30 71 7 93 4 96 - 100 

1.0 % Mo-TiO2 100 - 84 16 52 48 15 85 - 100 

1.5 % Mo-TiO2 100 - 100 - 87 13 14 86 - 100 

2.0 % Mo-TiO2 100 - 100 - 87 13 67 33 - 100 

 

Table. 2. The average crystallite size of Mo-TiO2 

Sample Temperature (°C) Particle size (nm) 

Anatase    Rutile 

0.0 % Mo - TiO2 600 °C 29.918 35.715 

0.5 % Mo - TiO2 600 °C 24.908 34.734 

1.0 % Mo - TiO2 600 °C 23.060 36.316 

1.5 % Mo - TiO2 600 °C 19.129 - 

2.0 % Mo - TiO2 600 °C 18.729 - 

0.0 % Mo - TiO2 700 °C - 36.234 

0.5 % Mo - TiO2 700 °C 24.246 36.899 

1.0 % Mo - TiO2 700 °C 28.0769 35.430 

1.5 % Mo - TiO2 700 °C 24.469 34.6589 

2.0 % Mo - TiO2 700 °C 26.248 - 

0.0 % Mo - TiO2 750 °C - 36.661 

0.5 % Mo - TiO2 750 °C - 36.000 

1.0 % Mo - TiO2 750 °C 28.0769 36.580 

1.5 % Mo - TiO2 750 °C 38.0136 33.068 

2.0 % Mo - TiO2 750 °C 28.0700 36.362 
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XPS: 

The binding interactions and oxidation state of elements in Mo-TiO2 were analysed by XPS. 

Ti 2p, O 1s, Mo 3d scans of pure TiO2 (0 mol % Mo-TiO2 at 500 °C) and 2 mol % Mo-TiO2 at 

750 °C are displayed in Fig. 4. The representative spin—orbit coupling of Ti 2p peaks such as 

Ti 2p3/2 and Ti 2p1/2 are observed at 458.86 eV and 464.53 eV, respectively (Fig. 4(a)) (68, 69). 

This is ascribed to the existence of titanium in Ti4+ state. The O 1s spectrum of TiO2 is 

composed of two peaks. O 1s peak is divided into two sub components by peak fitting. The 

peak located at 530.03 eV is attributed to lattice oxygen in Ti—O bond of TiO2 (69). The 

surface O—H group of TiO2 is detected around 531.94 eV (Fig. 4(b)) (68, 69). The peak 

positions of Ti 2p and O 1s are slightly increased for 2 mol % Mo-TiO2 compared to pure TiO2 

(Fig. 4 (c) and (d)). This is ascribed to high electronegativity of Mo compared to Ti, suggesting 

a lattice shift by the substitution of Mo6+ for Ti4+ ion (34). Oxygen vacancies would also be 

created by this kind of replacement (34, 68), however, this was not observed in our DFT 

calculations. Moreover, Mo ions may strongly interact with oxygen atoms or oxygen vacancies 

via chemical bonds in the anatase crystal lattice, suggesting the formation of structural defects 

such as Ti—O—Mo and Mo—Ti—O bonds by Mo doping (35).  

The peaks observed at 233.28 eV and 236.40 eV are accredited to Mo 3d 5/2 and Mo 3d 3/2 

of Mo6+ (Fig. 4 (e)). The sub components detected by peak fitting at 231.84 eV and 235.42 eV 

are ascribed to Mo 3d 5/2 and Mo 3d 3/2 of Mo5+. XPS results showed that the percentage of 

Mo6+ is higher than that of Mo5+. The existence of Mo5+ denotes that the oxygen atoms in the 

anatase lattice are inadequate to reinforce Mo6+ ions (35) and based on DFT calculations this 

is consistent with reduction to Mo5+ after OV formation. A gap state (5s state of Mo) may be 

generated below the CB of TiO2 by Mo doping. This is beneficial to restrain the electron-hole 

recombination process and prolong the life time of charge carriers. The oxidation-reduction 

potential of Ti4+/Ti3+ (0.1 eV) is lower than that of Mo6+/Mo5+ (0.4 eV) (38). During light 

irradiation, Mo6+ could react with photo-induced hole to form Mo7+, which is highly unstable. 

Consequently Mo7+ can further react with surface adsorbed –OH groups to generate •OH and 

Mo6+ (Mo7+ + OH–  → Mo6+ + •OH) (38).  
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Fig. 4. XPS of 0 mol % Mo-TiO2 at 500 °C  ((a) Ti 2p and (b) O 1s) and 2 mol % Mo-TiO2 at 

750 °C ((c) Ti 2p (d) O 1s (e) Mo 3d) 

 

Raman spectra: 

The effect of Mo doping on the structural changes of TiO2 anatase was interpreted through 

Raman spectroscopy. Fig. 5 shows the Raman spectra of pure anatase (0 mol % TiO2 calcined 

at 500 °C), rutile (0 mol % TiO2 calcined at 700 °C) and Mo-TiO2 samples (calcined at 700 °C 

and 750 °C). The results showed that Raman modes of TiO2 anatase are strongly influenced by 

Mo doping. Raman modes such as Eg, B1g, and A1g are mainly originated from symmetric 

stretching O-Ti-O, symmetric bending O-Ti-O and anti-symmetric bending O-Ti-O vibrations, 

respectively (70). Among them, Eg, and A1g vibrations are more responsive to oxygen 

vacancies. Raman active modes of TiO2 anatase (space group: D19
4h (I41/amd)) and rutile (space 

group: D14
4h (P42/mnm)) are observed at their corresponding positions. Eg, B1g, A1g or B1g and Eg 

Raman bands belonging to anatase are observed around 135.02 cm-1, 388.61 cm-1, 508.18 cm-

1 and 631.82 cm-1, respectively (Table S2). The significant Raman bands associated with rutile 

are noted around 439.26 cm-1 and 602.94 cm-1, respectively. As compared to pure anatase, the 

Eg peaks of Mo-TiO2 are red shifted with an increase of line width (71). The peak shift is 

explained by a number of competitive mechanisms, such as phonon confinement, lattice 

strain/distortion and non-stoichiometric defects due to oxygen vacancies (72-75). The peak 

broadening of Eg with respect to the concentration of Mo is ascribed to changes in anatase 

crystal lattice, and the cleavage of vibrational phonon mode (76). According to the Heisenberg 

uncertainty principle, the phonon momentum of distribution (∆P) increases when the particle 

size decreases (73). Consequently, the changes in particle size may influence the phonon 

frequency of Raman modes, leading to peak broadening (73). As the Mo content is increased, 

the number of oxygen atoms to create Ti-O bonds is reduced, indicating a decrease in force 

constant of the bond (73). This could induce a red shift of Raman peak, because the force 

constant of a band is inversely proportional to its wavenumber (73). Choudhury et al. (73) 

suggested that the red shift is related to the reduced lattice size and diminishing of Ti-O bond. 

Liu and Syu (77) indicated that the red shift and peak broadening are attributed to oxygen 

deficiency in the crystal.  
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Fig. 5. Raman spectra of (a) and (b) Mo-TiO2 at 700 °C (c) and (d) Mo-TiO2 at 750 °C 

 

PL: 

PL spectra of Mo-TiO2 samples calcined at 700 °C are shown in Fig.6. Mechanisms such as 

electron—hole recombination or separation and electron—phonon scattering are involved in 

the PL process (78). PL spectrum of TiO2 anatase primarily originates from oxygen vacancies, 

surface defects, and self-trapped excitons (78). A peak at ca. 380 nm is ascribed to the band—

band transition in TiO2 (79, 80). The characteristic radiative recombination of self-trapped 

excitons confined within the TiO6 octahedra and oxygen vacancies is observed as a broad 

shoulder peak at ca. 419 nm (80). The peaks found in the range of 400 – 500 nm originated 

from the oxygen vacancy related defect centres (80). The blue-green emission peak observed 

around 485 nm is accredited to the charge transfer from Ti to O atom in TiO6 octahedra 
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associated with the oxygen vacancies (78). The peaks at ca. 460 nm and 535 nm are correlated 

to trapped or bound electrons to the oxygen vacancy centres (79). PL peak in the range of 485-

490 nm is ascribed to the charge transfer process from Ti3+ to oxygen anion in TiO6
–8 complex 

coupled with surface oxygen vacancies (38). The defect states or oxygen vacancy colour 

centres are denoted as F, F+ and F2+ for two-trapped electrons, one-trapped electron and no-

trapped electrons, respectively (79, 80). PL quenching or enhancing mechanism results from 

the non-radiative oxygen vacancy colour centres. The peaks around 440 nm and 450 nm are 

associated to F or F2+ color centres (80). The dominant peaks around 460 nm and 485 nm are 

ascribed to F+ color centre (80).  

Fig. 6. PL spectra of Mo-TiO2, anatase and rutile  

 

In our samples, it is clear that the PL emission peaks of pure TiO2 are quenched by 

introduction of the Mo dopant. The intensity of the PL peaks of the as-synthesised samples are 

in the order anatase (0% Mo-TiO2 at 500 °C) > rutile (0 % Mo-TiO2 at 700 °C) > 0.5 Mo-TiO2 
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> 2 Mo-TiO2 > 1.5 Mo-TiO2 > 1 Mo-TiO2. Mo doping can introduce gap states below the CB 

of TiO2 and this could suppress the electron-hole recombination process. The effect of Mo 

concentration on oxygen vacancies is clearly observed in terms of PL peak shift. Ti—O bond 

in the anatase lattice is disturbed by Mo doping. The impact on oxygen vacancies of TiO2 could 

be attributed to the effect of calcination temperature (38). The concentration of oxygen vacancy 

centres may vary with respect to the concentration of Mo (79). Consequently, the photo-

generated electrons could be easily trapped and localised in the oxygen vacancies, reducing the 

probability of photo-generated electron-hole recombination (79). In addition to oxygen 

vacancies, the PL intensity could also be influenced through the mobility of carriers (79).  

  

Photocatalytic wastewater disinfection: 

The photocatalytic activity of 0 % mol Mo-TiO2 (calcined at 500 °C) and 2 % mol Mo-

TiO2 (calcined at 750 °C) for the specific removal of total bacteria in WW under 385 nm and 

395 nm UVA LED light irradiation is displayed in Fig. 8. The percentages of N/N0 values were 

plotted against the irradiation time. N and N0 are the number of bacteria (CFU/mL) at 

irradiation time ‘t’ and 0, respectively. The efficiency was denoted by a parameter ‘b’ (rate 

coefficient) from the exponential decay curves. In the case of 385 nm LED light, the total 

bacteria removal for 2 % mol Mo-TiO2 is ~1.5 times higher than that of TiO2. However, the 

total bacteria removal for 2% mol Mo-TiO2 is ~2.8 times higher in comparison with pure TiO2 

under 395 nm LED light irradiation. The disinfection efficiency of Mo-TiO2 is maximal at 395 

nm LED light compared to that of 385 nm LED light. The total disinfection was achieved in 

almost 30 min of LED light irradiation. The high activity of Mo-TiO2 under 395 nm LED light 

is attributed to the maximum light absorption with respect to its specific band gap and 

electronic properties, suggesting the generation of more charge carriers responsible for 

microbial disinfection (81). The photocatalytic activity could be influenced by the competitive 

reaction between the microbes and other organic matter existing in the WW (82). Mo doping 

could enhance the surface active sites and endorse the interfacial charge transfer process (81, 

83). The Mo dopant could influence the crystallite size and surface active sites of TiO2 to 

promote the adsorption of microbes on the photocatalyst surface (84). The formation gap states 

by Mo dopant could extend the lifetime of photo-induced charge carriers. The poor disinfection 

for photolysis experiments is ascribed to the protection of remaining active cells by the 

metabolites released from the destructed cells (83, 85). The disinfection mechanism of 

microbes in WW may be attributed to the oxidative degradation of cells by reactive oxygen 
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species, increase of cell permeability, leakage of minerals, DNA/RNA damage, and inhibition 

of protein synthesis (83, 86, 87).  
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Fig. 7. Photocatalytic disinfection efficiency of TiO2 and Mo-TiO2 under UVA LED light 

irradiation 

 

XRD and Raman analysis clearly validate that the anatase crystal structure of TiO2 is well 

sustained after doping with Mo at high calcination temperature. DFT studies showed that gap 

states (such as s- and d- states) could be created between the VB and CB of TiO2, suggesting 

enhanced charge carrier separation on the photocatalyst surface. Raman analysis suggested that 

the lattice size and Ti-O bond strength are modified by Mo doping. The formation of oxygen 

vacancies may be varied with respect to the Mo dopant concentration because of the cleavage 

of more Ti-O bonds, indicating the contraction of O–Ti–O bond angle (73). The photo-

generated electrons could be captured by Mo6+, impurity levels, Ti3+ centres, and shallow or 

deep traps (38). The trapped electrons would further react with surface adsorbed oxygen to 

create more reactive oxygen species (38). PL analysis confirmed that the charge carrier 

mobility would be decreased as they interact with the dopants or defect centres, suggesting 

enhancement in the charge–carrier separation to improve the photocatalytic activity. Mo 

doping does not introduce any new peaks in the PL spectrum of TiO2. Nevertheless, the PL 

intensity of Mo-TiO2 peaks are smaller compared to anatase and rutile, suggesting the 

modification of surface defects and a reduction in the number of recombination centres (38). 

The photocatalytic activity was tested for the disinfection of microbes in a real WW system 

rather than using a simulated wastewater system. The disinfection efficiency of Mo-TiO2 was 

superior compared to pure TiO2. The photocatalytic experiments also demonstrated that Mo 

doping could improve the photon absorption of TiO2. The high photocatalytic activity of Mo-

TiO2 is accredited to, surface characteristics, crystallinity, formation of gap states, d-d electron 

transition, and the existence of high anatase content (34, 38).  

 

4. Summary: 

 The effect of Mo doping on oxygen vacancy formation, anatase phase stability and 

photocatalytic activity of TiO2 has been successfully investigated.  DFT calculations reveal 

that the Mo dopant is present in anatase as Mo6+, and is incorporated into the lattice with no 

distortions to the geometry, due to the similar ionic radii of Mo6+ and Ti4+. Analysis of the 

computed PEDOS plot for the stoichiometric system indicates that Mo 5s states emerge below 

the CBM of TiO2. The computed energy required for oxygen vacancy formation in Mo-TiO2 

is comparable to that of un-doped anatase and, hence, vacancies should be present in the doped 

system in similar concentrations to pure anatase, under equivalent preparation conditions. After 
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vacancy formation, the dopant is reduced to Mo5+ and Ti3+ is also present. This leads to the 

emergence of occupied Mo 4d and Ti 3d states in the energy gap. The peak shift in the Raman 

spectra revealed the influence of oxygen vacancies on the anatase crystal lattice. XPS results 

show the existence of Mo5+ in addition to Mo6+ in Mo-TiO2 samples. The formation of Ti—

O—Mo and Mo—Ti—O bonds are also confirmed through XPS analysis. The results also 

suggest lattice distortions due to substitution of Mo6+ for Ti4+ ion.  The electron transfer process 

between TiO2 and surface oxygen vacancies is confirmed by PL analysis. The electron-hole 

recombination is minimised via the appearance of Mo electronic states below the CB of TiO2. 

The life time of photo-induced charge carriers is extended through Mo6+, impurity levels, and 

Ti3+ centres. The photocatalytic activity of Mo-TiO2 was tested with a wastewater from a 

secondary effluent. The findings suggest that Mo-TiO2 is an excellent candidate for the 

fabrication of indoor building materials with light active antimicrobial characteristics.  
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